
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/98 1 4 7/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

P uc h e,  Julio, Pon t e  Blanco, Borja,  Cos t a s ,  José,  Pino,  R a úl  a n d  d e  la  F u e n t e,  David

2 0 1 6.  Sys t e mic  a p p ro a c h  to  s u p ply c h ain  m a n a g e m e n t  t h ro u g h  t h e  viable  sys t e m

m o d el  a n d  t h e  t h eo ry of cons t r ain t s .  P ro d uc tion  Pla n nin g  & Con t rol 2 7  (5) , p p .  4 2 1-

4 3 0.  1 0.1 08 0/09 5 3 7 2 8 7.20 1 5.1 1 3 2 3 4 9  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 8 0/09 5 3 7 2 8 7.2 0 1 5.11 3 2 3 4 9  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Systemic Approach to Supply Chain Management through the Viable 

System Model and the Theory of Constraints 

Julio Puche1*, Borja Ponte2, David de la Fuente2, Raúl Pino2, José Costas3 

1Department of Applied Economics, University of Burgos, Faculty of Economics and 

Business. Plaza Infanta Doña Elena s/n, 09001, Burgos, Spain. jcpuche@ubu.es 

2Deparment of Business Administration, University of Oviedo, Polytechnic School of 

Engineering. Campus de Viesques s/n, 33204, Gijón, Spain. {ponteborja, david, 

pino}@uniovi.es 

3Polytechnic Institute of Viana do Castelo, School of Business Sciences of Valença. 

Avenida Miguel Dantas 4939-678, Valença, Portugal. josegual@esce.ipvc.pt 

* Corresponding author 



Systemic Approach to Supply Chain Management through the Viable 

System Model and the Theory of Constraints 

In today’s environment, Supply Chain Management (SCM) takes a key role in 

business strategy. A major challenge is achieving high customer service level 

under a reasonable operating expense and investment. The traditional approach to 

SCM, based on local optimization, is a proven cause of meaningful inefficiencies 

–e.g. the Bullwhip Effect– that obstruct the throughput. The systemic (holistic) 

approach, based on global optimization, has been shown to perform significantly 

better. Nevertheless, it is not widely expanded, since the implementation of an 

efficient solution requires a suitable scheme. Under these circumstances, this 

paper proposes an integrative framework for supply chain collaboration aimed at 

increasing its efficiency. This is based on the combined application of the Beer’s 

Viable System Model (VSM) and the Goldratt’s Theory of Constraints (TOC). 

VSM defines the systemic structure of the supply chain and orchestrates the 

collaboration, while TOC implements the systemic behaviour –i.e. integrate 

processes– and define performance measures. To support this proposal, we detail 

its application to the widely used Beer Game scenario. In addition, we discuss its 

implementation in real supply chains, highlighting the key points that must be 

considered.  

Keywords: supply chain management; systems thinking; viable system model; 

theory of constraints; supply chain collaboration 

 

 

 

 

 

 

 

 



1. Introduction 

The revolution of information and communications technologies, the decrease of 

transportation costs, the geopolitical restructuring that took place as a result of the Cold 

War, and the liberalization of capital markets have drawn a new competitive business 

context marked by its complexity and dynamism. Competition must manage efficiently 

convoluted worldwide networks being able to agilely react to the frequent changes in 

customer requirements. By way of illustration, Figure 1 shows the dramatic increase of 

the international trade of products in the eurozone over the last decade (from 2003 to 

2014, exports and imports grew by 97.57% and 79.74% respectively), even in a 

recessive economic context. In this regard, competition between firms is no longer 

limited to the product itself, but goes much further. For this reason, the concept of 

Supply Chain Management (SCM) has gained strength to the point of having a strategic 

importance for companies, which has encouraged researchers to deepen its study and 

the development of proposals to increase the yield of companies involved.  

 

Figure 1. International trade in the eurozone (in millions of euros). Data from Eurostat. 

 

One of the main challenges regarding SCM is to improve the customer service 

level without capital outlay (CGI Group, 2013). The delivery of products on the right 

time and lowest cost enables a company to differentiate from its counterparts and 

enhances future profitability (Chopra and Meindl, 2007). Given the current complexity 



and dynamism, real supply chains usually exploit the throughput inappropriately, which 

leads to poor service levels. This issue, which can be considered as the problem 

statement of this research work, is especially relevant when lead times are long or the 

product experiences short life cycles (De Treville, Shapiro, and Hameri, 2004). 

