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Abstract—Electrical resonances may compromise the stability
of HVDC-connected Offshore Wind Power Plants (OWPPs). In
particular, an offshore HVDC converter can reduce the damping
of an OWPP at low frequency series resonances, leading to system
instability. The interaction between offshore HVDC converter
control and electrical resonances of offshore grids is analyzed
in this paper. An impedance-based representation of an OWPP
is used to analyze the effect that offshore converters have on
the resonant frequency of the offshore grid and on system
stability. The positive-net-damping criterion, originally proposed
for subsynchronous analysis, has been adapted to determine
the stability of the HVDC-connected OWPP. The reformulated
criterion enables the net-damping of the electrical series reso-
nance to be evaluated and establishes a clear relationship be-
tween electrical resonances of the HVDC-connected OWPPs and
stability. The criterion is theoretically justified, with analytical
expressions for low frequency series resonances being obtained
and stability conditions defined based on the total damping of
the OWPP. Examples are used to show the influence that HVDC
converter control parameters and the OWPP configuration have
on stability. A root locus analysis and time-domain simulations in
PSCAD/EMTDC are presented to verify the stability conditions.

Index Terms—electrical resonance, offshore wind power plant,
HVDC converter, positive-net-damping stability criterion.

I. I NTRODUCTION

H ARMONIC instabilities have been reported in practi-
cal installations such as BorWin1, which was the first

HVDC-connected Offshore Wind Power Plant (OWPP) [1],
[2]. More recently, electrical interactions between offshore
HVDC converters and series resonances have been identified
in DolWin1 and highlighted by CIGRE Working Groups as
potential causes of instability during the energization of the
offshore ac grid [3], [4], [5]. Such interactions are known
as electrical resonance instabilities [6]. In HVDC-connected
OWPPs, the long export ac cables and the power transformers
located on the offshore HVDC substation cause series reso-
nances at low frequencies in the range of 100∼ 1000 Hz
[3] - [5], [7]. Moreover, the offshore grid is a poorly damped
system directly connected without a rotating mass or resistive
loads [3], [2]. The control of the offshore HVDC converter can
further reduce the total damping at the resonant frequencies
until the system becomes unstable.
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Electrical resonance instability has been studied with an
impedance-based representation by several authors. In [8], [9]
Voltage Source Converters (VSCs) are modeled as Thévenin or
Norton equivalents with a frequency-dependant characteristic.
Nyquist and Bode criteria are used to analyze electrical
resonance stability [2], [10]. In [9], a clear relationship be-
tween electrical resonances and the phase margin condition is
established, but the complexity of the loop transfer function
limits further analysis of the elements that cause instability.
Alternative approaches, the passivity conditions of the system
[11], [12] and the positive-net-damping criterion [13], [14],
have been used to define stability conditions.

A number of studies on electrical resonance instability in
OWPPs have been reported in the literature. In [15] and [16],
the impact of electrical resonances on Wind Turbine (WT)
converters is investigated. However, few studies are focused on
the interactions between resonances and the offshore HVDC
converter. In [17], a modal analysis in a HVDC-connected
OWPP is used to characterize possible resonances and to
assess the stability of the offshore converters. Also, in [9] and
[18] the impact of resonances on offshore HVDC converters
is analyzed using an impedance-based representation.

In this paper, the impact that low frequency series reso-
nances have on the voltage stability of HVDC-connected OW-
PPs is analyzed and discussed. Preliminary work was reported
in [19], where the stability criterion presented in this paper
was assessed with examples. This paper furthers the initial
contributions of [19] by providing a formal framework for the
analysis of electrical resonance stability in HVDC-connected
OWPPs. An impedance-based representation is used to iden-
tify resonances and to assess stability considering the effect of
the offshore converters. The resonance stability of an OWPP
is determined using an alternative approach to the positive-
net-damping criterion [13]. This has been reformulated to
evaluate the net-damping for electrical series resonances and
to provide a clear relationship between electrical resonances of
the OWPP and stability. The main contributions of this paper
are summarized as follows:

• The alternative approach to the positive-net-damping cri-
terion is demonstrated using the phase margin condition.
This criterion defines the relation between the damping
at electrical series resonances and system stability.

• The relationship between the total damping and resonant
frequencies with the poles of the system is demonstrated.
This relationship shows that the pole analysis and the
positive-net-damping criterion provide the same informa-
tion about resonance stability.
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• Analytical expressions of the low frequency series reso-
nances are proposed considering the effect of VSC con-
trollers. These expressions are employed to calculate the
resonant frequencies where the total damping is evaluated
to determine system stability.

• A stable area of an OWPP is defined as a function of
the HVDC converter control parameters and the OWPP
configuration. Such an area is obtained from the damping
of the OWPP and indicates conditions of stability.

