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Abstract  New insights into the dynamical properties of 
water in hydroxyapatite (HAP) nanopores, a model sys-
tem for the fluid flow within nanosize spaces inside the 
collagen-apatite structure of bone, were obtained from 
molecular dynamics simulations of liquid water confined 
between two parallel HAP surfaces of different sizes (20 Å 
≤ H ≤ 240 Å). Calculations were conducted using a core-
shell interatomic potential for HAP together with the 
extended simple point charge model for water. This force 
field gives an activation energy for water diffusion within 
HAP nanopores that is in excellent agreement with avail-
able experimental data. The dynamical properties of water 
within the HAP nanopores were quantified in terms of the 
second-order water diffusion tensor. Results indicate that 
water diffuses anisotropically within the HAP nanopores, 
with the solvent molecules moving parallel to the surface 
 
 
       
*\ Devis Di Tommaso  
\   d.ditommaso@qmul.ac.uk  
*\ Salah Naili  
\   salah.naili@univ‑paris‑est.fr 
 
1\ Laboratoire Modélisation et Simulation Multi Echelle, 

MSME UMR 8208 CNRS, Université Paris-Est, 
Créteil Cedex 94010, France  

2\ School of Chemistry, Cardiff University, Main Building, Park 
Place, Cardiff CF10 3AT, UK  

3\ Laboratoire Modélisation et Simulation Multi Echelle, 
MSME UMR 8208 CNRS, Université Paris-Est, 
77454 Marne la Vallée Cedex 2, France  

4\ School of Biological and Chemical Sciences, Queen Mary 

University of London, Mile End Road, London E1 4NS, UK 

 
twice as fast as the perpendicular direction. This unusual 
dynamic behaviour is linked to the strong polarizing effect 
of calcium ions, and the synergic interactions between the 
water molecules in the first hydration layer of HAP with 
the calcium, hydroxyl, and phosphate ions, which 
facilitates the flow of water molecules in the directions 
parallel to the HAP surface. 
 
Keywords  Hydroxyapatite ·  Water confinement ·  

Molecular dynamics ·  Hydrogen bonding ·  

Anisotropic diffusion 

 
Introduction 

 
The macroscopic properties of bone tissue are tightly 
coupled to molecular processes taking place at the inter-
face between Hydroxyapatite minerals (HAP, molecular 

unit formula [CA10(PO4)6(OH)2]) and water within the 
lacuno-canalicular network (Sansalone et al. 2013) . In 
particular, the formulation of theoretical models for the 
prediction of tissue behaviour under the influence of time-
dependent external stress inducing internal remod-elling 
requires a detailed understanding of the dynam-ics of water 
and its interaction with the surface of HAP surfaces. 
Mechanics modelling to describe the mechani-cal 
behaviour of bone at the macroscopic scale are based on 
homogenization and micromechanical methods which are 
powerful tools not only to obtain the overall behav-iour of 
the material via the determination of the over-all 
properties, but also to obtain information about the 
microfields which are defined at the microscale and are 
associated with the local distribution of the macrofields. 
Macroscopic predictions of either part or all of the elastic 
modulus tensor have been given by many authors (Yoon 
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and Cowin 2008; Sansalone et al. 2012 ; Hellmich and 
Katti 2015). In this context, bones with different forms of 
water will display differences in stiffness and strength.  

HAP scaffolds constitute a prototypical model of bio-
material-based surfaces (Kandori et al. 2000b; Rimola et 
al. 2012; Corno et al. 2010) and have been used in several 
studies of bone repair (Oddou et al. 2011). These 
substitutions HAP-based materials allowed the investiga-
tion of the interactions between HAP surfaces with bio-
molecules (Almora-Barrios et al. 2009; Katti et al. 2010; 
Kandori et al. 2000a; Hernandez et al. 2015; Lukasheva 
and Tolmachev 2015), water (Zhao et al. 2014), ions (de 
Leeuw 2004a , b; Sakhno et al. 2010 ), and gases (Chi-atti 
et al. 2013). Water plays a crucial role during bone 
mineralization and in the protein interaction (Corno et al. 
2010; Qin et al. 2012; Nair et al. 2014; Lemaire et al. 
2015a) as they can act as a prominent charge carrier, 
transporting ions (Prakash et al. 2009; Prakash and Sub-
ramanian 2011) and maintaining the pH of the medium. 
When considering cells nanopores of transmembrane pro-
teins (Hille 2001) or bone nanopores (Pham et al. 2015), 
the interactions between water molecules and the polar 

groups of HAP (calcium (Ca2+), phosphate (PO
3

4
−), and 

hydroxyl (OH−) ions) may affect the local environment of 
the interface, modifying the diffusion of water mole-cules, 
which tend to be reduced when compared with the bulk 
(Bhide and Berkowitz 2005; von Hansen et al. 2013; 
Lemaire et al. 2015b).  

