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Abstract 25 

Palladium (Pd) is considered as a possible candidate as catalyst for proton exchange 26 

membrane fuel cells (PEMFCs) due to its high activity and affordable price compared 27 

to platinum (Pt). However, the stability of Pd is known to be limited, yet still not fully 28 

understood. In this work, Pd dissolution is studied in acidic media using an online 29 

inductively coupled plasma mass spectrometry (ICP-MS) in combination with an 30 

electrochemical scanning flow cell (SFC). Crucial parameters influencing dissolution 31 

like potential scan rate, upper potential limit (UPL) and electrolyte composition are 32 

studied on a bulk polycrystalline Pd (poly-Pd). Furthermore, a comparison with a 33 

supported high-surface area catalyst is carried out for its potential use in industrial 34 

applications. For this aim, a carbon supported Pd nanocatalyst (Pd/C) is synthesized 35 

and its performance is compared with that of bulk poly-Pd. Our results evidence that 36 

the transient dissolution is promoted by three main contributions (one anodic and 37 

two cathodic). At potentials below 1.5 VRHE the anodic dissolution is the dominating 38 

mechanism, whereas at higher potentials the cathodic mechanisms prevail. On the 39 

basis of the obtained results, a model is thereafter proposed to explain the transient 40 

Pd dissolution. 41 

 42 

Keywords: palladium, dissolution, ORR catalyst, ICP-MS, PEMFC 43 

1 Introduction 44 

Pd is a commonly used transition metal that exhibits high catalytic activity towards 45 

several electrochemical processes, such as formic acid oxidation [1-3], alcohols 46 

oxidation [4-6], hydrogen evolution/oxidation reactions (HER/HOR) [7-9] and 47 

oxygen reduction reaction (ORR) [2, 7, 10-12]. Therefore, it is an interesting 48 
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candidate for low temperature fuel cells both in alkaline (alkaline fuel cell, AFC) and 49 

acidic media (polymer electrolyte membrane based fuel cells, PEMFCs) [13]. 50 

Particularly PEMFCs are considered nowadays as attractive and efficient energy-51 

conversion devices for emission-free stationary and mobile applications, which may 52 

play a primary role in the future of sustainable energy solutions [14]. However, 53 

crucial issues like the high costs and rarity of catalysts for the sluggish oxygen 54 

reduction reaction (ORR), for which platinum (Pt) represents the state of the art 55 

catalyst, delay the commercialization on a large scale [15-17]. Great efforts have been 56 

recently made to reduce the amount of Pt (i.e. via alloying) or to replace it with less 57 

costly and/or more abundant non-Pt-based material [18, 19]. Pd along with Pt, stands 58 

out as the metal with the smallest overpotential, i.e. highest activity, for the ORR [20]. 59 

Indeed, while slightly less active than Pt [7, 21], the costs are around 50% lower than 60 

for Pt [10]. Furthermore, binary Pd-M (M=Cu, Co, Ni, Fe) and ternary alloys showed 61 

higher activities compared to pure Pt [12, 22-27].  62 

Beside activity, catalyst stability is essential to meet industrial and economical 63 

requirements. Metal dissolution (along with the eventual successive re-deposition) 64 

was demonstrated to be of primary importance in the course of PEMFC catalyst 65 

degradation[28]. Yet, the mechanisms of noble metal dissolution processes are still 66 

largely unknown, and contradictory results on the amount of dissolved metal under 67 

various operation conditions and on the exact metal dissolution onset potentials are 68 

often reported [29, 30].  69 

The Pourbaix  diagram suggests that Pd can be thermodynamically oxidized and even 70 

dissolved at pH values and potentials relevant for PEMFCs[31]. However, despite the 71 

similarity with Pt, Pd exhibits important differences in its electrochemical behavior. 72 
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Indeed, at high anodic potentials it is more prone to the formation of higher oxides 73 

(i.e. PdO2), hydrous oxide growth and oxygen absorption into the outer layers of the 74 

Pd lattice, thus resulting in a higher dissolution rate compared to Pt [32, 33].  75 

The nature of the oxide species formed on the Pd surface and the relation to its 76 

dissolution are still under debate [30]. Contradictory results are also reported on the 77 

Pd dissolution mechanism. Rand and Woods, studying the dissolution by cyclic 78 

voltammetry and calculating the difference between the charge associated with 79 

anodic oxidation and cathodic reduction, firstly concluded that Pd dissolution is 80 

mainly an anodic mechanism [33], which was successively supported by other 81 

authors [34, 35]. Vracar et al. proposed that the anodic dissolution is determined by  82 

the transfer of a second electron to Pd(OH) species yielding PdO/Pd(OH)2 [36]. Many 83 

authors, argue instead that the Pd electrodissolution is mainly a consequence of 84 

reduction of Pd oxides [30], such as Pd(OH) [34, 37-39], PdO and PdO2 [30, 37, 40-85 

44], thus resulting in a dominant cathodic process. The electrodissolution of Pd is 86 

influenced by several factors, including: (i) nature of anions and cations [30, 45, 46], 87 

(ii) H absorption accompanied with formation of α and β hydrides [47, 48], (iii) pH 88 

and the electrolyte concentration [30, 49, 50], (iv) high temperature by influencing 89 

the solubility product [33], (v) scan rate, applied potential protocol [30, 50] and 90 

surface morphology/composition [50]. 91 

While most of these studies suggest Pd dissolution under potential cycling, only few 92 

works report time-resolved data on dissolution of Pd, which can provide a better 93 

insight on the dissolution mechanisms by relating the dissolution rates with the 94 

surface oxidation state. Cadle [44] and Bolzàn et al. [34] used a rotating ring disk 95 

electrode (RRDE) to collect the dissolved Pd species (Pd2+ was suggested), thus they 96 

were the first to study the time-resolved anodic and cathodic Pd dissolution in 97 
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sulfuric acid. Recently, Shrestha et al. [43] used a channel flow double electrode 98 

(CFDE) to study Pd dissolution. CFDE is in principle similar to RRDE: gold collectors 99 

in a flow configuration follow a Pd working electrode. Their system is efficacious in 100 

relating the surface transitions with the dissolution in a time-resolved manner; 101 

however, the direct quantitative measurement of the dissolved mass was not done. 102 

Furthermore, studies at high potentials, where higher oxidation states might occur, 103 

are challenging since the oxygen evolved at the working electrode causes a high 104 

reduction current at the working electrode [43], thus masking the contribution of 105 

dissolution. The use of a quartz crystal microbalance is also a useful approach to 106 

relate online surface processes like also Pd dissolution in a quantitative way as shown 107 

by Grdeń et al. and Łukaszewski et al. [51, 52]. Nevertheless, a study of the dissolution 108 

also in the oxygen evolution potential region has not been done despite its 109 

fundamental interest, as it is known that these two processes are closely related [53]. 110 

Additionally, the vast majority of these works only deal with bulk Pd, whereas the 111 

stability of high-surface-area catalysts used in real applications has not been studied 112 

thoroughly so far [54, 55].  113 

In recent years, the implementation of an electrochemical scanning flow cell (SFC) 114 

combined with time-resolved monitoring of the dissolved species present in the 115 

electrolyte by using an on-line inductively coupled plasma mass spectrometer (ICP-116 

