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Abstract  

We recently discovered that forebrain activation of the IL-1 receptor/Toll-like receptor (IL-

1R1/TLR4) innate immunity signal plays a pivotal role in neuronal hyperexcitability 

underlying seizures in rodents. Since this pathway is activated in neurons and glia in 

human epileptogenic foci, it represents a potential target for developing drugs interfering 

with the mechanisms of epileptogenesis that lead to spontaneous seizures. The lack of 

such drugs represents a major unmet clinical need. We tested therefore novel therapies 

inhibiting the IL-1R1/TLR4 signaling in an established murine model of acquired epilepsy. 

We used an epigenetic approach by injecting a synthetic mimic of micro(mi)RNA-146a that 

impairs IL1R1/TLR4 signal transduction, or we blocked receptor activation with 

antiinflammatory drugs. Both interventions when transiently applied to mice after epilepsy 

onset, prevented disease progression and dramatically reduced chronic seizure 

recurrence, while the anticonvulsant drug carbamazepine was ineffective. We conclude 

that IL-1R1/TLR4 is a novel potential therapeutic target for attaining disease-modifications 

in patients with diagnosed epilepsy.  
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Highlights 

• miR-146a hippocampal levels are transiently increased after injection of a synthetic 

oligonucleotide mimic. 

• miR-146a mimic reduces the levels of key proteins mediating the IL-1R1/TLR4 

signaling. 

• miR-146a mimic reduces neuronal excitability and acute seizures in mice. 

• miR-146a mimic and a combination of anti-inflammatory drugs, by targeting IL-

1R1/TLR4 arrest epilepsy progression and decrease chronic seizures in a mouse 

model of epilepsy. 

• CBZ did not display disease-modification effects 
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Abbreviations: AEDs, antiepileptic drugs; ANOVA, analysis of variance; AP-1, activator 

protein 1; BBB, blood brain barrier; CA,	Cornu Ammonis; COX-2, cyclooxygenase-2; CBZ, 

carbamazepine; EEG, electroencephalography; GABA, gamma-aminobutyric acid; 

HMGB1, High Mobility Group Box 1; IL-1β, interleukin-1β; IL-1R1, Interleukin-1 receptor 

type 1; intracerebroventricular, icv; IRAK-2, Interleukin-1 receptor-associated kinase-like 2; 

LNA, lock-nucleic-acid; miRNA, microRNA; NF-kB, nuclear factor kappa-light-chain-

enhancer of activated B cells; NMDA, N-methyl-D-aspartate; TLR4, Toll-like receptor 4; 

TRAF-6, TNF receptor associated factor 6;	SE, status epilepticus. 
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INTRODUCTION 

Epilepsy is a brain disorder affecting over 50 million people worldwide and is associated 

with increased mortality, significant comorbidities, unique stigmatization of affected 

individuals, and high societal cost (Duncan et al., 2006). Current antiepileptic drugs 

(AEDs) provide only symptomatic control of seizures, have multiple adverse effects, and 

are ineffective in up to 40% of patients (Weaver and Pohlmann-Eden, 2013). This 

represents a major unmet clinical need. To bridge the treatment gap, next generation 

therapies need to possess disease-modifying properties by targeting the mechanisms 

intimately involved in making the brain susceptible to generate spontaneous seizures. 

Such drugs are still lacking and they could potentially be used to halt or reverse the 

progression of epilepsy in patients with an established diagnosis, or delay or prevent the 

onset of epilepsy in susceptible individuals (Barker-Haliski et al., 2015).   

 Experimental evidence shows that the activation of the IL-1 receptor/Toll-like 

receptor (IL-1R1/TLR4) pathway is a major pathogenic factor in epilepsy since its 

pharmacological or genetic inactivation dramatically reduces seizure recurrence in 

experimental models of either acute seizures or established epilepsy (Ravizza et al, 2006; 

Vezzani et al., 2000; Vezzani et al., 2002; Balosso et al., 2008; Maroso et al., 2010; 

Maroso et al., 2011a; Vezzani et al., 2011b; Iori et al., 2013; Balosso et al., 2014). Notably, 

this pathway is activated in neurons and glia in epileptogenic foci surgically resected in 

patients affected by various forms of acquired pharmacoresistant epilepsy (Vezzani et al., 

2011a).  

Different epileptogenic insults imposed to mice or rats (e.g., neurotrauma, stroke, infection, 

febrile and non-febrile status epilepticus) trigger a rapid and long-lasting IL-1R1/TLR4 

activation in seizure-prone brain areas (Vezzani et al., 2011b; Vezzani et al., 2013) 
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mediated by the release of interleukin(IL)-1β and danger signals, such as High Mobility 

Group Box 1 (HMGB1), from glia, neurons and cellular components of the blood brain 

barrier (BBB). The activation of IL-1R1/TLR4 pathway in receptor-expressing neurons 

promotes excitotoxicity and seizures by enhancing calcium influx via N-methyl-D-aspartate 

(NMDA) receptors (Viviani et al., 2003; Balosso et al., 2008; Pedrazzi et al., 2012; Iori et 

al., 2013; Balosso et al., 2014). Activation of IL-1R1/TLR4 in glial cells induces a 

neuroinflammatory cascade by transcriptional activation of NF-κB and AP-1 sensitive 

genes, including cytokines, chemokines, COX-2 and complement factors (Vezzani et al., 

2011b; Vezzani et al., 2015b). The extent and persistence of these molecules in brain are 

key determinants of the switch from the homeostatic role of neuroinflammation to its 

contribution to cell damage and dysfunction (Heinemann et al., 2012; Devinsky et al., 

2013). The link between IL-1R1/TLR4 signaling activation, neuronal hyperexcitability and 

reduction of seizure threshold may potentially contribute to the development of a chronic 

epileptogenic network ignited by different brain insults. This pathway therefore represents 

a potential target for attaining disease-modifications in epilepsy, thereby improving disease 

prognosis. 

 In this study, we tested the potential therapeutic effects, based on disease 

modifications, of epigenetic or pharmacological interventions designed for inhibiting the 

IL1R1/TLR4 pathway activation in a widely used mouse model of acquired epilepsy 

(Shinoda et al., 2004; Li et al., 2008; Mouri et al., 2008; Jimenez-Mateos et al., 2012; Liu 

et al., 2013; Gu et al., 2015). Epigenetic intervention was based on micro(mi)RNA brain 

delivery. miRNAs are small non-coding RNA that represent key epigenetic 

posttranscriptional regulators of cellular protein levels (Jimenez-Mateos et al, 2013).  

Specifically, we selected to enhance the negative feed-back regulation of the IL-1R1/TLR4 

signaling mediated by miR-146a (Taganov et al., 2006; O'Neill, 2008; Boldin et al., 2011; 

Quinn and O'Neill, 2011; Iyer et al., 2012; Zeng et al., 2013; van Scheppingen et al., 2016) 
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using a synthetic oligonucleotide mimic. Notably, miR146a is induced in neurons and glia 

in both experimental and human epilepsy (Aronica et al., 2010; Quinn and O'Neill, 2011; 

Omran et al., 2012; Prabowo et al., 2015; van Scheppingen et al., 2016). In 

complementary studies, we used a combination of antiinflammatory drugs for effectively 

blocking IL-1R1/TLR4 activation. We applied these agents for a limited period of time after 

the onset of epilepsy in mice to simulate a clinical intervention in patients with diagnosed 

epilepsy. 
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MATERIALS AND METHODS 

Animals 

We used 8 week-old C57BL6N male mice (~23-30 g) in all experiments, except for 

electrophysiological recordings that were done in 21 day-old C57BL6N male mice (Charles 

River, Calco, Italy). Mice were maintained in SPF facilities at the Mario Negri Institute and 

housed at a constant room temperature (23°C) and relative humidity (60 ± 5%) with free 

access to standard food pellet (2018S, Envigo, Udine, Italy) or to CBZ-in-food and its 

control pellet (BioServe, F05572; Frenchtown, NJ, USA; Grabenstatter et al, 2007) and 

water, and with a fixed 12 h light/dark cycle. Mice were housed 5 animals per cage. After 

experimental manipulations (as reported below) each mouse was individually housed in 

the presence of environmental enrichment (i.e. toilet paper, straw).  

Study design 

In this study we investigated the potential therapeutic effects of epigenetic or 

pharmacological targeting of the IL-1R1/TLR4 pathway in an established mouse model of 

acquired epilepsy. Drugs were therefore transiently applied after the onset of epilepsy in 

each mouse, as determined by the occurrence of the first two video-EEG recorded 

spontaneous seizures at least 48 h after status epilepticus (SE) was elapsed. Treatment 

schedule was determined according to pharmacokinetic and pharmacodynamic data, as 

specified in each treatment protocol. 	

Data are presented as mean ± SEM and are inclusive of all mice that were randomized in 

the biochemical or therapeutic studies. No animal was excluded from the study except for 

mice which did not develop SE (8 out of 88) due to kainate injection misplacement. The 

number of mice in each experiment is indicated by n values in the figure legends, methods 

and supplementary materials. In each experiment, simple randomization was used as 

treatment allocation rule; blinding was applied to treatment administration and data 
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analysis. In the proof-of-concept studies in Figs 1, 2 and 3, animal sample size was 

estimated empirically on the basis of our previous experience with the epilepsy models 

and the therapeutic effects of anti-inflammatory drugs (Vezzani et al., 2000; Balosso et al., 

2008; Maroso et al., 2010; Maroso et al., 2011a; Iori et al., 2013; Balosso et al., 2014). Our 

primary endpoint was ≥50% reduction in the frequency of seizures at the end stage of the 

disease (i.e. 2.5 months after epilepsy onset) in the treated group compared to the 

respective control group. We also took into careful consideration the principles of the 3 Rs 

(Replacement, Reduction and Refinement; https://www.nc3rs.org.uk/the-3rs). All 

experimental procedures were conducted in conformity with institutional guidelines that are 

in compliance with national (D.L. n.26, G.U. March 4, 2014) and international guidelines 

and laws (EEC Council Directive 86/609, OJ L 358, 1, December 12, 1987, Guide for the 

Care and Use of Laboratory Animals, U.S. National Research Council, 1996), and were 

reviewed and approved by the intramural ethical committee. 

Intracerebroventricular injections of oligonucleotides 

Mice were surgically implanted under general gas anesthesia (1-3% isoflurane in O2) and 

stereotaxic guidance (Maroso et al., 2010; Iori et al., 2013) with a guide cannula positioned 

on top of the dura mater (from bregma, mm: nose bar 0; anteroposterior 0, lateral 0.9) 

(Franklin and Paxinos, 2008) one week before the injections. miR-146a mimic (Applied 

Biosystems, Carlsbad, CA, USA), antagomiR LNA (Superior probes, RiboTaskApS, 

Odense, Denmark) or their respective controls (specific random sequence for mimic or 

negative control with no effects on known miRNA function; Applied Biosystems; see table 

below) were dissolved in sterile PBS and injected intracerebroventricularly (icv, 0.25 

µl/min) in freely moving mice over 4 min using a 30-gauge injection needle connected to a 

10.0 µl Hamilton microsyringe via PE20 tubing, according to convection-enhanced delivery 
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method (Gasior et al., 2007). At the end of infusion, the needle was left in place for one 

additional minute to avoid backflow through the guide cannula, then gently removed.  

The mimic or its negative control were administered icv as single injection (5 or 10 µg in 1 

µl; Fig. 1A,B; Fig. S1; Fig. S2, panels a-f) or repetitively (10 µg in 1 µl; one injection every 

three days for a total of five injections; Fig. 2; Fig. S2, panels g-o; Fig. S3D) while the 

antagomiR or its negative control was injected icv twice a day for six consecutive days 

(Krutzfeldt et al., 2005) (1 µg in 1 µl; Fig. 1C,D).  

