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ABSTRACT

Mucosa-associated invariant T (MAIT) cells contribute to host immune protection against a wide range of potential pathogens
via the recognition of bacterial metabolites presented by the major histocompatibility complex class I-related molecule MR1.
Although bacterial products translocate systemically in human immunodeficiency virus (HIV)-infected individuals and simian
immunodeficiency virus (SIV)-infected Asian macaques, several studies have shown that MAIT cell frequencies actually decrease
in peripheral blood during the course of HIV/SIV disease. However, the mechanisms underlying this proportional decline re-
main unclear. In this study, we characterized the phenotype, activation status, functionality, distribution, and clonotypic struc-
ture of MAIT cell populations in the peripheral blood, liver, mesenteric lymph nodes (MLNs), jejunum, and bronchoalveolar
lavage (BAL) fluid of healthy and SIV-infected rhesus macaques (RMs). Low frequencies of MAIT cells were observed in the pe-
ripheral blood, MLNs, and BAL fluid of SIV-infected RMs. These numerical changes were coupled with increased proliferation
and a highly public T cell receptor alpha (TCR�) repertoire in the MAIT cell compartment without redistribution to other ana-
tomical sites. Collectively, our data show systemically decreased frequencies of MAIT cells likely attributable to enhanced turn-
over in SIV-infected RMs. This process may impair protective immunity against certain opportunistic infections with progres-
sion to AIDS.

IMPORTANCE

The data presented in this study reveal for the first time that MAIT cells are systemically depleted in an AIDS virus infection.
These findings provide a new mechanistic link with our current understanding of HIV/SIV pathogenesis and implicate MAIT
cell depletion in the disease process.

Mucosa-associated invariant T (MAIT) cells are relatively
abundant in humans, comprising 1 to 10% of peripheral

blood T cells (1–3) and up to 45% of liver lymphocytes (4, 5).
Lower frequencies are present in the gastrointestinal (GI) tract,
lung, and mesenteric lymph nodes (MLNs) (2, 6). Classically de-
fined by the expression of a semi-invariant TRAV1-2/TRAJ33
(V�7.2/J�33) T cell receptor alpha (TCR�) chain (7), MAIT cells
recognize microbial vitamin B2 metabolites presented in association
with the major histocompatibility complex class I-related molecule
MR1 (8–12). These conserved features bestow widespread reactivity
against an array of bacterial and fungal species (13, 14), allowing
MAIT cells to act as innate-like antimicrobial guardians at mucosal
sites via the secretion of proinflammatory and tissue-protective cyto-
kines, such as interleukin 17 (IL-17), tumor necrosis factor (TNF),
and gamma interferon (IFN-�) (2, 9).

The abundance of MAIT cells in peripheral blood and mucosal
tissues, combined with their broad reactivity and functional prop-
erties, suggests a key role in primary immune defense and various
pathological states (2, 9). Indeed, multiple reports have described
a loss of circulating MAIT cells in diseases with an inflammatory
component, such as obesity and type II diabetes (15), inflamma-
tory bowel disease (16), tuberculosis (2, 17), and human immu-
nodeficiency virus (HIV) disease (18–20). MAIT cells also appear
to be highly activated under these conditions and may be recruited
to tissue sites of inflammation (15, 16, 19).

Although MAIT cells are neither directly activated nor directly
infected by HIV (20), previous studies have consistently demon-
strated selective depletion of this subset in the peripheral blood of
HIV-infected individuals and simian immunodeficiency virus
(SIV)-infected Asian macaques (18–20). However, the underlying
mechanisms remain unclear. It is established that CD4� T cells are
lost in the GI tract during HIV/SIV infection (21, 22). Moreover,
epithelial integrity is compromised by the associated immunopa-
thology, leading to microbial translocation and systemic immune
activation (23, 24). This process could feasibly drive MAIT cell
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activation, cytokine secretion, and potential migration to sites of
inflammation and/or bacterial/fungal infiltration.

In this study, we conducted a comprehensive analysis of MAIT
cell populations across multiple anatomical sites in healthy and
SIV-infected rhesus macaques (RMs). Our data reveal a systemic
loss of MAIT cells likely attributable to increased turnover in the
setting of SIV infection. These findings provide a mechanistic link
with our current understanding of HIV/SIV pathogenesis and im-
plicate MAIT cell depletion in the disease process.

