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Abstract

Even in a deterministic setting, nonlinearities can yield unexpected dynamic behaviours in a

production and inventory control system, such as sustained oscillations or limit cycles. Describing

function in combination with simulation is used to analyse the e↵ect of discontinuous nonlinearities

on the system responses. Utilising a nonlinear production and inventory control model, we inves-

tigate the occurrence of limit cycles and propose a technique to predict their amplitude, frequency

and stability and to control such oscillations. Findings suggest that, even for an autonomous pro-

duction and inventory control system, limit cycles do occur and this periodic behaviour occurs due

to non-negativity constraint in the ordering rule. Moreover, we demonstrate the potential of the

describing function method to provide insight into the impact of system constraints and therefore

facilitate a more e↵ective system design. This paper fills a gap in the literature on nonlinear supply

chain dynamics by expanding and complementing the sparse recent research in this area. Most

previous studies have either focused on linear mathematical models or relied on simulation, which

greatly limit the relevancy and/or rigour of the published results.

Keywords: Inventory; nonlinear supply chain dynamics; describing function; rogue seasonality;

limit cycle

1. Introduction

System dynamics play a critical role in supply chain performance. These dynamics are

normally driven by the application of di↵erent production and inventory control system

policies and are also considered to be a cause of mismatch between customer demand and

supply (Towill et al., 1992; Sterman, 2000; Colicchia et al., 2010; Spiegler et al., 2012).

Examples of such dynamics in supply chains include the bullwhip e↵ect (amplified form of

order information as it propagates upstream) (Lee et al., 1997), rogue seasonality (cyclic
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disturbances endogenously generated) (Thornhill and Naim, 2006; Shukla et al., 2012) and

the ripple e↵ect (impact of a disruption as it ripples through the supply chain network)

(Ivanov et al., 2014b,a). System dynamics intervention has been promoted to identify how

structure and decision policies generate system behaviour and to implement structural and

policy-oriented solutions (Forrester, 1961; Saleh et al., 2010).

In this paper we are concerned with detecting and controlling rogue seasonality, more

specifically limit cycles, which are sustained oscillations induced by nonlinearities. In prac-

tice, rogue seasonality has been evidenced, for instance, in the grocery (Shukla, 2010) and

steel (Thornhill and Naim, 2006) industries, but determining the root causes for such oscilla-

tions is still a challenge. In the steel industry, Thornhill and Naim (2006) used a data-driven

technique to separate rogue seasonality from cyclical disturbances externally generated by

the customer demand. Although they were able to establish that these oscillations were

generated by the internal production planning systems, their technique was unable to find

the root causes. Capital intensive industries, such as steel and chemical, are characterised

by several constraints in their manufacturing process (Thornhill and Naim, 2006), therefore,

these complex structures with nonlinearities could potentially induce oscillations.

The aim of this paper is therefore to propose a methodological framework to investigate

the occurrence of limit cycles, characterised by sustained and periodic oscillations, induced

by nonlinearities in production and inventory control systems, such as limits to capacity or

non-negativities, and to devise a suitable compensation method. As propagated through the

supply chain, oscillations have been associated with increased costs and poor service levels

(Towill and Vecchio, 1994; Disney et al., 2004; Villegas and Smith, 2006) and therefore need

to be properly understood and controlled.

2. Literature review

In the supply chain literature, a plethora of studies have made e↵orts to understand

system dynamics and design production and inventory control systems that reduce demand

amplification (Chen et al., 2000; Dejonckheere et al., 2003; Disney and Towill, 2003; Chen

and Lee, 2012; Wang et al., 2015b) and decrease risk of stock-out (Wang et al., 2015a; Spiegler

et al., 2016b), consequently improving transport and production operations (Bicheno et al.,

2001; Potter and Lalwani, 2008; Juntunen and Juga, 2009; Cannella and Ciancimino, 2010;

2



Spiegler and Naim, 2014) and service and financial performance (Torres and Maltz, 2010;

Ivanov and Sokolov, 2013; Dai et al., 2016).

Among the methodological approaches used to analyse and design production and in-

ventory control systems are statistical inventory control, system dynamics simulation and

control theory (Dejonckheere et al., 2003; Towill et al., 2007). The former approach, al-

though requiring complex mathematics, is concerned with understanding signal statistics of

relatively simple systems in order to find optimum performance solutions for supply chain

costs and service levels. For instance, Hosoda and Disney (2006) analysed a two-echelon

supply chain inventory problem and showed that individual optimum ordering policies do

not necessary yield globally optimal solutions for the overall supply chain. Another example

is Dai et al. (2016) who looked at di↵erent optimum ordering decisions made by the retailer

and manufacturer when given information with di↵erent levels of quality regarding inventory

inaccuracies.

In contrast, system dynamics simulation enabled a complex model to be built from causal

loop diagrams and cause-and-e↵ect relationships to be identified by comparing various graph-

ical outputs of various scenarios. These simulation techniques have been advocated to inves-

tigate complex, high-order, nonlinear supply chain models (Forrester, 1961; Sterman, 2000).

Notable and recent applications of system dynamics simulation to solve production and in-

ventory control problems include the works of Goncalves et al. (2005); Ali and Deif (2016).

