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1 Introduction

Let p > 1 be a real number. We study the eigenvalue problem

{ (p(t)e(u"(1)))" — Ao(t)p(ult) =0, >0, (1.1)
u'(0) = (p(t)p(u"(t))) =0 = 0, u(00) = u/(c0) =0 '

where ¢(s) = |s|P72s for s # 0 and ¢(0) = 0. For the functions p = p(t) and
o = o(t) we assume continuity and positivity on [0, 00), with ' p'~* € L(0, 00),
where % + 1% = 1. We emphasize that we do not assume o € L'(0, c0) in general!

By a solution of (1.1) we understand a function u € C*(0,00) such that pp(u”) €
C?(0,0), the equation in (1.1) holds at every point, the boundary conditions are
satisfied and the Dirichlet integral [;° p(t)|u”(t)[Pd¢ is finite.

The parameter A is called an eigenvalue of (1.1) if this problem has a nontrivial (i.e.
nonzero) solution. This solution is then called an eigenfunction of (1.1) associated
with A.

We say that the D-property for (1.1) is satisfied if ”the set of all eigenvalues of (1.1)
forms an increasing sequence {A,}>2, such that A; > 0 and lim,_, 1o A, = +00;
the set of all normalized eigenfunctions associated with a given eigenvalue is finite
(multiplicity of the eigenvalue of nonlinear problem is finite); every eigenfunction
has finite number of nodes.”



Let a,t € [0, c0) be such that a < ¢ and denote

Ai(a;t) = <J£ta(r)d7) (J{ukT-—t)ﬂplﬂ(T)dT>p_l;
Aslast) = < / t(t—T)pa(T)dT> < /t b pl—P/(T)dTyl.

The main result of this paper is the following theorem.

Theorem 1.1. The D-property for (1.1) is satisfied if and only if the following two
conditions hold:
lim sup A;(0;¢) = lim sup A5(0;¢) = 0. (1.2)

t—o0 t—o0

Remark 1.2. The conditions in (1.2) are equivalent to the compact embedding
W2l (p) == LP(0), (1.3)

where LP(o) is the weighted Lebesgue space of all functions v = wu(t) defined on

(0, 00), for which
1
def & P
el ( [ etolutor dt) B

W2P(p) is the weighted Sobolev space of all functions u € C'[0, 00), ' is absolutely
continuous, u'(0) = u(co) = u/(c0) = 0 and

follpi= ([ p<t>ru"<t>\f’dt)’l’ <o, (1.9

Note that L?(c) and W2P(p) equipped with the norms || - ||,.» and || - ||2,.p, respec-
tively, are uniformly convex Banach spaces.

Remark 1.3. A key part of the 'D Property’ is that all eigenfunctions have finitely
many nodes. This is substantially more difficult to establish in the fourth order
case considered here than in the more usual second-order case. For p = o = 1,
in L?(0,1), Pinkus [13] proved, as a key step in establishing various n-widths for
approximations of functions in LP(0,1) by functions in W"P(0, 1), that for the cor-
responding problem of order 2r the n-th eigenfunction has n sign changes, at least
for n > r. However a key step in his approach is the observation that the higher
eigenfunctions are obtained by gluing together multiple copies of dilations of the
lowest index eigenfunction, which does not work when p and ¢ are not constant.
A further reason to be surprised by the 'finitely many nodes’ property here is that
when p = 2 and p = o = 1, then the linear eigenvalue problem in L?*(0,00) has
spectrum bounded below, essential spectrum in [0, 00), yet the solutions of the dif-
ferential equation all have infinitely many nodes, whatever value A may take. This
is in contrast to the second order case with p = 2 where it is well known that if the
spectrum is bounded below then the n-th eigenfunction has n — 1 zeros (see, e.g.,
Dunford and Schwartz [1, Chapter XIII]).



Remark 1.4. We conjecture that similar results can be proved also for other bound-
ary conditions typical for the ordinary differential equations of the fourth order.
However, some of the technical estimates might be different from those above. To
avoid lengthening our current manuscript, we do not discuss this issue here in detail
and postpone it for possible future research.

A function u € W2P(p) is called a weak solution of (1.1) if the integral identity

/ p(t)p(u(1))v" ()t = /\/ a(t)p(u(t))o(t)dt (1.5)
0 0
holds for all v € W2ZP(p) (with both integrals being finite).

It is clear that every solution of (1.1) is also a weak solution. The converse is true as
well. Indeed, take arbitrary v € C§°(0, 00) (smooth functions with compact support
n (0,00)) as a test function in (1.5) and integrate by parts. We get that there are
constants A, B € R such that

p(H)p(u"(t)) = )\/0 (t —s)o(s)e(u(s))ds + A+ Bt (1.6)

for a.e. in (0,00). Hence, continuity of s — o(s)¢(u(s)) in [0,00) implies that

po(u") € C?0,00) and (1.6) (and thus also the equation in (1.1)) holds at every

point ¢ € (0,00). Now, testing (1.5) with v € W2P(p), v(0) # 0, v = 0 in the left
P

neighborhood of oo, and integrating by parts we arrive at (p(t)¢(u”(t))) |;=0 = 0.

Since we have u (O) = u(00) = u/(00) = 0 by u € WZP(p), a weak solution u is a
solution in the sense of our definition at the same time.

Remark 1.5. Further we will consider problem (1.1) with positive A, since, for
nonpositive A the problem has only trivial solutions.

There is a vast literature which deals with the boundedness from below and the
discreteness of the spectrum of the linear Sturm-Liouville problem with singular
and/or degenerate coefficients. However, there are not too many works dedicated
to the same topic for nonlinear homogeneous problems. The main reason is the
fact that the machinery of linear functional analysis cannot be applied. Let us
mention the pioneering work [11] where new methods of nonlinear analysis had
to be employed. These results were generalized in papers [2], [3] and [4] where an
interesting connection between the discreteness of the spectrum of nonlinear Sturm—
Liouville problem and the embeddings of weighted Sobolev and Lebesgue spaces was
also revealed.

Nonlinear homogeneous Sturm-Liouville problems of the fourth order were stud-
ied in paper [7]. The authors address similar issues as for the second order problem.
The purpose of our paper is to deal with a rather general nonlinear Sturm—Liouville
problem of the fourth order with degenerate and/or singular coefficients. We prove
necessary and sufficient conditions (1.2) for the discreteness of the set of all eigen-
values and isolatedness of the set of all normalized eigenfunctions. We relate our
conditions to a compact embedding between suitable weighted Sobolev and Lebesgue
spaces (1.3).



This paper is organized as follows. In Section 2 we present sufficient conditions
which guarantee that solutions of (1.1) have either an infinite or else a finite number
of nodes in (0,00). Section 3 brings sufficient conditions for discreteness of the set
of normalized eigenfunctions. The proof of the main result is elaborated in Section
4.

2 Oscillation and nonoscillation results

A solution u = u(t) of problem (1.1) is called nonoscillatory, if there exists T' €
(0, 00) such that u(t) # 0 for all t € (T, 0o). Otherwise, the solution is called oscil-
latory.

Oscillation results. In this section we first discuss oscillatory solutions of (1.1).

Theorem 2.1. Let A\ be an eigenvalue of (1.1). If

(2.1)

> =

1
lim sup A, (0;¢) > X or lim sup A5(0;¢) >

t—o0 t—o0
then any eigenfunction associated with A is oscillatory.

Proof. We prove the theorem by contradiction. Let assumptions of the theorem
hold, but suppose problem (1.1) has a nonoscillatory solution u. Then there exists
T such that v and «” do not change the sign in (7, 00) and «”(7") = 0. Indeed, it
is enough to prove that «” can have only finite number of zeros in (0, c0). In fact, if
this is not the case, we apply the Lagrange mean value theorem to p(t)p(u”(t)) be-

tween its zero points and derive that (p(t)e(u” (t)))/ has infinitely many zero points.

Repeating this argument we get that (p(t)p(u” (t)))” has also infinitely many zero
points and then from the equation it would follow that u is oscillatory, a contradic-
tion.