Sterman (1989) concluded that large inefficiencies occur within supply chains 

due to the individual adoption of local optima solutions by the various participants. This 

reductionist approach to SCM (the overall strategy is obtained as a sum of individual 

strategies), based on mass production paradigm, leads to increasing storage, shortage, 

labor, obsolescence, and shipping costs through the well-known Bullwhip Effect1. That 

is, this reductionist approach has shown to present several problems in terms of 

throughput management.  

Thus, a premium has been placed on collaboration (Lehoux, D’Amours, and 

Langevin, 2014) as a key source of competitive advantages. This holistic or systemic 

approach –the overall strategy determines the individual strategies– to SCM, has been 

shown to outperform the traditional reductionist alternative –the overall strategy is 

obtained as a sum of individual strategies– (e.g. Disney and Towill, 2003; Kollberg, 

Dahlgaard, and Brehmer, 2006; Costas et al., 2015). However, although the 

improvement in operational and (consequently) financial terms is widely accepted by 

academics and practitioners, supply chain collaboration faces high hurdles, such as the 

menace of opportunistic behaviors (Simatupang, Wright, and Sridharan, 2004), which 

stresses the importance of defining an appropriate framework. 

It should highlight that the recent economic crisis has been understood as a 

consequence of the fact that globalization still has not been able to develop systemic 

                                                 

1 The Bullwhip Effect refers to the amplification of the variability of orders along the supply 

chain. 



dynamic properties to deal with a growing variety of requirements (Schweitzer et al., 

2009). This fact has increased the interest for new approaches to business based on 

holistic paradigms. Hence, supply chains must be underscored as boiling areas for 

innovation. 

The main contribution of this research article is the proposal of a systemic 

approach to SCM, where to take advantage of the benefits derived from collaboration. 

Within the framework proposed by Simatupang and Sridharan (2005), the Theory of 

Constraints (TOC) (Goldratt, 1990) is the mechanism used to improve supply chain 

efficiency, while the Viable System Model (VSM) (Beer, 1979; 1981; 1985) 

orchestrates the implementation of the collaborative solution. 

Our research method has followed guidelines from A3 Thinking (Sobek II et al., 

2011). A3 Thinking provides researchers and practitioners with an efficient way of 

studying and tackling business problems. Its effectiveness has been widely 

demonstrated within the TPS (Toyota Production System) paradigm. This Lean’s tool 

for problem solving allows us to provide a complete structure to implement successful 

moves toward organizational improvement through a deeper understanding of the 

issue. This structure can be observed along this article: (section 1) Problem statement, 

background and setting goals; (section 2) Clarifying the problem after reviewing the 

literature; (section 3) Developing the conceptual model, through the proposal of an 

integrative framework for supply chain collaboration; (section 4) Detailing the 

application of the proposed model on the well-known Beer Game scenario; and (section 

5) Discussing its applicability in real supply chains. 



2. Literature review 

This section reviews the main collaborative approaches to SCM and introduces 

the two philosophies that are combined in this research work. 

2.1 Supply chain collaboration 

Supply chain collaboration can be easily defined as several companies creating 

competitive advantage, and hence obtaining higher profits, by working together in a 

production and distribution system (Simatupang and Sridharan, 2002). From that point 

on, collaboration has been understood in very different ways by researchers and 

managers. In this regard, Simatupang and Sridharan (2005) propose an outstanding 

framework, defined by five features: (1) Information sharing; (2) Collaborative 

performance system; (3) Decision synchronization; (4) Incentive alignment; and (5) 

Integrated processes. This integrative rather than sequential approach (the output of 

each feature acts as an input for the others) is supported by empirical evidence –if some 

of the features are ignored, intrinsic barriers could derail the collaborative process.  

Supply chain integration encompasses the coordination of resources, decisions 

and methods among the different stakeholders and is the skeleton of the overall process. 

Decision synchronization covers devising joint decision-making processes (includes re-

allocating decision rights) with the aim of synchronizing planning and execution levels. 

This includes forecasts, safety stocks, order placement, order delivery, target customer 

service level, and pricing. In this regard, a wide variety of solutions have been proposed 

in the last two decades to improve the performance of the supply chain, such as Vendor 

Managed Inventory (Andel, 1996) and Collaborative Planning, Forecast and 

Replenishment (Ji and Yang, 2005). Moreover, some systemic philosophies like Lean 

Production (Womack and Jones, 1996) proposed methods to manage the production 



flow, e.g. Kanban and CONWIP control –see Takahashi and Nakamura (2002) for a 

comparison, and Jasti and Kodali (2015) for a review of existing Lean SCM 

frameworks. 

Information sharing, the main enabler of collaboration, refers to the access to 

private data of all members, which covers dissemination of demand conditions, 

inventory and order status (and locations), cost-related data, and performance indicators. 

