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Abstract

This paper is concerned with analyzing and modelling the effects of judgmental
adjustments to replenishment order quantities. Judgmentally adjusting replen-
ishment quantities suggested by specialized (statistical) software packages is the
norm in industry. Yet, to date, no studies have attempted to either analytically
model this situation or practically characterize its implications in terms of ‘learn-
ing’. We consider a newsvendor setting where information available to managers
is reflected in the form of a signal that may or may not be correct, and which
may or may not be trusted. We show the analytical equivalence of adjusting an
order quantity and deriving an entirely new one in light of a necessary update
of the estimated demand distribution. Further, we assess the system’s behavior
through a simulation experiment on theoretically generated data and we study
how to foster learning to efficiently utilize managerial information. Judgmental
adjustments are found to be beneficial even when the probability of a correct
signal is not known. More generally, some interesting insights emerge into the
practice of judgmentally adjusting order quantities.

Keywords: Inventory; Judgement; Judgmental adjustments; Newsvendor
model; Learning

1. INTRODUCTION AND MOTIVATION

In most contemporary organizations, the size and complexity of the inventory
management task at the individual Stock Keeping Unit (SKU) level necessitates
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the employment of statistical theory as far as both forecasting and stock con-
trol are concerned. The advantage of doing so is that the resulting methods
can be fully automated. This, in conjunction with the recent IT processing de-
velopments, means that demand forecasts and replenishment decisions can be
made for hundreds or thousands of SKUs in as little time as just a few seconds
and as regularly as daily or even every half day, in the case of large stores or
supermarkets. In principle, the automation of the inventory management task
frees up managerial time that may be used at higher decision-making levels
and/or for personally superimposing judgement on the quantities suggested by
the automated system for the most important SKUs. Those would be items as-
sociated with a current promotion or any other special event (Goodwin & Fildes
(1999)). However, research studies have demonstrated that managers personally
intervene in the process far more than what one might expect. As an example,
consider the following situation. In a study conducted by Syntetos et al. (2009)
and Syntetos et al. (2010) for a branch of a major pharmaceutical company,
sales forecasts were updated monthly for about 270 SKUs. The forecasts served
both the inventory management task but also higher-level considerations and
as such, extrapolation/estimation covered the subsequent 36 months (36 steps
ahead). That is to say, at the end of every month, forecasts were produced for
each single SKU for the subsequent 36 months. It is surprising that managers
had adjusted about 65% of the forecasts examined in that research (Fildes et al.
(2009)). Franses & Legerstee (2011b) looked at the linkage between judgmental
adjustments of statistical forecasts and the forecast horizon. They also found,
through an empirical study in the pharmaceutical industry, that all horizons
(short term and long term) were associated with managerial interventions in
forecasting.
The practice of judgmentally adjusting statistical sales/demand forecasts has
received much attention in the academic literature in recent years. The increas-
ing number of relevant studies reflects the importance of this area in terms of
both necessary theory development and practical implications. Sales forecasts
constitute an input into a stock control model that suggests when and how
much to order. However, incorporating managerial judgment directly into such
stock replenishment decisions has become the norm in industry (Kolassa et al.
(2008)). Practitioners may directly adjust re-order and Order-Up-To (OUT)
levels and/or order quantities (without this implying that forecasts are not also
subject to such adjustments) for the purpose of achieving better trade-offs be-
tween achieved service levels and inventory costs.
Despite the fact that replenishment decisions may often be subject to judgmen-
tal intervention, the effect of judgmentally adjusting replenishment quantities
has not attracted much attention in the academic literature, either in modelling
or in empirical terms. Concerning the latter, we are aware of only one study that
attempts to throw light on this area (Syntetos et al. (2016b)). The researchers
considered the effects of superimposing judgement into statistically derived OUT
levels and evaluated the implications of doing so through an empirical dataset
from the electronics industry. Concerning the former, the only attempt we
are aware of to model such a situation relied upon a System Dynamics (SD)
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methodology (Syntetos et al. (2011)). The researchers considered, by means of
SD simulation, the joint effects of adjusting forecasts and inventory replenish-
ment decisions. They acknowledged the fact that analytical representation of the
problem in hand, i.e. the joint consideration of judgmental adjustments at both
the forecasting and inventory control process, is virtually impossible. Although
this is true, analytical modelling of the effects of judgement replenishment deci-
sions is feasible and very much needed also for the purpose of deriving insights
into relevant situations. Conducting such modelling is our main objective.
This paper contributes to closing the research gap identified above and develops
a single selling season model that provides insights into the practice of judgmen-
tally adjusting order quantities. The scenario considered here can be described
as follows. First, a forecast is produced based on past sales data and an ini-
tial order quantity is specified. Subsequently, a signal is observed that contains
some important information not reflected in the historical sales data. Contrary
to other modelling attempts presented in the literature (e.g. single season mod-
els with information updating), the signal may or may not be correct. Finally,
the order quantity is adjusted based on the observed signal, it is released and
the order is received prior to the beginning of the season. Due to long lead
times, no further opportunities for ordering are available. The development of
our model (and the specification of optimality conditions for the order quantity
(Q) and the adjustment (A)) is followed by a numerical analysis that allows us
to obtain some key insights into the process of adjusting the order quantity and
an appreciation of how learning to efficiently utilize the signal can be fostered.
An Excel file has been made available as an electronic companion to enable
interested readers to experiment with the learning processes discussed in this
paper. Instructions on how to use the Excel file are provided in an on-line sup-
plement. Such material would enable other researchers to reproduce our results
(Boylan (2016)) and ‘play’ with different control parameter combinations, but
also extend our results should they wish to take this research further.
The remainder of the paper is structured as follows. The next section presents
the research background of this work. We structure the section around two main
issues: i) modelling research on (forecasting) judgmental adjustments and ii)
research on single selling season models. The inventory model developed for our
research purposes, along with the notation and assumptions used, is presented in
Section 3. This is followed by a detailed numerical analysis in Section 4. Section
5 discusses some alternative techniques for learning to efficiently utilize the
observed signal. Finally, the conclusions of our work along with its implications
for Operational Research theory and practice and some natural avenues for
further research are presented in Section 6.

2. RESEARCH BACKGROUND

This section discusses the thematic and methodological background of our work.
We first focus on studies that relate to the practice of judgmentally adjusting
sales forecasts and make the case for the extension of the current state of knowl-
edge into the area of inventory control. We then move to the methodological
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motivation behind our research by discussing the literature on single selling sea-
son modelling exercises that consider information updating and/or behavioral
aspects.

