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1. Abstract 

Cold-based polar glacier watersheds contain well-defined supraglacial, ice-marginal, 

and proglacial elements that differ in their degree of hydrologic connectivity, sources of 

water (e.g. snow, ice, and/or sediment pore water), meltwater residence times, allochthonous 

and autochthonous nutrient and sediment loads. We investigated 11 distinct hydrological 

units along the supraglacial, ice marginal, and proglacial flow paths that drain Joyce Glacier 

in the McMurdo Dry Valleys of Antarctica. We found that these units play unique and 

important roles as sources and/or sinks for dissolved inorganic nitrogen (DIN) and 

phosphorus (DIP), and for specific fractions of dissolved organic matter (DOM) as waters are 

routed from the glacier into nutrient-poor downstream ecosystems. Changes in nutrient export 

from the glacial system as a whole were observed as the routing and residence times of 

meltwater changed throughout the melt season. The concentrations of major ions in the 

proglacial stream were inversely proportional to discharge, such that there was a relatively 

constant “trickle” of these solutes into downstream ecosystems. In contrast, NO3
-
 

concentrations generally increased with discharge, resulting in delivery of episodic pulses of 

DIN-rich water (“treats”) into those same ecosystems during high discharge events. DOM 

concentrations/fluorescence did not correlate with discharge rate, but high variability in DOM 

concentrations/fluorescence suggests that DOM may be exported downstream as episodic 

“treats”, but with spatial and/or temporal patterns that remain poorly understood. The strong, 

nutrient-specific responses to changes in hydrology suggest that polar glacier drainage 

systems may export meltwater with nutrient compositions that vary within and between melt 

seasons and watersheds. Since nutrient dynamics identified in this study differ between 

glacier watersheds with broadly similar hydrology, climate and geology, we emphasize the 

need to develop conceptual models of nutrient export that thoroughly integrate the 
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biogeochemical and hydrological processes that control the sources, fate and export of 

nutrients from each system. 

2. Introduction 

Glaciers are a primary water source in many polar watersheds and are an important 

source of macronutrients, including nitrogen (N), phosphorus (P) and carbon (C) (Bagshaw et 

al., 2013; Bhatia et al., 2013b; Hawkings et al., 2016). Most glacially-derived meltwater 

originates on the glacier surface (supraglacial environment) and in cold-based glacier systems 

in the McMurdo Dry Valleys of Antarctica (and many other glacier systems world-wide), this 

environment contains a number of discrete and relatively well-studied biogeochemical 

systems including snow, glacier ice, cryoconite holes, cryolakes, and supraglacial streams. 

The physical differences between these systems result in differences in both allochthonous 

and autochthonous sources/sinks for nutrients. Atmospheric aerosol deposition and in situ 

biogeochemical processes and microbial activity in supraglacial snowpacks (Hodson, 2006) 

can lead to the release of meltwaters with high concentrations of dissolved inorganic nitrogen 

(DIN; Tranter et al., 1993; Hodson et al., 2005) and labile organic matter (Barker et al., 2006, 

2009; Dubnick et al., 2010). Microbial activity in cryoconite holes can generate high 

concentrations of dissolved organic carbon (DOC), nitrogen (DON) and phosphorus (DOP) 

(Stibal et al., 2008; Bagshaw et al., 2013), even in Blue Ice areas of the East Antarctic ice 

sheet where DIN may accumulate and is recycled by the cryoconite microbial community 

(Hodson et al., 2013). These nutrients may be bio-available (Stibal et al., 2008; Anesio et al., 

2009; Bhatia et al., 2010; Bagshaw et al., 2013) and can feed downstream ecosystems 

(Foreman et al., 2004) if the meltwaters connect to streams that transport them across the 

glacier surface. Surface streams are one of the least favourable biological habitats in the 

supraglacial system and are characterised by low concentrations of NO3
-
 and low nutrient 



This article is protected by copyright. All rights reserved. 

processing rates, but nitrification and dissolved organic matter (DOM) uptake have 

nonetheless been observed (Fortner et al., 2005; Scott et al., 2010).  