The unusual dynamics of water and other molecules under 
confinement has been subject to several experimen-tal and 
theoretical studies (Tan et al. 2005; Sendner et al. 2009; Su 
and Guo 2011; Nguyen and Bhatia 2012; Bourg and Steefel 
2012; Srivastava et al. 2012; Xu et al. 2013; Planchais et al. 
2014; Prakash et al. 2015; Han et al. 2015; Qiu and Huang 
2015; Nie et al. 2016). In particular, nuclear magnetic 
resonance (NMR) techniques showed that water diffuses 
anisotropically inside nanoporous systems (Cleve-land et al. 
1976; Thomsen et al. 1987; Wei et al. 2011; Salles et al. 2011) 
and two different self-diffusion coef-ficients of water were 
measured in sheep Achilles tendon using pulsed-field-gradient 
stimulated-echo NMR (Fechete et al. 2005). However, the 
molecular-level details regarding the diffusion mechanism of 
water molecules in the vicin-ity of the HAP bone surface, the 
origin of this anisotropic diffusion behaviour, and the 
interactions at the interface responsible for the preferential 
movement of water mole-cules towards a particular direction, 
remain unclear.  

Owing to advances in theoretical models and techniques, 
atomistic simulation methods are particularly suited to obtain 
a molecular-level characterization of the solid-water interface 
(Kirkpatrick et al. 2005; Kubicki 2016), including a direct 
exploration of the structure and dynamics of water in contact 
with a mineral (Parvaneh et al. 2016). 

 
In this study, we present classical molecular dynamics 

(MD) simulations of liquid water in hydroxyapatite nano-
pores of different pore sizes. The aim of this work is to 
investigate the dynamical properties of water, and changes 
therein with varying pore sizes. In particular, the concept of 
self-diffusion tensor originally introduced by Kubo (1957) has 
been applied to compute all nine Cartesian components of the 
three-dimensional diffusion. As the diffusion coeffi-cient is a 
scalar quantity and cannot, therefore, quantify the preferential 
movement of water molecules in a particular direction, in this 
work, we computed the anisotropic diffu-sion of water within 
HAP nanopores in order to determine the effect of 
confinement on its dynamic behaviour. 

 
Theoretical models and methods 

 
HAP surface and water models 

 

Hydroxyapatite (HAP given by CA10(PO4)6(OH)2) is 

viewed as an hexagonal primitive cell with P63∕m space 
group. The nanopore is represented by a face-to-face con-
figuration of parallel HAP platelets. Its size corresponds to the 
narrowest pore diameters measured in bones by Holmes et al. 
(1964). This geometrical configuration is motivated by the 
fact that, in bone tissue, hydroxyapatite is present in the form 
of thin micro-plates with dimensions (L × × e), where L = 

250−500 Å (in 1-direction), = 150−250 Å (in 2-direction) 

and e = 25 Å (in 3-direction) (Weiner and Traub 1986). Cell 
parameters and crystallographic data of Sudarsanan and 
Young (1969) were used for the initial configuration of the 
HAP structure. The dimensions of the parallelepipedic-shaped 
simulation box were adjusted to contain 3 × 3 × 4 such 
micro-plates. The position of each atom in the box is given 
using the vector position whose the cartesian coordinates are 

denoted by (r1, r2, r3) in the orthogonal frame ( 1, 2, 3) (see 
Fig. 1).  

The HAP platelets and water layers constituted the 
elementary unit cell for our simulations. HAP nanopores 
were generated by varying the c-axis of the crystal from H 

= 20 Å to H = 240 Å. The resulting surface corresponds 
to the (0001) basal plane, which is the dominant surface in 
the thermodynamically-stable morphology (Mkhonto and 
de Leeuw 2002) and is important in biological systems, as 
the elongation of the bone platelets along the c-direction of 
the apatite crystal results in the expression of this sur-face 
(Rohanizadeh et al. 1999). In addition, experimental 
evidence shows that these faces act as the binding site for 
many adsorbates (Wierzbicki and Cheung 2000).  

