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Abstract

Shape deformation is one of the fundamental techniques in geometric processing. One

principle of deformation is to preserve the geometric details while distributing the nec-

essary distortions uniformly. To achieve this, state-of-the-art techniques deform shapes

in a locally as-rigid-as-possible (ARAP) manner. Existing ARAP deformation meth-

ods optimize rigid transformations in the 1-ring neighborhoods and maintain the con-

sistency between adjacent pairs of rigid transformations by single overlapping edges.

In this paper, we make one step further and propose to use larger local neighborhoods

to enhance the consistency of adjacent rigid transformations. This is helpful to keep

the geometric details better and distribute the distortions more uniformly. Moreover,

the size of the expanded local neighborhoods provides an intuitive parameter to adjust

physical stiffness. The larger the neighborhood is, the more rigid the material is. Based

on these, we propose a novel rigidity controllable mesh deformation method where

shape rigidity can be flexibly adjusted. The size of the local neighborhoods can be

learned from datasets of deforming objects automatically or specified by the user, and

may vary over the surface to simulate shapes composed of mixed materials. Various

examples are provided to demonstrate the effectiveness of our method.

Keywords: shape deformation, rigidity, neighborhood, geometric modeling, as rigid

as possible

1. Introduction

Shape deformation is a fundamental research area in computer graphics. For char-

acter animation, skeleton based methods are widely used [1, 2]. Such methods however

need the users to take extra effort to build the skeletons. Alternatively, some deforma-

tion methods [3, 4] take cages (simplified geometry enclosing the deforming shapes)

as proxies to deform the shapes. Again efforts are needed to build cages.

Compared with skeleton and cage based deformation methods, surface based de-

formation methods are more intuitive and more flexible to model a variety of shapes,
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Figure 1: The single overlapping edge of two adjacent 1-ring vertex neighborhoods.

with no need to cope with extra proxies. Laplacian deformation methods [5, 6, 7, 8]

have been explored extensively for surface based deformation. The difference between

the Laplacian coordinates of the deformed and the original shapes is minimized to keep

the local geometric details. However, both the positional and rotational constraints for

the deformation handles are required for these methods to work. As shown in [9], posi-

tional and rotational constraints need to be assigned compatibly to avoid artifacts. This

is non-trivial and requires additional effort/expertise from the user.

Another general approach to keep geometric details is to deform shapes locally

rigidly, just as rotating and translating shapes globally rigidly would not change their

geometry. This principle is modeled as an As-Rigid-As-Possible (ARAP) energy which

has been widely used in geometric processing. Based on this energy, Sorkine et al. [10]

present a mesh deformation method. Only positional constraints need to be specified

at deformation handles. The local rotation of the deformed surface can be estimated

automatically during the iterative optimization. This makes interactive modeling much

easier and substantially reduces the effort of modeling tasks. The ARAP deformation

effectively preserves geometric features and distributes distortions uniformly, which

leads to more visually pleasing deformation results than previous methods. The ARAP

deformation formulation has also been integrated into various applications in geome-

try processing. The ARAP deformation method has recently been improved for effi-

ciency [11] and effectiveness [12].

The mechanism of the traditional ARAP deformation [10] is to keep geometric

features by deforming the shape locally rigidly. To distribute distortions uniformly over

surfaces, local transformation consistency is enforced based on 1-ring neighborhoods

of vertices. As shown in Figure 1, the 1-ring neighborhoods of adjacent vertices share

a single edge, so the consistency constraint of neighboring rigid transformations is

relatively weak. As a result, ARAP deformation results behave as if they are made of

soft plastic material.

In this paper, we further explore the ARAP energy. Our key observation is that

expanding local neighborhoods will enlarge overlapping areas between adjacent ver-

tices which helps to enhance the coherence of local rigid transformations. As a result,

the size of local neighborhoods provides a feasible way to control the appearance of

deformation. The larger the size is, the better the local geometric details would be

kept, or in other words, the material will look more rigid. By varying this param-

eter, the appearance of deformation ranges from softer plastic material with smaller
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local neighborhoods to harder material such as iron. The former is elastic and flexible,

whereas the latter is more rigid and harder to bend/stretch. Another advantage of such

enhanced rigid transformation consistency is it reduces the variability of local rigid

transformations, and hence the optimization will converge with fewer iterations.

