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Least angle regression (LAR), as a promising model

selection method, differentiates itself from convent-

ional stepwise and stagewise methods, in that it is

neither too greedy nor too slow. It is closely related

to L1 norm optimisation, which has the advantage

of low prediction variance through sacrificing part

of model bias property in order to enhance model

generalisation capability. In this paper, we propose an

efficient least angle regression algorithm (ELAR) for

model selection for a large class of linear-in-the-par-

ameters (LIP) models with the purpose of accelerating

the model selection process. The entire algorithm

works completely in a recursive manner, where the

correlations between model terms and residuals, the

evolving directions and other pertinent variables are

derived explicitly and updated successively at every

subset selection step. The model coefficients are only

computed when the algorithm finishes. The direct

involvement of matrix inversions is thereby relieved.

A detailed computational complexity analysis indicates

that the proposed algorithm possesses significant

computational efficiency, compared to the original

approach where the well-known efficient Cholesky

decomposition is involved in solving least angle

regression. Three artificial and real-world examples are

employed to demonstrate the effectiveness, efficiency

and numerical stability of the proposed algorithm.

1. Introduction

Research into a large class of linear-in-the-parameters

(LIP) models for nonlinear system identification has con-

sistently drawn substantial interest from both academic

and industrial communities [1–6], making it an important

c© The Author(s) Published by the Royal Society. All rights reserved.
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research topic in the field of computational intelligence and machine learning. The main reason

can be attributed to the fact that a variety of conventional and advanced models, networks

or systems, such as polynomial models [7–9], RBF (radial basis function) neural networks

[10–12], fuzzy rule-based systems [13–15] and least-squares support vector machines [16–18],

can somehow be treated and trained as LIP models. The essential concept of LIP models is that

they are formed by a set of linearly combinatorial model terms which are in turn nonlinearly

mapped from the original model input space. For instance, a fuzzy system can be viewed as a

series of linear expansion of fuzzy basis functions transformed from a model input space [13],

where the claimed interpretability virtue lies in explaining the developed fuzzy system in terms

of understandable IF-THEN linguistic rules, where the rule premises are employed to partition

the input space into fuzzy regions in which the rule consequents are valid to describe the

system’s behaviour. The model terms in LIP models are also recognised as, or closely related

to some well-known terminologies, e.g., monomials, basis functions, hidden nodes, fuzzy rules

and support vectors, in various research contexts. Here, except for polynomial models, nonlinear

parameters are often involved in the model terms for mapping the original model space into

another hyperspace in order to improve model performance.

Although LIP models are widely considered to have strong approximation abilities given

a complex enough model structure, challenging scientific problems arise in how to effectively

and efficiently determine a proper model structure and the associated parameters, a process

which is often known as model selection (aka subset selection). A simpler model structure

with fewer model terms included is usually preferred from several perspectives, such as model

interpretability, model sparsity and model generalisation capability. For example, a small number

of fuzzy rules included in a fuzzy system would help understand the underlying system

behaviours being described. Meanwhile, the associated unknown model parameters also need

to be estimated. In practice, a large number of candidate model terms can usually be generated

from measured data, from which the selection of a compact set of model terms that make up a LIP

model with acceptable model performance is desirable. If an excessive number of model terms are

adopted, an unnecessarily complex LIP model can thereby be resulted with deteriorated model

interpretability and generalisation abilities.

Therefore, the model selection of LIP models aims to find a small subset of model terms

for predicting system output with good accuracy. This is a very important research area and

constitutes the main topic of the paper. Unsupervised learning methods are amongst earlier

attempts for performing model selection, the well-known representatives being the clustering-

based methods and rank-revealing or decomposition-based methods [19–24]. These methods

are intrinsically fast as usually only data from input space is processed without explicitly

considering the system output information. This inevitably leads to important difficulties, i.e.,

inaccurate models learnt from data, because feedback does not exist to assess model output using

training data. It is noted though clustering methods may also employ output information in

certain cases, but turning out that the corresponding computational complexities are dramatically

increased and the connection of the obtained clusters to a particular LIP model is not always

straightforward. Therefore, a refinement stage is required to further enhance model performance,

where the so-called supervised learning is introduced. Consequently, research on accurate model

selection methods is more focused on supervised learning methods.

Amongst supervised learning methods, obsolete approaches use exhaustive search to examine

every size of possible combinations of model terms in the least-squares sense, which is

computationally extremely expensive and even practically infeasible when a large number of

terms are available [15]. Fortunately, the stepwise selection techniques [25] provide alternative

approaches to significantly mitigate the computational burden at the expense of introducing

locally optimal solutions. In the framework of forward stepwise selection, it performs the model

selection sequentially, in that each step a new term is included into the model to maximumly

improve model performance, where the model coefficients for a series of candidate models are

normally computed in the least-squares sense. This means that the model residual vector obtained
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after the inclusion of each new model term is always orthogonal to all the selected model terms.

It still exhibits heavy computational burden behind the raw idea of the stepwise approach, as

many candidate model terms and inverse operations are usually involved in the model selection

process.

Nowadays, there are a few efficient model selection algorithms working on the forward

stepwise principle though distinct model searching criteria are adopted. For example, despite

different schemes used to deal with the involved inverse operations, the orthogonal least-

squares (OLS) [26–30] and fast recursive algorithm (FRA) [3,31] were proposed to pursue the

largest reduction of L2 norm of model residuals at every model selection step. Alternatively, the

correlation between the model residual resulting from each step and the remaining unselected

model terms can also be used as the searching criterion instead of the residual’s L2 norm, where

the candidate term giving the largest correlation is selected at the following step. In addition to the

forward stepwise approaches, it may be worth mentioning that backward stepwise approaches

[25] are similar techniques but working in a reverse manner (starting with the inclusion of all

candidate model terms and then eliminating the most insignificant one at a time). However, the

whole process can be inefficient, especially when a large number of candidate model terms are

available.

It has been found that the forward stepwise approach performs greedy optimisation in the

sense that each time the best model term is greedily (where the least-squares estimation is

performed, resulting in the selected terms completely orthogonal to the model residual, i.e.,

zero correlation between them) added into the selected pool based on a number of previously

chosen terms. Given this greedy optimisation methodology, it can normally find locally optimal

solutions according to some searching criterion. Instead, the forward stagewise selection as a

less greedy approach opposed to the forward stepwise [32,33], iteratively identifies the most

correlated term with the current model residual and thereby only updates its own coefficient

with an amount proportional to the corresponding correlation (but not equal to it, meaning a

smaller optimisation step compared to stepwise) at each iteration step. As a result, the resultant

correlation for the selected terms is non-zero and is decreased during the model selection process,

until reaching zero and the least-squares solution is thus approached. The downside therefore lies

in that the iterative working manner of this approach requires a large number of iteration steps

(usually being considerably larger than the available number of model terms), incurring huge

computational burden. It is worth noting that, to improve optimality and model generalisation

performance, distinct enhancements have also been made to the forward stepwise methods based

on either OLS or FRA, including the involvement of additional refinement phases (where the

selected model terms are reviewed and replaced by unselected terms with larger contribution to

the underlying model) and/or the regularisation techniques (where penalised cost functions are

imposed on either the original or converted orthogonal space of the system) [15,34–37]. The model

performance has since been greatly improved while a global optimality cannot be guaranteed,

the computational burden being thereby increased due to the extra computing phases and/or

(determination of) the introduced regularisation parameters.