For all pore sizes, the atomic configuration editor Aten 
(Young 2016) was used to fill the resulting vacuum with 
water molecules corresponding to the experimental density 

of 1 g cm−3. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1  HAP-water system (Ca-green, PO3

4
−-pink, O-red, and H-white) with a pore size of 90 Å. a Unit cell of the HAP nanopore—water used 

in the simulations. b Side view of the HAP-water interface. c Top view of the HAP-water interface 

 
Molecular dynamics 

 
All MD simulations were performed using the DL_POLY 
4.05.1 code (Todorov et al. 2006). Interatomic potentials for 
HAP and its interaction with water are the ones developed by 
de Leeuw (2004a) and de Leeuw and Parker (1998). The 
water molecules were represented using the extended sim-ple 
point charge (SPC/E) potential (Berendsen et al. 1981). The 
potential parameters used in this work are reported in 
electronic supporting material (see Tab. S1).  

Each system considered in the present study was first 
equilibrated for 50 ps in the microcanonical (NVE) ensem-
ble. This was followed by an equilibration period in the 
isothermal–isobaric (NPT) ensemble (P = 1 atm. and T = 300 

K) during which the volume was monitored to confirm the 
system reached equilibrium. The behaviour of the volume for 
the nanopores with H = 20, 60 and 110 Å is reported in Fig. 
S2 of electronic supporting information. This was followed by 
2 ns of production period in the NPT ensemble. All 
simulations used the Nosé–Hoover algorithm with 0.5 and 0.5 
ps as the thermostat and barostat relaxa-tion times, 
respectively. To mimic the in vivo human bone 

 
environment, simulations were performed at temperature of 
310 K unless otherwise stated. The Verlet leapfrog scheme 
with a time step of 0.1 fs was used to integrate the equa-tions 
of motion. Periodic boundary conditions were applied in all 
three directions of the unit cell. The long range elec-trostatic 
interactions between the charges of all species were computed 
using the Smoothed Particle Mesh Ewald (SPME) method 

with a relative error of 10
−6 (Essmann et al. 1995). Table 1 

lists the number of atoms in HAP (NHAP), which included 
core-shell atoms, number of water 
molecules NO , duration of each simulation TD, and initial 

W 

H and equilibrated H∗ values of the pore sizes. Notice that 
the equilibrium height of the pore size is close to the initial 
one, which justifies the use of the NPT ensemble instead of 
NVT for our simulations. The structure of the HAP 
nanopore-water systems considered in the present study is 
reported in Tab. S3 of electronic supporting material. 

To verify if HAP nanopores and the surface retained the 
crystalline structure, we computed the phosphorous–phos-
phorous (P–P) radial distribution functions (RDFs) of the 
hydroxyapatite crystal, and of the bulk and surface of the 
HAP (H = 110 Å) nanopore in contact with water (see 
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Table 1  Details of the molecular dynamics simulations of the HAP 

nanopores-water systems: number of atoms in HAP NHAP, number 
of water molecules NOW , duration of each simulation TD (in ns), 
initial H (in Å), and equilibrated H∗ (in Å) pore sizes  

H (in Å) 
N

HAP 
N

H2O TD (in ns) H∗ (in Å) 

20 2520 455 2 21.6 

30 2520 682 2 32.8 

40 2520 910 2 41.3 

50 2520 1138 2 52.7 

60 2520 1363 2 64.1 

70 2520 1593 2 71.4 

80 2520 1820 2 82.7 

90 2520 2048 2 92.4 

100 2520 2276 2 103.9 

110 2520 2506 2 112.6 

120 2520 2732 2 124.6 

130 2520 2960 2 135.3 

160 2520 3650 1 167.3 

200 2520 4550 1 196.8 

240 2520 5300 1 228.1 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2  Arrhenius plots of the average diffusion coefficient of water 
versus the inverse of the temperature for the HAP-water systems with 
pore sizes equal to 60 and 110 Å, where H is the initial height of the 
nanopore 

 
Fig. S4 of electronic supporting material). The P–P RDF 
profile of the nanopore is very similar to that of the crys-
tal, which indicates that HAP nanopores remain crystal-
line. The P–P RDF profile of the HAP surface shows some 
deviations compared with that of HAP nanopore, suggest-
ing some restructuring of the surface but not to an extend 
to indicate amorphousization of the surface (Tian et al. 
2016). This agrees with the previous MD work by de 
Leeuw, which showed that HAP surfaces maintain its 
crystalline structure (de Leeuw 2004a, b). 
 