Further, without loss of generality we assume that the function w is positive in
(T, 00). Then it can be shown by using the boundary conditions at infinity that
is also positive in (7, 00). Moreover, using

t

p(H)p(u"(t)) = )\/ (p(T)p(u" (7)) dr > 0 for all t e (T,00),

T

we get the existence of T} € (T, 00) such that (p(t)e(u”(t))) =z, > 0.

Successively integrating both sides of the equation in (1.1) over the interval (77, t)
we have

t

p(t)p(u’(t)) = A/T (t = 7)o(r)p(u(r))dr + At = Th) + B, (2.2)
where A = (p(t)p(u”(t))) |=r, and B = p(T1)p(u”(11)). From this we find
u(t) = p P () ()\/ (t —7m)o(r)e(u(r))dr + A(t — T1) + B) :

T

4



Since u(o0) = u/(00) = 0, we get

u(t) = /too(s —)p P (s)p ! ()\ /Tj(s —T7)o(T)e(u(r))dr + A(s — T1) + B) d$2.3)

for t € (T}, oo). Taking into account the positivity of A and B we obtain from (2.3)
that the function u is decreasing in (77, 00).

Using the monotonicity of u, we estimate the right hand side of (2.3) for ¢t € (T, 00):

wt) = [T=0r @ (3 [ = neetuirar

YA(s— T + B)”j ds



Consequently, due to the assumptions on the weights, we obtain

hﬂigp (/Ota(T) dr) (/too(T ) () d7>p1
- P [ /OTl o(r)dr+ / o(r) dT] ( / (0 ) d>
- e [ /OTl o(r)dr ( /t e =t o) dT)pl

~ timsup ( /T t o(7) dT) ( /t S = 0 o) m)pl %

1
limsup A (0;¢) < —
t—o0 )\

1.e.

This is a contradiction with (2.1).

To obtain similar estimate for A, we proceed as follows:

If we denote

v(t) = p(t)p(u(1))
then u”(t) = p' P (t)p~(v(t)) and from (2.2) we get
v(t) = /\/ (t —71)o(r)p(u(r))dr + At —T1) + B

Ty

- A/t (t — 1Yo (r)p </T°°(5 - T)u"(s)ds) dr + A(t—T) + B

= A /Tt (t —7)o(1)g (/Too(s — T)plp’(s)w(v(s))ds> dr + A(t —Ty) + B.

From (2.2) we obtain also that v is positive and monotone increasing in (77, 00),
which we use to estimate v as follows:

o) 2 3 [ -t ([ =0 e wlshas) ar

T

> [ =it ([ 6= 706 o)as ) ar

> = rpotryirg ([0 s wlonas)
> A /T t (t — 7)Po(7)dr ( /t h plp/(s)ds>p_1 v(t).

6



This implies that

/T (t — 7)o (r)dr ( / < <s>ds>“ )

for all t € (T}, 00). From this we obtain that

sy [ eyatesar ([ as)

> =

= s | [ 0= rpotrar+ [ -rrotmar] ([T o)

- h?ligp [/0T1 (t —7)Po(r)dr (/too pl—p’(g)ds> -
ot ([ sy
< limsup [/OT o(r)dr (/too Sp'plpf(s)d,s)p‘l ) %

1
< -
- A

Consequently, we get that

| I

>| =

lim sup A2(0;¢) <

t—o0

contradicting again (2.1). Theorem 2.1 is proved.

Nonoscillation results. Further, we suppose that

sup 4;(0;1) < o0 and sup A2(0;1) < 0.
>0 >0

These conditions are equivalent to the continuous embedding
Wk (p) = L* (o).

Lemma 2.2. Let 0 < a < b < 00, then inequality

/ab </:(t — 2)w(t) dt)pa(x) do < c/ab w(z)p(a) dz

or its equivalent form

/ab </<x — thu(t) dt)p, P (z) da < OV /ab w” (2)o' " (z) da

7

1

(2.4)

(2.5)



holds for all measurable w(x) > 0 on (a, b) if and only if

Ay(a,b) = sup < / ta(r) dT) ( /t b(T — 1) 1 (1) dT)pl <00, (27)

1

As(a,b) = sup < / t(t—T)pa(T)dT) ( /t bpl—P/(T)dTy <o (2.8)

Moreover, the best constant C' = C/(a,b) in (2.5) satisfies
Aa,b) < C(a,b) < 2077 pp(p)P A(a, b), (2.9)

where . R .
A(a,b) := max{A;(a,b), Az(a,b)}. (2.10)

Proof. The necessity and sufficiency of conditions (2.7), (2.8) for satisfying the in-

equality and the lower estimate A(a,b) < C(a,b) (even more general cases) can be
found in [9, Theorem 4]. Further we prove the upper estimate

C(a,b) < 2(p*1)p+1pp(p’)pfl(a, b).

Using Fubini’s theorem and the inequality (a+b)P~! < 2P~ (a?~1+bP~1), we estimate
the left hand side of the inequality in the form

I = /aba(:p) (/:(t—x)w(t) dt)p dz
_ p/aba(x) _/:(t—a:)w(t) (/tb(s—x)w(s) ds)pl dt] do

B -1

[ vy | [0 ([t i ds)p

Il
=

dx] d¢

= p/abw(t) _/at(t—:v)a(x) </tb(5—t)w(s) ds + (t — ) /tbw(s) ds)p
2P~y [/abw(t) (/tb(s — t)w(s) ds)pl (/at(t —z)o(z) dx) dt

+ /abw(t) (/tb’w(s) ds)p_l (/at(t—:z:)pa(x) d:z:) dt]

=. 2p71p [Il + [2] .

Now we estimate I; and [, separately.

RIS d) (f@-nowar) a
([ e ([ o= ([ o-awrar) ([-nuerar) o)

8

—1

dI] dt¢

IN
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The second term on the right hand side can be written as

(/ab P (1) </at(t —x)o(x) d:c>p, <_ /tb d </Tb(5  rwle) ds)p> dt) 1!

_ <_ / ' [ / ") < / (= 2)o(a) dm)p, dt] d ( / (5 — Pu(s) ds)p> W.

By Minkowski’s integral inequality we have



Similarly,

L - /abw(t) </tbw(s)ds>p

-1

( / t(t — 2)Po(z) dx) dt

IN

IN

crt ( / b wP (t)p(t) dt) _

To get the last estimate we used the classical Hardy inequality [12, page 40] where
the constant is estimated by

€ < ) s ( [ ([ -arow dx)}, o (7) dr) " (/ 0 ) ) "

Here, estimating the integral

/at (/GT(T—x)Pa(x) dx)pl PP () dr < As(a,b)? /at P () (/prlp/(s) d3> —p -

p—1
we get
C < p PP (p— 1)V Ay(a,b) 7 = p' Ag(a,b) 7.
Therefore,
b
I < (! ( [ wrtonto dt) < (P Aofab) w2,
Thus,
1< 27 (h+ 1) < 27 (P A, b)7 fwllp, 1+ () As(as )l )

1 / _ _
= 2p_1pp’A1(a, b)prHp,le/p + 2P 1p(pl)p 1A2(a7b)||w”§,p'

Using Young’s inequality ab < %Jr%, with a = 2P~ pp' A4 (a, b)% |w][,., and b = IY/7"
we obtain

2(p=1ppp ()P

p:p
p

I
Ai(a, 0)||wlif, + v 27 Ip(p )P~ Ag(a, ) [l

10
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o

( / b wh(t)p(t) dt>; ( / b P (t) ( /t bw(s) ds)p < / t(t — 2)Po(x) dx)pl dt) '



which implies

2(p—1)p /\p
;o< p( p" (')
p

Aua,B) + 21" As(a, b)) hll?,

< 20 PP A )l

The proof is complete. 0]

The following property of solutions of (1.1) will be used in the proof of the next
result.

Proposition 2.3. Every solution u of problem (1.1) satisfies
Tim [p(0)p(u" (D)1 (8) — (p(E)p(u” (1)) u(t)] = 0.