On cold-based glaciers that are frozen to the bed, supraglacial streams transport 

meltwater across the glacier surface to either an un-channelized ice-marginal zone or a well-

defined proglacial stream. This ice-marginal environment has geochemical similarities with 

the subglacial environments in warm-based and polythermal glaciers since it can host a 

complex drainage network that includes thin films of water, water-saturated till, and poorly 

inter-connected ponds. It is also the location where dilute supraglacial meltwater first comes 

into contact with abundant sediment, some of which may be freshly comminuted, and hence 

is an area of potentially high geochemical activity (Anderson et al., 2000). Unlike many 

subglacial regions, the ice-marginal environment is exposed to atmospheric sources of solutes 

and atmospheric gases (e.g. O2 and CO2) that can fuel weathering processes. 

Studies of the form, availability, and cycling of glacially-derived nutrients highlight the 

importance of nutrients in supporting downstream ecosystems (e.g. Hood et al., 2009; Bhatia 

et al., 2013a; Lawson et al., 2013, 2014; Hawkings et al., 2015). This is particularly evident 

in the polar desert watersheds of Antarctica’s Dry Valleys (Moorhead et al., 1997, 2005; 

Foreman et al., 2004; McKnight et al., 2004; Barrett et al., 2007; Bate et al., 2008) where 

glacier runoff is effectively the only source of water and downstream lakes are among the 

most nutrient-limited aquatic ecosystems on Earth (Parker and Simmons, 1985; Priscu, 1995; 

Foreman et al., 2004; Dore and Priscu, 2013). The fluxes and timing of nutrient delivery, 

especially of limiting nutrients, to depauperate downstream ecosystems may play an 

important role in controlling the rates and timing of primary production in those systems 

(Bagshaw et al., 2013). 

To date, there has been no integrated study of the distinct sources/sinks of 

macronutrients in Dry Valley watersheds and the nutrient cycling that occurs as waters flow 
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en route to downstream proglacial ecosystems. Joyce Glacier in the Garwood Valley of 

Southern Victoria Land, Antarctica, provides a unique opportunity to study these processes. 

Its watershed includes distinct and accessible supraglacial, ice-marginal and proglacial 

hydrological units that exhibit variability in flow rates, water levels, and water residence 

times over the course of a melt season. These hydrological units differ in their degree of 

hydrologic connectivity, sources of water (e.g. snow, ice, and/or sediment pore water), 

meltwater residence times, allochthonous and autochthonous nutrient and sediment loads. 

This study has two objectives. The first is to evaluate whether/how the distinct 

hydrological environments encountered by meltwaters passing through Joyce Glacier’s 

supraglacial, ice-marginal and proglacial drainage systems function as sources and/or sinks 

for dissolved macronutrients (N, P, and C). We predict that each hydrological environment 

will play a unique role in the meltwater and nutrient dynamics of the whole drainage system 

because they differ in terms of the degree of contact that occurs between water, geological 

material, the atmosphere, biotic communities, and allochthonous nutrient sources. We expect 

nutrient export from the whole system to be sensitive to the fraction of water that passes 

through each environment, and to the amount of time that water spends in each of them. Our 

second objective is therefore to evaluate how variations in the routing and transit times of 

meltwater passing through the combined supraglacial, ice-marginal, and proglacial drainage 

system affect the export of macronutrients from the system as a whole. Specifically, we seek 

to determine whether nutrient delivery to downstream ecosystems occurs as a steady “trickle” 

or as a series of episodic “treats”.  

3. Methods 

3.1. Study Site 

The Garwood Valley in Southern Victoria Land, East Antarctica, extends east-west 

between the East Antarctic Ice Sheet and the Ross Sea (78°1’S, 163°51’E). The area is 
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considered a polar desert with high winds and very low precipitation, almost all of which falls 

as snow. The surficial geology of the Garwood Valley consists largely of calcareous aeolian 

and fluvial sediments and glacial moraines, with exposures of dolomite, granite, and 

metamorphosed bedrock. Basement rocks are dominated by impure calcareous rocks, with a 

mineral composition that includes calcite, calc-silicates, phlogopite, pargasite and 

chondrodite (Williams et al., 1971). Mafic and felsic rocks are also present, and include 

amphibolites and rocks containing quartz-feldspar-biotite (Williams et al., 1971). 