 

Modulation of miR-146a levels. For RT-qPCR analysis of hippocampal levels of miR-146a 

(Fig. 1A,C), the mimic (n=8) or its antagomiR (n=10) or their respective negative controls 

(n=8-10 each group) were injected in naïve mice that were killed 24 h or 72 h later. For in 

situ hybridization analysis of forebrain miR-146a levels, mice (electrode implanted but not 

exposed to SE; Sham) were injected with a single injection of mimic or its negative control 

(n=5 each group) and killed 24 h later (Fig. S2). A different cohort of SE-exposed mice 

were injected with mimic or its negative control (n=4-5 each group) using the repetitive 

injection protocol used for assessing the disease-modification effect of the treatment (Fig. 

S2; protocol in Fig. S3B), and mice were killed 24 h after the last injection.  

Effect of miR-146a on neuronal excitability and acute seizure in naive mice. In the model 

of acute seizures, different groups of mice were injected icv, ipsilaterally to kainate or 

bicuculline injection, with a single mimic, or negative control, injection at different time 
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points (i.e., 1 h, 24 h, 72 h or 7 days) before intrahippocampal kainic acid, or 24 h before 

intrahippocampal bicuculline (n=6-10 each group) (protocol in Fig. S4B). A cohort of mice 

similarly injected with mimic- or negative control (n=5-7 each group) was used for testing 

neuronal excitability in acute hippocampal slices, 24 h after injection (Fig. S1E). A different 

group of naive mice (n=6 each group) received repetitive mimic or negative control 

injections (one injection every three days for a total of five injections; protocol in Fig. S4C), 

then 24 h or 7 days after the last injection, mice received intrahippocampal kainate (Fig. 

S3D). The time-dependent effect of mimic on acute seizures was used as a 

pharmacodynamic measure of its tissue clearance. 

miR-146a effect on disease progression. In the model of SE-induced epilepsy, 10 µg of 

mimic or its negative control was injected icv (ipsilateral to intra-amygdala kainate 

injection) in mice at day 1 (onset of epilepsy) and at day 4, 7, 10, 13 thereafter (repetitive 

injection protocol, Fig. S3B), then treatment was stopped (n=15 each group).  

Mouse model of acute symptomatic seizures 

Mice (n=128) were surgically implanted under general gas anesthesia (1-3% isoflurane in 

O2) and stereotaxic guidance (Maroso et al., 2010; Iori et al., 2013). Two nichrome-

insulated bipolar depth electrodes (60 µm OD) were implanted bilaterally into the dorsal 

hippocampus (from bregma, mm: nose bar 0; anteroposterior –1.8, lateral 1.5 and 2.0 

below dura mater) (Franklin and Paxinos, 2008). A 23-gauge guide cannula was 

unilaterally positioned on top of the dura mater and glued to one of the depth electrodes 

for the intrahippocampal injection of kainic acid or bicuculline methiodide. One additional 

guide cannula was positioned on top of the dura mater (from bregma, mm: nose bar 0; 

anteroposterior 0, lateral 0.9) (Franklin and Paxinos, 2008) ipsilateral to the 

intrahippocampal injection for icv injections of either miR-146a mimic, its antagomiR, or the 

respective negative controls (protocols in Fig. S4B). Two screw electrodes were positioned 
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over the nasal sinus and the cerebellum, and used as ground and reference electrodes, 

respectively. The electrodes were connected to a multipin socket and, together with the 

injection cannula were secured to the skull by acrylic dental cement. The top of each cage 

had a commutator, which allows the recording cable attached to the multipin socket 

anchored to the mouse head to swivel freely. The commutator is connected to a data 

acquisition set up that collects the EEG data from each mouse, and send them to a 

computer where the EEG tracing can be displayed on the screen and stored for later 

analysis. Intrahippocampal injection of kainic acid or bicuculline was done in freely moving 

mice, 7 days after surgery (Maroso et al., 2010; Iori et al., 2013). The drugs (kainic acid 7 

ng in 0.5 µl; bicuculline methiodide 51 ng in 0.5 µl; Sigma-Aldrich, Saint Louis, MO, USA) 

were dissolved in 0.1 M phosphate-buffered saline (PBS, pH 7.4) and injected (in 30 sec) 

unilaterally in the dorsal hippocampus in lightly restrained mice by using a needle 

protruding 2.0 mm from the bottom of the guide cannula (Fig. S4A). The needle was left in 

place for one additional minute to avoid backflow through the guide cannula, then removed 

and mice were freely moving for the rest of the experiment. Doses of kainic acid and 

bicuculline were chosen to induce EEG ictal episodes in the hippocampus in 100% of mice 

without mortality. These seizures are sensitive to both anti-inflammatory treatments and 

genetic manipulation of inflammatory pathways (Vezzani et al., 2000; Balosso et al., 2008; 

Maroso et al., 2010; Maroso et al., 2011b; Iori et al., 2013).  

Acute seizure assessment and quantification have been extensively described before 

(Balosso et al., 2008; Maroso et al., 2010; Maroso et al., 2011a; Iori et al., 2013; Balosso 

et al., 2014). Briefly, a 30 min EEG recording was done before kainic acid or bicuculline 

injection to assess baseline activity, and for 180 min after the drug injection. At least 30 

min EEG recording similar to baseline was required before ending the experiment. Ictal 

episodes (Fig. S4A) are characterized by high-frequency (7-10 Hz) and/or multispike 
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complexes and/or high-voltage (700 µV-1.0 mV vs 100-300 µV during pre-injection 

baseline) synchronized spikes simultaneously occurring in the injected and contralateral 

hippocampi, lasting 50 sec on average. Seizure activity was quantified by measuring the 

onset time elapsed from kainic acid or bicuculline injection to the occurrence of the first 

EEG seizure and the number and total duration of seizures (reckoned by summing up the 

duration of each ictal episode during the EEG recording period). Seizures occurred with an 

average latency of about 10 min from kainic acid or bicuculline injection, then recurred for 

about 120 min from their onset, and were associated with motor arrest of the mice. At the 

end of the experiment, mice were killed by decapitation under deep penthotal sodium (100 

mg/kg, i.p.) anaesthesia, and the correct positioning of the injection needle and electrodes 

was verified in 40 µm cryostat sections from post-mortem frozen brains. 

Mouse model of SE-induced epilepsy 

Mice (n=88) were surgically implanted under general gas anesthesia (1-3% isoflurane in 

O2) and stereotaxic guidance. A 23-gauge guide cannula was unilaterally positioned on top 

of the dura mater for the intra-amygdala injection of kainic acid (from bregma, mm: nose 

bar 0; anteroposterior-1.06, lateral -2.75) (Franklin and Paxinos, 2008) (Fig. S3A). In mice 

reported in Fig. 2 (n=15), Fig. 3A,B (n=22) and Fig. S2, panels g-o (n=8), a nichrome-

insulated bipolar depth electrode (60 µm OD) was implanted in the dorsal hippocampus 

(from bregma, mm: nose bar 0; anteroposterior –1.8, lateral 1.5 and 2.0 below dura mater) 

(Franklin and Paxinos, 2008) ipsilateral to the injected amygdala and a cortical electrode 

was placed onto the somatosensory cortex in the contralateral hemisphere. In different 

cohorts of mice (n=23) included in Fig. 2 (n=16) and in Fig. 3C (n=7), the cortical electrode 

was substituted by a recording bipolar electrode in the injected amygdala. We used these 

different recordings sites in order to determine if EEG seizures simultaneously occur in 

hippocampus, cortex and injected amygdala, and to assess the effect of treatments. Ictal 
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activity was always associated with generalized motor convulsions. Seven additional mice 

were similarly implanted and received CBZ-placebo pellet (see legend Fig. 3). In all mice, 

two screw electrodes were positioned over the nasal sinus and the cerebellum, and used 

as ground and reference electrodes, respectively. Additionally, in mice depicted in Fig. 2 

and in Fig. S2, one guide cannula was positioned on top of the dura mater (from bregma, 

mm: nose bar 0; anteroposterior 0, lateral 0.9) (Franklin and Paxinos, 2008) ipsilateral to 

the injected amygdala for icv injection of 10 µg miR-146a mimic or its negative control. 

Electrodes were connected to a multipin socket (PlasticOne Inc., USA). One week after 

surgery, mice were connected to the video-EEG set up and a 60 min baseline recording 

was done before inducing SE.  

SE induction. Kainic acid (0.3 µg in 0.2 µl) was unilaterally injected in the basolateral 

amygdala in freely moving mice (n=88) using a needle protruding of 3.9 mm below the 

implanted cannula (Fig. S3A). SE developed after approximately 10 min from kainic acid 

injection, and was defined by the appearance of continuous spikes with a frequency >1.0 

Hz. Spikes were defined as sharp waves with an amplitude at least 2.5-fold higher than 

baseline and lasting <20 msec, or as a spike-and-wave with a duration of <200 msec 

(Frigerio et al., 2012). The end of SE was determined by inter-spike interval >2 sec. After 

40 min from SE onset, mice received diazepam (10 mg/kg, intraperitoneally, i.p.) to 

improve their survival rate. SE was successfully evoked in 80 out of 88 mice, and it lasted 

for 8.1 ± 0.5 h. Six mice died within few hours up to 3 days after SE induction, therefore 74 

mice were used for the subsequent experiments. The total number of spikes was 

measured in mice during the first 12 h after kainic acid administration (Suppl. Fig. 3C; 

Clampfit 9.0, Axon Instruments, Union City, CA, U.S.A).  

Animal use. Thirty SE-exposed mice were used for testing the effect of miR-146a mimic vs 

its negative control (n=15 each group) on spontaneous seizure progression and frequency 



	 14	

(Fig. 2). Twenty-nine mice were used for testing the effect of pharmacological treatments 

on spontaneous seizure progression and frequency: 22 mice were injected with VX-

765+CyP or their vehicles (n=11 each group; Fig. 3A,B) and 7 mice were treated with 

CBZ-in-food (Fig. 3C). Seven SE-exposed mice were fed with CBZ placebo pellet. Eight 

SE-exposed mice were used for in situ hybridization analysis of miR-146a (Fig. S2).  

Chronic seizures assessment and quantification, and treatment schedule. Spontaneous 

seizure development after SE has been described before (Mouri et al., 2008; Jimenez-

Mateos et al., 2012; Liu et al., 2013; Gu et al., 2015). Spontaneous generalized motor 

seizures develop 5.3 ± 0.2 days after SE (n=59 including treated mice and their controls; 

Figs. 2 and 3). In negative control- or vehicle- injected mice, the daily number of seizures 

remains relatively stable for the first 45 days after epilepsy onset, then seizure frequency 

increases by about 3-fold reaching a stable baseline thereafter (Fig. S3B, n=26). All mice 

were video-EEG recorded continuously (24/7) from the onset of SE until the onset of 

epilepsy (i.e., two unprovoked spontaneous seizures occurring at least 48 h from the end 

of SE). After the onset of epilepsy in each mouse, animals were randomized in control and 

treatment groups (treatment protocols are described in Fig. S3B) and injected with 10 µg 

mimic or its negative control (n=15 each group) (Fig. 2), or with a combination of the 

clinically used drug VX-765, a selective inhibitor of Interleukin Converting 

Enzyme/Caspase-1 which blocks both IL-1β biosynthesis (Wannamaker et al., 2007) and 

HMGB1 release (Keyel, 2014) (100 mg/kg, ip, dissolved in deionized H202 containing 0-5% 

HEC and 0.1% Tween-80) and the investigational drug Cyanobacterial LPS, a TLR4 

antagonist (Macagno et al., 2006; Maroso et al., 2010) (CyP, 1 mg/mouse, ip,  dissolved in 

saline) or their respective vehicles (n=11 each group; Fig. 3A,B); or mice were fed with 

CBZ-in-food (5 mg/g pellet; 20 mg/daily/mouse; n=7; Fig. 3C). Video-EEG was 

continuously recorded (24/7) during treatment time (which differs depending on the 
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protocol, see Fig. S3B), then mice were temporarily disconnected from the EEG set up, 

and left in their home cage until they were again monitored (24/7) starting from day 45 

after epilepsy onset until day 74 (Fig. S3B; Figs. 2 and 3). One group of mimic- or negative 

control-treated mice (n=7 out of 15 each group) was EEG recorded from day 60 until day 

74 (Fig. 2). Spontaneous seizures are EEG paroxysmal events lasting 30-60 sec on 

average and simultaneously occurring in amygdala, hippocampus and fronto-parietal 

cortex, bilaterally (Fig. S3A). EEG seizures were always accompanied by generalized 

motor convulsions as assessed using WFL-II/LED15W infrared video-cameras (Videor 

Technical, GmbH, Germany) syncronized with the EEG recording system. We reckoned 

the total number of spontaneous seizures during the recording period, and divided them by 

the total number of recording days, in order to estimate the number of daily seizures (Figs. 

