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Abstract 

The Wnt, PI3-Kinase (PI3K) and MAP-Kinase (MAPK) cell signalling pathways play 

important roles in human prostate cancer (PCa).  In this thesis, analysis of a human PCa 

tissue micro-array (TMA) constructed by the Welsh Cancer Bank demonstrated 

upregulation of markers associated with these pathways in PCa. There was also greater 

expression of these markers in high-risk tumours with some being predictive of 

biochemical recurrence following surgery.  Furthermore, there is evidence to support 

cross talk between these pathways allowing clustering into low- and high-risk samples 

based on expression profiles.  Targeted next generation sequencing (NGS) also 

demonstrated recurrent mutations of genes associated with these pathways in PCa. 

Conditional transgenic mouse models were employed to explore the complex 

communication between these pathways.  The loss of Pten was incorporated as a means 

of activating the PI3K pathway, and mutated β-catenin and K-Ras as means of aberrant 

Wnt and MAPK signalling.   This study provides the first evidence of crosstalk and 

cooperation between these pathways, resulting in a significant effect on prostate 

tumourigenesis.  Mice with loss of Pten in addition to activated mutations of β-catenin 

and K-Ras (Triple mutants) have significant upregulation of all three pathways resulting 

in a shorter survival compared to single and double mutants. The feasibility of these 

models allows further specific gene profiles to be induced in the mouse, providing a 

platform for pre-clinical testing of novel therapeutic agents.   

The effect of deregulation of these pathways on the cancer stem cell (CSC) population 

was explored using fluorescence-activated cell sorting (FACS) and organoid culture. 

Compound mutant (doubles and triple) tumours have a greater number of CSC or 

enriched cells compared to single mutant or wildtype (WT) mice.  Compound mutant 

tumours had greater organoid forming efficiency than single mutants however this was 

significantly inferior to WT cells. Overcoming the difficulty experienced in cultivating 

tumour organoids will help manufacture targeted drugs with the aim of forming a 

cryopreserved organoid library to facilitate precision medicine.  
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1 General Introduction 

1.1 The Human Prostate Gland 

1.1.1 Gross anatomy of the prostate gland 

The human prostate is an exocrine gland that is slightly larger than a walnut, which 

increases with age under the influence of the male hormone, testosterone.  It is located in 

the extraperitoneal space between the pelvic diaphragm and the peritoneal cavity.  It is 

located posterior to the pubic symphysis, inferior to the urinary bladder and anterior to 

the rectum.  It is separated from the rectum by Denonvilliers’ fascia, a sheet of fused 

fibromuscular tissue.  It is conical in shape surrounding the proximal urethra as it exits 

from the bladder, termed the prostatic urethra. The base of the gland is attached to the 

neck of the bladder with the apex resting on the superior surface of the urogenital 

diaphragm.  It is supported anteriorly by the puboprostatic ligaments and inferiorly by the 

external urethral sphincter and perineal membrane.  The seminal vesicles lie superior to 

the prostate under the base of the bladder and are approximately 6 cm in length. Each 

seminal vesicle joins its corresponding vas deferens to form the ejaculatory duct before 

entering the prostate at the verumontanum, just proximal to the striated external urinary 

sphincter.  A capsule composed of collagen, elastin and large amounts of smooth muscle 

or stroma encloses the prostate forming a distinct layer separating the prostate from the 

periprostatic fat.   

The prostate is covered by 3 distinct layers of fascia on the anterior, lateral, and posterior 

aspects. The anterior and anterolateral fascia is in direct continuity of the true capsule; 

this is the location of the deep dorsal vein of the penis and its tributaries. Laterally, the 

fascia fuses with the levator fascia. The outer longitudinal fibers of the detrusor muscle 

fuse and blend with the fibromuscular tissue of the capsule. The posterior aspect is 

covered by the rectovesical (Denonvilliers) fascia. 

 

1.1.2 Microscopic anatomy of the prostate gland 

The prostate can be divided in two ways: by lobe, or by zone.  Traditionally lobes were 

used to describe the anatomy of the prostate dividing into: anterior, posterior, median and 
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two lateral lobes (left and right).  This has however been superseded by zonal separation 

described by the pathologist McNeal.   These are the anterior fibromuscular stroma, which 

is devoid of glandular components, the periurethral transitional zone (TZ), the peripheral 

zone (PZ), and the central zone (CZ) (McNeal 1981a; McNeal 1981b).  The zonal 

separations accounts for distinct anatomical and histological features, which have 

predisposition to undergo benign or malignant change.  The TZ surrounds the prostatic 

urethra and enlargement of the TZ; termed benign prostatic hyperplasia (BPH) can occur 

with increasing age resulting in symptoms of bladder outflow obstruction.  The TZ 

accounts for 5-10% of the prostatic glandular tissue and 20% of the adenocarcinomas.  

The PZ constitutes 70% of the glandular tissue, which covers the posterior and lateral 

aspects of the prostate.  The PZ is the area palpated when performing a digital rectal 

examination (DRE) and is where 70% of adenocarcinomas are found.  The CZ surrounds 

the ejaculatory ducts and comprises of 25% of the glandular tissue and very few 

adenocarcinomas are found in this region (5%). 

 

1.1.3 Histology of the prostate gland 

The prostate consists of glandular epithelium embedded in a fibro-muscular stroma.  The 

epithelium is composed of two-layers with three phenotypically distinct cell types: 

luminal, basal and rare, scattered neuroendocrine cells.   

The secretary luminal epithelial cells are made up of tall columnar cells that are 

responsible for producing prostate specific antigen (PSA) and prostatic acid phosphatase 

(PAP) (McNeal 1988; Rittenhouse et al. 1998).  The luminal cells are androgen-

dependant that require androgens to survive and upon withdrawal undergo apoptosis and 

die.  They express low-molecular-weight cytokeratins (CK) and are characterised most 

commonly by CK 8, CK18 and androgen receptor (AR) (Xue 1998).  The basal epithelial 

cells form a layer of cuboidal cells, which in contrast to luminal cells stain positive for 

high molecular CK such as CK5 or the basal marker p63.  Loss of the basal layer and 

subsequent p63 positivity on immunohistochemistry analysis is a hallmark of prostate 

cancer and commonly used in the clinical setting to aid diagnosis.  The basal cell layer is 

in turn lined by a basement membrane consisting of extracellular matrix which forms a 

divide between the basal cells and the stroma (de Carvalho & Line 1996). 
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In addition to luminal, basal and neuroendocrine epithelial cells, there is emerging 

evidence for a fourth cell type in the prostate: the stem cell.  Stem cells are defined as 

those cells able to proliferate and self-renew for an unlimited period of time, while 

generating diverse differentiated progeny specific to the given tissue (Potten & Loeffler 

1990).  In mammals there are two broad types of stem cells; the embryonic stem cells and 

the adult stem cells.   The embryonic stem cells are derived from the inner cell mass 

(about 200-300 cells) of blastocysts in a developing embryo (Blair et al. 2011).  The cells 

are pluripotent, that is, they can differentiate to develop all three germ cell layers 

(Ectoderm, mesoderm and endoderm).  Adult stem cells are undifferentiated cells that can 

differentiate to multiple lineages and self-renew, a mechanism used for repairing 

damaged tissue (Wagers & Weissman 2004).  Haematopoietic stem cells have been 

extensively researched leading to the subsequent development of the stem cell bone 

marrow transplantation, which has resulted in the successful treatment of certain types of 

leukaemias.  Haematopoietic stem cells give rise to multiple downstream lineages, such 

as the myeloid and lymphoid lineage.  The myeloid lineage differentiate into monocytes, 

macrophages, neutrophils and dendritic cells and the lymphoid lineage into T,B and NK 

cells (Weissman, 2000).  Stem cells are present in many other tissues in the body such as 

intestinal, mammary, neural, bladder and prostate.  Considering the central role the stem 

cells play in homeostasis, knowledge of stem cell function and regulation is crucial for 

our understanding of the normal and pathological processes in cancer.  The cancer stem 

cell (CSC) theory is discussed in section 1.7.  

 

1.1.4 Function of the prostate gland 

The main function of the prostate gland is to liquefy the semen by producing a secretion 

containing strong proteolytic enzymes such as PSA and PAP. 

PSA is an androgen-regulated glycoprotein belonging to the kallikrein family of serine 

proteases.  It is produced primarily by prostate ductal and acinar epithelium and is 

secreted into the lumen, where its function is to cleave semenogelin I and II in the seminal 

coagulum (Lilja et al. 1987).  As the coagulum dissolves, the sperm simultaneously 

become highly motile facilitating its journey from the vagina to the ova.   
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1.1.5 Androgen synthesis and metabolism 

Androgens are sex hormones, which regulate the differentiation and maturation of male 

reproductive organs, as well as the development of male secondary sex characteristics 

(Dehm & Tindall 2006).  The predominant androgen is testosterone, which is produced 

primarily by the testes (~90%) with a small contribution from the adrenal glands (~10%) 

(Basu & Tindall 2010). Testosterone is released following stimulation of the 

hypothalamus-pituitary-gonadal axis. In response to low levels of circulating 

testosterone, the hypothalamus releases Luteinizing hormone releasing hormone 

(LHRH).  LHRH travels to the anterior pituitary gland where it binds to the LHRH 

receptor stimulating the release of luteinizing hormone (LH).  LH then travels within the 

circulation to the testes where it stimulates the release of testosterone from the Leydig 

cells (Amory & Bremner 2003). When an increase in testosterone is detected by the 

hypothalamus and the pituitary gland, the release of LHRH and LH stops, via a negative 

feedback mechanism. The majority of testosterone is bound to serum proteins, such as 

sex hormone binding globulin or albumin, leaving only 1-2% unbound free testosterone 

(Hammond et al. 2003).   

In the prostate, testosterone is converted to 5α-dihydrotestosterone (DHT) by the 

cytochrome P450 enzymes, 5α-reductase Type 1 and 2, which are highly expressed in 

prostate tissue (Wilson 2001).  Both testosterone and DHT can bind to and activate the 

AR under physiological conditions, with DHT having a significantly greater affinity for 

the AR (~10 times, (Deslypere et al. 1992).  On binding to testosterone or DHT, the AR 

translocates into the nucleus, resulting in recruitment of co-factors, which ultimately 

results in regulation of gene expression such as PSA.  Androgen signalling is fundamental 

in PCa development and progression.  Treatments aimed at suppressing these signals will 

be discussed later in this chapter.  
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1.2 The Murine Prostate Gland 

In order to model human prostate tumourigenesis in a mouse, a basic knowledge of the 

anatomical and histological similarities and differences between these two species 

(mouse and human) is necessary.  

1.2.1 Anatomy and histology of the murine prostate 

In contrast to the human, the murine prostate is divided into anatomically distinct lobes: 

the dorsal and lateral often grouped together as dorso-lateral, anterior and ventral lobes  

(Figure 1).  

 

 

 

Figure 1:  Gross anatomy of the mouse lower genitourinary tract.   (a) Schematic diagram 

(adapted from (Valkenburg & B. O. Williams 2011)) and (b) photograph of a wildtype mouse 

prostate dissected en bloc: A: Anterior lobe, B: Bladder, L: Lateral lobe, U: Urethra, V: Ventral 

lobe, SV: Seminal Vesicles.  Note, the Dorsal lobe is positioned posterior to the urethra and 

bladder neck so not visualized in this picture.    

 

The lobes are separated by a thin mesothelial-lined capsule, often only appreciated 

microscopically, and composed of distinct glands of a series of blind ending branching 

ducts or tubules.  The glandular prostate is surrounded by a thin layer of fibromuscular 

stroma that is composed of only a few layers of spindle cells that stain avidly for smooth 

muscle actin or mesenchymal vimentin.  This is a fundamental difference to the human 

prostate, where there is an abundant amount of dense fibromuscular stroma surrounding 

the glands. 

(b) (a) 
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Each of the murine lobes has distinct morphological and cytological characteristics on 

histological sectioning as is demonstrated in Figure 2.  The dorsal prostate is lined with 

simple columnar epithelium, with secretary cells with a lightly eosinophilic cytoplasm 

and a gland lumen containing homogenous eosinophilic staining.  It has a moderate 

degree of in-folding in comparison to the anterior lobe that has a complex architecture 

with frequent mucosal folds protruding into the glands lumen.  The anterior prostate abuts 

the seminal vesicles and histologically demonstrates a more papillary and cribiform 

growth pattern with cuboidal to columnar epithelium and eosinophilic cytoplasm.  The 

lateral prostate has flatter luminal edges, with only sparse in-foldings, with an abundant 

luminal space containing eosinophilic secretions.  

 

 

 

 

Figure 2:  Histological characterisation of the wildtype mouse prostate gland. (a) gross 

microscopic illustration of mouse prostate 1: urethra, 2: paired vas deferens, 3: paired ampullary 

glands, 4: ventral lobe, 5: lateral lobe, 6: dorsal lobe (adopted from (Shappell et al. 2004)).  

Histological appearance of 10% formalin-fixed, paraffin-embedded sections stained with 

haematoxylin and eosin (H&E) of (b) Dorsal (D) and Lateral (L)  (b) anterior and (c) ventral adult 

murine prostate lobes.  Note the histological differences between each lobe of the prostate (see 

text for detail).  

 

 

 

a 

(b) (c) (d) 

(a) 

D 
L 
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The epithelium of the lateral prostate is cuboidal, with a lighter granular cytoplasm and 

small uniform basally located nuclei.  Lastly, the ventral prostate has flattened luminal 

edges with inly focal epithelial tufting or in-folds.  The luminal space typically contains 

homogenous pale serous secretions.   

The histological features of the mouse dorso-lateral prostate has long been compared to 

that of the human peripheral zone and thus thought to be homologous to the development 

of prostate cancer (PRICE 1963). More recently, the consensus opinion of the Bar Harbor 

Pathology Panel (three meetings and workshops attended by various members of the 

Prostate Pathology Committee of the Mouse Models of Human Cancer Consortium), has 

disputed this, concluding that there is no evidence to support direct similarities between 

specific mouse prostate lobes and specific zones in the human prostate (Shappell et al. 

2004). 

Similar to the human prostate, the cell populations of the mouse prostate are separated 

into luminal secretory cells, a basal cell layer and a minor population of neuroendocrine 

cells.  These cells types have some cytological differences consistent with the human 

prostate, however it is often difficult to appreciate this on routine light microscopy.  

Comparable antibodies used in human disease can be used in the mouse.  For example, 

CK5 and p63 stain the basal cell layer; CK8 and CK18 stain the luminal layer.  The 

neuroendocrine cells appear to represent only 0.3% of the normal mouse prostate cell 

population and stain positive for chromogranin or synaptophysin (Shappell et al. 2004).  
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1.3 Prostate Cancer 

1.3.1 Epidemiology of prostate cancer 

1.3.1.1 Incidence 

The lifetime risk of developing cancer in the United Kingdom (UK) is thought to be 

greater than one in three (Sasieni et al. 2011), with prostate cancer (PCa) affecting one in 

eight men (CRUK, 2012). PCa is therefore recognised as one of the most important health 

issues facing the male population.  Approximately 40,000 men are diagnosed with PCa 

every year (CRUK, 2012: based on data obtained from the Office for National Statistics, 

Information Service Division Scotland and Welsh Cancer Intelligence and Surveillance 

Unit) in the UK.   Since the mid-1970s there has been a steady increase in the incidence 

of PCa, with a particular rapid rise in the late 1980s and late 1990s (Figure 3).  These 

periods correspond with the introduction of serum prostate specific antigen (PSA) testing 

from the late 1980s (Brewster et al. 2000; Pashayan et al. 2006) and the increase use of 

PSA testing around the late 1990s (Melia & Moss 2001).  The data indicates that the 

incidence is now plateauing.  However, with the worldwide trend towards an ageing 

population, the continued use of PSA testing and an increase in use of multiple-biopsy 

regimes the incidence is predicted to increase substantially over the next two decades.  In 

fact, PCa is already the most common cancer in UK males, accounting for 25% of cancer 

diagnosis.  It is also anticipated to overtake breast caner and become the most commonly 

diagnosed cancer of all, (between both sexes) by 2030 (Mistry et al. 2011).   
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Figure 3:  The incidence of prostate cancer in the UK from 1975 to 2011.  A steady increase 

in incidence is noted largely as a result of the introduction and increased use of serum PSA testing.  

Graph obtained from the Cancer Research UK website (CRUK 2012) based on data obtained from 

the Office for National Statistics, Information Service Division Scotland and Welsh Cancer 

Intelligence and Surveillance Unit. 

 

PCa incidence is strongly related to age, with a higher incidence in older men (Figure 4).  

It is rarely diagnosed in men younger than 50 years old, accounting for only 1% of all 

cases.  At 85 years of age, the cumulative risk of clinically diagnosed prostate cancer 

ranges from 0.5% to 20% worldwide, despite autopsy evidence of microscopic lesions in 

approximately 30% of men in the fourth decade, 50% of men in the sixth decade, and 

more than 75% of men older than 85 years (Sakr et al. 1993; Grönberg 2003).  In the UK 

between 2009 and 2011, an average of 9.9% of cases were in men aged between 50 and 

59 years old, 33.7% between 60 and 69 years old, 36.4% between 70 and 79 year old and 

18.9% in men over 80 year old (CR UK 2012). 
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Figure 4: Prostate cancer incidence by age group.  Age-specific incidence rates increase 

sharply from around age 50, peaking in men aged between 75 and 79 (CRUK 2012). 

 

PCa incidence rates have increased for all of the broad age groups in the UK since the 

mid-1970s.  The largest increase has been in younger men; with rates increasing almost 

nine-fold in men aged between 45 and 54 years, and six-fold in men aged between 55 and 

64 years between 1975-1977 and 2009-2011  (Figure 5).  Almost certainly the rapid rises 

from the late-1980s is secondary to the increased use of PSA testing.  A more marked 

increase was seen in the United States (US) in the early 1990s following the introduction 

of PSA screening (SEER 1973-2011 n.d.). 

The drop in incidence in men over the age of 85 years may reflect the reduced use of PSA 

testing in this age group (N. Williams et al. 2011).  It has also been suggested that this 

reduction is due to an increase in early diagnosis in younger men through PSA testing, 

leaving fewer cases diagnosed when men reach their 80s (Bray et al. 2010). 
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Figure 5: Prostate cancer incidence between 1975 and 2010 by age group.  For men less than 

65 years there is a steady increase in incidence with the most significant rise in the early 1990s.  

For men between 75 and 84 years and over 85 years there is a rise in incidence from 1975 to 2001 

where the incidence begins to plateau or decrease following this, respectively (CRUK 2012).   

 

1.3.1.2 Mortality & Survival 

After lung cancer, PCa is the most common cause of cancer death in men in the UK, 

accounting for 13% of all cancer deaths in men, with an incidence of over 10,000 per 

annum.  Like PCa incidence, the mortality is strongly related to age, with higher mortality 

rates in older men (Figure 6).  In the UK between 2010 and 2012, an average of 74% of 

PCa deaths were in men aged 75 years and over, and more than 99% were in those aged 

55 years and over (CRUK, 2012).  Mortality from prostate cancer in the UK rose to a 

peak in 1993, reached a plateau, and has now started to decrease.  The 1-, 5- and 10-year 

PCa-specific survivals between 2010 and 2011 were 94%, 85% and 84%, respectively.  

This is a marked improvement from those figures reported between 1971 and 1972 with 

1-, 5- and 10-year PCa-specific survivals of 66%, 37% and 25%, respectively (CRUK, 

2012).  This improved survival is partly due to the increased detection of low-risk indolent 

tumours as a result of PSA testing, multi-biopsy regimes for diagnosis and via 
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transurethral resection of the prostate (TURP) to relieve bladder outflow obstruction as a 

result of benign enlargement (benign prostatic hyperplasia, BPH).  But also due to 

improvement in detection resulting in earlier diagnosis and improvement in treatments 

such as surgery, radiotherapy, adjuvant hormone therapy and other systemic agents 

(Hanchanale et al. 2010; Etzioni et al. 2013; Kvåle et al. 2007). 

 

 

 

Figure 6:  Prostate cancer related mortality by age group.  Both the rate and number of deaths 

increases dramatically with increasing age with the greatest figures in men over the age of 85 

years.  (CRUK, 2012)   
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1.3.2 Risk factors 

As previously discussed, age is the greatest factor influencing the development of PCa.   

Other risk factors include: race, familial and genetic influences, obesity, hormones, 

western-style diets and smoking. 

1.3.2.1 Race 

There is a marked geographical and ethnic variation in the incidence of clinical PCa, 

varying more than 25-fold worldwide.  The incidence is highest in Australia/New Zealand 

(111.6 per 100,000), North America (97.2 per 100,000) and North/West Europe, and 

lowest in the Far East (for example, 10.5 and 4.5 per 100,000 in Eastern and South-

Central Asia, Globcan, 2013).  

Mortality rates are generally high in predominantly black populations (Caribbean, 29 per 

100,000 and sub-Saharan Africa, 19-24 per 100,000), very low in Asia (2.9 per 100,000 

in South-Central Asia for example) and intermediate in the Americas, Australia/New 

Zealand and Europe (Globocan, 2013).  This ethnic variation is also evident within USA 

where there is a 1.6-fold increase in incidence in black men when compared to white men.  

Black men also appear to develop more aggressive disease with a 2.4-fold increase in 

mortality rate (SEER 1973-2011 n.d.).     

The explanations for the large differences in incidence and mortality globally are 

currently unknown.  Previous autopsy studies have shown that there is little variation in 

the prevalence of latent prostate tumours across countries (Breslow et al. 1977), so the 

large difference in clinical PCa rates across populations suggests a role for genetic and/or 

environmental factors in the progression from latent to clinically significant tumours.  

1.3.2.2  Familial and Genetic influences 

Evidence from epidemiological studies suggests that PCa has both a familial and genetic 

component.  The first reports of familial clustering were published in the mid 20 th century, 

demonstrating a greater risk of PCa in men with a first-degree relative.  Subsequent results 

from meta-analyses support these findings, with an approximately 2.5-fold increase in 

developing PCa if a first-degree relative is affected.  The relative risk increase according 

to the number of affected family members, their degree of relatedness and the age at 

which they were diagnosed are shown in Table 1 (Kiciński et al. 2011).   
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Family History Relative Risk (95% CI) 

None 1 

First-degree relative  

    All men 

    Diagnosed before 65 years 

    Diagnosed after 65 years  

Father affected 

Brother affected 

2+ first-degree relatives 

Second-degree relative (any age) 

 

2.48 (2.25-2.74)  

2.87 (2.21-3.74)  

1.92 (1.49-2.47)  

2.35 (2.02-2.74) 

3.14 (2.37-4.15) 

4.39 (2.61-7.39) 

2.52 (0.99-6.46) 

Table 1: Family history and risk of developing prostate cancer.  Relative risk of developing 

PCa is increased according to the number of affected family members, their degree of relatedness 

and the age at which they were diagnosed.  Data from meta-analysis (Kiciński et al. 2011). 

 

It is estimated that 15% of PCa’s are familial or hereditary, with the remaining 85% being 

sporadic (Carter et al. 1992).  A number of linkage studies, which screen for genetic traits 

in high-risk groups, have identified many PCa susceptibility genes, including RNaseL 

(hereditary prostate cancer-1 [HPC1] region, 1q23-25) (Rökman et al. 2002) and ELAC2 

(HPC2 region, 17p) (Tavtigian et al. 2001).  However, due to the high incidence of 

sporadic PCa’s, interpretations of these results can be difficult.  

A number of studies have suggested a familial association between PCa and breast cancer 

through two susceptible genes: BRCA1 (17q21) and BRCA 2 (13q12).  A germline 

mutation in BRCA1 has been shown to have a ~3.75-fold increase risk of developing PCa 

(Leongamornlert et al. 2012). Mutations in BRCA2 confers the highest genetic risk of 

PCa known to date, with an ~8.6-fold increase (Kote-Jarai et al. 2011). Castro et al. 

recently published data demonstrating that BRCA mutation carriers, in particular BRCA 

2, have a more aggressive PCa phenotype with a higher probability of nodal and distant 

metastasis resulting in poor survival outcomes (Castro et al. 2013).  Germline BRCA1 

and BRCA2 mutations were also associated with higher incidence of Gleason score ≥8 

and T3/T4 disease (Castro et al. 2013).  Radical treatment should, therefore, be 

recommended immediately in these patients, rather than deferring treatment as part of an 
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active surveillance programme.  Also, a lymph node clearance may be considered at the 

time of surgery even in those low-risk tumours to improve staging accuracy allowing for 

earlier adjuvant treatment.  To date, the best form of radical therapy, whether surgery or 

radiotherapy, in men with BRCA 2 mutations is unknown.   Given that 

the BRCA2 protein is involved in the repair of damaged DNA breaks, and that radiation 

induces double-strand breaks, it is possible that PCa patients with a BRCA2 mutation are 

more sensitive to radiotherapy than patients without a mutation (Narod et al. 2008). There 

are however no randomised studies comparing surgery and radiotherapy in BRCA 

mutation carriers.  

Systemic treatments such as Poly(ADP-ribose) polymerase inhibitors (PARPi, e.g. 

olaparib) have shown significant survival benefit in a subset of patients with metastatic 

PCa with aberrations in one or more of the 12 DNA-repair gene that were tested, including 

as BRCA1/2 and ATM.  14 of the 16 (88%) men with a DNA-repair mutations responded 

to olaparib with a median survival of 9.8 months compared with 2.7 months for those 

without a mutation (Mateo et al. 2015).  PARP is an enzyme that is important in repairing 

single-strand DNA breaks.  If these single-stranded breaks fail to repair, subsequent cell 

division can result in double-strand breaks.  PARPi thus result in multiple double-

stranded DNA breaks, and in tumours with BRCA mutations, they are unable to be 

efficiently repaired, ultimately causing cell death.  Knowledge of a man’s BRCA status 

is, therefore, of prognostic value.   

PCa has also been associated with Lynch syndrome.  Lynch syndrome is caused by a 

germline mutation in one of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, 

or PMS2 and is associated with several cancers: colorectal, endometrial, ovarian, gastric, 

small intestinal, pancreatic, ureteral, brain, and sebaceous gland adenocarcinoma (Aarnio 

et al. 1999).  Haraldsdottir et al have reported an almost five-fold increase risk in PCa in 

the 188 men they identified with Lynch syndrome.  This however was not associated with 

earlier onset or a more aggressive phenotype (Haraldsdottir et al. 2014).   

Germline mutations are rare in PCa, unlike gene fusions. Gene fusions can occur as a 

result of chromosomal translocation and are the most common genetic alteration in human 

cancers (Futreal et al. 2004).  These were initially thought to be mechanisms linked 

exclusively to haematological malignancies such as the BCR-ABL1 fusion gene resulting 

in the Philadelphia chromosome in chronic myeloid leukaemia (CML) (Faderl et al. 
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1999).  In 2005 however, the TMPRSS2-ERG gene fusion was identified in PCa (Tomlins 

et al. 2005).  Approximately 50% of PCa and 20% of PIN lesions are positive for the 

TMPRSS2-ERG gene fusion, and over 90% of PCas over-expressing ERG harbour this 

molecular abnormality (Tomlins et al. 2008). There has been great excitement following 

its discovery, especially knowing the success of the tyrosine kinase inhibitor Gleevec 

(Imantinib) in CML.  It has been proposed that TMPRSS2-ERG fusion positive tumours 

are more resistant to taxanes (e.g. Docetaxel), a chemotherapy agent routinely used in the 

treatment of metastatic PCa (Galletti et al. 2014; Reig et al. 2016).  It has also been shown 

to associated with increased risk of high Gleason score and progression during active 

surveillance (Berg et al. 2014; Hägglöf et al. 2014), with some reporting shorter survival 

in TMPRSS2-ERG positive patients (Hägglöf et al. 2014). The development of a urine 

TMPRSS-ERG assay has also been combined with other urinary markers such as PCA3 

may help risk-stratify patients (Tomlins et al. 2015).   

More recently, genome-wide association studies (GWAS) have emerged as a new 

approach to identifying somatic mutations and alleles associated with PCa.  These will be 

discussed in detail later in this chapter.   

1.3.2.3 Obesity 

The suggested link between body mass index (BMI) and risk of PCa is weak and 

inconsistent.  A meta-analysis by Maclnnis et al reported a rate ratio or relative risk (RR: 

i.e. a rate ratio of 1 = no effect) of 1.05 (95% CI 1.01-1.08) per 5 kg/m2 increments in 

BMI measurement. There was a marginally stronger association with higher stage of 

disease, with a RR of 1.12 per 5 kg/m2 increments in BMI (95% CI 1.01-1.23) (MacInnis 

& English 2006).  A more recent meta-analysis supports this finding, but interestingly, 

they also reported an inverse relationship with increasing BMI and localised disease, with 

a RR of 0.94 (95% CI  0.91-0.97), concluding that obesity may have a dual effect on PCa 

– a decreased risk for localised disease and an increased risk for advanced disease 

(Discacciati et al. 2011). 

Despite only small trends associated with risk of PCa, increasing evidence suggests that 

higher BMI is associated with poorer outcomes i.e. higher PCa-specific mortality.  A 

meta-analysis by Cao et al demonstrated that an increase in BMI of 5kg/m2 was associated 

with a 21% increased risk of biochemical recurrence (RR 1.21, 95%CI 1.11–1.31 p<0.01) 

and a 15% (RR 1.15, 95%CI 1.06–1.25, p<0.01) higher risk of dying of PCa (Cao & Ma 
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2011).  Several possible explanations for this have been proposed.  Firstly, obesity could 

result in a delay in diagnosis resulting in a more advanced stage at diagnosis.  Digital 

rectal examinations are less accurate and PSA values are often lower in obese patients.  

The lower values are thought to be due to a higher plasma volume resulting in an obesity-

related dilution (Kvåle et al. 2007; Grubb et al. 2009).  Secondly, there are difficulties 

associated with treatment, which could affect outcome.  A higher positive margin rate has 

been reported following radical prostatectomy (Freedland et al. 2004) and there is an 

increased risk of suboptimal radiation delivery due to a greater day-to-day variation in  

prostate location (Millender et al. 2004).  Lastly, biological mechanisms relating to 

adiposity and PCa progression have been proposed.  Obesity is known to activate pro-

carcinogenic pathways such as the insulin-like growth factor (IGF) axis which is related 

to greater risk of aggressive PCa in obese men (Weiss et al. 2007).  Testosterone levels 

are also lower in obese men, which has been linked to the development of more aggressive 

higher-grade PCa (Severi et al. 2006).  

1.3.2.4 Hormones 

Testosterone and its potent metabolite DHT are essential for normal prostate growth and 

play a role in PCa development.  The hallmark paper by Huggins and Hodges in 1941, 

highlighting that surgical castration causes a major regression of PCa, has initially led 

people to believe that high levels of testosterone are associated with higher risk of PCa.  

To support this argument, PCa almost never develops in the rare men castrate before 

puberty or in men deficient in 5α-reductase; the enzyme responsible for converting 

testosterone to DHT.  In addition, trials using inhibitors of 5α-reductase, Finasteride and 

Dutasteride have also shown some reduction in risk of developing PCa (Andriole et al. 

2010; Thompson et al. 2003), suggesting a key role for DHT. 

It has long been hypothesised therefore that high serum androgen levels are a risk factor 

for PCa.  A meta-analysis supports this, demonstrating that men with a 

total testosterone in the highest quartile of the population are 2.34 times more likely to 

develop PCa (Shaneyfelt et al. 2000).  However, the incidence of PCa increases with age, 

while serum testosterone decreases.  In fact, several epidemiological studies have shown 

that low serum testosterone levels have an adverse effect on men with newly diagnosed 

PCa.  (Schatzl et al. 2003) suggested an enhanced malignant potential associated with low 

serum testosterone, describing higher AR density and a more aggressive tumour.  
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Messengill et al (2003) and also Imamoto et al (2005) show that a low pre-treatment total 

testosterone was an independent predictor of extra-prostatic disease (or non-organ 

confined) in patients with localised PCa undergoing radical prostatectomy (Massengill et 

al. 2003; Imamoto et al. 2005).  Some case controlled studies have also shown that a low 

pre-treatment serum testosterone have a poorer response to endocrine therapy with earlier 

time to androgen-independence in metastatic disease (Furuya et al. 2002).  Somewhat 

contradictory to this is a recent study by Klotz et al (Klotz, O'Callaghan, et al. 2015) 

reporting a higher PCa specific mortality in men with metastatic PCa who have a high 

nadir serum testosterone (i.e >0.7mmol/l) within the first year of androgen deprivation 

therapy. This observation might however highlight the PCa response to treatment and its 

sensitivity to hormone deprivation as oppose to initial risk of developing the disease.  

Some studies also report no difference in incidence of PCa in relation to testosterone level 

(Gill et al. 2010; C. Chen et al. 2003).   

There remains controversy between the association of risk of developing PCa and the 

serum concentration of testosterone.  Even so, there is little doubt that exposure of the 

prostate to androgens is important in prostate tumourigenesis. The duration and 

magnitude of exposure for this to occur is however unknown. Further detail on androgen-

deprivation therapies will be discussed below.   

1.3.2.5 Diet and lifestyle  

Migration studies have highlighted the importance of diet and lifestyle on risk of PCa.  

Among migrants moving from a low risk country such as Japan to America, the incidence 

almost equalizes to that of white Americans within a generation.  Furthermore, same 

ethnic group men raised in different environments have a risk of PCa comparable to the 

reported incidence of the country they live, not their country of origin (Wolk 2005; 

Kolonel et al. 2004).  PCa incidence rates have been increasing in China, Korea, Japan, 

and Singapore during the last several decades (Zhang et al. 2012).  This upward change 

has been primarily ascribed to the occurrence of nutrition transition in these countries 

during the same period of time.  Nutrition transition is defined by a gradual change 

towards the Westernized diet characterized by high intake of energy, animal fat, and 

meats and low intake of fibre (Zhang et al. 2012). The potential mechanisms of action 

include increased IGF-1 levels as a result of excess dietary fat and thus energy levels, as 
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seen in the obese (see section 1.3.2.3), or possible induction of oxidative stress leading to 

genomic instability and cancer.   

Several reports have found that diets high in saturated fat, meat, dairy foods and calcium 

have a positive association with risk of developing PCa (Aune et al. 2015; Chan et al. 

2001), with a recent meta-analysis demonstrating some association of these dietary 

factors with advanced disease  (Gathirua-Mwangi & Zhang 2014). Early animal 

experiments using the rat Dunning model further support a role of dietary fat in PCa 

progression, demonstrating that a fat-free diet can reduce the growth of androgen-

dependent tumours (Clinton et al. 1988).  The heterogeneity amongst studies in defining 

fat intake and subtypes and the severity of PCa makes interpreting the extent of this 

association difficult, with some studies demonstrating contrasting results: a large 

European multicentre cohort study demonstrates no association between dietary fat and 

PCa risk (Crowe et al. 2008).   

1.3.2.6 Smoking 

Despite demonstrating strong links with several other cancers, such as lung and bladder, 

the association of cigarette smoking and PCa remains a matter of debate.  Both case- 

control and cohort studies have produced conflicting results and none have demonstrated 

a clear dose-response relationship, although some recent studies have suggested an 

association with more advanced stage at diagnosis and increased PCa-related mortality 

(Kenfield et al. 2011; Huncharek et al. 2010; Bostwick et al. 2004).  Kenfield et al (2011) 

further show that men who have quit for at least 10 years have PCa-specific mortality 

risks similar to those who have never smoked.  A direct effect of smoking on PCa 

progression is therefore biologically plausible.  The main proposed hypotheses include: 

1. Tumour initiation through carcinogens from cigarette smoke such as cadmium 2. By 

increasing circulating androgens, 3.  Epigenetic effects, including aberrant methylation 

profiles among current smokers, which correlate with aggressive disease (Kenfield et al. 

2011).  

1.3.3 Prostate cancer detection  

Most patients in whom PCa is suspected are identified on the basis of abnormal findings 

on digital rectal examination (DRE) or, more commonly, by raised levels of serum PSA.  

In current practice, a 10-12 needle biopsy is performed either transrectally or 
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transperineal under ultrasound guidance if PCa is suspected.  More recently as a result of 

advancement in imaging, some centres in the UK perform a multi-parametric magnetic 

resonance imaging (mpMRI) prior to needle biopsy so that suspicious lesions can 

subsequently be targeted, increasing diagnostic yield.   

1.3.3.1 Digital rectal examination (DRE) 

As most (70%) of prostate tumours are detected in the peripheral zone, larger tumours 

can sometime be palpated on DRE.  A DRE can also detect tumours when the PSA is 

within normal range. Underestimation is however common because small and anteriorly 

located tumours are generally impalpable.  For this reason, the predictive diagnostic value 

and accuracy of staging is combined with PSA and imaging such as mpMRI and isotope 

bone scans.   

 

1.3.3.2 Prostate Specific Antigen (PSA) 

As previously alluded to, PSA is produced by the prostate and functions to liquefy the 

semen.  Due to an alteration in the architecture of the prostate in PCa, the tissue barriers 

become compromised and PSA leaks out, leading to increased levels in the bloodstream.  

The PSA test has therefore revolutionised PCa detection.  There are however concerns 

about its specificity; PSA is organ- but not tumour-specific (Hamdy 2001). Therefore, 

other conditions, such as benign prostate enlargement, prostatitis (inflammation of the 

prostate) and lower urinary tract infections, can also cause an elevated PSA.  