The effect that the HVDC converter control parameters and
the OWPP configuration have on stability is shown using
examples. For completeness, root locus analysis and time-
domain simulations in PSCAD/EMTDC are used to validate
the stability conditions. The examples presented in this paper
are complementary to those included in [19].

II. I MPEDANCE-BASED REPRESENTATION OF AN

HVDC-CONNECTEDOWPP

An impedance-based representation is suitable for the mod-
eling of converters of an HVDC-connected OWPP whenever
detailed design information is not available. Such a converter
representation offers advantages as it can easily be combined
with the equivalent impedance of the offshore ac grid to char-
acterize resonant frequencies. It is also possible to consider
the effect of the converter controllers. Moreover, the stability
assessment methods for impedance-based representations are
simple and less computational intensive compared to other
traditional methods such as eigenvalue analysis [2], [10].

The configuration of an HVDC-connected OWPP is shown
in Fig. 1. Type 4 WTs are connected to strings of the
collector system through step-up transformers from low to
medium voltage. Each WT grid side VSC has a coupling
reactor and a high frequency filter represented as an equivalent
capacitor. The strings are connected to a collector substation,
where transformers step-up from medium to high voltage. The
collector transformer in Fig. 1 is an equivalent representation
of 4 transformers that are connected in parallel [3]. Export
cables send the generated power to an offshore HVDC sub-
station, where a VSC based Modular Multilevel Converter
(MMC) operates as a rectifier and delivers the power to the
dc transmission system. The dc transmission system and the
onshore HVDC converters are not represented in this study.

Fig. 2 shows an impedance-based model of the HVDC-
connected OWPP suitable for the analysis of electrical reso-
nances and stability. The ac cables of the export and collector
system are modeled as singleπ sections with lumped param-
eters and the transformers are modeled as RL equivalents.
These models are accurate enough to characterize the low
frequency resonances that are responsible for stability issues
[3]. The VSCs are represented by equivalent circuits, which
include the frequency response of the controller. The offshore
VSC is represented by a Thévenin equivalent as it controls
the ac voltage of the offshore grid [9], [20]; however, Norton
equivalents are used to represent the WT VSCs since they
control current [8], [20].

III. I MPEDANCE-BASED MODEL OFVSCS

The VSC models are represented in a synchronousdq frame
and the Laplaces domain, where complex space vectors are

Fig. 1. General scheme of an HVDC-connected OWPP.

Fig. 2. Impedance-based model of an HVDC-connected OWPP for resonance
and stability analysis.

denoted with boldface letters for voltages and currents asv =
vd + jvq and i = id + jiq.

A. Offshore VSC model

The offshore VSC controls the ac voltage of the offshore
grid. Fig. 3a describes the control structure of this converter.
If the VSC uses a MMC topology, high frequency filters are
not required and only a voltage control loop is considered
[18], [21]. Additionally, the internal MMC dynamics can be
neglected if a circulating current control is implemented [18].
A control action based on a PI controller is expressed as:

v
h
vsc = FPI,v(vr − vpoc) (1)

FPI,v = kp,v +
ki,v
s

(2)

wherevh
vsc is the reference voltage for the offshore converter,

vr is the control reference voltage at the Point of Connection
(POC),vpoc is the voltage measured at the POC andFPI,v is
the PI controller for the voltage control loop.

The dynamics across the equivalent coupling inductance of
the offshore converter are expressed as:

v
h
vsc = vpoc + ic(R

h
f + sLh

f + jω1L
h
f) (3)

whereic is the current from the HVDC converter,Lh
f is the

coupling inductance,Rh
f is the equivalent resistance ofLh

f

andω1 = 2πf1 rad/s (f1 = 50 Hz). The coupling inductance
is equal toLh

f = Larm/2 + Lh
tr, whereLarm is the arm
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inductance of the MMC andLh
tr is the equivalent inductance

of the offshore HVDC transformers.
A Thévenin equivalent of the offshore VSC (see Fig. 2) is

obtained by combining (1) and (3):

vpoc = vr ·Gh
c − ic · Zh

c (4)

Gh
c =

FPI,v

1 + FPI,v
; Zh

c =
Rh

f + sLh
f + jω1L

h
f

1 + FPI,v

(5)

whereGh
c is the voltage source transfer function andZh

c is
the input-impedance of the converter.