MATERIALS AND METHODS
Animals. The study cohort comprised 29 SIV-infected RMs (10 chroni-
cally infected with SIVsmE660, 5 chronically infected with SIVsmE543, 8
chronically infected with SIVmac239, and 6 with SIVmac239-associated
simian AIDS [sAIDS]) and 25 SIV-uninfected RMs (Table 1). Peripheral
blood mononuclear cells (PBMCs) were isolated by standard density gra-
dient centrifugation. Bronchoalveolar lavage (BAL) fluid samples were
filtered, centrifuged at 1,200 rpm for 8 min, and resuspended in complete
medium. MLN, jejunum, and liver samples were processed into single-cell
suspensions as described previously (25). All animals were housed in cer-
tified facilities and maintained in accordance with standards recom-
mended by the American Association for the Accreditation of Laboratory
Animal Care. All procedures were performed in accordance with proto-
cols approved by the Institutional Animal Care and Use Committee of the
National Institute of Allergy and Infectious Diseases (LMM6 and
LMM12).

Viral loads. Viral RNA levels in plasma were determined by real-time
reverse transcription (RT)-PCR using the ABI Prism 7700 sequence de-
tection system (Applied Biosystems, Carlsbad, CA, USA).

Flow cytometry. Multicolor flow cytometric experiments were per-
formed using predetermined optimal concentrations of monoclonal
antibodies (MAbs) with specific cross-reactivity against RM antigens
(Ags). PBMCs and BAL fluid samples were processed immediately
after isolation; MLN, jejunum, and liver samples were cryopreserved
before analysis.

For phenotypic characterization, cells were incubated first with a phy-
coerythrin (PE)-conjugated active-ligand human MR1 tetramer [MR1-5-
OP-RU; 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil] (8, 12) in
the presence of a CCR6-specific MAb (clone G034E3; BioLegend, San
Diego, CA). After subsequent staining with LIVE/DEAD fixable Aqua
(Life Technologies, Grand Island, NY), the cells were incubated with
MAbs against CD3 (clone SP34-2; BD Pharmingen, San Diego, CA), CD8
(clone RPA-T8; BioLegend), CD28 (clone CD28.2; Beckman Coulter,
Brea, CA), CD45 (clone D058-1283; BD Horizon, San Jose, CA), CD69
(clone FN50; BD Pharmingen), and CD95 (clone DX2; BioLegend). The
cells were then washed, fixed/permeabilized with Cytofix/Cytoperm buf-
fer (BD Biosciences, San Jose, CA), and stained intracellularly with MAbs
against Ki67 (clone B56; BD Pharmingen) or PLZF (clone R17-809; BD
Pharmingen).

For intracellular cytokine staining, cells were stimulated overnight at
37°C with phorbol myristate acetate (PMA) (5 ng/ml) and ionomycin
(1 �M) in the presence of brefeldin A (1 �g/ml; Sigma-Aldrich, St. Louis,
MO). The cells were then washed twice and stained with tetramer and
surface-directed MAbs as described above (excluding CD69). After a fur-
ther wash, the cells were fixed/permeabilized and stained intracellularly
with MAbs against IL-17 (clone eBio64DEC17; Affymetrix eBioscience,
San Diego, CA), IFN-� (clone 4S.B3; Affymetrix eBioscience), and TNF
(clone MAb11; BD Pharmingen).

At least 300,000 cells per condition were acquired using a BD LSR-
Fortessa flow cytometer driven by FACSDiva software version 6.0 (BD
Biosciences). Data were analyzed with FlowJo software version 9.4.11
(TreeStar, Ashland, OR) using a threshold of 200 collected events for each
cell subset.

Clonotype analysis. Viable MR1 tetramer� CD8� memory CD3� T
cells were sorted directly into 100 �l RNA later (Applied Biosystems)

using a modified BD FACSAria flow cytometer (BD Biosciences). The
median number of sorted cells was 1,550 (range, 150 to 3,000 cells) for
PBMCs and 1,700 (range, 772 to 1,845 cells) for BAL fluid. Clonotypic
analysis was performed as described previously (26, 27). Briefly, all
expressed TRA gene rearrangements were amplified using an anchored
template-switch RT-PCR. The products were then subcloned, sam-
pled, sequenced, and analyzed (26, 28, 29). Rhesus macaque TRAV and
TRAJ sequences were assigned according to the closest human equiv-
alent using the international ImMunoGeneTics (IMGT) nomencla-
ture.