Validation of the theoretical methodology 

 
We have used the SPC/E water model, because it gives a 
density, radial distribution functions, and self-diffusion 
coefficient for water in good agreement with experiment 
(Berendsen et al. 1987). In particular, the value of self-dif-
fusion coefficient DS for bulk SPC/E water obtained from a 
molecular dynamics simulation of 729 water molecules (NPT 

ensemble, 2 ns of production period) is 2.58 × 10
9 m2 /s, in 

good agreement with the experimental value of 2.999 × 10
9
 

m2/s (Holz et al. 2000). Moreover, comprehen-sive 

calculations of the activation energy of diffusion EA of water 
in bulk liquid water also concluded that using the SPC/E 
model, the value of EA is 14.8 kJ/mol, which is only 2.6 
kJ/mol lower than the experimental value EA = 17.4 kJ/ mol 
(Holmboe and Bourg 2014). To validate the combina-tion of 
force fields, molecular models, and computational techniques 
used in the present work, we compared the acti-vation energy 
denoted EA for the diffusion of water within HAP nanopores 
with the experimental values measured for 

 
cortical bone and inter-tubular dentine (Fernández-Seara et 
al. 2002). MD simulations were conducted at the temper-
atures of 288, 298, 310, and 323 K to determine the acti-
vation energy for water diffusion in HAP nanopores with 
H = 60   ̄  and H = 110  ̄  (see Fig. 2), which are repre-
sentative of typical nanopores in bones (50 < H < 125 Å) 
(Holmes et al. 1964). The activation energies were 
obtained from the linear fit of the points in Fig. 2 using 

Arrhenius equation LN(DS) = LN(D0) − EA∕(RT), and the 

values of EA are 22.5 ± 0.7 kJ/mol for H = 60 Å and 21.5 
± 2.0 kJ/mol for H = 110 Å, which are very close to NMR 
measure-ments in cortical bone (EA = 26.6 kJ/mol) and 
inter-tubular dentine EA = 29.5 kJ/mol (Fernández-Seara 
et al. 2002). This result validates the molecular models and 
interac-tion potentials used in the present work to represent 
fluid flow within bone sub-micrometer pores. A related 
point to consider is that the activation energies for water 
diffu-sion within the HAP nanopores are higher than in 
bulk EA = 17.4 kJ/mol (Holmboe and Bourg 2014), which 
sug-gests that diffusion of water is hindered by the 
interaction between water molecules and the polar groups 
at the HAP surface. 
 
 
Results and discussion 

 
Self‑diffusion coefficient 

 
The self-diffusion coefficient of water, denoted by DS , is a 
key property when studying the flow of fluid. From an MD 
simulation diffusion coefficients can be calculated using 
Einstein relation: 

 



 

 
         2   code. This new utility accurately determines the anisotropic 
DS =  1  1  d  [ (t) −  (0)] . (1) self-diffusion coefficients by computing the mean square 
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   dS   Dt  displacement (MSD) for the different atomic species in the 
where 

   

is the dimension of the space (in this paper dS simulation using multiple time origins as defined by Eq. 3. 
dS  = 3),  (0) and  (t) are the position vectors at times t = 0 The mean square displacements associated with the diago- 
and t, respectively, and the angled brackets  ⋅    indicate nal elements of the anisotropic self-diffusion tensor Dii for 
the average over the number of times origin spanned by t i = 1, 2, 3 are plotted in the Fig. 3. 
and the number of water molecules. However, this scalar Without attempting an exhaustive list on a subject 
quantity cannot describe the differential diffusion of water beyond the scope of this paper, Cummings et al. (1991) 
in directions parallel or perpendicular to the HAP surface have presented different methods for calculating certain 
(see Fig. 1).    self-diffusion coefficients in a non-Newtonian fluid subject 
  To quantify the anisotropic diffusion of water in the to a couette strain field. Furthermore, Liu et al. (2004) have 
HAP nanopores, we introduce the second-order water self- introduced a Einstein–Smoluchowski-like method for cal- 

diffusion tensor  , which is defined as follows:  culating the parallel and perpendicular components of the 
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33  The anisotropic diffusion tensor   can be decomposed 
into its so-called spherical and deviatoric parts: 