2.1. Modelling of judgement in an inventory forecasting context

This section focuses on modelling attempts in the area of judgmentally adjusting
statistical forecasts. As discussed in the previous section, there is a plethora of
empirical studies in this area and we refer interested readers to Syntetos et al.
(2016a) for a review of recent developments. Here we focus on the few studies
that have attempted to model such practices statistically.
Franses & Legerstee (2009) examined whether we can predict expert adjust-
ments using the forecasters’ own past interventions and past model-based fore-
cast errors at various lags. They did so by means of constructing an auxiliary
regression model based on which they calculated the impact of one’s own past
adjustments (persistence) and their relevant size, taking into account the effects
of past variance. They found that adjustments occurred a staggering 90% of
the time, while such adjustments were more often than not, upward. Interest-
ingly, they noted that the percentage size of expert adjustments is predictable
for about 44% of its variation, and even the direction of those adjustments is
predictable to some extent. The size of expert adjustments depends strongly on
past adjustments, about three times as much as it depends on past model-based
forecast errors.
Franses & Legerstee (2010) expressed model-based SKU-level forecasts as a lin-
ear function of past sales. The expert-adjusted forecasts were also assumed to
be a linear function of past sales leading essentially to the forecasting scheme
of the experts nesting the forecasting scheme of the model. They constructed
a test regression to assess if the expert forecasts differ from the model fore-
cast, and followed Clark & McCracken (2001)’s recommendation in conducting
an ENC-NEW test to assess whether the Root Mean Squared Prediction Error
(RMSPE) of the expert is significantly lower than that of the model. They
concluded that more often than not experts’ forecasts differ significantly from
model forecasts. They also found that when the expert yields a significant pos-
itive contribution to forecast quality, the final forecast’s improvement in terms
of RMSPE is about equally large, as is the deterioration in case the expert does
not significantly outperform the model. So, in general, expert forecasts are not
necessarily better than the model forecasts.
In another paper, Franses & Legerstee (2011a) examined linear combinations of
expert and model based forecasts, with the aim of improving the final forecast
(judgmentally adjusted one). For this reason, they calculated the RMSPE of
a cohort of different combinations of the forecasts. To gauge how the optimal
weights can be explained by experts’ characteristics and their behaviour (age,
position, number of products, etc.) they created a weighted summation of such
variables and estimated the weights through OLS. They concluded that the
combination leads to improvements in 90% of the cases, with the unconditional
weights being close to 50-50%, albeit with strong variation among the experts.
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The same authors then moved to investigate whether the forecasting horizon
affects the accuracy of the experts’ adjustments (Franses & Legerstee (2011b)).
They followed a similar methodology to that employed by Franses & Legerstee
(2010), by calculating ENC-NEW values for the different horizons. They con-
cluded that while all horizons experience forecasting interventions, the horizons
that are most relevant to the expert involved in the process are those that show
the greater overweighting of the expert adjustment. At the same time, experts
tend to perform better for distant horizons rather than shorter ones.
Franses et al. (2011) proposed a method to estimate the key parameters of
the linex and the lin-lin loss functions. They deduced that the experts use an
asymmetric loss function, most likely the asymmetric absolute loss function,
with forecasts that are too low having a weight (in the loss function) on average
40% higher than forecasts that are too high.
Note that the modelling attempts selectively discussed above are statistical
rather than mathematical in nature; that is, there is a reliance upon regres-
sion type models to identify the effect of various parameters. No analytical
modelling has been conducted in the area of adjustments of forecasts and this
remains an important avenue for further research. Moreover, and as discussed
in the previous section, there has been only one modelling attempt in the area
of adjusting order replenishment decisions (Syntetos et al. (2011)). The empha-
sis though has been on the interactions between forecasting and stock control
(rather than only the latter which constitutes the focus of our research) by
means of using SD, rather than analytical modelling.

2.2. Single selling season modelling

A second stream of research that is relevant to this paper studies information
updating and/or behavioral aspects in the newsvendor model. Concerning the
first, most works assume that the newsvendor has two ordering opportunities
for a single selling season, and that in-between the two ordering opportunities,
the newsvendor can collect sales data and use it for updating the demand distri-
bution. Two ordering opportunities for products with a short selling season are
very common in the fashion industry, where so-called Quick Response Systems
give fashion companies the possibility to order products again during the selling
season in case the actual customer demand exceeds the expected demand.
An early work in this area is the one by Bradford & Sugrue (1990), who assumed
that the selling season is divided into two equal time-periods, and that replenish-
ments are allowed at the beginning of both periods. The proposed model utilizes
a Bayesian forecasting procedure that uses demand information gathered in the
first period to update the forecast for the second period. The forecast is then
incorporated into the model to derive optimal stocking policies that maximize
the expected profit over the season. Fisher & Raman (1997) studied a similar
problem and took account of two constraints. First, they assumed that the ca-
pacity of the supplier at the second order opportunity is limited, which means
that in many cases a significant share of the total order has to be placed in
the first period. Secondly, they assumed that in case the newsvendor places an
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order, a minimum lot size has to be ordered to ensure that the products can be
produced economically.
Gurnani & Tang (1999) assumed that the unit cost at the second order oppor-
tunity is uncertain and could be higher (or lower) than the unit cost at the first
order opportunity. To determine the profit-maximizing ordering strategies, the
retailer has to evaluate the trade-off between a more accurate forecast and a
potentially higher unit cost at the second order opportunity. Similar models
were developed by Choi et al. (2003) and Serel (2009).
Milner & Rosenblatt (2002) studied the case where the newsvendor is able to
adjust an order that was previously placed at the supplier. However, adjusting
an order is associated with a per-unit adjustment penalty. The authors further
assumed that the time of the adjustment of the order is flexible, and that the
decision maker can decide how much demand to observe before adjusting the
order.
Choi et al. (2004) assumed that the newsvendor has the option to use different
delivery modes for placing a single order. The unit delivery cost (and hence
the cost of the product) was formulated as a decreasing function of the lead-
time. If the newsvendor decides to order later, s/he can collect information on
the expected market demand and update the demand forecast using a Bayesian
approach. Simultaneously, delaying the order entails that the newsvendor has
to select a faster delivery mode, which will lead to higher purchase cost. The
authors derived an optimal order policy that balances the cost reduction from
reduced uncertainty and the cost increase from higher purchase cost. Li et al.
(2009) studied the case where the newsvendor can order twice before the end
of the selling season and where the timing of the second order is also a decision
variable, and Kim (2003) and Yan et al. (2003) considered the situation where
multiple orders are possible. A comparison of two different Bayesian updating
models (one with the revision of an unknown mean, and the other with the
revision of both an unknown mean and variance) may be found in the work of
Choi et al. (2006).

Closely related to our work is also a research stream that studies behav-
ioral aspects of newsvendor decisions, often employing laboratory experiments.
Although some research has started to be published, this is still an area that
requires further exploration according to Asgari et al. (2016).

Schweitzer & Cachon (2010), for example, investigated decision making in
a newsvendor setting involving a group of MBA students. The authors identi-
fied several decision biases that led to smaller or larger order quantities than
predicted by the newsvendor model and consequently less-than-maximum prof-
its. Examples include a demand chasing and a pull-to-center behavior. Bolton
et al. (2012) later showed that procurement professionals display the same or-
dering behavior, and that Schweitzer and Cachon’s results are not limited to
students. Several authors have since then tried to explain these decision biases
and to find effective remedies, for example Bostian et al. (2008) and Bolton &
Katok (2008), who explored the role of learning in the pull-to-center effect, or
Ren & Croson (2013), who found evidence that overprecision displayed by the
newsvendor may lead to wrong ordering decisions. In a comparison of decision
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making of American and Chinese decision makers, Feng et al. (2011) found that
cultural aspects may have an additional influence on the pull-to-center effect.
Other works in this research stream are those of Kocabykoglu et al. (2016),
Schiffels et al. (2014) and Moritz et al. (2013), among others.

3. THE MODEL

3.1. Experimental framework

The experimental framework employed in this paper is illustrated in Figure 1.
First, based on a forecast of the mean and the standard deviation of the de-
mand obtained from historical sales in conjunction with a hypothesized demand
distribution (e.g. Normal, for instance), the inventory manager ends up with an
estimated demand distribution of the random variable DF . At the same time
or earlier, the decision maker observes a signal modeled by the random vari-
able DS that conveys some information over and above what the historical data
may indicate about the future demand behaviour. That is, the signal conveys
some information that has not been included in the production of the statistical
forecast. Such a signal could be sales data of related products (cf. Choi et al.
(2004); Choi (2007)) or the feedback the decision maker receives from customers
who perhaps indicate that they are planning to buy more or less than in past
sales periods. Additionally, the signal may convey important information on the
competition, e.g. on a lowering of the price of a competitive product potentially
resulting in lower sales for the organization. Finally, the signal may also be not
case-specific (i.e., not related to the product/organization under concern), but
rather convey some more general information on the current state-of-the-world.
Regardless, the signal will trigger a reaction on the part of the decision maker
who will be expecting that demand in the selling period will be higher or lower
than that originally predicted.
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Figure 1: Experimental framework

In contrast with previous research in the area of information updating under a
newsvendor model, we realistically assume that the signal observed is not nec-
essarily correct. For example, high sales of a mobile phone of a certain brand
could indicate that customers will also be interested in a new tablet PC of the
same manufacturer. However, if customers were not satisfied with the mobile
phone, they might refrain from buying the tablet PC, thus making the signal
worthless. It is obvious that the decision maker has to consider the informa-
tiveness of the signal in making an adjustment, where such ‘informativeness’
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could be conveniently expressed as the probability of the signal being correct
(p). We also realistically assume that the signal informativeness modeled by
the probability p is not accurately known by the decision maker when setting
the order quantity. The quality of information could be improved over time if
decision-making is associated with a learning process that permits the evalua-
tion of the impact of the estimated informativeness and consequently improves
knowledge about p.
By considering the estimated demand, the signal and its estimated probabil-
ity, the decision maker uses a ‘judgment-based inventory policy’ that permits
deriving an optimal ordering strategy taking into account the signal and its
informativeness. The inventory policy may also facilitate learning to efficiently
utilize the signal. Subsequently, demand is realized and the selling season starts.
After the start of the selling season, no additional orders may be placed at the
supplier due to the rather long lead-time associated with the product. Scenarios
such as the one described here are often observed in practice.