As a trade-off between the aforementioned stepwise and stagewise approaches, the newly

joined model selection approach, least angle regression (LAR) [25,32], provides another efficient

model selection framework motivated from the geometrical perspective [38]. It has also been

found that a direct modification of LAR can lead to the full-path of Lasso (Least absolute

shrinkage and selection operator) solutions [25,32,39], where L1 regularised cost is adopted to

minimise the sum of squared residuals (SSR) and the L1 norm of model coefficients. LAR uses

a similar working manner as in stepwise while adopts the concept behind stagewise, but the

key idea instead is to decrease the correlation for the selected terms at each step at a reasonably

large step size that just makes the correlation for the selected terms equal to the correlation for

an unselected term. The correspondingly unselected term is then added into the model and the

correlations are decreased equally amongst all the selected terms during the model selection

process until reaching the least-squares estimation given all available terms selected. Differing
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from the greedy selection employed in the stepwise approach and the iterative optimisation

(indicating high computational demand) exhibited in the stagewise approach, LAR owns both

less greedy merits and the efficient stepwise selection manner (indicating less computational

demand). In this respect, it might be worth mentioning that the L2 norm regularised optimisation

(aka ridge regression) can also be used for shrinking model coefficients towards zeros. However,

it is unable to force coefficients to exact zeros, in order to remove the corresponding model

terms from the final model. Apart from working on linear regression models, it is interesting to

note that, LAR (specifically its underpinning equiangularity condition) has also been generalised

in a number of different settings. For instance, it was extended to generalised linear models

[40] through considering the model’s differential geometrical structure. In addition, relating the

correlation for various model terms to the corresponding gradient of the cost function under

investigation, LAR has also recently been extended for applying on generalised linear/quasi-

likelihood models [41], Cox’s proportional hazard models [42] and more generally any convex

cost functions [38], where ordinary differential equations (ODEs) are successively solved to infer

the corresponding solution path.

In particular, regarding the greediness of stepwise algorithms, such as OLS, theoretically, they

lead to the resultant model residuals being always orthogonal to the selected model terms, which

means that the terms are thoroughly added into the model at each step of model selection (i.e.,

giving the best modification at each single step irrespective of the future effect [43]). In principle,

this mechanism is aggressive and can be overly greedy as useful terms which are correlated with

selected ones are unlikely to be included into the model subsequently due to the low explanatory

power given on the underlying model. In this regard, stagewise methods which partially add

terms into the model at some small/tiny step size at each step can also be employed to understand

the greedy behaviour exhibited by the forward stepwise method (being corresponded to that of

a large enough step size used in stagewise). Since the stagewise method itself is computationally

very slow due to the many tiny iterative optimisation steps, thus LAR was proposed to

dramatically mitigate the computational demand with the correlation between selected terms

and model residuals decreases in a reasonably fast manner determined algebraically. Simulations

have also been designed and conducted to verify the above points by Efron et al. [32]. It had

been found that, as the model size increases, the predictive model performance (goodness of

fit) of LAR was able to rise reasonably quickly, then decrease very slowly after reaching some

maximum value. In contrast, the model performance of forward stepwise method can rise and

decline more sharply than that of LAR. In this sense, the generalisation performance of stepwise

can be better than that of LAR at the beginning of model selection just due to its greedy nature, but

as more model terms were then subsequently included into the model, the situation was gradually

reversed. The generalisation performance of LAR was thereafter seen better than stepwise and

remained outperforming (considerably less over-fitting). These had therefore demonstrated the

dangerously greedy nature of forward stepwise approach. For details, they have been well

elaborated in the original LAR paper [32] and further claimed in a number of related studies

thereafter [43,44].

Given the stepwise selection manner of least angle regression, there still can be substantial

candidate model terms and matrix inversions involved in the model selection process, resulting

in high computational demand. In this paper, we derive a new efficient recursive algorithm

for solving the least angle regression, as opposed to the well-known OLS and FRA used for

solving the forward stepwise regression. The correspondingly selected model terms are thereby

used in the context of LIP model construction. The proposed algorithm deals with the least

angle regression recursively without the direct involvement of matrix inversions. The correlations

between model terms and residuals, the evolving directions and other pertinent variables are

explicitly expressed and successively updated in a recursive fashion. The model coefficients

are only computed at the end of the algorithm. The computational complexity of the proposed

algorithm is then accurately analysed. Examples from Chaotic time-series prediction, number

of sunspots forecasting, to Australian credit approval, are finally employed to demonstrate the
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effectiveness, efficiency and numerical stability of the proposed approach in comparison to the

original approach (where the well-known efficient Cholesky decompositions are involved).

The rest of the paper is organised as follows. Section 2 gives the mathematical formulation of

LIP models and the least angle regression. The proposed algorithm and its adoption for LIP model

identification are then presented in Section 3. The working principle of the algorithm and the

corresponding computational complexity are also described in detail. Results from three artificial

and real-world examples are given in Section 4. Finally, Section 5 concludes the paper.

2. Linear-in-the-parameters models and least angle regression

(a) Linear-in-the-parameters models

The general representation of a linear-in-the-parameters (LIP) model [1–3] can be expressed as

y(t) =
M
∑

i=1

ϕi (x(t),W) θi + e(t), (2.1)

where x(t) = [x1(t), . . . , xn(t)]∈ℜ
n constitutes the model input vector at time instant t, y(t) is

the system output, e(t) is the model residual, ϕi is the ith model term used to map model input

x(t) into the corresponding hyperspace using some nonlinear parameter W, θi is the associated

coefficient for the i model term, M is the total number of model terms included in the LIP model.

Different basis functions can be used to form model terms, here, assuming that a radial basis

function (RBF) is adopted (thus to construct a RBF neural network):

ϕi(x(t),W) = exp

{

−
1

2σ2

n
∑

j=1

[

xj(t)− ci,j
]2

}

, (2.2)

where ci,j and σ represent the centre and width of the corresponding basis function. Therefore,

the nonlinear parameter vector involved in all the model terms is given by W= [cT
1 , . . . , c

T
M , σ]T,

where ci = [ci,1, . . . , ci,n]
T ∈ℜn for i= 1, . . . ,M . The associated model coefficient vector is given

by Θ= [θ1, . . . , θM ]T. Initially, a large number of candidate model terms ϕi can be generated

from measured data. The task of model selection is to find a subset of model terms (e.g., hidden

nodes determination in RBF neural networks), say pi, from the initial candidate model terms ϕj ,

to construct a parsimonious model.

It can be seen that the mathematical formulation of LIP models can be viewed as the linear

combination of a series of model terms (laying the name of linear-in-the-parameters). It is capable

of approximating any continuous nonlinear function f(·) arbitrarily well on a compact set, given

enough number of model terms. For example, consider the following nonlinear autoregressive

model with eXogenous inputs (NARX) [45,46], commonly seen in time-series prediction:

y(t) = f(u(t− 1), . . . ,u(t− lu), y(t− 1), . . . , y(t− ly)) + e(t), (2.3)

where u(t) = [u1(t), . . . , us(t)] (s-dimensional) and y(t) are respectively the original system input

and output variables, lu and ly are the corresponding maximal time lags for the inputs and output,

e(t) is the model residual, and f(·) is some unknown nonlinear function. The LIP model presented

in (2.1) can then be utilised to approximate the unknown function f(·), while using x(t) = [u(t−

1), . . . ,u(t− lu), y(t− 1), . . . , y(t− ly)]∈ℜ
n (n= lus+ ly) as the model input vector. Given a

total of N training patterns, substituting (2.1) into (2.3) and expressing the results in matrix form,

yields

y=ΦΘ + e, (2.4)

where y= [y(1), . . . , y(N)]T represents the system output vector, Φ= [ϕ1, . . . ,ϕM ] (ϕi =

[ϕi(x(1),W), . . . , ϕi(x(N),W)]T, i= 1, . . . ,M ) is the regression matrix, Θ= [θ1, . . . , θM ]T is the

coefficient vector, and e= [e(1), . . . , e(N)]T is the model residual vector. The objective turns out

to select a number of regressors pi (say i= 1, . . . ,m), from the initial candidate regressors ϕj

(j = 1, . . . ,M ), and identify the corresponding coefficient vector Θ̂m ∈ℜ
m.
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(b) Least angle regression

Least angle regression (LAR) [25,32], as a relatively new model selection method, aims to find

a parsimonious set of model terms for the best of prediction. LAR stands itself between the

well-known forward stepwise regression and forward stagewise regression, while avoiding the

downsides from both approaches (i.e., neither too greedy nor too tardy during the model selection

process as discussed in Section 1). All the model terms are assumed to be standardised with zero

mean and unit variance, while the system output has the mean subtracted.