The former make use of simulation to analyse the complex hybrid push-pull production sys-

tem of Intel, while Ali and Deif (2016) proposes a novel integrated metric to measure the

degree of leanness of a dynamic manufacturing model. On the other hand, when analysing

simpler models linear control theory is recommended to capture the dynamics of the system’s

responses through analytical tools, such as signal flow diagrams, block diagram manipula-

tion and simplification, Laplace/z-transforms and transfer function analysis, “hard system”

control laws and frequency response plots. Examples of linear control theory application in

production and inventory control can be found in Towill (1982); John et al. (1994); Disney

et al. (2004); Zhou et al. (2010). Despite providing a more rigorous and comprehensive

understanding of the system’s behaviour, linear control theory has been criticised for its lim-

ited applicability (Spiegler et al., 2012; Wang et al., 2014) since it disregards the existence

of nonlinearities. In supply chains, nonlinearities can naturally occur through the existence
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of physical and economic constraints (Spiegler et al., 2016a) and should not be disregarded

due to the unexpected behaviour they may generate in the system (Forrester, 1961).

In order to overcome the exhausting and challenging task of simulating complex models

without preliminary analysis and to recognise the e↵ects of nonlinear dynamics previously

neglected by traditional control theorists, recent articles have demonstrated the benefit of

applying modern or nonlinear control theory for production and inventory control design

(Wang and Disney, 2012; Wang et al., 2014, 2015b; Spiegler et al., 2016a,b). By conducting

a thorough literature review on nonlinear system dynamics, Spiegler et al. (2016a) sug-

gested appropriate nonlinear control theory methods for di↵erent types of nonlinearities,

such as continuous or discontinuous, single- or multi-valued. They explored di↵erent non-

linear control structures by using the often cited Forrester production-distribution model as

a benchmark supply chain system and provided a systematic method for the rigorous anal-

ysis and design of nonlinear supply chain dynamics models. Wang and Disney (2012) and

Wang et al. (2014) used graphical and eigenvalue methods to explore stability boundaries of

a piecewise linear inventory control system and to identify a set of behaviours in the unsta-

ble region, such as periodicity and chaos. When trying to understand nonlinear behaviour

within the system’s stable region, Wang et al. (2015b) applied the describing function tech-

nique to analyse the bullwhip e↵ect under non-negative ordering policies. Similarly, Spiegler

et al. (2016b) used the describing function method to analyse the resilience performance

of a grocery supply chain under non-negative batching constraints in the ordering rule and

backlog situations in the shipment estimation. In both the works of Wang et al. (2015b) and

Spiegler et al. (2016b), the describing function method enabled understanding of the non-

linear impact of di↵erent demand signals, with di↵erent means, amplitudes and frequencies,

on supply chain performance.

In this paper, we expand on the works of Wang et al. (2015b) and Spiegler et al. (2016b)

and follow the recommendations of Spiegler et al. (2016a) on the application of describing

function method to not only understand the impact of di↵erent demand signals passing

through replenishment constraints but also to use it as a design tool to control and avoid

sustained oscillations or limit cycles that are intrinsic to some nonlinear systems and, there-

fore, managing rogue seasonality. We also complement the works of Wang and Disney (2012)

and Wang et al. (2014) whose methods, despite enabling the identification of oscillatory re-
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gions in the production and inventory control system, did not reveal the characteristics of

the limit cycling behaviour. “Although precise knowledge of the waveform of a limit cycle is

usually not mandatory, knowledge of the existence of a limit cycle, as well as its approximate

amplitude and frequency, is a prerequisite to good system design” (Gelb and Velde, 1968).

3. Model formulation: Nonlinear production and inventory control model

The order-up-to (OUT) policy is a popular production and inventory control model. By

reviewing the system’s inventory position every period, an order is placed to bring the inven-

tory position ‘up-to’ a target level. We chose to analyse the Automatic Pipeline Inventory

and Order Based Production Control System (APIOBPCS) (John et al., 1994), which is

very similar to the classical discrete OUT system (Disney and Towill, 2002). This system

takes into account a demand forecasting method, production and distribution lead-times,

an inventory feedback loop, a work in process (WIP) feedback loop and target inventory

levels. This model and its variants have been well-acknowledged in the production control

and supply chain literature (Cannella et al., 2008; Aggelogiannaki et al., 2008; Cannella and

Ciancimino, 2010; Eshlaghy and Razavi, 2011; Georgiadis and Michaloudis, 2012)

Figure 1 illustrates the nonlinear block diagram representation of the APIOBPCS. Previ-

ous authors have used nonlinear forms of the APIOBPCS in order to make this model more

representative of a real production and inventory control system (Shukla et al., 2009; Wang

and Disney, 2012; Spiegler et al., 2012; Wang et al., 2014). By inserting CLIP functions (
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to avoid order rates reaching negative values (also referred to as forbidden return constraint)

and shipments being made without any on-hand inventory, the model in Figure 1 has been

used to replicate the Beer Game (Spiegler and Naim, 2014). Other OUT systems that con-

sider some of these nonlinearities include Laugesen and Mosekilde (2006); Mosekilde and

Laugesen (2007); Wang and Disney (2012); Hwarng and Yuan (2014); Wang et al. (2015b)

More recently, a similar model has been identified in the replenishment system of a grocery

retailer (Spiegler et al., 2016b), but, in addition to the non-negativity constraint, orders were

also batched based on the buying quantities and truckload limits.

