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Abstract: Water policies have evolved enormously since the Rio Earth Summit (1992). These 

changes have led to the strategic importance of Water Demand Management. The aim is to provide 

water where and when it is required using the fewest resources. A key variable in this process is the 

demand forecasting. It is not sufficient to have long term forecasts, as the current context requires the 

continuous availability of reliable hourly predictions. This paper incorporates artificial intelligence to 

the subject, through an agent-based system, whose basis are complex forecasting methods (Box-

Jenkins, Holt-Winters, Multi-Layer Perceptron Networks and Radial Basis Function Networks). The 

prediction system also includes data mining, oriented to the pre and post processing of data and to 

the knowledge discovery, and other agents. Thereby, the system is capable of choosing at every mo-

ment the most appropriate forecast, reaching very low errors. It significantly improves the results of 

the different methods separately. 

Keywords: agent-based architecture; Artificial Neural Networks, Box-Jenkins; data mining; demand 
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1 Introduction 

Water is a basic resource for human life and for the economic growth of any region. The tra-

ditional water management is based on extracting new water resources and making them 

serve human purposes. This way, large amounts of public money have been invested to fi-

nance water projects in order to stimulate the economic development. However, this ap-

proach, which is based on the supply increase, has barely taken into account that water is a 

finite and fragile resource, whose availability depends on the functioning of the hydrological 
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cycle. For this reason, the concept of Water Demand Management has significantly evolved 

over the last years. Especially since the Earth Summit held in Rio de Janeiro (1992), due to 

the pressures generated by the population growth, the urbanization and the industrialization, 

the strategic importance of WDM is understood, as well as its relevance in the efficiency of 

municipal management (Mohamed and Savenije, 2000). Brooks (2006) proposes an opera-

tional definition of WDM with five components: (1) reducing the quantity or quality of wa-

ter required to accomplish a specific task; (2) adjusting the nature of the task so it can be ac-

complished with less water or lower quality water; (3) reducing losses in movement from 

source through use to disposal; (4) shifting time of use to off-peak periods; and (5) increas-

ing the ability of the system to operate during droughts.   

A key aspect in any water management plan is demand forecasting. An accurate forecast can 

minimize the water used to meet demand, but besides it also results in a reduction of the en-

ergy used in the process of catchment, purification and distribution of water and it also pro-

duces a saving in the resources spent on sizing the storage and distribution system. The tra-

ditional approach to water management required only long term forecasts expressed in 

annual demands or even decades (Willsie and Pratt, 1974). They were enough for the design 

of the system (capacity of the tanks, dimension of the pipes and connections between the 

various nodes) and for the development of plans for meeting the demand. Nevertheless, with 

the passing of time, this horizon has become shorter. In fact, for attaining high efficiency in 

the WDM, reliable short-term forecasts are required (Gato et al., 2007). Daily forecasts in-

volve the implementation of supply plans, by setting the system to that effect. The next step 

is hourly water forecasting. According to Herrera et al. (2010), the ready availability of 

hourly predictions of water demand is crucial due to three main reasons: it allows to deter-

mine the optimal regulation and pumping systems to meet the predicted demand, which 

promotes energy efficiency (operative point of view); it allows to combine water sources in 

the most appropriate way to achieve a preset standard in the supply water (quality point of 

view); and it allows to detect failures and network losses through the comparison of the ac-

tual and expected flow (vulnerability point of view). 

The literature on the subject contains several works of short term demand forecasting. The 

first one was written by Maidment et al. (1985), who used statistical models (in particular, 

ARIMA methodology) to express the daily water demand as a function of ambient tempera-

ture and volume of rain. In a later work, the same authors (Maidment and Miaou, 1986) 
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proved its efficiency for nine American cities. Other authors (e.g., Shvarster et al., 1993; An 

et al., 1995) followed this line, using statistical methods and climatic factors in the predic-

tion. Lertpalangsunti et al. (1999) were pioneers in the introduction of artificial intelligence 

(AI) in the study. They developed a complex forecasting system, which integrated fuzzy log-

ic, artificial neural networks (ANNs) and case-based reasoning, which was tested with high 

efficiency to forecast the daily water demand in the city of Regina (Canada). Msiza et al. 