LAR starts by finding the largest absolute correlation between the candidate model terms

and the system output, resulting in the corresponding term being first selected for regression.

Then, at every step, the step size (in turn determining the next model term to be added into the

model) is chosen as small as possible, in such a way that the absolute correlation based on the

resultant model residual, for some remaining term is just as large as the one for the selected terms

(i.e., along with the so-called “least angle direction”). The corresponding model term obtained at

every step is thus successively entered into the model and the selection therefore always proceeds

equiangularly between all the selected terms. The inclusion of model terms can be viewed in a

piecewise fashion, each resulting in a submodel contributing to the whole model. In detail, we

can thus assume that the overall model output ŷk resulting from introducing the submodel at the

kth step is given by

ŷk = ŷk−1 +Φkθ̂k = ŷk−1 + γkΦk(Φ
T
kΦk)

−1
Φ

T
kek−1, (2.5)

where ŷk−1 and ek−1 are respectively the total model output and the overall model residual at

the (k − 1)th step, and Φk and γk (0≤ γk ≤ 1) are respectively the regression matrix and the step

size at the kth step. The kth submodel is thus configured based on the previously resultant model

residual ek−1. It should be noted that Φk ∈ℜ
N×k is constructed by expanding Φk−1 ∈ℜ

N×(k−1)

(involving all previously selected model terms) with the new model term pk just selected at the

kth step, i.e., Φk = [Φk−1, pk]. The resultant overall model residual at the kth step can thus be

obtained by

ek = y − ŷk = ek−1 − γkΦk(Φ
T
kΦk)

−1
Φ

T
kek−1, (2.6)

The overall model output at the kth step can be written as

ŷk =
k
∑

i=1

Φiθ̂i

=Φk

[(

θ̂1

0(k−1)×1

)

+

(

θ̂2

0(k−2)×1

)

+ · · ·+ θ̂k

]

=ΦkΘ̂k, (2.7)

where 0(k−i)×1 denotes a zero column vector with k − i entries (i= 1, . . . , k − 1) and θ̂i is given

as

θ̂i = γi(Φ
T
iΦi)

−1
Φ

T
i ei−1, i= 1, . . . , k. (2.8)

The key idea behind LAR is to find the step size γk at the kth step (k= 1, . . . ,M − 1) in order

to include the (k + 1)th model term into the piecewise model, such that the resultant absolute

correlation between the selected terms (p1, . . . ,pk) and the resultant error (ek) is just equal to

the largest absolute correlation between the remaining terms (ϕk+1, . . . ,ϕM ) and the resultant

error (ek). Using (2.6), the correlation for the existing terms in the regression matrix and for the

remaining terms in the candidate pool can be respectively computed as

{

Φ
T
kek = (1− γk)Φ

T
kek−1⇒ p

T
i ek = (1− γk)p

T
i ek−1, i= 1, . . . , k; (2.9)

ϕ
T
i ek =ϕ

T
i ek−1 − γkϕ

T
iΦk(Φ

T
kΦk)

−1
Φ

T
kek−1, i= k + 1, . . . ,M. (2.10)
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Let
∣

∣

∣
pT
i ek−1

∣

∣

∣
= ρk, (for every i= 1, . . . , k), the step size γk (k= 1, . . . ,M − 1) can therefore be

determined by

γk =
M
min

i=k+1

[

±ϕT
i ek−1 − ρk

±ϕT
iΦk(Φ

T
kΦk)−1ΦT

kek−1 − ρk

]

+

, (2.11)

where sign “+” means that only the positive values are taken into account in order to find the

minimum and positive value for the assignment of γk, while the two signs “±” in the denominator

and numerator stand for that the corresponding associated values can be taken as either the

positive or the negative, simultaneously. As a result, the (k + 1)th term pk+1 is selected as

pk+1 = arg γk and is then included to form the next selected regression pool Φk+1 = [Φk, pk+1].

Noting that if all the available model terms are to be included in the regression matrix, i.e.,

ΦM = [p1, . . . , pM ], it takes γM = 1, which essentially corresponds to a full least-squares fit. To

help understand the entire solution searching process, the pseudo code of LAR is summarised in

Algorithm 1.

Algorithm 1 Pseudo code of least angle regression

1: Initialise Φ0← [ ], L0← [ ] and Θ̂0← [ ].

2: Assign ŷ0← 0 and k← 1.

3: while k≤m do

4: Compute model error ek−1← y − ŷk−1.

5: Compute correlation ϕT
i ek−1 for unselected model terms (i= k, . . . ,M ).

6: Find the model term with the largest correlation {pk, ρk}← argmaxMi=k |ϕ
T
i ek−1| and thus

update regression matrix Φk← [Φk−1, pk].

7: Perform Cholesky decomposition on ΦT
kΦk =LkL

T
k based on previously obtained lower

triangular matrix Lk−1 to gain Lk.

8: Compute (ΦT
kΦk)

−1ΦT
kek−1, Φk(Φ

T
kΦk)

−1ΦT
kek−1 and ϕT

iΦk(Φ
T
kΦk)

−1ΦT
kek−1,

(i= k + 1, . . . ,M ), sequentially, based on Lk using forward and backward substitutions.

9: Compute step size γk using (2.11).

10: Update model coefficient Θ̂k← [Θ̂T
k−1, 0]T + γk(Φ

T
kΦk)

−1ΦT
kek−1.

11: Update model output ŷk← ŷk−1 + γkΦk(Φ
T
kΦk)

−1ΦT
kek−1.

12: Update k← k + 1.

13: end while

14: Output Φm and Θ̂m.

Here, in the original approach, it can be found that, to avoid the inverse operation at

every step of LAR, say the kth step, the computation as well as the well-known efficient

Cholesky decomposition (being widely considered more efficient than orthogonal and singular

value decompositions [26]) is applied on term ΦT
kΦk (this can be performed efficiently based

on the results obtained at the last selection step). Then, the corresponding model parameters

(ΦT
kΦk)

−1ΦT
kek−1 (via forward and backward substitutions), terms Φk(Φ

T
kΦk)

−1ΦT
kek−1 and

ϕT
iΦk(Φ

T
kΦk)

−1ΦT
kek−1, step size γk, model coefficient Θ̂k, model output ŷk, model residual ek

and correlation for unselected model terms ϕT
i ek, are subsequently computed. The whole process

is still inefficient and thus exhibits high computational demand. As opposed to the original

approach, in this paper, a new efficient algorithm will be proposed in the next section without

the need of matrix inversions. The whole algorithm works in a recursive fashion, the correlations

and evolving directions, together with other pertinent variables being explicitly formulated and

successively updated. The model coefficients only need to be computed when the model selection

process finishes.

It may be worth mentioning that a modification to the LAR method can actually lead to

the full-path solutions for another well-known model selection method Lasso (Least absolute

shrinkage and selection operator), where a series of solutions at critical points corresponding
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to the adjustion of the L1 regularisation parameter in Lasso can be obtained. Based on the

optimal Karush-Kuhn-Tucker (KKT) conditions of Lasso [47], to retrieve Lasso solutions, the

essential idea thereby is to enforce that the coefficient sign of the model terms determined by

LAR remains unchanged so long as they are included into the model [25,32,39]. This can be

realised by removing the selected term from the model through choosing a proper step size, once

its coefficient is detected to be changed if the model selection continues to proceed as in LAR.