Joyce Glacier, located at the western end of the Garwood Valley, feeds proglacial 

Holland Stream (Figure 1), which flows along the north-east margin of the glacier and into 

proglacial Lake Colleen, approximately 750 m from the glacier terminus. This 1 km long lake 

is permanently ice-covered but develops a moat several meters wide and an outlet channel 

during the melt season. The outflow of Lake Colleen (Garwood Stream), flows along the 

terminus of the Garwood Glacier, and enters the Ross Sea ~10 km downstream. 

Meltwaters are routed into the Holland Stream via one of two dominant flow paths. 

Water following the primary flow path originates from supraglacial ice and snow melt, and 

passes through cryoconite holes, cryolakes, and small supraglacial streams before draining 

into the ice-marginal environment via gullies along the glacier margin. It then flows through 

multiple small, poorly-defined streams and/or via shallow subsurface pathways until it 

reaches the Holland Stream (Figure 1).  

Considerably less water follows the second flow path to the proglacial stream. Most of 

this water originates as ice melt from either the terminal cliffs of Joyce Glacier or the apron 

of calved ice blocks at their foot. These waters drain through moraines via shallow subsurface 

pathways and collect in a small proglacial pond that fills and discharges intermittently 

(typically when melt rates are high) into proglacial Holland Stream via a well-defined 

channel. 
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3.2. Data Collection 

3.2.1 Discharge monitoring 

Holland Stream stage was measured from January 7-31, 2010 at 15 minute resolution 

using a non-vented HOBO U20-001-04 Water Level Logger (range of 0 to 4 m and accuracy 

of ± 0.3 cm). The stage data were barometrically compensated using data from a CS100 Setra 

barometer installed at the Joyce Glacier weather station (see below). Manual flow 

measurements, made almost daily between January 7
th

 and January 31
st
, 2010, were used to 

estimate discharge using the USGS mid-section method, with velocity measured at 0.6 of 

water depth in each segment of the cross-section (Turnipseed and Sauer, 2010) using a 

Marsh-McBirney Flo-Mate 2000.  

Stage-discharge relationships were established using the Rating Curve toolbox in the 

AQUARIUS™ software suite, using 21 manual discharge measurements. Shift corrections 

were applied to the stage-discharge rating curve after January 17
th

 to account for the effects 

of sediment aggradation on the hydraulic geometry. Due to difficulties in generating a stable 

rating curve, the magnitude of the calculated discharge values should be treated with caution. 

3.2.2 Meteorological monitoring  

Meteorological conditions on Joyce Glacier were recorded using a Campbell Scientific 

weather station powered by a solar panel. Measurements were logged every 5 minutes and 

stored as 15 minute averages in a Campbell Scientific CR1000 data logger and include air 

temperature and relative humidity (HMP45C sensor), incoming and outgoing short plus long 

wave radiation (CNR1 net radiometer), and wind speed and direction (RM Young 5103 

sensor). . 

3.2.3 Sampling 

A total of 154 water samples were collected from the supraglacial (cryoconite 

holes/cryolakes, supraglacial streams), ice-marginal (gullies and pond outflow) and proglacial 
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(upstream, lake and downstream) environments between January 6 and February 2, 2010. The 

samples probably do not represent the full range of spatial or temporal variability in water 

chemistry that exists within each environment. Since the focus of our study is on nutrient 

dynamics in the proglacial stream, we targeted our sampling of the supraglacial and ice-

marginal systems from multiple sites during conditions of high hydrological 

connectivity/export (between ~11:00 and 18:00) and interpret our results in the context of 

other studies that more fully capture the temporal and spatial variability of similar 

environments. We compare daily samples collected in the proglacial (Holland) stream in 

2010 with samples from the source areas, as well as samples collected at 2-hour intervals 

over a 24-hour period on December 9-10, 2008.  

Water samples were collected in 1-L plastic Nalgene bottles after rinsing three times 

with sample. Ice samples were collected using an ethanol-bathed and flame-sterilized steel 

chisel, and were melted in the field in sterile Whirlpak bags. An aliquot of sample was 

filtered through sterile 0.7 µm GF/F syringe/filters (rinsed three times with sample prior to 

use). Two 28-mL universal glass vials were each rinsed three times with filtered sample 

before being filled and frozen (for dissolved organic carbon (DOC), dissolved organic matter 

(DOM), and total nitrogen (TN) analyses). This procedure was also followed using 0.45 µm 

cellulose nitrate filters to fill two 50-mL plastic Nalgene bottles (for major ions) and two 1.5-

mL dry glass chromacol vials (for δ18O and δ 2
H) for each sample. 