(2007) introduced support vector machines (SVM) in the subject, in order to compare its 

performance with ANNs, using two different structures: Multi - Layer Perceptron (MLP) 

and Radial Basis Function (RBF). They conducted the study on the daily demand of the 

province of Gauteng (South Africa) and the ANNs outperformed the SVM. Herrera et al. 

(2010) further reduced the time horizon and they evaluated six predictive models (ANNs, 

projection pursuit regression, multivariate adaptive regression splines, SVM, random forests 

and a weighted pattern-based models) in forecasting the hourly demand of the city of Valen-

cia (Spain). The authors justify that in this modern environment the ready availability of 

hourly water demand predictions is crucial. Bio-inspired algorithms have also been used in 

other aspects around WDM –e.g. Liu and Lv (2009) used the particle swarm optimization 

algorithm to forecast the residual life of underground pipelines.  

On the one hand, one of the main conclusions of the literature review is that these advanced 

methodologies are proven to give a great performance in the forecasting of short term water 

demand, both daily and hourly. There are not big differences between their results, as the 

choice of the optimal one depends on the characteristics of the study period and its recent 

past. On the other hand, most of the authors use climatic factors in the predictions, as they 

lead to improve the results. However, the just-in-time availability of these climatic factors in 

order to perform the hourly forecasting could be a hurdle difficult to overcome by a real-

time WDM system. Therefore, considering those factors could be a constraint for the im-

plementation. This way, Nasseri et al. (2011) developed a model based on AI techniques 

(genetic algorithms and Kalman filter) with excellent results, taking only in consideration 

data from previous demand. 

Under these circumstances, this paper shows the development of a system for the real-time 

water demand forecasting based on AI techniques. More specifically, we use an agent-based 

architecture to construct the system, whose core are the advanced forecasting agents but it is 

also formed by other agents which carry out other important functions, which will be de-
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scribed next. The system continuously receives values from water hourly demand and it is 

capable of choosing the most reliable forecasting technique at each moment. This way, it 

could be implemented in different scenarios, as it has the ability of adapting to them. So, af-

ter the literature analysis, the idea of this article is to combine different tools in order to ob-

tain a forecasting system with greater accuracy, even without the availability of real-time in-

formation about the climatic factors. The great advantage of using the agent-based 

architecture is that this forecasting system can be integrated into a larger management sys-

tem built under the same principles. 

Our investigation line has been the following: (1) Problem world and problem statement; (2) 

Development of the conceptual model; (3) Implementation of the forecasting methods; (4) 

Construction of the real-time water demand forecasting system; (5) Experimentation and ob-

taining results; and (6) Problem analysis and deriving conclusions. Such work structure is 

spread across this paper, which is divided into four main sections, including this introduc-

tion. Section 2 describes the forecasting system that we have created, with the different 

agents that form it and their purpose, the structure that encompasses all and the relationships 

between them. Section 3 contains the numerical results after testing the system with hourly 

water demand time series and the discussion thereof. Finally, section 4 presents the main 

conclusions that we have obtained based on the stated objectives, as well as the future inves-

tigation lines. 

2 Description of the Real-Time Water Demand Forecasting System 

Figure 1 shows schematically the forecasting system that we have devised and implemented. 

It consists of nine different agents: the Interface Agent, the Storage Agent, the Data Mining 

Agent, the Fitness Agent and the five Forecasting Agents (Naïve Agent, Box-Jenkins Agent, 

Holt-Winters Agent, MLP-NN Agent and RBF-NN Agent). It should be noted that we are 

using forecasting techniques of different nature. The system receives hourly data about the 

water demand from the measurement equipments and shows the real-time forecast to the us-

er, in order to the decision-making process. The agent-based approach also allows its con-

nection to a larger management system. Below, we detail the functionality of each agent, 

and the relationships among them.  
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2.1 Transmission Agents 

The Interface Agent connects the forecasting system with its environment. That is to say, it 

acts as the intermediary between the rest of the agents and the outside with the aim of reach-

ing the homogeneity in the agent-based system. Thus, it works in a double way: (1) it trans-

mits the demands received hourly from the measurement equipment to the data base; and (2) 

it transfer the best forecast at each hour to the outside.  