Real-world objects are often composed of different materials. Our approach allows

such situations to be well simulated by varying the neighborhood sizes across the ob-

jects to indicate desired stiffness. Shapes with different local neighborhood sizes can

be effectively optimized in a unified framework.

The contributions of this work are summarized as follows:

• We propose a rigidity controllable deformation method by using ARAP defor-

mation with adjustable neighborhood sizes. By using a local neighborhood size

suitable to the material, our method produces more natural deformation than

state-of-the-art methods.

• Our unified framework allows varying local neighborhood sizes across the sur-

face, simulating objects made of materials with different stiffness. Realistic de-

formation results are obtained for such cases.

• In addition to user specified neighborhood sizes, we also develop an automatic

method to set neighborhood sizes by analyzing a collection of deforming objects,

such that the neighborhood sizes are adapted to local stiffness.

We review the most related work in Section 2. The detailed algorithm is described

in Section 3. Results and discussions are presented in Section 4. Finally, limitations

and future work are given in Section 5.

2. Related Work

Shape deformation is an active research area in computer graphics with a large

amount of related research work. For complete and detailed surveys please refer

to [13, 14, 15]. In this section, we review the work most related to ours. In order

to simulate realistic shape deformation, the pioneer research work [16, 17] deforms the

shapes according to the physical laws. These physically based methods however are

computationally intensive and the parameters derived from physical rules cannot be

adjusted intuitively.

To generate visually pleasing deformation results, geometric details should be pre-

served after the shape is deformed. One typical approach is to preserve the Laplacian

differential coordinates [5, 6, 7, 8] during the shape deformation. These differential

coordinates based methods need the user to specify compatible positional and rota-

tional constraints for deformation handles. As shown in [18], incompatible constraints

will introduce artifacts. Popa et al. [19] deform the shape with different material prop-

erties based on the deformation gradient method. Again, rotational constraints of the

deformation handles should be assigned. Our method allows materials with different

stiffness to be simulated, while only requiring positional constraints at handles which

makes the modeling procedure much easier. For human body deformations, Murai et

al. [20] propose a sophisticated mathematical model to learn parameters for simulating
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deformation dynamics of soft human tissues. Compared with this work, our work uses

a simpler model and can deal with general shapes.

Another approach to preserving geometric details is to keep deformation rigidly.

Global rigid transformation while being distortion free is not suitable when non-rigid

deformation is involved. Deforming shapes locally rigidly keeps geometric details and

makes less distortion. This concept has been modeled as the As-Rigid-As-Possible

(ARAP) deformation energy, which has been widely used in geometric modeling, such

as shape interpolation [21, 22] and 2D shape manipulation [23]. Sorkine et al. [10]

propose a 3D mesh deformation method by using this ARAP technique. This state-

of-the-art work often deforms shapes with visually pleasing results. Optimizing the

ARAP energy in the L1 norm instead of the traditional L2 norm tends to distribute

the distortions sparsely to fewer places thus keep geometric features better for most

areas [24]. Zohar et al. [12] augment the ARAP energy with a rotation difference term

to improve smoothness of relative rigid rotations (SR-ARAP). Gao et al. [25] blend

several reference shapes with the ARAP energy for data-driven morphing. The ARAP

based shape optimization framework has also been used for shape registration [26] and

parametrization [27]. Chao et al. [28] present a continuous ARAP energy formula-

tion. Based on optimizing ARAP energy in the 2-ring neighborhood, Gao et al. [29]

propose an approach to data-driven shape deformation. For animation of articulated

shape characters, the ARAP energy is integrated into the linear skinning deformation

method [30]. The ARAP energy has also been applied to dynamic shape reconstruc-

tion [31, 32]. Yang et al. [33] consider adjusting deformation stiffness using different

neighborhood sizes. Their method however is based on voxels, which suffers from

high computational costs when the grid is dense, or is unable to represent deformations

at fine scales if the grid is coarse. Our method works directly on meshes which also

avoids the need of converting between meshes and voxels. We also propose a method to

automatically learn adaptive neighborhood sizes. Recent progress has also been made

to speed up the ARAP deformation with GPU acceleration [11] and the subspace tech-

nique [34] for interactive editing. In this paper, we focus on improving the deformation

effectiveness.