With this goal, the use of information and communications technologies has shown to 

improve supply chain efficiency (Gunasekaran and Ngai, 2004). Measuring this 

efficiency through systemic performance metrics (which must be devised to guide the 

participants to improve overall performance) is another key feature of supply chain 

collaboration. Companies require different types of metrics that span the supply chain 

(Kaplan and Cooper, 1997). For example, Li and O’Brien (1999) use four main criteria 

to measure supply chain efficiency: profit, lead time performance, delivery promptness, 

and waste elimination. Najmi and Makui (2012) propose a conceptual model for 

evaluating supply chain performance that we recommend looking at. 

Lastly, incentive alignment requires to share costs, risks, and benefits among the 

participants. That is, aligning incentives aims to motivate them to act consistent with the 

overall strategy, and hence eliminating the incentives to deviate. Kaplan and Narayanan 

(2001) propose the use of expert systems, activity-based costing, and web-based 

technology to trace, calculate and display the incentive scores. To implement it, the use 

of linear contracts (e.g. pay-for-effort and pay-for-performance schemes) is common. 

2.2 Viable System Model (VSM) 

The VSM (Beer, 1979; 1981; 1985) offers the possibility to scientifically design an 

organization as a system with regulatory, learning and adaptive capabilities necessaries 

to ensure its survival (viability) when facing changes that may occur in its environment 



over time, even though they were not foreseen in its design. To achieve this viability, 

the VSM proposes an invariant systemic structure based on the definition of five 

functions, called Systems One to Five, that are considered necessary and sufficient 

conditions to deal with the environment complexity2 in which the system operates. 

System One represents the operational (autonomous) units managing the 

different production elements. Since conflicts between processes and responsibilities of 

these operational units might appear, System Two –with an essential role in 

coordination– is essential. Controlling the performance level of the operational units is 

assumed by System Three, which is also responsible for defining directives, allocating 

resources and corresponding accountability to each operational unit, as well as 

identifying potential synergies that might arise. Next to System Three, System Three* is 

responsible for performing audit activities to operational units. Since System Three is 

unable to predict the future and recognize potential risks, a structural function is 

required to solve this problem. This function is represented by System Four. Changes in 

the environment are detected and analyzed with regard to the system’s main objectives, 

leading to possible recommendations for action. Finally, System Five formulates the 

principles and goals of the system, playing a key role in preserving its identity. 

Supplementing these five functions, the VSM is supported by instruments for 

unfolding variety both horizontally and vertically. The horizontal unfolding aims to 

balance variety through the design of mechanisms to reduce (attenuators) and amplify 

(amplifiers) it. Thus, each connection (with four components: transmitter, transducer, 

channel, and receiver), which represents communication relationships among the 

functions of the model and between them and the environment, considers variety 

                                                 

2. The complexity is measured by the concept of variety, i.e. the number of possible states or 

behaviour modes that a system can adopt (Ashby, 1956). 



attenuation and amplification mechanisms in both senses (from the environment to 

operations and from operations to management). On the other hand, the vertical 

unfolding supports the recursion of operational units to smaller subsystems. The 

purpose is to reduce the variety faced by each part of the system (complexity reduction). 

Although this socio-cybernetic theory has got increasingly greater recognition 

for their plausibility, Jackson and Flood (1988) criticized: (1) their purely theoretical 

design and abstract nature; (2) the questionable analogy between the human brain and 

other organizations; and (3) their hierarchical arrangement and lack of flexibility. 

Nonetheless, different authors show concrete VSM applications to diagnose or design 

viable organizations in a multitude of sectors (Beer, 1981; Puche Regaliza, 2014; 2015). 

These resulted in the discovery of pathologies and, after their treatment, the VSM led to 

a tangible improvement in such organizations.  

Its systemic and multilevel nature, its ability to handle the dynamic complexity 

enclosed when managing an organization, and its interaction with the environment 

makes us consider the advantages offered by the VSM regarding SCM. In this subject, 

Chronéer and Mirijamdotter (2009) proposed its utilization for shortening a product 

development process by better connecting the information flows and Badillo et al. 

(2015) used VSM to better understand the supply chain of a telecommunications firm. 

2.3 Theory of Constraints (TOC)  

The TOC (Goldratt, 1990), a major innovation in the production field, is a 

management philosophy that views any system as being limited in reaching a higher 

performance level only by its bottleneck. Thus, it aims to achieve breakthrough 



improvements by only focusing on it3. The TOC encompasses three main areas: logical 

thinking, performance measurement, and operations management. 