Sequence logo generation. Sequence logos were generated in Shan-
non format using the Seq2Logo webserver (http://www.cbs.dtu.dk
/biotools/Seq2Logo/). Each CDR3� sequence was represented per actual
occurrence in the total dataset.

Statistical analysis. Groups were compared using the Mann-Whitney
U test. Correlations were verified using the Spearman rank test. All
analyses were performed with Prism software version 6.0f (GraphPad,
La Jolla, CA).

RESULTS
Identification of MAIT cells in rhesus macaque peripheral
blood. The recent development of epitope-loaded human and
mouse MR1 tetramers has enabled the accurate identification of
antigen-specific MAIT cells directly ex vivo (6, 12, 30, 31). We took
advantage of the fact that MR1 is highly conserved in mammals
(32) to quantify and characterize a distinct population of te-
tramer-reactive MAIT cells in the peripheral blood and tissues of
RMs. These cells were rigorously defined as MR1-5-OP-RU te-
tramer� CD8� memory (CD28�/� CD95�) CD3� T lympho-
cytes for comparative purposes (Fig. 1A). This strategy captures
the vast majority of tetramer-reactive MAIT cells in RMs. How-
ever, species-matched reagents may be required to detect low-
avidity MAIT cell populations. In addition, we analyzed MAIT,
non-MAIT CD8�, and CD8� T cells for expression of Ki67,
CD28, CD69, CCR6, PLZF, IL-17, IFN-�, and TNF (Fig. 1B to F).
MAIT cells from the peripheral blood of RMs readily produced
IL-17, IFN-�, and TNF in response to stimulation with PMA and
ionomycin (Fig. 1E and F).

Peripheral blood MAIT cell decline and activation in SIV
infection. Given multiple previous reports of peripheral blood
MAIT cell loss in inflammatory disease models (2, 15–20), we
assessed circulating MAIT cell frequencies in healthy and SIV-
infected RMs. Lower frequencies and absolute numbers of
MAIT cells were detected in the peripheral blood of SIV-in-
fected versus SIV-uninfected RMs (Fig. 2A and B). The median
frequency of tetramer-reactive MAIT cells in the peripheral
blood of SIV-uninfected RMs was 1.58% (range, 0.3 to 4.8%;
n � 16), whereas the median frequency of these cells in the
peripheral blood of SIV-infected RMs was 0.43% (range, �0.1
to 1.9%; n � 16). These frequencies are notably lower than
those detected in humans (1 to 10%) but much higher than
those detected in mice (30).

Immune activation and dysregulation are common hallmarks
of HIV/SIV infection. We therefore assessed markers of prolifer-
ation (Ki67) and differentiation (CD28) in the tetramer-reactive
MAIT cell compartment. MAIT cells displayed a less differenti-
ated memory phenotype (percent CD28�) than non-MAIT CD8�

T cells in both SIV-uninfected and SIV-infected RMs (P � 0.0001)
(Fig. 2C). A trend was also observed toward loss of CD28 expres-
sion in SIV-infected compared with SIV-uninfected RMs (P �
0.0670) (Fig. 2C). Possible explanations for the decrease in circu-
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lating MAIT cells during HIV/SIV infection include limited pro-
liferative capacity and increased turnover. Consistent with the lat-
ter scenario, we found that MAIT cells more frequently expressed
Ki67 in the peripheral blood of SIV-infected versus SIV-unin-

fected RMs (P � 0.0005) (Fig. 2D). In the absence of SIV infection,
MAIT cells less commonly expressed Ki67 in the periphery than
did non-MAIT CD8� T cells (P � 0.0008) (Fig. 2D). In contrast,
Ki67 expression frequencies were similar for both MAIT and

TABLE 1 Study animal characteristics

Animal Infection status Tissue(s) studieda Disease stateb Plasma viremiac CD4� T cell countd