B. Wind Turbine VSC model
Each WT is equipped with a back-to-back converter, but

only the grid side VSC is represented in this study. Its control
is based on an ac current loop employing a PI controller as
shown in Fig. 3b. The dc voltage outer loop is not represented
in the WT VSC model since its dynamic response is slow;i.e.
there is sufficient bandwidth separation with the inner current
loop [2], [22]. This ensures that there are no interactions
between harmonic resonances and the outer loops, which are
not of interest in this paper. A Norton equivalent of the WT
converter (see Fig. 2) is obtained as:

iwt = ir ·Gw
c − vwt · Y w

c (6)

whereiwt is the current from the WT VSC,ir is the control
reference current,Gw

c is the current source transfer function,
vwt is the voltage after the coupling filter andY w

c is the input-
admittance of the VSC.Gw

c andY w
c are expressed as [8]:

Gw
c =

FPI,c

Rw
f + sLw

f + FPI,c
; Y w

c =
1−Hv

Rw
f + sLw

f + FPI,c
(7)

FPI,c = kp,c +
ki,c
s

; Hv =
αf

s+ αf

(8)

whereFPI,c is the PI controller of the current loop,Lw
f the

coupling inductance,Rw
f the equivalent resistance ofLw

f , Hv

the low pass filter of the voltage feed-forward term [8] and
αf the bandwidth ofHv. The PI design is based on [8], [23],
with proportional and integral gains given askp,c = αcL

w
f and

ki,c = αcR
w
f , and the bandwidth of the current control byαc.

IV. STABILITY ANALYSIS OF HVDC-CONNECTEDOWPPS

The stability analysis considers the impedance-based circuit
presented in Fig. 4, where the offshore grid is modeled with an
equivalent circuit (further explained in Section V). A similar
representation can be found in [9].

The impedances were expressed in the stationaryαβ frame
[6], [11], which is denoted in boldface letters for voltages and
currents asvs = vα + jvβ and is = iα + jiβ. The current in
the stationaryαβ frame and the Laplaces-domain is given as:

i
s
c = (vs

rG
h
c − i

s
rG

w
c Z

w
c )

Th

︷ ︸︸ ︷

1/Zg

1 + Zh
c /Zg

(9)

whereZg = Zgrid
eq +1/Y w

c is the equivalent impedance of the
OWPP from the offshore VSC andT h is the OWPP closed
loop transfer function, which can be also expressed as:

T h(s) =
M(s)

1 +M(s)N(s)
=

M(s)

1 + L(s)
(10)

(a)

(b)
Fig. 3. Control structures: (a) Offshore HVDC converter and (b) WT grid
side converter.

Equivalent offshore grid: Zg

vrGc

Zc vpoc ic iwt

Yc
w

Gcir
w

Zeq
grid

h

h

s

s s s

s

Fig. 4. Equivalent impedance-based circuit of an HVDC-connected OWPP
with representation of offshore grid circuit.

where M(s) = 1/Zg is the open loop transfer function,
N(s) = Zh

c is the feedback transfer function andL(s) is the
loop transfer function.

Assuming that the voltage and current sources in Fig. 4
are stable when they are not connected to any load [10], the
stability of the OWPP can be studied in the following ways:

• By analyzing the poles ofT h or the roots ofZg+Zh
c = 0.

• By applying the Nyquist stability criterion ofZh
c /Zg [10].

• By considering the passivity ofT h [6], [11].

In addition to the previous alternatives, a variation to the
positive-net-damping criterion given in [13], [14] is here
employed instead to analyze system stability. The criterion has
been reformulated to evaluate electrical resonance stability as
explained in section IV-B.

A. Passivity

A linear and continuous-time systemF (s) is passive if [11]:

• F (s) is stable and,
• Re{F (jω)} > 0 ∀ ω, which is expressed in terms of

the phase as−π
2 < arg{F (jω)} < π

2 . This condition
corresponds to a non-negative equivalent resistance in
electrical circuits.

Passivity can be applied to determine the stability of closed
loop systems [6], [11]. A system represented by the closed
loop transfer function in (10) is stable ifM(s) andN(s) are
passive since−π < arg{L(jω)} < π ∀ ω. This implies that
the Nyquist stability criterion forL(s) is satisfied. Therefore,
the OWPP is stable ifZg andZh

c are passive. When the HVDC
converter is connected to a passive offshore grid,Zg is passive
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and the stability only depends on the passivity conditions of
the converter input-impedance,Zh

c .
In no-load operation (i.e. when only the passive elements

of the OWPP are energized), the passivity ofZg is ensured
as the WTs are assumed to be disconnected from the offshore
grid. However, the WTs represent active elements when they
are connected to the offshore grid (i.e.Zg can have a negative
resistance), which may compromise the OWPP stability.

B. Positive-net-damping stability criterion
The criterion states that a closed loop system is stable if

the total damping of the OWPP is positive at the following
frequencies: (i) open loop resonant frequencies and (ii) low
frequencies where the loop gain is greater than 1 [13]. How-
ever, it does not provide a clear relation between electrical
resonances of the OWPP and system stability. This increases
the complexity of analyzing the impact that system parameters
have on resonance stability.