The production and inventory control model in Figure 1 is characterised by three control

parameters Ta, Ti and Tw that drive the demand, inventory and work in process (WIP)

policies, respectively, and a physical parameter, the actual lead-time Tp. The expected lead-
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Figure 1: Block diagram of the production and inventory control model

time T̄p is assumed to be equal to the actual lead-time. In the demand policy, the value of

the current demand d(t) is exponentially smoothed. Hence, the parameter Ta represents the

time to average demand so that the exponential smoothing constant is ↵ = 1/(1 + Ta/�t),

where �t is the sample time interval.

The inventory and WIP policies are characterised by feedback loops (a feedback of infor-

mation that compares current values of inventory and WIP with their target values). The

inventory control is concerned with the rate (1/Ti) at which a deficit in inventory is recov-

ered. This policy is responsible for reducing the discrepancy between desired inventory di

and actual inventory i(t) or backlog b(t). The pipeline policy considers the actual work in

process w(t) and the time Tw it takes to recover to target levels. While the di is a constant

value, the desired WIP dw(t) is function of T̄p and the average demand d̂(t).

Finally, the order o(t) placed onto the supplier will take into account d̂(t), the errors in i

and w and the non-negativity constraint. The receipt r(t) of material is represented by a first

order lag with a time constant of Tp. The shipment sent ss(t) to the customer will depend

on the desired shipment ds(t) = d(t) + b(t) and the maximum shipment ms(t) = r(t) + i(t).
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4. Describing function method

Since the model in Figure 1 contains discontinuous nonlinearities, the describing function

method can be used to find the quasi-linear representation of these nonlinearities. The first

discontinuity to be analysed is the CLIP function present in the ordering system which

prevents orders from assuming negative values. Then, the constraint in the shipments will

be investigated. This section follows the systematic method proposed by Spiegler et al.

(2016a).

4.1. Non-negativity constraint

Considering the nonlinearity in the ordering system with an input do(t) and an output

o(t). In an open-loop system, the sinusoidal input function

do(t) = Ado.cos(!t) + Bdo, (1)

where ! is the angular frequency, Ado is the amplitude and Bdo is the mean, will produce

an output o(t) of the same ! but with di↵erent amplitude and mean. The output o(t) does

not depend on the past values of do(t), but it varies according to the actual state of do(t).

Hence, o(t) can be represented by the following piecewise linear equation:

o(t) =

8
<

:
do(t), if � � < !t < �

0, if � ⇡ < !t < �� and � < !t < ⇡,
(2)

where � = cos�1(�B
do

A
do

). Equation 2 is asymmetric and can be approximated to

o(t) ⇡ NA
do

.Adocos(!t+ �) +NB
do

.Bdo, (3)

where �, NA
do

and NB
do

are the phase shift, the gains in amplitude and mean, respectively.

In order to determine �, NA
do

and NB
do

, we need to expand the series and determine its

harmonic coe�cients. The Fourier series expansion method is used to represent the output

as a series, such as:

o(t) ⇡ b0 +
1X

k=1

[akcos(k.!t) + bksin(k.!t)], (4)
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where ak, bk and b0 are the Fourier coe�cients.

For the describing function, only the fundamental harmonic is usually used to approx-

imate the periodic series. This is appropriate for symmetric systems because they contain

only odd harmonics; therefore, higher harmonics will be attenuated by the linear dynamics

of the system (Vukic et al., 2003). However, in the case of asymmetric nonlinearities, the

second harmonic also occurs. For this reason, describing function techniques tend to be less

accurate than those applied to symmetrical systems and the complementary use of simula-

tion is recommended (Atherton, 1975). If we approximate the piecewise linear output o(t)

to the first harmonic, we have:

o(t) = b0 + a1cos(!t) + b1sin(!t) = b0 +
q

a21 + b21 cos(!t+ �), (5)

where � = arctan( b1
a1
).

In this way, by comparing Equations 3 and 5, we can define the describing function gains

as:

NA
do

=

p
a21 + b21
Ado

, (6)

NB
do

=
b0
Bdo

. (7)

For single-valued nonlinearities, the coe�cient b1, the imaginary part of the describing

function, will be equal to zero and therefore � will also be zero. By replacing the Fourier

coe�cients in Equations 6 and 7, we find

NA
do

=
� � cos(�).sin(�)

⇡
(8)

NB
do

=
Bdo.⇡ + Ado.(�� + ⇡)cos� + Ado.sin(�)

Bdo.⇡
(9)

Figure 2 illustrates how the coe�cients of the describing function vary as Ado increases for

any Bdo > 0. For values of Ado lower than Bdo, the system behaves as linear and output o(t)

will be equal to the input do(t) corresponding to NA
do

= 1 (Figure 2a). However, when Ado
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increases then only a fraction of this rate will actually be ordered corresponding to NA
do

< 1.

By inspecting Equation 8, we find that as Ado approaches infinity, NA
do

approaches 0.5. So,

the amplitude gain of the describing function can only vary from 0.5 to 1.
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Figure 2: Terms of describing function for the non-negativity constraint

On the other hand, the value of NB
do

rises as Ado increases because the limit value of the

order rate is at its minimum (Figure 2b).