MS) provided new insights on the dissolution of noble metals like Pt [56, 57] and Au 117 

[58, 59]. Nevertheless, even if perceived to be of paramount importance [43], a 118 

detailed study of the dissolution mechanism of Pd and the influence of the applied 119 

operational conditions has not been done with this technique yet.  120 
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In this context, we present here a first investigation on Pd dissolution with the 121 

coupled SFC/ICP-MS approach. In particular, we analyze the influence of fundamental 122 

parameters such as the upper potential limit (UPL), the scan rate and the anions in 123 

commonly used acid electrolytes (sulfuric and perchloric) on the dissolution process. 124 

Additionally, we compare the dissolution of bulk poly-Pd with a supported Pd/C 125 

catalyst, to validate the results for high-surface area catalysts. Based on the 126 

experimental outcome of this comprehensive study we suggest a mechanism for Pd 127 

dissolution, even though the exact chemistry of the Pd oxidation is not yet completely 128 

resolved.  129 

2 Experimental 130 

2.1 Nanoparticles synthesis, characterization  131 

The carbon supported Pd was prepared via a colloidal immobilization method 132 

described in a previous publication [60]. Initially, the desired amount of a PdCl2 133 

aqueous solution (from Johnson Matthey) was used to prepare a Pd colloidal 134 

suspension. Separately, an aqueous solution of NaBH4 (0.1 M) and Poly(vinyl alcohol) 135 

(PVA) (1 wt% aqueous solution, Aldrich, MW=10 000, 80% hydrolyzed) were 136 

prepared as well, and a precise amount of which was then mixed with the PdCl2 137 

solution:  for the PVA solution (1 wt%) was needed (PVA/(Pd) (w/w)=1.2), whereas 138 

for the NaBH4 solution (0.1 M, NaBH4/(Pd) (mol/mol)=5) was added. After 30 min, a 139 

dark-brown sol is generated. To immobilize the formed colloid an activated carbon 140 

(XC72R Vulcan carbon) was added to the colloidal solution and acidified at pH 1 by 141 

sulfuric acid (the amount of carbon was calculated to yield a final 10 wt% of final 142 

metal/carbon loading). After 2 h of vigorous stirring, the slurry was filtered and 143 
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washed with distilled water thoroughly.  Finally, the catalyst was dried at 120 C for 144 

16 h obtaining a dry catalyst powder. 145 

The synthesized Pd/C powder was thereafter dispersed in ultrapure water (UPW, 146 

PureLab Plus system, Elga, 18 MΩ·cm) obtaining a black homogeneous ink suspension 147 

that was easily printed into glassy carbon (GC) plates or RDE tip. Prior to any 148 

electrochemical measurement, a small droplet of ink was deposited onto a TEM grid 149 

(lacey carbon film supported by a gold grip from Plano GmbH) and examined by 150 

transmission electron microscopy (TEM, JEOL JEM-2200FS operated at 200 kV in 151 

STEM mode). From the bright field TEM micrograph obtained, the particle size 152 

distribution was determined.  153 

2.2 Electrode preparation 154 

Before each experiment, the poly-Pd disk electrode was polished thoroughly with 0.3  155 

and 1 µm alumina on a polishing cloth (Strueurs, MD Mol), followed by washing in 156 

ultrapure water and drying in argon, obtaining a shiny Pd surface. 157 

To prepare the high-surface-area Pd/C electrodes the catalyst ink was printed onto 158 

freshly mirror-polished GC plates by mean of a drop-on-demand printer (Nano-159 

PlotterTM 2.0, GeSim). The Nano-Plotter allows the printing in rapid succession of 160 

catalyst layers using a piezoelectric pipette.  Each layer consisted of 100 drops whose 161 

volume was estimated during the measurement (250 pL) and it consist of a circular 162 

deposits of a Pd/C catalyst. Two layers were used for all experiments corresponding 163 

to approximately 5 ng of metal. 164 

2.3 Electrochemical characterization 165 

The majority of the results on the Pd electrochemical dissolution experiments were 166 

obtained using a scanning flow cell (SFC) described in our previous works [57, 58]. 167 
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The electrolytes employed were gas (Ar) purged 0.1 M H2SO4 and 0.1 M HClO4. These 168 

were prepared from concentrated acid (Suprapur®, Merck) diluted in UPW (PureLab 169 

Plus system, Elga, 18 MΩ·cm). A poly-Pd disk (5 mm diameter from MaTeck) and the 170 

synthesized Pd/C catalyst deposited onto the GC plate were used as working 171 

electrodes (WE). The aperture of the SFC cell is 0.01 cm2, slightly larger than the size 172 

of the printed spots, thus the SFC was approached easily to the single spot. 173 

Dissolution results for poly-Pd in the two considered electrolytes are normalized with 174 

the geometrical surface area (Sgeo in cmgeo-2). For the comparison between poly-Pd 175 

and Pd/C, instead, dissolution is normalized to the real surface area (Sreal in cmreal-2). 176 

The Sreal is obtained using the Pd-oxide reduction charge of the last activation CV with 177 

an UPL of 1.4 VRHE with the surface charge of 424 µC cm-2 [30].  The three-electrode 178 

configuration was completed with a graphite rod as counter electrode and an Ag/AgCl 179 

as reference electrode. A LabVIEW-based, in-house developed, software controlled 180 

the potentiostat (Gamry Reference 600, USA) and all experimental parameters. The 181 

chosen electrolyte was flowing through the SFC (flow rate of 180 μL min−1) and then 182 

downstream to an inductively-coupled plasma mass spectrometer (ICP-MS, NexION 183 

300X, Perkin Elmer) where the dissolved element is detected. The quantitative 184 

evaluation of the dissolved 106Pd was achieved using as internal standard 103Rh.  185 

The poly-Pd cyclic voltammogramms in the two electrolytes were also studied with a 186 

rotating disk electrode (RDE) method, for an initial comparison to validate the SFC 187 

system. A in-house-built three electrode electrochemical cell with separate 188 

compartment made of Teflon® was employed (for details see ref. [61]). The working 189 

electrode was a Pd disk of 5 mm diameter (from MaTeck), whereas, as for the SFC, 190 

graphite rod and an Ag/AgCl were used as counter and reference electrode, 191 

respectively. 192 
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The experiments were carried out only at room temperature (≈24°C) and all the 193 

potentials reported in this work are referred to the reversible hydrogen electrode 194 

(RHE), which was measured prior to each single experiment. 195 

 196 

3 Results  197 

3.1 Oxidation and reduction of poly-Pd in acidic media 198 

 199 

Pd cyclic voltammogramms in deaerated solution (Figure 1) are recorded using the 200 

SFC with perchloric and sulfuric acid as electrolytes. The curves show typical profiles 201 

for a poly-Pd electrode in the aqueous acidic solutions. The Pd electro-oxidation in 202 