3.3. Laboratory Analyses 

Concentrations of major ions (Ca
2+

, K
+
, Na

+
, NH4

+
, SO4

2-
, NO3

-
, and Cl

- 
)
 
were 

determined using a Dionex (DX-500) ion chromatograph (IC) equipped with a GP50 gradient 

pump and an autosampler with 5 mL polypropylene polyvials (as described by Lawson et al., 

2013). For anion analyses, we used an IonPac AS11-HC Hydroxide Selective Anion-

Exchange Column (4 x 250 mm) and IonPac AG11-HC Guard Column (2 x 50 mm) with an 
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ASRS (4mm) suppressor, operated in 100 mA AutoRegen mode with 30 mM sodium 

hydroxide eluent. For cation analyses, we used an IonPac CS12A Cation-Exchange Column 

(4 x 250 mm) with CSRS ULTRA II 4 mm suppressor, operated in the 50 mA AutoRegen 

mode with 20 mM MSA eluent. Detection limits were: Ca
2+

 = 2.0 µeq L
-1

, K
+
 = 0.26 µeq L

-1
, 

Na
+
 = 3.0 µeq L

-1
, NH4

+ 
= 0.55 µeq L

-1
, SO4

2-
 = 2.1 µeq L

-1
, NO3

-
 = 0.48 µeq L

-1
, and Cl

- 
= 

2.8 µeq L
-1

 and accuracies were c. 5%. HCO3
-
 concentrations were taken to be equal to the 

charge balance error for each sample. Concentrations of PO4
3-

, DSi, NO2
-
 were analyzed 

using a Bran and Luebbe continuous segmented-flow AutoAnalyser (AA3) based on 

principles of colorimetry. Detection limits for each ion were: PO4
3- 

= 0.42 µeq L
-1

; DSi = 3.2 

µM, NO2
-
 = 0.26 µM, and accuracies were c. 10%. 

Total dissolved P was determined using a sulphuric acid/persulphate digestion step 

(Johnes and Heathwaite, 1992). The samples were autoclaved with an oxidizing solution 

containing potassium persulphate, boric acid and sodium hydroxide. The samples were then 

measured colorimetrically on a Shimadzu UVmini-1240 spectrophotometer for total 

dissolved phosphorus. The detection limit was 1.6 µM and accuracy was <5%. Non-

purgeable organic carbon and total nitrogen (TN) concentrations were determined by high 

temperature combustion (680°C) using a Shimadzu TOC-VCSN/TNM-1 Analyzer equipped 

with a high sensitivity catalyst. The detection limit for DOC was 17 µM (accuracy of ca. 

10%) and 0.7 µM (accuracy of < ca. 5%) for TN. DON was subsequently calculated by 

subtracting corresponding NO3
-
 and NH4

+ 
concentrations from TN. 

The spectrofluorescent properties of DOM were determined using a Horiba Fluorolog-3 

spectrofluorometer equipped with a xenon lamp as an excitation source. Frozen samples were 

thawed and warmed to room temperature immediately prior to analysis in a sample-rinsed 

quartz glass cuvette with a 10 mm path length. Synchronous scans were completed by 

measuring the fluorescence intensity at 1 nm intervals over emission wavelengths between 
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218 and 618 nm, with an excitation offset of 18 nm, an integration time of 0.5 s, and 10 nm 

slits. Internal and dark corrections were applied to the results.  