The criterion presented in [13] has been reformulated to
evaluate the net-damping for electrical series resonances. The
approach proposed in this paper is developed from the phase
margin condition [9]. If stability is evaluated in terms of
the phase margin,L(jω) = M(jω)N(jω) must satisfy the
following conditions at angular frequencyω:

|M(jω)N(jω)| = 1, (11)

−π < arg{M(jω)N(jω)} < π ∀ ω. (12)
M(jω) andN(jω) in (11) and (12) can be expressed in terms
of equivalent impedances as:

1

M(jω)
= Zg(jω) = Rg(ω) + jXg(ω) (13)

N(jω) = Zh
c (jω) = Rh

c (ω) + jXh
c (ω) (14)

Also, the equivalent impedance from the voltage source
v
s
rG

h
c in Fig. 4 is expressed as:

Zh
eq(jω) = Zh

c (jω) + Zg(jω) (15)

Phase margin condition (11) is equivalent to:

Rh
c (ω)

2 +Xh
c (ω)

2 = Rg(ω)
2 +Xg(ω)

2 (16)
The resistive components in ac grids and VSCs may be

usually neglected compared to the reactive components. There-
fore, Rg ≪ Xg, Rh

c ≪ Xh
c and (16) is simplified to:

Xh
c (ω) = ±Xg(ω) (17)

The electrical series resonances observed from the voltage
sourcevs

rG
h
c in Fig. 4 correspond to frequencies whereZh

eq in
(15) has a dip or a local minimum. If the resistive components
are neglected, the series resonance condition is reduced to:

Im{Zh
eq(jωres)} ≈ 0 ⇒ Xh

c (ωres) ≈ −Xg(ωres) (18)

It can be observed that (18) is a particular case of (17);
i.e. the series resonance condition ofZh

eq coincides with the
stability condition|M(jω)N(jω)| = 1 given by (11).

Phase margin condition (12) can be expressed in terms of
the imaginary part ofL(jω) as follows:







If d|L(jω)|
dω

> 0 : 0 < arg{L(jω)} < π ⇒
⇒ Rg(ω)X

h
c (ω)−Rh

c (ω)Xg(ω) > 0

If d|L(jω)|
dω

< 0 : −π < arg{L(jω)} < 0 ⇒
⇒ Rg(ω)X

h
c (ω)−Rh

c (ω)Xg(ω) < 0

(19)

If the resonance condition in (18) is combined with (19):
{

If d|L(jω)|
dω

> 0 : Xh
c (ωres)[Rg(ωres) +Rh

c (ωres)] > 0

If d|L(jω)|
dω

< 0 : Xh
c (ωres)[Rg(ωres) +Rh

c (ωres)] < 0
(20)

It can be shown (see Appendix A) that if the offshore grid is
capacitive (i.e. Xg < 0) and the HVDC converter is inductive
(i.e. Xh

c > 0), then d|L(jω)|
dω

> 0. On the other hand, if
the offshore grid is inductive (i.e. Xg > 0) and the HVDC
converter is capacitive (i.e. Xh

c < 0), then d|L(jω)|
dω

< 0. By
considering the previous conditions, (20) is simplified to:

RT (ωres) = Rg(ωres) +Rh
c (ωres) > 0 (21)

where resistanceRT represents the total damping of the
system, resistanceRh

c the HVDC converter damping and
resistanceRg the offshore grid damping.

It can be observed that (21) is equivalent to the positive-
net-damping criterion in [13], but evaluated for the series
resonances ofZh

eq. Therefore, the offshore HVDC VSC is
asymptotically stable if the total damping of the system,RT , is
positive in the neighborhood of an electrical series resonance.
The advantage of this criterion with respect to the passivity
approach is that the stability can be ensured even ifZg and
Zh
c are not passive because it considers the contribution of

both terms in the closed loop system.
It should be noted that if the resistive components of the

offshore grid and HVDC VSC are large compared to the
reactive elements (e.g.Xg/Rg < 10 andXh

c /R
h
c < 10), the

approximations in (17) and (18) are not valid and this criterion
cannot be used.

C. Relation between total damping and poles of the system

The HVDC-connected OWPP is a high order system with
several poles. However, the system response is governed by a
dominant poorly-damped pole pair. If this pole pair is related
to the electrical series resonance, impedancesZh

c and Zg

around this resonance can be approximated as:

Zh
c,res(s) ≈ Rh

c + sLh
c ; Zg,res(s) ≈ Rg +

1

sCg

(22)

where Cg is the equivalent capacitor of the offshore grid
impedance when the frequency is close the resonance. Using
(18), the series resonance reduces toωres = 1/

√

Lh
cCg.

The poles related to the series resonance are obtained from
1 + Zh

c,res(s)/Zg,res(s) = 0, yielding:

s =
−(Rh

c +Rg)Cg ±
√

(Rh
c +Rg)2C2

g − 4Lh
cCg

2Lh
cCg

(23)

Considering that(Rh
c + Rg)

2C2
g ≪ 4Lh

cCg, equation (23) is
approximated to:

s ≈ −Rh
c +Rg

2Lh
c

± j
1

√

Lh
cCg

(24)

The imaginary part of the closed loop system poles cor-
responds to the resonant frequency. Also, the real part of the
poles is correlated to the total damping,Rh

c+Rg, as mentioned
in [14]. Therefore, there is a pair of poles that represent the
series resonance and can be used to identify instabilities.
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V. RESONANCE CHARACTERIZATION

In this section, the low frequency series resonances of an
OWPP are characterized. It is useful to identify resonant
frequencies in an OWPP since they can destabilize an offshore
HVDC converter. To this end, the frequency response of
Zh
eq(jω) is here used to identify electrical resonances. Due

to the complexity of the VSC and offshore grid equations,
simplifications are used to obtain analytical expressions of the
resonant frequencies.