3.2. Notation and assumptions

For the remainder of the paper the following notation is used.

• p: probability that the signal is correct

• Dk : random variable describing the demand k (k element of F,C,W, p)
and the Signal (k = S) :

– k = F , refers to an estimated demand distribution based on the re-
sults of a Forecasting procedure, for both the mean and standard
deviation of demand, in conjunction with a hypothesized theoretical
distribution (which we reasonably assume to be Normal - although
the results can be applied to other distributions) - hereafter ”esti-
mated demand distribution”, or simply ”estimated demand” when
referring to the relevant variable.

– k = S, refers to an estimated Signal distribution based on a judg-
mental estimate of the mean, which may be positive or negative and
standard deviation of the signal, in conjunction with a hypothesized
theoretical distribution (which we assume to be Normal - although
the results can be applied to other distributions) - hereafter ”esti-
mated signal distribution”, or simply ”signal” when referring to the
relevant variable.

– k = C if the signal is Correct, i.e. DC = DF +DS

– k = W if the signal is Wrong i.e. DW = DF

– k = p if a mixture of DC and DW is considered: Dk = pDC +
(1− p)DW

• µk : the mean of Dk

• σk: the standard deviation of Dk
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• Fk(.): distribution function of Dk

• fk (.): probability density function of Dk

• Q0: order quantity if the signal is assumed to be 100% wrong, i.e., the
order quantity is calculated without taking the signal into account

• Q1: order quantity if the signal is assumed to be 100% correct

• Qp = Q0 +A: order quantity that is calculated based on the forecast and
the signal (that is assumed to be correct with probability p) where A is
the adjustment of the order quantity

• C: cost per unit for the newsvendor, i.e. price charged by the supplier

• M : merchant price per unit charged by the newsvendor

• S: shortage penalty per unit short

• V : salvage value per unit

• h=C− V: the unit overage penalty

• u = M− C + S: the unit underage penalty.

Moreover, we make the following assumptions:

1. We consider a product with long lead times and a short selling season,
which does not permit re-ordering. Products that cannot be sold during
the season have to be sold at a salvage price V, whereas shortages lead to
penalty costs of S per unit short.

2. The adjustment (A) made based on the signal can be either positive or
negative; however, it may not be smaller than the negative value of Q0

(i.e., the final order quantity Q0 + A has to be non-negative). Thus,
A ≥ −Q0.

3. We assume that the signal is correct with probability p and incorrect
with probability (1 – p). The Bernoulli representation of the correctness
of the signal may be restrictive when such information is only partially
correct (incorrect). Such a representation of the problem would require
a contextual qualification of the signal. In this paper, we wish to derive
some initial insights on the practice of adjusting order quantities, and as
such, we leave this issue for further research; please refer also Section 6.

3.3. Model development

To deal with the signal and its probability, the proposed judgment-based inven-
tory policy illustrated in Figure 1 can take two distinct functional forms (see
Figure 2): 1) A process according to which the signal is used to adjust the ini-
tially calculated order quantity; or 2) A process that relies on an update of the
estimated demand distribution (that takes the signal into account) followed by a
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classical newsvendor-type optimization. The former corresponds to a situation
where in light of new information, the originally calculated classical newsvendor
order quantity is adjusted. The latter reflects claims originated in the forecast-
ing literature (Goodwin (2002)) that in light of new information perhaps, it
may be best to produce an entirely new order quantity based on an updated
estimated demand distribution without anchoring on the originally calculated
one1.

Judgement based 

inventory policy

Functional Form 1

Adjustment of the 

estimated demand

distribution to take into 

account the signal and 

its probability

Use of the classical newsvendor problem with 

the adjusted estimated  demand distribution

Modeling Approach 1: Optimize directly the 

adjusted order quantity

Modeling Approach 2 (in Supplement): 

optimize the adjustment to be superimposed 

to the initially calculated order quantity

Design of a new 

inventory policy taking 

into account the signal 

and its probability 

Functional Form 2

Figure 2: Modelling of the signal implications

For the first functional form, we propose two approaches to model and opti-
mize the modified newsvendor problem.

• The first approach models and optimizes the adjusted order quantity Qp

taking into account the signal and its informativeness. We rewrite the
classical newsvendor as a weighted double newsvendor problem where the
expected profit function is expressed as the sum of two newsvendor-type
expected profits, weighted with probability p. This approach allows us to
derive a new adjusted order quantity (different from the classical newsven-
dor one).

• The second approach models and optimizes the adjustment, A, to be su-
perimposed on the classical order quantity, Q0, by integrating the signal
distribution and the probability p associated with that signal. Hence, the
classical newsvendor problem is rewritten to introduce a new decision vari-
able, A, representing the adjustment of the order quantity as a reaction
to the signal.

The second functional form relies upon a classical newsvendor formulation
where the estimated demand distribution is updated and written as a distribu-
tion mixture of the estimated demand and the signal distributions. In contrast
with the first functional form, the probability p is included in the estimated
demand distribution.
Although the two functional forms are different from a modelling and mathe-
matical development point of view, we show that they are equivalent in terms

1The actual argument offered in the forecasting literature is that in the light of some new
information (e.g. under a disruption to the demand pattern) it may be best to replace the
statistical forecast with a purely judgmental one rather than adjusting it judgmentally.
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of providing the same optimal ordering (and adjustment) decisions. As we will
show in Section 4, such an equivalence permits the design of two complementary
learning processes about the key parameter p, which is not known exactly by
the inventory manager when deciding on the ordering and adjustment policy.
The first and second functional forms are now discussed in detail in sections
3.3.1 and 3.3.2, respectively.

3.3.1. A judgment-based newsvendor model

Practical parametric approaches to inventory management rely upon an explicit
demand distribution assumption and the employment of a forecasting method
for estimating the moments of such a distribution (typically mean and variance).
The decision parameters in the inventory model are then based on the estimated
demand distribution, obtained from the results of the forecasting procedure.
Here we assume that the demand distributional function (say Normal) remains
unchanged over the planning horizon and is known (or reasonably decided upon
at the beginning of the planning horizon either based on past data or the type
of product we deal with), but both its moments (mean and standard deviation,
for a 2-paramter distribution such as the Normal) are estimated (based on past
data). Thus, the decision maker receives an estimated demand distribution of
DF , which consists of the type of distribution (e.g. Normal) and a forecast of
the first two moments. Based on this information, the decision maker calculates
an initial order quantity Q0 using a classical newsvendor approach. The profit
of the newsvendor associated with this decision is as follows:

πF=

{
(M−C)Q0−S (x−Q0) if x ≥ Q0

Mx+V (Q0−x)−CQ0 if x<Q0
(1)

where x is the realized demand.
After observing a signal, which is modelled with the random variable DS (of
the same type, e.g. Normal) with a mean µS and a standard deviation σS ,
the decision maker may adjust the order quantity. As discussed above, two
approaches could be applied to rewrite the classical newsvendor problem in
order to take into account the signal and its informativeness measured by the
probability p:

1. The first modelling approach extends the profit function provided in Eq.
(1) to optimize a new order quantity Qp which takes into account the fact
that the signal could be correct with a probability p and wrong with a
probability 1− p.

2. The second modelling approach extends Eq. (1) by adding a profit com-
ponent enabled by an adjustment quantity A. Hence, this approach uses
the optimal order quantity solving Eq. (1), i.e. the classical newsvendor
solution Q0, and derives an adjustment quantity A which is optimized.