Proof. We prove the proposition by estimating separately each term of the expres-

sion

p(t)p(u”(t))u'(t) — (p(t)e(u" (1)) u(t).
Using the Lagrange mean value theorem with respect to the boundary conditions
u'(0) = u/(c0) = 0 we obtain the existence of £ € (0,00) such that v”(£) = 0 and
then

(D" (D) = ' /5 (p(s)p(u”(5)))" ds

B '/; (/og(p(WW(T)))“ d7> ds
- ‘/; (/()S"(T)@(U(T))dr) ds
< )\/Ot </OSO-(T)|u(7-)‘p—1 d7'> ds

= )\/O(t—T)J(T)|u(T)|p_1dT

A (/Ot(t —Po(r) dT)’l’ (/Ot lu(r)|Po(7) dT) "

Similarly, it can be proved also that

ooy < A [ o) dr); (/ u(r)Po(r) ar) g

Using the conditions u(co) = u/(00) = 0 we get also the following estimates

lu(t)] = /too u'(s)ds /too(T —t)u" (1) dr

([ = ornerar)

11
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and

W' (t)] = /too u”’(s)ds

< ([ o) ([ wersn dr);’

All the foregoing estimates and (2.4) (i.e., if u is a solution of (1.1) then (2.4) implies
that w € LP(0)) imply that

() (u ()u'(£) — (p(t)p(u” () u(t)]
< Ip)e ()’ ()] + | (p(t)e(u” (1)) u(t)]

< A(sup A4s(0:1) + sup Ay (0:1) [l ( | et dT) g

t>0

e

A

IN

that is

1
OO0 - e @)utol < € [ lworanar)”
t
where the constant C' does not depend on t. Taking the limit as ¢ approaches infinity

in both sides of this equality we get the assertion. O
Let s € (0,00) and v € W2P(p). Let us introduce the following functional

o

F(s;v) = / (p(t)lv”(t)l” - M(ﬂl@(ﬂ\’”) dt.

S

Lemma 2.4. Let \ be eigenvalue of (1.1) and let there exist T € (0,00) such that
for every s € (T, 00) the following inequality

F(s;v) >0 (2.11)

holds for all v # 0, v € W2P(p). Then every eigenfunction associated with X has
finite number of zeros in (0, 00).

Proof. We argue by contradiction, i.e. let the assumptions of the lemma be satisfied,
but suppose the problem has an oscillatory solution u. Using integration by parts
and Proposition 2.3 we get

Flosu) = [ (0 0)) - o@tutr) Jutt de

oot @ @) - (e @)yu)]
= (p(s)elu(5))uls) — pls)olu(5)) (s).

12



Let {tx}?2, be zero points of u. Then for every 7" > 0 there exists an interval
(tg,tg41) C (T,00) such that u(t) > 0 for all t € (t,tgr1). From the positivity
of the functional we get that at any zero point of u the first derivative of u could
not be zero, which means that the function v will be negative in the next interval
(tgs1,trs2). It can be shown that there exist ap € (tg,trr1) and bpy1 € (tpy1, tra2)
such that (p(t)e(u”(t))) |t=a, = 0 and u'(bgy1) =0

Integrating the equation in (1.1) twice, starting from ay, we get

S

p(s)p(u(5)) = A / (s — )o(t)p(u(t) dt + A,

ag
and then

u’(s) = pl_p,(s)tp_1 ()\ /S(s —t)o(t)e(u(t))dt + Ak) ,

ag

where Ay = p(a)e(u”(ar)). Here Ay < 0, which follows from the positivity of the
functional and the solution in (g, tx41).

Integrating the last equality twice, using the conditions at a; and by, 1, we get
bk+1 , S
u(z) = / (5 — 27 () (A / (s — o ()p(ult)) dt + Ak> ds + Bys.
T ag

where By.1 = u(bgy1). Since u changes its sign in (tx41,tr12) to the negative, i.e.
Bry1 < 0, which implies that

u(z) < At / " e ) () ( / S(s—t)a(t)w(u(t))dt) ds  (212)

ag

for all = € (ay, tr+1). From this we get that

W@ <A [ s 907 ([ 5= 00000 0) )

" (2.13)
holds for all z € (ag, bg+1)-

Multiplying both sides of the estimate by o(z) and integrating over the interval
(ak, br+1) we have

/ 1 a(x)(u(a:)x(%tkﬂ)(x))pdx

o / o) | [ s (s ([ = rttretuOnen, o)) dsr o
< N, / b+ PP (s) < / :(s —1)o () (ult) X(ap.trs) (1)) dt) ' ds (2.14)
< )\p/C,f, /a:k+1 U(Q:)(u(x)x(ak,tk+l)(:1:))pdx. (2.15)

13



To get (2.14) and (2.15) we successively used (2.5) and (2.6) with respect to the func-
ﬁmww@):pkﬂ@MflQEAS—QU@M%MQXWWHn@DdQfmdw@)zoﬁﬂﬂwﬂxmmHn@D,

respectively.

From (2.15) we have that
Cih > 1. (2.16)

From the other side (2.11) implies that

o o

3 [otnrde< [ o P a

S S

for all v # 0, v € W2P(p), where s > T is arbitrary. Then using the boundary
conditions at infinity we obtain

ufdwzmu—gw@ms(u<§fmmw@wa.

S S

P

Since this inequality holds for all s > T and v € W2ZP(p), v # 0. Which implies that
is true for the functions suppv C (ag,by). From this and Lemma 2.2 we get that

Ci) < 1,
which is a contradiction to (2.16). O
Theorem 2.5. Let A be an eigenvalue such that

2(1—p)p—1p—p(p/)—p

max{lim sup A;(0;t), limsup As(0;¢)} < ) : (2.17)
t— oo t— oo
then every eigenfunction associated with \ has finite number of zeros.

Proof. We apply Lemma 2.4. From (2.17) we obtain that there exists T' € (0, 00)
such that

9(1=p)p—1p=p ()P
As) < f W) (2.18)

holds for all s € (T, o). Let v € W2P(p) be arbitrary but fixed. Now by using
inequality (2.5) with w = |v"|, we estimate the following integral

/sooa(t)|v(t)|p dt = /:o o(t) /too(t —s)v"(s)ds

< C(s) / @) dt

< %/mp@W%ﬂW&, (2.19)

p

dt
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F(s;v) = /Oo p(t)|" (t) [P dt — A/OO o(t)|v(t)P dt > 0.

To get (2.19) from (2.18) we used (2.9) from Lemma 2.2 for the upper estimate of
constant C(s) :

1
Cls) < 20 IPPEHPAG) < 1
The assertion of Theorem 2.5 now follows from Lemma 2.4. ]

Corollary 2.6. Let (1.2) be satisfied. Let u and {u,}>2; be eigenfunctions of (1.1)

such that w, — u in W2P(p). Then there exists ng > 0 and T > 0 such that for all
n > ng the functions u and w, have definite signs in (T, c0).

Proof. Using
| solora =, [ o @pa
0 0
and W2P(p) — LP(o) we get
Ap = AF#0 as n — oo, (2.20)

where \,, and A are eigenvalues corresponding to u, and u, respectively. Then (1.2)
and (2.18) follow the existences of T' > 0 and ny € N such that for all A\,, n > ng
the assumptions of Lemma 2.4 hold. Thus, we have that every eigenfunction has
finite number of zeros.

Now we prove that zero points of {u,} are uniformly bounded from above with
respect to n. We show this by contradiction, i.e., suppose that there exists a sub-
sequence of the eigenfunctions {u,} such that the largest zero points diverges to
infinity. Then repeating the same calculations as in the proof of the lemma, taking
as ty the largest zero of u, and t;,1 = byy1 = 00 we get the same contradiction. [J

3 Discreteness of the spectrum

The main result in this section is the following theorem.

Theorem 3.1. Let 1 < p < oo and suppose (1.2). Then the set of all eigenvalues
of (1.1) forms an increasing sequence {\,}3, such that A\; > 0 and lim \, = oo.

The eigenfunctions are isolated and to each A, there corresponds a finite number of
normalized eigenfunctions.