The PSA test is currently the best method of identifying an increased risk of localised 

PCa, especially when symptoms are not apparent. Routine PSA testing or screening is 

however controversial. Although some asymptomatic PSA detected localised PCa will be 

clinically relevant and therefore be treated and cured earlier which could extend life,  

many will also be clinically insignificant which would not have become evident in a 

man’s lifetime. PSA cannot therefore accurately differentiate between indolent and 

aggressive disease, resulting in risk of over-diagnosing and subsequently over-treating 

men. Patients should be counselled regarding these issues prior to having a PSA test in 

accordance with the Prostate Cancer Risk Management Programme (available at 

https://www.gov.uk/guidance/prostate-cancer-risk-management-programme-overview).   
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For these reasons PSA screening has been controversial.  Any form of screening aims to 

reduce disease-specific and overall mortality, and to improve a person's future quality of 

life.  A Cochrane review of 5 randomised controlled trials concluded that PCa screening 

did not significantly decrease PCa-specific mortality, with harms associated with 

diagnostic evaluations and over-treatment. They did further concluded that any reduction 

in PCa-specific mortality may take up to 10 years to accrue; therefore, men who have a 

life expectancy less than 10 to 15 years should be informed that screening for PCa is 

unlikely to be beneficial (Selley et al. 1997; Ilic et al. 2013). One trial in this Cochrane 

review (European Randomised Study of screening in Prostate Cancer [ERSPC]) has since 

updated their results, reporting a 21% significant reduction in PCa mortality in a subgroup 

of men aged 55 to 69 years, however.  This trial with a 13 years follow-up, reiterated the 

risk of over-diagnosis and over-treatment, with the number needed to be screened of 781 

and number needed to be diagnosed of 27, to avert one PCa related death (Schröder et al. 

2014). PSA increases with age resulting in age-related reference values recommended by 

the Prostate Cancer Risk Management Programme (Table 2).   
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Age (years) PSA referral value (ng/ml) 

50-59 

60-69 

70+ 

≥3.0 

≥4.0 

>5.0 

Table 2:  Age-related PSA reference values.  (Prostate cancer risk management programme, 

2010). 

 

PSA levels above 20ng/ml are often indicative of tumour extension beyond the capsule 

(T3, see below), while levels above 40ng/ml suggest a high likelihood of bony or soft 

tissue metastases.  
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1.3.4 Grading and staging 

1.3.4.1 Gleason grading system 

Donald F. Gleason created a unique grading system for PCa in 1966, based solely on the 

architectural pattern of the tumour identified at relatively low magnification on 

microscopy (Gleason 1966).  Despite production of the modified Gleason grading system 

in 2005, following the International Society of Urological Pathology (ISUP) conference 

in San Antonio (Texas, (Epstein et al. 2006), Gleason score remains one of the most 

powerful prognostic factors in PCa (Epstein 2010).  

Specifically, the Gleason scoring system classifies prostate adenocarcinomas through its 

loss of normal glandular architecture (i.e. size, shape, relationship and differentiation of 

the glands).   It is assigned a grade from 1 to 5, with 1 being the most differentiated and 

5 being the least differentiated (Figure 7).  Unlike in prostate intraepithelial neoplasm 

(PIN) cytological features play no role in grading the tumour.  Since many PCa are multi-

focal and heterogeneous, allowance is made by adding the two most dominant grades 

(primary -most prevalent and secondary -second most prevalent) or architectural patterns 

to give a Gleason score between 2 and 10 (e.g. 3+4=7).  Since grades 1 and 2 are rarely 

if ever seen, only scores between 6 (3+3) and 10 (5+5) are observed. Cancers of the same 

Gleason score have a worse prognosis if the predominant primary grade is higher (e.g. 

4+3 is worse than 3+4).  For this reason, Epstein et al. have further updated the Gleason 

score, categorisation into 5 groups: Grade group 1: Gleason score =6, Grade group 2: 

Gleason score 3 + 4, Grade group 3: Gleason score 4 + 3, Grade group 4: Gleason score 

8, and Grade group 5: Gleason score 9-10 (Epstein et al. 2016). 

It is important to recognize Gleason pattern 4 tumours because tumours with this pattern 

have a significantly worse prognosis than those with pure Gleason pattern 3 (McNeal et 

al. 1990; Epstein et al. 1993).  Gleason pattern 3 (3+3=6) tumours often behave in an 

indolent manner with a low risk of local and metastatic progression.  Many patients will 

therefore embark upon a conservative management approach such as active surveillance 

(discussed in section 1.3.7.1), with long-term follow-up studies demonstrating feasibility 

and safety of this strategy with no effect on overall survival (Albertsen et al. 2005; Klotz, 

Vesprini, et al. 2015).  
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Figure 7:  The Modified Gleason grading system.  Schematic diagram of the Gleason grading 

system (Epstein 2010) and haematoxylin and eosin stained histological representation of each 

Gleason grade pattern (courtesy of Dr D Griffiths, Consultant Uro-pathologist, University 

Hospital of Wales, Cardiff). 

 

1.3.4.2 TNM (Tumour, Nodal and Metastases) Staging  

Prostate adenocarcinoma, like most other cancers, is staged using the TNM classification 

system as defined by the Union for International Cancer Control (UICC).  This allows 

assessment of the tumour (T), lymph nodes (N) and metastases (M), which in turns affords 

accurate prognostic information and enables further treatment and/or follow-up to be 

planned (Table 3). 

The T stage (T1-T4) describes the pathological development of the tumour.  T1 represents 

‘incidental’ status, in which the tumour is either discovered following transurethral 

resection of the prostate (TURP) surgery used to treat benign enlargement of the prostate 

and bladder outflow obstruction or, more commonly, by needle biopsy of the prostate 

following PSA testing which is impalpable.  T2 represents a tumour that us palpable but 

still confined to the prostate.  T3 tumours have breached the prostate capsule into the 

Gleason Pattern 3 

Gleason Pattern 5 

Gleason Pattern 4 
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surrounding fat or seminal vesicles.  T4 tumours are advanced invading neighbouring 

organs. Metastases are most common in nodes (N1) and bone (M1). The lungs, liver and 

other soft tissue are less commonly involved.   

 

TNM Classification of prostate cancer (7
th

 Edition UICC, 2010) 

Tumour Stage 

    Tx    Primary tumour cannot be assessed 

    T0    No evidence of primary tumour 

    T1    Clinically inapparent tumour not palpable or visible by imaging 

             T1a:  ≤ 5% of TURP chips 

             T1b:  > 5% of TURP chips 

             T1c:  Identified by needle biopsy 

    T2    Tumour confined to prostate (organ confined) 

             T2a:  Involves ≤ 50% of one lobe 

             T2b:  Involves > 50% of one lobe but not both lobes 

             T2c:  Involves both lobes 

    T3    Tumour extends through the prostate capsule 

             T3a:  Extracapsular extension (unilateral or bilateral) 

             T3b:  Invades seminal vesicle(s) 

    T4    Tumour is fixed or invades adjacent structures: bladder neck, external sphincter,      

             rectum, levator muscles and/or pelvic wall. 

 

Nodal Stage  (regional)                                  Metastasis Stage (Distant) 

    Nx  Cannot be assessed                                   Mx  Cannot be assessed 

    N0   No metastasis                                           M0   No metastasis 

    N1   Node metastasis                                       M1   Metastasis 

                                                                                      M1a: Non-regional lymph node(s) 

                                                                                      M1b: Bone(s) 

                                                                                      M1c: Other sites(s) 

Table 3:  TNM Classification of Prostate Cancer (7
th

 Edition UICC, 2010)  
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1.3.5   Prognostic indicators and risk-stratification  

Accurate grading and staging of PCa, particularly distinguishing between Gleason grades 

and between localised and more extensive disease is critical for selection of the optimum 

treatment option.  Although developments in imaging techniques, especially multi-

parametric MRI, have led to more accurate staging than can be achieved with digital rectal 

examination (DRE) or PSA testing alone, both under- and over-staging are still common 

clinical problems.  Thus, a need remains not only for improving staging techniques, but 

also for better prognostic markers that will give an indication of future disease behaviour 

if left untreated.   

 

1.3.5.1 D’Amico Risk Classification 

First described in 1998, by D’Amico and colleagues, created a three-group risk-

classification (low-, intermediate- and high-risk), to predict post-treatment biochemical 

failure (i.e. recurrence) following radical prostatectomy or external beam radiotherapy 

(D'Amico et al. 1998).  Based on the individual prognostic powers of PSA, Gleason grade 

and Tumour stage, the D’Amico risk classification aids physicians in primary treatment 

decision for patients with non-metastatic disease as summarised by Table 4.  To further 

help risk-stratify those patients with low risk disease, especially those considering 

deferred treatment or active surveillance, Epstein and colleagues have added a further 

very-low risk group (Kryvenko et al. 2014).  In addition, the Epstein criteria also use the 

number and volume of cancer involved in needle core biopsies and PSA velocity:  Very-

low risk = <3 positive biopsy cores each ≤50% cancer involvement and a PSA density 

≤0.15, in addition to a PSA ≤10 ng/mL, Gleason score ≤6 and T1c on clinical examination 

(Kryvenko et al. 2014).    

 

 

Risk PSA(ng/ml)  Gleason Score  Clinical stage  

Low 

Intermediate 

High 

<10 

10-20 

>20 

and 

or 

or 

≤6 

7 

8-10 

and 

or 

or 

T1a-T2a 

T2b 

≥T2c 

Table 4:  D’Amico Risk Classification (D'Amico et al. 1998). 
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1.3.5.2 Multiparametric Magnetic Resonance Imaging (mpMRI) 

mpMRI is increasing being used to identify areas of  interest, so that biopsies can be better 

targeted, improving diagnostic yield and staging of PCa.  For this reason, many centres 

Across the UK are performing a mpMRI prior to biopsy.  mpMRI uses anatomic T2-

weighted imaging combined with two functional techniques: diffusion-weighted imaging 

(DWI) and dynamic contrast-enhance MRI.  It is particularly sensitive at detecting higher-

grade tumours.  Bratan et al., for example, reported detection rates for tumours of <0.5 

cc, 0.5-2 cc and >2 cc of 21-29%, 43-54% and 67-75%, respectively for Gleason ≤6, 63%, 

82-88% and 97 % for Gleason 7 and 80%, 93% and 100% for Gleason ≥8 cancers (Bratan 

et al. 2013).  This data has been scrutinised further in the recent multicentre PROMIS 

trial, validating mpMRI and TRUS biopsy against a reference test (template prostate 

mapping biopsy).  The authors conclude that mpMRI used as a triage test before first 

biopsy, could identify a quarter of men who might safely avoid unnecessary biopsy 

(Ahmed et al 2017).  Although, these figures are encouraging, the accuracy of imaging 

and reporting remains magnet and reporter dependent.   

 

1.3.5.3 Prostate Cancer gene 3 (PCA3) 

PCA3 is a piece of non-coding RNA that is only present in the prostate.  It is detectable 

in urine sediments obtained after three strokes of prostatic massage during DRE. It has 

value as a biomarker because levels in PCa are greatly increased.   PCA3 is commercially 

available (Progensa, Hologic MA, USA) and is thought to be superior to PSA (Auprich 

et al. 2011).  Some have demonstrated a correlation with higher risk disease prompting 

the notion that it can separate aggressive from indolent disease (Merola et al. 2015). It 

has also been included in biopsy-specific nomograms in order to improve diagnostic 

accuracy and help avoid unnecessary biopsies (Hansen et al. 2013). Controversy remains 

however, with regards to defining the cut off value for aggressive and indolent disease 

(NICE CG175, 2014).   
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1.3.6 Natural history of prostate cancer 

The natural course of PCa can be very long and its often thought to progress in a step-

wise fashion Figure 8.  It is believed that the process begins with the development of the 

precursor lesion – prostatic intraepithelial neoplasm or PIN. PIN was previously 

classified into low- (mild) and high-grade (moderate) forms, but pathologists now only 

report high-grade PIN, since low-grade PIN reporting is very subjective and has no 

prognostic value (Clouston & Bolton 2012).  The clinical significance of high-grade PIN 

is difficult to determine.  The presence of high-grade PIN on prostate biopsy was 

previously thought to be a significant predictor for PCa (Clouston & Bolton 2012), but 

more recent evidence suggests this was due to sampling error (Lee et al. 2010; Merrimen 

et al. 2010).  These more contemporary series, using multi-core needle biopsy regimes 

did conclude however that multi-focal (>2 cores) high-grade PIN was a predictor for PCa 

when compared to uni-focal high-grade PIN.  Thus, the presence of multi-focal high-

grade PIN often triggers a repeat prostate needle biopsy (Heidenreich et al. 2014).   

 

 

Figure 8.  Natural progression of prostate cancer.  PIN = Prostatic intraepithelial neoplasm. 

 

Although a step-wise process has been postulated, PCa remains very heterogeneous, with 

individual tumours behaving differently resulting in a diverse clinical course. For 

example, some tumours can behave indolently and never require active treatment, whilst 

others can present as an aggressive clinical entity resulting in progression and metastasis.  

In addition, men often present at different stages of their disease.   

Indolent cancers, typically those well-differentiated tumours (Gleason 6), often have no 

effect on health or survival even without treatment.  Consequently, more men are 

deferring radical treatment and avoiding its associated risks: incontinence and impotence, 

or radiation side effects, by enrolling into active surveillance schemes. A small minority 

of men will however develop high-grade tumours after several years, with some resulting 

in metastasis and mortality (Klotz, Vesprini, et al. 2015; Popiolek et al. 2013).  The cause 
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for this progression is unclear.  The residual low-grade cancer may require sufficient time 

to reach a certain size or for accumulation of critical mutations, in order to de-differentiate 

into a higher-risk lesion.  Alternatively, due to the multifocal nature of PCa, a new higher-

risk lesion may develop.  Both of which would then pave the way for local progression 

and metastasis. 

In men with high-risk poorly differentiated tumours (Gleason ≥8), whether it has de-

differentiated or it is a separate entity, the outlook is far worse.   Albertsen et al reported 

long-term follow-up (20 years) of men managed conservatively with localised disease.  

In men with low- and intermediate-grade PCa (Gleason 6 and 7), about 98 out of every 

100 (98%) lived for more than 5 years. But in men with high-grade (Gleason 8-10) PCa, 

just over 2 out of 3 (67%) lived for more than 5 years (Albertsen et al. 2005). For high-

grade or locally advanced disease radical treatment is recommended, as described in 

1.4.7.  Despite this recurrence rates in this group is far greater.  Khan et al report a 62% 

and 97% 5-year biochemical recurrence free-survival in patients with Gleason 8-10 and 

Gleason 6 PCa following surgery, respectively (Khan et al. 2003).  In those with lymph 

node involvement or with a pre-operative PSA between 20-50ng/ml, the outcome was 

worse with a 5-year biochemical recurrence free-survival of 37% and 50%, respectively. 

(Khan et al. 2003).   

When metastases occur it almost always goes to lymph nodes or bone where it produces 

an osteoblastic response.  The outlook for men presenting at the time of diagnosis with 

metastatic disease is poor.  The main stay of treatment is androgen deprivation therapy 

(ADT), either medically using LHRHa or surgical with castration. However, virtually all 

men become hormone independent termed castrate-resistant within 18-24 months 

following diagnosis.  Rapid progression results either locally, in lymph nodes, or in 

distant metastasis, subsequently resulting in death.  The control arm (i.e. ADT only) of 

the STAMPEDE (Systemic Therapy in Advancing or Metastatic Prostate cancer: 

Evaluation of Drug Efficacy) trial recently reporting a median survival of 3.5 years in 

patients presenting with metastatic PCa (James et al. 2015).      

In summary, men with well-differentiated tumours rarely die from their disease with 

many not requiring any treatment.  Men with non-metastatic poorly differentiated 

tumours frequently die within 5 to 10 years of their diagnosis, often despite aggressive 

intervention (Albertsen et al. 2005; Popiolek et al. 2013).  Finally, men presenting with 
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metastatic disease have a poor outlook, with a short survival with the majority of their 

remaining life in a state of castrate-resistance.  The natural history of PCa is therefore 

complex often due to its heterogeneity or multi-focal nature.  The ability of a tumour to 

de-differentiate from low- to high- risk, to progress locally or to metastases to lymph 

nodes or bone must however have a molecular or genetic correlate or understanding for 

them.  This understanding will permit risk-stratification of patients and define future 

treatment strategies.    
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1.3.7 Prostate cancer management 

1.3.7.1 Management of localised prostate cancer 

Localised PCa is defined as those tumours that are confined to the capsule of the prostate 

(T≤2).  The management of localised PCa is diverse ranging from conservative 

management such as active surveillance to more invasive treatments such as 

brachytherapy, external beam radiotherapy (EBRT), surgery and ADT.   

 

Deferred treatment has evolved of the past few decades, from the traditional watchful 

waiting to the more contemporary active monitoring or surveillance protocols, with 

watchful waiting now reserved for those with a non-curative treatment approach.  Those 

patients enrolling into an active surveillance protocol usually have close PSA surveillance 

with a repeat biopsy of the prostate typically around 12 to 18 months following diagnosis 

(NICE CG175, 2014). This is performed mainly in order to reduce sampling error and 

missing a higher-risk tumour that would require radical treatment.  A systematic review 

of 7 active surveillance series reported up grading on repeat biopsy of between 2.5 and 

28% (Dall'Era et al. 2012).  Many patients embark on an active surveillance programme 

in order to avoid the potential side effects associated with radiotherapy and surgery, such 

as incontinence and impotence.  Long term follow up of a large active surveillance series 

has shown comparable survival (98.1% and 94.3% 10- and 15- year disease-specific 

survival, respectively) with favourable-risk patients managed with initial definitive 

intervention (Klotz, Vesprini, et al. 2015).   

The recent reported ProtecT (Prostate testing for cancer and Treatment) trial is the first 

of its kind to compare active monitoring, radical prostatectomy and radical radiotherapy 

in men with low-risk PCa.  There was no cancer-specific survival benefit at 10 years 

between the three randomised cohorts, although there was a beneficial effect of treatment 

(radical prostatectomy or radiotherapy) over active monitoring in reducing time to 

metastasis (Hamdy et al. 2016). The PIVOT (Prostate cancer intervention versus 

observation trial) randomised men with localised PCa to surgery or observation (watchful 

waiting) (Wilt et al. 2012).  731 men were randomised with a median follow-up of 10 

years.  They concluded that there was no apparent difference between surgery and 

observation for men with low-risk PCa, whereas those with intermediate- and high-risk 

disease may have a better survival following surgery.  A similar earlier study by the 
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Scandinavian Prostatic Cancer Group (SPCG-4), prior to widespread use of PSA testing 

concluded that radical prostatectomy was associated with a reduction in the rate of death 

from PCa (14.6% for surgery compared to 20.7% for observation), with a 12.8-year 

follow-up.  Subgroup analysis further demonstrated additional benefit in men younger 

than 65 years of age.  They reported a number needed to treat to avoid one death was 15 

overall and 7 for men younger than 65 years of age (Bill-Axelson et al. 2005).   Caution 

must be taken interpreting the results from SPCG-4 however, as patients were enrolled 

between 1989 and 1999 when Gleason grading was different and the majority of patients 

had palpable disease, with only 12% having T1c cancers.   This study has further been 

criticised for its under-recruitment and inclusion of men with significant comorbidities, 

leading to an excessive death from non-prostate-related cancer.   

In summary, the best management for low-risk PCa remains unclear.  For intermediate 

and high risk localised PCa, definitive treatment with surgery or EBRT are the mainstays 

of treatment.  

 

1.3.7.2 Management of locally advanced prostate cancer 

Locally advanced PCa is typically defined as tumours that breach the capsule (T≥3a).  

However, this definition often includes tumours with associated pelvic lymph node (N1) 

involvement.  The management of men with localised PCa with a high-risk of extra 

capsular disease (i.e. Gleason score ≥ 8, or PSA > 20) may also be considered under this 

heading.  

 

EBRT in combination with neoadjuvant ADT is the gold standard treatment for locally 

advanced PCa.  The ADT reduces the size of the PCa and appear to increase the sensitivity 

of cancer cells to death by irradiation.  This approach has been validated by numerous 

randomised trials including Bolla et al, SPCG-7 and PRO7 (Widmark et al. 2009; Bolla 

et al. 2009; Warde et al. 2011). In particular evidence from the PRO7 trial co-ordinated 

by the UK Medical Research Council (MRC) have shown that combining EBRT with 

neo-adjuvant and continuous ADT improved the overall survival rate at 7 years (p=0.03) 

compared with ADT alone (Warde et al. 2011).  Careful patient selection is therefore 

required especially in the elderly or those with medical comorbidity when their survival 

could be less than 10 years.  Furthermore, Bolla et al have shown a survival benefit of 
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long term (3 years) versus short term (6 months) ADT in addition to EBRT in locally 

advanced PCa (Bolla et al. 2009). Further survival benefits are likely following the 

introduction of intense-modulated radiotherapy (IMRT), which allows very precise 

targeting of the prostate, with less radiation scatter to surrounding organs.  As a 

consequence, higher doses can be given to men without significant increase in local 

toxicity.   There is likely to be further benefit following the expansion of proton beam 

technology.  

More recent practice has taken a multimodality surgical approach to managing locally 

advanced PCa, particularly in young fit patients where the cancer is thought to be fully 

excisable (T3a).  Surgery is often considered as the primary treatment, accepting that 

there is a higher chance of adverse pathological features, such as upgrading or upstaging, 

positive margins or nodal disease where additional EBRT may be required.  The role and 

timing of EBRT in this setting is controversial.  The currently recruiting MRC 

RADICALS (Radiotherapy and Androgen Deprivation in Combination after Local 

Surgery) trial will evaluate the advantages of early (immediate) versus deferred (salvage) 

EBRT and short (6 months) versus long course (2 years) ADT in addition to EBRT versus 

EBRT alone (Parker et al. 2007).    

 

1.3.7.3 Management of metastatic prostate cancer 

Since the Nobel Prize winning research by Huggins and Hodges in 1941, surgical 

castration has been the main stay of treatment of metastatic PCa. Later work by Schally 

and colleagues developed medical castration through use of LHRHa.  They showed that 

the testosterone level was reduced by 75% within 3 weeks (Tolis et al. 1982).  Schally 

also received a Nobel Prize for his research in 1977. Due to the psychological issue and 

morbidity associated with surgery (sub-capsular orchidectomy) the majority of patients 

in current practice receive medical castration.   

Medical castration, often referred to as androgen-deprivation therapy (ADT), involves 

blocking either the hypothalamus-pituitary-gonadal axis through the use of either LHRH 

analogues, such as leuprorelin, or gonadotropin-releasing hormone antagonists, such as 

Degorelix, or directly targeting the AR with anti-androgens, such as Bicalutamide.  Most 

patients will initially respond to castration, but the majority will gradually develop 
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resistance typically after a median of 11 months (James et al. 2015).  Typically the PSA 

will rise, indicating that AR activity has been restored and new metastases develop 

resulting in disease-related symptoms such as bone pain, spinal cord compression or 

ureteric obstruction. This androgen-independent disease often termed castrate-resistant 

prostate cancer (CRPC) or hormone-refractory PCa, where the outlook is poor with a 

median survival of 42 months (James et al. 2015). 

When CRPC develops (following failure of first line hormone treatments), traditionally 

the second line treatment in fit men is Docetaxel-based chemotherapy.  Newly released 

data from the STAMPEDE trial presented at American Society of Clinical Oncology 

Annual Meeting held in Chicago (31 May 2015) however, has shown that upfront 

Docetaxel in addition to hormones at the time of diagnosis of metastatic disease had an 

improved 10-month survival than hormones alone. This evidence has altered metastatic 

PCa treatment greatly, Docetaxel not only provides a vast survival benefit, but it is also 

relatively inexpensive (as it is off patent) and reasonably well tolerated.  Service provision 

is the only limiting factor, as oncology units adapt to be able to accommodate the high 

volumes of men that are eligible for this treatment.   

Over the past decades a number of third line treatment options have been developed for 

men with metastatic PCa.  These include newer more specific hormonal agents such as 

Abiraterone and Enzalutamide, immunotherapies, bisphosphonates and novel targeted 

therapies.  Many of these agents are only available in a trial setting.   

Abiraterone works by irreversibly blocking cytochrome P17 (an enzyme involved in the 

production of testosterone), thereby stopping androgen synthesis in the adrenal glands, 

prostate tissue and the prostatic tumour.   It has a 4.4 months survival benefit when 

compared to placebo (20.2 versus 15.8 months) in a post-Docetaxel setting (Fizazi et al. 

2012).  Currently, Abiraterone is only available on the NHS following Docetaxel 

chemotherapy (TA259 NICE, 2012).  It has shown survival benefit pre-Docetaxel, but 

this has not been recommended by the National Institute of Clinical Excellence (NICE), 

so it is not currently available in the NHS. Enzalutamide (previously known as MDV 

3100) is an anti-androgen with a higher affinity than Bicalutamide for the androgen 

receptor, which has also demonstrated survival benefit (Scher et al. 2012).  Both 

Abiraterone and Enzalutamide have been added as an additional treatment arm in the 

STAMPEDE trial. 
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Since the pioneering work by Huggins and Schally, there was a period of over 20 years 

where advancements in treatments for metastatic PCa had stalled, with very few new 

drugs discoveries.  Recently, however, there has been a surge in the development of new 

therapies, some using traditional methods targeting the androgen receptor and 

testosterone signalling such as Abiraterone and other more novel mechanisms like 

immunotherapy and alpha emitter Radium-223.  Immunotherapies for PCa fall into 5 

broad categories: therapeutic vaccines, oncolytic virus therapies, checkpoint inhibitors, 

adoptive cell therapies and adjuvant immunotherapies. All of which are in phase II or III 

trials (Cancer Research Institute). Radium-223 selectively targets bone metastases with 

alpha particles inducing double-stranded DNA breaks.  It has been shown to have a 

modest improvement in survival over placebo in metastatic PCa: 14.9 months versus 11.3 

months (Parker et al. 2013).  Despite these, on the whole there remains a varied and 

mainly poor response to treatments in CRPC.  This is thought to be due to the diverse 

genetic make-up displayed by the tumour cells in advanced disease. A better 

understanding of this concept as the driving force behind cancer evolution and 

progression should help yield new targeted therapies and prediction factors.  
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1.4 Prostate cancer biology 

Our understanding of cancer has expanded greatly over the past decades and continues to 

do so.  Cancer research has been the foundation of this expansion in knowledge, revealing 

that cancer is a disease caused by complex dynamic changes in the genome.  The 

discovery of mutations that form oncogenes with dominant gain in function and tumour 

suppressor genes with recessive loss in function, in different cancers has been 

instrumental in the development of new genetic markers and treatments.   

Cancer is caused by the stepwise accumulation of mutations of oncogenes and tumour-

suppressor genes that affect growth, differentiation and survival causing transformation 

of normal human cells in highly malignant derivatives.  This is thought to be an age-

dependent process, resulting in four to seven rate-limiting, stochastic events (Renan 1993) 

resulting in malignancy.  Pathological analysis of a number of organ sites has identified 

intermediate steps where normal cells progress to a pre-malignant state prior to invasive 

cancer (FOULDS 1954). 

Hanahan and Weinberg propose in their sentinel article on ‘The Hallmarks of Cancer’, 

that tumours can possess six essential alterations in their cell physiology caused my 

genetic alteration that collectively dictate the malignant phenotype (Hanahan & Weinberg 

2000).  These cellular processes are self-sufficiency in growth signals (oncogene 

addiction), insensitivity to growth-inhibitory signals (loss of tumour suppressors), 

evading programmed cell death (anti-apoptosis), limitless replication potential (aberrant 

cell cycle), sustained angiogenesis, and invasion/metastasis (Hanahan & Weinberg 2000). 

Following the remarkable progress in cancer research, in their updated review, Hanahan 

and Weinberg have added two further ‘hallmarks of cancer’: reprogramming of energy 

metabolism and evading immune destruction (Hanahan & Weinberg 2011).  
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1.5 Prostate cancer genetics 

Cancer genetics and DNA sequencing has expanded greatly over the past decade, 

particularly since the completion of the Human Genome Project in 2003.  This 13-year 

venture was accomplished with first-generation sequencing, known as Sanger 

sequencing.  Sanger sequencing also known as dideoxynucleotide sequencing, was first 

described by Edward Sanger in 1975 (Sanger 1975).  Since completion of the human 

genome project, there has been a drive to devolve a faster and more importantly quicker 

sequencing method so that this technique could not only be used for research but also for 

diagnostics.  This demand has driven the development of second-generation sequencing 

methods, or next- generation sequencing (NGS) (Grada & Weinbrecht 2013).   

Consequently, there has been a marked expansion in our knowledge of the somatic 

genetic basis of PCa.   

Multiple studies have identified recurrent somatic mutations, copy number alterations, 

and oncogenic structural DNA rearrangements in primary PCa ((Barbieri et al. 2012; 

Taylor et al. 2010; Berger et al. 2011; Baca et al. 2013; Tomlins et al. 2005).  These 

include TMPRSS2:ERG fusion (discussed in section 1.3.2.2); copy number alterations or 

loss of PTEN, RB1, MYC, NCOA2, NKX3-1 and CHD1; and point mutations in SPOP, 

FOXA1 and TP53, among other biological relevant genes.   Further studies of metastatic 

prostate samples demonstrated additional alteration involving the androgen receptor (AR) 

and AR signalling; BRCA1 and BRCA2 (discussed in section 1.3.2.2); and Wnt 

signalling such as β-catenin (CTNNB1) and APC (Kumar et al. 2011; Grasso et al. 2012; 

Rajan et al. 2014; Beltran et al. 2013; Robinson et al. 2015). 

These mutations, alone and in combination, cause activation and inhibition of different 

signalling pathways that promote the cellular processes described by Hanahan and 

Weinberg.  For example, Ras pathway drives uncontrolled proliferation, the 

retinoblastoma (Rb) pathway alters cell-cycle control and the p53 pathway affects 

apoptosis (McCormick 1999).  Genomic alteration in individual genes are not mutually 

exclusive implying that combination mutations have additive or synergistic effects, 

through their action on key signalling pathways that drives tumourigenesis.   

 



 43 

Although data regarding mutational events underlying the development and progression 

of PCa has expanded greatly; few abnormalities in specific genes are highly recurrent, as 

highlighted by the rate of the 20 most common mutations reported by COSMIC 

(Catalogue of somatic mutations in cancer from the Sanger institute), a website designed 

to report somatic mutations reported from robust data sources from PubMed, is shown in 

Figure 9.  Alterations in certain signaling pathways do predominate, however.  These 

alterations include, for example, pathways known to affect tumourigenesis in a wide 

spectrum of cancers, such as the Pten-PI3-Kinase-AKT-mTOR pathway (discussed in 

section 1.5.1).   

Mounting data suggests that PCa can be subdivided based on a molecular profile of 

genetic alteration known to affect certain pathways such as PI3-Kinase and Wnt pathway; 

or genes associated certain cellular mechanism such as DNA repair and cell cycle.  

Similar subdivision is reported in bladder cancer, where FGFR3 mutations predominate 

in superficial papillary tumours and p53 and/or Rb pathway alterations predominate in 

muscle-invasive lesions (Goebell & Knowles 2010). Importantly, these pathway or 

cellular mechanism can be targeted; with evidence from a multi-institute study (8 clinical 

sites) in PCa by Robinson et al (2015), concluding that 89% of 150 metastatic castrate 

resistant PCa harboured a clinical actionable aberration (Robinson et al. 2015).  In 

addition to subdividing or stratifying on signalling pathway or cellular mechanism, a 

Cambridge group recently reported five distinct subgroups of PCa, termed "iClusters", 

based on a panel of 100 genes.  These molecular profiles were correlated with risk of 

biochemical relapse following prostatectomy, with the authors concluding that they were 

able to outperform established clinical predictors of poor prognosis (e.g. PSA, Gleason 

score) (Ross-Adams et al. 2015).  
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Figure 9:  20 most common somatic mutations in PCa.  Data obtained from COSMIC 

(Catalogue of somatic mutations in cancer) website (www.cancer.sanger.ac.uk). 

 

 

Although there has been a dramatic improvement in our understanding of genomic 

profiling in PCa, as yet, no ‘driver’ mutation has been identified or mutation that is 

effective in a clinical practice setting.   The driver mutation is thought to promote and 

maintain the malignant phenotype even when in an advanced state, and targeting these 

genes has led to dramatic improvements in therapies in some cancers.  For example, 

targeting EGFR with selective inhibitors in lung adenocarcinoma and targeting BRAF in 

malignant melanoma has revolutionised treatment (Ladanyi & Pao 2008; Flaherty et al. 

2010; Chapman et al. 2011).  K-Ras status in metastatic colorectal cancer is also an 

established predictive marker used in clinical practice to determine efficacy of anti-EGFR 

therapy. Specifically, patients with K-Ras mutations do not have a response to anti-EGFR 

therapy (Amado et al. 2008). 
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1.5.1 PTEN and the PI3-Kinase pathway 

1.5.1.1 Structure and function 

PTEN (phosphatase and tensin homolog) is a tumour suppressor gene located at the 10q23 

locus of chromosome 10.  The principal function of PTEN is to dephosphorylate 

phosphatidylinositol-3,4,5-trisphosphate (PIP3), opposing the action of phosphoinositide 

3-kinase (PI3K).   PIP3 is a potent activator of 3-phosphoinositide-dependent kinase 1 

(PDK1) and AKT.  Mutations in the PTEN gene cause its protein to become faulty 

resulting in loss of function.  Consequently, this leads to increased levels of PIP3, PDK1 

and AKT at the plasma membrane (Song et al. 2012).  AKT is activated at two different 

phosphorylation sites: Thr308 and Ser473. Thr308 is phosphorylated by PDK1 and 

Ser473 by mammalian target of rapamicin complex 2 (mTORC2; composed of mTOR, 

DEP domain-containing mTOR-interacting protein (DEPTOR), mammalian lethal with 

SEC13 protein 8 (mLST8), stress-activated MAP kinase-interacting protein 1 (mSIN1; 

also known as MAPKAP1), Pro-rich protein 5 (PRR5; also known as PROTOR) and 

rapamycin insensitive companion of mTOR (RICTOR)) (Zoncu et al. 2011).  Upon 

activation, AKT drives cell survival, cell proliferation and angiogenesis by further 

phosphorylating downstream proteins such as glycogen synthase kinase 3 (GSK3), 

forkhead box O (FOXO) B cell lymphoma 2 (BCL-2) antagonist of cell death (BAD), the 

E3 ubiquitin-protein ligase MDM2 and p27 (Manning & Cantley 2007).  AKT can also 

directly phosphorylate tuberous sclerosis protein 2 (TSC2), which in a complex with 

TSC1 inhibits the Ras-related small GTPase Ras homologue enriched in brain (RHEB) 

(Song et al. 2012).  Following phosphorylation of TSC2 by AKT, the TSC1/TSC2 

complex is lost resulting in activation of RHEB, which then stimulates activity of mTOR.  

AKT can also activate MTORC1 (composed of mTOR, DEPTOR, mLST8, PRAS40 and 

regulatory associated protein of mTOR (RAPTOR)) directly, which further 

phosphorylates p70 ribosomal protein S6 kinase (S6K or RPS6K) that activates protein 

translation (Song et al. 2012).     

This complex signaling pathway (Figure 10) is often referred to as the PTEN-PI3-Kinase-

AKT-mammalian target of rapamicin (mTOR) pathway but will be referred to as PI3K 

pathway throughout this thesis.  The PI3K pathway has a crucial role in cell growth, 

proliferation and survival (Cantley 2002). Mutations in genes associated with this 

pathway (most commonly PTEN) results in loss of control of normal cellular functions, 
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such as cell proliferation, which significantly contribute to the initiation and development 

of cancers.  

 

 

Figure 10:  The PTEN-PI3-Kinase-AKT-mTOR pathway. 

1.5.1.2 Role in prostate cancer 

Although COSMIC only reports a PTEN mutational rate of 8% in PCa, this does not 

account for copy number alterations (CNAs), so in fact the overall somatic alteration is 

far greater.  CNAs are somatic changes to chromosome structure that result in gain or loss 

in copies of sections of DNA.  They have critical roles in activating oncogenes and in 

inactivating tumour suppressors (Zack et al. 2013), and are prevalent in many types of 

cancer (Beroukhim et al. 2010).  PTEN commonly has loss of function, sometimes 

referred to as loss of heterozygosity or homozygosity.  PTEN loss varies across studies 

especially when comparing samples obtained from primary and metastatic disease (Table 

5).  The reported incidence is approximately 7-18% in primary non-metastatic tumours 

(Taylor et al. 2010; Barbieri et al.2012; Baca et al. 2013) and increases significantly to 

between 40-87% in metastatic samples (Taylor et al. 2010; Robinson et al. 2015; Grasso 
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et al. 2012; Friedlander et al. 2012). PTEN loss is also recognised to have prognostic 

significance with respect to earlier biochemical relapse (Barbieri et al. 2012) and PCa–

specific death (Reid et al. 2010).   

 

 

 

           Incidence (mutation and deletion) 

N Primary % Metastatic % Source of tissue Reference 

218*  

 

189** 

61 

 

112 

57 

15 

14 

 

- 

- 

 

7 

18 

- 

42 

 

40 

51 

 

- 

- 

87 

Treatment-naïve prostatectomy 

Metastasis not declared 

Fresh mCRPC 

Lethal mCRPC from rapid 

autopsy 

Treatment-naïve prostatectomy 

Treatment-naïve prostatectomy 

Lethal mCRPC from rapid 

autopsy 

(Taylor et al. 2010) 

 

(Robinson et al. 2015) 

(Grasso et al. 2012) 

 

(Barbieri et al. 2012) 

(Baca et al. 2013) 

(Friedlander et al. 2012) 

*181 primary, 37 metastatic.  **lymph node=67, bone=76, liver=19, soft tissue 27. mCRCP: metastatic 

castrate resistant prostate cancer. 

Table 5: Incidence of PTEN somatic alteration in primary and metastatic PCa. 

 

The incidence of PI3-Kinase pathway deregulation; encompassing multiple somatic 

alterations; such as PTEN, PI3-Kinase and AKT, is far greater than when compared to 

individual mutations alone.  For example, Taylor et al (2010) demonstrated up-regulation 

of the PI3-kinase pathway in 42% of primary tumours a 100% of metastatic tumours 

suggesting that this pathway plays a key role in the ability of the cancer cell to metastasise.  

Robinson et al (2015) reports somatic alterations associated with the PI3-Kinase pathway 

in 49% metastatic castrate resistant PCa affected individuals (Robinson et al. 2015).  As 

previously alluded to, recent research has attempted to classify mutational profiles into 

signalling or cellular pathways.  In doing so, there would be clinically actionable 

information available; permitting use of novel targeted therapies. 
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1.5.2 β-catenin and the Wnt pathway 

1.5.2.1 Structure and function 

β-catenin is a cytoplasmic protein that has two major functions.  Firstly it is an essential 

component of cadherin cell adhesion complexes (Heuberger & Birchmeier 2010).  β-

catenin binds cadherin and other protein such as α-catenin which is thought to mediate 

the attachments to F-actin and other actin associated proteins (Huber & Weis 2001).  

