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Abstract 
 

 

The formation and structural properties of solid solutions containing 3-chloro-trans-cinnamic acid 

(3-ClCA) and 3-bromo-trans-cinnamic acid (3-BrCA) are explored across a range of 

compositions. Two distinct γ-type structures of 3-ClCA/3-BrCA solid solutions and two distinct 

β-type structures of 3-ClCA/3-BrCA solid solutions are reported and structurally characterized. 

One of the γ-type structures is isostructural with the known γ polymorphs of pure 3-ClCA and 

pure 3-BrCA, whereas the other γ-type structure has not been observed previously for either pure 

3-ClCA or pure 3-BrCA (representing a rare case in which the structure of the solid solution is not 

known for the pure phases of either of the constituent molecules). One of the β-type structures of 

the 3-ClCA/3-BrCA solid solutions is similar to the β polymorph of pure 3-ClCA, whereas the 

other β-type structure is similar to the β polymorph of pure 3-BrCA. The specific β-type structure 

formed is found to depend on the relative amounts of 3-BrCA and 3-ClCA in the solid solution. 

UV irradiation of the β-type 3-ClCA/3-BrCA solid solution with 1:1 composition yields three 

different photodimers, with substituents {Cl,Cl}, {Cl,Br} or {Br,Br} in the approximate ratio 

1:2:1 respectively, consistent with the occurrence of a topochemical reaction in a solid solution 

with a random distribution of 3-ClCA and 3-BrCA molecules. 
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Introduction 
 

 

Organic solid-state chemistry has significant (but under-exploited) potential applications as a 

method in organic synthesis, through the controlled aggregation of reactant molecules in the solid-

state by crystal engineering strategies, and then carrying out a solid-state chemical transformation to 

generate a targeted product. The main advantages of solid-state reactions over fluid state reactions 

emanate from the relatively more restricted reaction environment, which leads in many cases to high 

selectivity, novel products, stereochemically pure products and high efficiency. 

 

The outcome of many solid-state reactions can be predicted on the basis of the topochemical 

principle,
1–16

 according to which the reaction pathway (and hence the specific product obtained) 

is controlled by the spatial arrangement of molecules in the reactant crystal structure.
3
 Trans-

cinnamic acid and its derivatives played a historically significant role in rationalizing the 

relationships between the structure and properties of crystalline organic solids,
3,4

 particularly with 

regard to photochemical reactivity. On the basis of their behaviour in [2+2] photodimerization 

reactions,
3,17

 crystalline trans-cinnamic acids may be categorized into three classes, denoted α, β 

and γ. On UV irradiation, α-type crystals produce a centrosymmetric (α-truxillic acid) dimer, β-

type crystals produce a mirror-symmetric (β-truxinic acid) dimer, whereas no reaction occurs on 

UV irradiation of γ-type crystals. 

 

Clear correlations have been established between the crystal structures, determined from 

single-crystal X-ray diffraction (XRD), and the photoreactivity of these materials.
3,4,8

 Each of the 

α, β and γ types of crystal has a distinct mode of molecular packing. For photoreactive crystals 

(i.e., α-type and β-type), the distance between the centres of the C=C bonds of potentially reactive 

monomer molecules is less than ca. 4.2 Å, whereas the corresponding distance for the photostable 

γ-type crystals is greater than ca. 4.7 Å. The distinction between the crystal structures of the 

photoreactive α-type and β-type crystals is that photoreactive monomer molecules are related 

across a crystallographic inversion centre in the α-type structures (leading to a centrosymmetric 

dimer molecule) whereas photoreactive monomer molecules are related by translation in the β-

type structures (leading to a mirror-symmetric dimer molecule). 
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Thus, from knowledge of the topochemical principle, it is clear why specific stereoisomers of 
 

α-truxillic acids (from photodimerization of α-type trans-cinnamic acids) and β-truxinic acids 

(from photodimerization of β-type trans-cinnamic acids) are produced in these solid-state 

reactions. However, synthesis of unsymmetrical products, resulting from two different trans-

cinnamic acid derivatives undergoing photodimerization, is a greater challenge. Nevertheless, 

such molecules can be obtained by solid-state reactions through the application of crystal 

engineering principles, as exemplified by the synthesis of 3-(3′,5′-dinitrophenyl)-4-(2,5′-

dimethoxyphenyl)-cyclobutane-1,2-dicarboxylic acid from a stoichiometric co-crystal of the two 

reactant molecules prearranged through donor-acceptor interactions.
18,19

 An alternative approach 

to the solid-state synthesis of unsymmetric molecules is through the formation of solid solutions 

utilizing materials that are already known to crystallize with an appropriate crystal structure to 

give rise to a topochemical solid-state reaction.
20-24

 The use of a third component in the crystal to 

organize the reactants in a solid solution has also been elegantly demonstrated.
25 

 

In the present paper, we report the formation and structural characterization of solid 

solutions containing 3-chloro-trans-cinnamic acid (denoted 3-ClCA) and 3-bromo-trans-cinnamic 

acid (denoted 3-BrCA). We also investigate the photochemical behaviour of one of the solid 

solutions prepared in this work. The molecular structures of 3-ClCA and 3-BrCA are shown in 

Scheme 1. The preparation procedures that have been found to produce structurally distinct solid 

solutions of 3-ClCA and 3-BrCA are summarized in Table 1. 