4.2. Shipment constraint

The second nonlinearity in the model is the CLIP function in the shipment system that is

used to avoid any shipments being made to the store if no inventory is available. Hence, the

output ss(t) will be equal to the input ds(t) if ds(t) < ms(t). While in the ordering system

the non-negativity constraint was fixed, the shipment constraint is given by the current

responses of ds(t) and ms(t), which vary over time. Because of that, this nonlinearity is

not only amplitude-dependent but also frequency-dependent. Therefore, there will be one

describing function for each frequency. This complex behaviour makes this nonlinearity

multi-valued, therefore the output ss(t) will experience not only a change in amplitude and

mean, but also a shift in �ds.

MatlabTM and SimulinkTM have been used to automate calculations and find the de-

scribing function gains for a set of amplitudes and frequency. Figure 3 illustrates the input

frequencies and amplitudes for which the system behaves in a linear fashion, which means

that when NA
ds

= 1, �ds = 0. The dark shaded areas indicate that NA
ds

is below 1 and thus
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the system behaves nonlinearly, which is when frequencies are medium-low and amplitudes

are high.
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Figure 3: Terms of describing function for the shipment constraint

5. Limit cycle analysis

One of the e↵ects that nonlinearities can cause is oscillatory behaviour. For an au-

tonomous system, when the state vector returns to one of its previous values, it must neces-

sarily repeat this motion and so the response will keep recurring indefinitely without reaching

a steady state. These oscillations, also known as limit cycles, may occur as the output of

the nonlinearity switches from one state to another. In order to guarantee a robust system

design, these oscillations should be adequately compensated. In this section, the presence or

absence of limit cycles in the production and inventory control model due to the presence of

nonlinearities is investigated with the help of the describing function method. When limit

cycle is predicted, we also estimate its amplitude, frequency and stability so that a suitable

compensation method can be suggested.

5.1. General formulation

Here we present the general formulation for limit cycle analysis as in Gelb and Velde

(1968); Cook (1986) and Towill (1970). The general block diagram for a feedback control

system with a single nonlinearity is shown in Figure 4.

An external reference input r(t) is compared to a signal y(t) and fed into a linear element

with transfer function G(s), generating the input to the nonlinearity u(t). The output of the

nonlinearity f(t) is then transferred through a feedback transfer function H(s) back into the
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loop with a negative feedback. The nonlinear element can be approximated to the describing

function amplitude and mean gains NA and NB, respectively.
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Consider that the reference signal r is constant, so that the system is autonomous. It

is assumed that if a limit cycle occurs, it can be adequately approximated by a sinusoidal

oscillation, such as

u(t) = A.cos(!t) + B, (10)

and correspondingly

f(t) ⇡ NA.Acos(!t+ �) +NB.B

⇡ Re{NA}A.sin(!t) + Im{NA}A.cos(!t) +NB.B. (11)

Hence,

y(t) ⇡ Re{H(j!).NA}A.sin(!t) + Im{H(j!).NA}A.cos(!t) +H(0).NB.B (12)

so that, setting

u(t) = (r � y(t)).G(j!), (13)

when equating coe�cients of corresponding terms, we get

B +G(0).H(0).NB.B = r (14)

A+ Re{G(j!).H(j!).NA}A+ Im{G(j!).H(j!).NA}A = 0. (15)
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Limit cycle will occur if both equations are satisfied. Equation 14 shows the constant term

and is particularly relevant for asymmetric nonlinearities. Equation 15 shows the oscillatory

term. In this way, permanent oscillation will occur in the system for an A 6= 0 and when

1 + Re{G(j!).H(j!).NA}+ Im{G(j!).H(j!).NA} = 0

1 +G(j!).H(j!)NA = 0

G(j!).H(j!)NA = �1 (16)

Hence, the existence of a limit cycle is then predicted if there is an intersection between

the loci, in the complex plan, of G(j!).H(j!) and � 1/N
A

. In other words, oscillations may

occur if the system’s open-loop equation intercepts point -1 on the real axis of the s-plane.

5.2. Predicting occurrence of the limit cycle in the nonlinear APIOBPCS

In order to predict the occurrence of limit we need to firstly obtain the system’s output

transfer functions. By replacing the CLIP functions of Figure 1 with the amplitude gains

NA
do

and NA
ds

in the ordering and shipment rules, respectively, we can easily determine the

following closed-loop transfer functions:

O(s)

D(s)
=

NA
do

.(1 + s.Tp)(sTiTp + Tw + s(Ta + Ti)Tw)

(1 + s.Ta)(sTi(1 + s.Tp)Tw +NA
do

(s.TiTp + Tw))
, (17)

I(s)

D(s)
=

�NA
ds

TiTw(1 + s)(1 + sTa)(1 + sTp) +NA
do

(�sTiTp(NA
ds

� 1
+NA

ds

Ta(1 + s)) + Tw(1 + s(Ta + Ti) +NA
ds

(Ti � sTa � 1)))

(NA
ds

+ s)(1 + s.Ta)(sTi(1 + s.Tp)Tw +NA
do

(s.TiTp + Tw))
, (18)

W (s)