Its logical thinking focuses on the bottleneck through a continuous improvement 

philosophy (Goldratt, 1992). In order to increase the overall performance, all efforts 

must be concentrated on the system’s constraint –that is, any improvement away from 

the bottleneck means a waste of resources. The cycle is split into five stages: (1) 

Identifying the bottleneck; (2) Deciding how to exploit it; (3) Subordinating everything 

else in the system to the previous decision; (4) Implementing measures to elevate the 

constraint; and (5) Assessing whether the bottleneck has been broken, and re-starting 

the cycle to avoid that inertia limits the system. 

The performance measurement is based on a simple idea: the only purpose of a 

business is to make money now and in the future. To quantify the success in achieving 

this goal, TOC uses three financial indicators: net income (absolute terms), return-on-

investment (relative terms), and cash flow (survival terms). This theory highlights the 

simultaneous consideration of the three –it is not about increasing one at the expense of 

the others. To determine these metrics, the Throughput Accounting (Goldratt, 1994) is 

proposed, which considers three operational indicators: throughput (how much money 

does the system generate?), investment (how much money does the system need to 

generate throughput?), and operating expenses (how much money is required to 

operate?). Unlike the traditional cost accounting (aimed at cost reduction), this 

accounting seeks to maximize the throughput, i.e. to optimize the efficiency of the value 

stream. Thus, it enables managers to analyze the link between process constraints and 

                                                 

3 Unlike Lean Production that shares the effort throughout the whole system. 



financial performance in decision making. Consequently, it allows them to determine 

the real impact of their decisions. 

The logistic function applies the Drum-Buffer-Rope (DBR) method (Goldratt, 

1990), which aims to manage properly the bottleneck through suitable coordination 

(ensuring its steady supply). It is named for its three main components. The drum is a 

system pacemaker and is placed at the node that limits system performance. The other 

nodes follow its beat (production rate) so the drum is protected against variability by the 

buffer, whose size plays a key role (Ye and Han, 2008; Kuo-Jung, Sheng-Hung, and 

Rong-Kwei, 2003) –the full capacity of the bottleneck must be exploited. The rope is 

the release mechanism, which subordinates the entire system (upstream and 

downstream) to the drum. That is, orders must be released according to the buffer time 

before they are due. The planning stage, or DBR configuration, is complemented with 

the monitoring stage, which implies managing the buffer along the different nodes to 

tune the system for peak performance. 

Although TOC was initially oriented to production systems, its application to 

other business areas has been further studied, such as Marketing (Goldratt, 1994) and 

Project Management (Goldratt, 1997). In SCM (Goldratt, Schragenheim, and Ptak, 

2000), the early works deal with managing the system from a single company 

perspective (Cox and Spencer, 1998). Later studies used TOC to promote supply chain 

collaboration. Simatupang, Wright, and Sridharan (2004) provide a conceptual 

framework for using TOC in supply chains. Wu et al. (2010) developed a DBR-based 

replenishment model under capacity constraints. Costas et al. (2015) showed that the 

DBR method induces large operational improvements in the supply chain without any 

collateral damage. According to their practical experience, the TOC Center reports that 



firms adopting TOC typically gain 25-100% of additional output without significant 

increase in expenditure (Mabin and Balderstone, 2003). 

3. Conceptual model: Integrative framework for supply chain collaboration 

The top performer paradigm for production systems is the well-known Lean 

Production. Thus, proposing the Lean implementation seems to be the natural step to 

tackle the problem that consists on closing the gap in terms of throughput in the supply 

chain. Lean is a brilliant systemic philosophy, and we have no doubts in recommending 

it in each supply chain member. Nonetheless, two key points in Lean are focusing on 

the flow of value to customers and, simultaneously, reducing the overall MUDA 

(Lean’s term for waste) in a systematic and continuous way. These points remain 

extremely important in supply chains, as these are multi-agent systems –and this makes 

a difference. 

In our proposal, VSM is used as a framework for system design and diagnosis. 

According to it, when the supply chain is considered as system-in-focus and apply 

recursion to the subsystems (organizations that belong to the supply chain), it becomes 

clear that most of the reported common issues in collaborative supply chains are linked 

to the alignment of System Five (values, culture, principles, rules, and the overall 

policy) for all nodes. Hence, by taking TOC as the general paradigm for the supply 

chain, we strongly attenuate the variety (simplify) such a big issue. The reason is that 

TOC works by putting the system bottleneck in the center of attention for everyone. By 

means of that, the system-in-focus has a natural representative node, which is the one 

where the bottleneck is placed –nonetheless TOC also manages the change of the 

bottleneck. 



Applying TOC across the supply chain, through the DBR method, warranties to 

concentrate all agents to what matters for the system as a whole: the throughput, the 

operational expense, and the investment. These indicators act as a balance scorecard to 

monitor the system. However, the implementation of TOC in supply chains does not 

come without very important challenges. Watson, Blackstone, and Gardiner (2007) can 

be consulted for a review on the evolution of this management philosophy, including 

the problems impeding greater acceptance. Here the Simatupang and Sridharan’s 

schema is introduced.  