The Storage Agent manages a database attached to the system that saves hourly the values of 

both actual demands and the forecasts performed by the five agents. Besides, it also saves 

the best forecast performed at every hour. It is necessary to store all this information (not on-

ly the best forecast) because past forecasts will influence in the selection of the best forecast 

in future. Therefore, the Storage Agent is in permanent contact with the Interface Agent and 

the Data Mining Agent to store and move information from the outside to the other forecast-

ing agents (demand flow), and in the opposite direction (forecasting flow). 

The Data Mining Agent carries out the pre processing of the information stored in the data-

base and the post processing of the predictions. On the one hand, this involves extracting the 

last 1020 hourly demands (6 weeks + 12 hours, see section 2.9) from the database. It has 

proven to be a suitable time period, in terms of identifying the seasonality and trend of the 

series. On the other hand, with the aim of performing the neural networks forecasting, it in-

volves the creation of thirteen time series with the demands displaced (displacement from 1 

to 4, from 24 to 28 and from 168 to 172 hours, given the double periodicity of the series, and 

because the other values have not proved to be significant) to find inference rules and try to 

explain each demand based on past data. In addition, the Data Mining Agent is connected 

with the Forecasting Agent, to perform transformations on the variables (e.g., logarithmic, 

differentiation or quantification of non numerical variables) when it is needed.  
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2.2 Forecasting Agents 

These agents are the real core of the real-time water demand forecasting system. We are us-

ing naïve models, classical statistical methods and AI-based techniques, in order to try to 

combine the advantages of each alternative.  

The Naïve Agent performs the demand forecast using a naive method, which estimates the 

hourly demand (D̂t) as the demand in the previous hour (Dt−1), adjusted by the increase (or 

decrease) in the demand in the same time interval of the previous week (Dt−168 − Dt−169), 

by (1). This is a very simplified model –and hence it requires a insignificant calculation 

time– but it offers good performance in regular series, like the one we have. 

𝐷̂𝑡 = 𝑦𝑡 = 𝐷𝑡−1 + (𝐷𝑡−168 − 𝐷𝑡−169) (1) 

The Box–Jenkins Agent performs the forecast using the ARIMA methodology (Box and 

Jenkins, 1970). These models can be expressed by (p, d, q)(P, D, Q)n, where the parameters 

are the orders of autoregression (p, P), differentiation (d, D) and moving average (q, Q). 

Lowercase variables are not seasonal components, while the uppercase ones are seasonal, 

with periodicity n. In our case, n=168. These models consider that the future value of the 

differentiated variable (∆dD̂t) can be expressed as a function of past observations (Dt−i, i ∈[1, n]) and a random error (εt−j, i ∈ [1, q]). It is expressed in (2), where ∆ is the differentia-

tion operator, γ is the constant model, φi are the parameters associated with autoregression, 

and θj are the parameters associated with the moving average. 

∆𝑑𝐷̂𝑡 = 𝑦𝑡 = 𝛾 + ∑ 𝜑𝑖𝑝
𝑖=1 ∆𝑑𝐷𝑡−𝑖 + ∑ 𝜑𝑘𝑛+𝑝𝑃

𝑘=1 ∆𝑑𝐷𝑡−(𝑘𝑛+𝑝) − ∑ 𝜃𝑗𝑞
𝑗=1 𝜀𝑡−𝑗

− ∑ 𝜃𝑚𝑛+𝑞𝑄
𝑚=1 𝜀𝑡−(𝑚𝑛+𝑞) (2) 

The method of obtaining the statistical model (p, d, q)(P, D, Q)n associated with each time 

series is based on the sequential process of: (1) identifying the possible model; (2) parameter 

estimation; and (3) validation. It is repeated until the model is validated through their auto-

correlation functions and until its forecasts are validated by a given error criterion. In our 

case, the Box–Jenkins Agent seeks the model that best fits the input time series, using the 
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following statistics for the comparison of the different proposed models: goodness-of -fit ac-

cording to the criteria of MAPE; residual simple autocorrelation function (ACF); and resid-

ual partial autocorrelation function (PACF). The method of obtaining the model and calcu-

lating the coefficients is described in more detail in Box and Jenkins (1970). 