These protein complexes or adherent junctions serve as a bridge connecting the actin 

cytoskeleton of neighbouring cells through direct interaction.  This is important in growth 

of epithelial cell layers and important in signal transduction.  Secondly, β-catenin is one 

of the key downstream effectors in the Wnt signalling pathway (Harada et al. 1999).  The 

Wnt signalling pathway; often referred to as the canonical pathway (Logan & Nusse 

2004), is formed by a series of protein on the cell surface, most importantly β-catenin, 

which acts as a transcription factor translocating signals into the cell nucleus regulating 

many genes implicated in cancer.   

An overview of the Wnt pathway is shown in Figure 11.  In the absence on Wnt (Figure 

11A), cytoplasmic β-catenin is degraded by the Axin complex composed of Axin, the 

tumor suppressor adenomatous polyposis coli gene product (APC), casein kinase 1 

(CK1), and glycogen synthase kinase 3 (GSK3).  β-catenin is phosphorlyated resulting in 

recognition by β-Trcp, an E3 ubiquitin ligase subunit, causing proteolytic degradation.  

β-catenin is not able to enter the nucleus to interact with DNA-bound T cell 

factor/lymphoid enhancer factor (TCF/ LEF) family of proteins, and Wnt target genes are 

thereby suppressed.  When the Wnt/ β-catenin pathway is activated (Figure 11 B) the Wnt 

ligand binds to a seven-pass transmembrane Frizzled (Fz) receptor and its co-receptor, 

low-density lipoprotein receptor related protein 5 or 6 (LRP5/6).  A Wnt-Fz-LRP5/6 

complex forms recruiting the scaffolding protein Dishevelled (Dyl) resulting in 

phosphorylation of LRP5/6 and recruitment of the axin complex to the receptors.  This 

inhibits axin-mediated β-catenin phosphorylation preventing degradation of β-catenin.   

β-catenin accumulates in the cytoplasm and travels to the nucleus to form complexes with 

TCF/LEF and activates Wnt target gene expression such as c-MYC and MMP-7 

(MacDonald et al. 2009). 
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Figure 11:  Overview of Wnt/ β-catenin signalling. From (MacDonald et al. 2009). 

 

Wnt signalling has important roles in normal cells such as in the developing embryo and 

in tissue homeostasis/stem cell regulation in adults. In particular, it regulates 

proliferation, differentiation and the epithelial-mesenchymal transition (EMT), which is 

thought to regulate the invasive behaviour of tumour cells (Clevers 2006).  

1.5.2.2 Role in prostate cancer 

Deregulation of Wnt signalling is implicated in many types of cancers.  The best known 

example is colorectal cancer, where greater than 90% have an activating mutation of the 

canonical Wnt signalling pathway.  Mutations in APC are most common, occurring in 

85% of colorectal cancers and are associated with Familial Adenomatous Polyposis 

(FAP), an inherited autosomal dominant condition leading to the development of multiple 

adenomas in the colon and rectum (Giles et al. 2003).  APC mutations promote aberrant 

activation of Wnt signalling leading to adenomatous lesions due to increased cell 

proliferation.  Mutations in the proto-oncogene β-catenin are reported in approximately 

10% of colorectal carcinomas (Giles et al. 2003).   
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Genomic alteration of APC and β-catenin in PCa are far less, with reported incidence of 

2.8-10.7% and 1.8-6.3% in primary tumours, respectively (Baca et al. 2013; Barbieri et 

al 2012; Taylor et al. 2010; Beltran et al. 2013).  Similar to PTEN, the somatic alteration 

of APC and β-catenin are greater in metastatic disease, with an incidence of 8.7-19.7% 

and 4.9-12% respectively (Grasso et al. 2012; Robinson et al. 2015). Multiple other 

components of the Wnt signaling pathway have also been implicated in the progression 

of PCa (Grasso et al. 2012; Barbieri 2013) making it an attractive target for therapy. Wnt 

signaling has been also been implicated in the lethal phase of PCa, castrate resistant PCa 

(Kumar et al. 2011; Grasso et al. 2012).   Mouse models have shown enhanced crosstalk 

between β-catenin and the androgen receptor (AR) causing resistance to androgen 

deprivation therapy (G. Wang et al. 2008).  An alternative mechanism for androgen-

resistance in advanced disease, is the effect β-catenin has on the cancer stem cell 

population (discussed in 1.7).  Work on cell lines using a prostaspheres assay shows that 

Wnt signalling regulates self-renewal of PCa cancer cells with stem cell characteristics, 

independently of AR activity (Bisson & Prowse 2009).  AR target genes are also elevated 

independent of androgen ligands following treatment of cells with Wnt3a-conditioned 

media (Verras et al. 2004).  Taken together, this suggests that aberrant activation of Wnt 

signalling may regulate the prostate CSC population, with its ability to stimulate AR 

target genes regardless of androgen status.  This in principle could explain the 

phenomenon of castrate resistance in advanced PCa and aid future treatment strategies.  

Emerging evidence suggests that APC and β-catenin are mutually exclusive, consistent 

with the notion that mutations of either gene has more or less the same molecular defect: 

β-catenin stability and TCF transactivation within the nucleus (Giles et al. 2003).  The 

presence of nuclear β-catenin on immunohistochemistry would therefore be a marker of 

Wnt activation.  This idea is somewhat flawed however, by evidence suggesting no clear 

consensus on the significance of nuclear β-catenin expression in primary PCa on 

immunohistochemistry (Kypta & Waxman 2012).  The inconsistency of β-catenin 

immunohistochemical reporting in summarised in table 6.  

In summary, evidence from DNA sequencing demonstrates the importance of β-catenin 

and Wnt signalling in PCa particularly during the later stages of disease.  No clear 

consensus however, explains the prevalence and inconsistency of nuclear localisation of 

β-catenin in PCa, or its clinical relevance.    
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N Expression Conclusions Reference 

132 (36 localised,  
31 locally 
advanced, 65 
metastatic) 

 

Increased 
 

Increased cytoplasmic staining 72% 
overall and 3% had nuclear staining. 
Increased expression correlated 
with: High GS, disease progression 

and increasing PSA.   

(Jung et al. 2013) 
 

 
225 (145 PCa, 80 
BPH, 23 
metastatic) 
 

 
Increased 

 

 
High staining intensity overall - 
18% BPH, 15% GS<7, 22% GS=7, 
44% GS>7.   
Nuclear alone: 37% BPH, 14% GS 
<7, 9% GS= 7, 5% GS >7. 
 

 
(Whitaker et al. 

2008) 
 

67 (49 localised, 
18 metastatic) 
 

Increased 
 

Increased cytoplasmic/nuclear 
staining in:  52% overall, 43% GS 
≤7, 78% GS >7 and 85% metastatic. 
 

(G. Chen et al. 2004) 
 

212 (122 
localised, 90 
metastatic) 
 

Increased 
 

Increased cytoplasmic and nuclear 
expression in 29% overall: 21% 
GS<7, 26% GS 7, 37% GS >7, 38% 
metastatic. 
 

(la Taille et al. 2003) 
 

101 (73 localised, 
25 locally 
advanced, 3 
metastatic) 
 

No change 
 

Membrane staining in 88% and 
remaining 12% had no staining.  No 
nuclear staining. 
 

(Bismar et al. 2004) 
 

252 (15 metastatic 
and 5 LNM) 

 

Decreased 
 

Decrease membranous and nuclear 
expression, but cytoplasmic 

expression unchanged. Expression 
significantly lower in metastatic 
PCa. 
 

(Horvath et al. 2005) 
 

112 (47 localised, 
65 had locally 
advanced) 

Decreased Loss of overall expression in 5% of 
tumours + more frequent in tumours 
with GS ≥7 

(Kallakury et al. 
2001) 

Table 6:  Studies of β-catenin expression in PCa using immunohistochemistry.  BPH – benign 

prostatic hyperplasia, GS – Gleason score, LNM – lymph node metastasis.   
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1.5.3 K-Ras and the MAP-Kinase pathway  

1.5.3.1 Structure and function 

Ras proteins are proto-oncogenes that are frequently mutated in human cancers. They are 

encoded by three ubiquitously expressed genes: H-Ras, K-Ras and N-Ras (Prior et al. 

2012).  Following extracellular stimulation, the Ras proteins deliver signals from the cell 

surface receptor such as growth factor receptors, receptor tyrosine kinases (RTKs) and 

integrins, into the cytoplasm where it sits at the center of a many-tired cascade of 

molecular interactions.  Ras proteins act as molecular switches that cycle between 2 

conformational states: one when they are bound to GTP, the active or “on” form, and 

another one when bound to GDP, the inactive or “off” form.  Guanine nucleotide 

exchange factors, or GEFs, promote formation of GTP-bound Ras whereas GTPase-

activating proteins, or GAPs, stimulate the hydrolysis of GTP on Ras, returning them to 

their inactive state (Castellano & Downward 2011).  

The active Ras-GTP regulates a complex signaling network that modulates cell behaviour 

by binding to and activating many distinct classes of effector molecules. Perhaps the best 

described of these is the Ras-Raf–MEK–ERK signalling pathway (also known as the 

Mitogen activated protein kinase (MAPK)). There are three Raf serine/threonine kinases 

(ARAF, BRAF and RAF1) that can activate MEK, which in turn activates ERK by 

phosphorylation (Figure 12).  Ras is also known to interact with PI3K, typically through 

its p110-binding domain resulting in concurrent activation of the MAPK and PI3K 

pathway (Castellano & Downward 2011).  Mutations in K-Ras favour GTP binding 

resulting in aberrant K-Ras activation and subsequent MAPK and PI3K pathway 

deregulation. Consequently, fundamental cellular processes such as growth, proliferation, 

cell survival and apoptosis are disrupted, permitting tumourigenesis.  
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Figure 12: The Ras-Raf-MEK-ERK (MAPK) pathway. 

 

1.5.3.2 Role in prostate cancer 

According to the COSMIC dataset, approximately 30% of all human tumours screened 

are found to carry some mutation in one of the canonical Ras genes. These oncogenic 

mutations predominantly affect the K-Ras locus, present in 22% of samples analysed 

compared to 8% for N-Ras and 3% for H-Ras (Prior et al. 2012; Forbes et al. 2015).  The 

incidence of mutations of K-Ras varies considerable between cancer types.  An extreme 

example is found in pancreatic cancer; where the COSMIC dataset reports that 66% of 

tumours harboured a K-Ras mutation with some individual studies reporting an incidence 

as high as 90% (Biankin et al. 2012).  Other cancers where K-Ras mutations are prevalent 

include the biliary tract, colon and lung with a reported incidence of 31%, 33% and 17%, 

respectively (Prior et al. 2012).    

Ras mutations in PCa are rare however, with a reported incidence in K-Ras of 3-6% 

(Grasso et al. 2012; Baca et al. 2013; Taylor et al. 2010; Robinson et al. 2015).  

Paradoxically, aberrations that result in the upregulation of the MAPK pathway are 
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among the commonest seen in PCa, with Taylor et al (2010) reporting pathway alteration 

in 43% of primary tumours and 90% of metastasis.  MAPK pathway has not only been 

implicated in the initial phase of metastasis but also is in the late transition to a castrate 

resistance state and time to death (Mukherjee et al. 2011).  Multiple experiments have 

been undertaken to better understand how Ras and MAPK signalling grants cells with 

metastatic potential.  Steps in postulated mechanisms include: weakening of cell-cell 

adhesion by destabilisation of and the nuclear translocation of β-catenin, and the 

upregulation of extracellular matrix (ECM) proteases (along with the downregulation of 

protease inhibitors) by Ras effectors to aid penetration of the ECM (Pylayeva-Gupta et 

al. 2011; Cox & Der 2003).    

In PCa, it is unlikely that a solitary Ras mutation is sufficient for the development of 

metastatic disease; instead it contributes to the overall genetic events crucial to the 

metastatic phenotype in combination with mutation(s) of other key signalling pathways.  

Although, Ras mutations are rare in PCa, deregulation of its effectors such as the MAPK 

signaling pathway is very common.  Taken together, the Ras effectors could represent a 

convergence point for numerous interconnecting cellular pathways and be instrumental 

in the ability of PCa cells to evade normal controlling mechanism and metastasise.   
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1.6 Mouse models of prostate cancer 

Mouse models have been used over a number of decades to investigate the tumour 

genetics and complex gene environmental interactions in PCa.  Although, mice are not 

prone to develop spontaneous benign or malignant prostate pathologies, it is possible to 

genetically manipulate the mouse genome with various technologies in an attempt to 

mimic PCa in humans.  In doing so, the biology of the PCa can be studied in depth in its 

own microenvironment, one major advantage over using cell lines for example.  

 

To date there are over 100 mouse models of PCa.  The next section will thus summarise 

the important types and methods of mouse models used with particular emphasis on those 

affecting PI3K, Wnt and MAPK signalling pathways.   

 

Early mouse models adopted constitutive or germline mutations, where the whole 

genome of the mouse was affected by loss or induced activation of a particular gene of 

interest.  The major limitation precluding the widespread and continued use of this 

technique is embryonic lethality since many tumour suppressors play important roles in 

embryogenesis.  For example, mice harboring a homozygous deletion of Pten (Pten-/-) are 

incompatible with life, whereas those with heterozygotes (Pten+/-) survived up to 1 year 

and resulted in broad-ranging phenotypes in various tissues including gonads, skin, uterus 

and endometrium, intestine, thyroid and adrenal glands.  In the prostate, Pten+/- mice 

develop PIN (Podsypanina et al. 1999).  Due to embryonic lethality and the varying 

degree of non-specific pathologies the majority of mouse models used to date are 

conditional knockouts adopting Cre-LoxP technology.    

Cre-LoxP technology allows site or organ specific recombinase used to carry out 

deletions or insertions of specific genes.  The system consists of a single enzyme, Cre 

recombinase, which causes recombination of a pair of short target sequences called 

the LoxP sites.  The DNA between these LoxP sites is lost following recombination.  

LoxP-flanked alleles are therefore generated using gene targeting, allowing deletion of 

genes upon expression of Cre recombination.  The most widely used ‘prostate-specific’ 

promoter of Cre recombination is the rat probasin (Pb).  Several generations of the Pb 

promoter have ben characterised, but the most commonly used is the Pb-Cre4.  Pb-Cre4 

has successfully facilitated recombination in all lobes of the murine prostate but not in 

the embryo; >95% of the lateral lobe of the prostate, 50% of the ventral lobe, and 
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approximately 10% and 5% of the epithelium of the dorsal and anterior lobes, 

respectively.  Although Pb-Cre4 causes recombination in both basal and luminal cells, 

the luminal cell compartment does predominate (X. Wu et al. 2001).  Consequently, many 

other promoters have been adopted, which have been used in cancer stem cell research to 

help identify the cell of origin of PCa.  These include basal cell type specific promoters 

such as CK5-CreER (Rock et al. 2009) and p63 (Pignon et al. 2013), and luminal specific 

promoters such as PSA-CreER (Ratnacaram et al. 2008) or CK8-CreER (Van Keymeulen 

et al. 2011).  

Many genes have been overexpressed or deleted alone and in combination using Cre-lox 

technology in the mouse.  To date however, the only single gene knockout model to have 

recaptured all stages of PCa; PIN to adenocarcinoma to local invasion to metastatic 

disease (lung), is the Pb-Cre4 Ptenfl/fl
 mouse model (S. Wang et al. 2003).  Pten loss is 

particularly prevalent in both localised and metastatic human PCa further enhancing the 

popularity of this model for researchers.  A weakness of this model is that not all PCa 

have a reduction in Pten, and in reality multiple genetic ‘hits’ are required to progress to 

invasive tumour and metastasis in the human.  Also, in humans it is well known that the 

majority of metastasis occurs in bone (Mundy 2002).  Consequently, compound 

mutational models have been developed attempting to generate multiple ‘hits’ in an 

attempt to more accurately reflect human disease.  For example, Ptenfl/flK-Ras+/V12 mice 

dramatically accelerate tumourigenesis when compared to their single mutant 

counterparts (Mulholland et al. 2012). 

To date, few mouse models have incorporated more than two genetic mutations.  This is 

somewhat surprising given that recent DNA sequencing by Robinson et al (2015) reported 

an average of 4.4 mutations per megabase (Mb); with four cases exhibiting a mutation 

rate of nearly 50 per Mb (Robinson et al. 2015).  Although, studying the interactions 

between these genes becomes more complicated, this type of mouse model would more 

realistically reflect the complexity of PCa in the human, particularly in the metastatic 

setting.   

The mouse is the most commonly used animal to model human biology and disease.  The 

mouse offers particular advantages over other species because it is a mammal with similar 

behaviour and physiology to humans; almost all (99%) mouse genes have homologs in 

humans, the mouse genome supports targeted mutational manipulation analogous with 
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those in specific human diseases (Austin et al. 2004).  Furthermore, mouse models offer 

advantage over in vitro studies (e.g. cell lines), in that the disease can be investigated in 

its own microenvironment including important epithelial-stromal interactions.  The main 

disadvantages of mouse models are they are very expensive, they often do not represent 

the genetic diversity seen in human cancer and mouse tumours typically grow very fast 

relative to human tumours. Table 7 summarises the most relevant mouse models of PCa.   

 

Mouse Model Histology relevant to specific model Reference 

Single genes   

Pten (loss) PIN, invasive adenocarcinoma, and 
metastasis 

(S. Wang et al. 2003) 
 

APC (loss) Invasive adenocarcinoma (Bruxvoort et al. 2007) 

β-catenin 
(activation) 

Invasive adenocarcinoma (Pearson et al. 2009) 

K-Ras (activation) Focal PIN (Scherl et al. 2004) 

Compound Mutations 

Pten/K-Ras Invasive adenocarcinoma with lung and liver 

metastasis 

(Mulholland et al. 2012) 

Pten/ β-catenin Invasive adenocarcinoma with squamous 
metaplasia 

(Francis et al. 2013) 

β-catenin/K-Ras Invasive adenocarcinoma with squamous 
metaplasia 

(Pearson et al. 2009) 

Pten/AKT AKT loss inhibits development of PCa (M.-L. Chen et al. 2006) 

   

 
Table 7: Mouse models of Prostate cancer.  
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1.7 Tumour heterogeneity and Cancer stem cells (CSC) 

Emerging evidence from both solid and haematological tumours (Nik-Zainal et al, 2012; 

Gerlinger et al, 2012; Anderson et al, 2011) have shown that cancer comprises a collection 

of related but subtly different clones (i.e. initiated from a single cell) termed intra-clonal 

heterogeneity.  This intra-clonal heterogeneity not only occurs in different individuals 

tumours (inter-tumour heterogeneity) but also within the same tumour (intra-tumour 

heterogeneity).  This so-called tumour heterogeneity poses an important challenge in 

order to predict how individual tumours will behave and interact leading to progression 

or recurrence of disease, and their impact on treatment (Brioli et al. 2014).  The 

emergence of advanced molecular or genetic technologies, such as next-generation 

sequencing have enhanced our knowledge and began to pave the way for a number of 

cancers such as breast and brain, allowing their separation in to subtypes with markedly 

different molecular and clinical qualities (De Sousa E Melo et al. 2013).      

PCa demonstrates great heterogeneity, with many patients presenting with different 

grades of tumour in a multifocal fashion.  Indeed the behaviour of these individual 

tumours can act very differently.  Although the higher-grade tumours are thought to be 

most aggressive with a greater metastatic potential, Haffner et al  (2013) showed 

contrasting results by characterising the lethal clone in a patient who died from PCa.  

Surprisingly, they revealed that the lethal clone arose from a small, relatively low-grade 

cancer focus in the primary tumour, and not from the bulk, higher-grade primary cancer 

or from a lymph node metastasis resected at prostatectomy (Haffner et al. 2013).  This 

data highlights the heterogeneity within PCa and the importance of developing other 

prognostic markers in PCa, such tumour suppressor genes or signalling pathways such as 

Pten or PI3-Kinase pathway, in order to augment the pathological evaluation currently 

available.   

Despite advances in DNA sequencing, we are only beginning to understand the 

complexity of PCa tumours and our limited understanding of the molecular mechanisms 

(other than the role of testosterone) by which individual cancers are driven, precludes the 

development of future curative therapies.  Recurrence following seemingly successful 

radical curative treatment such as EBRT for instance, is commonplace in high-risk 

tumours, often attributed to the presence of tumour heterogeneity.  The link between this 

heterogeneity within a tumour and treatment failure or recurrence is thought to reside on 
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two conceptual mechanisms. The first theory is often compared to Darwinian classical 

evolution, stating that all organisms arise and develop through the natural selection of 

small, inherited variations that increase the individual's ability to compete, survive, and 

reproduce.  In other words, selective pressure acting on tumour cells ultimately lead to 

genetically distinct, resistant clones (De Sousa E Melo et al. 2013).  It is postulated that 

the primary treatment does not effctively eradicate these clones or as a result of treatment 

they undergo a process of adaption through inheriting further key mutations, resulting in 

recurrence or metastasis.  The second, and more recent theory, describes a small sub-

population of cells within the tumour that largely drives growth and metastasis.  This sub-

population of cells may possess unique properties, such as quiescence and self-renewal, 

that make them refractory to standard treatments, for example, those treatments that target 

actively proliferating cells. These so termed ‘cancer stem cells’ (CSC) have therefore 

been proposed to be a cause of resistance to conventional therapies and also to be 

instrumental in the ability of cancer cells to metastasise.  This is particularly true for 

tumours that are composed of a heterogeneous population of cells such as PCa (Ni et al. 

2014; Ni et al. 2012).  In this scenario, tumours are perceived to have a hierarchy of cells, 

with a small population of CSC residing at the top and their more differentiated progeny 

(transit-amplifying or progenitor cells) below.  The CSC is therefore not only thought to 

be important in recurrence and treatment failure, but also in the initiation of cancers:  often 

referred to as the ‘cell of origin’ or ‘tumour initiating cells’.  This latter concept differs 

from the more traditional stochastic (clonal) model; which proposes that every 

transformed cell within a tumour has tumourigenic potential, which occurs as a result of 

extrinsic or intrinsic factors in a random or stochastic fashion (Figure 13).  In theory, 

these two models do not need to be mutually exclusive; tumours that follow the CSC 

model could also undergo clonal evolution if more than one type of CSC coexists, or if 

the CSCs adapts under environmental selection or secondary to the changes in the 

complex microenvironment (Z. A. Wang & Shen 2011).   
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Figure 13:  The cancer stem cell (CSC) theory suggests a clear hierarchy of cells within a 

tumour.  The CSC can self-renew and produce more mature cells called transit-amplifying or 

progenitor cells.  These cells can divide a certain number of times into specialise tumour or mature 

cells.  These mature cells do not divide; therefore do not contribute to tumour growth.  The 

stochastic model states that tumour growth is a random process where all cells are equal and can 

replicate or differentiate into mature cells. Adapted from (Welte et al. 2010).   

 

The CSC concept has created great excitement in the research community over the last 

decade, being the focus of research in not only PCa but a range of tumour types, including 

other solid epithelial tumours such as breast (Dontu et al. 2003), colonic (Dalerba et al. 

2007), and pancreatic (Li et al. 2007) and their role is well established in haematological 

cancer (Bonnet & Dick 1997).  This promises the development of more effective 

treatments, aimed not at reducing tumor bulk as most conventional primary treatments 

do, but rather at targeting the ‘beating heart’ of the tumor, the CSC (Clevers 2011).  A 

combined treatment approach must therefore be adopted targetting both the bulk of the 

tumour with converntioanl treatments and the CSC with novel targetting agents.  

This area of research faces many challenges however, and many questions remain 

regarding the origins and markers of these specialised cells.  Although some research 

groups have claimed markers for the CSC in certain tumour types; such as in Lgr5+ cells 

in the small intestine and colon (Barker et al. 2007), a reliable CSC marker has yet to be 

discovered in the majority of solid tumours, including PCa.   
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1.7.1 Technologies in Cancer Stem Cells research 

As it is not experimentally feasible to investigate the existence of CSC in human solid 

tumours, a number of functional assays have been developed to help define the CSC 

concept. The most frequently used techniques include fluorescence-activated cells sorting 

(FACS) and xenotransplantation assays.   The combined technology of FACS and specific 

monoclonal antibodies against cell surface antigens can be used to select a population of 

single cells with CSC properties.  Defining these properties traditionally uses two assays, 

xenotransplantation or ex-vivo 3D organoid culture. In xenotransplantation assays, the 

CSCs are defined as a subpopulation of cells, usually selected using FACS that can 

initiate tumour formation when transplanted into immunodeficient (nude) mice (usually 

in the flank or renal sub-capsule), unlike the remaining tumour cells.  This method has 

proven successful haematological malignancies, such as the CD34+CD38- population in 

acute myeloid leukaemia (Bonnet & Dick 1997).  When attempting to translate this early 

research into solid tumours such as PCa, although many candidate markers have been 

identified (discussed below), there remains scepticism that the complex endogenous 

microenvironment of the tumour cannot be modelled by xenotransplantation (Goldstein 

& Witte 2013).  Ex-vivo organoid culture also adopts FACS sorting techniques or mouse 

models harbouring key mutations in tumourigenesis to isolate single cells that can be 

grown into a three-dimensional epithelial structure that aims to closely parallel the in vivo 

phenotype.  These cells are grown in a matrix such as matrigel, which can be monitored 

in real time.  The CSC model is assessed by the ability of these selected cells to 

differentiate into other cell types and/or their ability to serially-passage or self-renew, 

both key features defining the CSC.     

 

1.7.2 Location and markers of prostate epithelial cancer stem cells 

As the CSC may originate from oncogenic alteration of normal stem cells, many studies 

have focused on the identification of the normal stem cells in order to identify the cell of 

origin of PCa.  The location of the prostate epithelial stem cell; whether basal or luminal 

has been a focus of great debate in PCa, with evidence supporting both locations.   
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1.7.2.1 Basal cells as the cell of origin 

Although prostate tumours display a strongly luminal phenotype, in response to androgen 

deprivation, the majority of luminal cells undergo apoptosis (Evans & Chandler 1987), 

suggesting that the basal cell may be the cell of origin. New-born mice with deletion of 

the basal marker p63 (p63-/-) do not develop a prostate gland (Signoretti et al. 2000), 

implying that basal cells are central to prostate development and may include the prostate 

stem cell.  Further research has revealed several candidate basal cell subpopulations of 

CSCs.  For example, Collins and Maitland’s group have isolated enriched stem-cell 

populations using high levels of integrin α2β1 selected from CD44+ basal cells 

(α2β1
hiCD44+) (Collins et al. 2001).  This selected population accounted for 

approximately 1% of basal cells from human benign prostate tissue and are distinguished 

from other basal cells by their ability to generate prostate-like glands in vivo with 

morphologic and immuno-histochemical evidence of prostate-specific differentiation 

(Collins et al. 2001).  Integrins are transmembrane receptors that are the bridges for cell-

cell and cell-extracellular matrix (ECM) interactions.  Integrin α2β1 is expressed in both 

primary and metastatic PCa.  It is thought to facilitate bone metastasis through selective 

adhesions between PCa cells and cells of the bone marrow (Lang et al. 1997).  Further 

enrichment using addition of CD133 (α2β1
hiCD133+CD44+), of human PCa samples has 

shown a cell population that is highly proliferative and can reconstitute prostate-like acini 

in immunocompromised male nude mice (Collins et al. 2005).    

Research from the Witte laboratory has isolated prostate stem cells from wild-type mice 

using mouse Lin-Sca-1+CD49fhi and mouse Lin-Sca-1+CD49fhiTrop2hi profiles.  These 

correspond to a predominantly basal population, yet can differentiate into luminal cells 

both in ex-vivo 3D organoid culture and following xenotransplantation (Lawson et al. 

2007; Goldstein et al. 2008).  To facilitate tumour progression by recapitulating similar 

oncogenic signals that occur commonly in human PCa, the same group showed that 

lentivirus overexpression of ERG1, the fusion partner of TMPRSS2, in mouse Lin-Sca-

1+CD49fhi cells resulted in a PIN phenotype, while co-activation of AKT and AR 

signalling resulted in an aggressive adenocarcinoma with high expression of vimentin 

implying the basal/stem cells have progressed into a mesenchymal phenotype (Lawson et 

al. 2010). Sca-1 (stem cell antigen-1) is only expressed in the mouse; therefore similar 

studies have been conducted using FACS for cell the surface markers CD49f and Trop2 

alone, in human benign prostate tissue.  Using these two markers, they were able to 
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separate the cells into two predominant populations, basal (CD49fhiTrop2hi) and luminal 

(CD49fhiTrop2lo).  Once again the basal/stem population (CD49fhiTrop2hi) is able to 

regenerate benign prostate tissue following xenotransplantation into immunodeficient 

mice.  Furthermore, following introduction of oncogenic signals using lentivirus induced 

activated AKT, ERG and AR to mimic human PCa, adenocarcinoma developed from the 

basal cells subpopulation but not from the luminal cells (Goldstein et al. 2010).  

Mulholland et al also explored the effect of deregulation of the AKT/PI3-Kinase pathway, 

through use of the Probasin induced Pten null mouse model.  Again adopting the Lin-Sca-

1+CD49fhi sub-population, mutant (Ptenfl/fl) mice have a greater stem cell population and 

sphere forming capacity.  More importantly the spheres mimic the structural organisation 

of the epithelial compartment in the Pten null primary tumour.  A further interesting 

finding was that castration both increased the number of stem cells and sphere forming 

capacity in Pten mutant mice, suggesting a possible role for Pten in castrate resistance 

(Mulholland et al. 2009). The same authors have since reported that Pten loss and 

Ras/MAP-Kinase activation cooperates to promote epithelial-to-mesenchymal transition 

(EMT) with significant expansion of the basal/stem Lin-Sca-1+CD49fhi population, with 

corresponding enhanced sphere forming capacity compared to single mutants 

(Mulholland et al. 2012).    

Other combinatory antigen markers used to isolate the basal stem population include 

Epithelial Cell Adhesion Molecule (Epcam) or Trop-1, CD44 and CD49f.  Using FACS 

for these markers, benign prostate cells could be separated into three distinct populations: 

(i) Epcam+CD44+CD49fhi: a putative prostate stem cell population that does not form 

spheres, but induces relatively robust tubule populations and induce differentiated 

ductal/acini structures, (ii) Epcam+CD44-CD49fhi progenitor cells possessing maximal 

sphere-forming ability and, (iii) Epcam+CD44-CD49flo terminally differentiated luminal 

cells that lack both sphere-forming and tissue regeneration potential (Guo et al. 2012).  

Guo et al (2012) thus conclude that sphere-forming capacity is not necessary predictive 

of more complex tubule-formation.   
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1.7.2.2 Luminal cells as the cells of origin 

By contrast, clinical observations suggest that luminal cells are the origin of PCa because 

it is histologically defined by basal cell loss and malignant luminal cell expansion.  

Although p63-/- new-born mice fail to develop prostates (Signoretti et al. 2000), Kurita et 

al have shown that xenotransplanted p63-/- embryos grafted into adult male nude mice, 

have the capability to form prostates in the absence of basal cells (Kurita et al. 2004).  To 

further support the luminal cell as the cell of origin, Shen’s group have shown that a rare 

population of luminal cells: castration-resistant Nkx3.1-expressing cells (CARNs) are 

bipotential and can self-renew following both xenotransplantation and in functional 

assays (X. Wang et al. 2009).  Using luminal (PSA-CreER and CK8-CreER) and basal 

specific (CK5-CreER) Cre recombinase mouse models and lineage-marking, the same 

laboratory were able to track cells as they progress into PIN and adenocarcinoma.  Using 

Nkx3.1+/-Pten+/-, Hi-myc and TRAMP mouse models and concluded that the luminal cells 

were consistently the favoured cell of origin (Z. A. Wang et al. 2014).  Similarly, Korsten 

et al demonstrated in the Pten knockout mouse model using the PSA-Cre that hyperplastic 

cells were all luminal in origin (Korsten et al. 2009).  Following successful growth of 

epithelial organoids from the small intestine (Sato et al. 2009), colon (Sato et al. 2011), 

stomach (Barker et al. 2010) and liver (Huch et al. 2013); Clevers laboratory have recently 

developed 3D culture conditions that allow long-term expansion of primary mouse and 

human normal prostate epithelial organoids (Karthaus et al. 2014).  They demonstrated 

that a single liminal or basal cell could give rise to an organoid, yet the luminal-cell-

derived organoid more closely resembled a prostate gland.  Table 8 summarises 

commonly used basal and luminal stem cell markers.    
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Basal stem cell markers Source of tissue Research Group 

α2β1
hi
CD44

+
 +/- CD133

+ 

 

Lin
-
Sca-1

+
CD49f

hi
 +/-

Trop2
hi 

Sca1
+
CD49f

hi 
Trop2

hi
 

Sca1
+
CD44

hi 
Trop2

hi 

 

Epcam
+
CD44

+
CD49f

hi
 

Benign & malignant human 

tissue 

 

Normal & mutant mice 

 

Benign & malignant human 

tissue 

Benign & malignant human 

tissue 

 

Malignant human tissue 

Maitland & Collins 

 

Witte /Goldstein/Garraway 

 

Witte /Goldstein/Garraway 

Witte /Goldstein/Garraway 

 

Garraway/Witte 

 

Luminal marker Source of tissue Research Group  

Castration-resistant 

Nkx3.1-exprerssing cells 

 

CD26
+ 

Normal & mutant mice 

 

 

Normal murine & human tissue 

Shen 

 

 

Clevers 

Table 8:  Commonly used luminal and basal prostate stem cell markers. 

 

 

Thus, there is evidence arguing for both basal and luminal cells as the cell of origin in 

PCa. Both arguments may well be true: could there be multiple cells of origin?  Similar 

to that seen in breast cancer (Visvader 2009), different cells of origin could give rise to 

different sub-types of PCa, defined by specific gene expression profiles.  Taylor et al. 

(2010) has helped initiate this idea in PCa, stratifying tumour by genetic profiles 

according to mutations affecting common signalling pathways, such as PI3-Kinase.  

Correlation of this type of data with the effects of oncological mutations on specific CSC 

markers in mouse models may help link the CSC theory and genetic profiles in human 

PCa.  Our understanding of PCa initiation, progression and metastasis will continue to 

improve following the increased use of molecular profiling, particularly using next-

generation sequencing and following further research seeking to identify robust candidate 

markers for the CSC.  Importantly, the cell of origin/CSC and/or its associated molecular 

profile could have prognostic or treatment implications permitting risk-stratification and 

future targeted therapies.   
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1.8 Current research strategies in prostate cancer 

Current research strategies or priorities in PCa adopted by different charities and 

organisations follow similar goals.  For example, the British Association of Urological 

Surgeons prioritise their research into the identification of clinically-relevant PCa, new 

treatments for CRPC, best-treatment for high-risk PCa and focal therapy: safety, patient 

selection & “best” technology.  The strategies for the research funded by the Prostate 

Cancer UK charity are similar but less specific: better diagnosis, better treatment and 

better prevention.   

This thesis will frequently relate to these strategies attempting to answer key questions 

that will add to the plethora of past and current research, as outlined below.     
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1.9 Hypothesis:  

It is important to understand the complex genetic landscape of prostate cancer in order to 

predict how individual genetic lesions will behave and interact leading to progression or 

recurrence of disease and their impact on treatment.  Wnt, PI3-Kinase and MAP-Kinase 

signaling pathways are important in many epithelial cancers including prostate cancer.  It 

is thought that these pathways interact, resulting in multiple ‘hits’ as prostate 

tumourigenesis adapts and progresses to a more aggressive phenotype.   

Using pathway or mutational profiles it is hypothesized that patients can be risk-stratified, 

identifying those with more aggressive disease with a greater risk of recurrence and a 

reduced survival.  In addition, targeted therapies can be developed with the ultimate goal 

of improving prostate cancer treatment and survival. 

A postulated mechanism whereby these pathways may synergise is by altering or 

expanding the pool of ‘cells of origin’ or cancer stem cells, permitting self-renewal, 

survival and metastasis of the cancer.   

 

1.10  Aims:  

1. To determine the expression profile and any potential cross talk between Wnt, PI3-

Kinase and MAP-Kinase pathways in human prostate tumourigenesis and to risk-stratify 

patients based on these: 

a. Using a prostate cancer Tissue Micro-array (TMA) obtained from the 

Welsh Cancer Bank immunohistochemical analysis for markers of each of 

the pathways will be obtained; 

b. Pathway expression profiles will be correlated with each other to assess 

any observational concurrency;   

c. Immunohistochemical expressional profiles to be correlated with outcome 

data (tumour characteristics, biochemical recurrence and overall survival); 

d. Targeted-next generation sequencing to be performed in University 

College London on the same human prostate samples based on genetic 

mutations associated with these pathways.  
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2. To study the interactions and biology of the Wnt, PI3-Kinase and MAP-Kinase 

signalling pathways using mouse models:  

a. Using Cre-lox based mouse models to conditionally modify 3 genes 

associated with these pathways: β-catenin, PTEN, and K-Ras in the 

prostate; 

b. To determine the extent of synergy in tumour formation between 

mutations in each of the pathways by generating and ageing cohorts of 

each combination of mutations;  

c. To characterise the histological, expression profiles (using 

immunohistochemistry) and protein levels (using Western blot) of each of 

the single, double and triple mutants. 

 

3. To evaluate the effect of Wnt, PI3-Kinase and MAP-Kinase deregulation on the stem 

cell population. 

a. Using fluorescence-activated cell sorting (FACS) and a 3D organoid 

culture assay, mouse tumours driven by single, double and triple mutations 

will be investigated to determine: 

i. Stem cell population 

ii. Organoid forming capacity 

iii. Self-renewal through serial passage 
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2 Material and Methods 

2.1 Human prostate samples 

Human prostate samples were obtained from the Welsh Cancer Bank (WCB, 

http://www.walescancerbank.com) based in the University Hospital of Wales.  All ethical 

and consent issues were encompassed under those held by the WCB.   