2 and 3). EEG activity was recorded using the Twin EEG Recording System (version 

4.5.3.23) connected with a Comet AS-40 32/8 Amplifier (sampling rate 400 Hz, high-pass 

filter 0.3 Hz, low-pass filter 70 Hz, sensitivity 2000 mV/cm; Grass-Telefactor, West 

Warwick, R.I., USA). Digitized video-EEG data were processed using the Twin record and 

review software. EEG analysis in acute and chronic models was done by two independent 

investigators blinded to the treatment, who visually reviewed all the EEG tracings. 

Deviation of ≤5% from concordance was considered acceptable; otherwise EEG tracing 

was additionally analyzed by a third person. 

One additional experimental group consisted of mice with electrode and cannula implanted 

under the same surgical conditions as described above. These mice were not exposed to 

SE and were used as sham controls where appropriate.  
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Histological evaluation of cell loss 

At the end of EEG recordings, mice were deeply anaesthetized using penthotal sodium 

(100 mg/kg, ip) and perfused via ascending aorta with 50 mM cold PBS (pH 7.4), followed 

by chilled 4% paraformaldehyde (PAF) in 50 mM PBS. The brains were post-fixed for 90 

min at 4°C, and then transferred to 20% sucrose in PBS for 24 h at 4°C, then rapidly 

frozen in –50°C isopentane for 3 min and stored at –80°C until assayed. Serial coronal 

sections (40 µm) were cut on a cryostat throughout the septal-temporal extension of the 

hippocampus (-0.94 to -3.64 mm from bregma) (Franklin and Paxinos, 2008) and collected 

in 0.1 M PBS. We prepared 12 series of 5 sections each (8 series including the septal and 

4 series including the temporal aspect of the hippocampus). In each series, the 1st and 2nd 

sections were stained for Nissl. The same anatomical structures were retained within each 

series of sections from control and respective experimental mice. Quantification analysis of 

cell damage was done by Nissl-staining in 4 slices in each mouse brain by two 

independent investigators blinded to the identification code of the samples as previously 

described (Balosso et al., 2008; Iori et al., 2013). High-power fields (20X magnification; 

Olympus) along the CA1 and CA3 pyramidal cell layers and the hilus were acquired. In 

each section, neuronal cell loss was quantified by measuring the area (µm2) occupied by 

Nissl-stained neurons in CA1 and CA3 pyramidal, and by reckoning the number of Nissl-

stained neurons in the hilus (Balosso et al., 2008; Iori et al., 2013). Data obtained in each 

slice/area/brain were averaged providing a single value for brain area/mouse, and this 

value was used for statistical analysis. Since the volume of the septal hippocampus 

(McDaniel et al, 2001) was similar in the experimental groups (sham, 8.7 ± 0.5 mm3, n=5; 

epileptic mice treated with negative control,  8.3 ± 0.3 mm3, n=7; epileptic mice treated 

with mimic, 7.9 ± 0.4 mm3, n=7), it is unlikely that cell loss quantification was affected by 

tissue shrinkage or major changes in extracellular space. The occurrence of any bias in 
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counting should similarly affect control and experimental samples since these samples 

underwent the same procedures in parallel.  

Western blot 

Mice were deeply anesthetized using penthotal sodium, then perfused via ascending aorta 

with 50 mM ice-cold PBS (pH 7.4) for 1 min to remove blood, and decapitated. The 

hippocampus ipsilateral to the injection of either mimic or antagomiR was rapidly dissected 

out at 4°C (n=8 each group). Tissue was homogenized (30 mg tissue/150 µl 

homogenization buffer) as previously described (Balosso et al., 2009). Total proteins (50 

µg per lane; Bio-Rad Protein Assay, Bio-Rad Laboratories, Munchen, Germany) were 

separated using SDS-PAGE 10% acrylamide, and each sample was run in duplicate. 

Proteins were transferred to Immobilon-P polyvinyldene difluoride (PVDF) membranes 

(Millipore BV, Amsterdam, Netherlands) by electroblotting. For immunoblotting, we used 

an anti-IRAK-2 (1:1000, Santa Cruz Biotechnology, Cat#sc-130788, Heidelberg, Germany) 

and anti-TRAF-6 (1:500, Abcam, Cat#ab33915, Cambridge, MA, USA) rabbit polyclonal 

antibodies. Immunoreactivity was visualized with enhanced chemiluminescence (ECL) 

using peroxidase-conjugated goat anti-rabbit (1:1000; Sigma, Cat#A0545) IgG as 

secondary antibody. Densitometric analysis of immunoblots was done by Quantity One 

software (Bio-Rad Laboratories) to quantify the changes in protein levels using film 

exposures with maximal signals below the photographic saturation point. Optical density 

values in each sample were normalized using the corresponding amount of β-actin 

(1:20000, Santa Cruz Biotechnology, Cat#sc-47778). 

In situ hybridization 

Mice were deeply anaesthetized using penthotal sodium (100 mg/kg, ip) and perfused via 

ascending aorta with 50 mM cold PBS (pH 7.4) followed by chilled 4% paraformaldehyde 

(PAF) in 50 mM PBS. The brains were post-fixed at 4°C. The hybridizations were done on 

5 µm sections of paraffin embedded materials, as previously described (Budde et al., 
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2008; Gorter et al., 2014; van Scheppingen et al., 2016). A 5’ fluorescein (FAM) labelled 

antisense oligonucleotide containing Locked Nucleic Acid (LNA; indicated with “I”) and 2'-

o-methyl modification (indicated with “m”) (5’FAM-

lAmAmClCmCmAlTmGmGlAmAmUlTmCmAlGmUmUlCmUmClA; Ribotask ApS, Odense, 

Denmark) was used. The probe was hybridized at 56o C for 1 h and the hybridization was 

detected with alkaline phosphatase (AP) labeled anti-fluorescein (Roche Applied Science, 

Basel, Switzerland). NBT (nitro-blue tetrazolium chloride)/BCIP (5-bromo-4-chloro-3'-

indolyphosphate p-toluidine salt) was used as chromogenic substrate for AP. Negative 

control assay was performed without probe (sections were blank). The images were 

captured with an Olympus microscope (BX41, Tokyo, Japan) equipped with a digital 

camera (DFC500, Leica Microsystems-Switzerland Ltd., Heerbrugg, Switzerland) and 

processed by Fiji (ImageJ2). In a first step, colour deconvolution (RGB colour space) was 

performed in order to separate positive cells from background according to the following 

channel parameters: red: 0.21408768, green: 0.8171735, blue: 0.4782719. Then a 

threshold (= 233) was applied and subsequently the images were converted to 8 bit gray-

scale. The positive pixels/total assessed pixels, indicated as staining percentage area was 

used for subsequent statistical analysis. For double-staining, combining in situ 

hybridization with immunocytochemistry, the sections were first processed for in situ 

hybridization, then for immunocytochemistry with monoclonal mouse GFAP (1:4000, 

Sigma, San Louis, Mo, USA) (Gorter et al., 2014). Signal was detected using the 

chromogen 3-amino-9-ethylcarbazole (Sigma-Aldrich). This methodology does not 

distinguish between endogenous miR-146a and the injected mimic. 

Real-time quantitative polymerase chain reaction analysis (RT-qPCR)  

Mice were deeply anesthetized using penthotal sodium, then perfused via ascending aorta 

with 50 mM ice-cold PBS (pH 7.4) for 1 min to remove blood, and decapitated. Hippocampi 

ipsilateral to the icv injection side were rapidly dissected out at 4°C in RNAse free 
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environment, immediately frozen on dry ice and stored at –80°C until assay. cDNA was 

generated using Taqman MicroRNA reverse transcription kit (Applied Biosystems) 

according to manufacturer’s instructions.  

Expression of miR-146a, miR-21, miR-155 and the U6B small nuclear RNA gene (rnu6b) 

were analysed using Taqman microRNA assays (Applied Biosystems), which were run on 

a Roche Lightcycler 480 thermocycler (Roche Applied Science, Basel, Switzerland) 

according to manufacturer’s instructions (Iyer et al., 2012). The PCR reactions were 

prepared using an automated pipetting system (epMotion 5075 Eppendorf) and each 

sample was run in triplicate. Quantification of data was performed using the computer 

program LinRegPCR in which linear regression on the Log(fluorescence) per cycle number 

data is applied to determine the amplification efficiency per sample (Ramakers et al., 

2003; Ruijter et al., 2009). Data were normalized on the expression levels of the 

housekeeping gene rnu6b.  

Extracellular recordings 

Postnatal day 21-28 mice were icv injected with PBS (n=8) or with 10 µg mimic or its 

negative control (n=5-7 mice/each group) under gas anaesthesia. One or 24 h after 

injection, mice were deeply anesthetized using penthotal sodium and decapitated. Coronal 

brain slices (350 µm; n=12 slices/each treatment group) were cut in ice-cold modified 

artificial cerebrospinal fluid (aCSF) containing the following (in mM): 87 NaCl, 2.5 KCl, 1 

NaH2PO4, 75 sucrose, 7 MgCl2, 24 NaHCO3, 11 D-glucose, and 0.5 CaCl2. Slices were 

then transferred into an incubating chamber and submerged in aCSF containing (in mM): 

130 NaCl, 3.5 KCl, 1.2 NaH2PO4, 1.3 MgCl2, 25 NaHCO3, 11 D-glucose, 2 CaCl2 and 

constantly bubbled with 95% O2 and 5% CO2 at room temperature. Slices were incubated 

in this condition for at least 1 h, then transferred in a submerged recording chamber, 

perfused with oxygenated aCSF at a rate of 2 ml/min and a constant temperature of 28-

30ºC. In a different set of PBS-injected mice (n=4 each group), slices (n=10-11/each 
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treatment group) were incubated with IL-1Ra (2 µg/ml) or Lps-Rs (100 ng/ml) for 60 min 

after the initial 60 min recovery time as well as during recordings. Extracellular recordings 

of population spikes (PS) were obtained in CA1 pyramidal layer using glass micropipettes 

filled with 3 M NaCl. Stimulation of Schaffer collaterals was delivered by a Constant 

Voltage Isolated Stimulator (Digitimer Ltd., Welwyn Garden City, UK) through bipolar 

twisted Ni/Cr stimulating electrode.PS amplitude was measured as the amplitude of the 

first negative deflection overriding the field EPSP waveform. The input-output curves were 

plotted as the relationship of PS amplitude versus stimulus intensity (2V steps). Four 

consecutive PS were averaged for each stimulus intensity. Data were amplified and 

filtered (low filter 10 Hz, high filter 3 kHz) by a DAM 80 ACDifferential Amplifier (World 

Precision Instruments, Sarasota, FL, USA), and digitized at 10 kHz by a Digidata 1322 

(Molecular Devices, Foster City, CA, USA). 