 

For pure 3-ClCA, the crystal structures of a β-type polymorph
26

 and a γ-type polymorph
27

 have 

been reported, while for pure 3-BrCA, the crystal structures of a β-type polymorph
26

 and a γ-type 

polymorph
28

 have also been reported. The β polymorphs of pure 3-ClCA and pure 3-BrCA are 

structurally different, whereas the γ polymorphs of pure 3-ClCA and pure 3-BrCA are isostructural 

(see Table 2). Recognizing that the γ polymorphs of pure 3-ClCA and pure 3-BrCA are isostructural 

led us to anticipate that the formation of solid solutions of 3-ClCA and 3-BrCA may be possible. 
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Results and Discussion 
 
 

Structural Classification 
 

 

The solid solutions of 3-ClCA and 3-BrCA discussed in this paper are denoted 3-(Cl/Br)CA, 

and the composition of each solid solution is specified as the mole fraction of 3-ClCA (denoted 

xCl). Among the four different crystalline forms of 3-(Cl/Br)CA solid solutions found in this 

work, two forms have β-type structures and two forms have γ-type structures. 

 

The β polymorphs of pure 3-ClCA and pure 3-BrCA have different crystal structures (while 

both conforming to the β-type classification), which we denote as β
(Cl)

 and β
(Br)

 respectively. 

The two β-type forms of the 3-(Cl/Br)CA solid solutions reported below correspond to the β
(Cl)

 

and β
(Br)

 structure types (but with disorder of the Cl/Br substituents). 

 

In contrast, the γ polymorph of pure 3-ClCA and the γ polymorph of pure 3-BrCA are 

isostructural. One of the γ-type forms of the 3-(Cl/Br)CA solid solutions reported here corresponds to 

the structure of the γ polymorphs of pure 3-ClCA and pure 3-BrCA, and is denoted the γ form of the 

3-(Cl/Br)CA solid solutions. The other γ-type form of the 3-(Cl/Br)CA solid solutions represents a 

new structure (different from the γ polymorphs of pure 3-ClCA and pure 3-BrCA) and this new 

structure type is denoted the γ′ form of the 3-(Cl/Br)CA solid solutions. 

 

In all four structure types (i.e., β(Cl)
, β(Br)

, γ and γ′) observed for the 3-(Cl/Br)CA solid 

solutions, the 3-ClCA and 3-BrCA molecules are planar. However, for planar molecules of 3-ClCA 

and 3-BrCA, there are two possible conformations labelled syn and anti in Scheme 1. The β(Cl)
, γ and 

γ′ structure types all contain molecules in the anti conformation, whereas the β(Br)
 structure type 

contains molecules in the syn conformation. We note that the γ polymorphs of pure 3-ClCA and pure 

3-BrCA contain the anti conformation, the β polymorph of pure 3-ClCA also contains the anti 

conformation, and the β polymorph of pure 3-BrCA contains the syn conformation. 

 

3-(Cl/Br)CA Solid Solutions with the γ and γ′ Structure Types 
 

 

As noted above, crystallization of 3-ClCA and 3-BrCA was found to give 3-(Cl/Br)CA solid 

solutions (see Table 1) with two different γ-type structures, denoted γ and γ′. The γ form of the 
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3-(Cl/Br)CA solid solutions was obtained by crystallization from a solution containing 3-ClCA 

and 3-BrCA (1:1 molar ratio) in methanol. The powder XRD pattern of the material obtained was 

very similar to those of the γ polymorphs of pure 3-ClCA and pure 3-BrCA, but with peak 

positions that are indicative of unit cell dimensions intermediate between the two pure phases. 

Single-crystal XRD confirmed that the structure of the solid solution is monoclinic (P21/a) and 

isostructural with the γ forms of pure 3-ClCA
26

 and pure 3-BrCA
28

 and 3-methylcinnamic acid
29

. 

Crystallographic data are shown in Table 3 and the crystal structure is shown in Fig. 1. The 

asymmetric unit comprises one “average” molecule of 3-(Cl/Br)CA, with the Cl/Br site 

disordered. For the specific crystal studied, the refined occupancies for the Cl/Br site were 0.56(1) 

for Cl and 0.44(1) for Br, corresponding to xCl = 0.56. The crystal structure (as described 

previously for pure 3-ClCA
26

 and pure 3-BrCA
28

) consists of hydrogen-bonded carboxylic acid 

dimers stacked along the b-axis (Fig. 1a). These stacks form layers parallel to the (102¯) plane 

(alternating layers are displayed as red and blue molecules in Fig. 1). Within a given layer, the 

stacks of hydrogen-bonded dimers are arranged in a “herringbone” type of pattern (Fig 1b). 

 

Crystallization of 3-ClCA and 3-BrCA (in 1:1 molar ratio) from acetone gave a mixture of plate-

like and needle-like crystals. By a combination of powder and single-crystal XRD analysis, the plate 

like crystals were confirmed to be the γ form of the 3-(Cl/Br)CA solid solution discussed above, 

whereas the needle-like crystals represented a new solid phase. The crystal structure (Fig. 2) of the 

new phase was determined by single-crystal XRD to a monoclinic (space group P21/n) γ-type 

structure containing one “averaged” 3-(Cl/Br)CA molecule in the asymmetric unit, with disorder of 

the Cl/Br substituent. For the specific crystal studied, the refined occupancies were 0.61(1) for Cl and 

0.39(1) for Br. This structure is denoted the γ′ form of the 3-(Cl/Br)CA solid solutions. 