We postpone the proof to the end of this section. First we need a series of auxiliary
assertions.

Remark 3.2. We prove the theorem for p # 2, since p = 2 is well known. Indeed,
when p = 2 let £ be the operator in L?(o) given by the expression

Lu = l(pu”)”, u € Dom(L),
o

15



with domain consisting of those functions v € L?(o) for which (1/0)(pu")" € L*(0)
and v'(0) = (pu”)(0) = u(c0) = u/(c0) = 0. A simple calculation shows that £ is
a positive operator and that the domain of the quadratic form of £ is contained in
W22(p). Thus Dom(L) C L?(o) a fortiori. However W22 (p) is compactly embedded
in L?*(o), which implies that £ is a compact positive self-adjoint operator. The
result now follows from the Riesz-Schauder theorem.

Proposition 3.3. Let u be an eigenfunction of (1.1). Then
u(t)] + ()] # 0 (3.1)

and
() (u” (1)) + [(p() (" (1))’ # 0 (3.2)
hold for all t € [0, 0).

Proof. We prove the proposition by contradiction, i.e., we suppose that u is an
eigenfunction and there exists ¢y € [0, 00) such that at least in one of (3.1), (3.2) the
equality holds. Without loss of generality we assume that equality holds in (3.1).
The other case is treated similarly.

Let ty € (0,00) be such that u(ty) = u'(ty) = 0. Integrating twice both sides of
the equation in (1.1) over (tg,t) we get

plt)ela () = A [ (¢ = S)o(s)p(u(s)) ds+ At~ 1) + B

to

and then

t 9
u(t) = / (t—0)p" 7 (0)p <)\/ (0 —s)o(s)p(u(s))ds + A0 —to) + B) dé,
t t
’ ' (3.3)
where A = (p(0)p(u(6))) iy and B = plto)p(u” (to)).
Now we distinguish among the following cases:
i) A>0, B> 0
i) A>0,B=0;
i) A>0, B<0:
iv) A=B =0.
The other cases can be treated similarly.
(i) From (3.3) we get that u is positive monotone increasing function in (¢, co),
which implies that u(oco) > 0. This is a contradiction with the boundary condition
u(o0) = 0.
(ii) This case can be treated analogously to(i).

(iii) Let ¢t <ty and rewrite (3.3) in the form

u(t) = /t " 0= 1)o7 (8! ()\ /0 * (5 — 0)o(s)olu(s)) ds — Alty — 6) + B) 9.

Then we get that the function u is negative and monotone increasing function in
(0,t9). Using these properties it can be shown that u' is positive and monotone

16



decreasing function in the interval, which implies that «/(0) > 0. This is also a
contradiction with the boundary condition «'(0) = 0.

(iv) In this case (3.3) takes the form
)= [ -0 0 (A [ 0= 90)e0uls) ds) .

and we get

1

wol< =007 ([ = setsuoras)”

that is ' '
(P <A ( /t:or 0 0) de)p_l / (t = s)o(s) ()P ds

for all ¢ € (0,00). Now using the Gronwall inequality (see Theorem 16 in [5]) we
obtain u = 0, which is not possible, since u is an eigenfunction.

Let tg = 0, i.e. u(0) =u/(0) = 0. Then (3.3) takes the form
u(t) = /0 (t—0)p P (0)pt ()\/O (0 —s)a(s)p(u(s))ds + B) de.

(i) Let B > 0, then the function u is positive and monotone increasing in (0, co),
which implies that u(oo) > 0. This is a contradiction with u(co) = 0.

(
(

ii) The case B < 0 is treated analogously to (i).
iii) If B = 0 then we get

u(t) = /Ot(t —0)p P (O)p ! <A /09(9 - S)U(S)w(U(S))d8> do.

Similarly to (iv) above we get a contradiction using the Gronwall inequality.
The proof is complete. O

Corollary 3.4. Let u be an eigenfunction and let ty € (0,00) be such that u(ty) =0
(or u"(ty) =0). Then there exist c1,co >0 and § > 0 such that

cift —to| < Ju(t)| < eoft — to|
(o alt—tal75 < WD) < ot — tol7)

holds for all t € (tog — d,to + 9).

Proof. The proof follows from the Lagrange mean value theorem and the previous
proposition. ]

17



Lemma 3.5. Let u and {u,}>2, be eigenfunctions of (1.1) such that u, — u in

W2P(p). Then there exists ng > 0 such that for all n > ng the functions u and u,
(u" and ) have the same number of zero points. Moreover, zero points of u, (u.
converge to zero points of u (u”).

Proof. Using the boundary conditions and Holder’s inequality we get for ¢ € [0, 00)

[ (s — )l (s) — u(s)) ds

jun(t) —u(t)] =

< ([Temmereas)” ([ Thie - vereas)
< </OOO s”p' 7 (s) d8> ’ [t — ll2,p.p, (3.4)

which implies the uniform convergence of {u,} to u in (0, c0).

From this we obtain that

/ota(sﬁp(“”(s)) ds = = /OtU(S)sO(u(s)) ds

and
A / (t - 9)o()plun(s)ds  — A / (t - $)o(s)p(u(s)) ds

for all t € (0,00), moreover, these convergence are uniform in each bounded subin-
terval of [0, 00). This and the following estimate

T
=l = [ o))~ et
0

= [

- / PP () [T (o) (1) — o (p(t)p (1)) | dlt

= [

— ([ = eoptuten as + o)t )

PP (Bl (t) — o7 (" (1) dt

n

ot (/Ot(t — s)o(s)p(un(s))ds + p(O)SO(uZ(O)))

p

dt

imply that , ,

p(0)p(uy(0)) — p(0)p(u"(0))
as n — oo. Integrating both sides of the equation in (1.1) over the interval (0,t)
once and twice, we obtain from the above convergence that also

(P(Op(un(®)) = (p()e(u"(#))) (3.5)
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and

pt)p(un(t))  —  p(t)p(u(t)), (3.6)

respectively, for ¢ € [0,00). The convergences are also uniform in an arbitrary
bounded subinterval of [0, c0).

Recall that there exists T} > 0 such that
(p(O)p(u" (1)) le=r, >0

(see the proof of Theorem 2.1). For n > ny we have

p(t)p(uy(t)) =
= An/T (t = 7)o () (un(T))dT + (p(t)p(un (1)) [e=r, (t — T1) + p(T1)p(up (T1))
> /\n/T (t = 7)o(1)p(un(r))dr + %(P(t)sﬁ(u"(t)))’|t—n(t —Th) — 2p(T1)p(Ju"(T1)])
> /\n/T (t —1)o(T)e(uy(T))dr (3.7)

for all £ > T, where T > T} is taken from

1

5 (@ () le=r (T = Th) = 2p(T1)(Ju"(T1)]) = 0,
which does not depend on n. Using Corollary 2.6 we get the existences of another
T > 0 and ny > 0 such that for all n > ng, u, are positive in (T, 00). If we choose
as T and ng the larger once all results here will be saved and imply that the second
derivatives ., n > ng, do not change the sign in (7', c0).

Consequently we obtain the convergence of {u,} to u (and {pp(u?)} to pp(u”)) in
C1[0,T] which imply together with Proposition 3.3 that the functions u,, and u (u’

and u”), n > ng have the same number of zero points and zero points of wu, (uﬁn
converge to zero points of u (u”). The proof is complete. ]

<

Let us denote
Un(7,t) = u(t) + 7(u,(t) —u(t)) and @) (7,t) =u"(t) + 7(ul (t) —u"(t)).
Corollary 3.6. For arbitrary T > 0 the followings hold:
(i) Let ng > 0 be from Lemma 3.5. Then
T
max / |t (7, )P dt < C
T€[0,1] Jo

and

T
max / @l (r,t)*Pdt < C
0

T7€[0,1]

hold for all n > ng, where C' is a constant independent of n.
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(ii) For arbitrary € > 0 there exist ng > 0 such that

T
max / |t (7, 8) P72 = Ju(®)[P?] dt < &
7€[0,1] Jo

and

T
max/ [ (r )P — (&) dt < e
7€[0,1] Jo

hold for all n > ny.