0.1M HClO4 commences in the anodic scan at approximately 0.7 VRHE (A1 peak). A 203 

well-defined oxide reduction peak with a maximum around 0.64 VRHE is visible below 204 

0.8 VRHE (C1 peak) in the cathodic scan direction, in agreement with other works [30, 205 

48, 62, 63]. Typically a second poorly defined peak for oxide-reduction around 1.2-1.3 206 

VRHE is reported in literature (here, C2 peak), which is thought to correspond to the 207 

reduction of Pd(IV)-oxide formed at high potentials [30, 63]. In the CVs in Figure  this 208 

broad peak, though labelled, is not visible due to the low upper potential limit (UPL) 209 

applied. However, it will be important in the following sections, where the dissolution 210 

at higher UPLs (up to 1.8 VRHE) is presented and discussed.  211 

Interestingly the CVs show a distinct difference in the Pd oxidation/reduction in the 212 

two different electrolytes. Indeed, the onset potential for the electro-oxidation of Pd 213 

in sulfuric acid (ca. 0.75 VRHE) is slightly shifted compared to perchloric acid (Figure 214 

1). This is consistent with the difference in anion adsorption strength, which is known 215 

to influence the Pd electro-oxidation [30]. According to Solomun, perchlorate anions 216 



10 
 

(ClO4-) do not undergo specific adsorption so that only weak (electrostatic) 217 

interactions occur between the anions of the electrolyte and the Pd electrode surface, 218 

while the interaction of other anions such as the (bi-)sulfate anion (HSO4-/SO42-) is 219 

stronger [40-42]. Furthermore, in sulfuric acid, the Pd reduction peak is slightly 220 

shifted to higher anodic potentials (0.67 VRHE) and the associated charge is slightly 221 

higher. A more detailed discussion on Pd oxidation will be provided in the final part 222 

of the present work and the interested reader is also referred to the critical review on 223 

Pd literature of Grdeń et al. [30].  224 

Pd voltammograms with a lower potential limit (LPL) of 0.05 VRHE are also recorded 225 

in an SFC and compared with RDE measurements to validate the results (SI). At low 226 

potentials (E<0.3 VRHE) a large cathodic current originates from the concurrent H 227 

adsorption and bulk absorption, with the formation of Pd hydride. Indeed, unlike Pt, 228 

Pd absorbs hydrogen in a potential range where the under potential deposition of H 229 

(HUPD) as well as the hydrogen evolution (HER) occurs [30, 64]. At higher potentials 230 

than HER, the desorption of the absorbed hydrogen (Habs) in the poly-Pd bulk 231 

structure takes place. This results in a large anodic current, which overlaps with other 232 

anodic processes at the surface. 233 

3.2 Poly-Pd electrodissolution in different acidic media: influence of UPL  234 

Potential sweeps to increasing upper potential limits (UPL) in two different acidic 235 

media (perchloric and sulfuric acid) are applied to poly-Pd electrode. The potential 236 

program and the corresponding dissolution profile are presented in Figure 2 a-b, 237 

respectively. 238 

The cleaning cycles (30 CVs at 200 mV s-1) are characterized by an initially higher Pd 239 

dissolution signal, which is probably due to the contribution of initially present 240 
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surface defects. After approximately 10 CVs a constant Pd dissolution signal and a 241 

stable CV is measured, indicating that a clean, steady surface state for this potential 242 

window is obtained.  243 

During the slow potential cycling (10 mV s-1), Pd dissolution is observed at potentials 244 

where Pd oxidizes (E > 0.7 VRHE) and a small deviation from the background signal is 245 

observable first with an UPL above 0.8-0.85 VRHE, in line with the onset potential 246 

shown by Łukaszewski et al. obtained with the quartz microbalance [52]. The amount 247 

of formed Pd oxide and thus the dissolution increase with the applied UPL. In fact, the 248 

charge associated to the reduction peaks increases gradually with potential (Figure 2 249 

c-d and SI). Furthermore, the hysteresis between anodic and cathodic scan increases 250 

as the C1 reduction peak shifts to lower potentials. A similar behavior was observed 251 

also for Pt [57], and its origin is not fully understood at present [30]. At different UPL 252 

up to three different peaks in the Pd dissolution profile (corresponding to the peak 253 

anodic A1 and cathodic C2, C1 respectively) can be observed. A comparison of the mass 254 

dissolved during the anodic and the two cathodic contributions to the transient 255 

dissolutions in the two acids are shown in Figure 3.  256 

The cathodic dissolution peaks (C2 and C1) increase constantly (Figure 3 a-b) with 257 

increasing UPL as more oxide is formed, with C2 becoming the dominating 258 

contribution at high potential. Instead, the anodic contribution (A1) to the transient 259 

dissolution behaves differently (Figure 3 c). Indeed, it is possible to identify different 260 

stages in the anodic transient dissolution behavior: (i) A first immune region at 261 

potentials lower than Pd oxidation; (ii) a region between 0.8 and 1.4 VRHE where the 262 

transient anodic dissolution is increasing with the UPL; (iii) a region in the 1.4-1.7 263 

VRHE potential range, where the transient anodic dissolution is constant 264 
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(independently of the UPL), due probably to the oxide coverage that lead to 265 

passivation  and (iv) a region for potential higher than 1.7-1.8 VRHE, where the 266 

transient anodic dissolution increases again and could be attributed to the surface 267 

change in the OER potentials. Anodic passivation is also confirmed by the decay in the 268 

dissolution signal during potentiostatic (steady-state) experiment (SI).  269 

The quantitative total dissolution of Pd per cycle is reported in Table 1, along with the 270 

measured dissolution of Pt and Au under similar conditions. Comparing the 271 

dissolution in the same medium (sulfuric acid), it turns out that Pd is dissolving at a 272 

much higher rate than the other noble metals considered. Furthermore, Pd in sulfuric 273 

acid dissolves 5 times more than in perchloric acid. Similar trends were reported in 274 

other works [30, 33, 52] and it was attributed to the formation of different complexes 275 

between the dissolved species and the anion in the electrolyte (see discussion).   276 

Table 1 Comparison of the amount of Au, Pt [58], Pd in 0.1M H2SO4 and Pd* in 277 

0.1M HClO4 dissolved per cycle depending on the applied UPL as derived from 278 

potential sweep experiments at 10 mV s-1. BDL stands for below the detection 279 

limit. 280 

UPL / VRHE Au /  

ng cmgeo-2 cycle-1 

Pt /  

ng cmgeo-2 cycle-1 

Pd /  

ng cmgeo-2 cycle-1 

Pd* /  

ng cmgeo-2 cycle-1 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

BDL 

BDL 

BDL 

BDL 

BDL 

1.6 

BDL 

BDL 

0.4 

1.3 

2.7 

4.4 

0.36 

5.1 

21.3 

51.5 

83.6 

114.2 

0.02 

0.8 

4.8 

12.9 

18.9 

22.3 
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1.5 

1.6 

1.7 

1.8 

4.4 

7.4 

12.5 

20 

5.8 

7.0 

8.0 

9.0 

149.9 

185.8 

224.4 

271.7 

26.6 

32 

39 

50 

 281 

Note that until 1.1 VRHE only a single dissolution peak is visible in both electrolytes, 282 