A. Simplifications of the OWPP impedance model

Fig. 5 shows that the frequency response of a VSC
impedance can be simplified to RL equivalents above 100
Hz. The input-impedance of the VSCs was represented in
an αβ frame (see Fig. 4). To achieve this, a reference frame
transformation fromdq toαβ was performed using the rotation
s → s − jω1 [6], [15]. For frequencies higher thanω1, the
offshore VSC impedance,Zh

c (s− jω1), is approximated to:

Rh
c =

Rh
f

1 + kp,v
; Lh

c =
Lh
f

1 + kp,v
(25)

Similarly, the WT VSC impedance,Zw
c (s−jω1) = 1/Y w

c (s−
jω1), is approximated to:

Rw
c = Rw

f + (αf + αc)L
w
f ; Lw

c = Lw
f (26)

The previous simplifications do not consider the VSCs as ac-
tive elements sinceRh

c andRw
c are positive for all frequencies.

Fig. 6 shows the equivalent model of the HVDC-connected
OWPP with the simplified VSC and cable models. The capac-
itor Cec represents the export cable capacitance. The inductive
and resistive components of the export cable are small enough
to be combined with the RL equivalent of the transformers and
the HVDC converter. Also, the collector cables are removed
because their equivalent inductance and capacitance are small
and only affect the response at high frequencies, which are
not considered in this study.

When the collector cables are removed, the aggregation
of WTs is reduced to a combination of parallel circuits
independent to the collector system topology. Fig. 7 shows
the OWPP model under this scenario, which is equivalent to
the model in Fig. 4. The parameters of the aggregated model
are defined as follows:

• Rcs
tr andLcs

tr are the RL values of the collector transform-
ers.

• Rw
tr,a andLw

tr,a are the RL values of the aggregated WT
transformers:

Rw
tr,a = Rw

tr/N ;Lw
tr,a = Lw

tr/N (27)

whereN is the number of WTs andRw
tr andLw

tr are the
RL values of one WT transformer.

• Rw
c,a andLw

c,a are the RL values of the aggregated WT
converters:

Rw
c,a = Rw

c /N ;Lw
c,a = Lw

c /N (28)

• Cw
f,a is the equivalent capacitance of the aggregated WT

low pass filters:
Cw

f,a = Cw
f ·N (29)

whereCw
f is the capacitance of one WT low pass filter.

Frequency (Hz)
100 102 104

|Z
ch
| (

dB
)

-50

0

50

100 Without simp.
With simp.

(a) Offshore HVDC VSC

Frequency (Hz)
100 102 104

|Z
cw

| (
dB

)

-50

0

50

100

150

(b) WT grid side VSC

Fig. 5. Frequency response with and without simplifications (parameters in
Appendix B withkp,v= 1, ki,v= 500).

Fig. 6. Impedance-based model of an HVDC-connected OWPP withsimpli-
fied VSC and cable models (indicated in grey rectangles).

Fig. 7. Impedance-based model of an HVDC-connected OWPP withaggre-
gation of collector system.

Fig. 8 shows the frequency response of the equivalent
offshore grid impedance,Zh

eq, with and without simplifications
to VSC and cable models. It can be observed that if simplifica-
tions are made the 50 Hz resonance of the VSC control is not
exhibited; however, the frequency response agrees well with
that of the un-simplifiedZh

eq over 200 Hz and up to 1 kHz.
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Fig. 8. Frequency response of OWPP impedance without and withVSC and
cable simplifications (parameters in Appendix B andkp,v= 1, ki,v= 500).

Additionally, the simplification of the collector cables slightly
shifts the series resonance from 459 Hz to 497 Hz. In light of
these results, it can be concluded that the simplified frequency
response represents a good approximation for low frequency
resonances in the range of 200∼ 1000 Hz.

B. Analytical expression for the series resonant frequency
The expression of the lowest series resonant frequency of

Zh
eq is obtained for no-load operation and when WTs are

connected. The resistances are neglected as they only have
a damping effect on resonance (i.e. they barely modify the
resonant frequency).