Although these extensions to Eq. (1) are clearly different, they are equivalent in
terms of the resulting order quantity since Qp could be written as Q0+A. Here,
we discuss the first modelling approach in detail and we present the second one
in Part A of the on-line supplement.
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In the presence of a signal with a level of informativeness p, the expected profit
realized by the newsvendor is equal to the sum of the classical newsvendor
profit subject to demand DC if the signal is correct, and another newsvendor
profit subject to demand DW if the signal is wrong. The former (or latter)
expected profit is conditional on the fact that the signal is correct (or wrong)
and, consequently, is obtained with a probability p (or 1−p). Thus, the expected
profit function under judgment is written as:

πp (Qp) = pπC (Qp) + (1− p)πW (Qp) (2)

where the newsvendor-type expected profit functions for i = C,W are as follows:

πi (Qp) = (M − C + S)µi − (M − C + S)

∫ Qp

0

(x−Qp) fi (x) dx

− (C − V )

∫ +∞

Qp

(Qp − x) fi (x) dx (3)

It is straightforward to observe that the second derivative of the expected
profit function is the sum of two newsvendor-type second derivative functions
and by using the fact that pfC (x) + (1− p) fW (x) is positive, it is a straight-
forward exercise to show that the expected profit function is concave and conse-
quently the optimal order quantity can be derived from the first-order derivative
condition. The optimal order quantity (Q∗

p) for the case where the signal and
its probability are taken into consideration is given by:

pFC

(
Q∗

p

)
+ (1− p)FW

(
Q∗

p

)
=

M − C + S

M − V + S
(4)

We note that the result provided in Eq. (4) is valid for any assumption
regarding the distributions of the estimated demand and the signal since FW (.)
=FF (.) and FC(.) could be derived using the convolution of fF (.) and fS(.).

3.3.2. Estimated demand distribution updates

A second functional form to model the process of judgmental intervention is by
means of including the signal probability p not in the expected profit function as
written in Eq. (2), but rather in the estimated demand distribution the decision
maker faces. By doing so, the decision maker adjusts the estimated demand
distribution to include the signal and then applies the classical newsvendor
problem in conjunction with the adjusted demand estimate.
We assume that the adjusted demand random variable is DC with a probability
p and Dw with probability (1−p). Thus, we write the adjusted demand random
variable Dp as a mixture of the estimated demand and the signal:

Dp = pDC + (1− p)DW

= p(DF +DS) + (1− p)DF (5)
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Independent of the assumption regarding the estimated demand and the sig-
nal distributions, if the inventory manager is able to derive the density function
fp(.) associated with the mixture variable Dp, s/he could apply the classical
newsvendor solution subject to Dp. That is, by considering the variable Dp

with its distribution function Fp (.) and its density function fp (.), the decision
maker could solve the problem in hand by optimizing the expected profit of the
classical newsvendor subject to the demand Dp:

πp(Qp) = (M − C + S)µp − (M − C + S)

∫ Qp

0

(x−Qp) fp (x) dx

−(C − V )

∫ +∞

Qp

(Qp − x) fp (x) dx (6)

Thus:

Q∗

p = F−1
p

[
M − C + S

M − V + S

]
(7)

πp(Q
∗

p) = (M − V + S)

∫ Q∗

p

0

xfp (x) dx (8)

If DC and DW are, for instance, normally distributed, Dp is known as the
Gaussian Mixture Model (GMM), which is defined as a parametric probability
density function represented by a weighted sum of Gaussian component densi-
ties. Such a GMM is not very often used in inventory control, but is widely
used in signal treatment (speaker recognition systems), as well as in the fields of
economics and finance (Titterington et al. (1985); McLachlan & Peel (2009)).
Under the normality assumption, Dp is described by its distribution function
Fp (.) = pFC (.) + (1− p)FW (.) and its density function fp (.) = pfC (.) + (1−
p)fW (.).
It is important to note that the GMM modelling approach is mathematically,
and consequently numerically, equivalent to the modelling approach provided
in the previous section where the probability p was included in the expected
profit function. In fact, Eq. (2) becomes Eq. (6) by applying in the former the
expression of the GMM density fp (.) = pfC (.) + (1− p)fW (.).
As we will show in the simulation study, – despite being mathematically equiv-
alent – the two approaches permit the development of two different and com-
plementary learning processes about the actual value of the parameter p, which
might not be known by the decision maker. In fact, p measures the probability
that the signal information is correct. In contrast to the estimated demand
which is stochastically known (by its estimated mean and standard deviation),
the signal comes from a non-official source: its probability p is unknown and
its realization will be embedded, if it occurs, in the demand recorded by the
newsvendor. Over subsequent periods, the decision maker will improve his/her
knowledge about the estimation, denoted hereafter p̂, of the probability p.
By applying a judgment-based inventory policy based on the estimate p̂, the
newsvendor orders:

Q∗

p̂ = F−1
p̂

[
M − C + S

M − V + S

]
(9)
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The actual expected profit is, however, a function of the actual value of p, and
it is given by

πp̂ = πp(Q
∗

p̂) (10)

In the extreme cases the decision maker could either totally ignore the signal
by setting p̂ = 0, or s/he could totally trust it by setting p̂ = 1. By 100%
ignoring (100% trusting) the signal, the decision maker orders Q∗

0 (Q∗

1), which
corresponds to the classical newsvendor solution associated with the demand
random variable DW (DC), and the actual expected profit is given by π0 =
πp(Q

∗

0) (π1 = πp(Q
∗

1)). All the following results will relate to the adjustment
case with an estimate p̂ of the probability p and the extreme cases: p̂ = 0 when
the signal is ignored and p̂ = 1 when it is 100% trusted.
As previously discussed, the analytical results provided in this section are inde-
pendent of the assumption regarding the estimated demand and signal distribu-
tions. In the following numerical analysis, we assume without loss of generality
that the estimated demand and signal are normally distributed.

4. NUMERICAL ANALYSIS

The aim of this section is threefold:

1. To illustrate the implications of the judgement-based policy on inventory
performance. In particular, we compare the adjustment case with the
extreme cases where the signal is 100% ignored or 100% trusted.

2. To provide insights on the impact of the different input parameters on the
judgement-based inventory policy and the associated benefits.

3. To derive insights on the inaccurate estimation of the signal probability p.

More importantly, the study of these three issues will help us appreciate some
aspects of learning which can be used by the decision maker when estimating
the unknown probability p.
For this purpose, we assume that the decision maker faces a normally distributed
estimated demand with mean µF = 100 and standard deviation σF = 20. The
signal is also normally distributed and we consider three possibilities for the
signal mean, µS = {−30, 0, 60}, in conjunction with three possible values of
σS = {10, 20, 50}. Regarding the cost, we consider two families of products: i)
high margin products where the unit costs are set such that u = 10 and h = 5,
and ii) low margin products such that u = 0.5 and h = 1. Notice that other
settings of the parameters inputs were tested but lead to similar results to those
discussed below. The choice of the above parameters is motivated by the fact
that they allow for the collective illustration of various types of behavior.
It is important to note that the newsvendor derives the order quantity under
the judgement-based policy, Q∗

p, by using the GMM demand distribution whose
density function depends on the probability p.
Depending on p as well as the given moments of the estimated demand and
signal distributions, the resulting demand mixture shape changes. For some
particular cases (such as the one shown on the left-hand side pane of Figure
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3), the two demand densities (fC(x) and fW (x)) overlap and consequently the
newsvendor could not easily distinguish between a demand realization resulting
from the correct signal or the wrong one. In such cases, the learning process
about the probability p is not straightforward, as we will show in the simulation
study. In contrast, in cases such as the one shown on the right hand side
pane of Figure 3, the density functions do not overlap, making it easier to
distinguish between alternative demand realizations. Notice that the case of
demand multi-modality (illustrated on the right hand side pane of Figure 3)
has been previously observed and commented upon in the academic literature,
albeit in a different experiment setting than ours. Providing more detail, the
investigation of Hanasusanto et al. (2015) motivates the possible multimodality
assumption of a newsvendor demand distribution from four practical cases: i)
the launch of new products; ii) the existence of large customers among the
newsvendor customers; iii) the emergence of a new market entrant and iv) the
case of different popularity states for some apparel products.