3.4. Data Processing and Statistical Analysis 

Data were processed in Matlab R2015a. One-way analysis of variance (ANOVA) was 

used to assess the significance of differences in the concentrations of nutrients between 

sampling environments (e.g. cryoconite holes vs supraglacial streams). For chemical nutrients 

with concentrations that were below the analytical detection limit in most samples (i.e. NH4
+
 

and PO4
3-

), Fisher Exact Tests (FET) were used to evaluate the significance of between-

environment differences in the frequency of detection. Where concentrations of a given 

constituent were above the detection limit in all samples taken from a specific environment, 

2-sample t-tests were used to evaluate the statistical significance of concentration differences 

between environments. Spearman Rank correlations were used to evaluate the significance of 

dependency between variables within an environment. We acknowledge that because samples 

were not collected randomly (in space or time), p-values may not accurately reflect the true 

significance of the differences that exist within or between the hydrological environments 

sampled in this study.  Nonetheless, a p-value of <0.05 was judged to indicate a significant 

difference for all statistical tests that were applied to the spatially and/or temporally clustered 

sample data that form the basis to this study.   

The spectrofluorescence data were processed and modelled using Principal 

Components Analysis (PCA) to decompose the complex multivariate signals into linearly 

independent components (Persson and Wedborg, 2001; Barker et al., 2009), which 

characterize the variance in the dataset and are interpreted as specific fractions of DOM. Due 

to the limitations associated with classifying individual components of DOM via fluorescence 

spectroscopy, particularly when using synchronous scans that cover only a small transect of 
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the total optical space, we characterize DOM components broadly as being either protein-like 

(emission peak <350 nm) or humic-like (emission peak >350 nm) (Carstea, 2012).  

Relationships between nutrient concentrations and coincident discharge rates (typically 

measured within 1 hour of sampling) were developed using Locally Weighted Scatterplot 

Smoothing (LOWESS) with a span of 0.7. Confidence intervals were calculated as ± two 

times the standard deviation of 1000 LOWESS relationships derived by bootstrapping. The 

upper and lower confidence intervals from these curves were used to estimate nutrient fluxes 

at the calculated discharge rates throughout the monitoring period. 

4. Results  

4.1. Hydrology and major ions 

Like other Dry Valley glaciers, Joyce Glacier’s energy balance is driven primarily by 

shortwave radiation, resulting in strong diurnal and seasonal fluctuations in the volume of 

meltwater produced (Figure 2; Hoffman et al., 2008). Supraglacial snow and glacier ice 

yielded the most dilute samples, with mean total ion concentrations of 180 µeq L
-1

 and 97 

µeq L
-1

, respectively (Figure 3a). Mean solute concentrations were significantly higher in 

cryoconite holes (662 µeq L
-1

), supraglacial streams (596 µeq L
-1

) and ice-marginal gullies 

(668 µeq L
-1

) (ANOVA, p<0.05) and continued to increase downstream, including in the ice-

marginal pond (1262 µeq L
-1

) and proglacial environments. Mean solute concentrations 

increased significantly from the proglacial upstream site (1247 µeq L
-1

) to the proglacial 

downstream site (1469 µeq L
-1

; ANOVA, p<0.05), and the concentration of total ions at the 

proglacial upstream site was negatively correlated with discharge (rs=-0.64, n=22, p<0.01) 

(Figure 4). 

4.2. Dissolved Inorganic Nitrogen 

DIN in natural waters consists primarily of NO3
-
, NO2

-
, and NH4

+
, all of which were 

analyzed in this study. While 83% of meltwater samples contained NO3
-
 concentrations 
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above the detection limit (0.48 µM), only 64% contained NH4
+ above the detection limit 

(0.55 µM), and none contained NO2
- 

above the detection limit (0.52 µM). Therefore, the 

discussion of DIN in this study is limited to NO3
-
 and NH4

+
, for which both concentration 

and/or detection rate varied significantly within and between meltwater environments (Figure 

3b; Figure 5). 

In the supraglacial environment, snow contained the highest average concentration of 

NO3
-
 (5.0 µM,) and glacier ice produced the highest detection rate of NH4

+
 (90% of samples). 

Supraglacial streams and cryoconite holes, which are fed by snow and ice melt, produced a 

significantly lower detection rate of NH4
+
 than glacier ice (FET, p<0.05) and significantly 

lower NO3
-
 concentrations than snow (ANOVA, p<0.05). As supraglacial streams were 

routed through the ice-marginal gullies, mean NO3
-
 concentrations increased from 1.87 µM to 

3.25 µM (ANOVA, p<0.05). The ice-marginal pond waters contained even higher NO3
-
 

concentrations than were found in the ice-marginal gully waters (8.61 µM; ANOVA, 

p<0.05), but NH4
+
 was detected in only 50% of samples from these waters. NO3

-
 

concentrations in the ice-marginal pond were significantly higher than those in potential 

source waters, including snow, glacier ice, moraine ice, and gully water (ANOVA, p<0.05). 