3. Algorithm

Similar to traditional ARAP deformation, we assume that an input model is pro-

vided with a set of handles. The user then moves the handles to desired locations and

the algorithm produces a deformed model which satisfies the handle constraints and

keeps geometric details. The fundamental spirit of the ARAP deformation is to de-

form shapes locally rigidly. The traditional ARAP approach interprets the local area

as 1-ring neighborhoods. Adjacent 1-ring neighborhoods share a single common edge.

This edge constrains the consistency or smoothness of rigid rotations between adjacent

transformations. Instead of using 1-ring neighborhoods, we propose to use general

r-ring neighborhoods to define local areas, to allow adjustable stiffness.

3.1. r-ring ARAP energy

Let N(k, r) be the set of vertices and associated edges within the r-ring neighbor-

hood of vertex k, where a vertex j ∈ N(k, r) if and only if there exists a path connect-
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(a) (b)

Figure 2: (a) the 1-ring neighborhood edges of the center vertex, (b) the 2-ring neighborhood edges of the

center vertex.

ing vertices k and j with the number of edges no more than r. An edge (i, j) ∈ N(k, r)
if it can be visited by a path containing up to r edges from the vertex k. Figure 2 illus-

trates 1-ring and 2-ring neighborhoods respectively with edges leading to these vertices

highlighted. The vertex and edge set N(k, r) is obtained efficiently using breadth-first

search from each vertex k. The r-ring energy is defined as follows:

Er(p
′,R) =

n
∑

k=1







∑

(i,j)∈N(k,r)

wij‖(p
′

i − p
′

j)−Rk(pi − pj)‖
2







, (1)

where n is the number of vertices, pi is the vertex position in the input shape, p
′

i is the

vertex position after deformation, and Ri is the rigid rotation to be optimized in each

r-ring neighborhood. p′ = {p′
i} and R = {Ri} represent the deformed positions and

local rotation matrices for all the vertices.

When r = 1, this energy formulation is equivalent to the standard ARAP deforma-

tion [10]. wij is the cotangent weight which helps to make the energy insensitive to

surface discretization [35] and is defined as:

wij =
1

2
(cotαij + cotβij), (2)

where αij and βij are two angles opposite to the edge (i, j).

3.2. Optimization Framework

Given the input model and the handle positions after deformation, we optimize the

local rotation matrix Ri and the deformed position p
′

i for each vertex i iteratively. To

make this tractable, two alternating steps are applied in each iteration. In the global

step, given the rigid rotations Ri, we optimize the vertex positions p
′

i, and in the local

step, we optimize the rigid rotations Ri with the vertex positions p
′

i fixed. To begin
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with, the rigid rotation for each r-ring neighborhood is initialized with the identity

matrix. We now give details for the global and local steps in the following subsections.

3.2.1. Global Step

Given the optimized rigid rotations Ri, the r-ring ARAP energy becomes a quadratic

function w.r.t. the deformed positions. The optimal position for p
′

i can thus be obtained

by solving the linear system ∂Er

∂p
′

i

= 0:

∂Er

∂p
′

i

=
∑

j∈N(i,1)





∑

k:(i,j)∈N(k,r)

2wij

(

(p
′

i − p
′

j)−Rk(pi − pj)
)

+
∑

s:(j,i)∈N(s,r)

−2wji

(

(p
′

j − p
′

i)−Rs(pj − pi)
)



 , (3)

where {k|(i, j) ∈ N(k, r)} is the vertex set containing all the vertices whose r-ring

neighborhood covers the edge (i, j). Since wij = wji,
∂Er

∂p
′

i

can be rewritten as

∑

j∈N(i,1)

2wij



2dij(p
′

i − p
′

j)−
∑

k:(i,j)∈N(k,r)

Rk(pi − pj)



 , (4)

where dij is the number of elements in {k|(i, j) ∈ N(k, r)}. The linear system ∂Er

∂p
′

i

=

0 is defined as

2dij
∑

j∈N(i,1)

wij(p
′

i − p
′

j) =
∑

j∈N(i,1)

wij

∑

k:(i,j)∈N(k,r)

Rk(pi − pj) (5)

This induces a linear system Ap
′

= b. During deformation, assuming H is the

set of handle vertices with user specified positional constraints. For vertex i ∈ H , the

specified handle position is ci. This is equivalent to having a hard constraint p
′

i = ci.

For each i ∈ H , the corresponding ith row and ith column of A will be set to zero

except for the diagonal element where A(i, i) = 1. The ith row of b is set to ci.