k=W k=C

k=p

x

f

�

x

(a) fk (x) {k = C,W, p} ; p = 0.5, µS =
0, σS = 30

k=W

k=p

k=C

x

f

�

x

(b) fk (x) {k = C,W, p} ; p = 0.5, µS =
60, σS = 30

Figure 3: Mixture demand shapes

When relying upon the observed demand realization to learn about the probabil-
ity p, the newsvendor has to qualify the degree of similarity between the correct
(estimated demand distribution + signal distribution) and wrong (i.e. estimated
demand distribution only) distributions. To measure this similarity and the de-
gree of overlap between the two distributions, we could use the squared Hellinger
parameter, which, if both distributions are normally distributed is expressed as
follows:

H2 = 1−

√
2σCσW

σ2
C + σ2

W

e
−

1
4

(µC−µW )2

σ2
C

+σ2
W (11)

The optimal order quantity under the judgment-based policy is a function of the
probability p, and takes values in-between those corresponding to the extreme
cases of the order quantities calculated when the signal is either 100% ignored
or 100% trusted (cf. Figures 4a and 4b, respectively). Adjusting with the actual
value of p (if it is accurately known) permits the decision maker to improve the
expected profit compared to the ignore or trust policies (cf. Figures 4c and
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Figure 4: Optimal order quantity (and associated profit) as a function of p

4d). The latter policies are suboptimal if the value of p is known. Note that
depending on the input parameters, particularly the moments of the estimated
demand distribution, the order quantity under the ignore policy could be higher
or lower than that related to the trust one, and the order quantity under ad-
justment could consequently be decreasing or increasing in p. It is also worth
noting that there exists a threshold value of p below which it is better for the
decision maker to ignore the signal, while above it trusting the signal is the best
alternative if the adjustment is not applied. Such a threshold, denoted hereafter
as ptrust−ignore, could be calculated by the decision maker and would be useful
in the learning process about the unknown probability p. ptrust−ignore solves:

πptrust−ignore
(Q∗

0) = πptrust−ignore
(Q∗

1) (12)

Both Eqs. (2) and (6) permit calculating ptrust−ignore: the latter calculates it
numerically, whereas the former allows the derivation of an analytical expression:

ptrust−ignore =
πW (Q∗

1)− πW (Q∗

0)

(πW (Q∗

1)− πW (Q∗

0))− (πC (Q∗

1)− πC (Q∗

0))
(13)

The existence and the uniqueness of the threshold ptrust−ignore can be proven
by observing that the functions πp (Q

∗

0) and πp (Q
∗

1) are linear in p as stated
in Eq. (2) and illustrated in Figs. 4(b) and 4(d). By contrasting the starting
and the ending points of these two linear functions, we can prove the existence
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and the uniqueness of the threshold ptrust−ignore. As shown in Figure 5, the
threshold ptrust−ignore depends on the signal moments and on the product cost
structure. For a high margin product, the threshold decreases with the signal
average: the space where trusting is better than ignoring the signal is more
important. In fact, for a high-margin product, the shortage penalty is more
important and the newsvendor tends to the less risky policy of ordering a higher
quantity when trusting the signal. For the case of a low-margin product, the
threshold encouraging trusting the signal increases with the signal average, since
the overstock risk is more penalizing.
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���������	�
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Figure 5: ptrust−ignore as a function of signal parameters and unit costs

Over successive periods, the decision maker could measure and update the fre-
quency of periods when trusting the signal provides a higher profit than ignor-
ing it: freq(trust ≥ ignore), as well as the opposing tendency: freq(ignore ≥
trust). S/he may do so by contrasting the observed demand at the end of the
period with Q∗

0 and Q∗

1 and deducing if trusting is better or not than ignoring
the signal.
If freq (trust ≥ ignore) ≥ freq(ignore ≥ trust) (or the difference between
the two is higher than a determined value), then the actual p is higher than
ptrust−ignore; otherwise, it is lower than this threshold. We note that the rule
under concern helps position the actual p on the interval [0,1] and thus avoiding
ending up with a situation where for instance the signal is ignored when the
probability p could be shown, thanks to this rule, to belong to the interval
[ptrust−ignore,1].
To illustrate the simplicity and the benefit of such a basic rule, let us consider a
numerical example (µF = 100, σF = 20, µS = −30, σS = 20) for a high margin
product (u = 10 and h = 5). Based on these control parameter values the
order quantities under the ignore and trust policies are Q∗

0 = 108 and Q∗

1 = 82,
respectively. By applying Eq. (13) with this numerical setting, ptrust−ignore =
0.64. Let us assume an actual value of p = 0.8 and generate 10 random demand
realizations based on this signal informativeness: demand={91, 66, 94, 75, 77,
68, 96, 32, 26,100}. By contrasting these demand realizations with the values of
Q∗

0 and Q∗

1, the inventory manager could verify that trusting the signal (using
Q∗

1 as an order quantity) brings a higher profit than ignoring it (using Q∗

0 as an
order quantity) in 6 realizations over 10. Consequently, the actual value of p is
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most likely to belong to the interval [0.64,1].
In the case where the decision maker estimates the probability p inaccurately,
we show the existence of a second threshold denoted by p̂adj above/below which
the adjustment policy – even with an inaccurate estimate – allows increasing
the expected profit compared with both the 100% trust and ignore policies.
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(b) Inaccurate estimate of p = 0.25

Figure 6: The impact of inaccurate estimation of the probability p

For µF = 100, σF = 20, µS = 60, σS = 20, u = 10 and h = 5, let us
consider the case where the actual p is set equal to 0.8 (0.25) as illustrated in
Figure 6a (6b). The decision maker is able to calculate ptrust−ignore, and based
on the comparison freq (trust ≥ ignore) vs. freq(ignore ≥ trust), s/he could
establish that p should be in the interval [ptrust−ignore,1] ([0, ptrust−ignore]).
Within such an interval, if the newsvendor uses a value of p̂ higher (lower) than
p̂adj , the adjustment policy offers a positive benefit compared with the trust
(ignore) policy even if the estimate is not accurate. The reader is referred to
Part C of the on-line supplement for a further illustrative example on the impact
of adjustment on economic performance.
p̂adj , which solves πp(Q

∗

p̂) = πp(Q
∗

1) if freq (trust ≥ ignore) ≥ freq(ignore ≥
trust) and πp(Q

∗

p̂) = πp (Q
∗

0) in the opposite case, cannot be calculated by the
decision maker since pmust be known to derive the solution. In the next section,
in order to assess the quality of the learning process from which p̂ is obtained
we will contrast the estimate p̂ with the value p̂adj .

5. IMPLEMENTATION AND FOSTERING LEARNING

In this section, we consider a multi-period setting of the problem composed of
N newsvendor problems where the decision maker tries to dynamically learn
and apply the judgement-based inventory policy to take into consideration the
signal and its probability. This scenario could occur in the consumer electron-
ics industry or the publishing industry, for example, where companies face a
new newsvendor problem whenever a new version of an existing product (say
newspaper, new issue of a magazine, etc.) is brought into the market, which
takes place during a short selling period (e.g. daily, weekly) basis. So essen-
tially we consider a newsvendor framework with short selling periods (to allow
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for an update of the learning process at the end of each selling period), with a
long lead-time (that justifies the unique replenishment opportunity) where the
unsold items cannot be transferred between successive periods.
For the purpose of accurately estimating p, we propose and compare three tech-
niques:

1. An estimate based on the mixture demand observation: in each period t,
the decision maker observes the demand realized at the end of the period
and dynamically derives the p̂t that provides the best “fit” between the
set of demands observed from period 1 to t and the mixture demand
Dp = pDC + (1 − p)DW . Such a learning process results in an estimate
p̂demand
t , which is a pure statistical estimate obtained independently of

the inventory costs. It is important to note that the estimate obtained in
period t is independent of the ones calculated from period 1 to t− 1 since
it only relies on the observed demand realizations which are independent
of the learning process.