The center of this integrative schema underscores the information sharing. Poor 

information sharing is a general problem, but with TOC it becomes more harmful 

because of the fact of applying an inventory managed policy as a need to manage the 

rope –the key artefact used to manage the flow. VSM cares about potential issues of this 

type with System Three*, which is what we propose as an element to ensure that the 

adequate degree of transparency and validity of the information (in terms of availability, 

opportunity, and cost) is surveilled. 

Like Lean, TOC requires the orchestration of all processes, namely core and 

enablers. Core process is anyone that delivers value to customers, while enabler 

processes are focused on providing services inside the system. Hence, the feature 

regarding integrated supply chain processes in Simatupang and Sridharan’s schema 

provide guidelines to address this issue. For core processes, TOC is self-sufficient, but 

not for enablers. Such orchestration is examined at the light of VSM. System Two 

provides the context to keep at the lowest possible place in the organization the 

everyday decisions to keep the system running smoothly.  

Every participant takes many decisions that have an impact across the whole 

supply chain. For instance, launching promotions may need most of the times 



coordination, approvals, and other activities that must be properly synchronized. Such 

decision-making with the focus on the whole system is shaped using Systems Three, 

Four and Five (the meta-system) in order to early detect poorly structured constructions 

for the decision support system. 

Last but not least, the issue of redistributing the overall economic profit obtained 

by the system must be considered. Implementing TOC means that many decisions with 

strong economic impact must be done according to general rules and, consequently, this 

can (and does) generate conflicts for the agents if the system does not take care about it. 

Incentive alignment and overall performance metrics are a must. 

To sum up our approach, the key component to solve the problem regarding 

throughput in supply chains is TOC, which implements the most that system needs for 

the core processes through the DBR method and the Throughput Accounting. Then, 

once this necessity has been created, the Simatupang and Sridharan’s scheme provides 

an appropriate framework for collaboration based on five blocks. Finally, VSM acts as a 

guideline for initial and permanent regular design and diagnosis about structural 

weaknesses of the system, caring about the five VSM functions as well as the channels 

properties, and making judgements in terms of the laws of requisite variety. Figure 2 

highlights and summarizes the conceptual model proposed. In section 5, we introduce 

some of the challenges that must be taken into account so to prevent major errors. 



 

Figure 2. Collaborative model for SCM based on VSM and TOC.  

4. Hypothetical case study 

The Beer Game is a role-playing exercise aimed at teaching the main SCM 

principles that has been used in countless management courses over the last 50 years. Its 

experimental and counterintuitive nature has proved to be very effective in helping 

managers to understand the causal relationships between decision-making and supply 

chain behavior (Goodwin and Franklin, 1994), showing the generation of large 

inefficiencies (Sterman, 1989). This way, the Beer Game scenario, a single-product 

linear supply chain, composed of four echelons, has been widely used in literature to 

emphasize, investigate and analyze supply chain dynamics (Macdonald, Frommer, and 

Karaesmen, 2013). 

Under these circumstances, the Beer Game supply chain is a suitable fit to show 

how our proposal can be implemented, as it: (1) covers the two main flows of the 

system along a significant length; (2) incorporates all commonly available sources of 

information within supply chains; (3) brings a rich enough sequence of events so that 

the belief-desire-intention of the participants can be analyzed in front of different event 



algebras; and (4) has widely shown in literature the problems of the reductionist 

approach, i.e. that the interaction of individual decisions produces a solution that is far 

from the optimal. 

In this section, we describe the application of our systemic proposal for SCM to the 

Beer Game scenario. We first define the system-in-focus. Subsequently, the five VSM 

functions are designed pointing out where each Simatupang and Sridharan’s feature 

must be considered. 

4.1 System-in-focus 

From a TOC-based perspective, only satisfying customer requirements generates 

throughput for the global supply chain. Therefore, the nodes (factory, wholesaler, 

distributor, retailer, using the common notation in the Beer Game) must be aimed at 

maximizing it. Taking the supply chain itself as system-in-focus, each node represents a 

System One operational unit (see Figure 3). If we enter each one of them, we find a 

structural replica of VSM (structural invariant), i.e. a set of nodes representing the 

operational units. From that point on, the next level of recursion is represented for each 

(system-in-focus) operational unit. Likewise, in the previous level of recursion we find 

all the industry. Each supply chain of it is an operational unit –we focus on one of them. 