The Holt–Winters Agent uses the Holt–Winters exponential smoothing method to forecast. 

Its base is a simple exponential smoothing, which express the demand as a weighted average 

between the demand and the forecast of the previous period. Holt (1957) modified this mod-

el so that it can be applied in trended series and Winters (1960) adapted it for series with 

seasonality. There are two main Holt-Winters models, depending of the type of seasonality: 

(1) Multiplicative; and (2) Additive. These models can be mathematically expressed by (3) 

and (4), in the previous order, where yt represents the forecast, Rt−1̅̅ ̅̅ ̅̅  is the estimate of the 

deseasonalized level or overall smoothing in the previous period, Gt−1̅̅ ̅̅ ̅̅  is the estimate of the 

trend or smoothing of the trend factor in the previous period, and St−L̅̅ ̅̅ ̅ is the estimate of the 

seasonal component or smoothing of L (the seasonal index) periods ago. In our case, L=168. 

𝐷̂𝑡 = 𝑦𝑡 = (𝑅𝑡−1̅̅ ̅̅ ̅̅ + 𝐺𝑡−1̅̅ ̅̅ ̅̅ ) ∙ 𝑆𝑡−𝐿̅̅ ̅̅ ̅̅  (3) 

𝐷̂𝑡 = 𝑦𝑡 = 𝑅𝑡−1̅̅ ̅̅ ̅̅ + 𝐺𝑡−1̅̅ ̅̅ ̅̅ + 𝑆𝑡−𝐿̅̅ ̅̅ ̅̅  (4) 

It should be noted that each one of the previous parameters depends on a different smooth-

ing constant. The procedure for the estimates of model parameters is detailed, among others, 

in Kalekar (2004). In our case, the Holt–Winters Agent looks for the model that best fits the 

input time series using the same statistics for the comparison of three alternatives (the multi-

plicative model, the additive model, and the simple seasonal model, where there is no trend) 

as the one used in the Box-Jenkins Agent.  

The MLP–NN Agent and the RBF–NN Agent estimate the hourly demand through an Artifi-

cial Neural Network (ANN) with three levels: an input layer (predictor variables, which are 

obtained by means of the Data Mining Agent), a hidden layer (composed by nodes that, dur-

ing optimization process, attempt to functionally map the model inputs to the model outputs) 

and an output neuron (variable to predict). Figure 2 shows schematically the general struc-

ture of the ANN that we have used. 
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In both cases, the data available for each forecast (1008 hourly water demands) are random-

ly separated into two groups. 70% is oriented to the batch training of the network, by means 

of the back-propagation algorithm. The remaining 30% has been directed for verifying the 

network. We use different stopping criteria (maximum number of steps without reducing er-

ror: 1000; maximum workout time: 1 minute; minimal relative change in training error: 

0.0001; minimal relative change in error rate training: 0.001). The steps for developing the 

ANNs are similar to those detailed in Pino et al. (2008).  

There are various ANN architectures. On the one hand, the MLP–NN Agent focus on the 

Multi-Layer Perceptron (MLP). These are networks that have more than one layer of adap-

tive weights. A MLP has three layers of units taking values in the range 0-1, and each layers 

is nourished with the previous ones. Any number of weighted connections can be used, but 

MLPs with two weighted connections are very much capable of approximation just about 

any functional mapping (Bishop, 1995). The MLP can be mathematically represented by (5), 

where  yt represents the output (forecast), fouter represents de output layer, finner represents 

the input layer transfer function, wxy represents the weights and biases (i ∈ [1,17] refers to 

the input neurons and j ∈ [1, n] refers to the hidden neurons) and (z) represents the z-th layer. 