 
= 

1 d  �ri(t) − ri (0)� ⋅ �rj (t) − rj (0)�   
D

ij 

       

,   i, j = 1, 2, 3. 2  dt   
      

(3) 
 

In Eq. (3), ri (0) and ri (t) are the components of the posi-

tion vectors along the i-direction (i, j = 1, 2, 3) of the Car-
tesian frame shown in Fig. 1. The anisotropic diffusion 
coefficients Dij were computed by modifying the DL-POLY 

 
 

= 1 (TRA   )  + DEV   , (4) 
 

3    
where is the identity tensor, TRA is trace operator that gives 
the sum of the diagonal elements of , and the deviatoric 
part is given by DEV = − (1∕3)(TRA ) . Any tensor of the 
form , where is a scalar, is known as a spherical tensor, 
while DEV is known as a devia-tor of . Note that an 
important property of the deviatoric tensors is TRA (DEV ) = 
0. This decomposition decou-ples the “volumetric” from 
the “distortional” properties 

 
 
Fig. 3  Mean square displace-
ments associated with the three 
interest quantities describing the 
diffusion coefficients DII for  
I = 1, 2, 3 for H = 90 Å 
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 whose components Dij represent the anisotropic diffusion 
coefficients and are computed using the following expres-
sion which was derived from Kubo (1957): 
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which can be interpreted as a decoupling of the “mean” 
part from the “fluctuation” part because of the underly-ing 
orthogonality of the spherical and deviatoric partitions  
TRA ( S × DEV ) = 0, where S = (1∕3)(TRA ) . This 
decomposition mimics the ones of the vectors that can be  
decomposed uniquely as a sum of two vectors, one tangent 
to a surface, called the tangential component of the vec-tor, 
and another one perpendicular to the surface, called the 
normal component of the vector. As a result, due to the 
geometry of the HAP nanopores, the matrix representation 
of the self-diffusion tensor should be diagonal. This was 
first confirmed by the quasi-nullity of the off-diagonal ele-
ments, and then by computing the spherical part of in Eq. 
(4), which does, indeed, correspond to the standard dif-
fusion coefficient of water calculated using Eq. (1).  

The anisotropic diffusion coefficients of water as a func-
tion of the pore size are reported in Fig. 4. Our calculations 
show that the transport properties of water depend signifi-
cantly on the size of the HAP nanopore (Pham et al. 2015), 
but also quantify the marked anisotropic behaviour of liq-uid 
water when confined within nanosize volumes.  

In Fig. 4, for small-to-medium nanopores (20 Å < H < 70 
Å), the coefficients D11 and D22 associated with the 
diffusion along the 1 and 2 directions correspond to the 
movement of particles parallel to the HAP surface (see Fig. 
1), and their values are similar to the isotropic self-diffusion 
coefficient DS. For nanopores larger than >70 Å, D11 is about 
15% higher than DS , whereas D22 ∼ DS . On the other hand, 
for all nanopores, the coefficients D33, which correspond to 
the normal direction to the HAP surface, are significantly 
lower than both the isotropic coefficient DS , and the 
coefficients D11 and D22 associated with the diffu-sion 
parallel to the HAP surface. For example, in the HAP 

 

nanopore with H = 110  ̄ ,  D33 = 1.5 × 10
−9  m2/s, and 

D11 and D22 are equal to 3.0 × 10
−9

 and 2.2 × 10
−9

 m2/s, 
respectively. This signifies that water molecules preferen-  
tially diffuse along the HAP surfaces rather than towards 
the bulk of the aqueous solution in contact with the nano-
pore. In Fig. 4, the spherical part of the diffusion tensor 
corresponds to the standard isotropic diffusion coefficient.  