(11i) Let ng > 0 be from Lemma 3.5. Then for every e > 0 there exists 6 > 0 that

T
max / ||11n(7',t + h)[P7% — @y, (7, t)|p*2| dt < e
7€[0,1] Jo

holds for all |h| < 0 and n > ny.

Proof. Let € > 0 be arbitrary. From Lemma 3.5 follows that w, (n > ng) and u
have the same number of zeros in (0, c0). Now we show only

T
max / | (7, ) P72 = Ju(t)[P~?] dt < e,
T€[0,1] Jg

since the other estimates can be proved analogously. Let T} > T be such that the
interval (0,7}) contains all zero points {¢t}, and {¢;}!*, of functions w, and wu,
respectively. Then

/0 (. )72 — u(t)]P2|
< / Jan(r P2 — fu(t)P?] dt

- / 4 / [, )P — Ju(t) 2] dt,
U (ti—0,ti+0) (0,T)\UL, (8 =3, +6)

1=

where § > 0 is such that ¢} € (t; — d,t; +9) for ¢ = 1,...,m. To estimate the first
integral we use Corollary 3.4, i.e.,

/ [, P2 — Ju()P2| dt
Ugl (ti—0,t;+9)
m ti+d
-3 / ()P — Ju(t) 2]
i=1 Jti—0

m ti+o
< Olz/ [t =672+ [t —2P?] dt
i=1 Jti—0

S 0261)—17
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where (' and 5y are constants independent of n and . If we choose ng sufficiently
large then by Lemma 3.5 for all n > ny the zero points t7 and ¢; are sufficiently close
to each other, which give us a chance to choose § small such that Cod?~* < /2.

Let ¢ be fixed. Using the uniform convergence of {,} to u (see Lemma 3.5) we can
choose ng greater than in the previous case such that the second integral is also less
than €/2 for all n > ny.

The proof is complete. 0]

Lemma 3.7. Let assumptions of Lemma 3.5 be satisfied. Then there exists T > 0
such that for every € > 0 there exists ng > 0 such that

/s%%ﬂW%Wp—mv@Fﬂ®<s
T

holds for all n > ng and T € [0, 1].

Proof. By Lemma 3.5 we get that there exist T > 0 and ny > 0 such that v and wu,
have definite sign in (7, co) for all n > ny. Without loss of generality we can assume
that are positive. Then from (3.7) we have

P (s) 2 A [ (s = o)l () = Cis

Th

U (s) = (%) .

for all s > T. The same estimate can be also obtained for u. Using this estimate we
get

ie.,

[ ()

)7 — (@) = [ @—pirat
@, (T,8)]
< 2= plll(s)] = [L(r, )| (1" () [P + |7, )]')
< Colull(s) — ()| (Ju" ()] + " (3)]')
< &2 —us))

S
ie.,

n

[l ()77 — ity (7, 5)[*77] < Cs@ U (s) = u”(s)].

From this we have that
/s%ﬂmwwww—mvwﬁﬂms@/‘WMQ—M@Ms
T T

and using Holder’s inequality in the right hand side of the estimate as

Afswﬂ@—u%@MSS(Af#ﬁ?ﬁ@ﬁu)b(AMMQWﬂ@—uwﬁwdQ;

we have the proof. O
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Lemma 3.8. Let u and {u,}>2, be eigenfunctions of (1.1) such that u, — u in
W2P(p). Then there exists ng > 0 such that

/O " o L) — ()] (tg — w) dt < C / ol — o() (")t (38)

holds for all n > ngy, where C' is a constant independent of n.

Proof. Let us rewrite the integrals in (3.8) as

/OOO o [p(un) — o(u)] (u, —u)dt = (p — 1)/0 /000 ol P2 (u, —u)*dtdr  (3.9)

and

/O " p () — ()] (ul—) dt = (p—1) / / " plal PRl — Y2 dt dr. (3.10)

Then instead of (3.8) it is sufficient to show the estimate

/0 " ()i, ) (t) — u())? dt < C / " () (r PR (E) — (1)) dt

(3.11)
for all 7 € [0, 1], which is written as

/OOO (/too(s —t)w(s) ds)2 o (t)|in, (7, 1) P2 dt < C/Ooow(t)Qp(t)\aZ(Tyt)‘p—z dt

(3.12)
where w = u!! — u”. Further, we show that (3.12) holds and the constant C' is

independent of n and 7.

Let a € [0,00) and 7 € [0, 1]. If we denote

At = ([T ol o) ( o ($)in(r,5) 1s)

and
At = ([ e pra) (¢~ 5 o(s)lin(r, 5)P~ 1s)

then using Lemma 2.2 with p := 2, weight functions o := o, [P~% and p := plal P72,
we get that (3.12) holds if there exists C' independent of n and 7 such that
sup A;(0;7,t) < C, i=1,2. (3.13)

t>0

Hence it remains to prove (3.13). Let 7" > 0 and ny > 0 be such that «” and . do
not change their sings in (7, 00) for all n > ng. Without loss of generality we will
assume that both are positive. With u(o0) = u,(c0) = 0 this implies that « and w,,
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are also positive and, moreover, u and u,, are monotone decreasing functions in the
interval (T, 00).

If 0 <t < T then using Lemma 3.7 and Corollary 3.6 we get that

o < ([T ([ (9P 1s)

< C (3.14)

and

oo t

Ay (0;7,t) < p L (s)|al (T, 8)[* pds) <t2

(f
([ e mmeorras)
C.

o (8)[iin (1, ) P2 ds)

S— S—

T
< |, (7, 8) P2 ds>
< (3.15)
If T <t < oo then by Corollary 3.6 we have
Al(()? T, t)
- o0 T
= o ([Ce- o) ([ ol srras)
t 0
< A(T;mt)+ C/ (s —t)*p ' (s)(@(r,8)* " ds (3.16)
t
and
1212(0; T, t)
. o0 T
< arinn ([T as) (2 [ ol srras)
t 0
< Ay(T;7,t) —0—0/ 2t (s)|al (T, 8)[* P ds. (3.17)
Further, we consider the cases 1 < p < 2 and 2 < p < oo, separately.
/
Let 1 < p < 2. Then using Holder’s inequality with exponents ﬁ, (ﬁ) = 2T1p

in the first integrals and the monotonicity of @, with respect to s in the second
integrals of Ay(T';7,t), Ao(T;7,t) we get

s = ([T oo ras) ([ o (5) il ) )

T

= (/t RO ds)p_l < / (s = il(rs) ds> H
x (/TtU(S) d8> (tin (7, £))P2

AT ) (@ (,£))* 7 it (7, 1))
i (3.18)

IA
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and

1212 (Ta T, t)

IN

IN

<

</OOP a(r,8))*" Pdt) (/Tt(t — 5)%0(s) (in(T, 5))P 2 ds)
(

[ o )pl([mwmn@wn)gp

xtﬁt—sﬂf ) (¢ =1 ()

Ay(T 1) (7, ()( )T) -’
@ (r,t)t—T) |*7
A(T51) = (7, 1) — (7, T)

Ay(T;t) < Ax(0; ).

(3.19)

Here, we used Lagrange’s mean value theorem and monotonicity of @, (7,t) = u'(t)+
7(ul (t) — u'(t)) with respect to t.

n

To estimate the integral

we use Holder’s inequality with exponents %/ and (%) = 5%:

IN

<

[w@—w%lwmuwﬁWpds

/

P
2—p

| =l P ds

(/t o) ds)j ( /t * )l S)’pds)

o

([ s-0proas)

Consequently, from (3.16), (3.18) and (3.17), (3.19) we obatin

fori=1,2.