In this manner, sequential sets of Lasso solutions in different size, based on different degree of

regularisation, can be achieved in an efficient way rather than solving quadratic programming

(QP) problems as exhibited by the KKT optimality. Given the involvement of term removal stage,

more computing steps (i.e., computational time) than that in LAR are also needed to acquire such

Lasso solutions. Though LAR and Lasso were derived from distinct principles/objectives, but

they do often produce similar results as claimed by Hastie et al. and Efron et al. [25,32]. Whilst

the scope of this paper is centralised in the derivation of efficient LAR algorithm for identification

of LIP models, the efficient realisation of Lasso is being derived and examined as part of another

research studying the predictive model construction for combined sewer overflows forecasting in

the urban wastewater collection environment.

3. Model selection based on efficient least angle regression

As presented in (2.4), one of the most challenging tasks involved in the LIP model construction

is to determine a compact set of model terms and the associated parameters W and Θ. Here,

assuming that RBF neural networks are adopted, a total of N candidate model terms (where

M =N ) can always be generated by using all the given training samples as potential centres (to

consist W) of basis functions, leading to a candidate selection pool ΦN = [ϕ1, . . . ,ϕN ]. The task

then turns into finding the most significant terms contained in this pool to construct the final

regression matrix, say Φm, and meanwhile determining the corresponding coefficient vector Θm.

(a) Efficient least angle regression

It can be shown in (2.11) that in order to compute the step size and thus to select the model terms

in sequential, the correlation term ϕT
i ek−1 and the direction term ϕT

iΦk(Φ
T
kΦk)

−1ΦT
kek−1 needs

to be explicitly computed. In this paper, a new efficient least angle regression (ELAR) algorithm

is now proposed to compute them by solving the least angle regression recursively.

To start, define a correlation vector ck) ∈ℜM−k as for the remaining model terms in the

candidate pool and the associated direction vector as dk) ∈ℜM−k at the kth step, with their ith

entries being respectively given as






c
k)
i =ϕ

T
i ek, k= 0, . . . ,M − 1, i= k + 1, . . . ,M ; (3.1)

d
k)
i =ϕ

T
iΦk(Φ

T
kΦk)

−1
Φ

T
kek−1, k= 1, . . . ,M − 1, i= k + 1, . . . ,M. (3.2)

By using (2.9) and (2.10), the following can be recursively obtained:

{

ρk = (1− γk−1)ρk−1, k= 2, . . . ,M ; (3.3)

c
k−1)
i = c

k−2)
i − γk−1d

k−1)
i , k= 2, . . . ,M, i= k, . . . ,M. (3.4)

where ρ1 = |p
T
1y| and c

0)
i =ϕT

i y, (i= 1, . . . ,M ). The step size in (2.11) can now be re-expressed

as

γk =
M
min

i=k+1

[

±c
k−1)
i − ρk

±d
k)
i − ρk

]

+

, k= 1, . . . ,M − 1. (3.5)

Given (3.3) and (3.4), it can be therefore seen that the problem turns out how to efficiently compute

the values related to d
k)
i (i= k + 1, . . . ,M ) at the kth step of the piecewise model without solving

the inverse operations explicitly.
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Now, by expressing the selected pool at the kth step as Φk = [Φk−1, pk] and expanding the

involved inverse operation, it can be easily obtained that

Φk(Φ
T
kΦk)

−1
Φ

T
k = Φk−1(Φ

T
k−1Φk−1)

−1
Φ

T
k−1

+
Rk−1pkp

T
kR

T
k−1

pT
kRk−1pk

, k= 1, . . . ,M, (3.6)

where Rk−1 is a residue matrix as also defined in [3], given by

Rk−1 = I−Φk−1(Φ
T
k−1Φk−1)

−1
Φ

T
k−1. (3.7)

By using an identity matrix I of size N to minus both sides of (3.6), the following also holds [3]:

Rk =Rk−1 −
Rk−1pkp

T
kR

T
k−1

pT
kRk−1pk

, k= 1, . . . ,M, (3.8)

where R0 = I∈ℜN×N . Assuming that there are a total of k model terms that have been included

in the selected pool and Φk = [p1, . . . ,pk] is of full column rank, then, we have the following facts

related to Ri, (i= 1, . . . , k). First of all, geometrically, the residue matrix Rk is also regarded as the

orthogonal projection/transformation matrix [48] for the orthogonal projection of any arbitrary

vector of ℜN onto the orthogonal complement of the column space of Φk (i.e., a subspace of

ℜN defined by the column basis vectors in Φk). Correspondingly, Φk(Φ
T
kΦk)

−1ΦT
k = I−Rk

is considered as the orthogonal projection matrix for projection onto the column space of Φk.

Hence, it is therein known that the projection matrix is idempotent (R2
k =Rk) and by definition

of orthogonal complement RkΦk = 0 also holds (i.e., Rkpi = 0 or RkΦi = 0, i= 1, . . . , k). Such

properties of Rk were also deduced in [3] but in an analytical way. Moreover, the following

property can then be easily obtained using (2.6) successively:

Rkei =Rkei−1 − γiRkΦi(Φ
T
iΦi)

−1
Φ

T
i ei−1

=Rky, i= 1, . . . , k. (3.9)

where ei is the model residual vector generated after introducing the ith submodel into the overall

model and e0 = y. Furthermore, the following proposition can be derived during the model

selection process.

Proposition 3.1. Given a selected model term pi (1≤ i≤ k − 1) and a model residual vector ej that is

generated after introducing the jth submodel (i≤ j ≤ k − 1), it holds that

p
T
iRi−1ej = p

T
iRi−1y

j
∏

l=i

(1− γl), i≤ j ≤ k − 1, 1≤ i≤ k − 1. (3.10)

Proof. In order to derive this proposition, first of all, using (2.6) and (3.6), the residual vector ei

(i= 2, . . . , k) can be updated as

ei =
[

I− γiΦi(Φ
T
iΦi)

−1
Φ

T
i

]

ei−1

=
[

I− γiΦi(Φ
T
iΦi)

−1
Φ

T
i

][

I− γi−1Φi−1(Φ
T
i−1Φi−1)

−1
Φ

T
i−1

]

ei−2

=
[

I− γiΦi(Φ
T
iΦi)

−1
Φ

T
i − γi−1(1− γi)Φi−1(Φ

T
i−1Φi−1)

−1
Φ

T
i−1

]

ei−2

=

{

I−
[

γi + γi−1(1− γi)
]

Φi−1(Φ
T
i−1Φi−1)

−1
Φ

T
i−1 −

γiRi−1pip
T
iRi−1

pT
iRi−1pi

}

ei−2

=

[

1− (γi −
γi

γi−1
)

]

ei−1 + (γi −
γi

γi−1
)ei−2 −

γiRi−1pip
T
iRi−1y

pT
iRi−1pi

. (3.11)
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Now, regarding Proposition 3.1, first of all, for i= j = 1, it can be easily found that

p
T
iRi−1ej = p

T
1R0e1

= p
T
1(y − γ1Φ1(Φ

T
1Φ1)

−1
Φ

T
1y)

= (1− γ1)p
T
1y. (3.12)

Then, for the remaining cases, i.e., 1≤ i≤ k − 1, i≤ j ≤ k − 1, and j 6= 1, by using (3.11) and the

geometrical properties of the residue matrix, it can be derived that

p
T
iRi−1ej = [1− (γj −

γj
γj−1

)]pT
iRi−1ej−1 + (γj −

γj
γj−1

)pT
iRi−1ej−2

−
γjp

T
iRj−1pjp

T
jRj−1y

pT
jRj−1pj

. (3.13)

Of these, in the case of j = i, by using (3.9), it is obvious that

p
T
iRi−1ej = (1− γi)p

T
iRi−1y, j = i. (3.14)

While, in the case of i < j ≤ k − 1, (3.13) becomes

p
T
iRi−1ej = [1− (γj −

γj
γj−1

)]pT
iRi−1ej−1 + (γj −

γj
γj−1

)pT
iRi−1ej−2

= p
T
iRi−1y

j
∏

l=i

(1− γl), i < j ≤ k − 1. (3.15)

Combining all these cases, Proposition 3.1 has thus been proofed.