In no-load operation, the WTs are not connected and the
contribution of the collector system at low frequencies is
negligible. Therefore, the OWPP impedanceZh

eq in (15) is
equivalent to an LC circuit with a resonant frequency:

fnload
res =

1

2π
√

Lh
cCec

(30)

The lowest series resonant frequency when WTs are con-
nected has been obtained following an algebraic calculation
using Fig. 7:







f load
res =

1

2π

√

b−
√
b2 − 4ad

2a
a = CecL

w
c,a(L

cs
tr + Lw

tr,a)L
h
cC

w
f,a

b = CecL
h
c (L

w
c,a + Lcs

tr + Lw
tr,a)+

+Cw
f,aL

w
c,a(L

h
c + Lcs

tr + Lw
tr,a)

d = Lh
c + Lw

c,a + Lcs
tr + Lw

tr,a

(31)

Expressions (30) and (31) are employed to calculate the
frequencies where the total system damping is evaluated to
determine stability.

VI. V OLTAGE STABILITY ANALYSIS

The modified positive-net-damping criterion was applied to
analyze the impact of electrical series resonances in the voltage
stability of an HVDC-connected OWPP. The effects of the
offshore HVDC converter control and the OWPP configuration
are considered in the study. For completeness, the root locus of
the system and time-domain simulations in PSCAD/EMTDC
are used to confirm the results.

The cable model simplifications considered in the resonance
characterization are used in the stability analysis given that the
low frequency response is well-represented and the damping
contribution from the cable resistances can be neglected.
However, the VSC simplifications in (25) and (26) are not
considered, because the converters are not represented as

active elements. The system is analyzed in no-load operation
and when WTs are connected based on the OWPP described
in Appendix B.
A. No-load operation

In no-load operation, the positive-net-damping stability cri-
terion only includes the damping contribution of the offshore
converter,Rh

c , because the export and collector cables are
passive elements with a small resistance and thus can be
neglected (i.e.Rg ≈ 0). Therefore, condition (21) is reduced to
Rh

c (ωres) > 0, which is equivalent to analyzing the passivity
of the HVDC converter control at a resonant frequency.

Stability is ensured if the electrical series resonance is
located in a frequency region with positive resistance. This
region is determined using the zero-crossing frequencies of
Rh

c (i.e.Rh
c (ω) = Re{Zh

c (ω)} = 0) in (5). The two following
solutions are obtained:







ωcut1 = ω1 = 2π(50)

ωcut2 =
ω1

1−
ki,vL

h
f

Rh
f (1 + kp,v)

(32)

Whenωcut2 < 0, the only zero-crossing frequency considered
is 50 Hz andRh

c is negative forω > 2π(50). Therefore, the
converter is always unstable for resonant frequencies above
50 Hz. If ωcut2 > 0, thenRh

c is negative for2π(50) < ω <
ωcut2 and positive forω > ωcut2. In this case, the converter
is stable for frequencies higher thanωcut2 since the resonance
is located in a positive-resistance region. Thus, the offshore
HVDC converter is stable whenRh

c has two zero-crossing
frequencies (ωcut2 > 0 and ωres > ωcut2). The following
inequalities are obtained by combining (30) and (32):






ωcut2 > 0 ⇒ Rh
f (1 + kp,v)− ki,vL

h
f > 0

ωres > ωcut2 ⇒ Rh2
f (1 + kp,v)

2 − 2Rh
fL

h
f (1 + kp,v)ki,v−

−ω2
1R

h2
f Lh

fCec(1 + kp,v) + k2i,vL
h2
f > 0

(33)

Fig. 9 shows the stability area (Rh
c (ωres) > 0) defined by

(33) as a function of the control parameters of the offshore
HVDC converter,kp,v and ki,v, and the export cable length,
lcb. It is observed that when the cable length increases the
stable area is reduced.

Fig. 10 shows the root locus of the low frequency resonant
poles for parametric variations ofkp,v, ki,v and lcb. It should
be emphasized that these poles are not complex conjugate due
to the transformation of the VSC input impedance from a
synchronousdq to a stationaryαβ reference frame, which
introduces complex components. The increase of cable length
moves the resonance to lower frequencies sinceCec increases.
As kp,v increases, the resonance shifts to higher frequencies
given thatLh

c in (25) decreases. Changes inki,v do not affect
the resonant frequency. The system becomes unstable when
one of the resonant poles moves to the positive side of the
real axis; this is equivalent to have a negative damping. It can
be observed that the stability conditions of the resonant poles
agree with the stable areas shown in Fig. 9.

Figs. 11 and 12 show examples of stable and unstable
cases whenki,v is modified. The intersection betweenZh

c



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2663111, IEEE
Transactions on Power Systems

IEEE TRANSACTIONS ON POWER SYSTEMS 7

Fig. 9. Stable area of offshore HVDC converter in no-load operation as
function of kp,v, ki,v and lcb (the stable and unstable examples of Fig. 11
and 12 are marked with circles).

(a) Cable length variation from 1 to
100 km (kp,v = 0.1, ki,v = 3).

(b) Variation of ki,v from 1 to 5
(kp,v = 0.1, lcb = 10 km).