Statistical analysis 

Data are the mean ± s.e.m. (n=number of individual samples). Statistical analysis was 

done by Graph-Pad Software using absolute values. Two-group comparison was made by 

Mann-Whitney test (Fig. 1B,C,D; Fig. S2; Fig. S1A,B; Fig. S3D). The random-effects 

model (Borenstein et al., 2009) was used to estimate the frequency of spontaneous 

seizures (average number of seizures/day) followed by the DerSimonian and Laird method 

to estimate the variance among the average daily seizures. Two-group comparison was 

done by Chi-square test (Fig. 2 and Fig. 3). Multi-group comparison was done by Kruskal-

Wallis test (Fig. 1A) or by two-way ANOVA for repeated measures followed by Bonferroni 

post-hoc test (Fig. S2E). Two-sided statistical tests were used. Differences between 

groups were reported as statistically significant for values of p≤0.05. 
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RESULTS 

miR-146a forebrain levels are modulated by its oligonucleotide mimic or antagomiR 

Naive mice. We developed a treatment protocol for modifying the forebrain levels of miR-

146a (Fig. 1A,C) in naive mice for exploring if this intervention affects neuronal excitability 

(Fig. 1B,D; Fig. S1E). We used either a specific synthetic oligonucleotide analog of miR-

146a (mimic), or its antisense oligonucleotide (antagomiR), and their specific non-targeting 

scrambled oligonucleotides (negative controls) as control solutions. An icv injection of 10 

µg (0.7 nmol) in 1 µl of mimic (Lehmann et al., 2012) done in naive mice induced a 4-fold 

increase on average in hippocampal miR-146a levels measured 24 h later, then declining 

within 72 h (Fig. 1A). This increase approximates the 3- to 5-fold raise measured in the 

hippocampus during epileptogenesis in animal models, and in human epilepsy specimens 

(Aronica et al., 2010; Prabowo et al., 2015). miR-146a mimic injection did not affect other 

associated miRNAs (e.g., miR-21 and miR-155; Fig. S1D). Conversely, 24 h after the icv 

injection of 1.7 nmol antagomiR in naive mice, hippocampal miR-146a level were 

decreased by 50% on average (Fig. 1C). 

In situ hybridization histochemistry showed that 10 µg mimic significantly increased miR-

146a level in forebrain neurons of naive mice (Fig. S2, panels a-c vs d-f). No degenerative 

or glial cell reactive changes were observed. This mimic dose induced a decrease in 

hippocampal levels of two key proteins mediating the IL-1R1/TLR4 signaling, namely 

IRAK-2 and TRAF-6 (Fig. S1A,C), in accordance with previous evidence reporting that 

these proteins are the primary targets of this miRNA (Taganov et al., 2006; O'Neill, 2008; 

Boldin et al., 2011; Iyer et al., 2012; Zeng et al., 2013; van Scheppingen et al., 2016); a 

negative correlation was found between miR-146a and IRAK-2 or TRAF-6 levels (Fig. 

S1B). These results, therefore, show that mimic injection in naive mice reduces IRAK-2 

and TRAF-6 by increasing miR-146a levels in neurons (Fig. S2, panels a-f; quantification 

in p-r). 
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Status epilepticus (SE) exposed mice. Next, we injected the mimic or its negative control in 

SE-exposed mice when they developed the first two spontaneous seizures (i.e., after 

epilepsy onset) to determine the cell types showing the increase in miR-146a by in situ 

hybridization analysis. We used the same injection protocol designed to test mimic's 

therapeutic potential in the disease-modification study (Fig. S3B). We analyzed miR-146a 

cellular expression 24 h after the last mimic or negative control injection. In epileptic mice 

injected with the negative control, miR-146a levels were significantly increased in both 

neurons and astrocytes (arrowheads) compared to similarly injected sham mice (Fig. S2, 

panels g-i vs a-c). This finding is in accordance with previous evidence reporting the 

endogenous increase in miR-146a in these cell populations in a rat model of 

epileptogenesis (Aronica et al., 2010). In epileptic mice, mimic injection further augmented 

miR-146a levels (Fig. S2, panels j-l vs g-i) in both neurons and GFAP-positive astrocytes 

(Fig. S2, panels m-o). This injection protocol therefore enhanced the miR-146a levels in 

neurons and astrocytes of epileptic mice above those induced by the disease itself (Fig. 

S2, quantification in panels p-r).  

The dose of 10 µg mimic was used in the subsequent in vivo experiments (protocols in 

Fig. S3B and Fig. S4B,C).	

The modulation of miR-146a hippocampal level in naive mice affects neuronal 

excitability and acute seizures 

We examined whether changes in miR-146a forebrain levels in naive mice affect neuronal 

excitability and, as a consequence, their susceptibility to acute seizures. We injected naïve 

mice with either the 10 µg miR-146a mimic or 12 µg cumulative dose of its antagomiR, 24 

h before an intrahippocampal convulsive dose of kainic acid (Maroso et al., 2010), an 

agonist of glutamate receptors (protocol in Fig. S4B,C). The mimic significantly delayed 

the onset of acute seizures, and reduced their frequency and duration by approximately 
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50% (Fig. 1B). This effect was similar to that previously attained using specific IL-

1R1/TLR4 receptor antagonists in the same model (Vezzani et al., 2000; Vezzani et al., 

2002; Maroso et al., 2010; Maroso et al., 2011a). The effect of mimic on acute seizures 

persisted for 72 h (Fig. 1B), in the absence of a sustained increased in miR-146a level 

(Fig. 1A). The mimic did not affect seizures when injected 1 h or 7 days before kainic acid 

(Fig. 1B), likely reflecting the time required for signal proteins (IRAK-2, TRAF-6) 

downregulation (Iyer et al., 2012) and their re-synthesis after miR-146a returned to 

baseline level (Fig. 1A). The injection of 5 µg mimic was ineffective on seizures (number of 

seizures, mimic: 6.5 ± 0.2; negative control, 6.7 ± 0.3; time spent in seizures, mimic: 5.5 ± 

0.2; negative control, 5.6 ± 0.3; n=6 mice each group).  

The mimic (10 µg) also significantly decreased seizures in mice intrahippocampally 

injected with bicuculline (Vezzani et al., 2000; Maroso et al., 2010), a GABAA receptor 

blocker: number of seizures (mimic, 3.7 ± 0.3; negative control, 7.8 ± 0.3); time spent in 

seizures (mimic, 1.7 ± 0.3; negative control, 5.2 ± 0.3 min) and delayed seizure onset 

(mimic, 11.4 ± 1.0; negative control, 7.2 ± 0.6 min) (n=10 mice each group, p<0.01 by 

Mann-Whitney test). Thus, the effect of mimic was independent of the convulsive drug 

triggerring seizures. Overall, these findings predict that knock-down of endogenous miR-

146a by its antagomiR should increase seizures. In accordance, the antagomiR mediated 

a significant increase in seizure number and duration, and accelerated  the time to seizure 

onset (Fig. 1D). 

The inhibitory effect of mimic on acute seizures is an indicator of reduced neuronal 

excitability, therefore, we tested this idea in acute hippocampal slices prepared from mice 

injected 24 h before with either 10 µg mimic- or its negative control. Schaffer collaterals 

were stimulated and population spike amplitude was measured in stratum pyramidale CA1 

(Fig. S1E). Slices from mimic-injected mice showed a right shift of the input-output curve 

(population spike amplitude vs stimulus intensity) compared to control slices, showing that 
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neuronal excitability was reduced. A similar shift was observed in hippocampal slices 

obtained from naive mice after 1 h pre-incubation with either Lps-Rs (100 ng/ml) or IL-1Ra 

(2 µg/ml), antagonists of TLR4 and IL-1R1 (Vezzani et al., 2000; Vezzani et al., 2002; 

Maroso et al., 2010), respectively. Overall, these data demonstrate that miR-146a mimic 

induces a decrease in both hippocampal excitability and acute seizures by inhibiting the 

IL-1R1/TLR4 signaling in neurons via a reduction of key signal transduction proteins. 

miR-146a mimic arrests epilepsy progression and decreases chronic seizures in a 

mouse model of acquired epilepsy 

To determine whether miR-146a mimic interferes with epilepsy course, we studied mice 

developing spontaneous seizures after SE provoked by intra-amygdala kainate injection 

(Shinoda et al., 2004; Li et al., 2008; Mouri et al., 2008; Jimenez-Mateos et al., 2012; Liu 

et al., 2013; Gu et al., 2015) (Fig. S3A-C). This is a widely used model of acquired 

epilepsy induced by SE (Shinoda et al., 2004; Li et al., 2008; Mouri et al., 2008; Liu et al., 

2013; Gu et al., 2015), an acute and severe inciting event that causes epilepsy in humans 

(Tsai et al., 2009; Rossetti et al., 2013; Harward and McNamara, 2014; Vezzani et al., 

2015a). Either the mimic or its negative control was injected in two randomized cohorts of 

electrode-implanted SE-exposed mice under continuous video-EEG monitoring (Fig. 2). 

Mice were exposed to SE of similar severity and duration (Fig. S3C). At the onset of 

epilepsy in each mouse (i.e., after the occurrence of the first two spontaneous seizures), a 

total of five injections of either 10 µg mimic or its negative control were done, each 

injection was given every 72 h, then treatment was stopped (protocol in Fig. S3B). This 

repetitive injection protocol was designed for mantaining therapeutic levels of mimic for 2 

weeks, as suggested by the evidence that its inhibitory effect on acute seizures lasts for 

72 h then elapsing by 7 days after the last administration (Fig. 1B and Fig. S3D). This set 

of evidence supports that the mimic is cleared from the brain tissue within one week after 
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the last injection, thus supporting that our injection protocol allows to test potential 

disease-modification effects of the treatment (i.e. a therapeutic effect overlasting the 

presence of the mimic in the tissue). 

As expected by the natural history of the disease in this model (Fig. 2A, n=15; Fig. S3B, 

n=26), negative control-injected mice showed an average 3-fold progression in the 

frequency of spontaneous seizures over 2.5 months of video-EEG monitoring from the 

onset of epilepsy. Seizure progression was prevented in mice treated with miR146a mimic 

compared to negative control-injected mice (Fig. 2B vs A). Overall, at 2.5 months from 

disease onset, the mimic-treated mice showed a 80% reduction on average in the number 

of seizures compared to control mice (p<0.01 by Chi-square test, n=15 mice each group), 

and 50% regression in seizure frequency compared to seizures at the beginning of the 

disease (i.e., the first 16 days from disease onset; p<0.01 by Chi-square test) (Fig. 2B). 

Accordingly, the maximal inter-seizure interval measured between 2.0 and 2.5 months was 

about 4-fold longer in mimic-treated mice (7.2 ± 1.1 day, n=15, p<0.01 by Mann-Whitney 

test) vs control mice (1.7 ± 0.3 day). The average seizure duration was increased in 

negative control-injected mice at 2.5 months (51.4 ± 1.8 sec, p<0.01 by Mann-Whitney 

test) compared to disease onset (40.2 ± 2.3 sec), and this parameter was not affected by 

the mimic.  

The extent and pattern of cell loss in the hippocampus of mimic-treated mice was not 

different from control mice, as assessed in Nissl-stained sections in mice killed at 2.5 

months after the end of EEG recordings (negative control, 24±5% (n=7); mimic, 16±2% 

(n=7) reduction in hippocampal CA1 pyramidal neurons vs sham mice (n=5); negative 

control, 18±4%; mimic, 17±5% reduction in hippocampal CA3 pyramidal neurons vs sham 

mice; negative control, 32±7%; mimic, 26±4% reduction in hilar neurons sham mice). This 

is conceivable considering that cell loss mostly develops within one week from the 
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induction of SE therefore before the treatment was applied to mice (Mouri et al., 2008; Noé 

et al., 2013).  