As in [3], two terms (ak,i and bk) are simply defined and updated as follows.































ak,i = p
T
kRk−1ϕi = p

T
kϕi −

k−1
∑

j=1

aj,kaj,i/aj,j , k= 1, . . . ,M, i= k, . . . ,M ; (3.16)

bk = p
T
kRk−1y= p

T
ky −

k−1
∑

j=1

bjaj,k/aj,j , k= 1, . . . ,M. (3.17)

As a result, the term ak,i constitutes the kth row of the corresponding matrix Ak) with its previous

k − 1 rows being defined in the same way. Moreover, the term bk constitutes the kth entry of

vector bk). Now, using (2.9), (3.6) and (3.9), it follows that

d
k)
i =ϕ

T
iΦk(Φ

T
kΦk)

−1
Φ

T
kek−1

=ϕ
T
iΦk−1(Φ

T
k−1Φk−1)

−1
Φ

T
k−1ek−1 +

ϕT
iRk−1pkp

T
kRk−1ek−1

pT
kRk−1pk

= (1− γk−1)ϕ
T
iΦk−1(Φ

T
k−1Φk−1)

−1
Φ

T
k−1ek−2 +

ϕT
iRk−1pkp

T
kRk−1y

pT
kRk−1pk

= (1− γk−1)d
k−1)
i +

ak,ibk
ak,k

, i= k + 1, . . . ,M. (3.18)

Up to now, the step size γk at the kth step can be obtained as in (3.5), based on the computation

of ρk ∈ℜ, ck−1) ∈ℜM−k+1 and dk) ∈ℜM−k. The following steps will be performed in the same

way based on the recursive computation of these variables.

After a total of k model terms that have been included in the regression matrix, the final

associated coefficient vector Θ̂k for the overall piecewise model described in (2.7) will need to

be computed. To start, the following holds for that each time a new model term pj (j = 1, . . . , k)
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is included into the piecewise model:

Rjej−1 = ej−1 −Φj(Φ
T
jΦj)

−1
Φ

T
j ej−1

= ej−1 − (p1θ̂1,j + · · ·+ pj θ̂j,j), (3.19)

where (ΦT
jΦj)

−1ΦT
j ej−1 = [θ̂1,j , . . . , θ̂j,j ]

T. Timing both sides of the above equation by term

pT
iRi−1 for i= j, . . . , 1, gives

θ̂i,j =
pT
iRi−1ej−1 −

∑j
l=i+1 p

T
iRi−1plθ̂l,j

pT
iRi−1pi

. (3.20)

According to (2.7) and (2.8), and using (3.20), the final associated parameter Θ̂k =

[Θ̂k,1, . . . , Θ̂k,k]
T can now be obtained, with the ith entry Θ̂k,i (i= 1, . . . , k) being given by

Θ̂k,i =
k
∑

j=i

γj θ̂i,j

=

k
∑

j=i
γjp

T
iRi−1ej−1 −

k
∑

j=i

j
∑

l=i+1
γjp

T
iRi−1plθ̂l,j

pT
iRi−1pi

=

k
∑

j=i
γjp

T
iRi−1ej−1 −

k
∑

l=i+1

k
∑

j=l
γjp

T
iRi−1plθ̂l,j

pT
iRi−1pi

=

k
∑

j=i
γjp

T
iRi−1ej−1 −

k
∑

l=i+1
pT
iRi−1plΘ̂k,l

pT
iRi−1pi

. (3.21)

Using Proposition 3.1, note that

k
∑

j=i

γjp
T
iRi−1ej−1 = p

T
iRi−1y

k
∑

j=i







γj

j−1
∏

l=i

(1− γl)







= ωibi, (3.22)

where ωi =
∑k

j=i

{

γj
∏j−1

l=i (1− γl)
}

, (giving ωk = γk), and it can be easily updated as

ωi = γi + (1− γi)ωi+1, i= k − 1, . . . , 1. (3.23)

As a result, the associated coefficients (3.21) for the piecewise model can be computed as

Θ̂k,i = (ωibi −

k
∑

l=i+1

ai,lΘ̂k,l)/ai,i, i= k, . . . , 1. (3.24)

(b) The algorithm: efficient least angle regression for the construction of

sparse LIP models

The efficient least angle regression for model selection of LIP models is now presented with

the pseudo code described in Algorithm 2. To start, the candidate model terms ϕi (i= 1, . . . ,M )

are first generated by taking all the training samples as the potential centres of basis functions.

Then, the two vectors c0) and b1) are initialised as [ϕT
1y, . . . ,ϕ

T
My]. The first basis function p1

giving the largest absolute correlation for the required model output y is thus found, together

with the assignment of ρ1 =maxMi=1 |c
0)
i |, Φ1 = p1 and k= 1. The following loop is to recursively

find the step size γk and the (k + 1)th basis function pk+1 in order to include the (k + 1)th

submodel Φk+1θ̂k+1 into the whole piecewise model. To do this, the kth (row of) entries of Ak)
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Algorithm 2 Pseudo code for sparse LIP models construction based on the proposed efficient least

angle regression

1: Generate candidate basis functions ϕ1, . . . ,ϕM .

2: Initialise c0)← [ϕT
1y, . . . ,ϕ

T
My] and b1)← c0).

3: Find the first basis function, i.e., p1← argmaxMi=1 |c
0)
i |.

4: Assign ρ1←maxMi=1 |c
0)
i |, Φ1← p1 and k← 1.

5: while k≤m do

6: Update Ak), bk) and dk).

7: Find pk+1← argminMi=k+1[(±c
k−1)
i − ρk)/(±d

k)
i − ρk)]+.

8: Assign γk←minMi=k+1[(±c
k−1)
i − ρk)/(±d

k)
i − ρk)]+.

9: Update Φk+1← [Φk, pk+1], c
k) and ρk+1.

10: Update k← k + 1.

11: end while

12: Assign k←m and i← k.

13: while i≥ 1 do

14: Update ωi.

15: Compute Θ̂k,i.

16: Update i← i− 1.

17: end while

18: Output Φk and Θ̂k.

and bk) are first computed according to (3.16) and (3.17), followed by the computation of d
k)
i

(i= k + 1, . . . ,M ) based on (3.18). The step size and the resultant basis function are then given by

γk =minMi=k+1[(±c
k−1)
i − ρk)/(±d

k)
i − ρk)]+ and pk+1 = arg γk, respectively. The selected pool

is thus updated as Φk+1 = [Φk, pk+1]. In addition, the correlation for the existing basis functions

in the selected pool and the remaining basis functions in the candidate pool are respectively

updated as ρk+1 and c
k)
i (i= k + 1, . . . ,M ) according to (3.3) and (3.4). This process continues

until a predesignated number of basis functions have been included in the model or some criterion

(e.g., Akaike information criterion (AIC)) is met. The pseudo codes presented here are illustrated

by requiring a total of m model terms. Finally, the associated coefficient vector Θ̂m for the final

model can be computed according to (3.23) and (3.24) starting from calculating Θ̂m,m down to

Θ̂m,1.

It is worth noting that in the case of adopting the AIC method to terminate the algorithm, the

sum of squared residuals (SSR) eTe is required to be computed at each selection step so as to

calculate the following AICk value with k being the size of the corresponding piecewise model.