2.1.1 Tissue Microarrays (TMA) 

The TMA was constructed using a semi-automated TMA Master (3DHistech, details at: 

http://www.3dhistech.com/tma_master) using 1mm cores.  The “recipient” paraffin block 

was first designed by drilling multiple holes using the TMA master drill, typically at 10 

x10, allowing a total of 100 samples per TMA block.   The recipient block was 

constructed to have non-experimental tissue (e.g. colorectal tissue) bordering the array, 

with a cross of the same non-experimental tissue to orientate the array (Figure 14).   

 

 

 Non-experimental tissue 

Figure 14: TMA design: non-experimental tissue around the perimeter of the block to protect 

the experimental tissue within.  In addition, further non-experimental tissue was used to make a 

cross in order to orientate the block.  Each sample was given a unique WCB ID code. 

Paraffin blocks of formalin-fixed surgical prostatectomy specimens and needle core-

biopsies were obtained from the archives of the WCB.     A core tissue biopsy was 

carefully selected, morphologically representative of areas of the original paraffin blocks 

("donor ' blocks) by comparing to the area of tumour marked on the original H&E slide.  
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This was then arrayed into the recipient paraffin block.  Once the block was full it was 

placed in-between two glass slide and placed on a hot plate for 30 seconds to ensure the 

cores in the recipient block bond to the surrounding wax.  The block and glass slides were 

then incubated at 37°C for 24hrs.   

The TMA block was sectioned with 4um sections on SuperFrost Plus slides for 

experimental IHC and H&E staining.   Each tissue sample was assigned a unique WCB 

ID number and TMA location number, which have been subsequently linked to a database 

containing demographic and clinico-pathological data.   The Gleason score of each core 

was quality assured by Dr David Griffiths (Consultant Uro-Histopathologist, University 

Hospital of Wales), in accordance with 2005 International Society of Urological 

Pathology (ISUP) Consensus Conference on Gleason Grading of prostate carcinoma 

(Epstein et al, 2005).  

Following H&E or IHC staining each slide was scanned using the Zeiss Axio Scan.Z1 

and analysed using the Zen image analysis.   

2.1.1.1 Immunohistochemistry (IHC) 

IHC was performed using the same methods as that used in the mouse, as described 

below.   

2.1.1.2 TMA scoring 

There are several scoring methods used for semi‐quantitative evaluation of IHC staining 

of paraffin embedded tissue.  Some of the most widely used are the Quick score, the H 

score and the Allred score (Detre et al. 1995; Miller et al. 1985; Allred et al. 1998).  All 

methods rely on proportion and intensity of staining.  In this study the Quick score was 

used.  The proportion of immune-positive (stained) nuclei within the tissue section is 

scored in the range 1–6, corresponding to proportions of 0–4%, 5–19%, 20–39%, 40–

59%, 60–79%, and 80–100%, respectively. The average intensity of staining is scored in 

the range 0–3: negative (no staining) = 0, weak = 1, intermediate = 2, and strong staining 

= 3.  An overall score was then calculated multiplying proportion and intensity staining, 

ranging from 0-18.  All samples were evaluated blinded from clinical details. 

Representative staining was agreed with Dr David Griffiths (Consultant Uro-

Histopathologist, University Hospital of Wales).   
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2.1.2 Targeted Next Generation Sequencing (NGS) 

DNA extraction was performed in Velindre Hospital, Cardiff.  The FFPE prostate blocks 

from the TMA were used to extract the DNA using standard extraction kits.  A minimum 

concentration of 50ng extracted with the percentage of tumour noted.  Tumour percentage 

or cellularity was estimated from the original H&E slide with following categories: 0-

20% (n=8), 21-40% (n=8), 41-60% (n=35), 61-80% (n=64), and 81-100% (n=73).  A low 

percentage of tumour can increase the false negative mutation rate.     All DNA samples 

were quantified using both NanoDrop (ThermoScientific) and QuBit (ThermoScientific) 

technology.  The ratio of absorbance at 260 nm and 280 nm was used to assess the purity 

of DNA.   A ratio of ~1.8 was accepted as “pure” for DNA. 

 

Targeted NGS was performed in Imperial College London.  The Life Technologies Ion 

Torrent: Ion AmpliSeq Cancer Hotspot Panel v2 and the Ion Personal Genome Machine 

(PGM) sequencer was used.  The hotspot panel covers ~2800 COSMIC mutations of 50 

oncogenes and tumour suppressor genes, with wide coverage of K-Ras, BRAF and EGFR 

(Table 9).  The Ion AmpliSeq Cancer Hotspot Panel v2 (CHPv2) brochure is available at 

https://tools.thermofisher.com/content/sfs/brochures/Ion-AmpliSeq-Cancer-Hotspot-

Panel-Flyer.pdf.  

 

Ion Ampliseq Cancer Hotspot Panel v2 targets 50 genes 

ABL1 

AKT1 

ALK 

APC 

ATM 

BRAF 

CDH1 

CDKN2A 

CSF1R 

CTNNB1 

EGFR 

ERBB2 

ERBB4 

EZH2 

FBXW7 

FGFR1 

FGFR2 

FGFR3 

FLT3 

GNA11 

GNAS 

GNAQ 

HNF1A 

HRAS 

IDH1 

JAK2 

JAK3 

IDH2 

KDR 

KIT 

KRAS 

MET 

MLH1 

MPL 

NOTCH1 

NPM1 

NRAS 

PDGFRA 

PIK3CA 

PTEN 

PTPN11 

RB1 

RET 

SMAD4 

SMARCB1 

SMO 

SRC 

STK11 

TP53 

VHL 

Table 9:  Ion Ampliseq Cancer Hotspot Panel v2 targets 50 genes. 

 

Following DNA extraction the library is constructed using a library kit.  Each individual 

sample is provided with a bar code and mixed with the primer pool.  The individual DNA 

samples are then amplified using PCR.  The samples are then mixed (usually 16) and 

https://tools.thermofisher.com/content/sfs/brochures/Ion-AmpliSeq-Cancer-Hotspot-Panel-Flyer.pdf
https://tools.thermofisher.com/content/sfs/brochures/Ion-AmpliSeq-Cancer-Hotspot-Panel-Flyer.pdf
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placed onto the chip ready for sequencing.   Following sequencing the samples are then 

analysed using life technology software, where filters are applied to remove single 

nucleotide polymorphism (SNPs), for example.    
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2.2 Experimental animals  

2.2.1 Animal Husbandry 

All animal experiments were carried out in accordance with UK Home Office regulations, 

under valid personal and project licenses. Mice were given access to the Harlan standard 

diet (Special Diets Service UK, expanded diet) and water.  

 

2.2.2 Breeding 

Adult mice of known genotypes were caged in trios consisting of one male and 2 females.  

Pups were weaned at approximately 4 weeks when independently feeding.   

 

2.2.3 Genetic Mouse Models 

Mice bearing a Probasin Cre4 (PB-Cre4) recombinase transgene were crossed with mice 

bearing one or more loxP targeted alleles, including β-catenin, Pten and K-Ras. The 

conditional, constitutively active β-catenin mutant strain was created by Makoto M. 

Taketo (Harada et al. 1999). Mice with the conditional activating mutation of K-ras were 

derived by Mariano Barbacid (Guerra et al. 2003). Pten was highlighted for LoxP-targeted 

homozygous deletion (Suzuki et al. 2001). The creation of these transgenic mice is 

depicted in Figure 15. The PB-Cre4 transgene was incorporated into the cohort using 

male mice as PBCre+ females have been shown to recombine in the ovaries resulting in a 

mosaic phenotype (Wu et al, 2001).  

 

2.2.4 Polymerase Chain Reaction (PCR) Genotyping 

At the time of weaning mice were sexed and separated.  Ear clippings were taken for 

identification and DNA genotyping using a 2mm ear punch (Harvard Apparatus). 

Matthew Zverev (lab technician) provided assistance in performing routine PCR 

genotyping of mice.  Mice were genotyped at time of weaning and confirmed at death.  

PCR was also used to assess re-combination of each gene mutation within the prostate 

tissue.  The primer sequences used for genotyping is summarised in Table 10.   
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Figure 15:  Cre-Lox technology used to generate prostate specific (conditional) gene 

knockouts.  Pten is flanked by LoxP sites.  Upon Cre recombination promoted by the prostate 

specific enzyme Probasin, the LoxP sites are cleaved resulting in Pten gene knockout.  Critical 

phosphorylation sites on exon 3 of β-catenin have been deleted, which in transcription of a 

mutated form.  Similarly the excision of the ‘STOP’ codon upstream of exon 1 results in 

oncogenic K-Ras (V12).  

 

2.2.4.1 DNA purification (Puregene method) 

Ear biopsies were stored at 20 ͦ C until the DNA was extracted.  Tissue was digested in 

250µl lysis buffer (Puregene) containing 5µl of 20mg/ml Proteinase K (Roche), overnight 

at 37 ͦ C with agitation.  Protein was precipitated by adding 100µl of protein precipita tion 

solution (Puregene) and mixed by inversion.  Protein and any insoluble debris was 

pelleted by centrifugation at 14000 rpm for 10mins.  The supernatant was recovered and 

mixed with 250µl of isopropanol in a fresh 1.5 ml eppendorf tube and centrifuged at 

14000 rpm for 15 min.  The supernatant was carefully discarded, and the tubes were left 

to air-dry for 1 hour. The DNA was then dissolved in 250µl of PCR-grade water (Sigma) 

and 2.5µl of the resulting solution was used in PCR reactions.  

 

 

LoxP LoxP 

Pten 

x 

Probasin 

promoter 

Cre 

Recombinase 

Ex 3 

LoxP LoxP 

β-catenin 

STOP 

LoxP LoxP 

K-Ras 

K-RasV12 

mutation 

Pten+/fl β-catenin+/lox(Ex3) K-Ras+/V12 

Floxed genes 
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Gene Primer Sequence (5’-3’) Product size 

Cre Specific (general) TGACCGTACACCAAAATTTG 

ATTGCCCCTGTTTCACTATC 

1000-bp 

ROSA26:LacZ CTGGCGTTACCCAACTTAAT 

ATAACTGCCGTCACTCCAAC 

500-bp 

Pten-loxP (Suzuki et al. 

2001) 

CTCCTCTACTCCATTCTTCCC 

ACTCCCACCAATGAACAAAC 

Wt = 228-bp 

Targeted = 335-bp 

K-Ras-loxP (Guerra et al. 

2003) 

AGG GTA GGT GTT GGG ATA GC 

CTC AGT CAT TTT CAG CAG GC 

CTG CTC TTT ACT GAA GGC TC 

Wt = 403bp 

Targeted = 621bp 

β-catenin-loxP (Harada et 

al. 1999) 

CTGCGTGGACAATGGCTACT 

TCCATCAGGTCAGCTGTAAAAA 

Wt = 324-bp 

Targeted = 500bp 

Recombined Pten GGC CTA GGA CTCACT AGA TAG C  

CTC CCA CCA ATG AAC AAA CAGT 

GTGAAA GTG CCC CAA CAT AAGG  

Targeted: 514bp 

Recombined: 705bp 

Recombined K-Ras AGG GTA GGT GTT GGG ATA GC  

CTC AGT CAT TTT CAG CAG GC  

CTG CTC TTT ACT GAA GGC TC  

Wt band: 403bp 

Targeted stop cassette: 621bp  

Recombined: 669bp 

Recombined β-catenin  GGT AGG AGC TCA GCG CAG AGC 

ACG TGT GGC AAG TTC CGC GTC 

ATC C 

Wt band: 900bp 

Recombined: 700bp 

Table 10: Primer sequences used for each gene specific and recombined PCR. 

 

2.2.4.2 Generic protocol for PCR genotyping 

PCR reactions were carried out in thin-wall 96-well plates or in thin-wall 0.2 ml strip 

tubes (Greiner Bio-One) and run using either PTC-100 Peltier (MJ Research), Techne 

Flexigene (Krackeler Scientific) or GS1 (G-Storm) thermal cycler. Pipetting of the 

reagents and DNA samples was carried out using filtered pipette tips to avoid aerosol 

contamination. 2.5µl of crude genomic DNA extract was loaded into wells using multi-

channel pipette. The master-mix containing the remaining components of the reaction; 

distilled water, GOTaq 5X PCR buffer (Promega), 25 mM Magnesium Chloride 

(Promega), 25mM dNTPs (Bioline), Primers (Sigma-Genosys) and either GOTaq 

(Promega) or Dream-Taq (Fermentas) DNA polymerase, was prepared according to table 

2.2.  47.5µl of the appropriate master-mix were added to each well to make a final volume 

of 50µl. 96-well plates were sealed with aluminium foil tape, while strip-tubes were 

closed with appropriate caps (Greiner Bio-One). The tubes were gently tapped to dislodge 

air bubbles and ensure the mixture was at the bottom of the well. The PCR reaction was 
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then run using a GS4 thermocycler (G storm). The primer sequences used for genotyping 

of the particular transgenes and the size of respective products are provided in table 10. 

 

2.2.4.3 Visualisation of PCR products 

After completion of PCR reactions the products were visualised by agarose gel 

electrophoresis.  2% agarose gels were made by dissolving agarose (Eurogentech) 2% 

(w/v) in 1x Tris-Borate-EDTA (TBE) buffer (Sigma) and heated in a microwave until 

boiling.  Once boiled the gel was cooled rapidly under cold running water and 14µl of 

Safe View (NBS Biologicals) was added per 400ml of gel.  Safe view is a nucleic acid 

stain that binds to DNA and fluoresces under Ultraviolet light allowing visualisation of 

DNA.  The gel was then poured into moulds (Bio-Rad) and combs inserted to create wells.  

When set the gels were placed in a gel electrophoresis tank and covered with 1 x TBE 

(Sigma).  Safe view was also added to the buffer. 

PCR product samples were prepared by adding 5 µl of loading dye (50% glycerol(Sigma), 

50% distilled water, 0.1% (w/v) bromophenol blue (Sigma)).  PCR samples (20µl) were 

added to the wells and a molecular marker (e.g. 100bp ladder) was added to one well 

inorder to assess PCR product size.  The gel was then run in 1 x TBE (sigma) containing 

Safe View at 120V for approximately 30mins.  Products were visualised in UV light using 

GelDoc apparatus (BioRad).   

 

2.2.5 Administration of 5’-Bromo-2-deoxyuridine  

Where specified, animals were administered 0.25 ml of 10 mg/ml 5'-Bromo-2-

deoxyuridine (BrdU, Amersham Biosciences) either 2 or 24 hours prior to dissection in 

order to label cells in S-phase of the cell cycle.  This was administered as a single 

intraperitoneal injection.   
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2.2.6 Mouse Tissue Preparation 

2.2.6.1 Tissue Dissection, Fixation and Sectioning 

Following a schedule 1 approved method of culling, animals were dissected using a 

micro-dissection kit. The fur was sprayed with 70% (vol/vol) ethanol and an incision 

made along the mid-line of the abdomen.  The urogenital system (bladder, testes, prostate, 

urethra, ureters and seminal vesicles) were excised and dissected.  The mouse urogenital 

system was further dissected to isolate the prostate using a microscope.  Using two fine 

forceps the anterior lobes of the prostate were separated from the seminal vesicles by 

dividing any connective tissue. The seminal vesicles including any strands of fat were 

removed.  The bladder was removed by gently placing one pair of forceps near the bladder 

neck adjacent to the prostate, and pulling the bladder away leaving behind the prostate 

and the urethra.  The two ureters were peeled away with the bladder.  The remaining 

urethra has a deeper red colour and protrudes anteriorly when the prostate is lying flat.  

This was removed by gently retracting the surrounding prostatic tissue with one pair of 

forceps and pulling the urethra away from the prostate with the other pair of forceps. The 

kidneys, spleen, liver, lungs and any lymph nodes were also removed and fixed together.   

Once collected, tissue samples were immersed in ice-cold formalin (10% neutral buffered 

formaldehyde in saline, Sigma) and incubated for 12-24 hours at 4 ͦ C. After initial 

fixation, samples were either processed straight away as described below or transferred 

into ice cold 70% (vol/vol) ethanol and stored at 4 ͦ C until processing.   

Tissue samples were arranged in histocasettes and processed using an automatic 

processor (Leica TP1050). Samples were dehydrated in increasing concentrations of 

ethanol (70% for 1 hour, 95% for 1 hour, 100% 2 x 1 hour 30 min, 100% for 2 hours), 

Xylene 2 x 1 hour and paraffin 1 x 1 hour and 2 x 2 hours. After dehydration, samples 

were embedded in paraffin wax.  A microtome (Leica RM2135) was used to cut 5µm 

thick sections from paraffin blocks.  Sections were then floated onto slides coated with 

poly-L-lysine (PLL) and baked at 58 ͦ C for 24 hours. 

Paraffin embedding and sectioning was performed by Derek Scarborough and Mark 

Isaac.  
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2.2.6.2 Snap freezing tissue  

Several sections of normal prostate and prostate tumour tissue (approximately 2 mm × 2 

mm) were placed in lockable microtubes and placed in liquid nitrogen and stored at -80°C 

until required.  

 

2.2.7 Histological analysis of mouse specimens 

2.2.7.1 Haematoxylin and Eosin (H&E) staining 

In order to visualise tissue sections for histological analysis, tissue sections were stained 

with Haematoxylin and Eosin (H&E). Haematoxylin stains the cell nuclei blue, whereas 

Eosin stains protein red.  Poly-L-lysine (PLL) sections were de-waxed and rehydrated 

and were stained by immersing in a bath of Mayer’s Haemalum (R. A. Lamb) for 45 

seconds.  The slides were washed in running tap water for 5 minutes and then placed in a 

bath of Eosin (R.A. Lamb).  The slides were further washed to remove any excess Eosin, 

prior to being dehydrated and mounted.    

2.2.7.2 Pathological analysis 

Histological analysis of the prostate gland was performed in accordance with the 

consensus report from the Bar Harbour meeting of the mouse models of human cancer 

consortium prostate pathology committee (Shappell et al. 2004).  The histological 

subtypes used, include mouse prostate intraepithelial neoplasia (mPIN), microinvasive 

adenocarcinoma and invasive adenocarcinoma. 

mPIN is the neoplastic proliferation of epithelial cells within preexisting or normal 

basement membrane confined gland spaces. mPIN presumably shares some of the 

molecular alterations characteristic of carcinoma; however, the neoplastic cells have not 

invaded through the basement membrane into surrounding stroma (Shappell et al. 2004).  

Microinvasive adenocarcinoma is the earliest recognisable form of invasive carcinoma, 

with penetration of malignant cells through the basement membrane of PIN-involved 

glands into the surrounding stroma. It is distinguished from invasive carcinoma by the 

greater extent of the invasive focus of carcinoma in the latter.  Microinvasion is defined 

by a focus size of less than 1mm (Shappell et al. 2004). 
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Invasive carcinoma is a malignant epithelial neoplasm that exhibits destructive growth in 

prostate parenchyma and stroma.  In contrast to microinvasion it has a focus size of 

greater than 1mm and extension into a widened (potentially desmoplastic) stroma or into 

the loose connective tissue and periprostatic fat surrounding the contractile fibromuscular 

stroma (Shappell et al. 2004). 

To assess the severity or aggressiveness of the tumour histologically, the percentage of 

invasion was estimated at 100 days and end point (death or 500 days).   

Dr David Griffiths (Consultant Histopathologist, University Hospital of Wales, Cardiff) 

provided assistance with histopathological analysis.  

 

2.2.8 Immunohistochemistry (IHC) of human and mouse specimens 

2.2.8.1 De-waxing and Rehydrating PLLs  

Formalin-fixed, paraffin-embedded sections were de-waxed by soaking slides in xylene 

(2 x 5mins).  The slides were then rehydrated using decreasing concentrations of ethanol 

(2 x 2mins cycles of 100%, 95% and 70% ethanol) followed by a wash with dH2O. 

2.2.8.2 Antigen retrieval and blocking endogenous peroxidases 

Following de-waxing and rehydration, antigen retrieval was performed.  Slides were 

incubated in 1× citrate buffer (pH 6.0) solution in a pressure cooker and microwaved for 

15 min.  Antigen retrieval was carried out in order to break cross-linking bonds formed 

during fixation, and therefore unmasking the antigens.  The slides were allowed to cool 

at room temperature in the citrate buffer solution for 30 minutes.  A border was drawn 

around the prostate tissue with a DAKO pen (hydrophobic barrier pen) and slides were 

then covered for 20mins with a hydrogen peroxidase blocking solutions (Envision plus 

Kit, DAKO) to inhibit endogenous peroxidase activity.  Slides were washed for 3 x 5mins 

in 1X TBS/T.   

2.2.8.3 Blocking of non-specific antibody binding  

Non-specific binding of antibodies was blocked by incubation tissue sections with serum 

obtained from an animal that is different to the animal in which the primary antibody was 

raised.   For example normal goat serum could be used to block tissue sections that will 
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be incubated with antibodies raised from a rabbit.  The serum was diluted in wash buffer 

to a concentration that adequately blocks non-specific binding, typically 10-20%.  

2.2.8.4 Primary antibody incubation 

Following removal of the serum block, the tissue sections were incubated with the 

primary antibody, without performing any washes.  The antibodies and concentrations 

used are summarised in Table 11.  Antibodies were generally incubated overnight in a 

humidified chamber at 4
o
C. Slides were then washed for 3 x 5mins in 1X TBS/T.   

2.2.8.5 Secondary antibody incubation 

For mouse and rabbit primary antibodies, the Envision plus kit (DAKO) anti-mouse and 

anti-rabbit secondary antibody were used.   These pre-diluted secondary antibodies are 

conjugated to horseradish peroxidase (HRP), which amplifies the signal.  For non-mouse 

or -rabbit primary antibodies, a suitable biotinylated secondary antibody against the host 

was used.  These were used at a concentration of 1/200 (diluted in TBS/T).  Tissue 

sections were incubated with the secondary antibody for 1 hour in a humidified chamber.  

The slides were then washed for 3 x 5mins in 1X TBS/T.   

When biotinylated secondary antibodies were used, a signal amplification step was 

performed. This involved the formation of a complex between the biotin bound to the 

secondary antibody and a protein called avidin, which is bound to HRP.  The Vectastain 

Avidin-Biotin Complex (ABC) kit (Vector labs) was used according to manufactures 

protocols. HRP enzyme was now bound to secondary antibodies that remained bound to 

primary antibodies, so the antigen could be visualised. Slides were then washed for 3 x 

5mins in 1X TBS/T.   

2.2.8.6 Detection of signal 

Detection and visualization of the antigen was carried out using the 3,3′-

diaminobenzidine (DAB) chromagen (DAKO) according to the manufacturer's protocol.  

DAB is a substrate for HRP, and when catalyzed results in a brown coloured stain.  

2.2.8.7 Counterstaining and slide mounting 

Slides were then washed for 3 x 5 minutes in dH20 before counterstaining in Meyer’s 

haematoxylin for 30-60secs, rinsing in running tap water for 5 minutes.  The slides were 
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dehydrated in increasing concentrations of alcohol and then cleared in 2 x 5 minutes 

xylene. Slides were then removed from xylene, mounted in DPX mounting medium (R.A. 

Lamb) and glass cover slips and left to air-dry in a fume hood.  

2.2.8.8 Ki67 and BRDU scoring 

Proliferation markers, Ki67 and BRDU were scored by dividing the number of positively 

stained cells by the total number of cells counted (positive and negatively stained cells). 

Photographs were taken using the Motic Images Plus 2.0 software at 40x magnification, 

and a minimum of 5 different field views or 1000 cells were counted.  This was performed 

on n=4 in each mouse cohort.    
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Antibody Host Manufacturer Dilution 

Characterisation markers 

Androgen Receptor Rabbit Labvision Neomarkers 1358 1/100 

β-actin Mouse Sigma A5316 1/5000 

BRDU Mouse BD Bioscience 347580 1/150 

Cleaved Caspase-3 Rabbit CST 9661 1/200 

Keratin 5 Rabbit Covance PRB-160p 1/2000 

Keratin 18 Mouse Progen 61528 1/50 

Ki67 Mouse Vector Labs VP-K452 1/100 

Pan-Cytokeratin Mouse CST 4545 1/500 

p63 Mouse Neomarkers MS-1081-P1  1/100 

Vimentin Rabbit CST 5741 1/100 

 

Signalling pathway markers 

p-AKT 308 Rabbit CST 5056l 1/100 

p-AKT 473 Rabbit CST 3787s 1/100 

Pan-AKT Rabbit CST 4685s 1/100 

β-catenin Mouse BD Transduction labs 610154 1/200 

CD44 Mouse Pharmingen 550392 1/50 

Cyclin D1 Rabbit CST 2978s 1/100 

MMP-7 Goat Santa-cruz 12346 G022) 1/100 

p-ERK (p44/42) Rabbit CST 4376s 1/100 

p70 S6K Rabbit CST 2708 1/100 

P90 RSK Rabbit CST 9346p 1/100 

p-MEK (Ser221) Rabbit CST 2338 1/75 

p-MTOR (Ser 2448) XP Rabbit CST 5536 1/100 

p-S6K (S240/244) Rabbit CST 5364s 1/100 

Pten Rabbit CST 9559l 1/100 

    

Stem cell markers 

Trop2 Goat R&D systems AF1122 1/400 

Notch 1 Rabbit Abcam 8925 1/300 

Notch 4 Rabbit Santa-cruz 5594 1/200 

CD49f Rat . eBioscience, cat. no. 12-0495-83: 

clone eBioGoH3     

1/500 

Table 11:  Primary antibodies used in IHC and Western blot analysis.  CST: Cell Signalling 

Technology.   
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2.2.9 Western blot analysis of mouse specimens 

Western blot analysis was performed with the help of Boris Shorning (Post-doctoral 

scientist).   

2.2.9.1 Protein extraction 

Protein was extracted from prostates of 100-day-old mice from each cohort (n=3).  Frozen 

tissue was removed from storage and placed on ice.  200μl of chilled 

Radioimmunoprecipitation assay (RIPA) lysis buffer (5ml 1M Tris pH7.4, 10ml 10% 

Non-idet-p40 (IGEPAL), 3ml 5M Sodium Chloride, 400μl 0.25M EDTA pH8, 250mg 

C23H39NaO4 and made up to 100ml with dH2O) with protease inhibitor (Complete 

protease cocktail mini tablets (Roche), 1 tablet per 5 ml RIPA buffer).  Samples were 

transferred into Precellys® beaded microtubes and homogenised on the Precellys®24 

homogeniser for 2 x 45 seconds and then placed on ice.  This was repeated until the 

sample was completely homogenised.  Samples were then centrifuged at 13000 rpm for 

10 minutes at 4°C and the supernatant containing the protein was aliquoted into 50μl 

aliquots and stored at -80°C until use. 

2.2.9.2 Protein sample preparation 

Samples were defrosted on ice and 30 μg of protein was re-suspended in 25μl of Laemmli 

buffer (0.125M Tris-HCL pH6.8, 4% w/v Sodium Dodecylsulphate (SDS), 40% v/v 

Glycerol, 0.1% w/v bromophenol blue, 6% v/v β-mercaptoethanol in ultrapure H2O 

(Sigma)).  Samples were heated to 95°C for 5 minutes and quenched on ice before loading 

into gels.  

2.2.9.3 Gel formation and protein loading 

The Mini-Protean III (Bio-Rad) gel casting apparatus was used to prepare polyacrylamide 

gels.  5% stacking gels and 10% resolving gels were made (Table 12). The gel casting 

apparatus was assembled and TEMED was added to the 10% gel solution, which was 

then mixed and poured between the two glass plates, to 2 cm below the top of the glass 

plates.  Once set (45 mins), TEMED was added to the 5% stacking gel and poured on top 

of the resolving gel to the edge of the glass plates and well comb was inserted.  The gels 

were placed in the SDS-polyacrylamide gel electrophoresis apparatus with running buffer 

(Table 12) and 10μl of prepared protein samples were added to individual wells and 5μl 
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of pre-stained full-range 100bp Rainbow molecular weight ladder (GE Healthcare) was 

added at one end.  The gels were then run at 120-200V until the dye reached the end of 

the gel.     

2.2.9.4  Protein transfer  

Following separation of the proteins in the polyacrylamide gel, the gels were removed 

and placed in transfer buffer (Table 12).  Amersham Hybond- ECL nitrocellulose filter 

(GE Healthcare) was then cut to size and placed on top of the gels before being 

sandwiched between two sheets of 3MM blotting paper (Whatman) and sponge, each pre-

soaked in transfer buffer. The ‘sandwich’ was then placed into a plastic transfer support 

and placed in a transfer tank, orientated so that the nitrocellulose filter was between the 

gel and the positive electrode.  This allowed transfer of the negatively charged proteins 

to the nitrocellulose filter. Transfer buffer was then added to the tank, and it was run at 

100V for 1 hour. The filter was then washed 3 x 10 minutes in TBS/T prior to signal 

detection.  

2.2.9.5 Primary and secondary antibody probing  

The nitrocellulose filter was blocked for 1 hour in 5% [w/v] skimmed milk powder diluted 

in TBS/T with agitation.   Following 3 x 5 minute washes with TBS/T; the primary 

antibody was added at a concentration of 1 in 1000 (1 in 5000 for β-actin) diluted in 5% 

[w/v] skimmed milk powder.   This was incubated overnight at 4°C with agitation.  The 

filter was then washed 3× 5 minutes in TBS/T and incubated with HRP-linked secondary 

antibody (1 in 2000 diluted in 5% [w/v] skimmed milk powder, according to host) for 1 

hour at RT with agitation.   The filter was washed for 3 x 10 minutes in in TBS/T prior to 

signal detection.  

2.2.9.6 Signal detection 

The electrochemiluminescence (ECL) reagent kit (GE Healthcare) was used according to 

manufacturers instructions for detection of antibody signal.   The ECL reagent utilises a 

chemifluorescent reaction catalysed by HRP to expose X-ray film.  The filter was then 

taken to a dark room under safelight conditions, and X-ray film (Fujifilm Super RX, blue 

background) was exposed, and the film processed using an automatic processor (Xograph 

Compact X4 automatic X-ray film processor).  The molecular weight ladder was 

superimposed onto the image in order to confirm the correct protein bands.  To confirm 
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that the loading concentration of each sample was equal, the filters were re-probed with 

β-actin antibody.  

 

 

5% Stacking gel (2 Gels) 10% Resolving gel (2 Gels) 

6.9ml ddH2O 

1.7ml 30% acrylamide (Sigma) 

1.3ml 1M Tris-HCl pH 6.8 

100μl 10% SDS (Sigma) 

66μl 25% Ammonium Persulphate (Sigma) 

13.2μl TEMED (Sigma) 

6.8ml ddH2O 

8.4ml 30% acrylamide (Sigma) 

9.4 1M Tris-HCl pH 6.8 

250μl 10% SDS (Sigma) 

72μl 25% Ammonium Persulphate (Sigma) 

13.2μl TEMED (Sigma) 

  

5 x Running Buffer (1L) 1 x Transfer Buffer (1L) 

950ml ddH2O 

15.1g Tris base (Sigma) 

94g Glycine (Sigma) 

50ml SDS (Sigma) 

800ml ddH2O 

200ml Methanol (Fisher) 

2.9g Tris base (Sigma) 

14.5g Glycine (Sigma) 

Table 12:  Recipes for polyacrylamide gels and buffers.  
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2.2.10 Mouse prostate organoid culture 

2.2.10.1 Digestion of prostate cells 

The prostate gland was harvested as described above using sterile instruments and placed 

in a 10ml falcon tube containing dissection media (DMEM supplemented with 10% 

(vol/vol) FBS, 1% (vol/vol) 100x glutamine and 1% (vol/vol) 100x 

penicillin/streptomycin solution). Ear clipping was sent for confirmation of genotype.  

The mouse prostate was transferred into a new 10cm petri dish containing fresh dissecting 

media using sterile conditions within a tissue culture hood. Using a No. 21 sterile scalpel 

blade the mouse prostate was minced.  The minced prostate was placed in a 15ml falcon 

tube and 10mls of dissecting media containing collagenase solution (1mg/ml) was added 

ensuring to wash all cells from the petri dish.  The prostate tissue was incubated on a 

shaker at 37ͦ C for 2 hours.   

Prostate spheres were cultured as previously described (Lukacs et al. 2010).  In summary, 

following collagenase digestion the tissue was spun down at 1300rpm for 5 minutes at 

room temperature; the supernatant was discarded before the pellet was re-suspended in 

5mls of warm trypsin/0.05% EDTA and incubated at 37°C for 5 minutes. The cell 

suspension was mixed with 3ml of dissecting media containing 500U (25μl of 10mg/ml) 

DNase I added to inactivate the trypsin and break up any DNA released from dead cells. 

The suspension was then gently passed through an 18-G needle 5 times.  To improve 

cellular yield the trypsin/EDTA step was repeated. The mixture was then filtered through 

a 40μm nylon mesh filter and pelleted.  The supernatant was removed and the pellet was 

re-suspended in a known volume of dissection media prior to calculating the viable count 

and concentration.   

2.2.11 Trypan blue cell viability counts 

10µl of suspended cells in a known volume of media was mixed with 10µl trypan blue 

and placed in a 1.5ml Eppendorf tube.  10µl of sample was placed on a Neubauer 

Counting Chamber and only viable cells excluding the blue dye were counted.  The 

average number of cells per 1mm2 was multiplied by 1 x 104 to determine the number of 

viable cells per ml of suspension. 
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2.2.11.1 Fluorescence-activated cell sorting (FACS) and analysis   

FACS was facilitated and supervised by Mark Bishop, Laboratory manager and FACS 

lead.  The Lin-Sca-1+CD49f+ stem cell enrichment assay was used as previously described 

(Lawson et al. 2007).  Following digestion the single cell suspension was separated into 

compensation tubes (50,000 cells in 500μl dissection media) where individual antibodies 

were added at a concentration shown in Table 13.  This step allows compensation on the 

FACS machine prior to sample analysis.  The remaining sample was separated into 3 x 

106 cells suspended in 1 ml of dissection medial.  All antibodies were then added to the 

samples at the concentrations shown in Table 13. All tubes were wrapped in aluminum 

foil and placed on a shaker at 4°C for 30 minutes.    Media was then aspirated off and 

the cells re-suspended in 500μl fresh dissecting medium for the compensation tubes and 

1ml for the sorting sample.  The cells were placed on ice prior to analysis using the BD 

FACS vantage (BD Biosciences).   

 

 

FACS Antibody Concentration 

Compensation tubes 

CD31-FITC (eBioscience 11-0311-85) 

CD45-FITC (eBioscience 11-0451-85) 

Ter119-FITC (eBioscience 11-5921-85) 

Sca-1-PE-Cy7 (BioLegend 122514) 

CD49f-PE (eBiocience 12-04595-83) 

DAPI-Violet 

1μl 

1μl 

1μl 

1μl 

1μl 

1μl 

 

Sample tubes 

CD31-FITC (eBioscience 11-0311-85) 

CD45-FITC (eBioscience 11-0451-85) 

Ter119-FITC (eBioscience 11-5921-85) 

Sca-1-PE-Cy7 (BioLegend 122514) 

CD49f-PE (eBiocience 12-04595-83) 

DAPI-Violet 

4μl 

4μl 

4μl 

2μl 

3μl 

2μl 

 

Table 13:  FACs antibodies and concentrations.   
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2.2.11.2 Plating prostate cells 

Using a 12-well plate, a calculated number of cells were placed into each well.  

Concentrations of cells were suspended in 20µl of dissection media.  Each sample was 

mixed with 40 µl of cold Matrigel (BD Biociences) and pipetted around the well.  The 

plate was swirled so that the mixture was evenly distributed around the rim.  The samples 

were incubated for 30 minutes at 37 ͦ C to allow the Matrigel to solidify.  1ml of Prostate 

Epithelial Growth Media (PrEGM, Table 14) was added to the centre of each well as not 

to disturb the matrigel.  The cells were incubated at 37 ͦ C and 5% CO2.  Half media 

changes were made every 3 days.  A flow-diagram summary of the prostate epithelial 

culture is illustrated in Figure 16. 

 

 

PrEGM Growth Media (Lonza Bullet-Kit) 

 

Serum free basal media 

Epidermal growth factor 

Hydrocortisone 

Epinephrine 

Transferin 

 

Insulin 

Retinoic acid 

Triiodothyrodine 

Antibiotics 

Bovine pituitary extract  

Table 14:  Content of the Prostate Epithelial Growth Media (PrEGM) Bullet Kit by Lonza. 
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Figure 16:  Flow diagram of prostate epithelial culture. 

 

2.2.11.3 Counting Prostate Organoids   

The prostate spheres were counted manually on day 7. Spheres ≥40μm were considered 

true organoids. Spheres less ≤40μm at 7 days tended not to formulate any sizeable 

structure (Mulholland et al. 2009).   
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2.3 Statistical analysis  

Statistical analysis was carried out using SPSS 20 and GraphPad Prism Version 5.0b for 

both human and mouse data.  The distribution of the data was checked visually using 

frequency distribution graphs (histograms). The Mann-Whitney U test was used to 

compare data between each test group for non-parametric data and t-test for continuous 

parametric or normally distributed data.  A p value of <0.05 was considered significant. 

The overall survival of human prostate samples was defined as that from the date of the 

operation to the date of death. Cancer specific survival was defined as mortality directly 

caused by the cancer. The overall survival in the mouse was defined as date of birth to 

date of death.  Kaplan- Meier curves were used to determine the probability survival and 

the data was analysed using the log-rank test.  