Antiinflammatory drugs blocking IL-1R1/TLR4 signaling reproduce the mimic 

therapeutic effects 

We studied whether drugs blocking the IL-1R1/TLR4 signaling prevent seizure progression 

and induce seizure remission, as shown by the mimic intervention. We used the clinically 

tested drug VX-765 (a selective inhibitor of Interleukin Converting Enzyme which blocks IL-

1β biosynthesis and HMGB1 release) (Wannamaker et al., 2007; Maroso et al., 2011a; 

Keyel, 2014) and the investigational drug Cyanobacterial LPS (CyP, an antagonist of 

TLR4) (Macagno et al., 2006; Maroso et al., 2010) (Fig. 3A,B). We combined these drugs 

(doses and treatment schedule are reported in Fig. S3B and legend) for attaining efficient 

and simultaneous blockade of the IL-1R1 and TLR4 signaling. In fact, we showed 

previously that inhibition of IL-1R1 signaling in a rat model of epileptogenesis is not 

sufficient to prevent TLR4 receptor activation (Noé et al., 2013) which contributes itself to 

spontaneous seizures generation (Iori et al., 2013). This drug combination was given daily 

for one week starting at the time of epilepsy onset in each mouse, then the treatment was 

stopped and mice were followed up for the next 2.5 months. Drugs prevented seizure 

progression and reduced by 90% on average spontaneous seizure frequency as 

compared to vehicle-injected mice (Fig. 3A,B). Moreover, drug-treated mice showed an 

average 70% regression in chronic seizure frequency compared to their seizure baseline 

at beginning of the disease (Fig. 3B).  

Overall, the data show that transient blockade of the IL-1R1/TLR4 pathway after epilepsy 

onset using two complementary treatment approaches (namely, mimic or antiinflammatory 

drugs) significantly improves the clinical course of the disease by drastically reducing 

spontaneous seizure recurrence by 80-90%. Animals did not show any behavioral sign of 
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toxicity during either epigenetic or drug treatment, as assessed by visual observation of 

their motor activity and behavioral reactivity to touch or tail pinching in the recording cage. 

Body weight growth also did not differ among the various experimental groups at the end 

of treatment (mimic, 27.4 ± 0.6 g, n=15; VX-765+CyP, 27.7 ± 0.7 g, n=11; vehicle, 27.8 ± 

0.6 g, n=26; sham, 28.1 ± 0.7 g) and in the chronic epilepsy phase (mimic, 29.9 ± 0.9; VX-

765+CyP, 31.7 ± 0.6; vehicle, 29.5 ± 0.5; sham, 32.5 ± 0.7) as compared with their 

respective body weight before treatment was started (mimic, 27.1 ± 0.5; VX-765+CyP, 

26.7 ± 0.6; vehicle, 27.5 ± 1.1; sham, 27.7 ± 0.2).  

Next, we studied whether targeting of the IL-1R1/TLR4 signaling represents an 

improvement over current AED treatment options (Fig. 3C). We tested different doses of 

carbamazepine (CBZ), an AED of choice in the clinical setting (Iyer and Marson, 2014). 

CBZ was given in food pellet at different concentrations of 2.5, 5.0, 10.0 mg/g pellet for 2 

weeks to naive mice to attain steady-state plasma levels within the therapeutic range 

during the treatment period. Considering that CBZ-in-food daily intake in naive mice was 

4.3 g on average (Fig.S5A), the corresponding dose of CBZ in each treatment group was 

about 10, 20, 40 mg CBZ daily/mouse, respectively. As shown in Fig. S5C, plasma levels 

of CBZ+CBZ-E were within therapeutic range using 5.0 and 10.0 mg/g CBZ pellet (4-10 

µg/ml; in accordance with Ali et al., 2012; Burianova and Borecka, 2015). Since 10 mg/g 

CBZ provoked loss of body weight during treatment (Fig. S5B), we choose the dose of 5 

mg/g CBZ-in-food (maximal tolerated dose) for the experiments in Fig. 3C. Epileptic mice 

consumed CBZ-in-food for 2 weeks starting after disease onset in each mouse (Fig. S3B) 

and their daily intake (~4.2 g) was was similar to naive mice. Treatment did not prevent 

seizure progression nor reduced seizure frequency in chronic epileptic mice as compared 

to their seizure frequency at disease onset (Fig. 3C) or vs vehicle controls (Fig. 3A). 
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DISCUSSION 

 This study identifies treatments with clinically relevant therapeutic effects based on 

disease modification in a mouse model of acquired epilepsy. These effects are attained by 

a transient inhibition of the IL-1R1/TLR4 signaling in forebrain using either epigenetic or 

pharmacological approaches. In particular, we found that treatment with a synthetic miR-

146a mimic, which inhibits IL-1R1/TLR4 intracellular signaling (Aronica et al., 2010; Quinn 

and O'Neill, 2011; Iyer et al., 2012; van Scheppingen et al., 2016), or with a combination of 

drugs which prevent IL-1β biosynthesis and block TLR4 (Macagno et al., 2006; 

Wannamaker et al., 2007; Maroso et al., 2010; Maroso et al., 2011a; Keyel, 2014), arrests 

the progression of epilepsy in mice and reduces spontaneous chronic seizures up to 90% 

as compared to the natural history of disease in control mice. This is a highly relevant 

clinical endpoint considering that 50% seizure reduction determines meaningful drug 

efficacy in patients (Mohanraj and Brodie, 2003). These two approaches result in strikingly 

similar outcomes, thus providing the first preclinical evidence of a genuine disease 

modification effect in an animal model of acquired epilepsy. Notably, treatments were 

initiated after the onset of spontaneous seizures in each mouse, in order to mimic a 

clinically feasible intervention in patients with diagnosed epilepsy. Although the therapeutic 

agents were transiently applied for 1 to 2 weeks, a dramatic regression in spontaneous 

seizures occurred at the end stage of the disease, i.e., 2.5 months after epilepsy onset, 

and this effect was measurable already 1.5 months after the end of treatment, when the 

injected agents were cleared from the tissue. Moreover, none of the agents modified the 

early spontaneous seizures during treatment possibly due to the concomitant occurrence 

of various pathogenic mechanisms triggered by SE, in addition to neuroinflammation, that 

significantly contribute to ictogenesis at the beginning of the disease (first 2 weeks from 

disease onset). This is at variance with the prominent anticonvulsive effects of 
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antiinflammatory treatments on acutely evoked seizures in naive mice (this study; Maroso 

et al, 2010; Maroso et al, 2011a; Ravizza et al, 2006), or in chronic epileptic animals 

(Maroso et al, 2010; Maroso et al, 2011a), suggesting that neuroinflammation is a 

predominat mechanism of ictogenesis in these conditions.  This set of evidence excludes 

therefore that the long-term reduction in spontaneous seizures merely reflects a 

symptomatic treatment effect and indicates that the interventions have modified the 

epileptogenic network, thereby preventing disease progression. 

The clinical relevance of our findings is underlined by the lack of disease-modification 

effects of CBZ, a classical AED widely used for the symptomatic control of seizures in 

human epilepsy (Mohanraj and Brodie, 2003), thus supporting the clinical evidence that 

AEDs do not affect epileptogenesis (Temkin, 2001).  

Our data indicate that the therapeutic effects attained by inhibition of the IL-1R1/TLR4 

signaling relate to reversal of neuronal hyperexcitability provoked by receptor activation by 

IL-1β and HMGB1 that are released during epileptogenesis. Accordingly, the activation of 

IL-1R1/TLR4 signaling by these two endogenous ligands enhances seizure susceptibility 

in animal models (Vezzani et al., 2000; Vezzani et al., 2002; Maroso et al., 2010; Maroso 

et al., 2011a; Iori et al., 2013). Moreover, we found that naive mice treated with miR-146a 

mimic, or hippocampal slices exposed to IL-1R1/TLR4 antagonists, displayed decreased 

intrinsic neuronal excitability that was associated with a reduced propensity to generate 

seizures. This effect is due to IRAK/TRAF6 mediated signaling inhibition in neurons where 

miR-146a is increased following mimic treatment. We previously described that the pivotal 

mechanism involved in IL-1R1/TLR4 modulation of neuronal excitability and seizures relies 

upon increased neuronal calcium influx via ceramide/src kinase-mediated phosphorylation 

of the NR2B-expressing NMDA receptors (Viviani et al., 2003; Balosso et al., 2008; Iori et 

al., 2013; Balosso et al., 2014). Increased pre-synaptic calcium leading to glutamate 

release (Pedrazzi et al., 2012) is also likely involved in the hyperexcitability mediated by 
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signaling activation. Although activation of IL-1R1/TLR4 has been implicated in cell loss 

(Viviani et al., 2003; Balosso et al., 2014), we did not detect neuroprotection in the 

hippocampus of mimic-treated mice although spontaneous seizures were drastically 

reduced. This result is compatible with evidence that cell loss is mostly completed within 

the first week after SE induction (Mouri et al., 2008); we cannot exclude therefore that 

intervention before spontaneous seizures arise may be neuroprotective.  

The IL-1R1/TLR4 signaling is classically described as a pivotal trigger of the inflammatory 

cascade (Quinn and O'Neill, 2011; Keyel, 2014), and glial cells expressing IL-1R1 or TLR4 

are chiefly involved in promoting and sustaining neuroinflammation in epilepsy (Aronica et 

al., 2012; Devinsky et al., 2013). Moreover, increased miR-146a in human astrocytes was 

shown to blunt IL-1R1/TLR4 mediated release of inflammatory cytokines (Iyer et al., 2012; 

van Scheppingen et al., 2016). It is therefore conceivable that inhibition of this signaling in 

glia, either due to the increased miR146a levels in astrocytes or to glial receptor blockade 

by our drugs, led to a reduction of downstream inflammatory effector molecules thereby 

contribute to the observed therapeutic outcomes (Vezzani, 2015).   

IL-1R1/TLR4 signaling is activated in various structural/lesional forms of human epilepsy 

that are often associated with a worse prognosis and with the development of 

pharmacoresistant seizures (Pitkanen and Sutula, 2002; Schmidt and Sillanpaa, 2005; 

Sarkis et al., 2012). This patient population may represent the elective target for 

treatments that inhibit the IL-1R1/TLR4 pathway. Although epigenetic intervention in 

human CNS diseases have not been attempted as yet, there is an intensive research for 

delivering biologics directly into the seizure focus or intrathecally, or via nasal spray 

preparation, to improve both therapeutic index and brain penetration (Yi et al., 2014). 

Some of these approaches are already applied to deliver drugs into the human CNS, 

particularly for brain tumors or pain. In principle, these interventions, together with 

chemical modifications to prolong the mimic half-life, might be considered for clinical 
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translation of miRNA-based therapeutic strategies in epilepsy (see also Lee et al, 2016; 

Yuan et al, 2016). A more prompt translation, however, can be envisaged using drugs 

blocking the IL-1R1/TLR4 signaling, such as VX-765 and anakinra (Kenney et al., 2016; 

Bialer et al., 2013; Jyonouchi and Geng, 2016), which have been already tested in 

humans with clinical signs of efficacy and safety profile (see also Leon et al., 2008; Lepper 

et al., 2010).  

In summary, our findings provide the first proof-of-concept evidence for disease-

modification in epilepsy using specific interventions transiently applied after disease onset. 

The data show that the burden of seizures can be drastically reduced by targeting 

disease-relevant mechanisms. This is a novel therapeutic approach for epilepsy as 

compared to chronic administration of AEDs which mainly provide a symptomatic control 

of seizures. 
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Figure 1. Modulation of miR-146a hippocampal level affects acute seizures 

(A) RT-qPCR measurement of miR-146a in mouse hippocampus 24 or 72 h after a single 

icv injection of 10 µg (0.7 nmol) of either mimic or its negative control (n=8 each group). 