D(s)
=

NA
do

Tp(sTiTp + Tw + s(Ta + Ti)Tw)

(1 + s.Ta)(sTi(1 + s.Tp)Tw +NA
do

(s.TiTp + Tw))
. (19)

Since NA
ds

only a↵ects i(t), we will use the transfer function in Equation 18 to predict

the occurrence of limit cycles that are possibly caused by both nonlinearities. The open-loop

transfer function for i(t) will be designated as I(s) and can be found by transforming the

closed-loop transfer function of Equation 18 into an open-loop form, resulting in:
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I(s) =
⇣
�NA

ds

(1 + s)(1 + sTa)Ti(1 + sTp)Tw +NA
do

(�s(�1 +NA
ds

+NA
ds

(1 + s)Ta)TiTp+

(1 + s(Ta + Ti) +NA
ds

(Ti � 1� sTa))Tw)
⌘�⇣

(NA
ds

+ 2NA
ds

s+ s2)(1 + sTa)TiTw

(1 + sTp) +NA
do

(s(�1 + s+ s2Ta +NA
ds

(2 + Ta + 2sTa))TiTp + ((�1 + 2NA
ds

+ s)

(1 + sTa)� (NA
ds

+ s)Ti)Tw)
⌘
. (20)

By replacing s = j! in Equation 20 and setting it equal to -1, the solution shows that

there may be limit cycles only in the ordering system and this may occur when:

Tw = �NA
do

.Tp. (21)

Since the values of NA
do

vary from 0.5 to 1, sustained oscillations may occur when

�Tp  Tw  �0.5Tp. (22)

Conventionally, theWIP feedback controller (Tw) assumes a positive value range. Nonethe-

less, the impact of negative Tw has been investigated in case of an uninformed and irrational

replenishment rule design (Wang and Disney, 2012; Wang et al., 2014). Moreover, negative

values of Tw have been previously supported for achieving aperiodic responses in a linear

OUT policy system and therefore improving supply chain performance (Disney, 2008). Ac-

cording to Disney (2008), responses are highly damped for Tw < �Tp but changes in the

lead-time could potentially make the system operate within the region described by Equation

22. This, in combination with a nonlinear ordering rule, may lead the system to behave in

a contradictory manner, that is, undamped and oscillatory.

Note that the nonlinearity in the shipment system, represented by the describing function

gain NA(ds), does not seem to cause any limit cycles. For this reason, the following analysis

will only be focused on the nonlinearity in the ordering system.

We still need to investigate the other condition for limit cycles as given by Equation 14.

Firstly, we need to manipulate Equation 17 in order to obtain a more familiar form and

separate the system’s linear frequency-dependent elements from the amplitude-dependent

13



describing function. This results in:

O(s)

D(s)
=

NA
do

( 1
1+s.T

a

+ 1
s.T

i

+ T
p

(1+s.T
a

)T
w

)

1 +NA
do

( 1
s.T

i

(1+s.T
p

) +
1

s.T
w

� 1
s.T

w

(1+s.T
p

))
, (23)

which can then be related to the general form of a feedback transfer function
N

A

do

.G(s)

1+N
A

do

.G(s).H(s) ,

where

G(s) =
Tw + s(TiTp + TaTw + TiTw)

s2TaTiTw + sTiTw

, (24)

H(s) =
(1 + sTa)(sTiTp + Tw)

(1 + s.Tp)(sTiTp + sTaTw + sTiTw + Tw)
. (25)

Hence, the original APIOBPCS in Figure 1 can be re-arranged as the general block

diagram of Figure 4, resulting in Figure 5.
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Figure 5: Simplified block diagram for the ordering rule in the nonlinear APIOBPCS

Now with the block diagram defined in Figure 5, we are able to determine whether

the condition given by Equation 14 is also satisfied since this nonlinearity is asymmetric

(Bdo 6= 0). Following the guidelines in Gelb and Velde (1968, pg. 343), considering that

G(s)H(s) contains open-loop integrators (poles at the origin), we find that another condition

for limit cycling behaviour is that of d 6= 0.

5.3. Predicting amplitude, frequency and stability of limit cycles in the ordering system

In the frequency domain, as G(j!).H(j!) is a complex function of ! and NA
do

is a

function of amplitude Ado, as in Equation 8, the solution of the G(j!).H(j!).NA
do

= �1

gives both the frequency and amplitude of the oscillation. We find that the frequency of the

14



oscillation is therefore predicted to be:

!do =
T 2
w

Tp

p
�Ti.T 3

w

. (26)

For a fixed Tw in relation to Tp, the frequency of oscillation decreases as lead-time length-

ens and as the parameter Ti increases.

Equation 8 and Figure 2 can be used to find Ado. When Tw = �Tp, the describing function

gain NA
do

' 1 and the amplitude will be asymptotically equal to the asymmetric bias Bdo,

which in turn is proportional to the mean of the reference signal d. When Tw = �NA
do

.Tp

for 0.5 < NA
do

< 1, the corresponding amplitude can be determined by Equation 8, or easily

seen in Figure 2. The amplitude of the oscillation increases as Tw changes from �Tp to

�0.5Tp.