A;(0;7,t) < Ay(0;1) + C (/too(s — )Y P (s) ds)

24
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Let 2 < p < co. Then using (3.7) we get

@)™ = (1= 7o)+ i)
> 5[0 =) + )]
= o [ =7 () + P ol ()]
z2$whwu£mmmmwwe
+7P7 1N, /Tj(s —0)o(0)¢ (u,(0)) d@}
> 55 [ 5= 0)0(0) [(1= 7 (u(0) + 77 (1, (0)]
> o [ = 0@l (1 = o) + o 0)]
> ;pp_(j) /Tj<8 —0)o(0)¢ (1 — 7)u(B) + Tu,()) do
_ ;p‘(g /Tj(s — 0)o(0)¢ (it (7, 0)) O (3.21)

which holds for all s > T, where § € (0, ) is such that A — 0 < A, for all n > ng
and T < T.

This and positivity of @, in (T, 00) imply that

[%4%@%mw“®

giﬁ;[%4ww¢M}wwm@@mﬂ ds

s&ﬁ&[%#ﬁ@”M}wMW@@mﬂ“m
< ifgg[ﬂww%@HﬂﬁﬂmMM@mwﬂﬂds
= (fp_/(% tw(s — )7 p(s) " ds {/Tj a(0)e (tn(1,0)) dé} o . (3.22)
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From this we have

/ (s — 0o (o)l (7, 5) PP ds

N
|
i3

i
L

IN

C’/ s— 1) p(s)t 7 ds [/Ta(e)gp(an(T, 0)) do

T

< C’/t (s — )" p(s) 7 ds, (3.23)

here we used the convergence of the sequence { f; a(0)e (tn(1,0)) dQ}ZOZI to fTTI o
as n — oo and the positivity of fTTl a(0)¢ (u(#)) df. The convergence of the sequence
follows from uniform convergence of {@,(7,0)}2, to u(0) in [T}, T] at every 7 € [0, 1].

Using (3.22) in the first integral of A, (T';7,t) and Hélder’s inequality with exponents
p—1, f)%; in the second integral of A;(T;7,t) we get

N

iS}

ATiny < C ( / o170 (s) ds) ( / () in(r 8))”_1d5>

T

: (/TtO(S) d5>p11 </Tta(3)(ﬂn(77 5! ds>£j

< CAH(0; ). (3.24)

Using (3.21) in the first integral and Hélder’s inequality with exponents p — 1, 2=%
in the second integral of Ay(T’;7,t) we have
2—p

Ay(T;7,t) < C </t°° PP (s) (/Ts(s — 0)a(0) (T, (7,0))P d9> o ds)

1 p—2

g (/Tt(t ~syels) ds) : ( /T (= )t )" ds>

< C (/too P (s) ds) ( Tt(t — §)o(s) (i (7, )P ds)ﬁ £
x < /T (1~ s)ols) d5> 7 < /T (1= $)o(0)(En(r. ) d3> =
< CATT(0:0). (3.25)

Consequently we have from (3.16), (3.23), (3.24) and (3.17), (3.23), (3.25) we have
Ai(0;7,t) < C {A;” (0;t) + / (s — )" pt=7(s) ds] (3.26)
¢
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fori=1,2.

Finally, from (3.14), (3.15), (3.20) and (3.26) imply (3.13). Moreover, if we use the
upper estimate for the best constant in Lemma 2.2, which in our case takes the form
(note that p = 2 in this case!)

C < 2" max{sup A;(0; 7, 1), sup Ay(0; 7, )}
>0 >0

we get the independence of C' in (3.8) both on n and 7.

The proof is complete. O]

In the proof of Theorem 3.1 we shall use relative compactness of the following

sequence
{ {fo‘” oleln) —plo)es = )]y 5

() = ()] (=)t S

in L?(0,00), where ng is from Lemma 3.5. To prove this fact we use the criterion
for relatively compact sets in Lebesgue’s spaces. Namely, our set is relatively com-
pact if and only if it is bounded and 2—mean equicontinuous. Boundedness of the
sequence follows from Lemma 3.8. The following lemma establishes its 2—mean
equicontinuity.

Lemma 3.9. Let u and {u,};2, be eigenfunctions of (1.1) such that w, — u in
W2P(p). Then (3.27) is 2—mean equicontinuous sequence.

Proof. Let us denote

Un(r.t) = 0(t) 2] (r.£)] T (1 (£) — u(8)).
Taking into account (3.9) and (3.10) it is sufficient to prove for every ¢ > 0 the
existence of 0 > 0 such that for all A, |h| < § the estimate

o0

/Ooo (U, (7.t + h) — Un(r, )] dt < cg/o PO P2 — )2 At (3.28)

holds for all n > ng, where C' is a constant independent of n, 7, and . Indeed, if
we consider the following

1

/OOo ([t + 1) (ot + 1)) = ot + ) (un(t + ) = ult + )|

— [ eun(t)) = () (wnlt) = ()] ") a7

/UTth)dt

par] -
/ 1 [Un(r,t 4 h) — Un(r, t)] dT) dt



If (3.28) holds then

1

/Ooo ([U(t + B)[p(un(t + h)) — o(u(t + b)) (un(t + h) — u(t + h))} ;

[ Dl () = ()] 0) — ut)] )
B A T
/ / a2y — o) dr | at
= ce / L) — )] (u — )
and the equicontinuity of (3.27) follows.

Let € > 0 be arbitrary, but fixed. To get (3.28) we split the integral on the left hand
side of the estimate into two integrals

[e'e) T o0
/ (Un(r,t +h) — Un(r, 1)) dt = / +/ =L+
0 0 T

and estimate them separately, where T' is arbitrary for now.

We use also the following estimate which follows from Holder’s inequality and Lemma
3.7

|un(t) — u(t)] = /too(s — 1) (u (s) — u'(s)) ds

: (/too(s = 1)%p ()it (7, 8)[*77 d5>é (/too plin|P~? (uly — u”)st);
< (/OOO 27 (s)an (7, s)|2—zf>d3>é (/OOO ol P2 (! — u)? ds)é

1
0 3
<C </ plal P2 (u! — u")? ds) . (3.29)
0

First we find the correct T" by estimating Iy as follows:

I, = /00 (Un(7,t+h) — Un(r,t))th

< /Un7t+h dt+2/ Uy (7,t)? dt
T

T

= 2/ Un(T dt—|—2/ Upn(7, 1) dt
T+h T

4 / Ua(r
T/2

IN
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To estimate the last integral we use the Hardy inequality (see Lemma 2.2) for p := 2,
with weight functions o := i, [P~ and p := plull|P~2, i.e.,

/00 Un(T, t)2 dt = /oo a(t)|&n(7,t)|p’2(un(t) — u(t))2 dt
T/2 T/2

< O p)]ag(r, )72 (uy(t) — o (t))* dt,
T/2
where C'= C(T,n, ) is a constant which satisfies

C(T,n,7) < 27sup 4;(0;7;1)

t>Z
for ¢ = 1,2. Taking into account (3.20) and (3.26) we get that

C(T,n,7) < C) (sup [Ai(O;t)+Afl(O;t)

t>T/2

+ /too sP p1 P (s) ds + </too s7 p 7P (s) ds> ] ) (3.30)

for i = 1,2, where (' is a constant independent of 7', n and 7. Using (1.2) we choose
T in (3.30) sufficiently large such that

C(T,n,7)<e
which implies that

I, < 6/ plal P2 (ul) — u")? ds. (3.31)
0

Now we fix T" > 0 and estimate [; in the form

I = /T(Un(r,t+h)—Un(T,t))2dt

1 p—2

< 2 (/O (tn(t 4+ h) — w(t + 0)* (ot + B)? |an(t + B)|"7 — o ()2 [T (r,8)|"7 ) dt

—i—/o o (t)|ty, (T, t)|p*2([un(t +h) —u(t+ h)] — [u,(t) — u(t)])2 dt>
= 2 (11,1 + 11,2) .
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To estimate I; ; we proceed as follows:

Ly = /0 (un(t + 1) — ult + 1) (0t + B) in(r t + BT — o (8) i (r, £)] 2

< 2/0 (un(t + 1) — ult + 1)) (0t + )3 — o ()5 in(r, ¢ + B)P2 dt
+2/0 (1t + 1) =t + 1)) 0t + 1) (Jan(r,t + BT — Jan(r,0)]"T)
T+h
< 21[1(")1%(( o(t+h)z —o(t)?) Ugﬁl(un(f) —u(t)) /h |, (7, 1) [P dt
+2 [}%zﬁ]a(t) Uf’%&ﬁ](un(t) - u(t))Q/O ([an(m,t + 072" = Jan(r,1)] =)
< [21[101%(|0(t+h)—0(t)|/0 |y, (7, ) P2 dt

)? dt

% dt

dt

+2maxa(t)/0 | (7, ¢+ h) [P~ = | (7, 1P~ Z‘dt} max (u,(t) — u(t))?.