We can further define previous (countries, continents, etc.) and next (departments, 

production lines, etc.) levels of recursion (vertical variety unfolding). 
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Figure 3. Systemic approach to SCM. Adapted from Beer (1985). 

The supply chain overall function is threatened by a number of noise sources, 

which can be classified into four kinds4: (1) surrogate noise (geographical point of view, 

                                                 

4 According to the p-diagram classification, a widely-used technique in robust engineering. 



use of space, etc), (2) temporal noise (progressive deterioration, mutations in the 

environment, legislation, etc), (3) system noise (latencies, faults, defects, errors, etc), 

and (4) external noise (demand variability, raw materials, etc). The third kind is related 

to the System One typical functioning, while the others are related to the supply chain 

environment. Note that the last one refers to the upper and lower nodes of the system –

retailer to customers (final product) and factory to suppliers (raw materials). 

4.2 System One 

Once reviewed the perspective of taking as system-in-focus the operational nodes, 

the systemic behaviour must be shaped according to TOC. The bottom right of Figure 3 

displays the four operational elements representing the four supply chain nodes. Each 

one is composed of: (1) a management unit (square shape); (2) operations (circular 

shape) responsible for interacting with the environment to offer their products and 

services (left amoeba); and (3) a system of local coordination (triangular shape).  

Since TOC is based on managing the supply chain through its bottleneck, the first 

step is to detect it. Where is the bottleneck in a supply chain? It is not a static but a 

continuous question. The factory could be the bottleneck if its production rate cannot 

cover customer demand. Intermediate echelons could be bottlenecks if their transport or 

storage capacities significantly limit the customer service level. Nonetheless, the supply 

chain bottleneck tends to be related to customer demand (Youngman, 2009). In order to 

maximize the flow, lost sales in the retailer must be minimized. Therefore, following 

the DBR method, the drum should be placed on the retailer, see figure 3. Nonetheless, 

its allocation could be displaced to other node over time.  

In a supply chain, there are two main flows: the material flow (downstream product 

shipping) and the information flow (to monitor and control the system, and to 

coordinate actors for decision-making; e.g. upstream flow of orders and downstream 



flow of shipping notes). These flows are represented by the different connections 

between nodes, between them and the environment, between them and the VSM 

functions, between functions, and between functions and the environment. Each 

connection, simplified in Figure 3, represents an information or material exchange in 

both senses, serving also as variety amplifiers or attenuators (horizontal unfolding). The 

Simatupang and Sridharan’s feature related to information sharing through information 

and communication technologies is allocated in this point. Also, it can be extended to 

all other connections in the VSM.  

4.3 System Two 

In the upper right area of Figure 3, a triangle representing the global System Two can 

be observed. This is responsible for the coordination of the four operational elements 

through its interaction with their locals Systems Two. When the demand arrives at the 

system, the drum makes signals to the rest of operational units or supply chain nodes. 

They remain subordinated to the drum through a rope, so that the customer demand 

estimation is linked directly to the factory. Each node calculates the length of its rope 

until the drum position and orders material movements on the basis of its buffer 

downstream until reaching the bottleneck. The drum node issues orders directly to the 

factory. The buffer management consists of moving the flow so that arrivals occur in 

time in the bottleneck5. The buffer represents the material release duration while the 

rope corresponds to the release synchronization6. 

                                                 

5. Instead of a traditional safety stock based on material quantities, TOC-based buffers depends 

upon the lead time. 

6. To deepen into TOC implementation, the exceptional guide developed by Youngman (2009) 

is highly recommended. 



As mentioned, the factory uses customer demand (time slot defined by rope, which is 

the time slot to protect) to decide the production orders that must be placed in the 

channel. Manufacturing time is equal to the shipping lead time in the remaining levels. 

Subsequently, each node except the retailer (since there are no downstream nodes) 

manages the buffer, which represents both time and material flow. Managing it means 

to compensate the downstream dissipated flow after shipment in each slot. Orders are 

dosed in the buffer and, consequently, are dissipative. They have not lead time, since 

each node decides how much to dose subordinate to the bottleneck. In addition, 

backorders are not generated as the new dose also obey the bottleneck. The DBR 

method applied to the Beer Game scenario is schematically shown in Figure 4. 

Although the usual case is to place the bottleneck on the retailer, we have placed it on 

the distributor with the aim of illustrating a more complex example, where to observe 

two ropes and two buffers. It should be clarified that to plot the graph, we have 

considered the lead time to be 3 time units, hence the control point buffer is 9 time units 

and the shipping buffer is 3 time units. 
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Figure 4. DBR method applied to the Beer Game supply chain. Adapted from Youngman (2009). 