 

In the crystal structure of the γ′ form of the 3-(Cl/Br)CA solid solutions (Fig. 2a), hydrogen-

bonded carboxylic acid dimers are stacked along the a-axis. The distance between the centres of 

adjacent C=C bonds is 4.967Å, consistent with their assignment to the γ-type classification. 

Adjacent stacks are related by translation along the c-axis, giving rise to two-dimensional arrays 

(“slabs”) of molecules parallel to the ac-plane. As the halogen atoms protrude from the surfaces 

of these slabs, the interface between adjacent slabs is dominated by van-der Waals interactions 

between halogen atoms. 
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In the crystals of the γ and γ′ forms studied by single-crystal XRD, the mole fraction of 3-

ClCA was xCl ≈ 0.6, while the mole fraction in the crystallization solution was xCl = 0.5. This 

observation suggests that there is preferential uptake of 3-ClCA within the γ and γ′ forms of the 3-

(Cl/Br)CA solid solutions, possibly reflecting differences in solubility between 3-ClCA and 3-

BrCA under the conditions of the crystallization experiment. 

 

We note that the γ′ form of the 3-(Cl/Br)CA solid solutions is an interesting case in which 

the structure type found for a solid solution is not known for the pure phases of either of the 

constituent molecules. 

 

3-(Cl/Br)CA Solid Solutions with the β
(Cl)

 and β
(Br)

 Structure Types 
 
 

Initially, crystallization from the molten phase was investigated, starting from a physical 

mixture of 3-ClCA and 3-BrCA with 1:1 molar ratio (see Experimental section). The powder XRD 

pattern of the material obtained following crystallization from the melt is similar to that of the β 

polymorph of pure 3-BrCA, but with peaks shifted to slightly higher 2θ values. This observation is 

consistent with the formation of a solid solution of 3-BrCA and 3-ClCA in the structure type of the β 

polymorph of pure 3-BrCA (the shifts of peaks to slightly higher 2θ values arise because 3-ClCA has a 

lower molecular volume than 3-BrCA, leading to a slightly contracted unit cell in the solid solution in 

accordance with Vegard’s Law
30,31

). We note that, in the case of samples prepared from the molten 

mixture, the overall composition of the solid solution is expected to be very close to the composition 

of the initial physical mixture of 3-ClCA and 3-BrCA used. 

 

The same procedure was followed to prepare 3-(Cl/Br)CA solid solutions from the molten phase 

starting from physical mixtures of 3-ClCA and 3-BrCA with molar ratios corresponding to the 

following mole fractions of 3-ClCA: xCl = 0.17, 0.25, 0.33, 0.67, 0.75, 0.80, 0.83. The powder XRD 

patterns (Fig. 3) for the 3-(Cl/Br)CA solid solutions prepared with composition in the range xCl = 0.17 

– 0.67 are essentially the same as that (with slight shifts in peak positions) for the β polymorph of pure 

3-BrCA
26

 (i.e., xCl = 0; see Table 2). This structure type of the 3-(Cl/Br)CA solid solutions is denoted 

β
(Br)

. For the 3-(Cl/Br)CA solid solutions prepared from physical mixtures with mole fraction of 3-

ClCA in the range xCl = 0.75 – 0.83, the powder XRD pattern is similar to that for the β polymorph of 

pure 3-ClCA
26

 (i.e., xCl = 1; see Table 2), again with a slight shift in peak 
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positions consistent with the formation of solid solutions. This structure type of the 3-(Cl/Br)CA 

solid solutions is denoted β
(Cl)

. 

 

Thus, depending on the composition of the 3-(Cl/Br)CA solid solutions, either the β
(Cl)

 

structure type or the β
(Br)

 structure type is formed. The change in structure type occurs at a critical 

composition corresponding to mole fraction of 3-ClCA in the molten precursor phase in the 

region of xCl ≈ 0.67 – 0.75. 

 

In DSC data recorded for these 3-(Cl/Br)CA solid solutions (Fig. 4), the melting endotherm is 

consistent with an essentially monophasic sample. Across the composition range starting from xCl 

 

= 0 (pure 3-BrCA), the onset temperature decreases monotonically as the amount of 3-ClCA in 

the solid solution is increased, consistent with the formation of a solid solution. A discontinuity in 

behaviour is observed when the mole fraction of 3-ClCA is in the region xCl = 0.75 – 0.80, close 

to the composition at which the crystal structure of the solid solutions changes from the β
(Br)

 

structure type to the β
(Cl)

 structure type. 

 

Structural Properties of the β
(Br)

 Form of 3-(Cl/Br)CA Solid Solutions 

 

The β
(Br)

 form of the 3-(Cl/Br)CA solid solutions was also obtained by crystallization from 

a solution containing 3-ClCA and 3-BrCA in 1:1 molar ratio in glacial acetic acid. The powder 

XRD pattern of the product is identical to that of the material with 1:1 molar ratio prepared by 

crystallization from the molten phase, indicating that the solid form obtained is β
(Br)

. The crystal 

structure of the β
(Br)

 form was determined using a crystal obtained from the solution-state 

crystallization. 