A is purely determined by the input model and the set of handle vertices, so it is a

fixed matrix during interactive deformation. Since A is symmetric and semi-definite,

we apply Cholesky decomposition to A in advance and the linear system can be effi-

ciently solved to obtain vertex positions p
′

by back substitution during the optimiza-

tion step. Both the Cholesky decomposition and back substitution are implemented by

MATLAB which has been optimized for parallel computing.

3.2.2. Local Step

Given the optimized vertex positions p
′

, in the local step, the rigid rotation Ri for

each vertex i is optimized as follows. Let Si =
∑

(j,k)∈N(i,r) wkj(pk−pj)(p
′

k−p
′

j)
T .

Similar to [10], the optimal rotation can be obtained explicitly. We first apply singular

value decomposition (SVD) to Si, giving Si = UiΣiV
T
i . The optimized rigid rotation
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Ri can be obtained as ViUi
T . The sign of Ui corresponding to the smallest singular

value should be changed when necessary to make detRi > 0. The rigid rotation

optimization is independent for each r-ring neighborhood, so this optimization can be

straightforwardly accelerated in parallel by OpenMP.

3.2.3. Convergence Condition

In each global/local step, the energy Er is monotonically decreasing, so the opti-

mization always converges to some local minima. With different r, the value of the

optimized energy is also different. To set a consistent termination condition, we nor-

malize the energy difference between the (t− 1)
th

iteration and the tth iteration with

the energy of the (t− 1)
th

iteration. The optimization is terminated if the following

condition is satisfied:

E
(t−1)
r − E

(t)
r

E
(t−1)
r

< γ

For all the examples in this paper, the parameter γ is chosen as 10−3.

3.3. Spatially Varying Rigidity

Real-world objects are often composed of different materials with different stiff-

ness. Our approach allows such objects to be simulated within a unified framework

by using the r-ring ARAP formulation with different r values specified for different

regions. The resulting energy with varying r can be optimized using the same frame-

work as described in Section 3.2.1 and Section 3.2.2. We further developed an intuitive

graphical user interface application to help users specify different neighborhood sizes

for different regions. It provides a variety of tools. The user can select the current r,

and use a paintbrush tool to assign r to surface regions by directly painting on the sur-

face. Alternatively, the user may select a region and use a flood fill (paint bucket) tool

to assign r to the whole selected region. A simple example is shown in Figure 8. The

bar is made with two different materials with the softer part rendered in orange and the

harder part in gray. As shown in the results, enlarging r increases rigidity.

3.4. Learning Spatially Varying r from Deforming Shapes

Instead of specifying r by manual painting, when a set of deforming shapes is avail-

able, we propose an automatic method to assign suitable spatially varying r across the

surface. Intuitively, larger r leads to more rigid deformation, and thus tends to preserve

details better. However, when r is set to be too large, the shape can be locally too rigid,

and thus results in a large deformation error, which can be efficiently estimated using

the As-Rigid-As-Possible energy.

Assume for each vertex k, we set the neighborhood size rk to an integer in the

range of [rmin, rmax]. We further assume that M models are available, and the position

of the ith vertex on the mth model is denoted as pm
i . We take the first model as the

reference model, and for an arbitrary model m (m = 2, 3, . . . ,M ), we can work out

the r-ring ARAP energy for vertex k as follows:
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E(k, r,m) =
∑

(i,j)∈N(k,r)

wij‖(p
m
i − pm

j )−Rk(p
1
i − p1

j )‖
2

We normalize the energy E(k, r,m) to make it scale invariant :

Ẽ(k, r,m) =
1

A(k, r)
E(k, r,m)

where A(k, r) is the sum of the Voronoi areas of all the vertices in N(k, r) on the

reference model.

To measure the overall deformation for the kth vertex, we take the mean Ẽ(k, r,m)
as ARAP energy for vertex k with r-ring neighborhood:

EARAP (k, r) =
1

M − 1

∑

2≤m≤M

Ẽ(k, r,m)

To penalize locally non-rigid deformation, we favor larger r, and hence introduce

the non-rigid energy as:

Enon−rigid(k, r) = rmax − rk

For each vertex k, the neighborhood size rk is obtained by minimizing the energy

combining both terms:

rk = argmin
r

(EARAP (k, r) + ωEnon−rigid(k, r))

ω is a globally adjustable parameter to control the preference of rigidity to deforma-

tion error. Thanks to the normalization, we find a default set of the parameters works

well for a wide range of shapes. We set rmin = 1, rmax = 6 and ω = 0.3 in all our

experiments.