while at more positive potentials two to three peaks are observed. However, the 283 

applied scan rate (10 mV s-1) does not allow a clear separation between the individual 284 

dissolution peaks. Therefore, some measurements at selected UPLs with a slower 285 

scan rate (2 mV s-1) are presented in the next paragraph. 286 

3.3 Poly-Pd electrodissolution in different acidic media: slower scan rate  287 

Potential sweeps to increasing UPL (0.9, 1.2, 1.5, 1.8 VRHE) in the two different acidic 288 

media (perchloric and sulfuric acid) with a 2 mV s-1 scan rate are applied to a poly-Pd 289 

electrode (Figure 4 a-b). At this slow scan rate the different dissolution processes 290 

occurring during cyclic voltammetry can be clearly distinguished. As expected, due to 291 

the slower scan rate, the dissolution per cycle is higher; furthermore, the observed 292 

quantitative difference between dissolution in perchloric and sulfuric acid is 293 

confirmed (see values in SI).  294 

Colored arrows mark the positions of the peaks: red corresponding to the anodic 295 

oxidation/dissolution (A1), grey and blue corresponding to the two cathodic 296 

reduction/dissolution peaks (C2 and C1 respectively). For the sake of clarity, the single 297 

dissolution profiles are shown separately in SI.  298 

The UPLs are chosen in order to distinguish dissolution processes occurring at 299 

different potentials. (i) At a potential lower than 1.1 VRHE only one peak is present as a 300 
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combined minor anodic and cathodic peak. (ii) In the potential range between 1.1 and 301 

1.4 VRHE a shoulder peak related to the cathodic dissolution due to the C1 reduction 302 

starts to appear (blue arrow). With the measured UPL of 1.2 VRHE the maximum of 303 

this second peak is measured at 0.8 VRHE during the cathodic scan, which well 304 

corresponds to the C1 peak observed in CV with the same UPL. (iii) At more positive 305 

potentials a third dissolution peak between the two is appearing (gray arrow) and is 306 

increasing dramatically. With an UPL of 1.5 VRHE the maximum of this third peak is 307 

measured at 1.1-1.2 VRHE during the cathodic scan, which matches the broad 308 

reduction peak C2 observed in the CVs.  309 

The mass cyclic voltammograms of these 4 CVs in perchloric and sulfuric acid are 310 

shown in Figure 4 c-d, indicating the trend of the three different contributions (one 311 

anodic and two cathodic) to the dissolution more clearly. At potentials up to 1.5 VRHE 312 

the three peaks are not perfectly separated, despite the very low scan rate (2 mV s-1), 313 

while at 1.8 VRHE the anodic dissolution and the first cathodic dissolution peaks 314 

appear nicely distinguished. Furthermore, the anodic dissolution maxima appear to 315 

be at the same potential for all the four cycles, whereas the cathodic dissolution 316 

maxima shift to lower potentials in accordance with the shifts of the reduction peaks 317 

(Figure 2 c-d). These shifts are attributed to the irreversibility of the oxide formation 318 

[30] and are reported also for other noble metals [57, 65]. Interestingly, in sulfuric 319 

acid the dissolution maximum appears to be before the reduction maximum (the 320 

former is approximately 30 mV higher; see SI). Similar findings were also obtained for 321 

Pt cathodic dissolution in sulfuric acid [66]. In perchloric acid, instead, the two peak 322 

potentials correspond well. This difference is not well understood at present and it 323 

might derive from the different interactions of the electrolyte anion with Pd. Along 324 
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with the change in the maxima, also the cathodic dissolution onset potentials are 325 

shifting to lower potentials with increasing UPL.  326 

These results allow us already to dissipate some controversy about the nature of Pd 327 

dissolution. As discussed in the introduction, there is an ongoing debate whether Pd 328 

dissolution is an anodic process or not. The relative contribution to the dissolution of 329 

the three different peaks is shown in the inlet of Figure 4 c-d. At low UPL the process 330 

is predominantly anodic (note that however below 1.1 VRHE only one peak is 331 

appearing and is not possible to distinguish between anodic and cathodic 332 

dissolution). Increasing the UPL it first appear the peak C1 and above 1.4 VRHE  the 333 

peak C2. In perchloric acid with an UPL of 1.8 VRHE the anodic contribution is reduced 334 

to around 37% (A1) and the cathodic rises up to 63% (52 and 11% for C2 and C1 335 

respectively). Thus, with increasing UPL the transient dissolution of Pd switches from 336 

an anodic process to a process dominated by Pd-oxide reduction. Moreover, at 337 

potentials where the OER becomes relevant the C2 reduction/dissolution process 338 

becomes dominant. 339 

 340 

3.4 Comparison of poly-Pd and Pd/C electrodissolution 341 

In order to estimate the value of the previous results obtained on poly-Pd for real 342 

application, carbon supported Pd nanoparticles (Pd/C) are synthesized and analyzed. 343 

Firstly, representative bright field TEM micrographs are acquired and the statistical 344 

size distribution is evaluated (Figure 5 a). The average particle size is ca. 4.0 nm, 345 

which corresponds to an electrocatalytic surface area (ECSA) of 124 m2 g-1 (see SI for 346 

calculation). The synthesized Pd/C catalyst powder is dispersed through sonication in 347 
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ultrapure water (UPW) and the prepared ink is printed on a glassy carbon (GC) plate 348 

obtaining spots that are measured using the SFC.  349 
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The Pd/C dissolution measurement (Figure 5 b-c) follows the same protocol reported 350 

in Figure 4 and is performed only in perchloric acid with two printed catalyst layers 351 

(ca. 5 ng). This corresponds to an initial Pd/C catalyst surface area of 0.0062 cm2 352 

(estimated from the TEM size distribution and the loading in SI). Electrochemical 353 

evaluation from the Pd-oxide reduction charge of the first CV [0.1-1.4 VRHE] of freshly 354 

prepared Pd/C electrode, yields a surface area of 0.0054 cm-2 (see SI). The 355 

electrochemical determination of the surface area through Pd-oxide reduction is 356 

convenient but not straightforward as it requires a precise knowledge of the potential 357 

formation of 1 oxide monolayer (ML). In the literature, this is indicated to be for 358 

polycrystalline Pd in the range 1.4-1.5 VRHE, even though lower values are also 359 

reported [30, 67]. To compare the electrochemical dissolution of two different 360 

systems like bulk and nanoparticulate Pd, the dissolution data shown in Figure 5 b-c 361 

are normalized by the real surface area (Sreal), which is 0.0109 and 0.0035 cm-2 for 362 

poly-Pd and Pd/C respectively. This is determined from the Pd-oxide reduction of the 363 

last activation cycle ([0.1-1.4] VRHE), which directly precede the dissolution 364 

measurement. Pd-oxide reduction and thus Sreal during activation of Pd/C decrease by 365 

ca. 35% indicating a surface area change due to catalyst degradation. At low 366 

potentials, the poly-Pd and Pd/C CVs show one interesting difference between 367 

catalysts: unlike poly-Pd, Pd/C does not show a large cathodic current and anodic 368 

peak corresponding to the H bulk absorption (inlet in Figure 5 b). This behavior was 369 

already known in literature and was reported to be size dependent [68, 69]. 370 

Potential sweeps to increasing UPL (0.9, 1.2, 1.5 VRHE) in perchloric acid with a 2 mV 371 

s-1 scan rate are applied to poly-Pd and Pd/C (Figure 5 b-c). The same feature for 372 

poly-Pd, namely the presence of up to three peaks in the dissolution profile are also 373 

observed for Pd/C. While the anodic peak A1 and cathodic peak C2 well correspond, 374 
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the cathodic dissolution C1 is shifted for Pd/C to lower potentials (time delay in 375 