 

The crystal structure of the β
(Br)

 form of the 3-(Cl/Br)CA solid solutions (Fig. 5a) is monoclinic 

with space group C2/c. The asymmetric unit comprises one “average” molecule of 3-(Cl/Br)CA, with 

disorder at the Cl/Br site. The structure comprises hydrogen-bonded carboxylic acid dimers stacked 

along the b-axis. The distance between the centres of adjacent C=C bonds along the stack is 3.865 Å, 

consistent with a photoreactive β-type structure. These stacks form layers parallel to the (1¯02) plane 

and, within a given layer, the stacks of hydrogen-bonded dimers are the arranged in a “herringbone” 

type of pattern (Fig. 5b). In many respects, this structure is 
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reminiscent of the γ polymorphs of 3-ClCA and 3-BrCA (except, of course, in terms of the 

relation between adjacent molecules along the stack, such that the β
(Br)

 structure is photoreactive 

and the γ polymorphs of 3-ClCA and 3-BrCA are photostable). For the specific crystal of the β
(Br)

 

form of the 3-(Cl/Br)CA solid solutions studied, the refined occupancies were 0.510(4) for Cl and 

0.490(4) for Br. Thus, in contrast to the situation noted above for the γ and γ′ forms of 3-

(Cl/Br)CA solid solutions, the molar ratio of 3-ClCA to 3-BrCA in the β
(Br)

 solid solution 

obtained from solution-state crystallization (glacial acetic acid) is essentially the same in the 

crystal structure and in the crystallization solution (i.e., xCl ≈ 0.5 for the crystal of the β
(Br)

 form 

obtained from a solution with 1:1 molar ratio of 3-ClCA to 3-BrCA). 

 

Solid-State Photoreactivity of the β
(Br)

 Form of the 3-(Cl/Br)CA Solid Solutions 
 
 

Our studies of solid-state photoreactivity in the present work are focused on the 3-

(Cl/Br)CA solid solution with the β
(Br)

 structure type and composition xCl ≈ 0.5 obtained from 

solution-state crystallization. In the crystal structure of the β
(Br)

 form, potentially reactive 

molecules are related by translation along the b-axis and the C=C bonds are parallel with a centre-

to-centre separation of 3.865 Å, corresponding to the ideal geometric arrangement for a solid-state 

[2+2] photodimerization reaction in accordance with the topochemical principle.
1-16

 Clearly, the 

product distribution obtained in the photodimerization reaction provides direct insights 

concerning the distribution of the 3-ClCA and 3-BrCA molecules within the crystalline solid 

solution. In particular, if the material comprises large homo-molecular domains of 3-ClCA and 

large homo-molecular domains of 3-BrCA, the products from topochemical photodimerization 

would be predominantly 3,3′-dichloro-β-truxinic acid and 3,3′-dibromo-β-truxinic acid. However, 

a completely random distribution of the two molecular components in the solid solution would 

produce the three products 3,3′-dichloro-β-truxinic acid, 3-bromo-3′-chloro-β-truxinic acid and 

3,3′-dibromo-β-truxinic acid in the ratio 1:2:1. 

 

A powder sample of the β
(Br)

 form of the 3-(Cl/Br)CA solid solution was subjected to UV 

irradiation and the occurrence of a reaction was evident from changes in the powder XRD data for 

samples extracted periodically during the UV irradiation (see Experimental section). The powder 

XRD data indicates that UV irradiation is associated with loss of crystallinity of the material (as 
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observed also for 3-fluorocinnamic acid
32

). To monitor the progress of the reaction, IR spectra 

were recorded every 12 hr over a period of 60 hr (Fig. 6). The intensity of the band at ca. 1629 

cm
–1

 due to the C=C stretching mode decreases gradually as a function of irradiation time, 

indicating a decrease in the amount of C=C bonds present as a result of the photodimerization 

reaction. The shift in the C=O stretching band (band 1; from ca. 1670 cm
–1

 to ca. 1695 cm
–1

) 

may be associated with loss of conjugation on dimerization. 

 

Solution-state 
1
H NMR spectra (Fig. 7a) were recorded for samples of the reaction product 

extracted periodically during the UV irradiation and were fully consistent with the occurrence of the 

photodimerization reaction. The intensity of the 
1
H NMR peaks for the hydrogen atoms attached to 

the carbon atoms of the C=C bond (ca. 6.8 ppm and 8.0 ppm; labelled 1 in Fig. 7a) in the reactant 

molecules (unresolved for 3-ClCA and 3-BrCA) decreases as a function of irradiation time, whereas 

the intensity of the 
1
H NMR peaks for the hydrogen atoms of the cyclobutane moiety of the 

photoproduct (ca. 4.1 and 4.8 ppm; labelled 2 Fig. 7a) increases as a function of irradiation time. The 

solution-state 
1
H NMR data indicate that over 95% of the molecules in the reactant phase were 

converted in the reaction, and a plot of log10(reactant%) versus time (Fig. 7b) is linear (with 

R
2
 = 0.995), indicating first order kinetics. 