4. Results and Discussions

In this section, we show various deformation results using our approach including a

single neighborhood size and mixed neighborhood sizes, and compare our results with

state-of-the-art deformation methods. The experiments were carried out on a computer

with an Intel i7-2600 CPU and 8GB RAM. We use yellow dots to indicate the defor-

mation handles.

Timing & Convergence. As discussed before, the energy of our deformation ap-

proach is monotonically decreasing so it always converges to some local minima. The

running time of our method includes the off-line step and the on-line step. The off-line

step involves the breadth first search (BFS) to obtain the r-ring neighborhood N(i, r)
for each vertex i, and the predecomposition of the sparse matrix A. These can be per-

formed independent of the handle positions and thus only need to be performed once

during the interactive deformation process. The online step mainly consists of the time
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(a) (b) (c) (d) (e) (f) (g)

Figure 3: Deformation results of different neighborhood sizes (r). (a) the input shape, (b)(d)(f) the results

with 1-ring (equivalent to ARAP deformation [10]), 2-ring and 10-ring neighborhoods, (c)(e)(g) the color

coded energy distribution of (b)(d)(f).

Ring Number BFS (ms) Cholesky (ms) Global (ms) Local (ms) #Iterations Total Time (s)

1-ring 3.65 26.87 22.96 2.20 477 12.03
2-ring 8.91 26.65 24.57 5.45 201 6.06
4-ring 28.68 19.75 39.11 20.43 124 7.43
6-ring 63.47 19.02 69.21 45.95 63 7.34
10-ring 136.09 19.50 129.17 103.48 33 7.70

Table 1: Statistics of the deformation running times for the example in Figure 3.

for global and local optimization. The detailed running times for the deformation ex-

ample in Figure 3 are shown in Table 1. Note that when 1-ring neighborhood is used,

our method reverts to the standard ARAP deformation [10]. The model involved con-

tains 1154 vertices. For the same model with different neighborhood sizes r, the size of

the linear system is the same, which is equal to the number of vertices. As a result, the

running times of Cholesky decomposition, back substitution and SVD decomposition

are similar. The major differences are the times for using the BFS to build r-ring neigh-

borhoods, calculating the matrix Si in the local step and the vector b in the global step.

With the increasing neighborhood size r, the running times for BFS, local optimization

and global optimization are increasing while the time for Cholesky decomposition is

decreasing as shown in Table 1.

With increasing r, the material becomes more rigid. The consistency of adjacent

rigid rotations is enhanced so the flexility of rigid rotations is reduced. Thus fewer iter-

ations are needed to converge. Figure 4 shows how the r-ring ARAP energy converges

over iterations for different neighborhood sizes. Figure 5 further shows the number of

(a) (b) (c)

Figure 4: Energy convergence curves of the example in Figure 3 with (a) 1-ring, (b) 2-ring, (c) 10-ring.

9



Figure 5: The number of iterations (y-axis) needed for convergence w.r.t. the neighbood size r (x-axis),

according to the same convergence condition.

(a) (b) (c) (d) (e) (f)

Figure 6: Deformation results of different neighborhood sizes. (a) the input shape, (b) 1-ring result, (c)

5-ring result, (d) 10-ring result, (e) 15-ring result, (f) 20-ring result.

iterations required for the energy to converge, based on the same convergence condi-

tion (Section 3.2.3). As it takes longer for each iteration and the number of iterations

reduces with increasing r, the running times are fairly consistent from 2-ring to 10-

ring. For the example in Figure 3 the running time is between 6s-7s, which is about

half of the time as traditional ARAP deformation (equivalent to setting r = 1). For

the human shape with 12.5K vertices shown in Figure 9, the online optimization takes

about 10.2s with mixed r-ring neighborhood sizes.

The running time for automatically learning neighborhood sizes from deforming

model dataset is mainly spent on calculating general ARAP energies with different

neighborhood sizes around each vertex, so is proportional to the vertex number of each

model, as well as the total number of models. The running time is about 0.68 ms per

vertex per model, to calculate energies from 1-ring to 6-ring neighborhoods. For the

human shape in Figure 9 with 12.5K vertices and 71 models, the one-off neighborhood

size selection algorithm takes about 10 minutes.