Figure 5 c). The peak position generally depends on different parameters such as the 376 

mass transfer of dissolved species out of the carbon matrix, the flow rate and scan 377 

rate. While the last two are the same in both measurements, the amount of printed 378 

Pd/C catalyst is so low that the mass transfer limitation can be neglected. A more 379 

valuable explanation relates to the shift of the reduction to lower potential for Pd/C 380 

(see inlet CVs in Figure 5 b).  381 

Considering the quantitative dissolution, it is observed a slightly higher dissolution 382 

per electrochemical real surface area in the case of nanoparticulate Pd/C catalyst 383 

(Figure 5 c) at all considered potentials. Only few works are reported in the literature 384 

of nanoparticulate palladium dissolution and to the knowledge of the author no on-385 

line detection of dissolved Pd from nanoparticles is reported. Generally they indicate 386 

influence of surface morphology, geometry and particle sizes [54, 55].  Kumar et al. 387 

studying the anodic oxidation onset potential in presence of chlorides suggested a 388 

size dependent destabilization of the nanoparticles compared to bulk Pd [55]. In our 389 

case, we do not see any significant difference in dissolution onset potential between 390 

the two electrode systems, but the dissolution profiles suggest a small difference in 391 

their behavior. Note however that a precise quantitative evaluation is rather 392 

challenging especially when dealing with nanoparticulate catalyst. Indeed, (i) the Sreal 393 

is determined with the same electrochemical method for both catalyst even though 394 

the precise potential of formation of 1 oxide ML can slightly change with surface 395 

morphology and geometry. Indeed, with same UPL the oxide formation and reduction 396 

might be different from nanoparticles and bulk Pd [55].  Furthermore, (ii) Sreal of Pd/C 397 

might change during measurement in consequence of dissolution and catalyst 398 

degradation (even though measurements are limited to 3 cycles to minimize 399 



19 
 

degradation). Furthermore, (iii) remaining PVA from synthesis might influence the 400 

dissolution (even though the washing step is expected to remove it). Finally, (iv) for 401 

carbon supported nanoparticles the catalyst loading in the experiment might also 402 

play a role as shown recently by Keeley et al. [29]. Indeed, the authors showed for 403 

Pt/C that the specific dissolution (normalized per surface area) is decreasing when 404 

the loading increases. This phenomenon was attributed to the decreased diffusion of 405 

Pt ions into bulk solution as ions remain trapped in the porous catalyst deposit when 406 

loading is higher. 407 

4 Discussion 408 

The major experimental findings of this work can be summarized as follow: 409 

(i) The Pd dissolution is strictly correlated to the oxide formation and 410 

reduction. However, no simple correlation could be established between 411 

the two processes. Indeed, the dissolution onset potential in perchloric acid 412 

appears to be around 50 mV higher than in sulfuric acid, whereas the 413 

oxidation onset potential in perchloric acid is slightly lower (Figure 1);  414 

(ii) Below 1.1 VRHE it was not possible to differentiate between anodic and 415 

cathodic processes. Between 1.1 and 1.4 VRHE a cathodic dissolution related 416 

to the C1 reduction is observed. At more positive potentials a third 417 

dissolution peak, corresponding to the broad C2 reduction, appears and it 418 

increases dramatically with the UPL (Figure 2-4).  419 

(iii) Increasing the UPL, the oxide coverage increases. Therefore, while 420 

transient anodic dissolution initially increases with UPL, in the 1.4-1.7 VRHE 421 

potential range the formed oxide protects Pd from increasing dissolution. 422 
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Beyond 1.7-1.8 VRHE anodic dissolution increases again in correspondence 423 

to the OER region (Figure 3);  424 

(iv) Unlike for anodic dissolution the cathodic dissolution increases almost 425 

linearly with UPL (Figure 3), becoming the dominant process for potential 426 

higher than 1.7 VRHE. Furthermore, its onset and maxima shifts to lower 427 

potentials with increasing UPL (Figure 4), in accordance with the shift of 428 

the cathodic C1 and C2 reduction peaks (Figure 2); 429 

(v) Pd dissolves much more than Pt and Au and the dissolution depends 430 

strongly on the scan rate. Pd dissolution in sulfuric acid was found to be 5 431 

times higher than in perchloric acid (Table 1); 432 

(vi) In potentiostatic experiments below 1.6 VRHE the dissolution rate decreases 433 

with time, indicating the passivation of the surface (SI); 434 

(vii) All these findings were additionally validated for a carbon supported high-435 

surface area Pd/C nanocatalyst, which is more interesting for application. A 436 

slightly small increase in dissolution per real surface are is observed for 437 

Pd/C (Figure 5).  438 

 439 

With our findings we confirmed the close connection between the Pd oxidation states 440 

and its transient dissolution, which was already observed for Au and Pt electrode 441 

materials [59]. Indeed, the electrochemical oxidation and the dissolution of Pd have 442 

similar standard potentials. Pourbaix expressed the oxidation of Pd as [31]: 443 

 𝑃𝑑 + 𝐻2𝑂 → 𝑃𝑑𝑂 + 2𝐻+ + 2𝑒− 

𝐸𝑜 = 0.917 + 0.0591log⁡[𝐻+] 

 

(1) 
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or 𝑃𝑑 + 2𝐻2𝑂 → 𝑃𝑑(𝑂𝐻)2 + 2𝐻+ + 2𝑒− 

𝐸𝑜 = 0.897 + 0.0591log⁡[𝐻+] 

(1b) 

 

   

 𝑃𝑑𝑂 + 𝐻2𝑂 → 𝑃𝑑𝑂2 + 2𝐻+ + 2𝑒− 

𝐸𝑜 = 1.263 + 0.0591log⁡[𝐻+] 

 

(2) 

or 𝑃𝑑(𝑂𝐻)2 + 2𝐻2𝑂 → 𝑃𝑑(𝑂𝐻)4 + 2𝐻+ + 2𝑒− 

𝐸𝑜 = 1.283 + 0.0591log⁡[𝐻+] 

(2b) 

 444 

And the dissolution of Pd can be described as [31]: 445 

 𝑃𝑑 → 𝑃𝑑2+ + 2𝑒− 

𝐸𝑜 = 0.987 + 0.0295log⁡[𝑃𝑑2+] 

 

(3) 