DIN was depleted and/or diluted in the proglacial stream and lake where the frequency of 

detection of NH4
+
 and the concentration of NO3

- 
decreased from 20% and 1.54 µM at the 

upstream site to 8% and <0.48 µM at the downstream site, respectively. At the proglacial 

upstream site, NO3
-
 was positively related to discharge (rs=0.79, n=22, p<0.01; Figure 4).  

4.3. Dissolved Inorganic Phosphorus  

Only 47% of the meltwater samples in this study contained dissolved inorganic 

phosphorus concentrations (DIP; PO4
3-

) above the detection limit (0.24 µM). However, 

significant variations in both detection rate and concentration were observed along the flow 

path (Figure 5). Low concentrations of rock-derived nutrients, including phosphorus, were 
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found in supraglacial snow and ice (less than 30% of samples contained PO4
3-

 concentrations 

above the detection limit). The detection rate of PO4
3-

 increased significantly from ice to 

cryoconite holes (FET, p<0.05). However, PO4
3-

 concentrations in cryoconite hole samples 

were highly variable, with 37% of samples below the detection limit, and others containing 

the highest concentrations observed among all meltwater samples (i.e. 3.5 µM and 1.6 µM).  

All the ice-marginal samples contained PO4
3-

 concentrations above the detection limit, 

which is a significantly higher detection rate than for snow (FET, p=0.02) and ice (FET, 

p=0.002). Similar to waters from ice-marginal gullies, all samples from the ice-marginal pond 

contained detectable quantities of PO4
3-

, but the average concentration in the pond waters 

(0.46 µM) was significantly higher than in the gullies (0.34 µM, T Test, n1=6; n2=3, p<0.01). 

All basal ice and moraine ice samples contained detectable quantities of PO4
3-

, with 

concentrations averaging 1.17 µM and 0.49 µM, respectively. Detection of PO4
3-

 decreased 

significantly in the proglacial system, from 100% in the ice-marginal gullies to 25% at the 

upstream proglacial site (FET, p=0.001), and 0% at the downstream proglacial site (FET, 

p=0.01).  

4.4. Dissolved Organic Matter 

Dissolved organic matter (DOM) in the system was assessed by exploring dissolved 

organic carbon (DOC), nitrogen (DON) and phosphorus (DOP) concentrations and 

characterizing DOM using spectrofluorescence methods. While all samples contained 

detectable concentrations of DOC and DON, only 4 samples contained DOP above the 

detection limit. Although DON comprised most (average of 74%) of the dissolved nitrogen in 

the meltwater samples, with a mean concentration of 11 µM, no significant differences in 

DON concentrations were observed between the various meltwater environments (ANOVA, 

p>0.05). Two Principal Components of the fluorescence spectra explained 76.9% and 21.6% 

of the variance in the dataset, and the remaining components each explained <0.6%. 
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Component 1 had a prominent emission peak at 330 nm, associated with protein-like 

moieties, and Component 2 had an emission peak at 405 nm, associated with humic-like 

moieties (Carstea, 2012).  

Although DOC concentrations in supraglacial snow and ice were not measured in this 

study, previous work reports DOC concentrations of between ~20 µM and 40 µM in 

supraglacial snow and ice from the Dry Valleys (Bagshaw et al., 2013; Barker et al., 2013). 

Cryoconite hole waters had an average DOC concentration of 125 µM with a standard 

deviation of 75 µM (n=13). Despite this variability in DOC concentrations, all cryoconite 

hole DOM samples had similar spectrofluorescence properties. In addition to strong loadings 

on Components 1 and 2, cryoconite hole samples contained a prominent peak at 298 nm with 

a fluorophore-like signal (systematic bell-shaped curve), described by PCA Component 7, 

suggesting the presence of an additional protein-like moiety (Carstea, 2012). While this 

component explained only 0.04% of the variability in the total dataset, it had significantly 

higher loading on cryoconite hole DOM than on DOM from any of the other meltwater 

environments, including the outflow channels of the cryoconite holes (Figure 3h, ANOVA, 

p<0.05). Component 7 was negatively correlated with deuterium excess (rs=-0.56, n=15, 

p=0.03) and air temperature (rs=-0.63, n=10, p=0.05), suggesting that melt-refreeze cycling, 

evaporation effects and/or weather conditions may affect its abundance.  