This in-plane confinement effect is visually represented 
in Fig. 5 by the trajectory of a water molecules that is part 
of the first hydration layer of the HAP nanopore with H = 

110 Å. A water molecule was considered to be part of the 
first hydration layer of HAP if the distance between the 
calcium atoms (Ca) at the HAP surface and the oxygen 
atoms (OW) of the water molecules is less than 3.0 Å. This 
distance corresponds to the position of the first minimum 

in the CA
2+ − OW pair distribution function (e.g., Di Tom-

maso et al. 2014) as well as the position of the minimum in 
the number density profile of the oxygen atoms that are 
closer to the HAP surface. Figure 5 shows that during the 
dynamics, the tagged water molecule moves approximately 
parallel to the surface of HAP. A similar conclusion was 
obtained from the visualization of the trajectories of water 
molecules that were part of the second hydration layer of 
HAP. Moreover, the analysis of the motion of the tracer 
molecule from its initial (t = 0 ns) to its final (t = 2 ns) MD 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4  Anisotropic diffusion coefficients DII (I = 1, 2, 3), standard 
iso-tropic diffusion coefficient DS, and spherical part of the diffusion 
ten-sor of water molecules within the HAP nanopores 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5  Motion of a randomly chosen tracer molecule that is part of 
the first hydration layer of the HAP nanopore with H = 110 Å. The 
inset reports the radial distribution function [g(r)] of calcium ions at 
the surface and oxygen water atoms (Ca–Ow) 

 

 



 

 

steps indicates that the 1 and 2 components of the position 

vector change by twice as much as the 3 component. This 
agrees with the values of the anisotropic diffusion coeffi-

cients D11 and D22 being larger than D33 (see Fig. 4). The 
polarization effect of the calcium ions at the HAP surface, 
which can extend up to four layers of water (Bolis et al. 
2012), can be used to rationalize the slow diffusion of water 

along the 3-direction observed in our MD simulations.  
The time-dependent MSD of the oxygen atoms of water 

molecules (OW) close to the HAP-water interface, and fur-
ther away from it, was also computed using the following 
expression: 
 
2
(t) OW,n  =  [ (t) −  (0)]

2   ,  
where (0) and (t) are the position vectors at times t = 0 and 
t, respectively, and the angled brackets ⋅ indicate the 
average over the number of times origin spanned by t and 
the number of water molecules. The subscript OW,n 

denotes the oxygen atoms that are part of the n-th “layer” 
of water in the HAP nanopore. For example, a water mole-
cule was considered to be part of the first hydration layer if 
d(CA

2+
 − OW) < 3.0 Å. The (water) oxygen atoms used 

to compute the MSD of a specific hydration layer were 
deter-mined from the configuration of the first MD step of 
the production period, and by selecting those OW atoms 
such that d(CA

2+ − OW) was within a specific threshold. 
The MSD of OW in the hydroxyapatite nanopores with H = 
60 and 110 Å for the hydration layers defined by d(CA

2+ 
− OW) equal to 6 Å (first and second layer), 20, 30, and 40 
Å are reported in Fig. S5 of electronic supporting material. 
The results indicate that as we move further away from the 
interface, water molecules diffuse more slowly and this 
effect becomes more pronounced with the size of the nano-
pore. However, it is important to notice that several water 
exchanges were counted between the different hydration 
layers during the MD trajectories, and consequently, the 
MSD in Fig. S4 cannot be unambiguously associated to a 
specific hydration layer of the HAP nanopore. 

 

Hydrogen bonding at the HAP‑water interface 

 
Hydrogen-bonding (H-bonding) interactions play a vital 
role in the movement of water molecules on the HAP sur-
face. Figure 6 shows the molecular arrangement of water 
molecules on the HAP surface. In particular, Fig. 6a gives 
a closer view of the orientation of water molecules on the 
surface and the H-bonded interaction with hydroxyl and 
phosphate groups of HAP. Visualization of the trajectories 
revealed a peculiar “rolling” motion for the water mol-
ecules. This is illustrated in Fig. 6b–e, where the molecu-
lar arrangement of a selected water molecule at four MD 
steps shows that the H-bonding interactions with the HAP 

 
surface influence the translation and rotation motions of 
water and facilitate the anisotropic diffusion of water. 
Figure 7 reports a schematic representation of the rolling 
motion of water, which occurs via H-bonding interactions, 
determining a preferential diffusion of water molecules on 

the ( 1, 2)-plane.  
The H-bonding structure greatly influences the dynami-

cal properties of water (Chandra 2002). The effect of con-
finement on the distribution of the number of H-bonds 
was, quantified by scanning the MD trajectories of bulk 
water and water within HAP nanopores in order to deter-
mine the existence of an H-bond between two water mol-
ecules based on the following geometrical criteria: (1) the 
donor–acceptor inter-oxygen distance is less than 3.5 Å; 
(2) the donor–acceptor inter hydrogen-oxygen distance is 
less than 2.45 Å; (3) the hydrogen-donor–acceptor angle is 

less than 30
◦ (Chandra 2000).  