634 SIV� Jej NA 0 747
DB7H SIV� Jej NA 0 526
DBAA SIV� Liver NA 0 Not available
M03 SIV� Liver NA 0 Not available
DBV1 SIV� MLN NA 0 693
DBXG SIV� MLN NA 0 696
485 SIV� MLN, Jej NA 0 269
4016 SIV� MLN, Jej NA 0 656
DA6A SIV� MLN, Jej NA 0 472
DCJWA SIV� PBMC NA 0 523
DCVF SIV� PBMC NA 0 616
DE1A SIV� PBMC NA 0 352
DE20 SIV� PBMC NA 0 493
DEN8 SIV� PBMC NA 0 707
DFAi SIV� PBMC NA 0 879
DCAV SIV� PBMC, BAL NA 0 632
DCBC SIV� PBMC, BAL NA 0 382
DCMV SIV� PBMC, BAL NA 0 711
DCZ6 SIV� PBMC, BAL NA 0 1485
DE2C SIV� PBMC, BAL NA 0 254
DE2W SIV� PBMC, BAL NA 0 884
37033 SIV� PBMC, BAL NA 0 561
37034 SIV� PBMC, BAL NA 0 1453
37073 SIV� PBMC, BAL NA 0 298
37360 SIV� PBMC, BAL NA 0 258
591 SIVsmE543 Jej Chronic 2.51E5 186
594 SIVsmE543 Jej Chronic 8.60E3 292
597 SIVsmE543 Jej Chronic 1.60E3 484
DCKG SIVmac239 Jej sAIDs 6.58E5 312
833 SIVsmE543 Liver Chronic 1.45E5 52
881 SIVsmE543 Liver sAIDs (Candida, SV40) 1.03E6 95
DBPX SIVsmE660 Liver Chronic Undetected 304
PSP1010 SIVmac239 Liver sAIDs 7.80E6 194
CE5D SIVmac239 MLN sAIDs 1.20E5 532
CF4J SIVmac239 MLN sAIDs (parainfluenza) 2.00E5 241
CF5T SIVmac239 MLN sAIDs (Streptococcus bovis) 8.00E5 216
DB17 SIVmac239 MLN, Jej sAIDs (likely pneumocystis

pneumonia)
9.20E4 122

DB4E SIVmac239 MLN, Jej Chronic 8.10E5 565
851 SIVsmE660 PBMC Chronic 2.34E5 273
853 SIVsmE660 PBMC Chronic 7.77E4 742
859 SIVsmE660 PBMC Chronic 7.80E6 319
DE1A SIVmac239 PBMC Chronic 8.23E4 197
DE2W SIVmac239 PBMC Chronic 1.90E5 139
CL7P SIVmac239 PBMC Chronic 7.99E3 342
CL4C SIVmac239 PBMC Chronic 4.63E5 90
DCJWA SIVmac239 PBMC Chronic 3.17E3 672
848 SIVsmE660 PBMC, BAL Chronic 1.40E6 140
849 SIVsmE660 PBMC, BAL Chronic 3.79E5 290
850 SIVsmE660 PBMC, BAL Chronic 1.43E6 159
856 SIVsmE660 PBMC, BAL Chronic 3.00E5 27
860 SIVsmE660 PBMC, BAL Chronic 9.70E5 88
861 SIVsmE660 PBMC, BAL Chronic 1.46E5 342
ZG24 SIVmac239 PBMC, BAL Chronic 1.99E4 239
ZA52 SIVmac239 PBMC, BAL Chronic 2.94E5 171
a Jej, jejunum; BAL, BAL fluid.
b Opportunistic infections at the time of sampling are shown in parentheses. NA, not applicable; SV40, simian virus 40.
c Number of copies of viral RNA per milliliter of plasma.
d Counts in italics were calculated as the number of CD8� CD3� T cells per microliter of blood; all others were calculated as the number of CD4� T cells per microliter of blood.
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non-MAIT CD8� T cells in the context of SIV infection
(	20%) (Fig. 2D).

Peripheral blood MAIT cell trafficking and regulation in SIV
infection. The loss of peripheral blood MAIT cells in SIV-infected
RMs could potentially reflect increased trafficking to the gut mu-
cosa in response to microbial translocation. However, we found
reduced frequencies of CCR6� MAIT cells in SIV-infected versus
SIV-uninfected RMs (P � 0.0317) (Fig. 2E). This observation is
consistent with previous studies showing lower frequencies of cir-
culating CCR6� MAIT cells in HIV-infected patients (17, 18, 20).
The migration of MAIT cells to tissue sites of inflammation may
therefore be impaired in the context of HIV/SIV infection.