𝐷̂𝑡 = 𝑦𝑡 = 𝑓𝑜𝑢𝑡𝑒𝑟 [∑ 𝑤1𝑗(2) ∙ 𝑓𝑖𝑛𝑛𝑒𝑟𝑛
𝑗=1 (∑ 𝑤𝑗𝑖(1) ∙ 𝑥𝑖17

𝑖=1 + 𝑤𝑗0(1)) + 𝑤10(2)] (5) 

On the other hand, the RBF-Agent performs the forecast according to the Radial Basis Func-

tion (RBF) Architecture. In the RBF, the activation of the hidden unit is determined by the 

distance between the input vector and the prototype vector, leading to a two stage procedure 

(Bishop, 1995): (1) Determination of the centre of the network using unsupervised methods; 

and (2) Determination of the final-layer weights. Hence, the RBF networks provide an inter-

polation function –called basis functions–, which passes through each and every data point. 

It can be mathematically represented by (6), where yt represents the output (forecast), wxy 
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represents the weights and biases (j ∈ [1, n] refers to the hidden neurons) and φj represents 

the activation function of the output layer.  

𝐷̂𝑡 = 𝑦𝑡 = ∑ 𝑤1𝑗 ∙ 𝜑𝑗𝑛
𝑗=1  (6) 

2.3 Fitness Agent 

The Fitness Agent selects the best forecast at each moment through the comparison of the 

last demands and the forecasts performed by the five Forecasting Agents. It uses the criteri-

on of the minimum MAPE (mean absolute percentage error), introduced by Makridakis 

(1993). After evaluating different options, we have obtained the best results when the MAPE 

is calculated for the last 12 hours, so this agent uses this number for the selection. Figure 3 

synthesises the time horizon of the forecasting process, and the role of the Fitness Agent 

within the whole system. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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3 Numerical Application and Discussion of the Results 

In order to test the forecasting system, we have used a simulated time series with over 

15,000 data points, which represents the hourly water demand in the city of Gijón (a munic-

ipality of 300,000 inhabitants in the north of Spain) during 21 months (years 2009 and 

2010). To obtain it, we have based on the monthly demand of the city, a distribution model 

of hourly water demand for a city in south-eastern Spain (Herrera et al., 2010), and random 

parameters. It should be noted that in this city, 71% of invoiced water is oriented to domes-

tic use, 23% of this water has an industrial use, and the remaining 6% is managed by the city 

council.  

The time series of the hourly water demand is a complex series with a double seasonality. 

On the one hand, it has a daily periodicity, namely every 24 hours the series has a similar 
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structure. There is a sharp decrease from 19h until 02h, when demand stabilizes around a 

daily minimum, until 06h. Then, it grows until 11am, where it sets a first local maximum. 

From there, demand undergoes a slight decline to local minimum at 14h, at which time it 

surges to a second local maximum at 19h. The mentioned times are approximate and vary 

according to the season of the year. On the other hand, there is a weekly periodicity (168 

hours), as the structure is repeated every week, with a significantly lower consumption on 

Saturdays and even more on Sundays. Moreover, the time series does not remain in a con-

stant range, but it exhibits different trends in both mean and variance, throughout the year. 

To illustrate the explanation, figure 4 represents two parts of the time series. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Data of the hourly water demand time series can be divided into three groups: (1) working 

days; (2) weekend; and (3) holidays (and days around them, whose forecast could be crucial-

ly affected by holidays). After several tests, Table 1 presents the numerical results for two 

standard cases of each group. In every test, we stand out the MAPE of the forecast per-

formed by the system in the last column (Forecasting MAPE), which is chosen between the 

various methods and corresponds to the Forecasting Agent with minimizes the MAPE (Fit-

ness MAPE). This Forecasting Agent is stood out in the second column. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

In the forecasting of working days, all methods achieve low forecast errors (between 1.12% 

and 2.56% for the two tests shown). Therefore, all of them are capable of understanding the 

running of the series quite accurately. Even the Naïve Agent, which adopts an oversimplifi-

cation, provides good results given the regular nature of the series. The statistical models of 

Box-Jenkins (ARIMA) and Holt-Winters (exponential smoothing) generally improve the re-

sults. Nevertheless, as expected, the introduction of artificial intelligence in the model, 

through ANNs, causes a greater decrease in the MAPE. The results of the RBF and MLP 
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structures have a similar goodness-of-fit –there is no significant difference in its perfor-

mance. By way of example, Figure 5, which represents the forecasting time period for test I, 

shows what we have explained. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

PLEASE INSERT FIGURE 5 HERE 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 On weekend forecastings, all methods increase substantially the error generated. This is eas-

ily understandable, since the influence of the working days on the model is much higher. 