2. An estimate based on the profit observation: as shown in the first func-
tional form to model judgment (Section 3.3.1), the expected profit under
the judgment-based policy is a mixture of the profits obtained under 100%
trusting and 100% ignoring the signal: πp (Qp)=pπC (Qp)+ (1−p)πW (Qp).
For each period t, the decision maker calculates the realized profit and
contrasts it with what that profit would be if s/he 100% ignored or 100%

trusted the signal. Such a learning process results in an estimate of p̂profitt ,
which is (in contrast to p̂demand

t ) a function of the inventory costs as well

as the estimates of p realized before period t (p̂profitk for k = 1...t− 1).

3. An estimate based on any combination of p̂demand
t and p̂profitt . As men-

tioned earlier, the outcome of the first two learning techniques relies on
different types of observations. The rationale behind the proposal of this
technique is to combine the results of the two other techniques discussed
above. The weights assigned to each technique may of course vary but we
will experiment with the simpler option of a straight average combination,
by using the estimate p̂averaget = (p̂

demand

t + p̂profitt )/2.

p̂demand
t and p̂profitt are motivated by the two functional forms presented in

Section 3 (Figure 2): p̂demand
t stems from the modelling approach assuming that

the demand distribution is adjusted before applying the classical newsvendor
problem, whereas p̂profitt stems from the modelling approach where the expected
profit is written as the sum of two weighted newsvendor profits.
Although the two functional forms are equivalent, from an optimality point of
view, the associated p̂demand

t and p̂profitt provide different and complementary
learning techniques which will permit better and faster convergence to the actual
value of the probability p. The rationale behind combining both as proposed in
p̂averaget is to mix the two functional forms in the learning process.
The calculation of p̂demand

t is derived by using Maximum Likelihood Estimation,
which is adapted in our case to permit such a calculation by assuming that the
moments of the estimated demand and the signal moments are known (cf. Part
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B of the on-line supplement). For a given data set D={dn} n= 1...t associated
with the observed demand realizations up to period t, p̂demand

t verifies:

t∑

n=1

fC (dn)−fW (dn)

p̂demand
t fC (dn)+

(
1−p̂demand

t

)
fW (dn)

= 0 (14)

We present the results of two simulation instances by using the numerical values
employed in Figure 6a (Figure 6b), i.e., µF = 100, σF = 20, µS = 60, σS =
20, p = 0.8 (p = 0.25, respectively) with the cost parameter values being
u = 10 and h = 5. According to the estimated demand and signal moments,
the Hellinger parameter is H = 0.37. The learning process about p depends
on the normally generated estimated demand and signal realizations; for each
of the simulated p values we present a good (Figures 7a and 8a) and, a not
particularly successful, learning process (Figures 7b and 8b).
As illustrated in Figures 7a and 7b (Figures 8a and 8b), the decision maker could
calculate ptrust−ignore = 0.5 and, starting from the first periods, be aware that
the actual value of p is in the interval [0.5,1] ([0,0.5]), respectively. At the end of
each period, after observing the demand realization and the associated realized
profit, the three estimates p̂demand

t , p̂profitt and p̂averaget could be updated. In
order to choose among the three estimates, the decision maker calculates the
posterior profit associated with each estimate and chooses the one providing the
highest profit. Such a posterior calculation permits the newsvendor to switch
between the three estimates (as illustrated, for instance, in period 4 in Figure
7a and in period 20 in Figure 7b).
It is important to note that for both studied values of p:

• The two learning techniques complement each other, which is accelerating
convergence to the actual p.

• By applying the judgement-based inventory policy, the newsvendor starts
improving the profit compared with the 100% trust (for p = 0.8) or 100%
ignore (for p = 0.25) policies from the first simulation periods, even if
the estimate is inaccurate. As illustrated, the value of p applied is higher
(lower) than p̂adj for p = 0.8 (p = 0.25 respectively) from the third period
onwards in the selling horizon.

For the remainder of this section, and in order to obtain better insights about the
learning process, we average the results of the previously described simulations
over 30 runs.
We propose measuring the learning process quality by two indicators:

• The relative estimate error measuring the difference between the estimate
and the actual value of p calculated as errk =

∣∣p̂kt − p
∣∣ /p, for k={demand,

profit, average,used);

• The value of the estimate p̂kt when contrasted with p̂adj . We denote this

indicator by poskt and set it equal to 1 if p̂kt generates an expected profit
higher than these obtained under 100% ignore and trust policies.
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period

(a) Simulation 1, p = 0.8

period

(b) Simulation 2, p = 0.8

Figure 7: Learning processes for p = 0.8

The superscript k = used describes the learning technique adopted by the
newsvendor since, as we mentioned previously, s/he could switch between the
three learning processes k = {demand, profit, average} by performing the
posteriori profit calculation.
Over a horizon composed of 50 periods, Figures 9a and 9b illustrate the quality
of the learning process as well as the value of the estimate when contrasted with
p̂adj . The value of p̂ deviates by a maximum of 10% from the actual p. Such
an estimation permits the newsvendor to increase his/her profit compared with
the extreme cases (signal ignored or trusted) in about 80% of the periods. To
measure the convergence speed of the estimation, we illustrate in Figures 10a
and 10b the error estimate value and the value of the estimate when contrasted
with p̂adj for 10-period blocks of the whole horizon.

As can be seen, starting from the 10th period, the learning technique enables
a good estimate of the parameter p with a relative error less than 5% and
more than 80% of the used estimates offer a certain benefit to the newsvendor
compared with the extreme cases where the signal is ignored or trusted.

5.1. The impact of the Hellinger parameter on the learning process

The speed of convergence of the learning process for the Gaussian-mixture-
model fitting is known to depend on the amount of overlap among the mixture
components, which is measured by the Hellinger parameter. Our learning pro-
posal stems from a standard likelihood maximization (p̂demand

t ) complemented

by the profit observation learning measure (p̂profitt ). It is worth noticing that
both estimates are technically easy to deploy in practice using an Excel work-
sheet that we provide as an on-line supplement for interested readers. Figure
11 illustrates the quality of the learning process for different values of the signal
average µS = {−20, 0, 20, 40, 60, 80, 100} leading to the Hellinger parameter
changing from 0 to 0.75.
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period

(a) Simulation 1, p = 0.25

period

(b) Simulation 2, p = 0.25

Figure 8: Learning processes for p = 0.25

error indicator

value

(a) Error indicator estimate

pos indicator

value

(b) Pos indicator of the estimate

Figure 9: The learning process quality: comparison of the techniques

For a signal average outside the interval [−20, 20], the estimation error, errused,
is less than 15% and the learning process permits the newsvendor to derive a
benefit (compared with the extreme cases) with a value of the indicator posused

higher than 65%. For high values of H, the error tends towards 0 and posused

to 1. We also notice that the posterior rule used to choose between the three
estimators ( p̂k, for k = {demand, profit, averge} ) is relatively efficient since
the one used by the decision maker p̂used tends to be closer to the estimator
minimizing the error value.

5.2. The learning process for a dynamically changing probability p

The signal source may change over periods and consequently the moments of the
signal distribution as well as the probability p should be expressed in dynamic
terms.
Figure 12 illustrates the quality of the learning process for three values of the
signal average µS = {−20, 0, 60} by assuming that the probability p in each
period is randomly chosen in the interval {[0.1, 0.3] , [0.3, 0.7] or [0.7, 0.9]}.
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error indicator

value

(a) Error indicator convergence each 10 pe-
riods block

pos indicator

value

(b) Pos indicator convergence each 10 peri-
ods block

Figure 10: The learning process quality: evolution over periods

(a) Impact on the error indicator (b) Impact on the pos indicator

Figure 11: The learning process quality: impact of the Hellinger parameter

All illustrated by the simulation, realized over 50 periods, except for the case of
a signal average equal to 0, the learning process is relatively good, with an error
indicator less than 20% and a certain adjustment benefit higher than 60% even
with inaccurate estimates. The scenario where µS = 0, which sets the Hellinger
parameter close to zero, is associated with a rather poor estimation of p: such a
scenario is associated with a signal resulting in a more variable demand for the
newsvendor.
In contrast to the last figure, if each period we fix the probability p and allow the
estimated demand and signal moments to be chosen randomly in an interval, we
observe that the proposed learning process is no longer efficient. Nevertheless,
the newsvendor is better off than 100% trusting or ignoring in 30% of the cases
on average, even when applying the inaccurate estimation of p. Additionally, the
proposed learning process assumes that the moments of the signal distribution
are known and the aim is to learn about its probability p. The signal distribution
parameters may be unknown in some cases, or the newsvendor may not be able
to quantify them. In such a case, a new judgement-based policy should be
designed, along with relevant leaning elements.
As previously discussed, an Excel file that contains details of the learning pro-
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(a) Error indicator for a dynamic p (b) Pos indicator for a dynamic p

Figure 12: The learning process quality: the case of a dynamic p

cesses, along with instructions on how to use it (please refer to the on-line
supplement, Part D) are introduced as supplementary material to this paper.
Any inquiries with regards to this material may be directed to the authors of
the paper.