PLZF has recently been shown to regulate CCR6 (33); it is also
known to be expressed in the majority of MAIT cells (30). PLZF
expression in peripheral blood MAIT and non-MAIT CD8� T

cells was decreased in SIV-infected versus SIV-uninfected RMs
(Fig. 2F). This finding runs contrary to a previous study of HIV-
infected individuals (19) but nonetheless hints at a mechanism
underlying the loss of peripheral blood MAIT cells in SIV-infected
Asian macaques.

It is notable in this context that MAIT cells are not generally
responsive to viral products and constitute unlikely targets for
HIV/SIV infection because they rarely express the CD4 corecep-
tor. In line with these characteristics, no correlations were de-
tected between MAIT cell frequencies and either plasma viral load
or the number of peripheral CD4� T cells in SIV-infected RMs
(Fig. 2G and H).

Anatomical distribution of MAIT cells. To evaluate in more
detail whether tissue homing and accumulation could explain the
peripheral loss of MAIT cells associated with SIV infection, we

FIG 1 Identification of MAIT cells in RMs. (A) MAIT cells were characterized as viable MR1-5-OP-RU tetramer� CD8� memory (CD28�/� CD95�) CD3� T
lymphocytes. (B to D) Representative flow cytometry plots showing expression of Ki67 (n � 20) (B), CD28 and CD69 (n � 20) (C), and CCR6 and PLZF (n �
10) (D) within the MAIT cell population. (E and F) Representative flow cytometry plots showing expression of IL-17 and TNF (E) and IL-17 and IFN-� (F) by
MAIT cells after overnight stimulation with PMA and ionomycin (n � 6).
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analyzed MAIT cell frequencies at distinct sites (BAL fluid, MLNs,
jejunum, and liver) in SIV-uninfected and SIV-infected RMs. No
significant differences were detected between groups in either the
jejunum or liver (Fig. 3). Equivalent frequencies of MAIT cells at
these sites may help to compensate for the preferential loss of

IL-17- and IL-22-producing lymphocytes. In contrast, signifi-
cantly lower frequencies of MAIT cells were present in the BAL
fluid and MLNs of SIV-infected versus SIV-uninfected RMs (P �
0.00117 and P � 0.0317, respectively) (Fig. 3). MAIT cells were
most prevalent overall in BAL fluid, with a median frequency of

FIG 2 Characterization of peripheral blood MAIT cells in RMs. (A) MAIT cell frequencies in peripheral blood of SIV-uninfected and SIV-infected RMs. (B)
Absolute numbers of MAIT cells per microliter of peripheral blood, calculated from population percentages and lymphocyte counts. (C) Frequencies of CD28�

cells in MAIT and non-MAIT (viable MR1-5-OP-RU tetramer� CD8� memory CD3� T lymphocytes) cell populations. (D) Frequencies of Ki67� cells in MAIT
and non-MAIT cell populations. (E) Frequencies of CCR6� cells in MAIT and non-MAIT cell populations. (F) Frequencies of PLZF� cells in MAIT and
non-MAIT cell populations. (G) Correlation between SIV plasma viral loads and MAIT cell frequencies in peripheral blood of SIV-infected RMs. (H) Correlation
between CD4� T cell counts (CD8� memory CD3� lymphocytes) and MAIT cell frequencies in peripheral blood of SIV-infected RMs. (A to F) P values were
calculated using the Mann-Whitney U test. The horizontal lines represent median values. SIV-uninfected, n � 16 total; SIV-infected, n � 16 total. Not all samples
were available for all analyses. (G and H) Correlations were assessed using the Spearman rank test.
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4.56% (range, 0.3 to 14.7%). In contrast to the high frequencies
reported in human studies, however, MAIT cells comprised only
0.1 to 6.8% of the memory CD3� T cell population in the liver
(Fig. 3). Notably, no significant differences in active caspase 3
expression in the peripheral blood were detected between SIV-
uninfected and SIV-infected RMs (data not shown). Collectively,
these data suggest that neither tissue redistribution nor apoptotic
cell death contribute to the loss of circulating MAIT cells in the
context of HIV/SIV infection.