 𝑃𝑑𝑂2 + 4𝐻+ + 2𝑒− → 𝑃𝑑2+ + 𝐻2𝑂 

𝐸𝑜 = 1.194 + 0.1182 log[𝐻+] − 0.0295[𝑃𝑑2+] 

 

(4) 

 

 𝑃𝑑𝑂 + 2𝐻+ → 𝑃𝑑2+ + 𝐻2𝑂 

log[𝑃𝑑2+] = ⁡−3.02 + 2log⁡[𝐻+] 

 

(5) 

 

or 𝑃𝑑(𝑂𝐻)2 + 2𝐻+ → 𝑃𝑑2+ + 2𝐻2𝑂 

log[𝑃𝑑2+] = ⁡−2.35 + 2log⁡[𝐻+] 

(5b) 

 

 446 

As anticipated, despite the large amount of literature and the variety of methods 447 

applied, several aspects of Pd electro-oxidation are still poorly understood, such as 448 
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the chemical composition, thickness and adsorption behavior of Pd oxide layers [30]. 449 

In particular, there are some relevant issues in the literature that require additional 450 

research [30]: (i) the first product formed during oxidation was considered by several 451 

authors to be Pd(OHads) [34, 38, 39, 48, 63, 70], while other authors suggested the 452 

formation of Pd(II)-oxide/hydroxide species such as PdO [30, 71] or Pd(OH)2 [31]; (ii) 453 

the potential for the formation of an oxide monolayer (generally reported to occur 454 

around 1.45-1.5 VRHE) is unclear, as is (iii) the onset potential for the formation of 455 

higher oxidation species (i.e Pd(IV)-oxide, thicker β Pd(IV)-oxide in the OER region); 456 

(iv) the presence of subsurface oxygen is claimed by some groups to play an 457 

important role in the reactivity and stability of the metal [32, 41, 72] and (vi) it is not 458 

obvious if anhydrous/hydrous oxide is present or not at different potentials. 459 

Concerning the last point, we will consider both reactions (equations 1-1b and 2-2b), 460 

but in the following discussion we will rather talk of Pd(II)- and Pd(IV)-oxides. 461 

In the literature two Pd reduction peaks are reported: (i) a well-defined reduction 462 

peak at lower potentials labeled here as C1 (Figure 1) that corresponds to the 463 

reduction of Pd(II)-oxide (equation 1-1b) and (ii) a second broad reduction peak 464 

around 1.2-1.3 VRHE (here, C2), which is thought to correspond to the reduction of 465 

Pd(IV)-oxide formed at high potentials (>1.3 VRHE), slightly below the OER onset [30, 466 

63] (equation 2-2b). This higher oxidation state was confirmed with XPS 467 

measurement by Chausse et al. [73]. Zhang et al. and Birrs et al. showed 468 

independently that a thick Pd “β hydrous oxide” [62, 65, 74] is only formed at very 469 

large anodic polarization (higher than the OER onset) and its reduction is correlated 470 

to several peaks in the low potential region, around HUPD [30, 32, 65]. In our 471 

experimental results no peaks of this kind are observed up to 1.8 VRHE, therefore the 472 

presence of a thicker hydrous oxide layer (elsewhere referred as β oxide [30]) can be 473 
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safely excluded from the following considerations, at least for potentials up to 1.7 474 

VRHE.   475 

According to the literature and to cyclic voltammetry one would expect already some 476 

Pd dissolution in parallel with the initial Pd oxidation, namely around 0.7 VRHE and 477 

0.75 VRHE in perchloric and sulfuric acid respectively (Figure 1).  However, a small 478 

deviation from the background signal is only observable first with an UPL above 0.8-479 

0.85 VRHE, close to the thermodynamically predicted standard potential for Pd metal 480 

electro-dissolution (E0(Pd/Pd2+) = 0.987 V + 0.0295 log(Pd2+)), which assuming a 481 

reasonable Pd2+ concentration of 1 nmol dm-3 would be approximately 0.72 VSHE (0.78 482 

VRHE at pH=1).  Experimentally, there is a more than 100 mV shift for the dissolution 483 

onset in comparison to oxidation. A similar difference was already observed for Pt 484 

dissolution and it was tentatively related to the ICP-MS detection limit. Recently, a 485 

modified scanning flow cell configuration allowed the accumulation of dissolved Pt. 486 

Thus, dissolution was measured also at potential, close to the Pt oxidation onset [56]. 487 

In the case of Pd this difference could be attributed either to the ICP-MS detection 488 

limit (as for Pt) or to the higher standard potential of the Pd electro-dissolution 489 

compared to the Pd oxidation. Furthermore, the dissolution onset potential in 490 

perchloric acid appeared to be around 50 mV higher than in sulfuric acid. This is 491 

somehow contradictory with the oxidation onset potential which in perchloric acid is 492 

lower (Figure 1). Therefore, no simple correlation between oxidation and dissolution 493 

is established, as previously observed for Au in perchloric and sulfuric acid [75].    494 

Interestingly, despite exhibiting similar features, the actual measured Pd dissolution 495 

in the two different electrolytes is quantitatively very different. Indeed, Pd in sulfuric 496 

acid is dissolving at rates approximately 5 times higher than in perchloric media 497 

(Table 1). Furthermore, comparing the dissolution in the same medium (sulfuric 498 
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acid), it turns out that Pd is dissolving at a much higher rate than other noble metals 499 

like Pt and Au. Already Rand and Woods [33] reported Pd dissolution to be 500 

approximately 30 times higher than Pt in sulfuric acid, in good agreement to our 501 

results. Much higher dissolution of Pd compared to Pt was also observed by 502 

Łukaszewski et al. [52]. Burke et al. [32] affirmed that this marked behavior is related 503 

to the ionic radii difference of the respective cations. In fact, the electrostatic field 504 

around smaller Pd cations is stronger, which leads to more stable Pd complexes and a 505 

stronger solvation shell [30], resulting in the observed enhancement in Pd electro-506 

dissolution. The observed Pd dissolution difference in the two acidic electrolytes 507 

could be attributed to a difference in the amount of oxide formed in the considered 508 

media. Effectively, the UPL being equal, the measured Pd reduction charge in sulfuric 509 

acid (Figure 2 c) is visibly higher than in perchloric (Figure 2 d), suggesting less oxide 510 

formation with the latter. However, the difference in the reduction charges is only up 511 

to ca. 20% (SI). Therefore, different dissolution behavior could be originated by the 512 

different nature of the anions in the electrolyte. In the literature, many works 513 

reported enhanced electro-dissolution in presence of chlorides and iodides [30, 37, 514 

38], however only few works reported differences between perchloric and sulfuric 515 

acid, the latter being the sole choice of electrolyte for most of the experimental 516 

studies. Recently, Grdeń et al. [30] reviewed several Pd studies and classified anions 517 

on the basis of their Pd electro-dissolution promotional effect as follows: ClO4- < 518 

HSO4-/SO42- < Cl- < I-. Anions like Cl- and I- form stable Pd-anion complexes that can 519 

lead to an increase in dissolution [30]. Solomun, studying the role of anions in H2SO4 520 

and HClO4 with LEED and XPS, suggested that the adsorbed anion can weaken the Pd-521 