The average number of H-bonds nHB is about 3.5 in 
bulk liquid water and in the HAP nanopore with H = 110 

Å, but nHB decreases to 3.4 for H = 60 Å, 3.3 for H = 40 
Å and 3.0 for H = 20 Å, that is, as the degree of 
confinement increases. This is linked with the increasing 
influence of the HAP surface on H-bonding network. In 
fact, the dis-tribution of the number of H-bonds between 
water mole-cules coordinated to the HAP surface and the 
surrounding water molecules (see Table 2) shows that, in 
liquid water, the majority of water molecules (51%) have a 
local tetrahe-dral network, whereas in the first hydration 
layer of HAP, more than 60% of water molecules have 
two, one, or zero H-bonds (HBs). In an aqueous 
environment, the motion of water molecules occurs via the 
breaking and reform-ing of H-bonds and the reduction in 
water diffusion within HAP nanopores can be explained in 
terms of the lack of water–water H-bonds through which a 
water molecule can diffuse from the surface to the bulk. 
Given that water mol-ecules coordinated to the surface 
form, on average, less than two HBs per molecule with the 
surrounding water molecules, this implies that they interact 
with the hydroxyl group and diffuse preferentially along 
the surface rather than towards the bulk solution. 
 
 
Conclusion 

 
We conducted classical molecular dynamics simulations of 
liquid water within hydroxyapatite nanopores of different 
sizes (20 Å ≤ H ≤ 240 Å) to determine the effect of con-
finement on the dynamical properties of water. We showed 
that our core-shell potential for hydroxyapatite together 
with the standard SPC/E water model gives an activation 
energy for water diffusion have a local tetrahedral network 
that is in very good agreement with available experimen-
tal data. We identified an anisotropic diffusive behaviour 

 

 



\  

 
Fig. 6  Molecular arrangement 
of water molecules on the HAP 
surface with H = 70 Å (Ca-
green, P-pink, O-red, H-white, 
and hydroxyl O in blue): a H-
bonding between hydroxyl ion 
(HAP) and water molecules: b–
e motion of selected water 
molecule (in yellow color 
circle) on the HAP surface at 
selected times (in ps) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7  Schematic representa-
tion of the HAP-water 
interface showing the water 
adsorption sites and the 
mechanism of water rolling 
motion on the HAP surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
Table 2  Distribution of the 

number of hydrogen bonds for the 
water molecules coordinated to 
the calcium surfaces 

 
 

 0 1 2 3 4 5 Average 
        

Bulk water 0.0 0.9 0.8 33.0 51.3 5.9 3.53 

HAP-water        
110 Å 22.3 22.4 22.0 19.7 12.5 1.0 1.81 

60 Å 22.7 22.5 22.0 19.4 12.3 1.0 1.79 

40 Å 24.5 23.6 21.4 18.3 11.2 1.0 1.71 

20 Å 26.8 27.9 21.2 15.0 8.3 0.7 1.52 
 
Results obtained from molecular dynamics simulations of bulk water and water within HAP nanopores of 
different sizes (20 Å ≤ H ≤ 110 Å). The values given are percentages of molecules with the given number 
of hydrogen bonds and the average number of hydrogen bonds per water molecule 

 
 
for the molecules, which was quantified by defining a self-
diffusion tensor, , and computing the anisotropic diffu-sion 

coefficients of water, Dij (i, j = 1, 2, 3). As a result of the 
strong interactions between water molecules and the 
functional groups of HAP, which become dominant in such 
confined environments, the motion of water molecules in the 
direction parallel to the surface is significantly faster than in 
the direction perpendicular to it, where the polar-izing effect 

of Ca 2+ sites reduces the diffusion of water molecules. On 
the other hand, solvent molecules can move preferentially 

along the 1-direction (characterized by ani-sotropic diffusion 

coefficient D11) as a result of synergic interactions of the 
water molecules at the interface with the calcium, hydroxyl, 
and phosphate ions of the HAP surface.  

Our study demonstrates and quantifies the anisotropic 
behaviour of fluid in bone nanostructures, which is an 
important area of bone biophysics (Lemaire et al. 2015a; 
Abdalrahman et al. 2015) and, therefore, gives new 
insights into the mechanisms controlling the motion of 
solvent mol-ecules in confined spaces. 
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