Statistical models in this case are less robust, as they show high variability in the goodness 

of their results. In some tests, they achieve low forecast errors but in others they are not able 

to accurately grasp the series. The RBF structure in ANNs shows a similar effectiveness. 

However, the MLP–NN Agent offers the best performance, reaching a MAPE less than 3% 

in all cases analyzed. By way of illustration, Figure 6 shows the demand and the forecasts 

performed by the various agents in test III. 

The problems of statistical models are more evident on holidays and days around them. On 

the one hand, the system is not capable of adapting its structure in atypical days, while 

ANNs can manage it (see test V). On the other, the presence of a holiday in the days before 

the forecasting period introduces a distortion in the series model that deviates slightly the 

forecast (see test VI). Therefore, in this last group, the differences between the different 

methodologies are amplified and AI allows improving strongly the forecast. This can be 

shown in Figure 7, which displays the demand and the forecasts performed by the various 

agents in test VI. In holidays, again, the forecasting of ANN with MLP structure is more ro-

bust than the ANN with RBF structure.  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

PLEASE INSERT FIGURES 6 AND 7 HERE 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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4 Conclusions and Next Steps 

This paper presents an application of agent-based architecture in hourly demand forecasting, 

a key aspect in Water Demand Management (WDM). The cores of the system are advanced 

statistical models (ARIMA and Holt-Winters exponential smoothing) and artificial intelli-

gence (AI) techniques, such as Multi-Layer Perceptron (MLP) and Radial Basis Functions 

(RBF) Artificial Neural Networks (ANNs). Tests that have been carried out demonstrate the 

effectiveness of the real-time forecasting system, which selects at each moment the best 

forecast. Obviously, there is no way to ensure that the system always selects the prediction 

that will generate the lower error in future, but tests show that if the forecasting method se-

lected is not optimal, it is closer to the optimum. The goodness-of-fit of each technique de-

pends on the characteristics of the forecasting period, although MLP is the most robust 

method.  

The multi-agent environment draws a very appropriate approach to tackle the problem, as 

the system provides at all times the forecast which it understands as the best. Under these 

circumstances, it allows the addition of new intelligent forecasting tools by means of new 

Forecasting Agents, without varying the rest of the system. In addition, this approach has 

enormous potential in increasing its functionality, because it allows to complete the study by 

adding new agents. This way, this real-time water demand forecasting system will be inte-

grated in a larger system aimed at optimizing the management. 
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Fig. 1 General outline of the real-time water demand forecasting system, with the various agents that form it 

and the relationships among them (two main flows) and with the outside. 
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Fig. 2 General structure of the ANN with its three layers (input layer, hidden layer and output layer). The 17 

predictor variables are: the day and hour of the demand to forecast, a binary variable that differentiates holi-

days and working days, and 14 past values related to the seasonality of the time series (from y(t-1) to y(t-4), 

from y(t-24) to y(t-28), from y(t-168) to y(t-172)).  The number of neurons in the hidden layer depends on the 

time series. The only output neuron is related to the variable to predict, so that it performs the forecast. 
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Fig. 3 The last 12 hours (both the demands and the forecasts of the five agents) are used to determine the best 

forecasting method in each moment, while the previous 1008 hours (only the demands) are used for the train-

ing and validation of the different forecasting methods, in order to choose the most appropriate model in each 

case (except the case of the Naïve Agent, whose functioning is much more simple). 
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Fig. 4 Two extracts from the time series (values in cubic meters / hour). The top graph (time horizon: seven 

weeks) brings evidence of the weekly periodicity and its trend, and the graph below (time horizon: one week) 

shows the daily periodicity of the time series.  
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Fig. 5 Actual demand and various predictions for the forecasting period in test I (values in cubic meters / hour). 