(c) Variation of kp,v from 0 to 1
(ki,v = 5, lcb = 10 km)

Fig. 10. Root locus of OWPP in no-load operation for variations of export
cable length and ac voltage control parameters.

andZg (i.e.1/|M(jω)| = |N(jω)|) approximately determines
the series resonant frequency, as defined in (18). When the
system is stable the resonant frequency is located in a positive-
resistance region ofZh

c , as shown in Fig. 11a. Also, following
the Nyquist criterion, the Nyquist curve encircles(−1, 0) in
anti-clockwise direction and the open loop system does not
have unstable poles. Therefore, the system is stable as it does
not have zeros with positive real part. Although the ac voltage
control can be designed to ensure stability, all the poles have
a low damping. This slows down the dynamic response, as
shown in Fig. 11c, which is not acceptable for the operation
of the offshore converter.

When the system is unstable the resonant frequency is
located in the negative-resistance region ofZh

c , as shown in
Fig. 12a. Following the Nyquist criterion, the Nyquist curve
encircles(−1, 0) in clockwise direction and the open loop
system does not have unstable poles. Therefore, the system is
unstable because the total number of zeros with positive real
part is 1. In Fig. 12c, the voltage at POC shows oscillations at
309 Hz due to the resonance instability identified in Fig. 12a.
B. Connection of Wind Turbines

When the WTs are connected to the offshore ac grid, the
WT converters modify the low frequency resonance location
and the total damping. The stability conditions are discussed,

(a) Frequency response:Rh
c , Zh

eq , Zh
c , Zg .

(b) Nyquist curve ofZh
c /Zg (positive freq.).

(c) Instantaneous and RMS voltages at POC. Step change is applied at 1 s

Fig. 11. Stable example in no-load operation withkp,v = 0.1, ki,v = 3 and
lcb = 10 km.

(a) Frequency response:Rh
c , Zh

eq , Zh
c , Zg .

(b) Nyquist plot ofZh
c /Zg (pos freq.).

(c) Instantaneous and RMS voltages at POC. Step change is applied at 1 s

Fig. 12. Unstable example in no-load operation withkp,v = 0.1, ki,v = 5

and lcb = 10 km.
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but the expressions for the zero-crossing frequencies ofRT are
not obtained analytically due to the complexity of the system.

Fig. 13 shows the stable area defined byRT (ωres) > 0.
There is a significant increase of the stable region when
the WTs are connected. Therefore, the ac control parameters
can be modified for a larger range of values to improve the
dynamic response without compromising stability.

Fig. 13. Stable area of offshore HVDC converter as a function of kp,v and
ki,v and the number of connected WTs (the stable and unstable examples of
Fig. 15 and 16 are marked with a circle).

(a) Variation of kp,v from 0 to 80
(ki,v = 3, N = 80)

(b) Variation ofki,v from 1 to 1200
(kp,v = 0.1, N = 80)

(c) Variation of WTs from 1 to 80
(kp,v = 1, ki,v = 500)

Fig. 14. Root locus of OWPP for variations of ac voltage control parameters
and number of WTs (N = 80).

Fig. 14 shows the root locus of the low frequency resonant
poles for different ac voltage control parameters and number
of WTs. The connection of WTs improves the resonance
stability because the associated poles move to the left hand
side of the real axis and increase the damping of those low
frequency modes. This damping contribution of the WTs is
also mentioned in [2]. The stability conditions of the resonant
poles agree with the stable area shown in Fig. 13. Also, the
resonance moves to higher frequencies whenkp,v and the
number of WTs increases, as shown in Fig. 14.

Figs. 15-17 describe two situations where the ac voltage
control is designed to have a fast dynamic response (e.g.
kp,v = 1 andki,v = 500) and the number of WTs decreases
from 40 to 20. When all the WTs are connected, the offshore
converter is stable because the resonance is located in a
positive-resistance region, as shown in Fig. 15a. The converter
introduces a negative resistance at the resonant frequency, but

(a) Frequency response ofRh
c + Rg , Zh

eq , Zh
c andZg

(b) Frequency response ofRh
c and Rg

(c) Nyquist plot ofZh
c /Zg (positive freq.)

Fig. 15. Stable example when 40 WTs are connected,kp,v = 1 andki,v =

500.

(a) Frequency response ofRh
c + Rg , Zh

eq , Zh
c andZg .

(b) Frequency response ofRh
c and Rg

(c) Nyquist plot ofZh
c /Zg (positive freq.)

Fig. 16. Unstable example when 20 WTs are connected,kp,v = 1 and
ki,v = 500.
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the total damping is compensated byRg, as shown in Fig. 15b.
When the number of WTs reduces to 20 the offshore converter
becomes unstable since the resonance lies in the negative-
resistance region, as shown in Fig. 16a. In this case,Rg cannot
compensateRh

c , as shown in Fig. 16b. Also, the Nyquist
curve agrees with the positive-net-damping criterion in both
situations (Figs. 15c and 16c). In Fig. 17, the instantaneous
voltages at POC show oscillations at 444 Hz when the number
of WTs is reduced at 1 s; this is due to the resonance instability
identified in Fig. 16a.