(0,27 [, T+h]

Using uniform continuity of ¢ in [0,7], Corollary 3.6 and (3.29) we get that there

exists d; > 0 such that for all 0 < h < §; the estimate

L, < 01,15/ ()|~N‘p 2( " _“H)th
0

holds for all n > ng, where C1; is a constant independent of n,7,d and . Using
Lagrange’s mean value theorem and Holder’s inequality we estimate /;  in the form:

2

Ly = /0 o ()i (7, )P~ ([t (t + h) — ult + 7)) = [ua(t) — u(t)])” dt

o (8)lin (7, )~ maix (w () — u/(5)) "
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| o)~ e de)g

<
< W /OTa<t>|an<r,t>|P-2dtmax( oo aeras [ -

_ h?/)Ta<t>|an<r,t>|p-2dt ([~ oorapras) ([~ s+ -

u//)Q d@)
u)? d9) .

For the boundedness of the first integral we use Corollary 3.6. The boundedness of

30



the second integral follows from the estimate

J, oogran - /1’)” i rao [ plo) faras

< max p / |l >~ pd0+/ 0%p(0) @l |*7P d6(3.32)

s€(0, 1]

Corollary 3.6 and Lemma 3.7. Then we choose d, > 0 such that for all 0 < h < &
the following

ILQ < 01728/ p(t)|&ﬁ\p_2(uﬁ—u")2dt
0

holds for all n > ng, where (' 5 is a constant independent of n, 7, and e.

Summing up all the foregoing estimates for I 1, I; 2 and Iy we get that there exists
d = min{dy, 02} such that for all 0 < h < ¢ the following estimate

I<Li+hLao+1< 05/ p(t)lﬂii!p‘Q(UZ - “”)2 di
0

holds for all n > ng, where C' is a constant independent of n, 7 and ¢.
The proof is complete. 0]

Lemma 3.10. Let u and {u,}2, be eigenfunctions of (1.1) such that u, — wu in
W2P(p). Suppose ||ullpo = ||tnllpo = 1. Then there exists ng > 0 such that

A= <C /Ooo p(t) lp(u) — @(u”)] (uy, — ") dt (3.33)

holds for all n > ng, where C is a constant independent of n.

Proof. X and u are eigenvalue and eigenfunction of (1.1) if and only if for the func-

tional
D(u) = / PO (P dt

the following equalities hold
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for all v € WZP(p). Since the functional @ is continuously differentiable, we have
An = Al = |@(un) — (u)

_ /D®u+n w), n—U)dn‘
= /O[D<I>(u+n(n ), Uy — u) = D (u, up — )] dn‘

1 n
— / {/ D2*®(u + 7(ty — ), Uy — U, Uy — 1) dT] dn’
o LJo

1
= / (1—7)D*®(u + 7(up — u), Uy — u, uy, — u) d7
0

< /1 |D*®(u + 7(up — ), up — u, u, — u)| dr
_ - 1) / / @ (r, P2l (t) — (1) dt dr
-pA plt) [p(uf) — (u)] (ul, — o) .

The lemma is proved. 0

Let u be an eigenfunction and denote

o) = pOI(OP 2 and  oy(t) = (D).

Consider the following linear problem

(W)~ N (Bpue) = .
{ p lio =0, w(o0) =w'(c0) =0. (3.34)

w'(0) = (p1 (1w (1)) |e=

By Corollary 3.6, oy, p1 € L'[0, z] for all z > 0.

By a solution of (3.34) we understand a function w € C?(0, 00) such that pyw” €
C?(0,0), the equation in (3.34) holds at every point, the boundary conditions are
satisfied and the Dirichlet integral [;° p;(¢)|w” (¢)|*dt is finite.

The parameter A is called an eigenvalue of (3.34) if this problem has a nontrivial (i.e.
nonzero) solution. This solution is then called an eigenfunction of (3.34) associated
with A.

Define a Hilbert space W22(p;) of all functions v € C'(0,00) and v’ is absolutely
continuous functions such that v'(0) = v(oc0) = v'(c0) = 0 and

1

o0 3
Mmm:(/pwwmw&)<m.
0
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A function w € W22(p,) is called a weak solution of (3.34) if the integral identity

Amm@MWﬂW@ﬁM—AAWm@MﬁW@Mﬁ (3.35)
holds for all v € W22 (py).

Remark 3.11. Here also it can be shown that every weak solution is a solution.

Lemma 3.12. FEigenfunctions of (3.34) associated with eigenvalue X are mutually
proportional.

Proof. We prove the lemma by contradiction, i.e., let there exist w; and wsy two
eigenfunctions associated with A, which are not mutually proportional. Then

W = Wy + CoWa

is also eigenfunction associated with A. If we choose ¢; and ¢, such that w”(0) = 0,
then from (3.34) we get

w(t) = w(0) + A /0 t [ / t %&_S) ds] o1 (F)w(r) dr. (3.36)
e If w(0) = 0 then (3.36) implies
il < [ t Ji %(“)‘)d] o2 (M) dr.

Using the Gronwall inequality (Theorem 16 in [5]) we obtain that w = 0, which
contradicts the linear independence of w; and w,.

e Suppose w does not remain positive. Then there exists t* > 0 such that
w(t) > 0 for all ¢ € [0,t%), w(t*) = 0. Using (3.36) with ¢ = t* gives a
contradiction. Then w > 0 everywhere and (3.36) shows that w is increasing
contradicting w(oco) = 0. Similarly, we can treat the case w(0) < 0.

The lemma is proved. O]

Proof of Theorem 3.1. First we prove the easier part: if the normalized eigen-
functions are isolated, then the set of all eigenvalues is isolated and to every A; there
corresponds a finite number of normed eigenfunctions. In fact, if A,, — A, then we
can suppose that u,, — u in W2P(p) and the compact imbedding

Wl (p) —— L*(o)

implies that w,, — u in LP(o). Using

/0 " bl ()" (1) dt = Ay, / " (B (1) o(t)
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and

/O o) (o, (£)) = @ (uy,, ()] (u, (8) — wy, (£)) dt

> (g = lttn 15 ) (et N2ip = N,

2,p;p

2,p;p)

we get that ||, [|2pp — ||tll2,p;p- Since W2P(p) is uniformly convex, we get u,, — u
in W2P(p), which implies that u # 0 is an eigenfunction and \ is the corresponding
eigenvalue. This is a contradiction, since eigenfunctions are isolated.

Due to the compact embedding W2P(p) << LP(c) (Remark 1.2) we can use
Ljusternik-Schnirelmann variational characterization and construct an infinite se-
quence of (variational) eigenvalues of (1.1) which approach infinity.

In particular, it follows that {\,}5°, is an isolated set, lim \,, = co and, moreover,
to each eigenvalue )\, there corresponds only a finite number of normalized eigen-
functions.

It remains to show that every normalized eigenfunction is isolated. We prove this
fact by contradiction. Let there exist normalized eigenfunctions u,,u € W2P(p)
such that u,, # u, ||u, —ul|2p, — 0. Let A, and A be the eigenvalues associated with
up, and u, respectively. From (3.33) it follows A, — A.