 
 

Crystallization of the photoproduct followed by structure determination of the resultant 

crystals would not necessarily provide conclusive proof that the 3-bromo-3′-chloro-β-truxinic acid 

heterodimer is present in the reaction product, as 3,3′-dichloro-β-truxinic acid and 3,3′-dibromo-β-

truxinic acid homodimers are also produced. Clearly, 3,3′-dichloro-β-truxinic acid and 3,3′-

dibromo-β-truxinic acid could form a crystalline solid solution for which the average crystal 

structure determined by diffraction techniques may be indistinguishable from the 3-bromo-3′-

chloro-β-truxinic acid heterodimer (i.e., the average crystal structure may be the same in each 

case). However, the three different types of product molecule may be distinguished by mass 

spectrometry and HPLC. The ES mass spectrum of the product sampled after 60 hr of UV 

irradiation is consistent with the presence of the three different product molecules, with peaks due 

to 3,3′-dichloro-β-truxinic acid and 3,3′-dibromo-β-truxinic acid homodimers observed at m/z = 

363.03 and 452.94 respectively, and a peak due to the 3-bromo-3′-chloro-β-truxinic acid 

heterodimer observed at m/z = 408.99. 
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Analytical HPLC (Fig. 8) shows a clear difference between the products obtained from the 

photoreaction of the β polymorph of pure 3-ClCA and the β polymorph of pure 3-BrCA on the 

one hand and the photoreaction of the β
(Br)

 form of the 3-(Cl/Br)CA solid solution (with 

composition xCl ≈ 0.5) on the other. The product from UV irradiation of the β polymorph of pure 

3-ClCA has retention time 11.83 min, whereas the product from UV irradiation of the β 

polymorph of pure 3-BrCA has retention time 13.69 min (the result from a physical mixture of 

these two products is shown in Fig. 8a). The product of the photochemical reaction of the β
(Br)

 

form of the 3-(Cl/Br)CA solid solution gives rise to both of these peaks plus an additional peak 

with retention time 12.72 min (Fig. 8b). The integrated areas of the peaks at 11.83, 12.72 and 

13.69 min are 18.8, 38.3 and 22.7%, respectively, approximately in the 1:2:1 ratio expected for 

photodimerization in a 1:1 solid solution with a random distribution of 3-ClCA and 3-BrCA 

molecules (note that the sample analysed also contained unreacted material). 

 

Crystal Structure of the Photodimerization Product 

 

The solid product obtained from UV irradiation (for 60 hrs) of the β
(Br)

 form of the 3-

(Cl/Br)CA solid solution with xCl ≈ 0.5 was crystallized from acetonitrile and the crystal structure 

was determined from single-crystal XRD. In the average crystal structure (Fig. 9; triclinic, space 

group P1¯), the asymmetric unit comprises one 3,3′-disubstituted-β-truxinic acid molecule with 

disorder of Cl and Br at both the 3-position and the 3′-position. The structure also contains 

acetonitrile, which is disordered, with one molecule of acetonitrile for every two molecules of 

photodimer. For the specific crystal studied, the refined occupancies of Cl and Br at the 3-position 

and 3′-position of the β-truxinic acid molecule in the average crystal structure were 

0.466(3)/0.534(3) for one site and 0.501(3)/0.499(3) for the other site. These values of occupancy 

correspond to an overall composition xCl ≈ 0.48, indicating that the crystal has a slight excess of 

Br over Cl and implying that the 3-bromo-3′-chloro-β-truxinic acid heterodimer cannot be the 

only product from the reaction, as also deduced above. The crystal structure is isostructural with 

those reported
26

 for 3,3′-dibromo-β-truxinic acid and 3,3′-dichloro-β-truxinic acid (which are also 

solvates, with disordered acetic acid/water sites). 
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Concluding Remarks 
 

 

Two γ-type structures (denoted γ and γ′) of 3-(Cl/Br)CA solid solutions have been prepared 

and structurally characterized. The γ form is isostructural with the γ polymorphs of pure 3-ClCA 

and pure 3-BrCA, which are themselves isostructural. The γ′ form is a new structure type within 

this family of materials, which has so far not been observed for either of the end-members of the 

family (pure 3-ClCA and pure 3-BrCA). 

 

Two β-type structures (denoted β
(Cl)

 and β
(Br)

) of 3-(Cl/Br)CA solid solutions have also been 

prepared and structurally characterized. The β
(Cl)

 form is isostructural with the β polymorph of pure 3-

ClCA, whereas the β
(Br)

 form is isostructural with the β polymorph of pure 3-BrCA. The specific 

structure type of the solid solution depends on the relative amounts of 3-ClCA and 3-BrCA present in 

the precursor phase in the preparation procedure. Thus, in materials prepared from molten mixtures of 

3-ClCA and 3-BrCA, the β
(Cl)

 form is obtained when the mole fraction of 3-ClCA is in the range xCl 

= 0.75 – 1 (including the β
(Cl)

 structure of pure 3-ClCA as the end-member of this range with xCl = 1) 

and the β
(Br)

 form is obtained when the mole fraction of 3-ClCA is in the range xCl = 0 – 0.67 

(including the β
(Br)

 structure of pure 3-BrCA as the end-member of this range with xCl 
 

= 0). At this stage, we have not yet investigated solid solutions with compositions in the range xCl 

= 0.67 – 0.75. 