The MLP–NN forecasts is the one provided by the system (Forecasting MAPE 1,14%), but the different 

among the various methodologies are much smaller than in the other cases studied. 
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Fig. 6 Actual demand and various predictions for the forecasting period in test III (values in cubic meters / 

hour). The MLP–NN forecasts is the one provided by the system (Forecasting MAPE 2,95%). 
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Fig. 7 Actual demand and various predictions for the forecasting period in test VI (values in cubic meters / 

hour). The statistical methods have big difficulties to forecast accurately. The MLP–NN forecast is the one 

provided by the system (Forecasting MAPE 2,98%), although the RBF-NN forecast is slightly better. 

 

  



 23 

Table 1 Results of the numerical test. It contains the following five columns: (1) the beginning of the time pe-

riod to predict (previous 1020 data are used by the system to forecast); (2) the forecasting method, by means of 

the Agent which performed the forecast; (3) its main feature chosen by the agent (that is to say, the Holt-

Winters model chosen, the ARIMA Model, and the structure of the ANN); (4) the MAPE calculated by the 

Fitness Agent (12 previous demands) and which determines its selection; and (5) the MAPE obtained in the 

prediction made by each agent. In order to calculate the Forecasting MAPE, we use the following 12 forecasts, 

with the aim of looking for consistency in our results. 

Forecasting Period Forecasting Agent Features Fitness MAPE Forecasting MAPE 

Test I 

Thursday 

May 14, 2009 

04h 

(working day) 

Naive - 1,94% 1,60% 

Holt–Winters Simple seasonal 2,56% 1,17% 

Box–Jenkins (0,1,6)(0,1,1)168 2,26% 1,25% 

MLP–NN 17-8-1 1,27% 1,14% 

RBF–NN 17-10-1 1,48% 1,39% 

Test II 

Wednesday 

Sept. 8, 2010 

16h 

(working day) 

Naive - 1,74% 1,98% 

Holt–Winters Simple seasonal 1,76% 1,45% 

Box–Jenkins (0,1,3)(1,1,0)168 1,87% 2,21% 

MLP–NN 17-9-1 1,40% 1,52% 

RBF–NN 17-10-1 1,12% 1,53% 

Test III 

Sunday 

June 7, 2009 

12h 

(weekend) 

Naive - 3,59% 3,93% 

Holt–Winters Additive 4,34% 3,03% 

Box–Jenkins (0,1,3)(0,1,1)168 3,30% 3,22% 

MLP–NN 17-6-1 2,83% 2,91% 

RBF–NN 17-8-1 4,29% 3,85% 

Test IV 

Friday 

Feb. 5, 2010 

23h 

(weekend) 

Naive - 3,51% 2,50% 

Holt–Winters Multiplicative 3,69% 2,62% 

Box–Jenkins (1,1,5)(0,1,1)168 2,63% 8,04% 

MLP–NN 17-9-1 2,39% 2,48% 

RBF–NN 17-11-1 4,28% 1,82% 

Test V 

Tuesday 

Dec. 8, 2009 

18h 

(holiday) 

Naive - 5,38% 3,19% 

Holt–Winters Simple Seasonal 23,55% 6,09% 

Box–Jenkins (1,1,1)(1,1,0)168 24,44% 7,46% 

MLP–NN 17-4-1 3,74% 2,19% 

RBF–NN 17-8-1 6,20% 1,78% 

Test VI 

Wednesday 

Oct. 13, 2010 

04h 

(after holiday) 

Naive - 4,37% 3,22% 

Holt–Winters Additive 5,86% 8,65% 

Box–Jenkins (2,1,12)(0,1,1)168 8,04% 11,48% 

MLP–NN 17-11-1 2,98% 2,03% 

RBF–NN 17-7-1 3,79% 2,00% 

 

 

 