AICk =N log(eT
kek/N) + 2k (3.25)

This can be easily realised for the proposed algorithm. According to (2.6), the SSR at each selection

step can be recursively updated as

e
T
kek = (1− γk)

2
e

T
k−1ek−1 + γk(2− γk)e

T
k−1Rkek−1, (3.26)

where eT
k−1Rkek−1 can be further updated as

e
T
k−1Rkek−1 = e

T
k−1Rk−1ek−1 −

eT
k−1Rk−1pkp

T
kRk−1ek−1

pT
kRk−1pk

= e
T
k−2Rk−1ek−2 −

yTRk−1pkp
T
kRk−1y

pT
kRk−1pk

= e
T
k−2Rk−1ek−2 − b2k/ak,k. (3.27)

where terms bk and ak,k are obtained after the inclusion of basis function pk.
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(c) Computational complexity

As presented in the previous subsections, the basic arithmetic operations involved in the

proposed algorithm are additions/subtractions and multiplications/divisions. Assuming that

a total of N data samples together with M candidate basis functions are provided, the total

additions/subtractions are

Ca/s = mN(2M −m+ 1)/2 + (N − 1)M

+mM(m+ 9)/2−m(m2 + 3m+ 11)/3, (3.28)

where m denotes the number of selected basis functions or model terms. On the other hand, the

total multiplications/divisions are

Cm/d = mN(2M −m+ 1)/2 +NM

+mM(m+ 9)/2−m(m2 + 3m− 1)/3. (3.29)

The total computational complexity for the proposed algorithm can thus be obtained by summing

(3.28) and (3.29), giving

Ct = mN(2M −m+ 1) + (2N − 1)M

+mM(m+ 9)−m(2m2 + 6m+ 10)/3. (3.30)

Since in practical nonlinear system identification it usually follows m≪M ≤N , the algorithm’s

major computational complexity lies on O(2mMN −m2(N −M)− 2m3/3). If the AIC method

is employed to terminate the algorithm, extra computation will arise from computing the sum

of squared residuals at every step, resulting in a further complexity of 2N + 13m+ 1, slightly

more than that of the basic algorithm. It is worth mentioning that if the efficient Cholesky

factorisation (based on the continuous update of the so-called Cholesky factor at each selection

step) is employed to derive θ̂i,j and other related variables as discussed in subsection 2-(b), the

corresponding computational complexity would be O(4mMN +m2N +m3), mainly including

the computation of ΦT
mΦm (O(m2N )), the update of Cholesky factorisation and the computation

of the associated parameters for each submodel (O(m3 +m2N )), and the computation of

correlation and evolving direction values (in determining each step size) for candidate model

terms (O(4mMN −m2N )). The computational efficiency of the proposed algorithm can thus

be achieved (generally saving more computational time as the selected number of model terms

increases), while providing parsimonious LIP models.

4. Illustrative examples

In this section, three illustrative examples are presented to demonstrate the efficiency and

effectiveness of the proposed approach. The computational efficiency and numerical stability

of the proposed approach are also compared with the original approach for nonlinear system

identification. The first example is for the Chaotic time-series prediction [49]; the second involves

forecasting of number of sunspots [50]; and finally the third is for the classification of Australian

credit approval [51]. All the experiments were conducted on a Intel(R) Core(TM)2 Duo CPU

(P8600 2.40GHz), running a Windows 7 operating system, with programs executed by MATLAB.

(a) Chaotic time-series prediction

The Chaotic time-series prediction is considered in this example, the data being generated from

the following Mackey-Glass time-delay differential equation:

dy(t)

dt
=

0.2y(t− τ)

1 + y10(t− τ)
− 0.1y(t), (4.1)
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where τ = 17 and y(0) = 1.2 were adopted. The underlying behaviour is widely regarded as non-

convergent and sensitive to initial conditions [49,52]. The proposed algorithm is used to learn

this behaviour by constructing LIP models, aiming to predict the value of y(t) at time instant t

from the past observations of y(t− 24), y(t− 18), y(t− 12) and y(t− 6). This means that x(t) =

[y(t− 24), y(t− 18), y(t− 12), y(t− 6)] constitutes the model input vector. As usual, the fourth-

order Runge-Kutta method was applied with a step size 0.1 to solve the above equation, resulting

in the selection of a total of 1000 samples covering instances from t= 124 to t= 1123 to form the

whole dataset. Of these, the first half is used for training while the rest for testing.

Table 1. Training times required and the corresponding results produced by the original and

proposed approaches with varied small numbers of model terms (stable cases) in example 1

# Model

terms

Original

(ms)

Proposed

(ms)
Correlation SSR L1 norm

Training

RMSE

Test

RMSE

m=1 19.00 16.68 2.803 12.493 1.783 1.581×10−1 1.574×10−1

m=2 23.97 19.32 2.393 10.132 2.238 1.424×10−1 1.417×10−1

m=3 28.88 22.08 2.119 8.732 2.548 1.322×10−1 1.314×10−1

m=4 33.84 24.93 1.417 5.464 25.408 1.045×10−1 1.037×10−1

m=5 39.30 27.18 1.358 5.223 27.523 1.022×10−1 1.013×10−1

m=10 65.18 40.37 2.803×10−2 4.050×10−1 1.775×103 2.846×10−2 2.813×10−2

m=15 90.46 53.94 4.812×10−3 1.713×10−1 8.375×103 1.851×10−2 1.831×10−2

m=20 115.69 67.77 8.435×10−4 1.093×10−1 1.701×104 1.479×10−2 1.468×10−2

m=25 143.61 82.34 1.496×10−4 4.104×10−2 2.645×104 9.060×10−3 9.054×10−3

m=30 169.59 96.44 2.826×10−5 2.343×10−2 4.308×104 6.845×10−3 6.850×10−3

The Gaussian width σ was assigned to a value of 0.7 to construct the candidate pool in which

a total of 500 candidate model terms were produced at the beginning by taking all the training

instances as the centres of potential basis functions. Both the original approach and our approach

were used to perform the model selection, the process of selecting the first 30 model terms being

shown in Table 1. Here, the original approach was realised as in [53], in which the forward and

backward substitutions were adopted to successively update the Cholesky decomposition and

model parameters. In Table 1, the training time, correlation, SSR, L1 norm of model coefficients

and training and test errors are listed for varied numbers of selected model terms. The model

training times given in this table and the following tables in the paper were all averaged from

a total of 50 runs of the respective approaches. Amongst those selected model terms, both the

original and our methods were able to find the same terms to be included in the LIP model, giving

the same values of correlations, SSRs, L1 norms of coefficients and model errors. The effectiveness

of our method has thus been demonstrated. In addition, the computational efficiency of the

proposed approach in comparison to the original approach can be demonstrated by comparing

between the second and third columns of Table 1. This superiority became more significant when

more model terms were included in the constructed model.

The selected model terms from the original approach and our approach started to differ

from each other at step 45, with the corresponding training times, conditions of constructed

regression matrices, SSRs, L1 norms of coefficients and model errors, respectively, shown in Table

2. Due to standardisation, a number of model terms up to N − 1 (499 in this example) were

successively included into the model in order to show the complete journey of the proposed

algorithm and thus its efficiency. The condition number is seen generally increased during the

model selection process as relatively more correlated terms are successively included into the

model. Again, the computational efficiency of the proposed algorithm was always evident as in

the third column of the table. The reason behind the differently selected model terms is mainly

attributed to algorithm’s stability issues, owing to the gradually ill-conditioned regression matrix

being constructed. In detail, as for the original algorithm, it is recognised that at every step the

Cholesky decomposition performed on the explicit formulation of ΦT
kΦk squares the system
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Table 2. Training times required and the corresponding results produced by the original and

proposed approaches with varied large numbers of model terms (unstable cases) in example 1