 

The photoreactivity of the β
(Br)

 form of the 3-(Cl/Br)CA solid solution containing a 1:1 

molar ratio of 3-ClCA and 3-BrCA has been studied under UV irradiation. Three different 

products were obtained in the photodimerization reaction: the 3-bromo-3′-chloro-β-truxinic acid 

heterodimer (denoted {Cl,Br}), the 3,3′-dichloro-β-truxinic acid homodimer (denoted {Cl,Cl}) 

and the 3,3′-dibromo-β-truxinic acid homodimer (denoted {Br,Br}). The molar ratio of the three 

photoproducts obtained is approximately 1:2:1 ({Cl,Cl}:{Cl,Br}:{Br,Br}), consistent with the 

occurrence of a topochemical photodimerization reaction in a solid solution in which there is an 

essentially random distribution of the reactant molecules 3-ClCA and 3-BrCA. 
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Experimental 
 
 

Crystallization from Solution 
 

 

The samples of 3-ClCA and 3-BrCA used in the present work were obtained from Alfa 

Aesar and solvents were obtained from Fisher. Crystallization was carried out by dissolution in an 

appropriate solvent (see Table 1), followed by slow evaporation of solvent at ambient 

temperature. The γ polymorph of pure 3-ClCA and the β polymorph of pure 3-ClCA were 

obtained by crystallization from methanol and glacial acetic acid respectively. 

 

A solid solution of 3-ClCA and 3-BrCA was prepared by crystallization from a solution 

containing 3-ClCA and 3-BrCA in 1:1 molar ratio in methanol. Colourless block-like crystals 

were obtained, for which the powder XRD pattern was similar to those of the γ polymorphs of 

pure 3-ClCA and pure 3-BrCA which are isostructural with each other (Fig SI1). Crystallization 

of 3-ClCA and 3-BrCA in a 1:1 molar ratio from acetone produced two types of crystal: 

colourless thick plates and a small amount of colourless thin needles. Powder XRD showed that 

the plates were the same phase as that produced from methanol solution, whereas the needles 

represented a new phase (which is denoted here as the γ′ structure). 

 

Crystallization from a solution containing 3-ClCA and 3-BrCA in 1:1 molar ratio from 

glacial acetic acid produced long colourless plates. The powder XRD pattern was similar to that 

of the β polymorph of pure 3-BrCA (Fig SI2). The product from UV irradiation of these crystals 

was recrystallized from acetonitrile by slow evaporation, leading to colourless plate-like crystals. 

 

Crystallization from the Melt 
 

 

Solid solutions of 3-ClCA and 3-BrCA were also obtained by crystallization from the molten 

phase, starting from physical mixtures of solid 3-ClCA and solid 3-BrCA in molar ratios 

corresponding to mole fraction of 3-ClCA, xCl = 0.17, 0.25, 0.33, 0.50, 0.67, 0.75, 0.80, 0.83. The 

physical mixtures were subjected to light grinding to ensure uniform mixing, but care was taken to 

avoid mechanochemical formation of solid solutions (monitored by powder XRD). To carry out the 

melting and cooling cycles, the physical mixture was inserted into the DSC instrument (see below) 

and heated to 200 °C, followed by cooling to ambient temperature to allow crystallization. The 
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resultant materials were extracted from the DSC sample holders for analysis by powder XRD and 

other techniques; in other experiments, a second heating/cooling cycle was carried out in the DSC 

instrument in order to investigate the thermal behaviour of the resultant materials. 

 

Crystal Structure Determination 
 

 

Single-crystal XRD data were recorded at either 150 K or ambient temperature using a 

Nonius Kappa CCD diffractometer (graphite monochromated Mo-Kα radiation; λ = 0.71073 Å) or 

an Agilent SuperNova Dual Atlas diffractometer [mirror monochromator and either MoKα (λ = 

0.71073 Å) or CuKα (λ = 1.54180 Å) radiation]. Temperature was controlled using an Oxford 

Cryosystem cooling apparatus. Crystal structures were solved using direct methods in the 

program Shelxs-2013
33

 and refined using Shelxl-2014.
33

 Non-hydrogen atoms were refined with 

anisotropic displacement parameters. Hydrogen atoms were inserted in idealized positions and 

refined using a riding model with Uiso equal to 1.2 or 1.5 times the value of Ueq for the atom to 

which it is bonded. In some structures, the hydrogen atom of the carboxylic acid group is 

disordered and modelled with a total occupancy of unity. 

 

Powder XRD 
 

 

Samples were ground and sandwiched between two pieces of Scotch tape (foil-type sample 

holder). Powder XRD data were recorded at ambient temperature on a Bruker D8 instrument 

operating in transmission mode (Ge monochromated CuKα1 radiation). 

 

Differential Scanning Calorimetry 
 

 

Differential scanning calorimetry (DSC) data were recorded on a TA Instruments Q100 

DSC instrument. About 2 – 4 mg of sample was placed in a hermetically sealed pan. Cycles of 

heating and cooling were studied at a heating/cooling rate of 20 °C min
–1

. An equilibration time 

of 1 min was allowed between heating and cooling cycles. 

 

Spectroscopic Analysis 
 

 

IR spectra were recorded on a Shimadzu IR Affinity-1 Fourier Transform IR spectrometer. 

Solution-state 
1
H NMR spectra were recorded on a Bruker AM 400 MHz spectrometer, with the 
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sample dissolved in deuterated methanol (CD3OD). Electrospray mass spectrometry (ES-MS) was 

carried out using a Waters LCT Premier XE mass spectrometer. 