The variation of connected WTs can be caused by switching
configurations during commissioning phases or during outages
due to maintenance or contingencies [3]. As shown by the
previous examples, a sudden reduction in the number of
WTs should be carried out with care as this can lead to
instability. Active damping can be implemented as a virtual
resistor in the offshore HVDC converter to compensate the
negative resistance introduced by the ac voltage control for all
operational states. This will allow a design of the ac voltage
control to have a fast dynamic response without compromising
the stability.

Fig. 17. Instantaneous and RMS voltages at POC when the numberof WTs is
reduced from 40 to 20 at 1 s. The ac voltage control parameters arekp,v = 1

andki,v = 500

VII. C ONCLUSION

Instabilities in BorWin1 have increased interest in electrical
resonance interactions in HVDC-connected OWPPs. The CI-
GRE Working Groups suggest that series resonances can be
found in the range of a few hundred Hz. These resonances can
interact with the offshore HVDC converter control leading to
system instability.

This paper has reformulated the positive-net-damping cri-
terion to define the conditions of stability of an HVDC-
connected OWPP as a function of the ac voltage control
parameters of the HVDC converter and the configuration of
the OWPP. The modified criterion is evaluated for electrical
series resonances based on the phase margin condition. This
reduces the complexity of the stability analysis. In addition,
expressions for the low frequency resonance are obtained from
simplified VSC and cable models.

Risk of detrimental resonance interaction increases in no-
load operation and when a limited number of WTs are con-
nected. This is due to the poor damping exhibited by the series
resonance of the offshore grid and the resonance location at
the lowest frequencies. The HVDC converter reduces the total
damping at the resonant frequency if the control is designed
to have a fast dynamic response. Resistive elements or active
damping are necessary to compensate the negative resistance

of the converter control for all possible operational states and
to allow a fast dynamic response.

APPENDIX A
If Rh

c (ω) ≪ Xh
c (ω) andRg(ω) ≪ Xg(ω), the loop transfer func-

tion is approximated asL(jω) ≈ Xh
c (ω)/Xg(ω) and its derivative

as a function ofω is:

d|L(jω)|

dω
≈

1

|Xg(ω)|3
d|Xh

c (ω)|

dω
−

|Xh
c (ω)|

|Xg(ω)|2
d|Xg(ω)|

dω
(34)

Specific conditions ford|L(jω)|
dω

can be defined depending on the
offshore grid and HVDC converter impedances:

• If the offshore grid impedance is inductive,Xg > 0, and the
HVDC converter impedance is capacitive,Xh

c < 0:

d|Xg(ω)|

dω
> 0 &

d|Xh
c (ω)|

dω
< 0 ⇒

d|L(jω)|

dω
< 0 (35)

• If the offshore grid impedance is capacitive,Xg < 0, and the
HVDC converter impedance is inductive,Xh

c > 0:

d|Xg(ω)|

dω
< 0 &

d|Xh
c (ω)|

dω
> 0 ⇒

d|L(jω)|

dω
> 0 (36)

APPENDIX B
OWPPDESCRIPTION

A 480 MW OWPP is considered in this study. A total number of
80 WTs is distributed in 16 strings of 5 units.

Offshore HVDC VSC: MMC-VSC; rated power, 560 MVA; rated
voltage, 320 kV; arm inductance,Larm = 183.7 mH.

Offshore HVDC transformer: 2 units in parallel; rated power, 280
MVA; rated voltages, 350 kV/220 kV; equivalent inductance and
resistance at 220 kV,Lh

tr = 99.03 mH, Rh
tr = 0.86 Ω.

Export cables: 2 cables in parallel; length,lec = 10 km; equivalent
lumped parameters per cable,Lec = 4 mH, Rec = 0.32 Ω, Cec =
1.7 µF.

Collector transformers: 4 units in parallel; rated power of each
unit, 140 MVA; rated voltages, 220 kV/33 kV; equivalent inductance
and resistance of the transformers at 220 kV,Lcs

tr = 20.63 mH,
Rcs

tr = 0.22 Ω.
WT transformers: rated power, 6.5 MVA; rated voltages, 33 kV/0.9

kV; equivalent inductance and resistance at 33 kV,Lw
tr = 31 mH,

Rw
tr = 1.46 Ω.
WT grid side VSC: 2-level VSC; rated power, 6.5 MVA; rated

voltage, 0.9 kV; coupling inductance,Lw
f = 50 µH; coupling

resistance,Rw
f = 0.02 mΩ; equivalent capacitance of high frequency

filter, Cw
f = 1 mF; low pass filter bandwidth,αf = 50; current

control bandwidth,αc = 1000.
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