# Model

terms
Method

Time

(ms)
Condition SSR L1 norm

Training

RMSE

Test

RMSE

m=10
Original 65.18 8.592×103 4.050×10−1 1.775×103 2.846×10−2 2.813×10−2

Proposed 40.37 8.592×103 4.050×10−1 1.775×103 2.846×10−2 2.813×10−2

m=45
Original 251.69 1.781×108 1.372×10−2 1.091×106 5.238×10−3 5.220×10−3

Proposed 143.30 1.315×108 1.276×10−2 1.018×106 5.051×10−3 5.025×10−3

m=50
Original 279.57 2.504×108 9.698×10−3 2.358×106 4.404×10−3 4.348×10−3

Proposed 159.00 2.926×108 1.166×10−2 9.156×105 4.828×10−3 4.786×10−3

m=100
Original 612.80 8.325×1011 1.432×10−2 2.473×107 5.352×10−3 5.351×10−3

Proposed 338.50 2.261×1012 3.490×10−3 8.950×106 2.642×10−3 2.617×10−3

m=150
Original 1048.07 2.577×1014 2.535×10−2 3.798×107 7.121×10−3 7.006×10−3

Proposed 550.04 5.742×1013 3.230×10−3 1.279×107 2.542×10−3 2.507×10−3

m=200
Original 1627.27 3.845×1015 5.322×10−2 5.792×107 1.032×10−2 9.981×10−3

Proposed 756.15 1.208×1015 2.926×10−3 1.568×107 2.419×10−3 2.392×10−3

m=250
Original 2341.37 2.096×1016 1.284×10−1 9.070×107 1.602×10−2 1.530×10−2

Proposed 1024.23 6.212×1015 2.493×10−3 1.477×107 2.233×10−3 2.195×10−3

m=300
Original 3329.18 4.970×1016 2.783×10−1 1.328×108 2.359×10−2 2.238×10−2

Proposed 1256.22 4.443×1016 2.404×10−3 1.274×107 2.193×10−3 2.167×10−3

m=350
Original 4570.16 9.080×1016 7.439×10−1 2.148×108 3.857×10−2 3.639×10−2

Proposed 1507.29 7.294×1016 2.432×10−3 1.199×107 2.205×10−3 2.186×10−3

m=400
Original 6056.50 1.550×1017 2.067×100 3.549×108 6.430×10−2 6.047×10−2

Proposed 1679.56 1.563×1017 2.399×10−3 1.316×107 2.190×10−3 2.166×10−3

m=450
Original 7862.22 3.568×1017 2.388×101 1.192×109 2.185×10−1 2.049×10−1

Proposed 1916.53 3.391×1017 2.370×10−3 1.388×107 2.177×10−3 2.150×10−3

m=499
Original 9902.52 1.709×1019 7.235×104 6.527×1010 1.203×101 1.127×101

Proposed 2087.01 1.185×1019 2.497×10−3 3.118×107 2.235×10−3 2.206×10−3

* It is noted that the proposed approach and the original approach started to choose different

model terms from model size 45 due to gradually ill-conditioned, selected regression matrices

(causing potential instability issues).

condition number (i.e., κ2(Φ
T
kΦk) = κ22(Φk)), where square roots are also engaged. In contrast,

our method is essentially derived from the orthogonalisation of Φk (wherein this does not alter

the condition number, i.e., κ2(Φk)). The corresponding orthogonal matrix is implicitly given by

Qk = [q1, . . . ,qk], where qi =Ri−1pi/||Ri−1pi||2 (i= 1, . . . , k). An upper triangular matrix Ak)

is thereby resulted for solving the system only in the end of the model selection, plus avoiding

square root operations as seen from updating all the scalars, matrices and vectors based on

(3.8), i.e., ρk+1, ck), γk, Ak), bk), dk) and Θ̂m, according to (3.3)-(3.5), (3.16)-(3.18) and (3.23)-

(3.24). Consequently, the amplified condition number in the original algorithm means that the

system being solved is more ill-conditioned (i.e., more sensitive to perturbations). In addition,

in the original algorithm, when the selected model terms are not much correlated (i.e., matrix

ΦT
kΦk is positive-definite) as usually exhibited in the early stages of the model selection, the

numbers under the square roots are always positive. However, with the model size increases

model terms with significant correlation are then inevitably selected, resulting in increasingly ill-

conditioned matrix (aka near-singular matrix). In this case, the numbers under the square roots

can be negative due to roundoff and accumulated errors, causing further instability issues for the

original algorithm.
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From the obtained SSR and L1 norm of coefficients for those constructed models with different

sizes, it can also be seen that our method was more stable when encountered with ill-conditioned

scenarios. In general, especially in the early stages of model selection, the SSR generated decreases

as the model size increases. However, due to the increasing ill-conditioning of the constructed

regression matrix thus causing instability issues, the SSR can then become larger when a large

number of terms are included into the model. This can be seen from the results obtained by

the original algorithm, confronting the large SSR increment since from a model size of 50 terms

to 100 terms and thereafter. With the use of our algorithm, this instability issue caused by ill-

conditioning is dramatically mitigated, where only slight increase in SSR can be seen when a large

number of model terms are selected. For example, by comparing the SSR and L1 norm produced

by the original algorithm at steps 150 and 200, the instability issues apparently appeared where

both SSR and L1 norm increased dramatically (from 2.535×10−2 to 5.322×10−2, and from

3.798×107 to 5.792×107, respectively). In contrast, our method produced much better results

for these two values (decreased from 3.230×10−3 to 2.926×10−3 for SSR, and increased from

1.279×107 to 1.568×107 for L1 norm). The situation became extremely worse for the original

approach when more model terms were to be included in the final model as shown in the bottom

part of Table 2, whereas this was considerably well for our approach. The numerical stability

of our algorithm in comparison with the original approach was also reflected in the resultant

training and test RMSEs (root mean squared errors) as shown in the last two columns of Table

2. To retrieve a moderate size model and also prevent it from being seriously over-fitted and

ill-conditioned, by adopting the AIC method as derived in (3.25)-(3.27), a total of 25 model terms

can be selected to construct the LIP model for this example. Fig. 1 depicts the actual and predicted

outputs of the system over the training and test datasets, showing a good representation of the

chaotic behaviours for the model developed. The resultant training and test RMSEs are thereby

9.060×10−3 and 9.054×10−3, respectively.
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Figure 1. The training and test outputs in chaotic time-series prediction (In each figure, the upper

subfigure depicts the actual and predicted outputs, while the bottom subfigure shows the error

between them).

(b) Number of sunspots forecasting

The number of sunspots being used to indicate the abundance of sunspots on the Sun,

is recognised exhibiting nonlinear, non-stationary and non-Gaussian behaviours [54]. In this

example, the yearly mean total number of sunspots from year 1700 to 2014 was adopted from

WDC-SILSO (World Data Center - Sunspot Index and Long-term Solar Observations) [50]. The

proposed method was thus applied to develop a LIP model to forecast the number of sunspots.
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As in previous studies [54], the input vector for the model were defined as x(t) = [y(t− 3), y(t−

2), y(t− 1)], where t denotes the year index, and the output was to forecast y(t) of the sunspot

number at year t. The sunspot numbers for the first 156 years (i.e., 1703≤ t≤ 1858) were used for

training, with the trained model then applied to forecast the number of sunspots for the remaining

156 years (i.e., 1859≤ t≤ 2014).