 

Photochemical Reactions 
 

 

The reactant material (ca. 0.35 g) was ground to a fine powder and spread in a thin layer on 

a glass dish (10 cm diameter). A high-pressure mercury vapour lamp (λ = 300 – 700 nm) was used 

to irradiate the sample for 60 hrs. The material was agitated every 6 hr to promote uniform 

irradiation. Samples were collected every 6 or 12 hrs to monitor the progress of the reaction by IR 

or solution-state NMR. 

 

HPLC 
 

 

HPLC was carried out using an Agilent Technology 1200 series liquid chromatograph. 

Chromatographic separation was achieved using RP-HPLC (Phenomenex, Luna C18 (2) column, 5 µ, 

250 mm × 4.6 mm). Gradient elution used solvent A (0.1% formic acid in water) and solvent B 

(acetonitrile) with a gradient elution of A:B from 51:49 to 49:51 for 25 min at flow rate 1.0 ml/min. 
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Table 1 Summary of preparation methods for 3-(Cl/Br)CA solid solutions and the pure materials 
 

3-ClCA (xCl = 1) and 3-BrCA (xCl = 0) 

 

Stoichiometry 
Structure Type 

Molecular 
Preparation Procedure 

Reference 

(xCl) Conformation 
 

   
     

0 → 1 β
(Br)

 (xCl = 0 → 0.67) syn Crystallization from This work 

 β
(Cl)

 (xCl = 0.75 → 1) anti molten phase  
     

0.5 β(Br) syn Crystallization from This work 

   glacial acetic acid  
     

0.5 γ anti Crystallization from This work 

   methanol  
     

0.5 γ (plate crystals) anti Crystallization from This work 

 γ′ (needle crystals) anti acetone  
     

0 β(Br) syn See ref. 26 26 
     

0 γ anti See ref. 28 28 
     

1 β(Cl) anti See ref. 26 26 
     

1 γ anti See ref. 27 27 
     

 
 
 
 

Table 2 Crystallographic data for known polymorphs of pure 3-ClCA and pure 3-BrCA.  

Compound 3-ClCA  3-BrCA 3-ClCA 3-BrCA 
      

Polymorph β  β γ γ 
      

Reference 26  26 27 28 
      

Space Group 
¯  

C2/c P21/a P21/a P1  

a / Å 8.618(4)  19.191(6) 12.400(1) 12.389(2) 
      

b / Å 13.627(5)  3.9879(3) 4.9560(4) 4.933(5) 
      

c / Å 3.909(1)  24.798(7) 13.943(1) 14.411(2) 
      

α / ° 106.77(3)  90 90 90 
      

β / ° 96.26(3)  113.05(2) 94.265(3) 95.426(5) 
      

γ / ° 75.71(3)  90 90 90 
      

Temp / K 295  295 293 293 
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Table 3 Crystallographic Data 
 

 γ Form of γ′ Form of β
(Br)

 Form of Acetonitrile Solvate of 
 3-(Cl/Br)CA 3-(Cl/Br)CA 3-(Cl/Br)CA Recrystallized 
 Solid Solution Solid Solution Solid Solution Photoproduct from the 

 (xCl = 0.56) (xCl = 0.61) (xCl = 0.51) β
(Br)

 Form of the 
    3-(Cl/Br)CA Solid 
    Solution 

    (xCl ≈ 0.48) 
     

Formula 
C

9
H

7
Br

0.44
Cl

0.56
O

2 
C

9
H

7
Br

0.39
Cl

0.61
O

2 
C

9
H

7
Br

0.49
Cl

0.51
O

2 
C

19
H

15.5
Br

0.97
Cl

1.03
N

0.5
O

4 

FW 202.38 199.93 204.38 428.62 
     

T (K) 150(2) 293(2) 150(2) 296(2) 
     

λ (Å) 0.71073 1.54184 0.71073 0.71073 
     

System Monoclinic Monoclinic Monoclinic Triclinic 
     

Space group P21/a P21/n C2/c P1¯ 
     

a (Å) 12.2786(9) 4.9671(5) 19.0797(10) 8.5769(6) 
     

b (Å) 4.9068(2) 28.125(3) 3.86490(10) 14.2022(10) 
     

c (Å) 14.1487(10) 6.1401(7) 24.4818(12) 8.1299(5) 
     

α (°) 90 90 90 103.985(5) 
     

β (°) 95.242(2) 91.259(9) 111.944(2) 102.631(5) 
     

γ (°) 90 90 90 79.990(6) 
     

V (Å
3
) 848.87(9) 857.56(17) 1674.52(13) 930.02(11) 

     

Z 4 4 8 2 
     

Occupancy of 

0.556(4) / 0.444(4) 0.610(8) / 0.390(8) 0.510(4) / 0.490(4) 

0.466(3) / 0.534(3) 

Cl / Br 0.501(3) / 0.499(3) 
     

σ(calc) (Mg/m
3
) 1.584 1.549 1.621 1.531 

     

µ (mm
–1

) 2.356 4.585 2.589 2.305 
     

F(000) 408 404 823 433 
     

Crystal size 

0.30 × 0.25 × 0.07 0.46 × 0.07 × 0.04 0.39 × 0.2 × 0.04 0.45 × 0.30 × 0.09 (mm
3
) 