Spearman’s rank correlation was used to assess correlation between groups of markers 

and clinical outcome.  Principle components analysis (PCA) was used for the human IHC 

TMA data.  This statistical test transforms the data from multiple variables (expression 

level of each marker in this case) and converts them into a new coordinate system with 

each coordinate called a principle component.    The greatest variance of the data lies on 

the first coordinate (first principle component) and the second variance on the second 

coordinate, and so on.  This reduces the amount of data so that typical 2 or 3 principle 

components are used to place the expression profile of each sample in a unique linear 

space.  This attempts to predict areas where certain types or features of tumours may 

cluster, usually represented by a scatter plot. 
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3  Assessment of the Wnt, PI3-Kinase (PI3K) and MAP-

Kinase (MAPK) cell signalling pathways in human prostate 

cancer 

 

3.1 Introduction 

The natural history of prostate cancer (PCa) is diverse with individual tumours behaving 

in very different ways.   Men with well-differentiated tumours rarely die from their 

disease with many not requiring any treatment.  In contrast, men with non-metastatic but 

poorly differentiated tumours frequently die within 5 to 10 years of their diagnosis, often 

despite aggressive intervention (Albertsen et al. 2005; Popiolek et al. 2013). For those 

presenting with metastatic disease, the outlook is significantly poorer, with a median 

survival of just 3.5 years (James et al. 2015), with the majority of this time spent in a state 

of castrate-resistance.  This diversity in disease phenotype will be driven by molecular 

and genetic aberrations and understanding this will permit risk stratification and define 

future treatment strategies. 

The emergence of advanced molecular and genetic technologies, such as next-generation 

sequencing (NGS) has enhanced our knowledge and began to pave the way for future 

research and therapies.  Multiple studies have identified a vast number of somatic 

mutations, copy number alterations, and oncogenic structural DNA rearrangements in 

both primary (Taylor et al. 2010; Berger et al. 2011; Barbieri et al. 2012; Baca et al. 2013; 

Tomlins et al. 2005) and metastatic PCa (Kumar et al. 2011; Grasso et al. 2012; Rajan et 

al. 2014; Beltran et al. 2013; Robinson et al. 2015).  What is evident from these studies 

and further highlighted by COSMIC (Catalogue of somatic mutations in cancer from the 

Sanger institute), is that there are few abnormalities in specific genes that are highly 

recurrent.  Consequently, somatic mutations can be allied into those effecting cell 

signalling pathways or processes that can be clinically actionable or targeted by emerging 

therapies.  These cell signalling pathways include Wnt, PI3K and MAPK. 

Deregulation of Wnt signalling is implicated in many types of cancers.  The best known 

example is colorectal cancer, where greater than 90% have an activating mutation of the 

canonical Wnt signalling pathway (Giles et al. 2003).  The incidence of Wnt signalling 
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deregulation in PCa is far greater in metastatic disease than when compared to primary 

disease, with somatic alteration of APC and β-catenin reported between 8.7-19.7% and 

4.9-12% in the metastatic setting, respectively (Grasso et al. 2012; Robinson et al. 2015).  

Wnt signalling has also been implicated in the lethal phase of PCa, castrate resistant 

prostate cancer (CRPC), independent of androgen signalling (Kumar et al. 2011; Grasso 

et al. 2012).   The incidence of PI3K pathway deregulation, encompassing multiple 

somatic alterations, such as PTEN, PI3K and AKT, is far greater than when compared to 

individual mutations alone.  For example, Taylor et al (2010) demonstrated up-regulation 

of the PI3K pathway in 42% of primary tumours and 100% of metastatic tumours 

suggesting that this pathway plays a key role in the ability of the cancer cell to metastasise.  

Lastly, aberrations that result in the upregulation of the MAPK pathway are among the 

commonest seen in PCa, with Taylor et al (2010) reporting pathway alteration in 43% of 

primary tumours and 90% of metastasis.  Furthermore, the MAPK signalling pathway has 

not only been implicated in the initial phase of metastasis but also is in the late transition 

to CRPC (Mukherjee et al. 2011).   

The available evidence is expanding; correlating dysfunction of the Wnt, PI3K and 

MAPK pathways with PCa.  It is widely accepted that multiple signals or mutations are 

required for PCa to initiate and progress; however the evidence supporting 

communication between these signals in human disease is limited.  Specifically, there is 

a lack of data correlating genetic or expressional profiles (such as Wnt, PI3K and MAPK 

signalling) to outcome data such as recurrence and survival.   

 

3.2 Chapter aims 

To determine the expression profile and potential cross talk between the Wnt, PI3K and 

MAPK cell signalling pathways in human PCa and to risk-stratify patients based on these. 

a. Using a prostate cancer Tissue Micro-array (TMA) obtained from the 

Welsh Cancer Bank immunohistochemical analysis for markers of each of 

the pathways will be obtained. 

b. Pathway expression profiles will be correlated with each other to assess 

any observational concurrency.   
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c. Immunohistochemical expressional profiles to be correlated with tumour 

characteristics and outcome data (biochemical recurrence and overall 

survival). 

d. Targeted-next generation sequencing to be performed in University 

College London based on genetic mutations associated with these 

pathways.   
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3.3 Results 

3.3.1 Tissue-Micro-Array (TMA) analysis 

3.3.1.1 TMA samples and characteristics 

The Welsh Cancer Bank (WCB) (described in section 2.1.1) constructed the PCa TMA.  

TMA technology facilitates high-throughput analysis of tissue specimens stained for one 

or more biological markers (Allred et al., 1998).  Figure 17 illustrates an example of one 

cover-slip slide with the multi-core prostate samples (a) and an individual core (b).  There 

are a number of methods used to score IHC staining of TMA tissue.   The most widely 

used method, as adopted here, is the ‘quickscore’ which is an adaption of the Histo or H-

score (Amaral et al. 2013).  This uses estimation of intensity and estimation of proportion 

of staining, with a score between 0 and 18, as described in section 2.1.1.2. 

 

 

 

 

Figure 17.  (a) Prostate TMA slide and (b) an individual core.  

 

There were 317 prostate samples from 245 patients. The mean patient age was 65.5 years 

(range 40-86 years) with a median follow-up of 5.3 years (Range 0.8-9.5 years).  220 

samples were obtained from radical prostatectomy samples, 95 from core biopsy samples 

and 2 from transurethral resection of prostate (TURP) samples.     

(a) (b) 
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The median PSA level at diagnosis was 9.1 ng/ml (range 0.5-165 ng/ml).  56.1% had a 

PSA less than 10 ng/ml, 26.2% had a PSA between 10 and 20 ng/ml and 17.7% had a 

PSA greater than 20 ng/ml. There were 123 Gleason score (GS) 6 (3+3) samples, 69 GS 

7 (47 GS 3+4 and 22 Gleason 4+3), 43 GS 8 (40 GS 4+4 and 3 GS 3+5), 5 GS 9 (4 GS 

4+5 and 1 GS 5+4) and 4 GS 10 (5+5).  Based on D’Amico Risk Classification but using 

GS alone, there were 123 low-risk (GS 6), 69 Intermediate risk (GS 7) and 52 high-risk 

(GS≥ 8) samples.  In addition, there were 73 normal samples controls, which were 

histologically normal prostate tissue adjacent to tumour.  In other words these were 

histological normal prostate samples from a patient with PCa.  This may not be a true 

negative control as there may be a degree of pathway deregulation even in normal tissue 

in these patients.  Unfortunately, the WCB can only store tissue on those patients 

consented that have cancer.   A summary of the patient and demographics and 

clinicopathological characteristics is shown in Table 15. 

At the time of analysis there were 13 deaths, 6 as a result of PCa.  24 patients had 

biochemical recurrence following surgery.  4 men developed metastasis following 

surgery with 2 subsequently dying from their disease.  

 

 

 

TMA Characteristic  Number 

Number of samples 

Number of patients  

Mean Age (range) 

 

Normal 

Cancer 

 

Low-risk (GS 6) 

Intermediate Risk (GS 7) 

High Risk (GS≥ 8) 

 

PSA <10 ng/ml (%) 

PSA 10-20 ng/ml (%) 

PSA >20 ng/ml (%) 

317 

245 

65.5 years (40-86) 

 

73  

244 

 

123 (50.4%) 

69 (28.3%) 

52 (21.3%) 

 

136 (56.1%) 

65 (26.2%) 

43 (17.7%) 

Table 15.  TMA demographics and clinicopathological characteristics. 
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3.3.1.2 Association of Wnt pathway markers with pathological characteristics and 

clinical outcomes 

To characterise the Wnt signalling pathway in PCa, the following markers were used 

using IHC: total β-catenin levels and the Wnt target genes matrix metalloproteinase-7 

(MMP-7), Cyclin D1, C-myc and CD44.  Figure 18 illustrates representative intensity 

staining of β-catenin and MMP-7.  β-catenin stains the membrane of wildtype cells, which 

is considered normal.  Aberrant β-catenin and thus Wnt signalling is evident on nuclear 

and cytoplasmic staining for β-catenin.  Although nuclear staining is most suggestive of 

β-catenin activation, the presence of cytoplasmic staining is thought to occur as the 

abnormal β-catenin signals leave or enter the nucleus.  The location of β-catenin staining, 

whether nuclear or cytoplasmic, is often influenced by the method and durations of 

formalin fixation.     MMP-7 positivity is also apparent in the cytoplasm and nucleus of 

the cell.   

 

 

Figure 18:  Examples of representative immunohistochemistry staining for Wnt pathway 

markers: β-catenin and MMP-7.  Error bars = 100μm.  Intensity scoring: No staining = 0, Weak 

= 1, Moderate =2, Strong = 3. Proportion was also calculated formulating an overall quickscore 

(described in main text and methods section).  MMP-7 = matrix metalloproteinase-7.   
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The protein expression (mean quickscore) of β-catenin, MMP-7, Cyclin D1 and C-myc 

was increased by between 1.5 and 4.4 fold (Table 16) in malignant samples compared to 

benign prostate tissue (p<0.0001).  The greatest increase was in the expression of C-myc 

(4.4-fold increase in mean quickscore, p<0.0001, Table 16), a key target of ß-catenin 

transcription.  There was only a mild increase in membranous CD44 staining (1.1 fold) 

in malignant samples, which was not statistically significant (p=0.420).  Figure 19 further 

illustrates these findings. 

 

Marker Benign vs 

malignant 

P-value Mean Quickscore 

(95%CI) 

Fold 

increase 

β-catenin 

 

 

MMP-7 

 

 

Cyclin D1 

 

 

C-myc 

 

 

CD44 

Benign 

Malignant 

 

Benign 

Malignant 

 

Benign 

Malignant 

 

Benign 

Malignant 

 

Benign 

Malignant 

p<0.0001 

 

 

p<0.0001 

 

 

p<0.0001 

 

 

p<0.0001 

 

 

p=0.420 

6.4 (5.4-7.5) 

9.8 (9.1-10.5) 

 

3.0 (1.8-4.2) 

8.6 (7.7-9.4) 

 

0.9 (0.4-1.4) 

2.1 (1.7-2.5) 

 

0.5 (0.2-0.8) 

2.2 (1.8-2.7) 

 

6.1 (5.0-7.3) 

6.8 (6.2-7.5) 

1.5 

 

 

2.9 

 

 

2.3 

 

 

4.4 

 

 

1.1 

Table 16:  Summary of Wnt markers expression (mean quickscore) between benign and 

malignant prostate samples.  MMP-7 = matrix metalloproteinase-7. 
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Figure 19: Summary of Wnt pathway marker expression (mean quickscore) between benign 

and cancer prostate samples.  Error bars = 95% CI.  There is a significantly greater expression 

of all markers, other than CD44, in prostate cancer samples when comparing to benign samples.  

BC = β-catenin, MMP-7 = matrix metalloproteinase-7. 

 

The expression profiles were further correlated with the GS of the sample on the TMA.  

This confirmed a generalised trend of increasing Wnt marker expression with increasing 

GS (Figure 20).  As previously demonstrated (Table 16 & Figure 19), there was a 

significant increase in expression of all markers, other than CD44, in malignant tissue 

samples when compared to benign samples.  This was also apparent when comparing 

benign samples to low risk samples (D’Amico 1, GS 6). On further examination of the 

data, there was a significant increase in expression between low-risk and high-risk 

samples (D’Amico 3, GS ≥8) for β-catenin, MMP-7, and Cyclin D1 (p<0.01). This was 

also observed when comparing expression of β-catenin for low-risk with intermediate risk 

samples (D’Amico 2, GS 7) (p<0.01).  Comparison of expression levels of markers with 

all other combinations (e.g. comparing intermediate- and high-risk samples) 

demonstrated no significant difference.  Finally, there was no significant difference in 

CD44 expression when compared between all GS of disease. 
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Figure 20: Summary of Wnt marker expression (mean quickscore) categorised according 

to Gleason score (GS) risk classification as defined by D’Amico (*0 = normal, 1 = low-risk 

(GS=6), 2 = intermediate-risk (GS=7), 3 = high-risk (GS≥8)).  There is a general trend for all Wnt 

markers, with increasing expression with increasing GS.  Error bars = 95% CI.  MMP-7 = matrix 

metalloproteinase-7.  

 

Although overall and cancer-specific outcome would have been the best clinical outcome 

to measure against, there were only 13 deaths in total and 6 from PCa in this cohort, 

therefore no robust conclusions could be made using these.  Alternatively, biochemical-

free survival using PSA was used.  This surrogate was only used for samples from radical 

prostatectomy specimens and defined as a PSA rise of greater than 0.2ng/ml following 

surgery.  Of the 220 samples from prostatectomy specimens, 160 demonstrated cancer 

and 60 was adjacent normal tissue.  Only the cancer samples were used for biochemical-

free survival analysis.  

The threshold used to determine abnormal from normal expression of a marker is often 

difficult to define.  This is particularly difficult when trying to correlate to biochemical 

recurrence.  One method is to use a specific quickscore value; an alternative is to define 

a value based on the clinical outcome.  This can be obtained by using a Receiver-operator 

characteristic (ROC) curve.  This assesses the accuracy of a test typically used for 

defining threshold laboratory values for diagnostic tests.  The accuracy of the test depends 

on how well the test separates the groups into those with and without the disease in 

question (i.e. biochemical relapse), based on sensitivity and specificity.  Sensitivity is the 
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ability of a test to correctly identify those with the disease (true positive rate), whereas 

specificity is the ability of the test to correctly identify those without the disease (true 

negative rate).  ROC curves are often used to assess the accuracy and reliability of 

biomarkers. 

Figure 21 illustrates a ROC curve of all Wnt markers.  The area under the curve is 

calculated.  An area of 1 is a perfect test and an area of 0.5 represents a worthless test.  A 

rough guide used is 0.9-1.0 = excellent, 0.8-0.9 = good, 0.7-0.8 = fair, 0.6-0.7 = poor, 

0.5-0.6 fail.  The dotted black line in figure 21 represents an excellent test with the solid 

reference line representing 0.5.  This demonstrates that MMP-7 is a fair test and C-myc a 

poor test with an area under the curve of 0.721 and 0.623, respectively.  All other markers 

were a fail.  When comparing the areas under the curve to the reference line (0.5) there 

was a significant difference for both MMP-7 (p<0.001) and C-myc (p=0.044).    
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Figure 21:  ROC curve of Wnt markers.  The reference line represents an area under the curve 

of 0.5, whereas the broken black line represents a value closer to 1.0, and deemed an excellent 

test.  MMP-7 and C-myc have values greater than 0.5 and represent a fair (0.721) and poor (0.623) 

test, respectively.  Comparison of these curves and the reference curves is significant for both 

MMP-7 and C-myc, p<0.001 and p=0.044 respectively.  MMP-7 = matrix metalloproteinase-7.    
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Using the ROC curve for MMP-7, a value can be obtained for abnormal expression.  The 

aim is to pick a value, which yields the highest sum of sensitivity and specificity.  Figure 

22 demonstrates that a threshold value of 5.5 offers a sensitivity of 71.9% and a specificity 

of 53.7 % (1 – 0.463).  If a greater value is used; although the specificity will increase the 

sensitivity will fall.  Using a value of 5.5, with all samples with a quickscore of 6 or more 

defined as abnormal MMP-7 expression, there is a significant difference in predicting 

time to biochemical relapse (Figure 22, p<0.05).   

 

 

Figure 22:  Kaplan-Meier curve of time to biochemical relapse as a function of MMP-7 

expression using ROC curve calculated threshold values. A quickscore above 5.5 (i.e. ≥6) 

represents MMP-7 activation and less than 5.5 (i.e. ≤5) represents no activation.  Log rank p<0.05. 

N=24.  

P<0.0001&p<0.05
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An alternative method of separating the data into normal and abnormal is using the 

quickscore values.  A value of 0 = no staining, 1-6 = mild staining, 7-12 = moderate 

staining, 13-18 = strong staining.  No and mild staining can then be compared to moderate 

and strong staining using a Kaplan-Meier curve and log-rank analysis (Figure 23).  This 

confirms a greater incidence of biochemical recurrence when there is a moderate/strong 

expression of MMP-7, based on the quickscore.  In this instance, this method confirms a 

similar finding to that obtained using the ROC curve calculations.  However, when the 

quickscore expression levels are low, as for Cyclin D1 and C-myc (mean values in 

malignancy of 2.1 and 2.2, respectively), this method may not be suitable and lower 

values for abnormal expression are required in order to depict trends.    

 

 

 

Figure 23:  Kaplan-Meier curve of time to biochemical relapse as a function of MMP-7 

expression using degree of staining using quickscore values.  No/mild staining = 0-6, 

moderate/strong = 7-18.  Log rank p<0.05.   N=24.  MMP-7 = matrix metalloproteinase-7.    
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One of the best prognostic markers for biochemical recurrence and subsequent survival 

is the GS.  When the times to biochemical relapse following radical prostatectomy are 

plotted using a Kaplan-Meier curve as a function of GS (Figure 24), clear patterns 

emerge; the higher the GS the greater the rate of biochemical relapse.  So, could MMP-7 

expression, for example, be a marker of Gleason score as oppose to a true independent 

marker for biochemical relapse? To attempt to answer this question, the data for each 

cohort of GS (based on D’Amico: low-, intermediate- and high-risk) were investigated 

separately.   

Of the 24 patients who had biochemical relapse following surgery; 1 had low-risk 

Gleason score based on D’Amico, 4 had intermediate-risk and 19 had high-risk disease.  

Consequently, very few conclusions could be drawn from the low- and intermediate-risk 

groups.   Sub-group analysis of the high-risk prostate samples demonstrated no 

correlation with activation or abnormal MMP-7 signalling and time to biochemical 

relapse (Figure 25, p=0.22, log-rank).   

 

 

Figure 24:  Kaplan-Meier curve of time to biochemical relapse as function of Gleason score 

(GS) based on D’Amico risk classification.  1 = low-risk (GS 6), 2 = intermediate-risk (GS 7), 

3 =high-risk (GS≥8). High-risk disease has a greater risk of biochemical relapse following 

surgery.  N=24. 

Time to biochemical relapse (months)

60483624120

C
u

m
 S

u
rv

iv
a

l

1.0

0.8

0.6

0.4

0.2

0.0

3-censored

2-censored

1-censored

3

2

1

Gleason score 
risk classification

Page 1



 105 

 

Figure 25: Kaplan-Meier curve of MMP-7 expression for high-risk prostate samples (GS≥8) 

demonstrating no significant difference in rate of biochemical relapse. Log rank p=0.22.  N=19.  

MMP-7 = matrix metalloproteinase-7.  
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3.3.1.3 Association of PI3K pathway markers with pathological characteristics and 

clinical outcomes 

To characterise the PI3K pathway the following markers were used using 

immunohistochemistry:  PTEN, p-AKT, p-MTOR and p-S6.  Figure 26 illustrates 

examples of representative intensity staining for p-AKT and p-S6.  Although, each marker 

stains at a different intensity, they both demonstrate predominately cytoplasmic with 

occasional nuclear positive staining.  Staining can be homogenous with staining 

throughout individual glands and tumours, but also more heterogeneous with focal 

positivity within single glands (Figure 26).  p-MTOR also exhibits cytoplasmic positivity 

with occasional nuclear staining.  For PTEN, a loss of cytoplasmic and/or nuclear staining 

suggested abnormal expression (data not shown).   

 

 

 

Figure 26:  Examples of representative immunohistochemistry staining of the PI3K 

markers: p-AKT and p-S6.  Error bars = 100μm. Intensity scoring: No staining = 0, Weak = 1, 

Moderate =2, Strong = 3. Proportion was also calculated formulating an overall quickscore 

(described in main text and methods section).  

 

The protein expression (mean quickscore) of PTEN was marginally reduced in malignant 

compared to benign prostate samples; with a 0.9 fold increase (p=0.160).  There was a 

significant increase in the mean expression of p-AKT, p-MTOR and p-S6; with an 

increase of between 1.3 and 2.4 fold in malignant compared to benign prostate tissue 

samples (p<0.001) (Table 17).  This data is further demonstrated in figure 27.  A further 

observation was the elevated expression of p-AKT in benign tissue (Mean expression 
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8.2), which did not necessary result in increased expression of down stream markers: p-

MTOR and p-S6.   

 

 

Marker Benign vs 

malignant 

P-value Mean Quickscore 

(95%CI) 

Fold 

increase 

PTEN 

 

 

p-AKT 

 

 

p-MTOR 

 

 

p-S6 

Benign 

Malignant 

 

Benign 

Malignant 

 

Benign 

Malignant 

 

Benign 

Malignant 

p=0.160 

 

 

p<0.001 

 

 

p<0.001 

 

 

p<0.0001 

 

10.5 (9.5-11.4) 

9.5 (8.9-10.2) 

 

8.2 (6.9-9.5) 

10.4 (9.7-11.0) 

 

1.0 (0.3-1.7) 

2.4 (1.8-3.0) 

 

4.3 (3.1-5.6) 

8.8 (8.0-9.6) 

0.9 

 

 

1.3 

 

 

2.4 

 

 

2.1 

 

Table 17:  Summary of PI3K pathway markers expression (mean quickscore) between 

benign and malignant prostate samples.   

 

 

 

 

Figure 27: Summary of PI3K pathway marker expression (mean quickscore) between 

benign and cancer prostate samples.  Error bars = 95% CI.   
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When correlating the mean expression of the PI3K pathway markers with GS, similar 

trends were seen as for that of the Wnt pathway markers, with greater expression in 

higher-risk disease  (Figure 28).  This was evident for p-mTOR and p-S6, with increasing 

expression from normal to low-risk (D’Amico 1, GS 6), to intermediate-risk (D’Amico 

2, GS 7) to high-risk (D’Amico 3, GS ≥8).  These rises were statistically significant for 

p-S6 (p<0.05) but not for p-MTOR.  These observations were no apparent for PTEN or 

p-AKT staining.   

 

 

 

Figure 28: Summary of PI3K pathway marker expression (mean quickscore) categorised 

according to Gleason score risk classification as defined by D’Amico (*0 = normal, 1 = low-

risk, 2 = intermediate-risk, 3 = high-risk).  Error bars = 95% CI.   
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Figure 29:  ROC curve of PI3K markers.  The reference line represents an area under the curve 

of 0.5.  All markers have an area under the curve close to 0.5 (0.534, 0.529 and 0.563) and are 

deemed a very poor test for identifying those that develop biochemical relapse following surgery.  

 

When ascertaining if a cut of value for activation or aberrant signalling of each marker 

could correlate with biochemical relapse, the ROC curve failed to identify any significant 

marker (Figure 29).  A comparison of no/mild to moderate/strong staining of pS6 did not 

demonstrate any differences in biochemical relapse (Figure 30, p=0.373, log-rank). 

Further analysis of the high-risk group (GS ≥8), where the majority of biochemical 

relapses following surgery occurred, failed to show any difference in time to biochemical 

relapse when comparing moderate/strong to no/low staining for pS6 (Figure 31, p=0.337, 

log-rank).   
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Figure 30: Kaplan-Meier curve of time to biochemical relapse as a function of pS6 

expression using degree of staining using quickscore values.  No/mild staining = 0-6, 

moderate/strong = 7-18.  Log rank p<0.373. N=22. 

 

 

Figure 31: Kaplan-Meier curve of pS6 expression for high-risk prostate samples (GS>7) 

demonstrating significant difference in rate of biochemical relapse. Log rank p<0.337. N=17.  
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3.3.1.4 Association of MAPK pathway markers with pathological characteristics 

and clinical outcomes 

To characterise the MAPK signalling pathway, the downstream markers p-ERK and p-

MEK were used.  p-ERK and p-MEK demonstrated nuclear and cytoplasmic staining, 

respectively (Figure 32).   

 

 

 

Figure 32:  Examples of representative immunohistochemistry staining of the MAPK 

markers: p-ERK and p-MEK.  Error bars = 100μm. Intensity scoring: No staining = 0, Weak = 

1, Moderate =2, Strong = 3. Proportion was also calculated formulating an overall quickscore 

(described in main text and methods section).  

 

There was a higher expression of both p-MEK and p-ERK in PCa samples when 

compared to normal tissue, this was only significant for p-MEK however (Figure 33A). 

When assessing expression levels as a function of GS, there was no trend towards 

increased expression in higher-risk disease for p-ERK unlike that for p-MEK (Figure 

33B).  Expression of p-MEK was significantly higher in all cancer grades when compared 

to normal (p<0.0001).  However when comparing low- (D’Amico 1, GS 6) to 

intermediate-risk (D’Amico 2, GS 7) and intermediate- to high-risk (D’Amico 3, GS ≥8) 

samples no significance was demonstrated, although an upward trend with increasing 

expression with GS was observed (Figure 33B, p=0.06). 
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Figure 33:  Summary of MAP-Kinase pathway marker expression (mean quickscore) 

between: A: Normal and cancer samples and B: categorised according to Gleason score risk 

classification as defined by D’Amico (*0 = normal, 1 = low-risk, 2 = intermediate-risk, 3 = high-

risk).  Error bars = 95% CI.   

 

ROC curve analysis failed to demonstrate any significant difference for p-ERK and p-

MEK expression when correlating with risk of biochemical relapse following surgery 

(data not shown).  However, when using quickscore estimations, no/mild versus 

moderate/strong expression, p-MEK was statistically predictive of time to biochemical 

relapse after surgery (Figure 34, p<0.01, log-rank). Similar to that of p-S6, p-MEK failed 

to predict risk of biochemical relapse independently of GS (Figure 35).  Those high-risk 

cancers with moderate/strong expression of p-MEK had a shorter time to biochemical 

relapse than PCa samples with no/mild staining, however this was not statistically 

significant (p=0.117, log-rank).   
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Figure 34: Kaplan-Meier curve of time to biochemical relapse as a function of p-MEK 

expression using degree of staining using quickscore values.  No/mild staining = 0-6, 

moderate/strong = 7-18.  Log rank p<0.01. N=24.  

 

 

Figure 35: Kaplan-Meier curve of p-MEK expression for high-risk prostate samples (GS>7) 

demonstrating a significant difference in rate of biochemical relapse. N=19. Log rank p<0.117.
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Figure 36: Heat map of Wnt, PI3-Kinase and MAP-Kinase markers for 50 samples of each grade of tumour (normal, low-risk (GS 6), intermediate-risk 

(GS 7) and high-risk (GS ≥8).  Decreased expression = no/low expression (quickscore 0-6), Increased expression = moderate/high expression (quickscore 7-

18). 
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3.3.1.5 Expression of Wnt, PI3K and MAPK signalling pathways markers are 

greater in higher risk disease 

The heatmap in Figure 36 illustrate the trends found in expression levels of markers 

associated with all three pathways when separated into GS risk group.  There is a clear 

trend, with more samples displaying upregulation of pathway markers as the GS 

increases.   

 

3.3.1.6 Some Wnt, PI3K and MAPK signalling pathways markers are positively 

correlated  

To assess correlation between different markers and pathways, a Pearson correlation 

coefficient was measured.  This statistical test is a measure of the linear 

correlation between two variables X and Y, giving a value between +1 and −1 inclusive, 

where 1 is total positive correlation, 0 is no correlation, and −1 is total negative 

correlation. 

Adopting this statistical method, table 18 summarises the correlation of the best or most 

reliable markers in each pathway. Any correlation between single pathways was assessed 

first. Wnt pathway, analysed using β-catenin, MMP-7 and C-myc were all positively 

correlated, with a Pearson correlation coefficient of between .150 and .265. PI3K pathway 

markers: p-AKT, p-MTOR and p-S6 (Pearson correlation coefficient between .125 and 

.270) and MAPK markers: p-ERK and p-MEK (Pearson correlation coefficient .226) 

were also positively correlated.  Although single pathway analysis showed only modest 

correlations, assessing interplay of the different pathways demonstrated greater 

correlations. For example, the strongest correlations were those between the PI3K and 

MAPK pathway, in particular: p-ERK and p-AKT, p-MEK and p-S6 and p-MEK and p-

AKT, with a Pearson coefficient of .534, .461 and .440, respectively.  There was also 

positive correlation between the Wnt pathway and PI3K and MAPK pathways, but to a 

lesser degree.  This observation suggests possible crosstalk between the signals produced 

from each of these cancer pathways.   
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Marker β-cat MMP-7 C-myc pAKT pMTOR pS6 pERK pMEK 

β-catenin 1        

MMP-7 .150* 1       

C-myc .173* .265** 1      

pAKT .306** .366** .266** 1     

pMTOR .075 .190** .326** .270** 1    

pS6 .394** .208** .374** .252** .125* 1   

pERK .090 .293** .370** .534** .357** .254** 1  

pMEK .411** .134* .432** .440** .026 .461** .226** 1 

Table 18: Pearson correlation coefficient of Wnt, PI3-Kinase and MAP-Kinase signalling 

pathways. * p=0.05, ** p=0.01 

 

An alternative way to correlate all these markers is to use principle components analysis 

(PCA, Figure 37).  This statistical test transforms the data from multiple variables 

(expression level of each marker in this case) and converts them into a new coordinate 

system with each coordinate called a principle component.    The greatest variance of the 

data lies on the first coordinate (first principle component) and the second variance on 

the second coordinate, and so on.  This reduces the amount of data so that typical 2 or 3 

principle components are used to place the expression profile of each sample in a unique 

linear space.  This attempts to predict areas where certain types or features of tumours 

may cluster, usually represented by a scatter plot.  
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Figure 37:  Principle components analysis (PCA) using all Wnt, PI3K and MAPK markers 

demonstrating some molecular correlation categorised by Gleason score (GS) risk group 

(Low-risk=GS 6, Intermediate-risk=GS 7, High-risk=GS>7).  Oval shape (solid line) representing 

the majority of high-risk samples and oval shape (broken-line) representing the majority of low-

risk or normal samples.   

 

Although there is a lot of crossover between the samples, the normal and low-risk samples 

appear to cluster to the middle/lower right area of the graph with the majority having 

negative values for component 1 and positive values for component 2 (Oval shape broken 

line, Figure 37).  Intermediate-risk samples do not demonstrate any clustering.  Whereas 

high risk samples predominately populate the centre of the graph (Oval shape solid line, 

Figure 37) and many are positive for components 1 and 2.   
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3.3.2 Next-generation sequencing (NGS) analysis 

3.3.2.1 NGS samples and characteristics 

200 prostate DNA samples were extracted from formalin-fixed paraffin embedded 

(FFPE) prostate samples and analysed using the Ion Torrent platform, with the 50-gene 

Ampliseq Cancer Hotspot Panel v2 (CHPv2), as discussed in section 2.1.2. 

Unfortunately, despite careful DNA extraction and quantification only 61 samples had 

sufficient coverage in order to report accurate data.  The remaining samples either 

displayed very poor coverage or high background levels, features that can be problematic 

in FFPE samples.   

Although the tissue morphology is preserved in FFPE samples, nucleic acid damage 

occurs caused by the fixation and embedding conditions, and due to long-term storage of 

samples. The most common nucleic acid artefact is C>T base substitution caused by 

deamination of cytosine bases to deoxyuracil.  This results in DNA damage and strand-

breaks affecting the quality and number of amplifiable copies of DNA.  Deaminated 

cytosine residues can be removed by the enzyme Uracil-N-Glycosilase (UNG) 

overcoming this problem and improving the DNA quality.  Future DNA extractions could 

adopt this extra step in order to improve NGS run success.  Alternatively, fresh-frozen 

tumour tissue should have even better results as the nucleic acids are of high quality.   

Of the 61 successfully sequenced prostate samples, 58 were from radical prostatectomy 

specimens and 3 were from transurethral resection of prostate (TURP) gland sections. 

The median age was 63 year (Range 43-85 years).  The median PSA at diagnosis was 9.9 

ng/ml (Range 3-64 ng/ml).  4 had pathological (p) T1 disease, 19 pT2 and 35 pT3 and the 

3 TURP’s were clinical stage T3. Histologically 10 had a low-risk GS (GS=6), 16 had 

intermediate-risk GS (GS=7: 13 GS 3+4 and 3 GS 4+3) and 35 had high-risk (GS>7: 4 

GS 3+5, 6 GS 4+4, 16 GS 4+5, 2 GS 5+3, 5 GS 5+4 and 2 GS 5+5).   Of the 58 radical 

prostatectomy samples, 8 had biochemical relapse.  
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3.3.2.2 Types of genetic mutations 

A brief description of the types of mutations detected using the Ion Torrent CHPv2 panel 

is shown in Table 19.  

 

Mutation Description 

Synonymous  Substitution of one base for another in an exon, such that the 

produced amino acid is not modified 

Missense Point mutation in which a single nucleotide change results in a codon 

that codes for a different amino acid.  It results in a slightly altered 

protein. 

Nonsense Point mutation that results in premature stop codon usually resulting 

in a non-functioning protein.  i.e. it blocks protein production.   

Frameshift  Mutation caused by an insertion or deletion of a number of 

nucleotides, which causes a shift in the translational reading frame.  

This has a more dramatic effect as causes a change in all amino acids.  

The resulting protein is usually non-functional. 

Table 19:  Types of genetic mutations 

 

3.3.2.3 Spectrum of mutations from Ion Torrent CHPv2 panel in primary prostate 

malignancy 

Cellularity scoring showed that 1 sample had 0-20% tumour, 2 samples had 21-40% 

tumour, 12 samples 41-60% tumour, 26 samples had 61-80% tumour and 20 samples had 

81-100% tumour content.   

Of the 61 samples analysed, 22 (36.1%) showed no potentially pathogenic variants (single 

nucleotide variants flagged as common by UCSC Genome Browser, University of 

California, Santa Cruz; http://www.http://genome.ucsc.edu only).  Of these, 2 had a 

cellularity scoring of less than 40% tumour.  Therefore, it is not possible to draw any firm 

conclusions in these samples, as there is a high false negative rate, being contaminated 

with more than 60% of normal tissue.   

Of the remaining 39 samples, there were 20 different gene mutations detected from the 

CHPv2 panel.   

 

http://www.http/genome.ucsc.edu
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3.3.2.3.1 Wnt pathway genes 

The genes associated with the Wnt pathway on the CHPv2 panel included Adenomatous 

polyposis coli (APC), β-catenin (CTNNB1) and E-cadherin (CDH1).  Both mutations in 

APC and CTNNB1 results in Wnt pathway deregulation and activation of Wnt target 

genes such as c-MYC and MMP-7.   CTNNB1 is also important in adherent junctions 

between epithelial cells where it binds and forms a complex with CDH1.  Mutations in 

either of these genes are associated with cancer progression and metastasis.   

10/61 (16.5%) of samples harboured a mutation in a gene associated with the Wnt 

pathway (figure 41).  There were 7 (11.5%) APC mutations; 1 occurring in a sample with 

a low-risk GS, 2 with an intermediate-risk GS and 4 with a high-risk GS.  There was only 

1 (1.6%) CTNNB1 mutation, which occurred in a high-risk GS sample.  There were 2 

(3.3%) CDH1 mutations both in high-risk GS samples, with 1 also harbouring a CTNNB1 

mutation.  

 

3.3.2.3.2 PI3K pathway genes 

The genes associated with the PI3K pathway on the CHPv2 panel included Phosphatase 

and tensin homolog (PTEN), AKT1 (also know as Protein Kinase B), p110α catalytic 

subunit of PI3K (PIK3CA) and the Receptor tyrosine kinases (RTK’s): epidermal growth 

factor receptor (EGFR also called ERBB1 or HER1) and erb-b2 receptor tyrosine kinase 

2 (ERBB2) or human epidermal growth factor receptor 2 (HER2).  PTEN is a tumour 

suppressor gene located at the 10q23 locus of chromosome 10, which is a potent activator 

of downstream AKT, in particular, the AKT1 isoform.  PI3K is composed of an 85 kDa 

regulatory subunit and a p110α kDa catalytic subunit.  PI3K is activated upon ligand 

binding to a receptor tyrosine kinase (RTK), which then activates the regulatory subunit 

(85 kDa) to bind to the catalytic p110α subunit.  Both activation of AKT and PI3K triggers 

various downstream signalling cascades resulting in cell survival, apoptosis, 

transformation, cell migrations and metastasis (Karakas et al. 2006). RTK’s such as 

EGFR and ERBB2/HER2 can activate both the PI3K and MAPK pathway.   

14/61 (23.0%) of samples analysed had a mutation in a gene commonly associated with 

the PI3K pathway (Figure 39).   There were 7 (11.5%) mutations in the PTEN gene, 1 in 

a low-risk GS sample, 1 in an intermediate-risk GS and 5 in high-risk GS.  There were 3 
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(4.9%) mutations in AKT1, 2 in a low-risk GS and 1 in high-risk GS samples.  There 

were 4 RTKs (2 EGFR and 2 ERBB2) mutations, 1 intermediate-risk sample having a 

mutation in both and 2 other mutations (1 EGFR and 1 ERBB2) both in high-risk GS 

samples. Only 1 (1.6%) sample, with a high-risk GS, harboured a PIK3CA mutation.   

 

3.3.2.3.3 MAPK pathway genes 

The genes associated with the MAPK pathway on the CHPv2 panel included the three 

RAS (rat sarcoma viral oncogene homolog) genes (KRAS, HRAS and NRAS), BRAF 

and the two RTKs: EGFR and ERBB2/HER2. RAS acts as a molecular “on/off” switch; 

when mutated it remains in the “on” state activating the MAPK pathway.  BRAF is a Raf 

Kinase that can activate MEK (downstream of RAS), which in turn activates ERK by 

phosphorylation.  Consequently, fundamental cellular processes such as growth, 

proliferation, cell survival and apoptosis are disrupted, permitting tumourigenesis.   As 

discussed above, RTK’s upstream of the MAPK pathway, such as EGFR and 

ERBB2/HER2 can also cause aberrant signalling of this pathway.   