Table 3. Training times required and the corresponding results produced by the original and

proposed approaches with varied numbers of model terms in example 2

# Model

terms
Method

Time

(ms)
Condition SSR L1 norm

Training

RMSE

Test

RMSE

m=1
Original 0.71 1.000×100 1.297×105 1.097×102 28.8346 40.0292

Proposed 0.70 1.000×100 1.297×105 1.097×102 28.8346 40.0292

m=5
Original 1.98 8.344×102 2.863×104 5.990×104 13.5468 19.0125

Proposed 1.54 8.344×102 2.863×104 5.990×104 13.5468 19.0125

m=10
Original 3.89 5.488×105 2.404×104 6.086×106 12.4148 18.0126

Proposed 2.66 5.488×105 2.404×104 6.086×106 12.4148 18.0126

m=20
Original 9.44 3.351×109 2.057×104 6.091×109 11.4840 27.9171

Proposed 5.89 4.933×109 2.076×104 2.256×109 11.5348 26.1846

m=50
Original 42.12 1.851×1015 2.115×104 1.373×1010 11.6434 35.1763

Proposed 20.02 3.776×1015 2.025×104 6.631×109 11.3936 23.4977

m=100
Original 151.78 8.512×1015 6.380×104 6.555×1010 20.2234 100.9686

Proposed 57.43 9.669×1015 1.967×104 8.602×109 11.2280 19.7732

m=150
Original 347.67 1.175×1017 2.009×106 4.046×1011 113.4860 566.4108

Proposed 104.55 1.012×1017 1.967×104 1.429×1010 11.2292 20.0788

m=155
Original 372.89 2.504×1017 1.282×107 1.016×1012 286.6082 1.409×103

Proposed 112.35 1.861×1017 1.966×104 1.895×1010 11.2265 19.9704

* It is noted that the proposed approach and the original approach started to choose

different model terms from model size 20 due to gradually ill-conditioned, selected

regression matrices (causing potential instability issues).

As in example 1, the Gaussian width σ was assigned to 600 in this example and a total of

156 candidate model terms were generated. The training times, conditions of selected regression

matrices, SSRs, L1 norms and model errors under a varied number of selected model terms are

listed in Table 3 for both the original and proposed approaches. It can be found that the training

times consumed by our method were less than those consumed by the original approach, and

this superiority was seen more significant as the number of included model terms increased.

Meanwhile, our algorithm was able to perform same results as in the original approach when a

number of up to 20 model terms were selected.

Due to ill-conditioning issues, it was found that, in comparison with the original approach, the

proposed algorithm started to choose differing model terms since model size of 20. As the number

of model terms as well as the condition of selected regression matrix increased, the proposed

approach showed dramatic numerical stability than the original approach. When a total of 155

model terms were selected, the SSRs resulting from the proposed and original approaches were

1.966×104 and 1.282×107, respectively, while the corresponding L1 norms were 1.895×1010 and

1.016×1012, respectively. Correspondingly, the training and test RMSEs from our algorithm were

also found to be much better than from the original approach. For the original approach, due to

instability issues, the model errors continued to increase after a certain number of model terms

have been included in the model. The overfitting issues, however, can somewhat be observed

from this example, although it is not obvious for our method. A subset of five model terms can be
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adopted by using the AIC method, the results being depicted in Fig. 2. The corresponding RMSEs

on the training and test dataset were 13.5468 and 19.0125, respectively.
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Figure 2. The training and test outputs in forecasting the number of sunspots (In each figure, the

upper subfigure depicts the actual and predicted outputs, while the bottom subfigure shows the

error between them).

(c) Australian credit approval

In this example, the Statlog dataset consisting of the information of Australian credit card

applications obtained from the UCI machine learning repository [51] is considered. For privacy

protection, the names and values of attributes for the dataset were initially altered to be physically

meaningless, where a total of 14 input attributes are included. The output attribute is used to

indicate either the approval or the refusal of a credit card application. There are 690 instances in

the dataset, from which 37 instances involve missing values (replaced with artificially computed

values). The whole dataset was then randomly and equally partitioned into a training and a test

dataset for this study.

The Gaussian width σ was chosen as 5.0×107 and a total of 345 candidate model terms were

obtained. As in examples 1 and 2, the training times, conditions of selected regression matrices,

SSRs, L1 norms and model accuracies for various subsets of selected model terms for both the

original and proposed approaches are given in Table 4. The superiority of our approach in terms

of consuming less training time and providing more stable results was once again confirmed. In

this example, differing model terms started to be chosen since step 11 from the two approaches,

resulting in a remarkable difference between them when a total of 344 model terms were included

into the model (SSR: 2.125×102 and 1.139×106; L1 norm: 2.435×109 and 1.916×1011). After a few

model terms that have been selected, the test accuracy has stabilised around 80% for our approach

while this is not the case for the original approach. A total of six model terms can be chosen to

construct the final classifier for this example by using the AIC method, giving the training and

test accuracies of 77.97% and 80.58%, respectively.

5. Conclusion

An efficient least angle regression algorithm was proposed in this paper for the construction of

a class of LIP (linear-in-the-parameters) models. The algorithm proceeds in a stepwise manner,

each step adding a new model term into the LIP model, with the effect of minimising model

residuals and L1 norm of coefficients. It is a less greedy model selection method and proceeds
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Table 4. Training times required and the corresponding results produced by the original and

proposed approaches with varied numbers of model terms in Example 3

# Model

terms
Method

Time

(ms)
Condition SSR L1 norm

Training

acc.

Test

acc.

m=1
Original 7.35 1.000×100 3.274×102 1.873×100 58.55% 60.29%

Proposed 6.63 1.000×100 3.274×102 1.873×100 58.55% 60.29%

m=5
Original 16.20 2.151×106 2.554×102 6.157×106 73.04% 73.04%

Proposed 10.88 2.151×106 2.554×102 6.156×106 73.04% 73.04%

m=11
Original 30.17 6.922×108 2.219×102 1.077×108 79.13% 80.00%

Proposed 17.63 7.207×108 2.211×102 1.011×108 79.42% 79.42%

m=50
Original 141.31 1.245×1010 2.152×102 4.199×108 79.42% 79.71%

Proposed 73.40 1.228×1010 2.280×102 2.907×108 78.55% 78.55%

m=100
Original 347.38 2.368×1010 2.145×102 6.785×108 80.29% 81.16%

Proposed 166.87 2.316×1010 2.207×102 4.995×108 78.84% 79.71%

m=150
Original 640.86 3.983×1010 2.175×102 9.202×108 78.84% 78.55%

Proposed 282.42 3.879×1010 2.187×102 6.077×108 79.13% 80.29%

m=200
Original 1004.45 6.536×1010 2.292×102 1.287×109 76.23% 77.10%

Proposed 396.01 6.190×1010 2.185×102 7.637×108 79.42% 80.58%

m=250
Original 1586.01 1.278×1011 2.817×102 2.065×109 71.88% 71.59%

Proposed 521.28 1.139×1011 2.194×102 1.151×109 78.84% 80.58%

m=300
Original 2429.72 2.623×1011 5.736×102 3.988×109 70.14% 73.04%

Proposed 643.63 2.574×1011 2.109×102 1.722×109 79.71% 81.45%

m=344
Original 3395.23 1.057×1013 1.139×106 1.916×1011 62.90% 64.35%

Proposed 744.85 1.132×1013 2.125×102 2.435×109 78.84% 79.42%

* It is noted that the proposed approach and the original approach started to choose different

model terms from model size 11 due to gradually ill-conditioned, selected regression

matrices (causing potential instability issues).

equiangularly between all the selected model terms by means of their resultant correlations

with model errors at every subset selection step. Unlike the original approach where the well-

known Cholesky decomposition was employed, an efficient recursive algorithm was proposed

to solve the least angle regression without the need of matrix inversions, decompositions and

transformations. The correlations between model terms and residuals, the evolving directions,

together with other pertinent variables, were explicitly formulated and are recursively updated

in the proposed algorithm. The model coefficients are only computed when the algorithm finishes.

The computational complexity of the proposed approach was also well analysed and confirmed

to be more efficient than the original approach. Finally, three artificial and real-world illustrative

examples were used to demonstrate the effectiveness and efficiency of the proposed algorithm,

where its numerical stability was also found to be another strength. As mentioned previously,

given the connection between LAR and Lasso, future research includes deriving the efficient

algorithm for retrieving Lasso solutions for performing tasks such as model or variable selection.

On the other hand, the integration of hyperparameter learning for enhanced model performance

is another direction of research.

Ethics. This research does not contain human or animal subject.

Data Accessibility. All the experimental data are accessible from the references cited in the correponding

examples in the paper.
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