Results with global change of r. Figure 3 demonstrates deformation results with

one end of the shape bent by 180◦. The traditional ARAP deformation method (equiv-

alent to using 1-ring neighborhood) [10] produces self-intersection artifacts. With such
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(a) (b) (c) (d) (e)

Figure 7: Comparison of deformation results. (a) the input shape, (b) ARAP deformation result [10], (c)

SR-ARAP deformation result [12], (d) deformation result of [36], (e) result of our approach with 6-ring

neighborhood.

(a) (b) (c) (d)

Figure 8: Deformation results of different neighborhood sizes. (a) the input shape, (b) mixed 3-ring and

2-ring, (c) mixed 4-ring and 2-ring, (d) mixed 6-ring and 2-ring.

large deformation, the distortions cannot be distributed sufficiently uniformly. With

larger neighborhood sizes, the rigid consistency is strengthened. The distortions are

propagated much more uniformly. We show the deformation results with 2-ring and

10-ring where no self-intersections are generated. To visualize how the energy varies

locally over the surfaces and to account for the difference in absolute energy values,

we show color coding of energy difference between adjacent r-ring neighborhoods.

It can be clearly seen that in the traditional 1-ring case, significant energy change is

concentrated on small regions, and the energy is distributed more uniformly with the

increasing neighborhood size.

Figure 6 shows the deformation results with the same user constraints but changing

neighborhood size r. The bar tends to become more rigid with increasing r. The

neighborhood sizes (1-ring, 5-ring, 10-ring and 15-ring) are chosen to demonstrate

typical controllable rigidity. The 1-ring deformation result looks like elastic plastic

material whereas the 15-ring deformation result looks more like metal. With a single

adjustable parameter, the user can change the material properties freely and intuitively.

We show further example with substantial deformation and compare our results

with state-of-the-art methods. The example is shown in Figure 7, where our method

produces a natural deformation result while state-of-the-art methods produce results

with artifacts, including self-intersections and over blended distortions. These exam-

ples demonstrate that by using a larger neighborhood size, our method can avoid defor-

mation artifacts typically appearing in existing methods which are induced by the local

minimum nature of optimization.

Results with spatially varying neighborhood size r. Our algorithm also allows
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(a) (b) (c) (d) (e) (f)

Figure 9: Comparison of deformation results. (a) the input shape, (b) ARAP deformation result [10], (c)

SR-ARAP deformation result [12], (d) deformation result of [36], (e) r-ring neighborhoods specified by the

user, (f) result of our approach with mixed r-ring neighboorhoods.

(a) (b) (c) (d) (e)

Figure 10: Deformation result comparisons. (a) the input shape, (b) deformation result of [36], (c) result of

ARAP deformation [10], (d) neighborhood sizes r painted by the user, (e) deformation results with mixed

r-ring neighborhoods.

the user to specify the material properties by a paintbrush. As shown in Figure 8, the

thin bar is painted with two different neighborhood sizes. The smaller neighborhood

size r is specified for softer areas where more bending is allowed. With the increasing

r, the middle part of the bar tends to be more rigid.

In Figures 9, 10 and 11, the user specifies the rigidity of shape regions according

to the intrinsic properties. The joint area tends to be much more flexible for articulated

shape deformation. As shown in the results, the shape deformation results with mixed

r are much more natural than the previous state-of-the-art methods [10, 12, 36]. As

highlighted in the yellow rectangles, deformation artifacts including self intersections,

excessive twisting and unnatural distortions occur in the deformation results of pre-

vious methods. In Figure 9, muscle contraction appears in the deformation results of

(a) (b) (c) (d) (e) (f)

Figure 11: Deformation result comparisons. (a) The input shape, (b) SR-ARAP deformation results [12], (c)

deformation result of [36], (d) ARAP deformation results [10],(e) neighborhood sizes r painted by the user,

(f) deformation results with mixed r-ring neighborhoods.
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(a)

(b) (c) (d) (e)

Figure 12: Comparison of deformation with our automatic neighborhood size selection and alternative

methods. (a) color coding illustrating the neighborhood size (1–6 corresponding to blue to red), (b) SR-

ARAP deformation results [12], (c) deformation results of [36], (d) ARAP deformation results [10], (e) our

deformation results using the learned adaptive neighborhood size.