Analysis of the MAIT cell TCR� repertoire in RMs. MAIT
cells are typically characterized by the expression of a semi-invari-
ant TRAV1-2 (V�7.2) TCR� chain. To determine if the systemic
loss of MAIT cells in SIV-infected RMs was associated with con-
comitant changes in the TCR repertoire, we isolated peripheral
blood MAIT cells by flow cytometry and conducted a molecular
analysis of all expressed TRA gene rearrangements in 9 SIV-unin-
fected and 9 SIV-infected RMs. All sequenced products expressed
the TRAV1-2 gene segment (Fig. 4A and B), thereby validating our
gating strategy for MAIT cells (Fig. 1).

Next, we evaluated all TCR� sequences at the amino acid level
to determine the extent of sharing among individual RMs (28).
The majority of detected transcripts were public, defined on the
basis of expression in more than one animal. Only 5 private TCR�
sequences were identified, and 4 of them were present in the SIV-
uninfected cohort (Fig. 4A and B). One of these sequences (TRA
V1-2/CAVRDNNYKLSF/TRAJ20) was highly dominant in the
MAIT cell repertoire (animal RHDBM6) (Fig. 4A). In contrast,
the single private sequence (TRAV1-2/CAVRDGGYVLTF/TRAJ6)
detected in the SIV-infected cohort was subdominant (animal
RH860) (Fig. 4B).

In total, we identified 13 distinct CDR3� sequences in the pe-
ripheral MAIT cell repertoire of RMs, all of which incorporated 12
amino acids (Fig. 4C). MAIT cells are evolutionarily conserved
among mammals and fairly abundant in humans. Accordingly, we
found 5 public CDR3� sequences (CAVRDGDYKLSF, CAVRDS
NYQLIW, CAVMDSNYQLIW, CAVSDSNYQLIW, and CASMD
SNYQLIW) in RMs that were reported previously in humans (7,
10, 34) (Fig. 4C). The CAVRDSNYQLIW sequence has also been
found in cattle and mice (7). Similar repertoires were present in
the BAL fluid compartment, incorporating the public CDR3� se-
quences CAVRDSNYQLIW, CAVMDSDYKLIF, and CAVMDSN
YQLIW (data not shown).

Overall, 12 of the 13 distinct CDR3� sequences were detected
in SIV-uninfected RMs (Fig. 4D). In contrast, only 8 unique
CDR3� sequences were found in SIV-infected RMs (Fig. 4E). No-
tably, the most commonly identified public TCR� chain (TRAV
1-2/CAVSDSNYQLIW/TRAJ33) in SIV-uninfected RMs (4 out of
9 animals) was not present in SIV-infected RMs. All other public
sequences were distributed across both cohorts. However, there
were no significant differences in absolute clonality between SIV-
uninfected RMs (median, 3 clones; n � 9) and SIV-infected RMs
(median, 2 clones; n � 9) (P � 0.4397) (data not shown).

The majority of TRAV1-2 gene segments (67.6%) in the pe-
ripheral MAIT cell repertoire of RMs paired with the canonical
TRAJ33 gene segment (Table 2). In addition, we identified recom-
bination events incorporating the TRAJ20 and TRAJ12 gene seg-
ments at lower frequencies (23.5% and 8.5%, respectively) (Table
2). These rearrangements mirror the gene preferences observed in
humans (6, 10, 35). A TRAJ6 gene segment partner was also de-
tected in one SIV-infected RM (animal RH860) (Fig. 4B). Al-
though not reported in a previous study (10), the TRAJ6 gene
encodes the conserved Tyr95� present in TRAJ33, TRAJ20, and
TRAJ12.

In line with earlier analyses of other mammalian species, we
detected Tyr95� (CDR3� position 8) in the vast majority of TCR�
sequences isolated from circulating MAIT cells and BAL fluid
MAIT cells in RMs (Fig. 5A and data not shown). The CDR3�
loop preferentially comprised a neutral core flanked by outer hy-
drophobic residues in both the SIV-uninfected and SIV-infected
cohorts (Fig. 5B and C). In addition, the aspartic acid residue at
CDR3� position 5 was highly conserved among RMs (Fig. 5A to
C). These findings align with existing structural data, which show
most notably that Tyr95� forms direct contacts with the ribityl
moiety of the riboflavin metabolite complexed with MR1 (6, 11,
12, 14).