Pd surface bonds [30, 42]. They also proposed  that the adsorption of HSO4-/SO42- in 522 

the early stages of surface oxidation facilitates the interfacial place exchange [40-42], 523 
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thus resulting in enhanced Pd dissolution in the case of HSO4-/SO42-, as confirmed 524 

with our experimental findings. Furthermore, the dissolved Pd2+ can form in acidic 525 

electrolytes stable complexes, that if on the one hand can explain the enhanced 526 

electro-dissolution of Pd compared to Au and Pt, on the other hand can be at the 527 

origin of the different electro-dissolution in HClO4 and H2SO4. 528 

Even though the absolute amount of dissolved Pd per cycle is quite different in the 529 

two electrolytes (see Table 1), the percentage contribution of the different dissolution 530 

peaks follow qualitatively the same trend. (i) Below 1.1 VRHE only one peak is present, 531 

as at these low potentials it is not possible to distinguish between anodic and 532 

cathodic dissolution. (ii) Between 1.1-1.4 VRHE a dissolution peak corresponding to 533 

the cathodic reduction C1 is appearing and becoming more and more important. This 534 

dissolution peak is observed in the literature with different techniques as RRDE [34, 535 

44], CFDE [43] and quarzt microbalance [51, 52] referred in the literature to Pd(II)-536 

oxide reduction [30]. However, the Pd(II)-oxide can only undergo chemical 537 

dissolution (equations 5-5b), which is generally disregarded for other metals like Pt. 538 

The Pd solubility is higher than that of Pt and this could mean that, unlike for Pt, the 539 

chemical dissolution might play a role for Pd. Nevertheless, the experimental results 540 

indicate an existing correlation between the Pd(II)-oxide reduction (C1) and the 541 

dissolution peak, which cannot be easily explained only with chemical dissolution. 542 

Therefore, the dissolution has been often attributed to the reduction and desorption 543 

of adsorbed oxygen species that causes de-passivation (equation 3).  (iii) At 1.4 VRHE a 544 

second cathodic dissolution peak corresponding to the broad Pd(IV)-oxide reduction 545 

(C2) is observed (equations 2-2b). Even though the integration of such a broad peak is 546 

not easy, we can safely say that even at high UPL the amount of Pd(IV)-oxide formed 547 

is less than the amount of Pd(II)-oxide formed (C2 reduction charge density is much 548 
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smaller than C1 reduction charge density as shown in SI). On the other hand, the 549 

amount of dissolved Pd related to Pd(IV)-oxide reduction (C2) is much larger than the 550 

dissolved Pd related to Pd(II)-oxide reduction (C1) (Figure 3). (iv) Above 1.7 VRHE the 551 

cathodic dissolution overall exceeds the anodic dissolution. In particular, at 1.8 VRHE 552 

the cathodic dissolution associated to the Pd(IV)-oxide reduction (C2) becomes the 553 

dominant dissolution mechanism. 554 

Interesting is the trend of the transient anodic Pd dissolution with different UPLs as 555 

shown in Figure 3, where different potential regions can be observed in the two 556 

electrolytes. Above 0.9 VRHE Pd oxidation to Pd(II)-oxide (equations 1-1b) and Pd 557 

metal dissolution to Pd2+ (equation 3) are proceeding in parallel and upon an increase 558 

in UPL the transient anodic dissolution increases. Between 1.4 and 1.7 VRHE no 559 

increase in transient anodic dissolution is observed. This can have two reasons: (i) 560 

Around 1.3-1.4 VRHE a complete monolayer of Pd(II)-oxide is formed, thus preventing 561 

further Pd metallic dissolution (through equation 3). In the literature, different 562 

studies generally agree that the complete formation of a monolayer occurs between 563 

1.4-1.5 VRHE [30]. However, in this case the chemical dissolution of Pd(II)-oxide 564 

(equations 5-5b) would still be present in contrast to the observed passivation. 565 

Therefore, either the chemical dissolution can be disregarded (as for Pt), or the 566 

passivation arises from (ii) the formation of a top layer of chemically stable Pd(IV)-567 

oxide, which is reported to start, as mentioned above, also around 1.3-1.4 VRHE. 568 

However, if the Pd(IV)-oxide would cover completely the Pd surface one would 569 

expect much higher Pd(IV)-oxide reduction charges (peak C2). Therefore, we suggest 570 

that the kinetics of the Pd(II)-oxide chemical dissolution (equations 5-5b) is too slow 571 

and the associated dissolution products are below the ICP-MS detection limit. In this 572 

sense, the contribution of equations 5-5b is neglected in the following mechanistic 573 
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discussion and the observed passivation between 1.4 and 1.7 VRHE can be explained 574 

with the formation of a complete monolayer of Pd(II)-oxide. At more positive 575 

potentials the amount of anodically dissolved Pd increases again. The origin of this 576 

behavior is not clear yet and should be further investigated. However, this could be 577 

attributed to (i) evolution of oxygen (as observed for different metals [76]) and/or to 578 

(ii) changes in the oxide structure from a thin α Pd oxide to a thick, hydrous, porous β 579 

Pd oxide [37, 65, 74] and/or to (iii) formation of Pd(VI)-oxides [30, 31]. Indeed, the 580 

last two are reported to take place above the OER in acidic media. 581 

Even though the precise nature of Pd oxide is still unresolved, we showed that its 582 

dissolution process can be safely ascribed to surface processes involving different 583 

oxidation states and the changes between them. Additional work needs to be done to 584 

describe precisely the transient Pd dissolution. Nevertheless, a tentative mechanism 585 

can be derived from our experimental observations (Scheme 1). 586 

The main contribution to the anodic dissolution (related to oxidation peak A1) 587 

comes from metal Pd dissolution to Pd2+ (equation 3)(3), that is proceeding in parallel 588 

with surface oxidation to Pd(II)-oxide (equations 1-1b). The formed Pd(II)-oxide can 589 

be chemically dissolved (equations 5-5b), yielding other Pd2+, however as discussed 590 

earlier its contribution is neglected. As the potential increases Pd(II)-oxide oxidizes to 591 

Pd (IV)-oxide (equations 2-2b). Pd passivates (geometrically and/or 592 

electrochemically) once the first oxide monolayer is formed (no increase in transient 593 

anodic dissolution). The formed Pd-oxide film is rather complex and depends strongly 594 

on the UPL. Nevertheless, we suggest a possible general composition. For UPLs in the 595 

0.7-1.4 VRHE potential range, the formation of more Pd(II)-oxide (equations 1-1b) is 596 

favored over the formation of Pd(IV)-oxide and a monolayer Pd(II)-oxide is obtained 597 
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around 1.4 VRHE. Once the potential is raised above 1.4 VRHE the formation of Pd(IV)-598 

oxide becomes thermodynamically favorable and a layer of surface Pds(IV)-oxide 599 

forms on top.  600 

During the cathodic scan, first the Pds(IV)-oxide is reduced back to Pd(II) (equations 601 

2-2b) (C2 reduction peak) or dissolved to Pd2+ through the electrochemical reaction 602 