(a) (b) (c) (d) (e) (f)

Figure 13: Deformation result comparisons with neighborhood sizes automatically learned using (a-b) 7,

(c-d) 30 and (e-f) 71 examples from the SCAPE dataset. (a)(c)(e) color coding illustrating the neighborhood

size, (b)(d)(f) corresponding deformation results.

[10, 12, 36] which looks unrealistic. The bending areas of these method in the arm fail

to be located at elbow joints. The deformed human shape of our method is free of these

artifacts. In Figure 10, the bent index finger of [10] looks like elastic plastic without

joints. The thumb of [36] is squashed. With guiding rigidity distribution, the defor-

mation result of our method looks much more natural. Similar unnatural distortions

of [10, 12, 36] also appear in Figure 11. Compared with these methods, our method

makes natural and reasonable deformations.
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(a) (b) (c) (d)

(e) (f)

Figure 14: Comparison of deformation using the horse model with our automatic neighborhood size se-

lection and alternative methods. (a) color coding illustrating the neighborhood size (1–6 corresponding to

blue to red), (b) SR-ARAP deformation results [12], (c) deformation result of [36], (d) ARAP deformation

results [10], (e) our extended 3-ring ARAP deformation results, (f) our deformation results using the learned

adaptive neighborhood size.

Results with automatically selected neighborhood size r. We now show the

results obtained using automatic neighborhood size selection, and compare them with

alternative methods. For this purpose, we need a collection of shapes with the same

connectivity, which many existing datasets satisfy (or can be achieved by consistent

remeshing).

In Figure 12, we show results based on the SCAPE (Shape Completion and Ani-

mation of People) dataset [37] of deforming human body. The automatically selected

neighborhood sizes using the whole dataset of 71 models are illustrated using color-

coding in Figure 12(a). It effectively identifies the rigid parts (such as the head) and

regions which are locally non-rigid (such as joints) and assigns suitable neighborhood

sizes. We show three deformation examples with user-specified handles highlighted.

For all examples, results of our method (Figure 12(e)) with learned adaptive neigh-

borhood sizes preserve details for the rigid parts well while allowing non-rigid parts to

deform flexibly to produce natural deformation results. On the contrary, the three state-

of-the-art methods [10, 12, 36] do not preserve the rigid parts (e.g. legs) and produce

distortions around joints.

To test the influence of the model database on the results, we further use the first 7

and 30 models from the SCAPE dataset. The results are shown in Figure 13. When the

number of examples is small (with only 7 models), it is not sufficient to capture all the

possible non-rigid deformations. As a result, the deformed right leg bones show clear

bending as the joint is not properly recognized. When 30 models are used for learning,

the neighborhood size distribution is very similar to using the full dataset, and the result

looks plausible.

Another example is shown in Figure 14, using the horse dataset from [38]. Existing

state-of-the-art methods [10, 12, 36] have artifacts such as bent legs (c) and smoothed

out joints (b-d). Our method with a fixed neighborhood size of 3 (e) while better
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preserves details than the traditional ARAP, still fails to preserve the shapes of hooves

well enough (as they should be more rigid) and somewhat smoothes out the joints

(as they should be more flexible). Our method with learned adaptive neighbourhood

produces results look natural without such artifacts.

5. Conclusions and Future Work

In this paper, we extend the ARAP deformation model from 1-ring neighborhoods

to general r-ring, which allows a series of natural deformation to be achieved, mim-

icking objects made up with different materials. We further consider using spatially

varying neighborhood sizes that adapt to the local rigidity, either specified manually

using an intuitive paintbrush interface, or learned automatically from a set of deform-

ing shapes. Such adaptive neighborhood sizes help to further improve flexibility and

allow more natural deformations to be achieved.

Our current implementation is purely CPU-based. Although with OpenMP-based

multithreading, it is sufficient for interactive deformation, it still cannot run in real time.

The algorithm can potentially be further optimized by GPGPU computing. The local

optimization of estimating the local rigid rotations Ri and the global optimization of

solving the predecomposed equations can be parallelized by GPGPU.
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[34] Y. Wang, A. Jacobson, J. Barbič, L. Kavan, Linear subspace design for real-time

shape deformation, ACM Transactions on Graphics (TOG) 34 (4).
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