 

As previously mentioned, System One is represented by nodes that compose the 

supply chain, one of which is the drum. In System One, one part of the buffer can be 

observed, namely the squiggly lines that link supply chain nodes and that represent the 

material flow among them. The rest of the buffer is represented by System Two, which 

enables the coordination between all operational units. Regarding Simatupang and 

Sridharan’s framework, the buffer (from the integrated supply chain processes feature) 

is allocated on these two points, while decision synchronization is located on the last 

point, see Figure 3. Synchronization mechanisms, as those mentioned in section 3, must 

be used to force the nodes follow the downstream material flow and upstream orders 

flow sequences. Thus, purchase orders, sales orders and backorders of the all different 

nodes are coordinated. 

4.4 System Three 

In Figure 3, System Three is identified in a square next to global System Two. 

The rope is represented by System Three. It takes care of finding synergies between 

nodes, assigning appropriate resources to each one, accountability of using these 

resources (agreement contract), and transmitting the system-in-focus rules to each node. 

The incentive alignment feature (from Simatupang and Sridharan’s scheme), which can 

be implemented through linear contracts, is allocated on this point, see Figure 3. System 

Three* (inverted triangle) allows managers to audit the nodes performance without 

relying on the information they sent through System Two and central channels 

connecting with System Three (which forms the information flow). To deploy System 



Three*, audits are carried out, which enables monitoring and makes the information 

(shared through the overall framework) reliable. 

In this point, the collaborative performance system is allocated, see Figure 3. We 

propose its implementation through the Throughput Accounting that is based on three 

main operational indicators. Firstly, the throughput expresses the rate at which money is 

generated, and is obtained through the difference between the revenue (sales at the 

retailer) and variable costs related to purchases (raw materials at the factory). Note that 

internal sources damage the throughput, e.g. defective products. Secondly, the operating 

expense refers to all that costs spent in turning inventory into throughput. It is the sum 

of storage, transport, labor and order costs. It should be highlighted that system thinking 

requires considering only overall rather than local (per echelon) indicators. Hence in the 

holistic approach, it would have no sense to consider (the common in the Beer Game) 

backlog costs among the different participants, as it is not money entering or leaving the 

system. Thirdly, the inventory is calculated by estimating the economical value of the 

products that are inventory in the system, both on-hand (net stock) and on-order (in 

transport), as well as all other invested money, e.g. equipment, machinery, and facilities. 

Through the concept of “cost bridge”, the improvement in the aforementioned 

metrics leads to an increase in the financial indicators, which can be easily obtained. 

The net profit is the difference between throughput and operating expense. The cash 

flow considers, besides the above difference, the change of investment in the time 

horizon to analysis. The return-on-investment is the ratio of the net profit to the 

inventory. Figure 5 outlines the implementation of the Throughput Accounting in the 

Beer Game scenario. By means of this collaborative accounting, we aim to quantify the 

impact of the decisions, through analyzing the relationship between process constraints 

and financial performance in decision making. We think the Throughput Accounting 



proposes a suitable structure where to tackle the problem of exploiting throughput 

within supply chains. 

 

 

 

 

 

 

 

 

Figure 5. Implementation of the Throughput Accounting within the Beer Game supply chain. Adapted 

from Youngman (2009). 

4.5 System Four 

In Figure 3, System Four is represented by a square shape just above System Three. 

In addition, it can be observed the interaction between System Four and the 

environment (left amoeba), allowing its inspection. The arrows between System Three 

and System Four enable exchanging information on what is happening in the 

organization and in the environment now and what will happen in the future. This last 

interaction is of special importance since, on the one hand, System Three adapts the 

organization based on the indications identified by System Four and, on the other hand, 

System Four inspects the environment based on what the organization is currently 

doing. System Four is responsible for preparing the supply chain against the possible 

changes that may arise in the future (prediction), providing the whole system with the 

necessary adaptability to maintain its viability over time. In this systemic approach, 
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System Four is more relevant than in a reductionist approach in order to try to eliminate 

redundancies and minimize local Systems Four in favour of promoting the need for 

monitoring the environment of the supply chain as a whole. In addition, the bottleneck 

should acquire special importance, which can be manifested in managing demand and 

markets development of the supply chain and its competitors. 

4.6 System Five 

Finally, System Five can be identified in Figure 3 by a square shape above System 

Four. It is connected with the interaction between System Three and System Four 

interaction, which allows practitioners to solve the problems encountered when System 

Three and System Four do not agree on the basis of the principles defined by System 

Five. In addition, Figure 3 highlights the algedonic channel that connects directly (and 

unidirectionally) the operational elements with System Five, allowing them to alert 

System Five in case of serious risk. System Five defines the philosophy to be followed 

by the overall supply chain, which according to TOC principles is to make money now 

and in the future. In this case, the need for transparency of information (Simatupang and 

Sridharan’s framework for application of TOC) and the enforcement of the Goldratt’s 

principles as management principles for all nodes (everything is subordinated to the 

bottleneck) must be highlighted as key points.  