(B) Seizures parameters in mice injected with 10 µg mimic or its negative control (n=6-10 

each group) 1, 24, 72 h or 7 d before kainic acid. The bargram reports pooled control data 

from the different time points since they did not differ (n=34). (C) RT-qPCR measurement 

of miR-146a in mouse hippocampus 24 h after daily icv injection of 1 µg (0.28 nmol) 

antagomiR or its negative control for 6 days (n=10 each group). (D) Seizures parameters 

in mice injected icv with antagomiR or its negative control followed by kainic acid (n=9 

each group). Data are mean ± s.e.m.; *p<0.05, **p<0.01 vs negative control by Kruskal-

Wallis (A) or Mann-Whitney (B,C,D) test. 
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Figure 2. miR-146a mimic injection after epilepsy onset prevents disease progression and 

reduces chronic seizures in mice 

Average daily seizures in negative control- (A) and mimic-injected mice (B) during day 1-

16 and day 45-74 from epilepsy onset (onset day, negative control, 5.5 ± 0.4, n=15; mimic, 
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5.3 ± 0.4, n=15). Icv injections were done at days 1,4,7,10 and 13 from disease onset, 

according to protocol in Fig. S3B. Seven mice out of 15 mice in each group were recorded 

in the hippocampus ipsilateral to the kainate-injected amygdala and in the contralateral 

overlying cortex, between days 1-16 and days 60-74. The remaining eight mice in each 

group were recorded in the injected amygdala and the ipsilateral hippocampus, from days 

1-16 and days 45-74. Since these two cohorts of mice shared the hippocampal site of 

recording and displayed a similar number of daily seizures during the common recording 

periods (days 1-16 and days 60-74; Chi-square test), they were pooled together. Notably, 

EEG seizures simultaneously occurred at all sites of recordings and they were always 

associated with generalized motor convulsions, and similarly affected by the treatment.  

Data (mean ± s.e.m.) were analyzed by Chi-square test; *p<0.01 vs respective seizure 

frequency during days 1-16; °p<0.01 vs seizure frequency during days 45-74 in negative 

control-treated mice (B vs A).  

Mean and 95% confidence interval (CI): (A) days 1-16: 1.05 (CI 0.85-1.25), days 45-74: 

5.38 (CI 4.79-5.96); (B) days 1-16: 1.01 (CI 0.76-1.26), days 45-74: 0.37 (CI 0.27-0.47); 

difference of mean values during days 45-74 (B vs A): 4.79 (CI 4.20-5.38). 
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Figure 3. Pharmacological treatment with VX-765 and Cyanobacterial LPS (Cyp), but not 

with carbamazepine (CBZ), after epilepsy onset prevents disease progression and 

reduces chronic seizures in mice 
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Average daily seizures in vehicle- (A) and drug-injected mice (B) during day 1-9 and day 

45-74 from disease onset (onset day: vehicle, 4.9 ± 0.5, n=11; VX-765+CyP, 5.1 ± 0.5, 

n=11). VX-765 (100 mg/kg, i.p.) and Cyp (1 mg/mouse, i.p.) were given daily for 7 days 

from disease onset to block the activation of the IL-1R1/TLR4 signaling, then treatment 

was stopped (protocol in Fig. S3B). (C) Average daily seizures during day 1-16 and day 

45-74 from disease onset (5.5 ± 0.9 days, n=7) in CBZ-treated mice. Mice were treated 

with CBZ-in-food during day 1-14 from epilepsy onset (protocol in Fig. S3B). Placebo pellet 

given to epileptic mice for 2 weeks did not modify their spontaneous seizure frequency, as 

assessed by continuous EEG monitoring (2.7 ± 0.6 seizures/day in mice fed with placebo 

pellet vs 3.3 ± 0.8 seizures/day in mice fed with a normal diet, n=7 each group). We 

therefore used the cohort of vehicle-injected mice fed with a normal diet (panel A) for 

cross-sectional comparison with mice fed with CBZ-in-food (panel C) since these two 

cohorts were run in parallel with experimental mice in panel B.   

Data (mean ± s.e.m.) were analyzed by Chi-square test; *p<0.01 vs seizure frequency 

during drug- or vehicle-injection; °p<0.01 vs seizure frequency during days 45-74 in 

vehicle-injected mice (B vs A).  

Mean and 95% confidence interval (CI): (A) days 1-9: 0.64 (CI 0.45-0.82), days 45-74: 

2.86 (CI 2.30-3.43); (B) days 1-9: 0.74 (CI 0.40-1.08), days 45-74: 0.23 (CI 0.16-0.29); (C) 

days 1-16: 0.18 (CI 0.08-0.28), days 45-74: 2.01 (CI 1.73-2.28); difference of mean values 

during days 45-74 (B vs A): 2.54 (CI 1.98-3.11). CBZ-treated mice showed a 3-fold higher 

seizure frequency compared to VX-765+CyP-treated mice during days 45-74 after disease 

onset (p<0.01 by Chi-square test) while they did not differ from vehicle controls (A). 
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SUPPLEMENTARY MATERIALS 

Fig. S1. Hippocampal level of IRAK-2 and TRAF-6 proteins and hippocampal level of miR-

21 and miR-155 after miR-146a mimic or negative control injection and the associated 

reduction in hippocampal excitability in naive mice 

Fig. S2. In situ hybridization analysis of miR-146a in forebrain  

Fig. S3. Experimental model of SE-induced epilepsy and related injection protocols 

Fig. S4. Experimental model of acute seizures and related injection protocol in naive mice 

Fig. S5. Carbamazepine (CBZ)-in-food intake and corresponding plasma levels in naive 

mice 

 

 

 

 

 

 

 

 

 

 

 



	 38	

References 

Ali, A, Dua, Y, Constance, JE, Franklin, MR, Dudek, FE., 2012. A once-per-day, drug-in-

food protocol for prolonged administration of antiepileptic drugs in animal models. 

Epilepsia;53:199-206. 

Aronica, E, Fluiter, K, Iyer, A, Zurolo, E, Vreijling, J, van Vliet, EA, et al., 2010. Expression 

pattern of miR-146a, an inflammation-associated microRNA, in experimental and 

human temporal lobe epilepsy. Eur J Neurosci;31:1100-7. 

Aronica, E, Ravizza, T, Zurolo, E, Vezzani, A., 2012. Astrocyte immune response in 

epilepsy. Glia;60:1258-68. 

Balosso, S, Maroso, M, Sanchez-Alavez, M, Ravizza, T, Frasca, A, Bartfai, T, et al., 2008. 

A novel non-transcriptional pathway mediates the proconvulsive effects of 

interleukin-1beta. Brain;131:3256-65. 

Balosso, S, Ravizza, T, Pierucci, M, Calcagno, E, Invernizzi, RW, Di Giovanni, G, et al., 

2009. Molecular and functional interactions between TNF-alpha receptors and the 

glutamatergic system in the mouse hippocampus: implications for seizure 

susceptibility. Neuroscience;161:293-300. 

Balosso, S, Liu, J, Bianchi, ME, Vezzani, A., 2014. Disulfide-containing High Mobility 

Group Box-1 promotes N-methyl-d-aspartate receptor function and excitotoxicity by 

activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid 

Redox Signal;21:1726-1740. 

Barker-Haliski, ML, Friedman, D, French, JA, White, HS., 2015. Disease modification in 

epilepsy: from animal models to clinical applications. Drugs;75:749-67. 

Bialer, M, Johannessen, SI, Levy, RH, Perucca, E, Tomson, T, White, HS., 2013. Progress 

report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference 

(EILAT XI). Epilepsy Res;103:2-30. 



	 39	

Boldin, MP, Taganov, KD, Rao, DS, Yang, L, Zhao, JL, Kalwani, M, et al., 2011. miR-146a 

is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp 

Med;208:1189-201. 

Borenstein, M, Hedges, LV, Higgins, JP, Rothstein, HR., 2009. A basic introduction to 

fixed-effect and random-effects models for meta-analysis. Res Synth Methods;1:97-

111. 

Budde, BS, Namavar, Y, Barth, PG, Poll-The, BT, Nurnberg, G, Becker, C, et al.,  2008. 

tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat 

Genet;40:1113-8. 

Burianova, I, Borecka, K., 2015. Routine therapeutic monitoring of the active metabolite of 

carbamazepine: Is it really necessary? Clin Biochem;48:866-9. 

Devinsky, O, Vezzani, A, Najjar, S, De Lanerolle, NC, Rogawski, MA., 2013. Glia and 

epilepsy: excitability and inflammation. Trends Neurosci;36:174-84. 

Duncan, JS, Sander, JW, Sisodiya, SM, Walker, MC., 2006. Adult epilepsy. 

Lancet;367:1087-100. 

Franklin, KBJ, Paxinos, G., 2008. The mouse brain in stereotaxic coordinates  Academic 

Press, San Diego. 

Frigerio, F, Frasca, A, Weissberg, I, Parrella, S, Friedman, A, Vezzani, A, et al., 2012. 

Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum 

albumin in the absence of concomitant pathology. Epilepsia;53:1887-1897. 

Gasior, M, White, NA, Rogawski, MA., 2007. Prolonged attenuation of amygdala-kindled 

seizure measures in rats by convection-enhanced delivery of the N-type calcium 

channel antagonists omega-conotoxin GVIA and omega-conotoxin MVIIA. J 

Pharmacol Exp Ther;323:458-68. 



	 40	

Gorter, JA, Iyer, A, White, I, Colzi, A, van Vliet, EA, Sisodiya, S, et al., 2014. Hippocampal 

subregion-specific microRNA expression during epileptogenesis in experimental 

temporal lobe epilepsy. Neurobiol Dis;62:508-20. 

Grabenstatter, HL, Clark, S, Dudek, FE., 2007. Anticonvulsant effects of carbamazepine 

on spontaneous seizures in rats with kainate-induced epilepsy: comparison of 

intraperitoneal injections with drug-in-food protocols. Epilepsia; 48:2287-95. 

Gu, B, Huang, YZ, He, XP, Joshi, RB, Jang, W, McNamara, JO., 2015. A Peptide 

Uncoupling BDNF Receptor TrkB from Phospholipase Cgamma1 Prevents Epilepsy 

Induced by Status Epilepticus. Neuron;88:484-91. 

Harward, SC, McNamara, JO., 2014. Aligning animal models with clinical epilepsy: where 

to begin? Adv Exp Med Biol;813:243-51. 

Heinemann, U, Kaufer, D, Friedman, A., 2012. Blood-brain barrier dysfunction, TGFbeta 

signaling, and astrocyte dysfunction in epilepsy. Glia;60:1251-7. 

Iori, V, Maroso, M, Rizzi, M, Iyer, AM, Vertemara, R, Carli, M, et al., 2013. Receptor for 

Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and 

contributes to experimental seizures. Neurobiol Dis;58:102-14. 

Iyer, A, Zurolo, E, Prabowo, A, Fluiter, K, Spliet, WG, van Rijen, PC, et al., 2012. 

MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. 

PLoS One;7:e44789. 

Iyer, A, Marson, A., 2014. Pharmacotherapy of focal epilepsy. Expert Opin 

Pharmacother;15:1543-51. 

Jimenez-Mateos, EM, Engel, T, Merino-Serrais, P, McKiernan, RC, Tanaka, K, Mouri, G, 

et al., 2012. Silencing microRNA-134 produces neuroprotective and prolonged 

seizure-suppressive effects. Nat Med;18:1087-94. 

Jimenez-Mateos, EM, Henshall, DC., 2013. Epilepsy and microRNA. Neuroscience; 

238:218-29. 



	 41	

 

Jyonouchi, H, Geng, L., 2016. Intractable Epilepsy (IE) and Responses to Anakinra, a 

Human Recombinant IL-1 Receptor Antagonist (IL-1Ra): Case Reports. Journal of 

Clinical and Cellular Immunology;7:456-460. 

Kenney, L, Kahoud, JR, Vezzani, A, LaFrance-Corey, GR, Ho, M, Muskardin, TW, Gleich, 

JS, Wirrell, CE, Howe, LC, Payne TE.Super refractory status epilepticus secondary 

to febrile illness related epilepsy syndrome treated with anakinra. Annals of 

Neurology, in press. 

Keyel, PA., 2014. How is inflammation initiated? Individual influences of IL-1, IL-18 and 

HMGB1. Cytokine;69:136-45. 