DISCUSSION

Although multiple studies have documented MAIT cell depletion
in the peripheral blood of HIV-infected individuals (18–20), a
clear understanding of the mechanisms that drive this phenome-
non is lacking because potentially relevant tissues are difficult to
access in humans. We sought to address this knowledge gap by
evaluating the systemic impact of SIV infection on MAIT cell pop-
ulations in RMs. As expected, MAIT cell frequencies and numbers
were lower in the peripheral blood of SIV-infected versus SIV-
uninfected RMs. However, these quantitative differences could
not be attributed to increased trafficking to other anatomical lo-
cations. In the presence of SIV infection, MAIT cells were pro-
foundly depleted in BAL fluid and MLNs. Moreover, no concom-
itant increases in MAIT cell frequencies were observed at
mucosal sites. It is notable in this regard that impaired migra-
tion to the intestine and liver via reduced CCR6 expression may
contribute to the depletion of circulating MAIT cells in chronic
HIV/SIV infection (18).

MAIT cells provide broad-spectrum defense against bacterial
and fungal species via the recognition of microbial vitamin B2

metabolites bound to MR1 (36). The systemic loss of these cells
described here is therefore somewhat surprising, given that micro-
bial translocation, dysbiosis, and consequent inflammation are
hallmarks of progressive HIV/SIV disease (37). Nonetheless, other
IL-17-producing lymphocyte subsets are also depleted in HIV/SIV
infection (38). A generic impairment of the factors that maintain

FIG 3 Anatomical distribution of MAIT cells in RMs. MAIT cell frequencies
in liver, MLNs, jejunum (Jej), and BAL fluid are shown for SIV-uninfected and
SIV-infected RMs. The P values were calculated using the Mann-Whitney U
test. The horizontal lines represent median values.
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IL-17 production may therefore contribute to the global loss of
MAIT cells in this context. In line with this possibility, our data
show that peripheral blood MAIT cells in SIV-infected RMs ex-
press relatively low levels of PLZF, which is known to play a key
role in Th17 differentiation (33).

Our results further suggest that MAIT cell depletion in SIV-
infected RMs does not occur as a consequence of apoptotic death
via caspase 3. However, exhaustion due to ongoing microbial
stimulation could feasibly account for the loss of MAIT cells in
chronic HIV/SIV infection. Consistent with this possibility, we

FIG 4 TCR� repertoire of MAIT cells in RMs. (A and B) TRAV gene usage, CDR3� amino acid sequence, TRAJ gene usage, and frequency (percent) of TCR�
chains isolated from MAIT cells in the peripheral blood of SIV-uninfected (A) and SIV-infected (B) RMs. The colors highlight public sequences shared among
animals. (C to E) CDR3� amino acid sequences, sharing among individual animals, total count, and frequency (percent) of TCR� chains isolated from MAIT
cells in the peripheral blood of all (n � 18) (C), SIV-uninfected (n � 9) (D), and SIV-infected (n � 9) (E) RMs. The colors highlight public sequences and
correspond with those in panels A and B.

TABLE 2 TRAJ gene usage of peripheral blood MAIT cells in RMs

TRAJ

All RMs SIV-uninfected RMs SIV-infected RMs

No. of sequences Frequency (%) No. of sequences Frequency (%) No. of sequences Frequency (%)

33 486 67.6 228 61.8 258 73.7
12 169 23.5 98 26.6 71 20.3
20 61 8.5 43 11.7 18 5.1
6 3 0.4 3 0.9
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detected increased frequencies of Ki67� MAIT cells in SIV-in-
fected RMs, suggesting greater proliferation and turnover relative
to MAIT cells in SIV-uninfected RMs. Moreover, analysis of pe-
ripheral MAIT cell TCR� sequences revealed a nonsignificant
trend toward more restricted and highly public repertoires in SIV-
infected than in SIV-uninfected RMs. It is established that com-
monly shared TCR� sequences among MAIT cells can be gener-
ated efficiently via the process of convergent recombination,
suggesting that they may be more easily replenished from the na-
ive pool in the event of peripheral exhaustion and subsequent
clonal deletion (39). This scenario likely explains the limited num-
ber of private TCR� sequences detected in SIV-infected RMs.

Collectively, these data are compatible with the hypothesis that
microbial translocation drives a systemic loss of MAIT cells in
HIV/SIV infection. This enhanced mechanistic understanding
may facilitate the development of novel therapies to boost antimi-
crobial immunity in individuals with AIDS.
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