     

Wavelength (Å) 0.71073 1.54180 0.71073 0.71073 
     

Collected 3358 2928 4414 8241 
     

Independent 1927 1662 1879 4374 
     

R(int) 0.0348 0.0374 0.0309 0.0214 
     

GOF on F
2 

1.052 1.078 1.072 1.020 
     

R1 [I > 2σ(I)] 0.0407 0.0704 0.0288 0.0440 
     

wR2 0.0817 0.1832 0.0648 0.0811 
     

R1 (all data) 0.0617 0.0829 0.0338 0.0827 
     

wR2 (all data) 0.0888 0.1908 0.0678 0.0935 
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Scheme 1. Molecular structures of 3-ClCA and 3-BrCA, and definition of the molecular 
 

conformations anti and syn discussed in the text. 
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Figure 1: Crystal structure of the γ form of the 3-(Cl/Br)CA solid solution (with xCl ≈ 0.56): (a) 

viewed along the b-axis (the stacking axis), and (b) viewed along the c-axis (illustrating the 

herring-bone arrangement of hydrogen-bonded pairs of molecules within a given layer parallel to 

the bc-plane). In both (a) and (b), molecules in adjacent layers are shown in red and blue. All 

hydrogen atoms in (b) and one component of the disordered carboxylic acid hydrogen in (a) are 

omitted for clarity. 
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(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Crystal structure of the γ′ form of the 3-(Cl/Br)CA solid solutions (structure determined 

for a crystal with xCl ≈ 0.61): (a) viewed along the a-axis (the stacking axis), and (b) viewed along 

the c-axis. The Cl and Br atoms at the disordered Cl/Br site are shown in green and brown 

respectively. The dashed boxes indicated the regions (parallel to the ac-plane) defined as “slabs” 

in the text. 
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Figure 3: Selected region of the powder XRD patterns for the β polymorph of pure 3-BrCA (xCl = 

0), the β polymorph of pure 3-ClCA (xCl = 1), and the 3-(Cl/Br)CA solid solutions with the 
 

β
(Br)

 structure type (xCl = 0.17 – 0.67) and β
(Cl)

 structure type (xCl = 0.75 – 0.83). 
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Figure 4: DSC data recorded in the heating cycle for the β polymorph of pure 3-BrCA (xCl = 0), the 37 

38 
β polymorph of pure 3-ClCA (xCl = 1), and the 3-(Cl/Br)CA solid solutions with the β

(Br)
 structure 39 

40 
type (xCl = 0.17 – 0.75) and β

(Cl)
 structure type (xCl = 0.80 – 0.83). 
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Figure 5: Crystal structure of the β
(Br)

 form of the 3-(Cl/Br)CA solid solution (with composition xCl 
 

≈ 0.51): (a) viewed along the b-axis (the stacking axis), and (b) viewed approximately along the c-

axis (showing a single layer of stacked molecules). The Cl and Br atoms at the disordered Cl/Br 

site are shown in green and brown respectively. One component of the disordered hydrogen atom 

of the carboxylic acid group is shown. 
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Figure 6: FTIR data recorded ex-situ for samples extracted at different times (indicated at the right 

side) during UV irradiation of a powder sample of the β
(Br)

 form of the 3-(Cl/Br)CA solid 

solution with composition xCl ≈ 0.5. 
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Figure 7: (a) Solution-state 
1
H NMR spectra of samples extracted at different times during UV 

irradiation of the β
(Br)

 form of the 3-(Cl/Br)CA solid solution with composition xCl ≈ 0.5. (b) Plot of 

log10(reactant%) versus time, established from the solution-state 
1
H NMR spectra shown in (a). 
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Figure 8: HPLC data for: (a) a physical mixture of the solid photodimers obtained from UV 

31       

32 
irradiation of the β polymorph of pure 3-ClCA and the β polymorph of pure 3-BrCA, and (b) the 
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34 photoproduct obtained from UV irradiation of the 3-(Cl/Br)CA solid solution with the β
(Br)

 structure 
35       

36 type and composition xCl ≈ 0.5.    
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Fig 9: Crystal structure of the photoproduct obtained from UV irradiation of the 3-(Cl/Br)CA 

solid solution with the β
(Br)

 structure type and composition xCl ≈ 0.48, following recrystallization 

from acetonitrile. The Cl and Br atoms at the disordered Cl/Br site are shown in green and brown 

respectively. The crystal is an acetonitrile solvate containing one disordered acetonitrile molecule 

for every two molecules of photodimer. Hydrogen atoms are omitted for clarity. 
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Structural diversity of solid solutions formed between 3-chloro-TRANS-cinnamic 

acid and 3-bromo-TRANS-cinnamic acid 

 

Manal A. Khoj, Colan E. Hughes, Kenneth D. M. Harris* and Benson M. Kariuki* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Studies of the formation and structural properties of solid solutions containing 3-chloro-trans-

cinnamic acid and 3-bromo-trans-cinnamic acid reveal two β-type structures and two γ-type 

structures, one of which is not observed for the pure phases of 3-chloro-trans-cinnamic acid or 3-

bromo-trans-cinnamic acid. Analysis of product distributions following UV irradiation is 

consistent with a random distribution of the two types of molecule in the solid solutions. 
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