The incidence of mutations in genes associated with the MAPK pathway was 8.2% (n=5) 

(Figure 39); with 1 (1.6%) intermediate-risk GS sample harbouring a KRAS mutation, 1 

(1.6%) low-risk GS sample harbouring a HRAS mutation and there were no mutations 

identified in the BRAF gene.  There 4 mutations in the RTK’s (EGFR and ERBB2/HER2) 

occurring in 3 samples as discussed above. 

 

3.3.2.3.4 Cell cycle and DNA repair genes 

Other cellular processes or pathways whereby gene mutations can be grouped include cell 

cycle and DNA repair genes. The genes on the CHPv2 panel associated with this process 

include Tumour protein p53 (TP53), Retinoblastoma (RB1), Cyclin-dependent kinase 

Inhibitor 2A (CDKN2A) and Ataxia telangiectasia mutated (ATM).  TP53 is a tumour 

suppressor gene located on chromosome 17 and has several anti-cancer roles.  It can 

activate DNA repair pathways and proteins, regulate the cell cycle at the G1/S check-

point and can initiate apoptosis (Sidransky & Hollstein 1996).   RB1 is a tumour 

suppressor gene located on chromosome 13.  When bound to the transcription factor E2F, 



 120 

RB1 prevents cell cycle progression and DNA replication (Indovina et al. 2015).    

CDKN2A is located on chromosome 9 and codes the cell-cycle inhibitor protein p16.  p16 

controls abnormal cell growth and proliferation by binding to complexes of cyclin-

dependent kinases (CDK) such as CDK 4 and 6 and Cyclin D.  This binding inhibits the 

kinase activity of the enzyme, which arrests the cell cycle in the G1 phase (Foulkes et al. 

1997).  ATM is located on chromosome 11 and is recruited and activated following DNA 

double-strand breaks.  It results in cell cycle arrest, DNA repair and apoptosis through 

activation of key targets such as p53 and BRCA1 (Ahmed & Rahman 2006). 

21/61 (34.4%) samples harboured a mutation in a cell cycle pathway gene and 3/61 

(4.9%) in a DNA repair gene (Figure 39).  19 had 1 mutation and 2 samples had 2 

mutations.  17 (27.9%) samples had a TP53 variant, the majority (n=12) being missense.  

Interestingly, there were no TP53 mutations in low-risk GS samples, with 7 (43.8%) in 

intermediate-risk GS and 10 (32.2%) in high-risk GS samples.  There were 2 (3.3%) 

mutations in the RB1 gene.    There were 2 (3.3%) mutations in CDKN2A and 3 (4.9%) 

mutations in the DNA repair gene, ATM. 

 

3.3.2.3.5 Other gene mutations 

In addition there was 2 in FGFR3, 1 in MET, 2 in ALK, 1 in SRC, 1 in RET and 1 in 

HNF1A.   

Table 20 and Figure 38 shows a summary of all mutations.  

https://en.wikipedia.org/wiki/DNA_repair#Double-strand_breaks
https://en.wikipedia.org/wiki/DNA_repair#Double-strand_breaks
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TP53                                                                               Low GS (6)   

APC                                                                               
Intermediate GS 

(7)   

PTEN                                                                               High GS (>7)   

AKT1                                                                                 

ATM                                                                               Synonymous   

RB1                                                                               Missense   

CDH1                                                                               Nonsense   

CDKN2A                                                                               Frameshift   

ERBB2                                                                                 

FGFR3                                                                                 

EGF3                                                                                 

ALK                                                                                 

CTNNB1                                                                                 

PIK3CA                                                                                 

KRAS                                                                                 

HRAS                                                                                 

MET                                                                                 

SRC                                                                                 

RET                                                                                 

HNF1A                                                                                

 
 

Figure 38:  Distribution of mutations identified.  Genes are ordered by their mutational frequency within the cohort.  Mutations are labelled according 

to GS risk group and type of mutation (Synonymous, missense, nonsense, frameshift)
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Table 20:  Number of mutated cases for each gene 

 

 

Figure 39:  Percentage of gene aberrations separated into molecular or pathway processes.    
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TP53 17 27.9% 

APC 7 11.5% 

PTEN 7 11.5% 

AKT1 3 4.9% 

ATM 3 4.9% 

RB1 2 3.6% 

CDH1 2 3.3% 

CDKN2A 2 3.3% 

ERBB2 2 3.3% 

FGFR3 2 3.3% 

EGFR 2 3.3% 

ALK 2 3.3% 

CTNNB1 1 1.6% 

PIK3CA 1 1.6% 

KRAS 1 1.6% 

HRAS 1 1.6% 

MET 1 1.6% 

SRC 1 1.6% 

RET 1 1.6% 

HNF1A 1 1.6% 
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3.3.2.4 Patient follow-up data 

The median follow-up time was 4.4 years (Range 2.1-9.5 years).  Of the 61 patients, 2 

have died during this follow-up period with 1 as a result of PCa.  This was a TURP sample 

from a patient with high-grade (GS 4+5=9) PCa and harboured a single mutation from 

the CHPv2 panel: TP53.  8 patients had biochemical failure all having high-risk disease 

according to D’Amico criteria (GS 8-10 or ≥T2c or PSA.20 ng/ml).  2 had GS 7 (1 GS 

3+4=7 and 1 GS 4+3=7) and 6 had GS8-9 (4 GS 4+5, 1 GS 5+3, 1 GS 5+4).  7 patients 

had pT3 disease and 1 had pT2 disease.  3 had a PSA <10ng/ml and 5 had a PSA>20ng/ml.  

2 of these patients had mutations in Wnt pathway associated genes, 1 having mutations 

in both CTNNB1 and CDH1 and the other having a mutation in APC.     There was 1 

PI3K associated gene mutation: PTEN and 4 patients had a TP53 mutation.  A summary 

of all mutations present in these samples is shown in Table 21.     

 

 

Patient Gleason score PSA (ng/l) pT-stage Gene Mutations 

1 

2 

3 

4 

5 

6 

7 

8 

 
 

4+5 

5+4 

4+5 
4+5 

5+3 

4+4 

4+3 

3+4 

 
 

23.1 
8.0 

4.5 

25.0 

9.1 

5.5 

23.0 

5.7 

 
 

3 
3 

2 

3 

3 

3 

3 

3 
 

 

MET, TP53 
PTEN 

CTNNB1,CDH1 

PTEN 

NIL 

ATM,TP53,SRC 

NIL 

APC, TP53 

 
 

Table 21:  Tumour characteristics and mutational profiles of the 8 samples that had 

biochemical relapse following radical prostatectomy.  
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3.4 Discussion 

This chapter reports the expressional profile of a large cohort of primary PCa samples as 

part of a TMA and demonstrates the feasibility of performing targeted sequencing using 

primary PCa tumour FFPE samples using the Ion Torrent and CHPv2 gene panel.  

 

3.4.1 Wnt Signalling Pathway 

This study demonstrates upregulation of the Wnt pathway in PCa, particularly as the GS 

increases, with elevated expression of β-catenin and Wnt target genes: MMP-7, Cyclin 

D1 and C-myc using IHC.  In the literature there remains inconsistency of β-catenin 

staining using IHC with reports favouring both an increased and decreased expression 

(Kypta & Waxman 2012). β-catenin staining was considered positive if there was 

cytoplasmic or nuclear staining consistent with the theory that cytoplasmic staining is as 

a result of β-catenin entering or leaving the nucleus.  

The incidence of β-catenin mutations in primary PCa samples in low (1/61, 1.6%), similar 

to that reported by others (Baca et al. 2013; Barbieri et al. 2012; Taylor et al. 2010; Beltran 

et al. 2013).  Emerging evidence suggests that β-catenin and APC are mutually exclusive, 

consistent with the notion that mutations of either gene has more or less the same 

molecular defect: β-catenin stability and TCF transactivation within the nucleus (Giles et 

al. 2003).  Therefore, when both β-catenin and APC mutational profiles are combined the 

rate of Wnt pathway alteration increases to 8/61 (13.1%).  The incidence is increased 

further to 10/61 (16.4%) when CDH1, which is important in adherent junctions by 

binding to β-catenin, is added.   

Recent studies have further demonstrated that the somatic alteration of APC and β-catenin 

are greater in metastatic disease, with an incidence of 8.7-19.7% and 4.9-12% 

respectively (Grasso et al. 2012; Robinson et al. 2015).  Although, metastatic PCa 

samples have not been examined, there is an upward trend with greater expression of Wnt 

associated markers in higher GS samples and in those with biochemical relapse. The Wnt 

pathway has been linked to the progression of PCa (Grasso et al. 2012; Barbieri 2013) 

and has been implicated in the lethal phase of PCa, castrate resistant PCa (Kumar et al. 

2011; Grasso et al. 2012).    
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Given the importance of the Wnt signalling in all stages of PCa, particularly those with 

high-risk and metastatic disease, targeting this pathway is an attractive therapeutic 

approach. However, success has been limited because of the lack of effective therapeutic 

agents for targets in the Wnt pathway and the lack of a defined patient population that 

would be sensitive to a Wnt inhibitor.  Promising work by Liu et al (2013) has shown that 

a drug that targets Porcupine (LGK974), a Wnt-specific acyltransferase, potently inhibits 

Wnt signaling and has strong efficacy in rodent tumour models, and is well-tolerated (J. 

Liu et al. 2013).  Novel agents like this in combination with techniques such as targeted 

NGS, as displayed by this study, would maximise future success.   

 

3.4.2 PI3K Signalling Pathway 

In the present study, the PI3K pathway was commonly altered, with elevation of 

downstream markers (p-AKT, p-MTOR and p-S6), particularly in patients with high-risk 

disease, where positive association with biochemical recurrence was demonstrated.  

Using targeted NGS, the Ion Torrent platform and CHPv2 gene panel, 9.8% of primary 

prostatectomy samples had a PTEN mutational.   This is similar to that reported by the 

COSMIC database (8%) and others who report an incidence between 7-18% in non-

metastatic tumours (Taylor et al. 2010; Barbieri et al 2012; Baca et al. 2013).  This 

increases significantly to between 40-87% in metastatic samples (Taylor et al. 2010; 

Robinson et al. 2015; Grasso et al. 2012; Friedlander et al. 2012).  PTEN loss has also 

been associated with biochemical recurrence after radical prostatectomy (Bedolla et al. 

2007) and resistance to radiation (Skvortsova et al. 2008) and chemotherapy (Grünwald 

et al. 2002).  In addition, PTEN loss has also been shown to predict for shorter time to 

metastasis (Lotan et al. 2011) and PTEN null prostate cancer cells demonstrate castration 

resistant growth (Mulholland et al. 2011).  There was a low AKT1 and PIK3CA mutation 

rate consistent with other reports (Sun et al. 2009; Robinson et al. 2015).  Like PTEN 

loss, AKT1 activation has also been associated with poor clinical outcome such as 

biochemical relapse following radical prostatectomy (Ayala et al. 2004) and resistance to 

radiation (Skvortsova et al. 2008).   

Overexpression ERBB2/HER2 is well established in breast cancer occurring in ~15% 

cases and defines one of the unique subtypes, which responds to different treatment 

(Burstein 2005).  Trastuzumab (Herceptin) is a monoclonal antibody that interferes with 



 126 

the HER2 receptor and is used in the management of HER2-positive breast cancer 

following surgery and/or radiotherapy and in advanced metastatic disease alone or  in 

combination with chemotherapy (Figueroa-Magalhães et al. 2014).  Expression of 

ERBB2 (HER2) in PCa has been inconsistent with some reporting greater expression 

(Morote et al. 1999) and others reporting low expression (Savinainen et al. 2002).  A 

phase II UK trial using Pertuzumab single-agent in castrate chemotherapy-naive patients 

with hormone-refractory PCa demonstrated no clinical benefit, with the authors 

concluding that failure was likely secondary to the continued presence of significant 

levels of intraprostatic androgen driving androgen receptor signaling (de Bono et al. 

2007).  EGFR (ERBB1/HER1) overexpression has been observed in more than 40% of 

CRPC patients, but similar to ERBB2 the use of specific inhibitors (Gefitinib) in clinical 

trials has failed to provide survival benefits (Canil et al. 2005). 

When combining somatic mutations (PTEN, AKT1, PIK3CA, ERBB2/HER2 and EGFR) 

the incidence increases to 21.3% (13/61). The expression of PI3K markers is also higher 

in high-risk PCa.  Alterations of components of the PI3K pathway, including mutation, 

altered expression, and copy number alterations, have been reported by others, with 42% 

occurring in primary prostate tumours and 100% occurring in metastatic tumours (Taylor 

et al. 2010). Furthermore, Robinson et al (2015) reports somatic alterations associated 

with the PI3-Kinase pathway in 49% of metastatic castrate resistant PCa affected 

individuals (Robinson et al. 2015).  

Given the high prevalence of PI3K pathway activation demonstrated in this study of 

primary PCa and by others in metastatic PCa (Robinson et al. 2015; Taylor et al. 2010), 

inhibitors of this pathway have great potential to deliver clinical benefit.  There are a 

number of agents under investigation, which inhibit various components of the pathway 

including mTOR inhibitors, PI3K inhibitors and AKT inhibitors.  These agents have been 

mostly used in the metastatic setting and the results to date have been poor (Bitting & 

Armstrong 2013)  

 

 

3.4.3 MAPK Signalling Pathway  

This study shows a low mutational rate in genes associated with the MAPK pathway with 

only 2 mutations in RAS genes.  This is similar to others with a reported incidence in 
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KRAS of 3-6% (Grasso et al. 2012; Baca et al. 2013; Taylor et al. 2010; Robinson et al. 

2015).  Despite this, there was a high expression level of the downstream markers p-ERK 

and p-MEK in this cohort of primary prostate cancers implying aberrant MAPK 

signalling.  This is in accordance with work by Taylor et al (2010), reporting MAPK 

pathway alteration in 43% of primary tumours and 90% of metastasis.   

We further show that p-MEK expression can predict risk of biochemical relapse 

independent of GS (Figure 37).  In the clinical setting this finding could be useful in 

predicting biochemical relapse in those with intermediate and high-risk disease.  These 

patients could then be offered additional treatment; whether adjuvant hormones or 

radiotherapy, or novel targeted agents.  

Although RAS mutations are rare in PCa, deregulation of its effectors such as the MAPK 

signaling pathway is very common.  MAPK signaling has been implicated in both 

initiation of metastatic disease and in the late translation into CRCP (Mukherjee et al. 

2011).  It is thought to represent a convergence point for numerous interconnecting 

cellular pathways.  It is hypothesized that this complex combination of signals grant cells 

the ability to evade normal controlling mechanism and to permit metastasis. (Pylayeva-

Gupta et al. 2011; Cox & Der 2003). 

 

3.4.4 Cross-talk Between Signalling Pathways 

Cell signaling pathways are complex with many interactions between one another, 

resulting in both activation and inhibitory cross-talk.  These cross-talk signals are 

important in targeted therapies and important in treatment failure, particularly when using 

single agents.  To attempt to capture the cross talk between the Wnt, PI3K and MAPK 

pathway a heat map and Pearson correlation coefficient was performed on pathway 

marker expression from each pathway.  The heat map displayed greater activity of all 

pathways, as the GS increased.  When analysing individual markers the greatest 

correlation was seen between the PI3K and MAPK markers.  In particular there was 

strong correlation between the downstream PI3K/mTOR marker p-S6 and the 

downstream MAPK marker p-MEK, both of which have shown to predict risk of 

biochemical relapse independent of GS.  There was also positive correlation between the 

Wnt pathway and PI3K and MAPK pathways, however to a lesser degree.  This 



 128 

observation suggests possible crosstalk between the signals produced from each of these 

cancer pathways.   

The PCA analysis in this study displays clustering of low-risk GS and high-risk GS.  Each 

individual samples was put into a space based on expressional profile using IHC for all 

markers (PCA discussed in section 2.3).  This finding strengthens the theory that different 

grades of cancer have different molecular or genetic profiles resulting in some behaving 

indolently and some behaving aggressively. 

Cross talk and the combinatory effect of deregulating these pathways will be examined 

in the next chapter using mouse models.    

 

3.4.5 Cell Signalling and DNA repair  

Although this thesis did not aim to evaluate cell signalling or DNA repair genes, it was 

difficult to ignore them, given the high incidence of detected mutations using targeted 

NGS.  20/61 (32.8%) samples had a mutation in one of these genes.  TP53 was the 

commonest occurring in 16 (26.2%) of samples.  TP53 is the most commonly mutated 

gene in PCa and all human cancer.  Recent data show mutations in over 50% of samples 

with metastatic CRPC (Robinson et al. 2015).  This data and that of others (Barbieri et al 

2012), suggests that these alterations are not exclusively late events, with localised PCa 

also harbouring lesions in TP53.   This study does however only display mutations in 

TP53 in intermediate- and high-risk disease where they have a greater metastatic ability.  

Consistent with others (COSMIC), the mutational rate of the tumour suppressor gene, RB 

was low (3.6%).   In contrast, RB is important in CRPC and is commonly inactivated with 

recent data showing RB1 loss in 21% cases.  RB is thought to offer its protective role by 

modulating AR signalling and inhibits progression to castrate resistance (Aparicio et al. 

2011).   

There were 3 (4.9%) mutations in the DNA repair gene, ATM, in our cohort, slightly 

lower than that reported in a cohort of metastatic CRPC samples (7.3%) (Robinson et al. 

2015).  Similar to BRCA1/2, ATM is recruited and activated following DNA double-

strand breaks. Encouragingly, following success of poly(-ADP-ribose) polymerase 

(PARP) inhibition (i) in selective breast cancer, similar benefits have been seen in patients 

with metastatic CRPC.  Patients who were treated with the PARPi Olaparib, lived nearly 

https://en.wikipedia.org/wiki/DNA_repair#Double-strand_breaks
https://en.wikipedia.org/wiki/DNA_repair#Double-strand_breaks
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three times longer without their cancer worsening if their tumors had mutations in at least 

one of 12 DNA repair genes (Mateo et al. 2015).    

 

3.4.6 Limitations 

There are limitations in both types of experiments used in this chapter: IHC and targeted 

NGS.  IHC is an observational analysis and although scoring methods (e.g. H score in 

this study) help with the consistency in reporting there are many other confounding 

factors.  Type and duration of tissue fixation, for example, is known to affect IHC 

staining, and accuracy of staining is only as good as the antibodies used.  PCa is often 

multifocal and it is difficult to account for this using IHC of a TMA.  Although, in this 

thesis IHC scores have been correlated to outcome data such as biochemical relapse, it is 

hard to prove that the area examined on the TMA was directly the cause of this.  

Nevertheless, clear trends have been identified. 

Tissue fixation and processing has also likely played a part in the targeted NGS.  Only 

61/200 (30.5%) DNA samples were successfully sequenced using the CHPv2 gene panel 

and Ion Torrent platform, consistent with the success rate from others (Hedegaard et al. 

2014).  Extracting DNA from FFPE samples is fraught with difficulty. The main reason 

for the failure is the non-efficient DNA amplification of the libraries, most probably as a 

result of DNA modifications caused by the fixation and subsequent storage.  As discussed 

above, future DNA extractions could adopt a UNG step in order to improve DNA quality 

and NGS run success.  Alternatively, fresh samples could be used.  In fact, our research 

unit is currently making enquiries into the use of a twin core biopsy gun, whereby one 

sample is sent for histological analysis and the second adjacent sample is used for 

research.   

In addition to problems associated with DNA extraction, errors can occur within the NGS 

platform, with reported error rates of between 0.1% and 1.0% (Shendure & Ji 2008).  

These can occur during DNA amplification; such as polymerase mistakes resulting in 

incorrect variant calls, or during the sequencing cycles or image analysis (Fox et al. 2014).    

The CHPv2 gene panel is only a hotspot panel.  All genes within the panel have been 

collaborated and matched to the COSMIC database.  Although, the panel includes 50 

genes, it only sequences commonly reported hotspots and not the whole gene.  Some 
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genes like KRAS, which is short, are well covered but larger genes, such as PTEN, are 

not.  Thus, this data is likely to represent an under estimate of the true mutational rate of 

each gene. The overriding advantages of using this hotspot panel however, are the ease 

of use, time and cost, in comparison to whole genome sequencing. This method is likely 

to represent a more cost-effective method that can be adopted in everyday clinical 

practice.   

The median follow-up time was 5.3 years; therefore few men have died from their cancer. 

Future analysis in 5 or 10 years time, using overall survival and disease specific survival, 

will truly see the effect of deregulation of these pathways on PCa outcome.    

 

3.4.7 Summary and future directions 

In summary, this study highlights the importance of the Wnt, PI3K and MAPK signalling 

pathways in PCa.  These results offer a glimpse into the molecular signature of individual 

PCa samples.  This opens exciting future prospects, with the development of targeted 

assays or biomarker/genetic panels permitting personalised molecular profiles, thereby 

directing future therapies.   

The results of targeted therapies in PCa clinical trials have on the whole been poor.  The 

majority of these studies have been in the metastatic setting where there is a complex 

genetic profile making single agent targeted therapies ineffective.  Historically, new 

treatments are tested first in the metastatic disease and then evaluated in the preoperative 

(or neoadjuvant) setting, however is this too late?  Future trials could aim to use drugs in 

a neo-adjuvant or adjuvant setting in primary cancer treatment (prostatectomy or 

radiotherapy) as oppose to waiting for the onset of metastatic disease where the molecular 

signature is more complicated.   

Until recently, there has been no selection criteria or personalisation of trial agent used, 

possibly contributing to the poor reported results.  As discussed above, a recent study by 

Mateo et al (2015) has shown a three fold survival benefit by stratifying patients with a 

mutation in one or more DNA repair gene to the PARPi, Olaparib (Mateo et al. 2015).  

The incorporation of tumour molecular profiles (using both NGS and IHC) in future 

clinical trials is key for the success of these drugs.  This study using IHC and the CHPv2 
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gene panel has shown the feasibility of obtaining molecular profiles for the Wnt, PI3K 

and MAPK pathways.  Future studies could stratify their targeted agents based on these 

profiles.  The recently designed molecular stratified randomised control trial, FOCUS4 

in metastatic colorectal cancer has adopted these ideas. Here, four molecular cohorts are 

identified: BRAF mutant tumours, PI3K mutant tumours, KRAS or NRAS mutant 

tumours and EGFR dependent tumours.  Each cohort is given a specific agent, for 

example, dual pathway inhibition using an AKT inhibitor and MEK inhibitor in KRAS 

or NRAS mutant tumours.  The primary outcome is effect on progression free survival 

(further information is available at www.focus4trial.org).   

A further hypothesis for targeted or selective treatment failure is the complex interactions 

between cancer pathways, resulting in both activation and inhibitory cross-talk.  This 

chapter has highlighted some potential communications between pathways, in particular 

the PI3K and MAPK pathways.  The next chapter will explore these further using mouse 

models.   Deregulation of the Wnt, PI3K and MAPK pathways through specific gene loss 

or activated mutation will be investigated alone and in combination, assessing their 

effects on PCa initiation, progression and metastasise.   
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4 The effect of Wnt, PI3-Kinase (PI3K) and MAP-Kinase 

(MAPK) signalling pathway deregulation on murine 

prostate tumourigenesis 

 

4.1 Introduction 

The previous chapter has highlighted the importance of the Wnt, PI3K and MAPK 

signalling pathways in human PCa.  In particular some markers of these pathways are 

expressed more commonly in higher risk disease and associated with biochemical relapse 

following surgery.  Furthermore, it introduces the possibility of crosstalk or co-operation 

between these pathways.   

To investigate this further, mouse models of PCa will be explored using Cre-lox 

technology and the probasin promoter.  In particular, three oncogenic mutations will be 

used: the loss of Pten, mutation of β-catenin and K-Ras, as a means to activate the PI3K, 

Wnt and MAPK signalling pathways, respectively.   

Our laboratory has previously shown in the mouse that the Wnt and MAPK pathway 

synergise to accelerate prostate tumourigenesis (Pearson et al. 2009).   Others have also 

demonstrated crosstalk between the Wnt and PI3K pathways (Francis et al. 2013) and the 

PI3K and MAPK pathways (Mulholland et al. 2012) in mouse models.  This chapter 

explores the effect of deregulation of all three pathways in a mouse model.   

 

4.1.1 Chapter aims 

To study the interactions and biology of the Wnt, PI3K and MAPK signalling pathways 

using mouse models as follows:  

a. Using Cre-lox based mouse models to conditionally modify 3 genes 

associated with these pathways: β-catenin, Pten, and K-Ras; 

b. To determine the extent of synergy of tumour formation between 

mutations in each of the pathways by generating and ageing cohorts of 

each combination of mutations;  



 133 

c. To characterise the histological expression profiles (using 

immunohistochemistry) and protein levels (using Western blot) of each of 

the single, double and triple mutants; 

d. To assess the effect of pathway deregulation on lymph node metastasis.    
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4.2 Results 

4.2.1 Generation of prostate specific mouse models using the Probasin-Cre 

(Pb-Cre4) transgene  

In order to investigate the effects of Pten loss and activation of β-catenin and K-Ras in 

prostate epithelium, Cre-LoxP technology was adopted using the Pb-Cre4 promotor (X. 

Wu et al. 2001).  For successful recombination of targeted genes in murine prostate 

epithelium, the Pb-Cre4 transgene must be transmitted paternally.  If transmitted 

maternally a mosaic recombination results, producing an inconsistent prostate phenotype 

with male mice developing mammary tumours for example.  Accurate genotyping and 

breeding plans were therefore adopted as discussed in chapter 2.  Cohorts of male mice 

were generated (n=15) including wild-type (WT, Pb-Cre4+ Catnb+/+Pten+/+K-Ras+/+), 

single mutants (Pb-Cre4+: Catnb+/ex3, Ptenfl/fl, K-Ras+/V12), double mutants (Pb-Cre4+: 

Catnb+/ex3Ptenfl/fl, Catnb+/ex3K-Ras+/V12, Ptenfl/flK-Ras+/V12) and triple mutant (Pb-Cre4+ 

Catnb+/ex3Ptenfl/flK-Ras+/V12).  Animals were then monitored for signs of illness and 

sacrificed if found to display signs of ill health or at termination of the experiment (500 

days).  In order to monitor disease progression, an early time point was also assessed, 

with an additional 6 mice harvested from each cohort at day 100.  

To confirm deletion of Pten and activation of the β-catenin and K-Ras alleles upon 

activation of the Pb-Cre4 recombinase, two methods were adopted.  Firstly, DNA of 100-

day-old prostate tissue (n=3) of Pb-Cre4+ and Pb-Cre4- mice were assessed for targeted 

alleles for recombined Pten, β-catenin and K-Ras using PCR.  Recombination of each 

target gene was present in all combinations of gene mutations Figure 40a).  Secondly, the 

LacZ reporter gene was used to confirm recombination.  Upon recombination, the LacZ 

gene expresses β-galactosidase, which stains blue following X-gal staining.  Positive 

staining was present in all four lobes of the prostate in Pb-Cre4+LacZ+ 100 day old mice 

with greatest staining in the anterior and dorso-lateral lobes.  Minimal staining was 

present in Pb-Cre4-LacZ+ age matched controls (Figure 40b).  Further staining, was also 

evident to a lesser degree in the testis, urethra and epididymis of Pb-Cre4+LacZ+ mice 

consistent with previous reports (X. Wu et al. 2001). 



 135 

 

Figure 40: Recombined PCR and LacZ staining of murine prostates.  (a) Recombined PCR 

performed on DNA harvested from mouse prostate tissue at 100 days, demonstrating successful 

recombination of each gene (β–catenin, Pten and K-Ras) within each combinations of mutations.  

(b) LacZ staining: Cre-mediated recombination is further shown by β-galactosidase reporter 

gene (LacZ) expression in the prostate using Pten-deficient (Ptenfl/fl) mice at 100 days of age.  

When cleaved by β-galactosidase X-gal turns blue.  Pb-Cre4+ prostate tissue demonstrates 

extensive recombination within all lobes (A= anterior lobes, B= bladder, D = dorsal lobes, L = 

lateral lobes, SV = seminal vesicles) of the prostate (to a lesser degree in the ventral lobes) 

compared to Pb-Cre4- prostate tissue.  
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4.2.2 Pten loss and activation of K-Ras and β-catenin (triple mutants) 

cooperate to accelerate prostate tumourigenesis  

All WT and K-Ras single mutant mice survived until the end of the experiment.  As 

previously reported (Pearson et al. 2009), K-Ras single mutant mice (Pb-Cre4+ K-

Ras+/V12) did not produce PCa. All other mouse models developed extensive locally 

advanced adenocarcinoma of the prostate (100% incidence) resulting in mortality.  The 

cause of death was ureteric or bladder outflow obstruction secondary to the local effects 

of the primary tumour (Figure 41A-B). 

 

 

Figure 41:  Macroscopic tumour phenotype. (A) Large bilateral locally invasive prostate 

tumour (red arrowhead) causing bladder outflow obstruction.  Black arrow demonstrating 

enlarged bladder with turbid infected urine.  (B) Left kidney demonstrating dilatation  

(hydronephrosis/hydroureter) of the renal pelvis and proximal ureter (*) caused by compression 

secondary to the prostate tumour.  (C) Significant retroperitoneal/para-aortic lymphadenopathy 

(red arrow).   

 

Consistent with reports from others (S. Wang et al. 2003; Pearson et al. 2009), 

homozygous deletion of Pten (Pb-Cre4+Ptenfl/fl) and activation of β-catenin (Pb-

Cre4+Catnb+/ex3) alone resulted in a reduced median survival of 407 days and 383 days, 

respectively.   All double mutant mice had reduced survival when compared to single 

mutants (p<0.0001, Log-Rank) (Figure 42).  Mice with activation of both β-catenin and 

K-Ras  (Pb-Cre4+ Catnb+/ex3K-Ras+/V12) had a reduced median survival of 182 days, as 

C A B 

* 

Macroscopic phenotype 
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reported previously (Pearson et al. 2009).   Mice with loss of Pten and activation of β-

catenin (Pb-Cre4+ Catnb+/ex3Ptenfl/fl) also had a reduced median survival of 140 days. 

Consistent with work from others (Mulholland et al. 2012), mice with both Pten loss and 

activation of K-Ras (Pb-Cre4+ Ptenfl/flK-Ras+/V12) had a reduced median survival of 238 

days (p<0.0001, Log-Rank).  A novel mouse model was to study Pten loss in addition to 

activation of β-catenin and K-Ras (Pb-Cre4+ Catnb+/ex3Ptenfl/fl K-Ras+/V12, triple mutants). 

Triple mutant mice demonstrated significantly earlier morbidity and mortality compared 

to double mutant mice (n=15).  All triple mutant mice succumbed to their disease by 130 

days (median 96 days p<0.0001, Log-Rank) (Figure 42).   

 

 

Figure 42: Kaplan-Meier survival curve. The median survival for triple mutant (Pb-Cre4+ 

Catnb+/ex3Ptenfl/fl K-Ras+/V12) mice was significantly lower than double mutants (p<0.0001, Log-

Rank): 96 days (range = 76-130), compared to 238 days (range 200-292), 182 days (range 170-

208) and 140 days (range 109-181) for the double mutants: Pb-Cre4+ Ptenfl/fl K-Ras+/V12, Pb-Cre4+ 

Catnb+/ex3 K-Ras+/V12 and Pb-Cre4+ Catnb+/ex3Ptenfl/fl, respectively.  All double mutant 

combinations had a significantly shorter survival when compared to single mutants (p<0.0001, 

Log-Rank).  The survival of Pb-Cre4+ Catnb+/ex3 and Pb-Cre4+ Ptenfl/fl was 383 days (range 339-

476) and 373 (range 350-479), respectively.  Pb-Cre4+ K-Ras+/V12 and wild-type mice all survived 

to the end-point of the experiment (500 days).  Wild-type (WT), Catnb+/ex3 (β-catenin). 
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4.2.3 Tumour progression occurs in a stepwise fashion from mouse PIN 

(mPIN) to invasive adenocarcinoma similar to that of human disease  

mPIN is characterised by increased cell proliferation within the glands with frequent 

cellular atypia (Figure 43D). There is positive nuclear AR staining (Figure 43E) of the 

luminal cells and positive membranous CK5 staining of the basal layer (Figure 43F) in 

mPIN lesions.  Microinvasive adenocarcinoma occurs when the normal glandular 

structure begins to get distorted with some epithelial cells invading into the surrounding 

stroma (typically <1mm).  At the site of invasion there is a breach in the basal layer with 

loss of CK5 and positive AR staining of the cells, which invade the stroma (Figure 43G-

I).  In invasive adenocarcinoma the whole basal layer is breached with loss of CK5 

positivity (Figure 43L), allowing invasion of epithelial cells into the stroma.  Loss of 

staining of basal cell markers (e.g CK5 or p63) is a hallmark of human PCa, and is used 

routinely in clinical practice to evaluate problematic or suspicious lesions.  As the prostate 

tumours progress, the prostate glandular architecture becomes increasingly distorted as 

glands fuse together and areas of cribriform pattern form, pathognomonic of Gleason 

pattern 4 (Figure 43J & 44C).  Furthermore, features of Gleason pattern 5 develop; with 

single PCa cells appearing in the stroma (Figure 44B).  Tumours are rapidly proliferating 

with frequent mitosis and occasional apoptotic bodies (Figure 44A&C).   

WT mice had histologically normal prostates (Figure 43A) with an intact basal layer 

confirmed by positive CK5 staining (Figure 43C).  Although androgen receptor (AR) 

staining can cause some stromal activity, the luminal epithelial cells stain more avidly 

(Figure 43B).  All tumour models examined demonstrated a stepwise progression from 

mouse prostate intraepithelial neoplasia (mPIN) to microinvasive and invasive 

adenocarcinoma, with each having histological, cytological and immunohistochemical 

characteristics as illustrated in Figure 43.  
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Figure 43:  Histological characterisation of normal, mouse prostate intraepithelial neoplasia 

(mPIN), microinvasive adenocarcinoma and diffuse adenocarcinoma of the mouse prostate.  

(A-C) The histologically normal prostate has different glandular patterns dependent on lobe; the 

dorsal (D) lobe has glands with frequent mucosal folds protruding into the lumen when compared 

the lateral (L) lobe, which has larger glands with fewer mucosal folds.  Androgen receptor (AR) 

immunohistochemistry demonstrates avid staining of the luminal cells with cytokeratin (CK) 5 

staining the membrane of the basal layer abutting the basement membrane in a continuous 

fashion.  (D-F) mPIN has a characteristic appearance with increased cell proliferation within the 

glands with frequent cellular atypia (arrow).  The CK5 staining once again remains continuous.  

(G-I)  The glandular structure begins to get distorted with focal areas of microinvasion (*) of 

epithelial cells into the surrounding stroma (microinvasive adenocarcinoma) staining positive for 

AR.  The continuous CK5 staining basal layer is lost at the site of invasion.  Note the adjacent 

area of mPIN (**), where the gland is packed with cells with a normal intact basal layer. (J) 

Hematoxylin and eosin staining of prostate adenocarcinoma sections demonstrate diffuse 

invasion of epithelial cells into the stroma, with fusion of glands and areas of cribiform pattern, 

which is pathognomonic of Gleason pattern 4.  (K) AR staining demonstrates more intensely 

epithelial cells invading the stroma with loss of the basal marker CK5 (L).  
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Figure 44:  Histological characterisation. (A) Tumours contain frequent mitosis (black arrow), 

and occasional apoptotic bodies (red arrow).  When mice succumb to disease (B), diffuse invasion 

of epithelial cells into the stroma is seen (between dotted lines).  Higher power magnification of 

hematoxylin and eosin stained tumours with widespread cribriform pattern (C) (*), frequent 

mitosis (black arrow), and occasional apoptotic bodies (red arrow). (D) Invasive adenocarcinoma 

with spindle mesenchymal cells in the stroma (inset).  (E) Pan-cytokeratin (pCK) IHC staining 

positive for epithelial cells in glands within the stroma (arrow).  (F) Mesenchymal marker 

vimentin staining displaying positive staining of invasive glands within the stroma (inset arrow) 

a characteristic of EMT.  (G) Diffuse adenocarcinoma with areas of keratin formation adjacent to 

flattened nuclei (inset) at areas of squamous metaplasia.  (H) Areas of squamous metaplasia stain 

avidly for basal marker CK5.   
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4.2.4 Combinatorial pathway mutations shifts the spectrum of lesions to a 

more aggressive phenotype 

It is often difficult to compare progression of disease between different mouse models, as 

most cases studied develop locally advanced tumours, with few having significant 

metastatic disease to cause death.   Consequently, the percentage of invasive 

adenocarcinoma (as defined by the consensus report from the Bar Harbour meeting 

(Shappell et al. 2004)), between each mouse cohort at 100 days and at death was 

estimated.  WT and single K-Ras mutant mice had histologically normal prostate at both 

time points.  Single β-catenin or Pten mutant mice displayed predominately mPIN with 

occasional foci of microinvasion adenocarcinoma but no diffuse invasion at 100 days.  At 

death (endpoint) single β-catenin or Pten mutant mice displayed invasive 

adenocarcinoma, with a mean percentage of 16.7% (95% CI: 8.1-25.2) and 50.0% (95% 

CI: 40.6-59.4), respectively.  At 100 days β-catenin/K-Ras double mutant mice had no 

areas of invasive adenocarcinoma but displayed mPIN with widespread microinvasive 

disease.  Upon aging, 23.3% (mean, 95% CI: 10.6-36.0) of these mice displayed invasive 

adenocarcinoma.  β-catenin/Pten double mutants had a mean invasive adenocarcinoma 

rate of 60% (95% CI: 35.2-84.8) at 100 days and 83.3% (95% CI: 69.0-97.7) at death.  

Pten/K-Ras double mutant mice had small areas of invasion (mean 10%) at 100 days, 

which increased to a mean of 61.7% (95% CI: 53.8-69.6) at death.  Finally, triple mutants 

had the most aggressive histological characterisation with a mean of 100% (95% CI: 91.1-

102.1) invasive adenocarcinoma at 100 days or death (maximum 130 days) (Figure 45).   