Without loss of generality it can be assumed that ||ull,, = [|usl/ps = 1 for all
n=1,2,.... From the definition of weak solutions u, and u we get:

/0 " plt) [l () — (e ()] () dt = A / " (1) [p(un(t)) — o(u(t))] v(t) dt
+(An — A) /OOO o (t)p(u,(t))v(t) d¢3.37)

for all v € W2ZP(p). If we denote

2—p

witn) = ( it 0Pt ar) W o - o)
then

Inllan = /ooo’“(“(w?i“))gdt— / " o ()2 wl(1)
/0 ) p(t) < /0 1 i@ (7, t) |72 d7> (u(t) — " () dt

= [ e et~ el e] ) — ) e
Dividing both sides of (3.37) by ||wy||2,2,,, we have
/OO P(t)Mv” dt = A/ma(t)wy dt

[wnll22.0 [wnll2,2,51

A — A

[wnll2,2,0:

/000 o(t)p(u,)vdt.  (3.38)
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Let us choose v = (u, — u)/[|wy||2,2,, in (3.38). Then we have

pot = [ ool gl )

lwnll3 2.,

An — A

_|_—
[wnll3 2.,

/ o(t)p(un)(u, —u)dt. (3.39)
0
Note that Lemmas 3.8 and 3.9 guarantee that the sequence

{w@wm—ww»wn—wﬁ}m

[wnll2,2,0:

is relatively compact in L?*(0,00), which implies the existence of a subsequence
converging to some h € L?(0,c0). From this we get that

(o) = gDl =t e
a7 [ ll22. o

where h = h/ /o1 € L?(0y).
Passing to the limit in (3.39) and using boundedness of —222— (Lemma 3.10) and

TnBop,
/000 o(t)p(un)(u, —u)dt — 0
we obtain
| enor-2m) ==

Moreover, there exists w € W2?(p;) such that

Yn w in W22(py). (3.40)

[wnll22,0

Further, we show that (3.38) converges to some linear problem, the function w is its
weak solution. Moreover, it will be shown that w = h, which implies that w # 0.

Without loss of generality it can be assumed for the function v in (3.38) that v €
W22(p;) and there exists T' > 0 such suppv” C [0,T], and v" € C[0,T]. Since, the
set of such functions is dense in W22 (py). Indeed, if v € W22(p;) then v” € L'(0, 00),
which follows from

1

[Tora< ([T anwerra) ([T oopa)

and (3.32). Then we use the density in L'(0, c0) of the set of all continuous functions
with compact support in (0, 00).

¥
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Using Holder’s inequality we get

‘/ P () = ("))U"dt—(p—l)/ P[P, ”dt'
0
= ’/ P ~//’p 2d’r / ‘u/l’p QdT) ’u//’ 5 :| ( " _U”)’U//dt‘
0
/ p //p 2d7_)§ //|p 2:| / ‘~Il|p 2d7’ 5 u —u”)dt'
0

< (= Dlwnlazn (/ ot /|~“\“dT Wi )
0
( / i ar) m“ )
= Dllwallszm ( / / @ dr — | (v >dt)

1
2
< (P = Dllwall22,, max " (#)] max </ £y |2 — u P2 dt)

= (p— Dlwnll2.2,

IN

t€[0,T] €[0,1]
which with Corollary 3.6 imply that

o m o " o "
lim ,OMU” dt = lim(p— 1)/ p|u”|p*2Lv” dt
= Jo [wnll2:2,00 n—oo 0 [wnl2:2,00

0
— (p—].)/ p|u//‘p72 " ”dt
0

1 1
= (/ P2 ) ul = (1~ )
0

then similarly as above and using (3.8) we get

/OOO o(t)(p(u,) — @(u))vdt — (p—1) /OOO o (8) P~y dt'

If we denote

IN

(0= Dl s o0 mas ([ o100 = dt>;

te[0,T] r€[0,1]

T 2
< Cllwyl2,2,p, max (/ o(t) qun|P—2 _ ]u|p—2| dt> ,
7€[0,1] 0

which with Corollary 3.6 and (3.40) imply

o0

— oo hn
lim O’MU dt = lim(p—1) / a|u|p_2|—v dt
n—oo 0

n—=o0 Jo HwnHQ,?,pl |wnH2727ﬂ1

= (p—l)/ olulP~2hv dt.
0
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Consequently, we obtain from (3.38) that

/ plu P 2"y dt = )\/ olufP~2hv dt.
0 0

Next show that [;* olu[P"hvdt = [;° olulP"?wo dt.

For this aim we use (3.29) to estimate

/0 Ooa(t)( /0 1 [ (7, £) P2 dT) (un(t) — u(t))o(t) dt — /0 () () 2w (D)o (1) dt'

Y t)( /0 1 (i (7, £) P2 dr) (un(t) — u(t))o(t) dt — /0 Ta(t)|u(t)\p_2wn(t)v(t) dt’

< [ o ' [ a2 ar = o) fuale) - )0
+ [ OO a6 ule) — wale)] 1o
< C’/O o(t) /0 \ﬂn(ﬂt)\p*sz— ’U(t)‘pfz ‘U(tﬂdtuwnHZ?,m

+ / o (1) u(t) 2 / (s — 1) [(u(s) — u"(5)) — wll(s)] ds| [o(t) dt = I, + I

For I} we can write the following estimate, which follows from boundedness of ¢ and
vin [0,7] :

I, < C’max]v |/ / ]un )P — ]u(t)\p_z‘ dt dr||wy||2,2,p,

< Cmax]/ [ (7, £) P72 = [w(t)[P72] dt[|wn]|2,2,,-

T€l0,1

Now using Corollary 3.6 we get that - converges to zero when n — oo.

llwn H

In order to estimate I, we use boundedness of v, Corollary 3.6 and Holder’s in-
equality

L | o) u(t)p? ( =0l - ws) - wis) ds) o(t)] dr
</ oot dr ([ stts) =) = uio) as)

< 0 [ s ) ) als) — ()] ds

00 1
2—p 2

: CH%!!zzﬁl( P (8)s” [ ()] 5" — [l (. 5) 7 ds)

1

2
605 )0 = ) )

(o)

S— S—

< Clwnlazn (
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Using Corollary 3.6 and Lemma 3.7 we get that the last integral converges to zero
as n — oQ.

Consequently we get the following identity

/Ooop(t)lu (OF " ()" () dt = A/000 o () u(t) P w(t)o(t) dt (3.41)

holds for all v € W22(py), i.e., w is an eigenfunction and A is the corresponding
eigenvalue.

The eigenfunction u corresponding to the eigenvalue A of nonlinear problem (1.5) also
solves (3.41). Then by Lemma 3.12 there exists a constant ¢ such that w(t) = cu(t).
Let us consider the following functional

Then
0 = lim (U(u,) — ¥(u))

n—oo

1
= lim DV (u+ 7(up — u), up — w)dr

n—oo 0
1
= lim DV (u+ 7(up — u), up — u)dr

n—oo 0

_ T}j_)rgo(p—l)/ o (/ i (r, )P~ 2d¢> (W () — o' (1)) dt

3
= lim (p— )/ plu”|= < la) (7,t) [P~ 2d7'> "w! dt = DV (u)w
0

n—oo

Hence
0=DV¥(uw)w= /000 p()|u" ()P~ (H)w” () dt = c/oOO p(®)|u" ()P dt =X #0

which is a contradiction.

The proof of Theorem 3.1 is complete. Il

4 Proof of Theorem 1.1

Necessity. We prove the necessity of (1.2) by contradiction, i.e., suppose that
D — property for (1.1) is satisfied, but (1.2) does not hold. Hence at least one of the
limsup in (1.2) is strictly positive. For simplicity we suppose tat

tlim Ai(0; t) > 0.
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Then there exists ng > 0 such that for all n > ng the following estimate

1
i AL (0: 1
tlggo 10 1) > An
holds. But then by Theorem 2.1, we have that every eigenfunction u, associated
with A, has infinitely many zeros in (0, c0), which contradicts to the D — property.

The second case
tlim Ay(0; t) >0

is treated analogously.

Sufficiency. Let conditions (1.2) be satisfied. Then by Theorem 3.1 we get that
the set of all eigenvalues of (1.1) can be written as a monotone increasing sequence
0 <A <...< )\, <..diverging to infinity. Then using Theorem 2.5 we have that
each eigenfunction has finite number of zeros, which implies D — property for (1.1).
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