Krutzfeldt, J, Rajewsky, N, Braich, R, Rajeev, KG, Tuschl, T, Manoharan, M, et al., 2005. 

Silencing of microRNAs in vivo with 'antagomirs'. Nature;438:685-9. 

Lee, S, Jeon, D, Chu, K, Jung, K, Moon, J, Sunwoo, J, et al., 2016. Inhibition of miR-203 

reduces spontaneous recurrent seizures in mice. Mol Neurobiol; [Epub ahead of 

print]  

Lehmann, SM, Kruger, C, Park, B, Derkow, K, Rosenberger, K, Baumgart, J, et al., 2012. 

An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes 

neurodegeneration. Nat Neurosci;15:827-35. 

Leon, CG, Tory, R, Jia, J, Sivak, O, Wasan, KM., 2008. Discovery and development of toll-

like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other 

diseases. Pharm Res;25:1751-61. 

Lepper, PM, Triantafilou, M, O'Neill, LA, Novak, N, Wagner, H, Parker, AE, et al., 2010. 

Modulation of toll-like receptor signalling as a new therapeutic principle. Mediators 

Inflamm;2010:705612. 



	 42	

Li, T, Ren, G, Lusardi, T, Wilz, A, Lan, JQ, Iwasato, T, et al., 2008. Adenosine kinase is a 

target for the prediction and prevention of epileptogenesis in mice. J Clin 

Invest;118:571-82. 

Liu, G, Gu, B, He, XP, Joshi, RB, Wackerle, HD, Rodriguiz, RM, et al., 2013. Transient 

inhibition of TrkB kinase after status epilepticus prevents development of temporal 

lobe epilepsy. Neuron;79:31-8. 

Macagno, A, Molteni, M, Rinaldi, A, Bertoni, F, Lanzavecchia, A, Rossetti, C, et al., 2006. 

A cyanobacterial LPS antagonist prevents endotoxin shock and blocks sustained 

TLR4 stimulation required for cytokine expression. J Exp Med;203:1481-92. 

Maroso, M, Balosso, S, Ravizza, T, Liu, J, Aronica, E, Iyer, AM, et al., 2010. Toll-like 

receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be 

targeted to reduce seizures. Nat Med;16:413-9. 

Maroso, M, Balosso, S, Ravizza, T, Iori, V, Wright, CI, French, J, et al., 2011a. Interleukin-

1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic 

epileptic activity in mice. Neurotherapeutics;8:304-15. 

Maroso, M, Balosso, S, Ravizza, T, Liu, J, Bianchi, ME, Vezzani, A., 2011b. Interleukin-1 

type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta 

and high-mobility group box 1. J Intern Med;270:319-26. 

McDaniel B, Sheng H, Warner DS, Hedlund LW, Benveniste H., 2001. Tracking brain 

 volume changes in C57BL/6J and ApoE-deficient mice in a model of 

 neurodegeneration: a 5-week longitudinal micro-MRI study. Neuroimage;14:1244-

 55. 

Mohanraj, R, Brodie, MJ., 2003. Measuring the efficacy of antiepileptic drugs. 

Seizure;12:413-43. 

Mouri, G, Jimenez-Mateos, E, Engel, T, Dunleavy, M, Hatazaki, S, Paucard, A, et al., 

2008. Unilateral hippocampal CA3-predominant damage and short latency 



	 43	

epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain 

Res;1213:140-51. 

Noé, FM, Polascheck, N, Frigerio, F, Bankstahl, M, Ravizza, T, Marchini, S, et al., 2013. 

Pharmacological blockade of IL-1beta/IL-1 receptor type 1 axis during 

epileptogenesis provides neuroprotection in two rat models of temporal lobe 

epilepsy. Neurobiol Dis;59:183-93. 

O'Neill, LA., 2008. 'Fine tuning' TLR signaling. Nat Immunol;9:459-61. 

Omran, A, Peng, J, Zhang, C, Xiang, QL, Xue, J, Gan, N, et al., 2012. Interleukin-1beta 

and microRNA-146a in an immature rat model and children with mesial temporal 

lobe epilepsy. Epilepsia;53:1215-24. 

Pedrazzi, M, Averna, M, Sparatore, B, Patrone, M, Salamino, F, Marcoli, M, et al., 2012. 

Potentiation of NMDA receptor-dependent cell responses by extracellular high 

mobility group box 1 protein. PLoS One;7:e44518. 

Pitkanen, A, Sutula, TP., 2002. Is epilepsy a progressive disorder? Prospects for new 

therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol;1:173-81. 

Prabowo, AS, van Scheppingen, J, Iyer, AM, Anink, JJ, Spliet, WG, van Rijen, PC, et al., 

2015. Differential expression and clinical significance of three inflammation-related 

microRNAs in gangliogliomas. J Neuroinflammation;12:97. 

Quinn, SR, O'Neill, LA., 2011. A trio of microRNAs that control Toll-like receptor signalling. 

Int Immunol;23:421-5. 

Ramakers, C, Ruijter, JM, Deprez, RH, Moorman, AF., 2003. Assumption-free analysis of 

quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett;339:62-

6. 

Ravizza, T, Lucas, SM, Balosso, S, Bernardino, L, Ku, G, Noé, F, Malva, J, Randle, JC, 

 Allan, S, Vezzani A., 2006. Inactivation of caspase-1 in rodent brain: a novel 

 anticonvulsive strategy. Epilepsia;47:1160-8. 



	 44	

Rossetti, AO, Alvarez, V, Januel, JM, Burnand, B., 2013. Treatment deviating from 

guidelines does not influence status epilepticus prognosis. J Neurol;260:421-8. 

Ruijter, JM, Ramakers, C, Hoogaars, WM, Karlen, Y, Bakker, O, van den Hoff, MJ, et al., 

2009. Amplification efficiency: linking baseline and bias in the analysis of 

quantitative PCR data. Nucleic Acids Res;37:e45. 

Sarkis, RA, Jehi, L, Bingaman, W, Najm, IM., 2012. Seizure worsening and its predictors 

after epilepsy surgery. Epilepsia;53:1731-8. 

Schmidt, D, Sillanpaa, M., 2005. Does surgery prevent worsening of epilepsy? 

Epilepsia;54:391. 

Shinoda, S, Schindler, CK, Meller, R, So, NK, Araki, T, Yamamoto, A, et al., 2004. Bim 

regulation may determine hippocampal vulnerability after injurious seizures and in 

temporal lobe epilepsy. J Clin Invest;113:1059-68. 

Taganov, KD, Boldin, MP, Chang, KJ, Baltimore, D., 2006. NF-kappaB-dependent 

induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate 

immune responses. Proc Natl Acad Sci U S A;103:12481-6. 

Temkin, NR., 2001. Antiepileptogenesis and seizure prevention trials with antiepileptic 

drugs: meta-analysis of controlled trials. Epilepsia;42:515-24. 

Tsai, MH, Chuang, YC, Chang, HW, Chang, WN, Lai, SL, Huang, CR, et al., 2009. Factors 

predictive of outcome in patients with de novo status epilepticus. QJM;102:57-62. 

van Scheppingen, J, Iyer, AM, Prabowo, AS, Muhlebner, A, Anink, JJ, Scholl, T, et al., 

2016. Expression of microRNAs miR21, miR146a, and miR155 in tuberous 

sclerosis complex cortical tubers and their regulation in human astrocytes and 

SEGA-derived cell cultures. Glia;64:1066-82. 

 



	 45	

Vezzani, A, Moneta, D, Conti, M, Richichi, C, Ravizza, T, De Luigi, A, et al., 2000. 

Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection 

and astrocytic overexpression in mice. Proc Natl Acad Sci U S A;97:11534-9. 

Vezzani, A, Moneta, D, Richichi, C, Aliprandi, M, Burrows, SJ, Ravizza, T, et al., 2002. 

Functional role of inflammatory cytokines and antiinflammatory molecules in 

seizures and epileptogenesis. Epilepsia;43 Suppl 5:30-5. 

Vezzani, A, French, J, Bartfai, T, Baram, TZ., 2011a. The role of inflammation in epilepsy. 

Nat Rev Neurol;7:31-40. 

Vezzani, A, Maroso, M, Balosso, S, Sanchez, MA, Bartfai, T., 2011b. IL-1 receptor/Toll-like 

receptor signaling in infection, inflammation, stress and neurodegeneration couples 

hyperexcitability and seizures. Brain Behav Immun;25:1281-9. 

Vezzani, A, Friedman, A, Dingledine, RJ., 2013. The role of inflammation in 

epileptogenesis. Neuropharmacology;69:16-24. 

Vezzani, A., 2015. Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? 

Expert Opin Drug Saf;14:583-92. 

Vezzani, A, Dingledine, R, Rossetti, AO., 2015a. Immunity and inflammation in status 

epilepticus and its sequelae: possibilities for therapeutic application. Expert Rev 

Neurother;15:1081-92. 

Vezzani, A, Lang, B, Aronica, E., 2015b. Immunity and Inflammation in Epilepsy. Cold 

Spring Harb Perspect Med;6. 

Viviani, B, Bartesaghi, S, Gardoni, F, Vezzani, A, Behrens, MM, Bartfai, T, et al., 2003. 

Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase 

through activation of the Src family of kinases. J Neurosci;23:8692-700. 

Wannamaker, W, Davies, R, Namchuk, M, Pollard, J, Ford, P, Ku, G, et al., 2007. (S)-1-

((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-

pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide 



	 46	

(VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 

inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-

1beta and IL-18. J Pharmacol Exp Ther;321:509-16. 

Weaver, DF, Pohlmann-Eden, B., 2013. Pharmacoresistant epilepsy: unmet needs in 

solving the puzzle(s). Epilepsia;54 Suppl 2:80-5. 

Yi, X, Manickam, DS, Brynskikh, A, Kabanov, AV., 2014. Agile delivery of protein 

therapeutics to CNS. J Control Release;190:637-63. 

Yuan, J, Huang, H, Zhou, X, Liu, X, Ou, S, Xu, T, Li, R, Ma, L, Chen Y., 2016. MicroRNA-

 132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture 

 Model of Acquired Epilepsy and Associated with Epileptogenesis Process. Neural 

 Plast:5108489. 

Zeng, Z, Gong, H, Li, Y, Jie, K, Ding, C, Shao, Q, et al., 2013. Upregulation of miR-146a 

contributes to the suppression of inflammatory responses in LPS-induced acute 

lung injury. Exp Lung Res;39:275-82. 