In summary, triple mutant mice have a more aggressive phenotype with more rapid 

progression to invasive adenocarcinoma resulting in a significantly reduced survival 

when compared to double and single mutant mice. 
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Figure 45: Percentage invasive adenocarcinoma at endpoint (n=6) and 100 days (n=3) as 

function of genotype.   Compound (double and triple) mutant mice have a greater percentage of 

invasive adenocarcinoma at 100 days and endpoint (death or 500 days) compared to single and 

WT mice.  Mean with error bars = 95% CI.  
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In human disease, prostate specific antigen (PSA) is not only used in early detection of 

PCa but also used to monitor disease progression and response to treatment.  Typically, 

more aggressive tumours have a shorter doubling-time.  Unfortunately there is no 

surrogate marker for PCa in the mouse.  To attempt to capture the rate of progression of 

tumours, tumour burden was estimated by weighing the prostates at serial time points 

(Figure 46).  In all combinations of mutations diffuse invasive adenocarcinoma was 

observed at death other than in K-Ras single mutant mice, which interestingly were 

histologically normal as described above.  Each tumour reached a similar size at death 

across all genotypes, however triple mutants had a significantly greater rate of growth 

compared to double and single mutant mice (Figure 46).   

 

 

Figure 46: Rate of growth of prostate tumours (mean + error bars = 95% CI).  Dry prostate 

gland weights (n=3) were recorded and plotted against time so assess the rate of growth of 

tumours.  Pb-Cre+ Catnb+/ex3Ptenfl/fl K-Ras+/V12 prostate tumours have a significantly faster rate of 

growth compared with double mutants (Pb-Cre+: Ptenfl/fl K-Ras+/V12, Catnb+/ex3 K-Ras+/V12, 

Catnb+/ex3Ptenfl/fl) and single mutants (Pb-Cre+: Catnb+/ex3, Ptenfl/fl, K-Ras+/V12).   
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This is further shown using immunohistochemistry for the proliferation markers Ki67 and 

BRDU (Figure 47).  The level of Ki67 positive cells in wild-type mice is low (Figure 47).  

Expression level increased progressively from mPIN (Figure 47B) through microinvasion 

(Figure 47D) to diffusely invasive adenocarcinoma (Figure 47E). Proliferation rate not 

only correlates with progression of disease but also with the number of induced mutations.  

Triple mutant mice have a greater percentage positivity of Ki67 at 100 days and at 

experimental endpoint (500 days or earlier if sick) compared to double and single mutants 

(p<0.01, Figure 47C &47F). 

In summary, using prostate weight as a surrogate marker to assess tumour burden, and 

Ki67 and BRDU to assess proliferation rate, this study demonstrates a more aggressive 

phenotype in triple mutant mice compared to single/double mutant mice.  These findings 

outbalance the rate of apoptosis, which is low (<1%) across all tumours with no 

significant difference between genotypes.  
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Figure 47: Proliferation of prostatic lesions using Ki67 and BRDU.  (A) Wild-type prostatic 

epithelium demonstrates minimal proliferation.  (B) Areas of mPIN have tufting of epithelium 

into gland (*), which is avidly stained nuclear staining for ki67.  (D) Similarly, areas of focal 

invasion display strong staining at the basement membrane and particularly at the site of invasion 

into the stroma (^).  (E) Diffuse invasive adenocarcinoma has widespread staining, as the normal 

glandular architecture is lost.  (C+F) Mean %Ki67 staining according to genotype at 100 days 

and endpoint, error bars represent 95% confidence interval (CI).  Triple mutants have significantly 

greater Ki67 staining compared with all double mutant combinations (p<0.01). Furthermore, 

double mutants have a greater % Ki67 staining than single mutants at 100 days (p<0.01).  BRDU 

staining in wild-type prostate epithelium (G) and diffuse adenocarcinoma of the prostate (H).  (I) 

Triple mutants have significantly greater BRDU nuclear staining compared with Pb-Cre4+: 

Ptenfl/flRas+/V12 and Catnb+/ex3K-Ras+/V12 but not Pb-Cre4+ Catnb+/ex3Ptenfl/fl double mutants 

(p<0.01).   
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4.2.5 Additional pathological phenotypes 

4.2.5.1 Tumours across all genotypes demonstrated reactive desmoplastic stroma, 

with evidence of epithelial-mesenchymal transition (EMT) 

All tumour models investigated displayed reactive desmoplastic stroma, however this was 

more apparent in models where there was loss of Pten.  This occurred in the stroma 

adjacent to mPIN and invasive adenocarcinoma (Figure 44D).  Interestingly, some 

reported aggressive mouse models, such as Pten and p53 deletion (Martin et al. 2011), 

develop sarcomatoid areas in the stroma, which can have a similar appearance to the 

reactive stroma seen here. Sarcomatoid lesions typically have spindle shape cells in the 

stroma, which co-stain for both epithelial (e.g. pan cytokeratin, pCK) and mesenchymal 

(e.g. vimentin) IHC markers.  Although there were isolated glands in the stroma with 

staining for both pCK and vimentin (Figure 44E & 44F), in contrast to sarcomatoid 

lesions, the spindle shaped stromal cells only stained positive for vimentin.   

Areas of tumour staining positive for both pCK and vimentin in the epithelium in this 

study are suggestive of an epithelial-mesenchymal transition (EMT), which is thought to 

be important in progression of disease and evident in most mouse PCa models.   

 

4.2.5.2 Mice harbouring a mutation of β-catenin demonstrate adenocarcinoma 

with squamous metaplasia 

Squamous metaplasia occurs when normal epithelial cells develop a squamous 

morphology becoming flattened and release keratin before being shed into the lumen.  

When exposed to additional stress such as carcinogens or chronic inflammation, dysplasia 

can occur resulting in squamous cell carcinomas. Squamous metaplasia with keratin 

formation (Figure 44G) is characterised by positive staining for CK5 (Figure 44H), unlike 

that seen in prostate adenocarcinoma. Squamous metaplasia was evident in all models 

investigated where a mutated β-catenin allele was present, an observation also noted by 

others (Pearson et al. 2009; Francis et al. 2013).   
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4.2.6 Both K-Ras and β-catenin mutations drive metastatic spread in the 

context of loss of Pten 

In human PCa, metastasis usually spread to lymph nodes and bone.  To assess metastatic 

potential in the mouse, at the time of sacrifice the retroperitoneal lymph nodes were 

harvested for each genotype and assessed histologically for metastasis (Figure 48).   

In the presence of Pten loss, both additional mutations of either K-Ras or β-catenin 

developed lymph node metastasis (Figure 48E).  This occurred at an incidence of 60% 

(n=6/10) in Pten/K-Ras and 10% (n=1/10) in β-catenin/Pten double mutant mice.  β-

catenin/K-Ras mutants did not develop any lymph node metastasis.  Lymph fluid initially 

drains into the capsular region of the lymph gland and this is usually the first place where 

metastasis occurs.  On H&E staining, metastatic lymph nodes have areas of prostatic 

epithelium located at the capsule of the node, with fusion of glands and a cribriform 

pattern, morphologically similar to that seen in the corresponding prostate tumour 

specimens (Figure 48A).  They also stained strongly positive for AR (Figure 48B). 

In contrast with other reports (S. Wang et al. 2003), Pten loss alone was insufficient to 

cause lymph node metastasis.  Similar results were also seen for β-catenin and K-Ras 

single mutant mice. Interestingly, triple mutant mice did not have nodal metastasis, but 

reactive nodes with a nodular architecture with an abundance of immunoblasts draining 

an infective or toxic zone.  



 148 

 

Figure 48:  Lymph node characterisation.  (A) Metastatic prostate epithelium extending from 

the capsule (black arrow) and infiltrating into the node (red-dotted line). (B) Metastatic node 

staining avidly for AR.  (C) Benign reactive node with the outer cortex (C) and inner medullar 

(M) separated by the dotted black line.  The capsule and marginal sinus (black arrow) surrounds 

the node with the cortex separated by cortical sinuses (red arrow).  Germinal center within the 

cortex of the node (*). (D) Minimal non-specific AR staining in a benign node.  (E) Summary of 

% of metastatic nodes in each mouse model.    
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4.2.7 Pathway signalling analysis 

To determine the activity of the PI3K, Wnt and MAPK pathway in each mouse cohort, 

the expression of different antibodies against downstream markers or target genes 

associated with each pathway was assessed and validated using both 

immunohistochemistry (IHC) and western-blot analysis.   

4.2.7.1 Single mutants show variable pathway readouts 

β-catenin single mutant tumours only demonstrated activation of the Wnt signalling 

pathway, with both increased nuclear β-catenin (Figure 49E) and positive membranous 

expression of the Wnt target gene, CD44 (Figure 49F) on IHC.  In contrast, using western-

blot analysis, there was no significant difference in protein level of total β-catenin when 

compared to WT (Figure 52).  This model displayed low expression of both p-AKTThr308 

and p-AKTSer473 (Figure 50 G-H) downstream markers of the PI3K pathway, consistent 

with WT and a reduced level of p-ERK1/2 compared to WT (Figure 51 and 52) suggesting 

possible compensatory negative feedback of the MAPK pathway.  There was also 

widespread cytoplasmic and stromal staining for the downstream mTOR marker p-

S6Ser240-244 (Figure 50I) similar to that seen in WT (Figure 50C).  

K-Ras single mutant mice demonstrate very little activation of all three pathways: Wnt, 

PI3K and MAPK with low protein and expression levels of β-catenin, p-AKTThr308, p-

AKTSer473 and p-ERK1/2  (Figures 49-53).  This is not surprising given the normal 

histological findings of these mice. In fact, the protein level of Pten is elevated in K-Ras 

single mutant mice (Figure 53B), which could represent a compensatory mechanism, 

preventing tumourigenesis in these mice.  To explore this mechanism further, other 

markers could be analysed such as LKB1 or AMPK.   Surprisingly, the protein level of 

p-ERK1/2, a downstream marker of the MAPK pathway, was significantly higher in WT 

mice (Figure 52 and 53D) when compared to K-Ras single mutant mice.  This was 

consistent with nuclear positive p-ERK1/2 staining in WT mice (Figure 51B).  

Pten null tumours demonstrated predominantly activity of the PI3K pathway with minor 

deregulation of Wnt and MAPK signalling. The tumours stained positive for p-AKTThr308 

and p-AKTSer473 (Figure 50D-E) compared with no staining for WT controls (Figure 50A-

B). Activation of the PI3K pathway was further confirmed using western-blot, with 

significantly elevated protein levels of p-AKT compared to WT (Figure 52 and 53A). 
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Pten null mice also demonstrate a degree of aberrant Wnt and MAPK signalling with 

evidence of nuclear expression of β-catenin (Figure 49C), cytoplasmic staining of p-MEK 

and heterogenous nuclear staining of p-ERK1/2 (Figure 51C-D).  These findings indicates 

a degree of crosstalk between pathways even with single gene mutations.  
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Figure 49:  Immunohistochemistry of Wnt pathway markers for WT and single mutant 

mice.   Immunohistochemistry was performed on cohorts of mice (n=4) at the endpoint of the 

experiment (500 days or when sick) using antibodies against β-catenin and the Wnt target gene 

CD44.  WT and K-Ras+/V12 mice had positive membranous staining for β-catenin (A+G) and no 

staining for CD44 (B+H).  Ptenfl/fl demonstrated heterogeneous cytoplasmic and occasional 

nuclear staining for β-catenin (C) and membranous staining for CD44 (D).  Catnb+/ex3 had diffuse 

nuclear and cytoplasmic staining of β-catenin (E) and membranous staining of CD44 (F).    
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Figure 49:  Immunohistochemistry for PI3-Kinase signalling pathway markers for WT and 

single mutant mice.   Immunohistochemistry was performed on cohorts of mice (n=4) at the 

endpoint of the experiment (500 days or when sick) using antibodies against p-AKTThr308, 

AKTSer473 and p-S6Ser240-244.  WT mice had negative staining for p-AKTThr308 (A), AKTSer473 (B) 

and heterogeneous positive nuclear and cytoplasmic staining for p-S6Ser240-244 (C).  Ptenfl/fl stained 

avidly for all three markers (D-F).  Catnb+/ex3 and K-Ras+/V12 had negative staining of p-AKTThr308 

(G+J), AKTSer473 (H + K) and positive staining for p-S6Ser240-244 (I and L). 
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Figure 50: Immunohistochemistry of MAPK pathway markers for WT and single mutant 

mice.   Immunohistochemistry was performed on cohorts of mice (n=4) at the endpoint of the 

experiment (500 days or when sick) using antibodies against the downstream markers pMEK and 

pERK.  WT had no staining for pMEK (A) and occasional weak staining for pERK (B).  Ptenfl/fl 

tumours had diffuse cytoplasmic pMEK staining and strong heterogeneous staining nuclear pERK 

positivity (D).  Catnb+/ex3 had no staining for either pMEK (E) or pERK (F).  K-Ras+/V12 samples 

had negative staining for pMEK (G) and strong focal positive staining for pERK (H). 
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Figure 51: Western-blot analysis for markers of PI3K, Wnt and MAPK signalling pathways 

for wild-type (WT), single (Catnb
+/ex3

, K-Ras
+/V12

 and Pten
fl/fl

) and double (Catnb
+/ex3

 K-

Ras
+/V12

, Pten
fl/fl

Catnb
+/ex3 

and Pten
fl/fl 

K-Ras
+/V12

) mutant mice. Protein was extracted from 

fresh frozen prostate tissue from 100-day old mice for each cohort (n=3).   Antibodies against 

each pathway were analysed: PI3K pathway markers; Pten and p-AKT, Wnt pathway marker; β-

catenin and MAPK pathway marker; pERK1/2.  β-actin was used as the reference-loading gene.   
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Figure 52: Western blot analysis comparing relative protein levels of wild-type (WT), single 

(Catnb
+/ex3

, K-Ras
+/V12

 and Pten
fl/fl

) and double (Catnb
+/ex3

 K-Ras
+/V12

, Catnb
+/ex3

Pten
fl/fl 

and 

Pten
fl/fl 

K-Ras
+/V12

).  (A) pAKT473 was significantly elevated in Ptenfl/fl and Catnb+/ex3Ptenfl/fl when 

compared to WT.  (B) Pten protein level was significantly higher in K-Ras+/V12 than WT mice.  

(C) pAKT473 was significantly elevated in Ptenfl/fl and Ptenfl/fl K-Ras+/V12 when compared to WT.  

(D) pERK1/2 expression was lower in Ptenfl/fl and K-Ras+/V12 single and  Ptenfl/fl K-Ras+/V12 double 

mutant mice when compared to WT.  Each sample was normalised to β-actin and calculated as 

a relative upregulation or down regulation with respect to WT control.  Mean with Error bars = 

95% CI.    
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4.2.7.2 Double mutant mice show activation of multiple pathways 

Compound mutations in β-catenin and K-Ras demonstrated Wnt and MAPK pathway 

activation.  There was positive nuclear β-catenin staining and membranous CD44 activity 

(Figure 55A-B).  Again, there was no significant difference in protein levels of total β-

catenin (Figures 52 and 57).  Consistent with previous work from our laboratory (Pearson 

et al. 2009), there was positive staining for both p-MEK and p-ERK1/2 (Figure 56A-B).  

Western blot analysis for p-ERK1/2 failed to confirm these findings however, with lower 

protein levels in β-catenin/K-Ras double mutant mice than when compared to WT.  These 

inconsistencies on western blot for both total β-catenin and p-ERK 1/2 could be resolved 

with future analysis calculating protein levels of activated β-catenin and total ERK.  

Protein levels could then be normalised to total β-catenin or ERK as opposed toβ-actin.   

Loss of Pten in addition to β-catenin resulted in activation of both PI3K and Wnt 

pathways, with a significant increase in protein levels of p-AKT on western blot (Figure 

57 and 58A) and IHC (Figure 54G-H) and positive nuclear β-catenin on IHC (Figure 

55E). There was suppression of the MAPK pathway with reduced p-ERK1/2 levels 

compared with mice with Pten loss alone (Figure 52) and negative staining for p-MEK 

and p-ERK (Figure 56E and F).   

Loss of Pten and activation of K-Ras resulted in activation of the PI3K pathway 

predominately, with minor aberration to the Wnt and MAPK pathways.  There was an 

increased protein level and expression of p-AKT on western blot (Figures 52, 57 and 

58A) and IHC (Figure 54D-E).  There was concurrent mild staining for the Wnt markers; 

β-catenin and CD44 (Figure 55C-D), and the MAPK markers; p-MEK and p-ERK1/2 

(Figure 56C-D).  These findings on IHC were inconsistent to those seen on western-blot 

analysis, which showed no significant difference in total β-catenin and reduced p-ERK1/2 

compared to WT (Figure 57 and 58C).   
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Figure 53: Immunohistochemical analysis of PI3-Kinase pathway markers for double 

(Catnb
+/ex3

K-Ras
+/V12

, Catnb
+/ex3

Pten
fl/fl 

and Pten
fl/fl

K-Ras
+/V12

) and triple 

(Catnb
+/ex3

Pten
fl/fl

K-Ras
+/V12

) mutants tumours.     Immunohistochemistry was performed on 

cohorts of mice (n=4) at the endpoint of the experiment (500 days or when sick) using antibodies 

against p-AKTThr308, p-AKTSer473 and p-S6Ser240-244.  Catnb+/ex3K-Ras+/V12 had negative staining for 

both isotopes of AKT (A-B) with focal cytoplasmic staining for p-S6Ser240-244 (C). Ptenfl/flK-

Ras+/V12 had focal positive staining for p-AKTThr308 (D), AKTSer473 (E) and p-S6Ser240-244 (F).  Both 

Catnb+/ex3Ptenfl/fl and Catnb+/ex3Ptenfl/flK-Ras+/V12 tumours stained avidly for all PI3K pathway 

markers (G-L).   
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Figure 54: Immunohistochemical analysis of Wnt pathway markers for double (Catnb
+/ex3

 

K-Ras
+/V12

, Catnb
+/ex3

Pten
fl/fl 

and Pten
fl/fl 

K-Ras
+/V12

) and triple (Catnb
+/ex3

Pten
fl/fl

K-Ras
+/V12

) 

mutants tumours.    Immunohistochemistry was performed on cohorts of mice (n=4) at the 

endpoint of the experiment (500 days or when sick) using antibodies against β-catenin and the 

Wnt target gene CD44.  Catnb+/ex3 K-Ras+/V12 had diffuse positive staining for both β-catenin (A) 

and CD44 (B).  Ptenfl/fl K-Ras+/V12 had focal nuclear β-catenin (C) and membranous CD44 (D) 

staining. Catnb+/ex3Ptenfl/fl and Catnb+/ex3Ptenfl/flK-Ras+/V12 had similar diffuse nuclear positive 

staining for β-catenin (E and G) and CD44 (F and H).   
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Figure 55: Immunohistochemical analysis of MAP-Kinase pathway markers for double 

(Catnb
+/ex3

K-Ras
+/V12

, Catnb
+/ex3

Pten
fl/fl 

and Pten
fl/fl

K-Ras
+/V12

) and triple 

(Catnb
+/ex3

Pten
fl/fl

K-Ras
+/V12

) mutants tumours.     Catnb+/ex3K-Ras+/V12 had positive staining of 

both pMEK and pERK (A-B).  Ptenfl/flK-Ras+/V12 demonstrated widespread cytoplasmic pMEK 

staining (C) with focal nuclear p-ERK staining (D).  Catnb+/ex3Ptenfl/fl had negative staining for 

pMEK (E) and pERK (F).  Triple mutants displayed diffuse positive staining for both pMEK (G) 

and pERK (H). n=4. 
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Figure 56: Western-blot analysis of markers of the PI3K, Wnt, MAPK and mTOR 

signalling pathways for Wild-type (WT), double (Catnb
+/ex3

 K-Ras
+/V12

, Pten
fl/fl

Catnb
+/ex3 

and 

Pten
fl/fl 

K-Ras
+/V12

) and triple (Catnb
+/ex3

Pten
fl/fl

K-Ras
+/V12

) mutants.  Protein was extracted 

from fresh frozen prostate tissue from 100-day old mice for each cohort (n=3).  Antibodies against 

each pathway were analysed: PI3K pathway markers; Pten and p-AKT, Wnt pathway marker; β-

catenin, MAPK pathway marker; pERK1/2 and mTOR pathway markers; p70 S6K and pS6240-44.  

β-actin was used as the reference-loading gene.  
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Figure 57: Western blot analysis comparing relative protein levels between WT and double 

(Catnb
+/ex3

K-Ras
+/V12

, Catnb
+/ex3

Pten
fl/fl 

and Pten
fl/fl

K-Ras
+/V12

) and triple 

(Catnb
+/ex3

Pten
fl/fl

K-Ras
+/V12

) mutants.  (A) pAKT473 was significantly elevated in 

Catnb+/ex3Ptenfl/fl, Ptenfl/flK-Ras+/V12 and Catnb+/ex3Ptenfl/flK-Ras+/V12 compound mutant mice when 

compared to WT controls.  (B) Total β-catenin expression was similar across all cohorts.  (C) 

pERK1/2 was significantly lower in all compound mutant mice when compared to WT.  (D) 

pS6240/244 was significantly elevated in triple mutant mice when compared to all double 

combinations and WT mice.  Each sample was normalised to β-actin and calculated as a relative 

upregulation or down regulation with respect to WT control.  Mean with Error bars = 95% CI.   
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catenin/Pten double mutant mice (Figure 58A).  Total β-catenin levels were similar for 

all double combination, triple mutant and WT mice (Figure 58B).  To assess the Wnt 

pathway further, protein levels of two Wnt target genes were analysed: MMP-7 and 

Cyclin D1.  There was a general trend for elevation of both markers in those mice with 

β-catenin mutations compared to WT, however this was not statistically significant 

(Figure 57).  To further assess the Wnt pathway, the protein level of activated β-catenin 

could be calculated.  The protein level of p-ERK1/2 was elevated compared to double 

mutant mice however it was less than that for WT (Figure 58C).     There was also a 

further marked increase in the downstream markers, p-S6240-244 and p-70 S6K (Figure 52 

and 58D), indicating significant mTOR signalling activity contributing to the aggressive 

nature of this model.  

Interestingly, triple mutants also demonstrated marginally elevated Pten levels compared 

to other Pten null mice despite conditional knockout of the Pten gene using the probasin 

promoter (Figure 57).  This could be secondary to upregulation of Pten in the surrounding 

stroma.  This was illustrated by positive stromal staining but absent epithelial staining for 

Pten on IHC; suggesting compensatory upregulation of Pten in the stroma following loss 

in the epithelial compartment (Figure 59).  To confirm this finding re-combination PCR 

could be performed following micro/laser-dissection of the stroma.     

 

 

 

Figure 58:  Pb-Cre4
+
 Catnb

+/ex3
Pten

fl/fl 
K-Ras

+/V12
 (triple mutant) tumours display positive 

staining for Pten within the stromal but not epithelial compartment.  (A) Diffuse cytoplasmic 

Pten staining in wild-type control mice. (B) Strong stromal positive staining for Pten with absent 

epithelial staining.   
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4.2.8 Summary of pathway readouts according to genotype 

A summary of pathway status based on western and immunohistochemistry for each 

genotype and pathway is summarised in Figure 60.   

 

Pathway status  

Genotype PI3K Wnt MAPK 

Pten
fl/fl 

++ + + 

Catnb
+/ex3

 - ++ - 

K-Ras
+/V12

 - - + 

Catnb
+/ex3 

K-Ras
+/V12

 - ++ +/- 

Pten
fl/fl 

Catnb
+/ex3

  ++ ++ - 

Pten
fl/fl

 K-Ras
+/V12

 ++ +/- +/- 

Catnb
+/ex3

 Pten
fl/fl

 K-Ras
+/V12

 ++ ++ ++ 

Figure 59:  PI3-Kinase, Wnt and MAP-Kinase signalling pathway status according to 

genotype. These were based on combined IHC and western analysis. No activation, +/- 

heterogeneous activity – whereby there was either heterogeneous IHC staining or the western and 

IHC data was inconsistent, + low activation – weak IHC staining or mildly elevated protein levels 

on western-blot analysis, ++ high activation – strong IHC staining with significantly elevated 

protein levels on western-blot.   
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4.3 Discussion 

4.3.1 Pten loss alone causes significant PI3K pathway up-regulation with 

further mild aberrant Wnt and MAPK signalling resulting in prostate 

tumourigenesis 

To attempt to deregulate the PI3K pathway, mice harbouring homozygous deletion of 

Pten were generated.  Loss of Pten resulted in locally advanced adenocarcinoma of the 

prostate leading to death, with a reduced median survival of 373 days, consistent with 

reports from others (S. Wang et al. 2003).  Pathway analysis using both IHC on tumour 

samples and western blot on 100-day-old mice demonstrated significant aberrant PI3K 

activity, with up-regulation of downstream markers p-AKT and p-S6.  One would expect 

activation of the PI3K signalling given that Pten is the main player in regulating this 

pathway.     

Interestingly, this research has further shown that mice models with Pten loss alone not 

only demonstrate up-regulation of the PI3K signalling pathway but also aberrant Wnt and 

MAPK signalling. The presence of nuclear β-catenin and its downstream transcriptional 

target CD44, albeit in heterogeneous fashion, on IHC analysis provided evidence for the 

activation of the Wnt pathway.  One postulated mechanism to explain why Pten loss 

results in Wnt activity is through inhibitory signals on GSK3β which is part of the axin 

complex (described in 1.5.2).  Pten loss activates the PI3-Kinase pathway, which 

inactivates GSK3β (Mulholland et al. 2006) resulting in destruction of the axin complex. 

Consequently, β-catenin accumulates in the cytoplasm and travels to the nucleus where it 

activates Wnt target gene expression such as c-MYC and MMP-7 (MacDonald et al. 

2009; Kypta & Waxman 2012).  

The presence on IHC of p-ERK1/2 activity in tumours with Pten loss infers aberrant 

activity of the MAPK pathway.  Loss of Pten results in PI3K activation, which further 

activates and the MAPK pathway, this occurring at multiple levels as illustrated in Figure 

61. 
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4.3.2 Activation of β-catenin alone causes activation of the Wnt pathway 

resulting in prostate tumourigenesis with squamous metaplasia 

Activation of β-catenin alone also results in locally advanced prostate tumourigenesis 

with a reduced median survival of 383 days.  Interestingly, histological analysis 

demonstrates adenocarcinoma with evidence of squamous metaplasia, a finding 

consistent with others (Bierie et al. 2003; Pearson et al. 2009; Francis et al. 2013).  The 

significance of this is unclear; squamous metaplasia is uncommon in human PCa, with 

cases typically related to prior hormonal or radiation therapy, or associated with chronic 

prostatic inflammation or infarction (Arva & Das 2011).  Squamous metaplasia, although 

a benign condition, is thought to be risk factor for developing squamous differentiation 

and later transformation to squamous cell carcinoma (SCC).  This phenomenon is seen in 

the bladder where extensive keratinising squamous metaplasia can differentiate into a 

SCC.  SCC of the prostate is an exceedingly rare entity.  In the present study, squamous 

metaplasia was seen as early as 100 days and was associated with all models where a 

mutated allele for β-catenin was present.  This observation has also been noted in other 

organs with Wnt activated tumours, such as murine mammary tumours (B. Liu et al. 

2008). Persistent staining for basal markers CK5 or p63 may suggest that cells within this 

layer are able to differentiate aberrantly into the squamous cell lineage possible as a result 

of abnormal changes in stem cell function or pluripotent stem cells capable of 

multidirectional differentiation.  This theory has not been well explored due to the small 

incidence of squamous metaplasia and SCC in the human prostate, thereby rendering any 

further research of limited clinical value.   

 

4.3.3 Activation of K-Ras alone is insufficient to cause prostate 

tumourigenesis with elevated Pten levels 

Mice harbouring an activated mutation of K-Ras alone are insufficient to result in 

tumourigenesis and have little effect on survival, with all mice surviving to the end of the 

experiment (500 days).  This is somewhat surprising given that Taylor et al (2010) report 

alteration of the MAPK pathway in 43% of primary and 90% of metastasic samples. 

Clearly, further signals are required to permit tumourigenesis as demonstrated by 

compound mouse models involving K-Ras.  Interestingly, the level of Pten is elevated in 
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K-Ras single mutant mice, thereby offering a protective role, through inhibition of the 

PI3K pathway, a mechanism that could explain the normal histology seen in these mice.   

 

4.3.4 Double and triple mutant mice accelerate tumourigenesis through 

activation of multiple cell signalling pathways 

Historically cell signalling pathways have been thought of as separate entities however 

there is great research enthusiasm in deciphering key links or crosstalk’s between 

pathways in order to improve our understanding of the complexity of cancer and pave the 

way for future therapies. Our laboratory has previously shown cooperation between the 

Wnt and MAPK signalling pathway (Pearson et al. 2009) and others have shown 

cooperation between PI3K and Wnt signalling, and PI3K and MAPK in driving prostate 

tumourigenesis (Mulholland et al. 2012; Francis et al. 2013).  The research presented here 

is consistent with these findings, whereby double mutant mice display a significant 

reduction in lifespan compared to single mutant mice through activation of one or both 

associated signalling pathways.  For example, loss of Pten and activation of K-Ras results 

in predominant aberrant PI3K signalling with reduced median survival (238 days 

compared to 373 days for Pten single mutants with K-Ras single mutant mice all surviving 

to the end-point of the experiment [500 days]).  These interactions are not PCa specific, 

with reports in other tissues such as intestine, bladder, biliary and ovary (Marsh et al. 

2013; Davies et al. 2014; Ahmad et al. 2011; Laguë et al. 2008).   

This study, for the first time, demonstrates cooperation between all three pathways: PI3K, 

Wnt and MAPK signalling. Pten loss in addition to our previously described mouse model 

(Catnb+/ex3K-Ras+/V12, (Pearson et al. 2009) causes significant up-regulation of PI3K, Wnt 

and MAPK signalling highlighting important synergy between these pathways.  This 

results in a significant reduction in survival of the mouse when compared to double and 

single mutant mice.  Triple mutant mice develop very aggressive locally advanced 

prostate tumourigenesis with mortality resulting from urinary obstruction (bladder 

outflow or ureteric).  Histological analysis of the tumours demonstrated a step-wise 

progression of disease similar to that seen in human disease, from mPIN to invasive 

adenocarcinoma.  Triple mutants also display a more aggressive histological phenotype 

with a greater percentage of invasive adenocarcinoma at 100 days, when compared to 

double and single mutant tumours.  As the tumour progresses the glandular architecture 
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becomes increasingly distorted with glands fusing together and areas of cribriform pattern 

forming, features pathognomonic of Gleason pattern 4 in human PCa.  Furthermore, 

features of Gleason pattern 5 develop; with single PCa cells invading the stroma.  

 

4.3.5 Triple mutant mice display further aberrant mammalian target of 

rapamycin (mTOR) signalling 

In addition to upregulation of the PI3K, Wnt and MAPK signalling pathways, triple 

mutant mice also have significantly increased mTOR signalling, with increased levels of 

the downstream markers p-S6 and p70 S6K.  The mTOR signalling pathway is a master 

growth regulator and integrates both intracellular and extracellular signals and serves as 

a central regulator of cell metabolism, growth, proliferation and survival.  It has been 

implicated in many cancers (Motzer et al. 2008; Yao et al. 2011) through deregulation of 

these processes, particularly effecting tumour formation and angiogenesis. 

Deregulation of all three pathways (PI3K, Wnt and MAPK) in the mouse results in 

significantly elevated mTOR signalling.  A postulated mechanism to explain this is that 

the signals from all pathways converge and directly act on the same complex or protein.  

Figure 61 attempts to illustrate this hypothesis.  PI3K is directly upstream of mTOR; 

therefore loss of Pten can result in aberrant mTOR signalling. In addition there are 

proposed mechanisms connecting the PI3K pathway with the MAPK and the Wnt 

pathways, both resulting in subsequent mTOR signalling. For example, Ras can directly 

bind and activate PI3K (Suire et al. 2002) and ERK has been shown to inhibit the TSC1/2 

complex resulting in increased mTOR signaling (Carriere et al. 2011).  Inoki et al (2006) 

has also shown that Wnt signaling increases mTOR signaling though the inactivation of 

the TSC1/2 complex.  Stimulation of Wnt signaling inhibits GSK3, a kinase that promotes 

TSC1/2 activity by directly phosphorylating TSC2 (Inoki et al. 2006).  Stimulation of 

ERK can result in up regulation of the Wnt pathway through activation of β-catenin by 

phosphorylating the β domain of GSK (Ding et al. 2005). These are examples of cross-

activation or pathway convergence.   

In addition, there are inhibitory signals (cross-inhibition) and negative feedback loops 

which act upon upstream activators (Mendoza et al. 2011) that occur not only in-between 

pathways but also within a single pathway. For example, AKT negatively regulates ERK 
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activation by phosphorylating inhibitory sites in the Raf N-terminus (Zimmermann & 

Moelling 1999).  Also, there are negative feedback loops such as ERK phosphorylation 

inhibits Raf and MEK (Dhillon et al. 2007), and the phosphorylation of the downstream 

mTOR marker S6K inhibits AKT activity and mTORC1 signalling (Dibble et al. 2009).   

These mechanisms (illustrated in Figure 61) highlight the complexity and extent of 

crosstalk between these pathways making cancer therapeutics difficult. 

 

 

Figure 60:  A schematic representation of cross reactivity between Wnt, PI3K and MAPK 

signalling pathway.    

 

The importance of mTOR signalling has resulted in the development of inhibitors such 

as rapamycin and its analogues, including everolimus and temsirolimus.  Early studies 

were promising demonstrating regression of PIN lesions in a mouse model 

overexpressing AKT (Majumder et al. 2004) and inhibition of growth of xenograft 
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models derived from human cells lines with Pten loss (L. Wu et al. 2005).   Despite these 

promising preclinical results and the success of mTOR inhibitors in the treatment of 

patients with metastatic renal cell carcinoma (Motzer et al. 2008), the clinical use of 

mTOR inhibitors in men with metastatic PCa has been disappointing.   Phase I/II trials 

using single agent such as rapamycin or everolimus, have failed to show anti-tumour 

effects with little response on PSA or clinical progression (Templeton et al. 2013; Amato 

et al. 2008).   

Several explanations likely underlie the lack of clinical activity of rapamycin and its 

analogues in CRPC.  Rapamycin binds to mammalian target of rapamycin complex 1 

(mTORC1) and does not inhibit mTORC2, which results in increased AKT activity.  

Consequently, dual PI3K/mTOR1/2 drugs such as BEZ235 (Novartis) have been 

developed.  Encouragingly, pre-clinical studies have shown that BEZ235 (Novartis) can 

overcome Docetaxel resistance in a human CRPC cell lines using a mouse xenograft 

model (Yasumizu et al. 2014).   

More recently, PI3K signalling has been shown to inhibit androgen receptor (AR) activity 

via feedback inhibition on receptor tyrosine kinases (RTK) such as human epidermal 

growth factor 2/3 (HER2/3) (Carver et al. 2011).  Following mTOR inhibition, the AR 

activity is reactivated in a RTK-dependent manner (Rathkopf et al. 2015), resulting in 

treatment failure.  Conversely, AR signalling downregulates PI3K/mTOR activity 

through stabilisation of AKT (Carver et al. 2011). Activation of the mTOR pathway as a 

result of treatments targeting AR signalling or due to Pten loss may, therefore, enable 

prostate cancer cells to survive and proliferate in androgen-independent or reduced 

conditions.  Consequently, Rathkoft et al (2015) conclude that future studies combining 

PI3K pathway inhibitors and second-generation AR inhibitors are required in CRPC.  A 

recent trial of Abiraterone (inhibits androgen biosynthesis by blocking the CYP17 

enzyme) in combination with either BEZ235 (a dual PI3K and mTOR inhibitor, Novartis) 

or BKM120 (a PI3K inhibitor, Novartis) will explore this.  Recruitment completed in 

August 2014 and the results are awaited (CRUK).   

Triple mutant mice explored in this thesis demonstrate upregulation of the mTOR 

pathway highlighting a possible treatment site for this aggressive model.  What is evident 

is that cancer pathways, including mTOR, Wnt, PI3K and MAPK, are complex with the 

intensity and duration of pathway activation governed by the strengths of stimuli causing 
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cross-activation and cross-inhibition, and those resulting in negative feedbacks loops. 

This paradigm highlights the difficulty of future treatment strategies.  Using these 

treatment methods single agents are certainly going to fail and a combinatory treatment 

approach is required.   

 

4.3.6 Single gene mutations are insufficient to cause metastases 

The development of a murine model for PCa metastasis is important, given the lack of 

models for advanced disease.  Although, single mutations in Pten and β-catenin are 

sufficient to develop prostate tumourigenesis, the latency period is long (approx. 400 

days) with insufficient ability to cause metastasis.  This is however inconsistent with work 

by Wang et al (2003) which demonstrated lymph node and lung metastasis as early as 12 

weeks in Pten homozygous mice.  The reason for this discrepancy is unclear.   

The pattern of disease observed in single mutant mice; a long latency period with no 

metastasis, may well be synchronous with that of Gleason 6 human PCa, which have little 

effect on survival and a low metastatic potential.  It is hypothesised that further mutations 

or signals are required to transform these primary tumours to a metastatic state.   

 

4.3.7 Both K-Ras and β-catenin mutations drive metastatic spread in the 

context of loss of Pten 

Supporting the theory that more signals or mutations  (“hits”) are required to produce 

metastases, this research has demonstrated that compound deletion of Pten and activation 

of K-Ras has a high preponderance to lymph node metastasis (60% incidence), consistent 

with others (Mulholland et al. 2012). To a lesser degree (10% incidence), mice with 

compound activation of β-catenin and loss of Pten also develop lymph node metastases.  

Interestingly despite a more aggressive phenotype, triple mutant mice did not develop 

metastatic lymph node deposits.  The reason for this is likely due to the short life span of 

the mouse due to the aggressive nature of the tumours produced, not allowing enough 

time for the metastatic lesions to develop before the animal must be sacrificed owing to 

primary tumour burden.   
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The metastases observed in Pten loss and K-Ras activated compound model are small 

however, and mortality in these mice is almost certainly secondary to the local effects of 

the primary tumour, causing bladder outflow or ureteric obstruction, as oppose to the 

metastatic burden.  Although similar local effects are seen in locally advanced human 

disease, the majority of men in the lethal phase of PCa, CRPC, have widespread soft-

tissue and bony metastasis resulting in their death.   Bony metastases have not formally 

been assessed in the mouse as it is notoriously difficult to detect small metastasis in the 

mouse skeleton and one would typically expect reciprocal lymph node metastasis if bone 

metastasis were to be present.  Due to the small lymph node metastases seen, one could 

argue however, that the combinations of genetic mutations explored here are insufficient 

to initiate bone metastasis. 