Figure 6 illustrates the Nyquist plots for G(s).H(s) and NA
do

with di↵erent values of

the control parameter Tw in relation to a fixed lead-time Tp = 3. The control parameters

Ta and Ti are set as 6 and 3, respectively. Figure 6a illustrates a stable system since there

is no encirclement of the Nyquist point. For the predicted parameter values of Equation

22, limit cycles may occur since the open-loop transfer function G(s).H(s) intersects the

� 1/N
A

function (Figures 6b-6d). For the parameter value in Figure 6e, the system is possibly

unstable due to an encirclement of the Nyquist point.

Simulations were generated in SimulinkTM to crosscheck with the analytical results. The

solver was set to use the Dormand-Prince method, a common integration algorithm for solv-

ing di↵erential equations, and to run for 4000 iterations. Before introducing the exogenous

input, we tested the initial and final steady state conditions of the variables both analytically

through the Initial and Final Value Theorems and via simulation by running it until steady

state is reached. Figure 7 illustrates the order rate responses, do(t) and o(t), corresponding

to the Nyquist diagrams of Figure 6 and given an unit step input demand d = 1. In stable

systems (Figure 7a), when the reference input signal is a constant (step input), the output

signal is a constant in steady-state. However, the figure illustrates that limit cycles do occur

for the estimated parameter values (Figure 7b-7d). We also compare the estimated and

simulated values of !do and Ado. As the non-negativity constraint becomes more e↵ective

and NA
do

decreases, predicted values become less accurate. This can be explained by the

asymmetric nature of this nonlinearity.
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Figure 6: Nyquist plots for the ordering rule in the nonlinear APIOBPCS
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Figure 7: Order rate responses to a constant demand input
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After confirming the existence of limit cycles, we should now determine their stability.

The question of limit cycle stability is posed in terms of its behaviour following amplitude

and/or frequency disturbances. If the limit cycle returns to its original equilibrium state

it will be called stable, whereas if either its amplitude or frequency changes to another

equilibrium state, it will be called unstable. We use Loeb’s criterion (1956) to determine the

stability of the limit cycle found in the ordering system (see Appendix A).

Previously, we determined !do and Ado of the limit cycle and that the following identity

holds:

1 +NA
do

.G(j!do).H(j!do) = 0. (27)

The explicit complex form of this equation can be obtained by expressing the quantities

NA
do

, G(j!) and H(j!) of Equations 8, 24 and 25, respectively, in terms of their real and

imaginary parts and making s = j!, resulting in:

⇡Ti.Tp.Tw.!2 + Tw.� � Tw.cos(�).sin(�) + j(Ti.Tp.!.� � Ti.Tp.!.sin(�).sin(�)� ⇡.Ti.Tw.!) = 0.

(28)

According to Loeb’s criterion (detailedly presented in Appendix A), for the limit cycle

equilibrium condition to be stable it is necessary that

@U

@A

@V

@!
� @U

@!

@V

@A
> 0, (29)

where U and V are the real and imaginary parts of Equation 28, respectively. Replacing

the value of � in Equation 28 and taking the required four partial derivatives at (Ado,!do),

results in

@U

@A

�����
A

do

,!
do

= �
2Bdo

q
1� B2

do

A2
do

Tw

A2
do

,
@V

@!

�����
A

do

,!
do

=
2Bdo

q
1� B2

do

A2
do

p
�TiT 3

w

A2
doTw

,

@U

@!

�����
A

do

,!
do

= �2⇡
p

�TiT 3
w,

@V

@A

�����
A

do

,!
do

=
Bdo

q
1� B2

do

A2
do

TiTp

Ado

� ⇡TiTw + TiTpcos
�1

✓
�Bdo

Ado

◆
.

(30)
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Inserting these values into Equation A.7 reveals, as the requirement for a stable oscilla-

tion, the conditions that Ado > Bdo and that �Tp  Tw  0 must be satisfied. Since no limit

cycle occurs for Ado < Bdo (the system behaves linearly, see Figure 2a) and �0.5Tp  Tw  0

(see Equation 22), all limit cycles resulting from the nonlinear production and inventory

control system are stable. We can crosscheck these results graphically by examining Figure

6 again. In the limit cycle cases (Figures 6b-6d), an increase in the amplitude Ado would cor-

respond to a shift to the left of the � 1/N
A

do

point in the s-plane. With that change, G(s).H(s)

would not encircle the critical point and therefore Ado would revert back to its original state.

Conversely, a negative perturbation in Ado leads to an unstable system configuration which

causes Ado to increase and converge back to its original equilibrium point.

5.4. Linear compensation to control limit cycles

In this section, we explore linear loop compensation techniques to re-design the nonlinear

system under threat of limit cycling behaviour so that steady-state and transient response

requirements are met. We chose the two most established methods: lead/lag and pure

compensations. The method of choice is frequently critically dependent on the exact details

of the linear and nonlinear elements included in the loop (Gelb and Velde, 1968). In hard

systems, the system designer is frequently constrained to place a compensation network at

locations where the feedforward (an anticipatory response to expected changes in demand)

or feedback paths are physically accessible. In our case, this is simply done by inserting an

equation in the ordering rule and we chose to introduce it in the feedforward path before the

nonlinear element, as demonstrated in Figure 8.
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Figure 8: Simplified and compensated block diagram for the ordering rule in the nonlinear
APIOBPCS
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A lead or lag compensation element of transfer function

L1(s) =
�⌧s+ 1

⌧s+ 1
lead network for � > 1, lag network for � < 1 (31)

can be introduced to attenuate signals with high frequencies (relative to 1/�⌧).