 

 



	 1	

Supplementary Information 

Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in 

a model of acquired epilepsy 

Valentina Iori1, Anand M. Iyer2, Teresa Ravizza1, Luca Beltrame3, Lara Paracchini3, Sergio 

Marchini3, Milica Cerovic1, Cameron Hill4, Mariella Ferrari3, Massimo Zucchetti3, Monica 

Molteni5, Carlo Rossetti5, Riccardo Brambilla1,6, H. Steve White4, Maurizio D’Incalci3, 

*Eleonora Aronica2,7,8 and *Annamaria Vezzani1 

1Department of Neuroscience and 3Department of Oncology, IRCCS-Istituto di Ricerche 

Farmacologiche “Mario Negri”, Milano, Italy; 2Department of (Neuro)Pathology, Academic 

Medical Center, Amsterdam, The Netherlands; 4Department of Pharmacy, University of 

Washington, Seattle, WA, USA; 5Department of Biotechnologies and Life Sciences, 

Insubria University, Varese, Italy; 6Neuroscience and Mental Health Research Institute, 

Division of Neuroscience, School of Biosciences, Cardiff University, United Kingdom;  
7Swammerdam Institute for Life Sciences, Center for Neuroscience, University of 

Amsterdam; 8Stichting Epilepsie Instellingen (SEIN) Nederland and Epilepsy Institute in 

The Netherlands Foundation, The Netherlands 

 

This file includes: 

Fig. S1. Hippocampal level of IRAK-2 and TRAF-6 proteins and hippocampal level of miR-

21 and miR-155 after miR-146a mimic injection and the associated reduction in 

hippocampal excitability in naive mice 

Fig. S2. In situ hybridization analysis of miR-146a in forebrain after mimic injection 

Fig. S3. Experimental model of SE-induced epilepsy and related injection protocols 

Fig. S4. Experimental model of acute seizures and related injection protocol in naive mice 

Fig. S5. Carbamazepine (CBZ)-in-food intake and corresponding plasma levels in naive 

mice 

 



	 2	

 



	 3	

Fig. S1. Hippocampal level of IRAK-2 and TRAF-6 proteins (A-C) and hippocampal 

level of miR-21 and miR-155 (D) after miR-146a mimic injection and the associated 

reduction in hippocampal excitability (E) in naive mice  

(A,C) Western blot analysis of IRAK-2 and TRAF-6 protein level in the hippocampus, 24 h 

after a single injection of 10 µg of miR-146a mimic or its negative control in naïve mice 

(n=8 each group; p<0.05 by Mann-Whitney test), and their correlation with hippocampal 

miR-146a level (B) (r=Spearman correlation coefficient). Data (mean ± s.e.m) are 

expressed as relative changes compared to negative control value (arbitrary unit). (D) RT-

qPCR measurement of miR-21 and miR-155 in mouse hippocampus 24 h after single icv 

injection of 10 µg of either mimic or its negative control (n=8 each group). (E) Graph 

reports CA1 pyramidal neurons population spike (PS) amplitudes in response to increasing 

stimulation intensities of afferent Schaffer collaterals. Acute hippocampal slices were 

obtained from naïve mice 24 h after a single icv injection of 10 µg of either negative control 

(Control) or mimic (n=12 slices from 5-7 mice/each group). A set of acute slices were 

obtained 24 h after icv PBS injection in mice, and exposed to Schaffer collateral 

stimulation after 1 h pre-incubation with PBS, Lps-Rs (100 ng/ml) or IL-1Ra (2 µg/ml) 

(n=10-11 slices from 4 mice/each group), selective antagonists of TLR4 and IL-1R1 

(Maroso et al., 2010; Vezzani et al., 2000; Vezzani et al., 2002), respectively. Control 

(includes PBS injected mice since they did not differ from negative control mice) vs mimic 

F1.418=90.48, p<0.01; Control vs Lps-RS, F1,380=71.17, p<0.01; Control vs IL-1Ra, 

F1.399=133.8, p<0.01, by two-way ANOVA for repeated measures followed by Bonferroni 

post-hoc test. Bracket includes the values (in the range of stimulation between 20 and 30 

V) in the treatment groups with a significant difference vs Control (p<0.05 and p<0.01). PS 

amplitudes (mean ± s.e.m.) are normalized to the maximal value. Top raw depicts 

representative traces of PS in control, mimic, Lps-Rs and IL-1Ra groups at the stimulation 

intensity of 24 V. 
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Fig. S2. In situ hybridization analysis of miR-146a in forebrain after mimic injection 

Representative photomicrographs showing miR-146a in situ hybridization signal in 

basolateral amygdala (BLA), frontoparietal cortex (FrPaCtx) and CA1 subfield of the 

hippocampus, 24 h after a single icv injection of 10 µg negative control or miR-146a mimic 

in sham mice (implanted with cannula and electrodes but not exposed to SE; n=5 each 

group; panels a-f), or after 5 repetitive injections of 10 µg each in SE-exposed mice (one 

injection every 3 days, starting the day of epilepsy onset in each mouse, panels g-o; 

protocol in Fig. S3B) (n=4-5 each group).  Scale bar: 20 µm (a-l); 30 µm (m-o). Bargrams 

represent the percent area occupied by miR-146a signal in the respective brain areas 

(mean ± s.e.m.; n=4-5 mice each group; 2 slices/mouse). *p<0.05, **p<0.01 vs Sham + 

Negative control; #p<0.01 vs  SE + Negative control by Mann-Whitney test.  
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Fig. S3. Experimental model of SE-induced epilepsy and related injection protocols 

(A) Brain atlas plate depicting kainic acid (KA, 0.3 µg in 0.2 µl) injection site (black arrow) 

and adjacent EEG depth electrode placement (green line) in the right basolateral 

amygdala (BLA). The electrode positioning in the ipsilateral dorsal hippocampus is the 

same as depicted in Fig. S4A (green line). The schematic skull reproduction shows 

surface electrode placement (green circles) and the position of the guide cannula for 

intraamygdala KA injection (black circle). Representative EEG tracings depicting typical 

spontaneous seizures (and their respective baseline tracings) in two different mice. One 

mouse was recorded in injected amygdala and ipsilateral hippocampus while the other 

mouse was recorded in the hippocampus (ipsilateral to injected amygdala) and the 

contralateral overlying cortex. CTX, cortex, contralateral to the injection; RHP, right 

hippocampus, ipsilateral to the injection. These recordings show that EEG seizures 

simultaneously occur in hippocampus, cortex and injected amygdala. This ictal activity was 

always associated with generalized motor convulsions. EEG seizures were never recorded 

in electrode-implanted mice (not injected with kainate) undergoing long-term EEG 

recordings. (B) Mice were prepared as described in the Materials and Methods for SE 

induction and EEG recording. In each mouse, continuous EEG recording (24/7) was done 

from SE induction until epilepsy onset which is denoted as day 1 (i.e., the occurrence of 

two spontaneous seizures at least 48 h apart from SE induction). At day 1, mice were 

randomized in control and treatment groups. Bargram depicts the number of daily seizures 

(mean ± s.e.m.) in control mice (cumulative data from negative control-injected mice, 

n=15, Fig. 2A and vehicle-injected mice, n=11; Fig. 3A). We pooled the data to show the 

natural history of the disease in this model since the control groups did not differ (Mann-

Whitney test). Mimic- or drug-treated mice were EEG recorded (24 h/day) during treatment 

(each treatment schedule is reported in panel B), and from day 45 or day 60 to day 74 

from epilepsy onset (24/7). They were injected as follows: one cohort received 10 µg of 
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either negative control (n=15) or mimic (n=15) at day 1, then again at day 4, day 7, day 10 

and day 13 (red arrows; these mice are reported in Fig. 2). This treatment schedule was 

chosen based on pharmacodynamic measures reported in Fig. 1B and Fig. S3D, showing 

that the effect of mimic on hippocampal excitability lasts for at least 72 h after injection, 

then elapsing at one week. A different cohort of mice was treated for one week with daily 

injections of VX-765 (100 mg/kg, i.p.) and CyP (1 mg/mouse, i.p., injected 6 h after VX-

765) (Fig. 3A,B) following a treatment schedule based on pharmacokinetic data (Cyp, half-

life in blood 15 h; single daily repeated administration of VX-765 allows adequate systemic 

exposure to the active metabolite (Wannamaker et al., 2007) attaining therapeutic effective 

concentration in brain). We did not prolong treatment over one week to avoid exposing 

mice to many repetitive i.p. injections. The last cohort of mice was administered with CBZ-

in-food (20 mg/daily/mouse) for 2 weeks to reach steady-state therapeutic plasma levels at 

maximal tolerated doses (Fig. S5; Fig. 3C). (C) Temporal spike distribution during SE 

induced by intra-amygdala KA injection in mice subsequently randomized after the onset 

of epilepsy to control or treatment groups (panel B). Data from negative control- or vehicle-

injected mice were pooled together since SE did not differ (Mann-Whitney). Each point 

represents the cumulative number of spikes during progressive 1 h intervals. Curves did 

not differ among each other (by one-way ANOVA). (D) Effect of negative control or mimic 

repetitive icv injections (protocol in Fig. S4C) on acute seizures induced in naive mice by 

intrahippocampal KA injected 24 h or seven days after the last icv oligonucleotide injection. 

This result was used as a pharmacodynamic measure of the mimic clearance from brain 

tissue. *p<0.05; **p<0.01 vs negative control by Mann-Whitney test. 
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Fig. S4. Experimental model of acute seizures and related injection protocol in naive 

mice 

(A) Brain atlas plate depicting kainic acid (KA, 7 ng/0.5 µl) or bicuculline (51 ng/0.5 µl) 

unilateral injection site (black arrow) and the depth bipolar recording electrode that was 

placed in the hippocampus (green line) bilaterally. Schematic skull reproduction shows 

surface electrode placement (green circles) and the position of the guide cannula for 

intrahippocampal injection of convulsive drugs (black circle). Representative EEG tracings 
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depicting baseline recordings (top) and ictal activity after KA injection (bottom) 

simultaneously occurring in the left (LHP) and right (RHP) hippocampus in freely moving 

mice. (B) Mice received one icv injection (ipsilateraly to KA or bicuculline injection) of 10 

µg mimic or its negative control (red arrow) at different times (i.e., 1 h, 24 h, 72 h or 7 

days) before KA, or 24 h before bicuculline or their vehicle (black arrow). (C) Mice received 

five icv injection (one injection every 3 days, red arrows) of 10 µg mimic or its negative 

control, then 24 h (day 13) or one week (day 19) after the last icv injection they were 

intrahippocampally injected with KA. 

 

 

 

 

 

 

 

 



	 10	

 

 

Fig. S5. Carbamazepine (CBZ)-in-food intake and corresponding plasma levels in 

naive mice 

We used CBZ-in-food in order to attain steady-state therapeutic drug levels over 2 weeks 

because AEDs have a very short half-life in mice after their systemic delivery. Table in (A) 

reports the daily food intake in mice under a normal diet or fed with various doses of CBZ-

in-food for 2 weeks (n=4-6 each group), and their corresponding body weight (B). Note 

that a deflection in body weight was observed in mice fed with 10 mg/g CBZ denoting 

signs of toxicity. (C) Concentration of CBZ, and its active metabolite CBZ-epoxide (CBZ-

E), in plasma of mice after 2 weeks of feeding with the various CBZ-in-food 

concentrations. Plasma levels of CBZ+CBZ-E within therapeutic range (4-10 µg/ml; Ali et 
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al., 2012) were attained with CBZ doses of 5 mg/g and 10 mg/g of pellet. Since 10 mg/g 

provoked loss of body weight, we choose 5 mg/g CBZ-in-food (maximal tolerated dose) for 

the experiments in Fig. 2C: CBZ-in-food daily intake in epileptic mice was of 4.2 g. 

Estimation of CBZ and CBZ-E was done in plasma from blood collected from heart atrium 

in deeply anaesthetized mice, using high performance liquid chromatography (HPLC) with 

a UV diode array detector as previously described (Ali et al., 2012).  

References 

Ali, A, Dua, Y, Constance, JE, Franklin, MR, Dudek, FE., 2012. A once-per-day, drug-in-

food protocol for prolonged administration of antiepileptic drugs in animal models. 

Epilepsia;53:199-206. 

Maroso, M, Balosso, S, Ravizza, T, Liu, J, Aronica, E, Iyer, AM, et al., 2010. Toll-like 

receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be 

targeted to reduce seizures. Nat Med;16:413-9. 

Vezzani, A, Moneta, D, Conti, M, Richichi, C, Ravizza, T, De Luigi, A, et al., 2000. 

Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection 

and astrocytic overexpression in mice. Proc Natl Acad Sci U S A;97:11534-9. 

Vezzani, A, Moneta, D, Richichi, C, Aliprandi, M, Burrows, SJ, Ravizza, T, et al., 2002. 

Functional role of inflammatory cytokines and antiinflammatory molecules in 

seizures and epileptogenesis. Epilepsia;43 Suppl 5:30-5. 

Wannamaker, W, Davies, R, Namchuk, M, Pollard, J, Ford, P, Ku, G, et al., 2007. (S)-1-

((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-

pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide 

(VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 

inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-

1beta and IL-18. J Pharmacol Exp Ther;321:509-16.  

	