6. CONCLUSION

We make a first attempt to model and analytically characterise the process and
implications of judgmentally intervening into the specification of replenishment
orders. We point out the scope for learning to efficiently utilise potentially
important information available to the decision maker and offer some simple,
spreadsheet implementable, rules to do so. We conduct our analysis under a
simple newsvendor setting and show the analytical equivalence of adjusting an
order quantity and deriving an entirely new one in light of the necessary update
of the estimated demand distribution. Such an equivalence demonstrates the
lack of sensitivity of the system to the way information is handled, as long as it
is captured in a structured manner. It also signifies that the decision maker may
select the procedure that s/he better understands or finds more intuitive. This
is distinctly different from what we know about the process of judgmentally
adjusting statistical sales forecasts, in which case (see also Section 2.1) the
results depend very much on the background of the decision makers and the
approach taken to ’explain’ the added value of adjustments. It does, however,
explain previous results obtained based on a System Dynamics approach that
show the inventory-forecasting system to be more sensitive to the forecasting
rather than the inventory optimisation part of the process (Syntetos et al., 2011).
Consequently, it points out the need for more analytical research in this area
to appreciate the scope for improving the performance of real world inventory
systems.
In addition to the ease of implementing the methods proposed here, it is also
important to note the minimal information that needs to be stored to enable
such an implementation: i) information about price and cost of the product;
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ii) prior demand data; iii) information on the signal we estimated in the past2.
Although we are not able to comment on profit increases resulting from the
implementation of those methods (as this would depend on many assumptions
on price and cost) we can point out the improvements in the calculation of the
order quantity (in terms of lower error) and the very promising results we have
obtained with regards to the percentage of instances where adjusting and using
our recommended procedure considerably improves matters.
Our analysis is admittedly constrained, in terms of generalizability, by the
newsvendor setting, especially so when it comes to the multi-period formula-
tion to assess learning processes and their effects in practice. It does open the
way though to further research that complements analytical modelling with em-
pirical investigations or empirical based analytical modelling. Further research
could also be concerned with the consideration of more general two-parameter
inventory systems that in addition to an order quantity look at safety stock cal-
culations. Our model does not apply to a situation where a product is consumed
continuously over many periods with multiple ordering opportunities. If back-
orders were allowed, then misinterpreting the signal and ordering an incorrect
quantity in one period would ultimately influence the inventory levels in the next
period, and this would have to be reflected in the model. Extending our model
to a newsvendor setting with multiple order opportunities (cf. also the works
discussed in Section 2.2) would, however, be possible. An interesting scenario
could be a situation where a demand signal is observed before the first ordering
opportunity, and where the reliability of the demand signal (true, wrong) ma-
terializes before the second order opportunity. The second order opportunity
would then enable the newsvendor to amend a possible misinterpretation of the

2Despite the relatively little information needed to apply our model, we do acknowledge
that implementation may often be challenged, by, e.g., the required data (such as information
on previously estimated signals) being readily available. To overcome such challenge, decision
makers would have to raise awareness on the considerable advantages that improved forecast-
ing and ordering policies may offer to the company and thus ensure that the required data
is routinely collected. In addition, the IT infrastructure that is needed to gather such data
would need to be established. A second challenge may arise from the use of ERP systems
or software packages the company may have acquired to support its forecasting and ordering
decisions. Using the proposed model would render necessary an integration of its implemen-
tation within such systems (or, less preferably, updating forecasts and/or order quantities
outside these systems). These challenges could again be overcome by highlighting the benefits
of improved forecasting and ordering policies, and by ensuring that the proposed model is
effectively integrated within existing software systems to avoid extra handling effort and un-
necessary disruptions. An important possibility to overcome implementation challenges also
arises from using our model for training and professional development purposes. That is, the
company could use the model to evaluate the adjustments of forecasters, and demonstrate to
them in which cases (and under what conditions, e.g., in terms of increasing/decreasing order
quantities) adjusting forecasts or order quantities improve the performance of the inventory
system. As such, the proposed model would then be used to train people to understand which
types of adjustments are beneficial to the company and thus should be pursued, and which
ones are not. It could similarly be used for introducing internal competition (and relevant
rewarding schemes) amongst colleagues to encourage improved forecasts (e.g., less bias) by
means of acknowledging best performance.
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signal before placing the first order.
The newsvendor setting can also be extended by considering more realistic rep-
resentations of the correctness of a signal or the decision making behavior of the
newsvendor and, in the spirit of inter-disciplinary research, be complemented
by primary qualitative (interview obtained) data on the way managers treat
and utilise external information. Regarding the representation of the correct-
ness of the signal, this work assumed that the signal is correct with probability
p and incorrect with probability (1 – p). The Bernoulli representation of the
correctness of the signal may be restrictive when such information is only par-
tially correct (incorrect). Such a representation of the problem would require
a contextual qualification of the signal. In addition, it is true that since the
signal stems from an informal source of information or is indeed related to per-
sonal interpretation, it is very difficult to quantify or represent it by means of a
stochastic distribution. Modelling the signal by a possibility distribution, or as
a fuzzy variable, and mixing it in the stochastic representation of the estimated
demand distribution derived from a forecasting process could be an interest-
ing avenue for further research. With respect to the decision making behavior
of the newsvendor, we note that taking account of risk aversion in our model
would be interesting. In contrast to existing research on risk averse newsven-
dors that investigates how the newsvendor should replenish its inventory in case
demand variations reduce the newsvendor’s utility, investigating risk aversion
in our problem setting would also pose the question of whether the newsvendor
should trust the (possibly incorrect) signal if an additional risk (of the signal
being incorrect) further reduces the newsvendor’s utility. Finally, and with re-
gards to some possible empirical follow-up research, it would be interesting to
investigate how decision makers weight demand signals as the one discussed in
this paper in making inventory replenishment decisions. While prior research
has shown that practitioners often display a ’pull-to-center’ effect in newsvendor
type scenarios (see Section 2.2), it would be interesting to analyze under which
conditions decision makers tend towards a ’pull-to-signal’ behavior. The above
discussed lines of research should be valuable towards extending the insights
obtained from this study.
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Part A: Joint ordering and adjustment optimization

If A is the adjustment of the order quantity, then the order that is placed at the
supplier after the adjustment has been made is Q0 + A. If the signal is assumed
to be correct, then the newsvendor takes his/her decision based on the random
variable DC , which is the sum of the random variable representing the estimated
demand and the random variable representing the signal (DC = DF + DS).
In this case, by adjusting the order quantity, the decision maker realizes an
additional profit equal to:

πC=





(M−C)A−S (x−Q0 −A) if x−Q0 ≥ A
M (x−Q0)+V (Q0 +A−x)−CA if 0 ≤ x−Q0<A

(V − C)A if x−Q0 < 0
(A1)

In contrast, if the signal is wrong, then the newsvendor realizes the additional
profit πW , which is πC subject to the random variable DW which is equal to the
random variable characterizing the estimate demand distribution (DW = DF ).
The total profit of the newsvendor can now be formulated as:

πadj = πF + pπC + (1 − p)πW (A2)
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The expected value of (A2) is calculated as

E (π) = (M + S − C)