(equation 4) yielding the first cathodic dissolution peak. This peak is only obtained 603 

when the UPL is high enough that Pds(IV)-oxide is formed (equations 2-2b). 604 

Furthermore, (equation 4) is dependent on both the pH and the amount of oxide 605 

formed. Thus, it can nicely explain the steep increase with the UPL of the amount of 606 

dissolved Pd related to this first cathodic dissolution peak. Indeed, it becomes the 607 

dominant dissolution mechanism above 1.7 VRHE, where more Pd(IV)-oxide is formed.  608 

 609 

A second cathodic dissolution (related to the reduction peak C1) is observed at 610 

lower potentials where Pd(II)-oxide reduction (equation 1-1b) takes place. During 611 

transient conditions the mechanism of Pd ions production is not well understood. In 612 

many past and recent works, this dissolution was related to Pd(II)-oxide reduction 613 

yielding Pd2+ [43].  Based on electrochemical equilibria [31] Pd(II)-oxide could 614 

dissolve in a chemical reduction, which as discussed earlier can be disregarded. It has 615 

been suggested elsewhere for Au and other noble metals that the dissolution during 616 

the negative direction scan is due to the de-passivation of the oxide, resulting in the 617 

dissolution of the exposed metal ion [59]. Effectively, assuming a reasonable Pd2+ 618 

concentration of 1 nmol dm-3, from the dissolved amount of Pd, the equilibrium 619 

potential for the Pd metal electro-oxidation (E0(Pd/Pd2+) = 0.987 V + 0.0295 620 

log(Pd2+), in equation 3) would be approximately 0.72 VSHE (0.78 VRHE).  At such 621 
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potential of the Pd(II)-oxide would be already partially reduced and thus free Pd 622 

metal would be exposed to the electrolyte and be available for dissolution. Still, the 623 

estimated equilibrium potential of (equation 3) is higher compared to the lowest 624 

potential at which dissolution was detected. This could be simply an effect of (i) mass 625 

transport limitation and/or (ii) due to the presence of defects and adatoms formed 626 

during the oxide reduction whose equilibrium potential can differs from that of the 627 

bulk. As another possible contribution to this second cathodic dissolution peak we 628 

suggest that some remaining small amount of bulk Pdb(IV)-oxide embedded in the 629 

Pd(II)-oxide layer might play a role. Indeed, when Pd(II)-oxide is reduced back to Pd 630 

metal the remaining Pdb(IV)-oxide can dissolve in a non-reversible process through 631 

(equation 4). In summary, this second cathodic dissolution peak can be explained by 632 

assuming a direct dissolution of the Pd metal and/or a dissolution of a remaining 633 

Pd(IV)-oxide. Both explanations well match the correspondence of the Pd(II)-oxide 634 

reduction peak C1 and the dissolution measured with ICP-MS.  635 

5 Conclusion 636 

In conclusion, despite the uncertainty and complexity of the Pd oxidation states and 637 

mechanism, in this work we have proposed a model for the transient Pd dissolution 638 

based on our unique experimental results. This model is not only suitable for ideal 639 

bulk polycrystalline Pd, but our experimental results confirmed its validity also for 640 

supported high-surface-area catalysts, which despite their major interests for 641 

application were not studied previously.  Therefore, our findings will be of interest 642 

for future studies on Pd and Pd-based alloys degradation in real applications.  643 

While the proposed mechanism explains the dissolution trends of the presented 644 

results, still some unresolved questions remain open and will need further 645 
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investigations. First, the lack of a precise knowledge of the chemical species formed at 646 

the Pd surface represents an obstacle for a full understanding of Pd dissolution. 647 

Secondly, the role of the transition between thin α oxide and thick β hydrous oxide 648 

formed at very high anodic polarization or the formation of Pd(VI) oxide and its 649 

relevance for the transpassive region could not be clarified. Finally, the influence of 650 

parameters such as temperature, the presence of anions and cations in different 651 

electrolytes and the nanoparticle size needs further investigation.  652 
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 881 

Figure 1 CVs recorded for a poly-Pd electrode in the SFC setup in 0.1M HClO4 882 

and in 0.1M H2SO4. Scan rate: 200 mV s-1. The position of the anodic oxidation 883 

peak and two cathodic reduction peaks are indicated with A1, C2 and C1 884 

respectively. The complete cycle voltammogram (including hydrogen 885 

adsorption/absorption and desorption) and the comparison with RDE are 886 

reported in the SI. 887 
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 898 

Figure 2 (a) The potential program applied to the poly-Pd electrode consisted 899 

of 30 scans (200 mV s-1) for cleaning, an open circuit potential (OCP) phase and 900 

several scans (10 mV s-1) with increasing UPL. The measured poly-Pd 901 

dissolution profiles are shown in (b). The inset in (b) corresponds to the 902 

integrated dissolved mass of Pd per cycle at different UPL. The corresponding 903 

cathodic sweeps for different UPL in 0.1M H2SO4 and HClO4 are shown in (c) and 904 

(d) respectively. The charge densities associated to the reduction peaks C1 and 905 

C2 are shown in the SI.  906 
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 922 

Figure 3 Integrated mass of dissolved Pd corresponding to the anodic 923 

dissolution peak (A1) and the two cathodic peaks (C2 and C1) are reported in 924 

HClO4 (a) and H2SO4 (b) at different UPL during the protocol shown in Figure 2. 925 

(c)  Comparison of the anodic (A1) dissolution peak in the two acids.  926 
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 942 

Figure 4 (a) 4 slow scans (2 mV s-1) with increasing UPL (0.9, 1.2, 1.5, 1.8 VRHE) 943 

and the corresponding measured poly-Pd dissolution profiles in 0.1M HClO4 944 

and H2SO4 (b). The position of the first (anodic: A1) dissolution peak and the 945 

two cathodic (C2 and C1) are marked by red, grey and blue arrows respectively. 946 

The corresponding mass cyclic voltammograms in (c) sulphuric and (d) 947 

perchloric acid. The percentage of anodic (A1) and cathodic dissolution (C2 and 948 

C1) are shown for the respective acid in the inlet of (c) and (d).  949 
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 962 

Figure 5 (a) Bright field TEM micrographs showing Pd/C nanocatalyst 963 

deposited on a lacey carbon TEM grid, and their particle size distribution 964 

(inset). (b) slow scans (2 mV s-1) with increasing UPL and the corresponding 965 

measured poly-Pd and Pd/C dissolution profiles normalized by the real surface 966 

are (for Pd/C estimated after the activation) (c). Normalized CVs (b-inset) and 967 

the normalized mass dissolved per cycle (c-inset) are also shown. Electrolyte: 968 

0.1M HClO4. 969 
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 983 

Scheme 1 Proposed model of the transient dissolution of Pd. A1: from double 984 

layer region to Pd-oxide (both Pd(II) and Pd(IV) oxidation states depending on 985 

the UPL). C2: reduction of Pd(IV)-oxide to Pd(II)-oxide and Pd metal (with 986 

dissolution). C1: reduction of Pd(II)-oxide to Pd metal. 987 
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