Figure 9 illustrates the lead and lag compensation strategies for a fixed time constant,

⌧ = 1, in comparison with the uncompensated system, whose parameter settings correspond

to the ones entered in Figure 7b. The figure depicts the uncompensated loci G(j!).H(j!)

intersecting the � 1/N
A

do

when the phase is -180 degrees and amplitude is Ado ' Bdo. The

frequency of oscillation, !do is marked by a red star in the uncompensated and compensated

models. The amplitude-phase plane indicates that limit cycles will continue to exist for lag

compensations, but their frequencies will be lower and amplitudes higher. Lead compensa-

tions can move the system out of the limit cycling zone, for instance, when � = 1.2 � 2.5.

However, when � values are too large, limit cycles of higher amplitudes and lower frequencies

will occur (see the insert of Figure 9 for a zoomed in view). In Figure 10, we present the

corresponding order rate responses. For the uncompensated order rate response, the reader

can refer back to Figure 7b. For the lag compensation (Figures 10a and 10b), intrinsic os-

cillations persist, but as � increases the amplitude of oscillation decreases and its frequency
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Figure 10: Order rate responses after lead and lag compensation
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increases. Lead compensation can be used to eliminate limit cycles (Figures 10c, 10d and

10e) but its setting should be carefully chosen to not return responses to exhibit oscillatory

behaviour (Figure 10f).

Another compensation method that can be used is the pure gain compensation in which

a linear pure gain k is inserted in the feedforward path just before the nonlinear element,

such as

L2(s) = k higher-than-unit gain for k > 1, lower-than-unit gain k < 1. (32)

The e↵ect of k is simply to raise or lower a frequency response locus on the amplitude-

phase plane. This operation will not a↵ect the response frequency since the nonlinearity in

the ordering system is approximated by a non-phase-shifting describing function. Figure 11

illustrates the amplitude-phase plane for pure gain compensation when values of k are less

than and greater than 1. Limit cycles can be easily eliminated by inserting a lower-than-

unity gain. When using a k value greater than 1, the system will continue to oscillate at the

same frequency !do but at higher amplitude. Figure 12 illustrates the e↵ectiveness of this

compensation method on controlling oscillations in the order rate when k < 1 (Figures 12c

and 12d). As predicted, limit cycles continue to occur for k > 1 with same frequency and

increased amplitude (Figures 12a and 12b).
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Figure 12: Order rate responses after pure gain compensation

6. Discussion and conclusion

This paper proposes a methodological framework that can be used to investigate the

occurrence of sustained oscillations in production and inventory control models due to the

presence of nonlinearities. Using a benchmark model, we demonstrated how the describing

function technique can be used to analytically identify the existence of limit cycles, their

characteristics, such as amplitude, frequency and stability, and consequently to devise a

suitable compensation method to control such oscillations. In our model, two nonlinearities

were investigated but when it comes to limit cycles, only the non-negativity constraint is of

concern for the supply chain designer. Uninformed replenishment policies and some aperiodic

configurations combined with changes in the lead-time can cause the system to have an

23



oscillatory behaviour, which can in turn drive costs up and service levels down. In practice,

an example of uninformed replenishment policy was evidenced by Spiegler et al. (2016b),

who noticed that the replenishment system of a DC in a grocery retailer was set to have

WIP target values equal to zero, causing inventory o↵sets. Although in this example, this

uninformed policy did not cause periodicity in the supply chain system (rogue seasonality),

it contributed to the bullwhip and ripple e↵ect.

The proposed method can be used for investigating the root causes of oscillations in other

nonlinear production and inventory control systems. It enables an understanding of how the

amplitude and frequency of oscillations are a↵ected by di↵erent signals passing through

the nonlinearity. After insights are gained about the e↵ect of the nonlinearity, suitable

compensation methods can be used to avoid and manage limit cycles. In comparison to a

simulation-only approach and using linear control theory, our method enables greater insights

to be gained regarding more realistic production planning and inventory management model.

Several interesting observations and practical implications can be inferred from this study:

1. The describing function method draws attention to the importance of being aware of

the frequency and amplitude of demand signals. The non-negativity constraint in the

ordering rule makes the order rate reach zero more often when demand variability1 is

high, which may skew perceptions of demand even further. Although this is a rather

intuitive finding, we are able to find the percentage of non-zero orders via the describing

function gain given the demand amplitude and mean. Hence, depending on the demand

characteristics, appropriate levelling strategies may be implemented (Section 4.1).

2. Since the nonlinearity in the shipment system is frequency-dependent, we find that

not only will high demand levels (in fact amplitude) trigger this constraint but so too

will medium-low frequency demands, possibly causing more backlogs. Hence, supply

chain managers should create incentives to increase demand frequencies. This strategy

is also supported by Wang et al. (2015b), who found that low ordering frequencies can

increase the bullwhip, and Spiegler et al. (2016b) when looking at the supply chain

resilience of a grocery retailer. Managing demand by encouraging more frequent sales

is industry dependent. For instance, grocery customers normal shopping habits tend to

1
Standard deviation is function of amplitude in sinusoidal waves
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generate high-frequency demands, with peaks concentrated on Fridays and weekends

when customers tend to buy most of the groceries needed for the week (Spiegler et al.,

2016b). However, clothing and toy industries have longer seasonality periods (Wong

et al., 2006), therefore these companies would benefit from demand shaping strategies,

such as new product launch, price management, marketing and advertising. (Section

4.2).