 

4.3.8 Rate of proliferation correlates positively with stage of disease and 

number of mutations/activated pathways 

The rate of proliferation was assessed using immunohistochemistry, calculating the 

positivity of proliferation markers Ki67 and BRDU.  The rate of proliferation not only 

increased with stage of disease (i.e. from normal to mPIN to invasive adenocarcinoma) 

but also with number of mutations or deregulated pathways present. For example, the 

rapid growth of triple mutants tumours correlated clearly with the higher proliferation 

rate when compared to double mutant mice. The same was apparent when comparing 

double mutant to single mutant mice.   

Proliferation is arguable one of the most, if not the most important “hallmark” possessed 

by a cancer (Hanahan & Weinberg 2011).  In addition to a greater proliferation rate seen 

in triple mutants, it can be postulated that as further mutations develop the cancer adopts 

further “hallmarks” to evade the body’s normal defences. For example, additional 

mutations in different genes such as the retinoblastoma (Rb) pathway would alter cell-

cycle control and the p53 pathway affects apoptosis.   

Proliferation markers, such as Ki67, have also been shown to be of prognostic value in 

human disease.  Studies have shown Ki67 to be a powerful biomarker in predicting need 

for radical treatment in those undergoing conservative management (active surveillance) 

(Berney et al. 2009), time to biochemical relapse following radical prostatectomy 
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(Bettencourt et al. 1996), and is a strong marker of disease progression and distant 

metastasis in those undergoing external beam radiotherapy (Verhoven et al. 2013). 

 

4.3.9 Tumours show signs of EMT with Triple mutants displaying additional 

stromal Pten activity 

All mouse models explored (except for K-Ras single mutants) developed locally 

advanced disease with evidence of EMT. This thesis has not explored the degree of EMT 

between each model however, which could be performed using IHC or IF for antibodies 

against slug, snail and twist for example.  Such markers have been shown to be of 

prognostic value in human disease by predicting biochemical relapse following radical 

prostatectomy for example (Behnsawy et al. 2013) 

Triple mutant mice develop upregulation of Pten within the stromal compartment 

suggesting a compensatory protective role of this tumour suppressor in response to 

changes in the tumour microenvironment.  The interaction between the stromal and 

epithelial compartment is complex and thought to be important for the progression of the 

tumour.  It has been shown that loss of Pten in the stroma fibroblasts of mouse mammary 

glands resulted in accelerated initiation, progression and malignant transformation of 

mammary epithelial tumours.  This was thought to be due to a massive remodelling of 

the extra-cellular matrix and tumour vasculature with recruitment of innate immune cells 

(Trimboli et al. 2009).  Thus, as demonstrated by the triple mouse model, Pten may be 

involved in altering the epithelial-mesenchymal or tumour-stroma cross talk resulting in 

possible protective signals, however not significant enough to prevent prostate 

tumourigenesis.  This could also explain the reactive stroma that is particular seen in Pten 

deficient mouse prostates.   

4.3.10 Limitations 

A limitation of this type of mouse model is exposing the prostate to three simultaneous 

mutations.  Cancer is thought to develop as a result of multiple genetic “hits”, where the 

original clone or genetic mutation is exposed to another environmental factor such as 

smoking for example, resulting in multiple clones which can lead to cancer initiation, 

progression and metastasis.  Some mouse models in other tissues, such as bladder have 
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used carcinogens to mimic these environmental exposures, which are known to give rise 

to bladder cancer in humans. The carcinogen typically used in bladder models is N-butyl-

N-(4-hydroxybutyl) nitrosamine (BBN), which is delivered in drinking water. BBN is 

highly relevant to human bladder cancer because it is very similar to the major carcinogen 

associated with tobacco smoke (Vasconcelos-Nóbrega et al. 2012).  A further advantage 

of using carcinogens is that they can also be combined with GEM models with different 

phenotypes (Kobayashi et al. 2015) in order to study the effects on carcinogens in 

different genetic background, for example those genetic lesions that are more likely to 

develop smoking related bladder cancer.  Unfortunately, this approach cannot be adopted 

in PCa as there is limited evidence supporting any environmental risk factors for the 

initiation or development of PCa.   

A further limitation of this study is the number of incorporated genetic mutations. As 

more mutations are incorporated into a mouse model it becomes more difficult to 

understand the biology behind the interactions, and to appreciate which might be the 

“driver” mutation in the model.  Also, with increasing mutations, there would be both 

cross-inhibition and cross-activation between pathways resulting in a very complex array 

of signals.  This complexity again makes it difficult to appreciate which mutation is 

responsible for each pathway signal. 

Importantly however, mouse models can me manipulated to mimic virtually all disease 

stages seen in human cancer including lymph node metastasis, as demonstrated by this 

work.  Some groups have also demonstrated positive recombination of genes in DNA 

from bone marrow flushing’s (Mulholland et al. 2012). Whether these cause the 

osteoblastic metastasis seen in human disease has yet to be established however.   

 

4.3.11 Summary and future direction  

To conclude, Pten loss and activation of β-catenin and K-Ras cooperate to accelerate 

prostate tumourigenesis through synchronous activation of the PI3-Kinase, Wnt and 

MAP-Kinase signalling pathways.  It is evident that “hallmarks” of cancer such as 

proliferation are elevated when more pathways are activated.  Furthermore, when all three 

mutations are present there is aberration of the mTOR pathway, a site where these signals 

may converge.  To explore this mechanism further, these mouse models could be 
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challenged with mTOR inhibitors such as Rapamycin to assess effects on tumour growth, 

progression and metastasis.   

Other mechanisms to explain why a more aggressive PCa phenotype develops when more 

pathways are activated will be explored in the next chapter.  Although this will be a 

challenge, the next chapter will explore the effects of pathway deregulation on the cancer 

stem cell population.   

Emerging evidence from next-generation sequencing is promising being able to sub-

divide tumours based on mutational profiles and categorising these to actionable 

aberrations (Robinson et al. 2015).  What is apparent is that alterations to PI3K, Wnt and 

MAPK are commonplace in human PCa and understanding the complex interactions 

between them is paramount for future successful therapies.  The future is to better 

understand mutational signatures for PCa and to discover different patterns of mutations 

that cause different cancer-causing events.  In particular, distinguishing between lethal 

cancers that need aggressive treatment and non-lethal cancers that do not.  These gene 

profiles could then be modelled in the mouse, which will not only improve our biological 

understanding of them, but also provide a platform for pre-clinical testing of novel 

therapeutic agents.   

 

5 Assessment of putative cancer stem cells (CSC) in human 

prostate cancer and optimisation of tumour organoid 

culture in the mouse effected by deregulation of the Wnt, 

PI3-Kinase (PI3K) and MAP-Kinase (MAPK) signalling 

pathways 

 

5.1 Introduction 

Adult epithelial stem cells are able to facilitate organ homeostasis and have a potential 

role in tumourigenesis. Throughout the life span of an adult organ, stem cells operate to 

replace lost or damaged tissue to ensure proper function (Blanpain et al. 2007), such as 
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in the blood, skin, and intestine. Owing to their longevity and inherent self-renewal 

capacity, adult stem cells are potential cells of origin for certain cancers (Barker, 2009).  

The stem cells within a tumour are often referred to as a cancer stem cell (CSC).  The 

CSC theory has been described in detail in the main introduction of this thesis. Tumours 

are perceived to have a hierarchy of cells, with a small population of CSC residing at the 

top and their more differentiated progeny (transit-amplifying or progenitor cells) below.  

The CSC is then postulated to drive the growth of cancer resulting in metastasis.  The 

CSC is also thought to be important in treatment failure and recurrence as most 

conventional primary treatments aim at reducing tumour bulk rather than targeting the 

“beating heart’ of the tumour, the CSC (Clevers 2011).   

As the CSC may originate from oncogenic alteration of normal stem cells, many studies 

have focused on the identification of the normal stem cells in order to identify the cell of 

origin of PCa.  The location of the prostate epithelial stem cell, whether basal or luminal 

has been a focus of great debate in PCa, with evidence supporting both locations (Table 

8 of Introduction).  The effect of oncogenic mutations on the CSC population has also 

been investigated but to a lesser degree.   

 

5.1.1 Chapter Aims 

1. To evaluate putative prostate CSC markers using a human tissue micro-array 

(TMA). 

2. To optimise tumour organoid assay using fluorescence-activated cell sorting 

(FACS) and 3D culture using matrigel. 

3. To evaluate the effect of Wnt, PI3-Kinase and MAP-Kinase deregulation on the 

stem cell population. Mouse tumours driven by single, double and triple mutations 

will be investigated to determine: 

a) Stem cell population 

b) Organoid forming capacity (OFC) 

c) Self-renewal through serial passage  
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5.2 Results 

5.2.1 Evaluation of putative CSC markers in human PCa 

A number of markers have been postulated to represent the CSC in epithelial cancers.  

Examples of these include: CD49f (Lawson et al. 2007), Trop-2 (Goldstein et al. 2008), 

Notch 1 (Valdez et al. 2012) & 4 (Harrison 2010), Intergrin-β1 (Collins et al. 2001) and 

Forkhead box protein A1 (Foxa-1) (Zhang 2011a).  IHC was performed using antibodies 

against these markers using a human PCa TMA.  The clinicopathological data for the 

TMA is described in detail in chapter 3.  Representative IHC staining is illustrated in 

Figure 62. 

 

 

Figure 61: Examples of representative immunohistochemistry staining for putative stem cell 

markers: Foxa-1, Notch 1&4, Intergrin-β1, CD49f and Trop-2.  Intensity scoring: No staining 

= 0, Weak = 1, Moderate =2, Strong = 3. Proportion was also calculated formulating an overall 

quickscore (described in methods section). 
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Figure 62:  Summary of Stem cell marker expression (mean quickscore) between benign 

and cancer prostate samples.  Error bars = 95% CI.  There was significantly higher expression 

of all markers other than Intergrin-β1 in cancer specimens when compared to benign samples 

(p<0.001/p<0.0001).  

 

 

Figure 63:  Summary of Stem cell marker expression (mean quickscore) categorised according 

to Gleason score (GS) risk classification as defined by D’Amico (*0 = normal, 1 = low-risk 

(GS=6), 2 = intermediate-risk (GS=7), 3 = high-risk (GS≥8)).  Error bars = 95% CI.   
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There was significantly greater expression of all stem cell markers, other than for 

Intergrin-β, in human PCa samples when compared to benign samples (Figure 63).  

Furthermore, the mean expression increased as the Gleason risk group increased for many 

markers, in particular Notch 1 and Foxa-1 (Figure 64).   

 

5.2.2 Optimisation of prostate organoid culture assay in the mouse 

To enable the isolation and cultivation of prostate stem cells, a single cell suspension of 

prostate epithelial cells was selected using FACS, cultured using matrigel and PrEGM 

growth media to permit organoid formation, then passaged and re-plated to assess self-

renewal capacity (as described in methods).   

Our laboratory has experience in using FACS and the basal stem cell assay Lin -

Sca1+CD49f+Trop-2HI previously described by Goldstein et al (2008).  We have shown 

in WT mice that the stem cell enriched population (Lin-Sca1+CD49f+Trop-2HI) has the 

ability to self-renew with regeneration of organoids following serial passage to at least 

generation [G] 4.  Unsorted WT cells were also able to from organoids but were less 

efficient, and only survived to G2. This work identified two areas of uncertainty:  

1. Does the Probasin (Pb-Cre+) promoter cause recombination in both basal and 

luminal cells?  As the Lin-Sca1+CD49f+Trop-2HI adopts a basal stem cell assay it 

was vital to confirm genetic recombination within both cell compartments prior 

to further experiments.  

2. A large number of mice (n=6-10) were needed for each experiment, as the yield 

of enriched cells was very low.  In this study, in order to compare all genotypes 

(n=7) and replicate the experiment 3 times for each cohort, approximately 210 

mice would be needed.  This would be too costly.   

 

5.2.2.1 Pb-Cre+ promoter causes recombination in both basal and luminal prostate 

cells 

Mice modified with the Red Fluorescent Protein (RFP) reporter gene were used to 

confirm recombination in both basal and luminal prostate cells.  The basal and luminal 
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cells can be characterised by their morphology and position.  Basal cells are flatter and 

are located adjacent to the basement membrane whilst luminal cells are more cuboidal 

and located closer to the lumen of the glands. There was positive IHC staining in both 

cell types in Pb-Cre+RFP+ mice (Figure 65B&D) and absent in Pb-Cre-RFP+ mice (Figure 

65A&C).  Although not formally calculated, the recombination in both cells 

compartments appears to be similar.  This differs from the original Pb-Cre study by X. 

Wu et al (2001), where recombination within the luminal compartment predominated. To 

further confirm cell specific recombination, co-staining with basal and luminal markers 

such as CK5 and CK8, respectively, could be used.  A further observation was that there 

was more avid staining of RFP in the dorso-lateral lobes of Pb-Cre+RFP+ mice, an area 

of the mouse prostate that is thought to be more pathologically similar to that seen in 

human PCa.  

 

 

Figure 64:  Anti-RFP Immunohistochemistry for Pb-Cre
+ 

and Pb-Cre
-
 WT dorso-lateral 

lobes of the prostate at 100 days.  Pb-Cre- mice (A+C) demonstrated minimal staining, whereas 

Pb-Cre+ mice (B+D) stained both luminal (*) and basal cells (arrow head).    
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5.2.2.2 Optimising mouse numbers 

Initially 100-day old mice were used.   This time point was decided upon because it was 

before aggressive tumourigeneis had began in most mouse cohorts, so the cell of origin 

theory could be investigated.  Unfortunately, these experiments yielded very poor cell 

numbers at the expense of 6-10 mice per experiment.  We could not afford to sacrifice 6-

10 mutant mice for a single experiment and therefore a decision to use tumour tissue at 

endpoint (death) was made.  At this time point only 1 mouse was required per experiment.  

Each experiment was repeated 3 times. 

 

5.2.2.3 FACS assay  

To aid further reduction in mouse numbers, the organoid forming capacity (OFC) and 

self-renewal capability through serial passage of the Lin-Sca1+CD49f+ assay (described 

by Lawson et al [2007]) without Trop-2 in WT mice was assessed.  An example of this 

assay is shown in Figure 66.  By excluding Trop-2, twice as many cells were enriched 

reducing the required mouse numbers by a half.   

 

 

 

Figure 65: Fluorescence-activated cell sorting (FACS) using Lin
-
Sca1

+
CD49f

+
 stem cell/CSC 

enrichment assay.  Single cells were initially selected using a combination of forward scatter 

(FSC) and side scatter (SSC).  Alive cells were gated using 4', 6-diamidino-2-phenylindole 

(DAPI).  Linage negative (Lin-) was used to select epithelial cells using a combination of 

antibodies CD31-FITC, CD45-FITC and Ter119-FITC.  The stem cell/CSC enriched population 

was then gated using antibodies against CD49f and Sca-1 on the PE and PE-Cy-7 fluorochromes, 

respectively.   
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Similar to that observed in our laboratories previous work using the Lin-

Sca1+CD49f+Trop-2HI assay, the enriched cell population using the Lin-Sca1+CD49f+ 

(without Trop-2) assay in WT mice was able to passage to generation (G) 4 (Figure 67).  

There was an average of 340 (95% CI 299-380) organoids formed in G1, which equates 

to an OFC of 1 out of 29 Lin-Sca1+CD49f+ cells.  This reduced to an average of 148 (95% 

CI 117-179) organoids in G2 (OFC 1 out of 67), 102 (95% CI 69-134) in G3 (OFC 1 out 

of 100) and 63 (95% CI 61-65) in G4 (OFC 1 out of 167) (Figure 67).  Although the 

number of organoids decreased with each passage, there was still evidence of the stem 

cell property of self-renewal.   The non-enriched population (Lin-Sca1+CD49f+ negative) 

formed very few organoids at G1 with no cells surviving for passage to G2.   

As it was possible to obtain similar results using the Lin-Sca1+CD49f+ assay without the 

Trop-2 marker, this assay was used for future experiments using mutant mice.   

 

 

 

Figure 66: Lin
-
Sca1

+
CD49f

+
 enriched cells in wild-type (WT) mice were able to self-renew 

and passage to generation (G) 4.  The mean number of organoids formed at day 7 was greatest 

in G1 (Mean=340, 95% CI 299-380).  This reduced to a mean of 148 organoids (95% CI 117-

179) for G2, 102 (95% CI 69-134) for G3 and 63 (95% CI 61-65) for G4.   Error bars = Mean + 

95% CI. 
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5.2.2.4 Optimising organoid culture conditions 

Initially, a trial of single, double and triple mutant tumours were sorted on three separate 

days to assess the feasibility of the Lin-Sca1+CD49f+ assay in these mice.  In addition, the 

usefulness of a selective Rho-associated kinase (ROCK) inhibitor added to the culture 

media was assessed.  Activation of the ROCK-signalling pathway is associated with 

dissociation-induced apoptosis of stem cells, whereby cells are stressed during digestion 

and FACS sorting resulting in loss of stemness. Inhibition of this pathway using a ROCK 

inhibitor has been shown to improve cloning efficiency of prostate stem cells by 8 fold 

(Zhang et al. 2011). Our laboratory, using intestinal organoid culture, has also 

demonstrated an improvement in cell survival and organoid forming capacity when 

adopting this method. A ROCK inhibitor was therefore added to half of the wells for the 

first 72 hours following dissociation.   

Figure 68 illustrates the OFC of three populations of cells for the 3 pilot tumours: 

unsorted, Lin-Sca1+CD49f+ and Lin-Sca1+CD49f+ negative. Across all three tumours the 

Lin-Sca1+CD49f+ cells consistently formed a greater number of organoids compared with 

unsorted cells and not Lin-Sca1+CD49f+ (Figure 68).  The Lin-Sca1+CD49f+ assay was 

therefore feasible for murine prostate tumours.  In contrast to Zhang et al (2011), the 

ROCK inhibitor did not show any strong trend towards improvement of OFC and 

therefore was not developed further. 

Each experiment took 12-14 hours (Figure 16 in methods).  Attempts were made to reduce 

this to a manageable time by splitting the experiment, including digesting the prostates 

overnight, and then dissociating into single cells, FACS and plate the following day.  I 

also tried to leave the digested single cell preparation in the fridge at 4°C overnight prior 

to FACS and plating the following day. Unfortunately, the cell death adopting both these 

methods was too high and the illustrated method was used. 
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Figure 67: Organoid forming capacity (OFC) of 3 populations of cells: Unsorted, Lin
-

Sca1
+
CD49f

+
 and not Lin

-
Sca1

+
CD49f

+
 for 3 sample murine tumours and further separated 

by ROCK inhibitor treatment.  A-C:  The greatest OFC for all tumours was in the Lin-

Sca1+CD49f+ cell population followed by the unsorted cells then the not Lin-Sca1+CD49f+ cells.  

ROCK inhibitor was added to half the wells and did not have any benefit to the OFC.   

U
ns

or
te

d

Sca
1+

C
D

49
f+

N
ot

 S
ca

1+
C
D

49
f+

0

50

100

150

200

250

ROCK inhib +

ROCK inhib -

B Tumour 2 - Double mutant

(Catnb+/lox(ex3)/K-Ras+/V12)

O
rg

an
o
id

 n
u
m

b
er

U
ns

or
te

d

Sca
1+

C
D

49
f+

N
ot

 S
ca

1+
C
D

49
f+

0

50

100

150

200

250

300
ROCK inhib +

ROCK inhib -

C

Tumour 3 - Triple mutant 

(Catnb+/lox(ex3)/Ptenfl/fl/Ras+/V12)

O
rg

an
o
id

 n
u
m

b
er

U
ns

or
te

d

Sca
1+

C
D

49
f+

N
ot

 S
ca

1+
C
D

49
f+

0

50

100

150

200

250

A Tumour 1 - Single mutant 

(Ptenfl/fl)

ROCK inhib -

ROCK inhib +

O
rg

an
o
id

 n
u
m

b
er



 184 

5.2.3 The percentage of the stem-cell/CSC enriched population (Lin-

Sca1+CD49f+) increases as genetic mutations increased 

 

To assess the effect of genetic or pathway deregulation on the stem-cell/CSC population 

the Lin-Sca1+CD49+ assay (described by (Lawson et al. 2007) was used.  The loss of Pten 

was incorporated as a means of activating the PI3K pathway and mutated β-catenin and 

K-Ras as means of aberrant Wnt and MAPK signalling. As the number of mutations 

increased the percentage of stem-cell/CSC enriched cells also increased (Figure 69).   

 

 

 

Figure 68: Percentage Sca1
+
CD49

+
 according to genotype.  The percentage of Sca1

+
CD49

+ 

increased with combinatory mutations when compared to single mutants and WT mice. 

Three individual sorts were performed for mice at endpoint of the experiment (death or 500 days).  

Error bars = mean + 95% CI. 
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5.2.4 WT enriched cells have the greatest organoid forming capacity with 

triple mutants demonstrating a greater OFC than single or double 

mutants  

 

Stem-cell/CSC enriched cells were cultured in matrigel and number of organoids counted 

in each well at 7 days.  WT cells had the greatest OFC with some recovery of function 

with increasing number of mutations (Figure 70).  This finding was unexpected given the 

greater percentage of stem-cell/CSC enriched cells (Lin-Sca1+CD49+) in triple mutants 

(Figure 69).  The reasons for this are unclear and are likely to be multi-factorial.  The 

tumour organoids may require signals from its surrounding niche environment for 

significant growth or the media used may not have all the correct growth factors for 

efficient growth.   

 

 

 

Figure 69:  Number of organoids formed as function of genotype.  WT enriched cells had 

the greatest organoid forming capacity.  β-catenin/K-Ras double and triple mutant cells had 

some recovery in organoid forming capacity when compared to single mutant cells. Error bars = 

mean + 95% CI. 
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The capacity of organoids to undergo self-renewal through serial passage was assessed 

using WT mice, as discussed above (Figure 67).  Unfortunately, due to the low number 

of enriched cells following FACS in the tumour models, there were only enough cells for 

1 or 2 wells to be plated per experiment.  There was therefore limited material available 

to passage and to demonstrate self-renewal of the tumour organoids.  

 

5.2.5 All organoids had a similar morphological phenotype 

A similar phenotype was seen across all genotypes including WT organoids.  All were 

spherical, with some appearing more solid (Figure 71B), while others had a central core 

with signs of keratin deposition and squamous metaplasia (Figure 71C).    In contrast to 

others (Mulholland et al. 2012) we did not observe any complex organoid formation. 

Where material was available, prostate organoids were formalin-fixed, paraffin-

embedded and sectioned for H&E and IHC analysis.  These organoids expressed a basal-

phenotype with staining of CK5 and p63.  These findings were inconsistent with other 

series (Lukacs et al. 2010; Goldstein et al. 2008), as they failed to show multi-potency 

with negative staining of the luminal marker CK8.   It was observed that the most 

proliferative cells, resided at the periphery of the organoid with positive staining of Ki67.    
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Figure 70:  Prostate organoid characterisation.  Bright-field images of solid organoids (A&B), 

with some demonstrating signs of squamous differentiation and keratin deposition centrally (C). 

H&E image of a solid organoid (D).  The periphery of the organoids stained avidly for basal 

markers CK5 (E) and p63 (F), but failed to demonstrate multi-potency with negative staining of 

luminal marker CK8 (G).  The proliferating cells, stained by Ki67, typically resided at the 

periphery (H).  Error bars = 50μm. 
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5.3 Discussion 

5.3.1 Putative CSC markers that are associated with many signalling 

processes or cell types, are elevated in human prostate cancer – is there 

more than one CSC? 

All putative stem cells markers analysed appear to have a greater expression in human 

PCa and particularly in those with high-risk disease.  The original CSC theory describes 

a small sub-population of cells within the tumour that largely drive growth and metastasis.  

The data presented here shows expansion of a pool of CSC but does not necessarily 

identify the sub-population of the driver cells or the “cell of origin”.  There are two 

theories to explain this.  There could be clonal expansion of the CSC or these markers 

could represent expansion of transit-amplifying or progenitor cells. 

What is also evident is that these markers are associated with different cellular processes 

or cell types. CD49f and Trop-2 are basal markers and have been shown to possess many 

CSC characteristics such as a high potential for tumour growth, self-renewal, multi-

differentiation, metastases and drug resistance (Lawson et al. 2007; Goldstein et al. 2008).  

Similarly, Collins et al (2001) have shown that a subset of basal cells expressing high 

levels of Intergrin-β1 have the ability to generate prostate-like glands in vivo with 

morphologic and IHC evidence of prostate-specific differentiation (Collins et al. 2001).  

Foxa-1 also displays many features of a CSC:  it is required for epithelial cell 

differentiation in the murine prostate (Gao et al. 2005) and promotes cell cycle 

progression in castration-resistant PCa (Zhang et al. 2011).  Exon sequencing has also 

shown recurrence mutations of the Foxa-1 gene (Barbieri et al. 2012).  Functionally, 

Foxa-1 is thought to modulate androgen receptor driven gene transcription (Gao et al, 

2003).  Unlike CD49f and Trop-2, Foxa-1 has recently been shown to affect the 

proliferating activity of luminal and not basal cells, albeit in breast cancer (Tachi et al. 

2016).  This is in contrast to the Notch pathway, which has been shown to be widely 

expressed in both the basal and luminal cell compartments of adult murine prostates 

(Valdez et al. 2012).  

Two postulated theories have arisen from these data.  Firstly, there is more than one CSC 

with different cell lineages or clones, which all represent properties that are common to 

stem cells.  This plausible notion could explain the sub-types of cancers that are emerging 
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(Robinson et al. 2015) or explain the heterogeneity seen in PCa, with some patients 

getting aggressive disease and others indolent.  Secondly, the high expression of multiple 

markers involving different cell types or signalling pathways, particularly seen here in 

aggressive disease, could simply confirm the complexity of signals and cross-talk present 

in aggressive PCa, as highlighted from the data presented in Chapters 3 and 4.   

 

5.3.2 Increasing number of genetic mutations or pathway deregulation in the 

mouse causes expansion of the CSC population  

To study the effects of deregulation of multiple molecular pathways or mutations, as seen 

in aggressive PCa, on the CSC population, the mouse models previously described in 

chapter 4 were used.  It was hypothesised that deregulation of the PI3K, Wnt and MAPK 

pathways drive expansion of the CSC population, resulting in disease progression and 

metastasis.   

Using the assay described here, following pathway deregulation there is an expansion of 

the pool of CSC.  This is particularly seen in compound mutant mice (doubles and triples) 

whereby multiple cell signaling pathways have been affected. Despite this, stem-cell 

enriched WT cells demonstrate the greatest organoid forming capacity when compared 

to all other mutant cells.  The reasons for the favored conditions seen in WT cells 

permitting organoid growth are unclear.  These findings have also been reported in 

intestinal organoid culture (Sachs et al. 2014).   Although, a basal stem cell media 

(PrEGM, Lonza) containing many growth factors was used other factor or conditions may 

be necessary to allow further growth, differentiation and passage of enriched mutant cells.  

What must also be remembers is that these media conditions have been optimised for WT 

cells and not tumour or mutant cells who’s niche environment may be particular.   

Moreover, despite the use of matrigel (as a basement membrane substitute) and growth 

factors to aid signals from the stroma seen in vivo, there is potential loss of epithelial 

integrity (epithelial-mesenchymal transition-EMT) in tumour organoids studied ex-vivo.    

Further evidence for the suboptimal growth conditions is the presence of squamous 

metaplasia seen in organoids across all genotypes.  This was also observed in the mouse 

prostates, however only in those harboring a mutated β-catenin allele (Chapter 4). 

Squamous metaplasia is a terminally differentiated cell and although not frequently seen 
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in human PCa is often associated with chronic injury or stress.  Tumour organoids failed 

to successfully passage, which is partly explained by the loss of cells as a result of 

mechanically dissociating the organoids into single-cell and re-plating but the sub-

optimal culture conditions may have also played a role.   

Nevertheless, there does appear to be some recovery of stem cell activity with increasing 

number of mutations with double/triple mutant cells forming more organoids than single 

mutant cells.  This could indicate that the hypothesis is correct in that with more pathway 

deregulation the pool of CSC increases.  Further optimisation of growth conditions could 

prove this.  Mullholland et al (2012) has shown similar results with significantly greater 

sphere formation in Pten/K-Ras compound mutant mice compared to single (Pten or K-

Ras) mutants.  Interestingly they did not compare to WT cells, which formed the most 

organoids in this study.  

Since completing this work other groups have experimented with other types of media.  

For example, Clevers laboratory have used media that was initially tested in intestinal 

organoids, which contained other growth factors such as R-Spondin-1 and Noggin (Sato 

et al. 2011).  These are thought to be indispensable stem cell maintenance factors 

necessary for intestinal organoid growth.  The same group have since demonstrated 

successful growth of human PCa organoids using the same culture media (Gao et al. 

2014). 

The adopted assay used here enriches for basal–CSC.  Although Probasin promotes 

recombination in both luminal and basal cells, more specific promoters are available.  

These include basal cell type specific promoters such as CK5-CreER (Rock et al. 2009) 

and p63 (Pignon et al. 2013), or luminal specific promoters such as PSA-CreER 

(Ratnacaram et al. 2008) and CK8-CreER (Van Keymeulen et al. 2011).  For specific 

studies into the origin of the CSC future studies could adopt these.   

Data from this chapter has shown that a population of cells with stem-cell-like properties 

expands with increasing deregulation of the PI3K, Wnt and MAPK pathways, through 

mutations of Pten, β-catenin and K-Ras. A further theory is that deregulation of these 

pathways drive initiation of PCa by altering the pool of ‘cells of origin’.  This theory has 

not been extensively studied here.  Younger mice could be used prior to the onset of 

tumourigenesis or further organoid culture using a small sub-population of cells selected 

using FACS and xenotransplanting into immunodeficient (nude) mice could be 
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performed.  The main draw back precluding mass uptake of both FACS and 

xenotransplant is the time, cost and the artificial microenvironment produced that does 

not accurately mimic the conditions seen in human PCa.    

 

5.3.3 Chapter Summary 

A number of putative CSC markers are increased in aggressive human PCa.  Using mouse 

models of PCa, deregulation of the Wnt, PI3K and MAPK pathways result in expansion 

of the CSC population.  Although, there is some recovery in organoid forming efficiency 

with increasing mutations, the growth conditions for tumour organoids is suboptimal and 

inferior to that of WT mice.  This result was not expected given the contrasting results 

seen in the compound mouse models, with rapid tumour growth and proliferation.  The 

reasons for this are unclear but are likely multifactorial; such as suboptimal growth 

conditions lacking key growth factors or the inability to grow in the current matrix 

(matrigel).  If further optimisation is successful then one would expect similar results to 

that seen in the mouse models with a more proliferative phenotype and a great organoid 

forming efficiency.   PCa organoids could then be used for drug screens and used in 

mechanistic studies of therapeutic response and resistance in PCa.  Furthermore, primary 

human PCa organoids might be suitable for storing in a cryopreserved organoid library, 

and could be used for manufacturing targeted drugs.   
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6 Final Discussion 

Mounting data suggests that epithelial cancers can be subdivided based on a molecular 

profile of genetic alteration known to affect certain cell signalling pathways such as Wnt, 

PI3K and MAPK, or genes associated with certain cellular mechanism such as DNA 

repair and cell cycle.  This subdivision has been reported in bladder cancer, where FGFR3 

mutations predominate in superficial papillary tumours and p53 and/or Rb pathway 

alterations predominate in muscle-invasive lesions (Goebell & Knowles 2010).  Although 

the androgen signalling pathway and ADT are pivotal in the treatment of advanced PCa, 

men still relapse with CRPC where survival is poor.  Alternative signalling pathways such 

as the Wnt, PI3K and MAPK are known to play important roles in PCa, but there is limited 

evidence supporting the communication between these pathways.  

Data from this thesis has demonstrated activation of all three pathways in human PCa, 

which was most evident in high-risk disease.  This was demonstrated using both IHC and 

targeted-NGS for markers or genes associated with these pathways. Based on readouts of 

these markers it was possible to cluster individual samples, in particular separating those 

with high- and low-risk disease.  These data suggests that different grades of disease have 

different molecular or genetic signatures.  This finding is important and may explain why 

some tumours have more aggressive features resulting in progression, metastasis and 

treatment failure.        

To investigate this theory further, mouse models were used. Using Cre-LoxP technology 

and the Probasin promoter, the loss of Pten was incorporated as a means to activate the 

PI3K signalling pathway, and the β-catenin and K-Ras activated mouse model as means 

of aberrant Wnt and MAPK signalling. This study provides the first evidence of clear 

crosstalk between these signalling pathways, which has significant effects on prostate 

tumourigenesis.  Mice with loss of Pten in addition to activation of β-catenin and K-Ras 

have significant up-regulation of the PI3K, Wnt and MAPK signalling as demonstrated 

by IHC and western-blot analysis for downstream markers and target genes of each 

pathway.  Furthermore, they cooperate, resulting in a significantly shorter survival than 

double and single mutant mice. Tumourigenesis occurred in a step-wise fashion from 

mPIN to invasive adenocarcinoma. The aggressive phenotype seen in compound mutant 

mice was confirmed with a greater percentage of invasive adenocarcinoma at 100 days 
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and increased proliferation markers, Ki67 and BRDU.  Specific combinations of gene 

mutations were also more prone to the development of lymph node metastasis. 

Both human and mouse data presented here offer a glimpse into the molecular profile of 

individual PCa samples.  This opens exciting future prospects, with the development of 

targeted assays or biomarker/genetic panels permitting personalised molecular profiles, 

thereby directing future therapies.  Biomarker or genetic tests can help physicians to select 

the most effective therapy for a patients condition and avoid treatments that could be 

ineffective of harmful. This type of approach, often referred to as precision medicine is 

rapidly expanding and has transformed the outlook of many epithelial cancers, in 

particular lung and melanoma (Ladanyi & Pao 2008; Flaherty et al. 2010; Chapman et al. 

2011).  

The results of targeted therapies in PCa clinical trials have on the whole been poor.  The 

majority of these studies have been in the metastatic setting where there is a complex 

genetic profile making single agent targeted therapies ineffective.  Historically, new 

treatments are tested first in the metastatic disease; however, is this too late?  Future trials 

could aim to use drugs in a neo-adjuvant or adjuvant setting in primary cancer treatment 

(prostatectomy or radiotherapy) as opposed to waiting for the onset of metastatic disease 

where the molecular signature is more complicated.   

Until recently, there has also been no selection criteria or personalisation of trial agents 

used in PCa, possibly contributing to the poor reported results.  A recent study by Mateo 

et al (2015) has shown a three fold survival benefit by stratifying patients with a mutation 

in one or more DNA repair gene to the PARPi, Olaparib (Mateo et al. 2015).  The 

incorporation of tumour molecular profiles (using both NGS and IHC) in future clinical 

trials is key for the success of these drugs.  This thesis using IHC and the CHPv2 gene 

panel has shown the feasibility of obtaining molecular profiles for the WNT, PI3K and 

MAPK pathways.  Future studies could stratify their targeted agents based on these 

profiles.  The recently designed molecular stratified randomised control trial, FOCUS4 

in metastatic colorectal cancer has adopted these ideas. Here, four molecular cohorts are 

identified: BRAF mutant tumours, PI3K mutant tumours, KRAS or NRAS mutant 

tumours and EGFR dependent tumours.  Each cohort is given a specific agent, for 

example, dual pathway inhibition using an AKT inhibitor and MEK inhibitor in KRAS 

or NRAS mutant tumours.  The primary outcome is effect on progression free survival 
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(further information is available at www.focus4trial.org).  A similar trial could be set up 

for PCa.    

To explain why more aggressive PCa phenotypes are seen in mice that harbour a greater 

number of mutations, the CSC theory was explored.  If CSCs originate from malignant 

transformation of a normal stem cell, then it follows that they may share antigenic 

profiles.   Here, using the basal assay: Lin-Sca+CD49f+assay using FACS, as a marker of 

the CSC I hypothesised that the Wnt, PI3K and MAPK pathways synergise and drive 

expansion of this population.  Also, compound mutations (doubles and triple) have a 

greater number of CSC or enriched cells compared to single mutants or WT mice.  

Although there is some recovery in organoid forming efficiency with increasing 

mutations, the growth conditions for tumour organoids is suboptimal and inferior to that 

of WT mice.   

The difficulty experienced here with tumour organoid growth has been seen by others 

(Sachs et al. 2014).  The reasons for this are unclear. The most likely explanation is due 

to suboptimal growth conditions.  Although the media used in this thesis contained many 

growth factors, future experiments could use additional compounds such as R-Spondin-

1 and Noggin, which have proved important in more recent studies in human prostate 

organoids (Gao et al. 2014).  The microenvironment provided by Matrigel may also not 

provide the necessary support for tumour organoids to form efficiently and permit 

differentiation.  If further optimisation is successful then PCa organoids could be used for 

drug screens and used in mechanistic studies of therapeutic response and resistance in 

PCa.  Furthermore, primary human PCa organoids might be suitable for storing in a 

cryopreserved organoid library, and could be used for manufacturing targeted drugs.  The 

main limitations of this technique that could prevent its widespread use are the duration 

of each experiment (often over 12 hours) and the cost, as experienced in this thesis.  

Attempts were made to improve these however these technical challenges remain.   

The assay used here enriches for basal–CSC. There remains some doubt as to the origin 

of the CSC; whether in the basal or luminal cell compartment, or whether they originate 

from both lineages. Although, recombination of the targetted genes was evident in both 

basal and luminal cells using the Probasin promoter in the mouse, to explore the notion 

of multiple CSC or cells of origin, basal and luminal specifc promoters could be used.  

This theory could also explain the  mutli-focal and heterogenous nature of PCa.   

http://www.focus4trial.org/
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