(∫
∞

Q0

Q0f (x) dx+ p

∫
∞

Q0+A

AfC (x) dx+ (1− p)

∫
∞

Q0+A

AfW (x) dx

)

− S

(∫
∞

Q0

xfW (x) dx+ p

∫
∞

Q0+A

(x−Q0) fC (x) dx+ (1− p)

∫
∞

Q0+A

(x−Q0) fW (x) dx

)

+ (M − V )

(∫ Q0

xfW (x) dx+ p

∫ Q0+A

Q0

(x−Q0) fC (x) dx+ (1− p)

∫ Q0+A

Q0

(x−Q0) fW (x) dx

)

+ (V − C)

(∫ Q0

Q0fW (x) dx+ p

∫ Q0+A

0

AfC (x) dx+ (1− p)

∫ Q0+A

0

AfW (x) dx

)
(A3)

We can easily show that the profit function is concave and the optimal adjust-
ment quantity could be derived from the first derivative condition:

∂E (p)

∂A
= (C − V ) pFC (0) +M + S − C − (V − C) (1− p)FW (0)

− (M + S − V ) ((1− p)FW (Q+A) + pFC (Q+A)) = 0 (A4)

Part B: Likelihood function optimization

For a given data set D={dn} n= 1...t associated with the observed demand
realizations up to period t, the likelihood function of the GMM is given by:

P [D\p] =

t∏

n=1

[pfC (dn)+(1−p)fW (dn)] (B1)

The log likelihood function is derived as:

ln[P [D\p]] =

t∑

n=1

ln[pfC (dn) + (1− p) fW (dn)] (B2)

By applying the first derivative condition, the p̂demand
t estimator derived from

the maximisation of the log likelihood function should consequently verify:

t∑

n=1

fC (dn)−fW (dn)

p̂demand
t fC (dn)+

(
1−p̂demand

t

)
fW (dn)

= 0 (B3)

Without the need of an advanced calculation software, p̂demand
t could be found

by using the Solver add-in of Microsoft Excel.
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Part C: Impact of the adjustment on economic performance

As illustrated in Figures (6a) and (6b) of the paper, the profit difference be-
tween the 100% trust and the 100% ignore policy might be important. Such a
difference depends on the signal distribution moments, its probability of being
correct, its position compared to the estimated demand as well as the inventory
unit costs. For a given actual signal probability p estimated by p̂ by the decision
maker, we could measure the impact of the judgement-enabled inventory policy
by its relative benefit compared with the ignore and trust policies:

benefit0 (p, p̂) =
πp

(
Q∗

p̂

)
− πp (Q

∗

0)

πp (Q∗

0)
(C1)

benefit1 (p, p̂) =
πp

(
Q∗

p̂

)
− πp (Q

∗

1)

πp (Q∗

1)
(C2)

For perfect knowledge about p, i.e. p̂ = p, Figure C1 illustrates the relative
adjustment benefit compared with the trust and ignore policies.
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(a) The adjustment benefit, µS = −20
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(b) The adjustment benefit, µS = 60

Figure C1: The impact of the adjustment policy

When we estimate p, the adjustment benefit is lower since the decisions made by
the newsvendor are suboptimal. For instance, if µS = 60 and p = 0.8, Figure
C2 contrasts the benefit resulting from perfect information and an estimated
value of p in the interval [ptrust−ignore,1]:
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Figure C2: Perfect information versus estimation

It is worthwhile noting that adjusting is always beneficial compared with 100%
ignoring the signal. However, adjustment could be harmful compared to a 100%
trust if the estimated p is lower than p̂adj .

Part D: A note on the simulation spreadsheet

The Excel file simulation accompanying this paper is composed of six work-
sheets which are described in detail in this simulation user manual. The “De-
scription” worksheet introduces the simulation file and defines all columns used
during the simulation run. To run the simulation, the user first needs to com-
plete the “Simulation Inputs” worksheet with two types of data:

1. Data related to the simulation itself:

(a) The total number of periods to run;
(b) The average of the forecast demand (minimum and maximum values);
(c) The standard deviation of the forecast demand (minimum and max-

imum values);
(d) The average of the signal (minimum and maximum values);
(e) The standard deviation of the signal (minimum and maximum val-

ues);
(f) The actual value of the probability p (minimum and maximum val-

ues);
(g) The number of periods enabling the initialization of the learning pro-

cess: during these periods, a random value of p is used to derive the
order quantity, which allows the decision maker to collect initial ob-
servations;

(h) The unit cost values: purchase cost, selling price, salvage cost, short-
age cost and the associated underage and overage unit costs.

The main results provided in the paper (with the exception of those in
Section 5.2) are associated with a deterministic assumption with regard to
the forecast demand and signal moments as well as the probability p. By
allowing the reader to enter the minimum and maximum values of these
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parameters in the simulation file, we permit him/her to test the quality
of the learning process under a uniform distribution of these parameters
(presented in the paper in Section 5.2).

2. Data related to the link between the simulation file and a Mathematica
calculation server:

(a) If Mathematica is locally installed on the users machine, the Math-
ematica mode should be set to “Local” and the user needs to enter
the path of the “math.exe” file on his/her machine.

(b) If the user does not have Mathematica installed on his/her machine,
the Mathematica mode should be set to “Remote”. In such a case,
the user needs to enter the parameters of a remote server where
Mathematica is installed.

i. The IP address of the Mathematica server;
ii. The user name of the Mathematica server;
iii. The user password or the key file permitting to connect to the

Mathematica server;
iv. The path on the remote server where the calculation files are

transferred.

In the case where the user does not have either a local or a remote Math-
ematica server, he/she could contact the first author of the paper, who could
provide the parameters of his Mathematica server for the purpose of testing the
simulation experiment. We note that the calculation time for each period un-
der the “Local” Mathematica mode is almost instantaneous (around 1 second),
whereas it takes much more time to execute the simulation under the “Remote”
mode. In the latter case, each calculation query is firstly written in a file, then
transferred to the server, then executed remotely on the server with its results
written in a file, which is then downloaded to the local machine and finally incor-
porated in the Excel file. The upload and the download tasks increase the time
of calculation considerably. Besides, during one period calculations, some calcu-
lation queries cannot be launched before having the results of previous queries.
That is, the calculation queries are not launched in a batch, but they are per-
formed one by one which increases the number of upload and download tasks.
For this reason, and as noted above, the calculation time under the “Remote”
Mathematica mode is considerably higher than under the “Local” mode. Once
the Mathematica mode and its associated parameters have been entered, the
user needs to validate the link between the Excel file and the Mathematica cal-
culation server. When validated, the user can launch the simulation: one run or
multiple runs. The main simulation worksheet, named “Simulation Running”,
illustrates the evolution of the learning process in one simulation run. The user
can graphically follow the learning process in the worksheet “Simulation Chart”.
Figures 7 and 8 of the paper are derived from this latter worksheet. The results
of each run are summarized in the worksheet “Simulation Results”, and when
running multiple runs, the average of these runs are presented in the worksheet
“Simulation Runs Summary”. The “Simulation Running” worksheet illustrates
the learning process presented in the paper. All columns of this worksheets are
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defined in the “Description” worksheet. Particularly, the outcome of the learn-
ing process is presented in columns AI (the p resulting from the first learning
technique), AL (the p resulting from the second learning technique), and AQ
(the p resulting from the mix between the first and the second learning tech-
niques).

Technical Note:. Notice that the simulation file was developed and tested on a
64 bit machine running Microsoft Windows 10 and Microsoft Office 2016 both
of them under the 64 bit architecture. In the case of a remote Mathematica
link, the connection with the calculation server is established by using the ssh
protocol and its associated port (generally the port 22). The user needs to be
sure that his/her internet provider (particularly at his/her organisation) allows
the use of this port. Finally, in order to coordinate the decimal representation
between Mathematica and Microsoft Excel, it is important to configure the
decimal parameters under the Microsoft Windows configuration panel with a
point “.”. For some international versions of Windows, French for instance, this
parameter could be configured with a comma “,” which creates a communication
problem with Mathematica. The latter is configured to represent decimal values
by a point.
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