5. Implementation in real supply chains: discussion and future work 

One of the main challenges facing supply chains currently is to improve efficiency 

by increasing simultaneously the net profit, the return-on-investment and the cash flow. 

In other words, the throughput must be appropriately exploited along the system. 

Supply chain collaboration has shown to be effective to deal with this issue. 



Nonetheless, this systemic approach is not totally widespread within real supply chains, 

as some high barriers emerge. 

Supply chain participants must understand that the implementation of compelling 

solutions based on collaboration is a complex process that requires an appropriate 

scheme, such as the one proposed by Simatupang and Sridharan (2005). Based on this, 

we propose an integrative framework to achieve an holistic SCM. The DBR method, 

from Goldratt’s TOC, is used to integrate processes –and hence to improve supply chain 

efficiency, measured through the systemic Throughput Accounting. The VSM also 

plays a crucial role in the overall process, as it orchestrates the framework so to define 

the systemic structure of the supply chain. In this reciprocal approach, the interaction of 

different connecting features of collaboration is being addressed. 

To support this proposal, we detail its application to the hypothetical and widely 

used Beer Game scenario, although it can be easily adapted to other supply chain 

topologies. This case study aims at providing managers with insight to evolve from a 

reductionist approach, where the global strategy is obtained as the sum of individual 

strategies, to a holistic approach, where the individual strategies arise from the global 

strategy. 

Concerning the application of this framework in real supply chains, the main 

catalyst is the overall improvement potential for the whole group of supply chain 

participants induced by TOC. Mabin and Balderstone (2003) reviewed several TOC 

applications in practice and calculated an average increase in the throughput by 63% 

without a significant increase in operational expense. On the other hand, the major 

hurdle to overcome is the dilemma of the predatory relationships among supply chain 

agents, since they are not expected to be in conflict in this new paradigm, but to behave 

as powerful partners –i.e. their incentives to deviate must be completely removed. 



According to the personal experience of the authors of this article, in order to 

implement the proposed framework, one relevant opportunity to capture is the central 

purchasing unit. If a central purchasing unit does exist in the supply chain, it can 

develop towards a kind of headquarter to host the VSM System Five, System Four, and 

System Three* –and will also play a big role in System Two. 

System Five, and its recursion to every node, can be fostered by a central unit by 

developing task force encounters and other group techniques, where the goodwill of the 

supply chain is worked by groups and activities. In addition, rules derived from the 

TOC philosophy can be established so to reinforce the vision of the whole system and 

the way members are expected and required to contribute in specific manners. 

System Four will take a much more effective instantiation from the supply chain as 

a whole rather than the intelligence generated by each node. The reason is made evident 

at the light of the VSM; once the system-in-focus is the whole supply chain a new 

SWOT analysis7 starts. Thereby, the horizontal unfolding of variety enters to work, and 

generates huge value to the supply chain (applying the Forces of Porter, the Delta Hax 

analysis, etc). Actually, in supply chains in which there is a “lion”, this function is 

usually taken by this node, who forces the others to follow some roadmap; if the “lion” 

do not convince, activity is deployed by huge effort and energy rather than smoothly. 

System Three* takes place by Lean’s genchi genbutsu, i.e. going to the place and 

observe critically. Cross visits, blitz events (activities lasting a few consecutive days to 

produce a tangible alteration, generally deploying best demonstrated practices outside) 

and other activities are placed by the central unit after discussion to achieve nemawashi 

(i.e. consensus obtained by applying a scientist schema) in order to fuel continuous 

                                                 

7 SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis: a tool in risk analysis and 

business strategy. 



improvement to raise common standards shared in the system, namely to protect the 

image that the supply chain projects to the environ (customers, public, suppliers, etc). 

Regarding possible extensions of this research work, some areas require further 

investigation in the VSM application in supply chains, e.g. to detail how to shape all 

VSM components (functions, different recursion levels, etc) and variety amplifiers and 

attenuators. Moreover, we would like to research why the systemic approach is not 

widely used yet, being extensively verified that this mature theory outperforms classical 

approaches. We know that moving each node away from their selfish natural behaviour 

needs some education phases. For this reason, we also aim to focus on the transition 

process: from reductionism to holism in SCM. Nonetheless, and in conclusion, the good 

news is that a mature state for moving towards this direction is available, and as 

previously highlighted the literature brings evidences that expectations for success are 

quite high for most supply chains. 
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