3. The nonlinearity in the shipment system has no impact on the order rate and WIP

(refer to Equations 17 and 19). This is due to the fact that this is a physical, rather

than an information, constraint. Moreover, this nonlinearity does not cause oscilla-

tory behaviour in the system. Hence, the supply chain designer does not have to be

concerned with this capacity limitation when setting parameter values (Section 5.2).

4. The non-negativity nonlinearity can cause limit cycles, which are oscillations intrinsic

to the nonlinear production and inventory control system itself and not imposed by

the demand. This finding is in line with the work of Wang and Disney (2012) and

Wang et al. (2014). However, our framework was able to predict not only when these

oscillations may occur but also their amplitude, frequency and stability. All limit cycles

resulting from the nonlinearity in the ordering rule are stable, which means that they

return to their original equilibrium state after being perturbed and responses will not

become unstable when the system is no longer autonomous (demand is random). As

the nonlinearity becomes more e↵ective, the amplitude and frequency of order rate

oscillations increase and decrease, respectively. This problem may be exacerbated as

this information signal propagates upstream in the supply chain. This information is

vital for the supply chain designer to distinguish between exogenous- and endogenous-

related oscillations and to devise compensation methods when necessary (Section 5.3).

5. We explore the two most common compensation methods to control oscillations. These

compensation techniques can be inserted in to the system to manage and avoid oscil-

lations induced by nonlinearities. We found that lead and lower-than-unit pure gain

compensations are better suited for overcoming limit cycling behaviour in our bench-

mark model. For the pure gain compensation method, the supply chain designer ben-

efits from its damping e↵ect on order rate, therefore decreasing both oscillations and

demand amplification. On the other hand, lead compensations enable adjustment of
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the response time constant, which in turns determines the speed with which the system

can respond to changes in demand (Section 5.4).

Our research serves as a cornerstone for designing optimal control policies and rules in

nonlinear supply chain systems, providing a continuation of recent research on the use of

modern control theory (Wang and Disney, 2012; Wang et al., 2014, 2015b; Spiegler et al.,

2016a,b). The research can be extended further by assessing the impact of other nonlineari-

ties in the ordering rule, such as fixed and variable production capacity, and evaluating how

robust the compensation methods are under changing constraints. This work is limited to

the dynamics of a single-echelon supply chain system, but the proposed framework could

also be applied to analyse nonlinear dynamics of multi-echelons and other nonlinear supply

chain structures beyond informational, such as functional, organisational and financial, to

accomplish multi-structural supply chain management.

An unconventional direction for future research would be the study of deliberately setting

production and inventory control systems to assume limit cycling behaviour and explore filter

theory to level orders of di↵erent customers in a vertical supply chain management network

structure, for example. Since the amplitude and frequency of oscillations in the order rate

can be controlled, the system can be set to produce anti-phase signals to filter responses from

the manufacturer. Towill and Vecchio (1994) had already explored filter theory by varying

the di↵erent echelon dynamics in order to minimise stockholding while maintaining service

levels. Given the risk associated with this research idea, an in-depth robustness analysis

should be undertaken especially under the e↵ect of lead-time disturbances. Moreover, a

combination of compensation networks can be explored to produce robust control designs

that fit supply chain characteristics and strategies.
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Appendix A. Loeb’s criterion for stability determination of limit cycles

Here we present the Loeb’s criterion (Loeb, 1956) in more detail by following the discus-

sion of Gelb and Velde (1968). Previously we have seen that when determining !do and Ado

of an equilibrium limit cycle state, the following identity holds:

1 +NA
do

.G(j!do).H(j!do) = 0. (A.1)

The complex form of A1 can be obtained by expressing the quantities NA
do

, G(j!do) and

H(j!do) in terms of their real and imaginary parts, resulting in:

U(Ado,!do) + jV (Ado,!do), (A.2)

where the definitions of U and V are the real and imaginary parts, respectively. If we allow

small perturbations in the limit cycle amplitude, rate of change in amplitude and frequency

by introducing the following changes in A2:

Ado ! Ado +�A

wdo ! wdo +�w + j�� (A.3)

The perturbation in the rate of change of amplitude has been associated with the fre-

quency term. That is �� = Ȧ/A. Hence, we have

@U

@A
�A+

@U

@!
(�! + j��) + j

@V

@A
�A+ j

@V

@!
(�! + j��) = 0 (A.4)

Satisfying this equation requires that its real and imaginary parts separately disappear.
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Eliminating �! from this set of equations yields the following single relationship
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!2#
��. (A.6)

For a limit cycle to be stable, a positive increment �A must cause a negative ��. Hence,

for the proposed limit cycle equilibrium condition to be stable , it is necessary that

@U

@A

@V

@!
� @U

@!

@V

@A
> 0. (A.7)
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