DOC concentrations decreased by more than 50% between supraglacial streams (x฀ = 

131 µM) and ice-marginal gullies (x฀ = 54 µM), but increased again by a factor of 

approximately 3.5 in the ice-marginal pond (x฀ = 192 µM, the highest mean DOC 

concentration among all meltwater environments). The ice-marginal pond water also yielded 

the highest fluorescence of the humic-like Component 2 DOM fraction, and the highest C/N 

ratio.  
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The proglacial stream contained some of the lowest DOC concentrations measured, and 

displayed significantly less protein-like Component 1 fluorescence than was found in the 

supraglacial stream (ANOVA, p<0.05), and significantly less humic-like Component 2 

fluorescence than the ice-marginal pond (ANOVA, p<0.05). In the proglacial stream, DOC 

concentrations and DOM characteristics remained relatively constant between the upstream 

and downstream monitoring sites, displaying no significant differences (ANOVA, p>0.05), 

despite the relative abundance of algal mat communities in the littoral zone of the proglacial 

lake and in stable, slow-flowing sections of the stream. Neither DOC concentrations nor the 

fluorescence intensity of the DOM components varied significantly with proglacial stream 

discharge (rs=0.12, n=22, p=0.58), but DOC concentrations were significantly higher in 

January   1  (x฀ = 88 µM) than in December    8 (x฀= 21 µM; T test, n1 = 6; n2 = 22, 

p<0.05) and they varied considerably throughout both melt seasons ( = 47 µM). 

5. Discussion 

5.1. Nutrient sources and sinks along the flow path 

5.1.1 Supraglacial Environments 

Most water in the Garwood Valley originated from supraglacial snow or ice melt, in 

which NO3
-
 and NH4

+
 concentrations were high (Figure 3; Figure 5; Figure 6). DIN in snow 

and ice can be derived from atmospheric sources via snowfall or dry deposition. Cryoconite 

holes and cryolakes functioned as a sink for NH4
+
 and NO3

-
 and as a source of PO4

3-
 and the 

protein-like DOM Component 7 in this study (Figure 3, Figure 5; Figure 6). They are widely 

known as active biogeochemical systems (Bagshaw et al., 2007; Hodson et al., 2010; Tranter 

et al., 2010) and their nutrient dynamics are important because waters that pass through them 

comprise a significant portion of supraglacial runoff meltwater (Fountain et al., 2004).  

Cryoconite holes and cryolakes facilitate relatively prolonged and extensive rock-water 

contact, which can add rock-derived nutrients, such as DIP, to the solute-poor meltwaters. 
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Geochemically active biota have been observed in cryoconite holes, which are known to 

assimilate inorganic nutrients (including DIN and DIP) in the production of organic material 

(Hodson et al., 2005) and play an important role in defining the biogeochemistry of 

supraglacial waters and the range of nutrients exported to downstream ecosystems (Bagshaw 

et al., 2010, 2013, 2016a). For example, the DIN requirements of primary producers in 

cryoconite holes in Antarctic blue-ice environments exceeds rates of DIN supply from ice 

melt at the base of the hole, suggesting that DIN is actively recycled within these systems and 

that they are likely to have an important influence on the nitrogen economy of supraglacial 

waters (Hodson et al., 2013). DIN may also be utilized by microbes as an electron acceptor in 

energy-producing redox reactions such as denitrification (Hodson et al., 2010; Telling et al., 

2011). Although nitrogen cycling in cryoconite holes and supraglacial streams can be 

complex, studies have identified the occurrence of nitrification (Baron et al., 1995; Hodson et 

al., 2005; Scott et al., 2010), denitrification (Hodson et al., 2010; Telling et al., 2011), 

nitrogen assimilation (Hodson et al., 2005) and the production of particulate nitrogen 

(Bagshaw et al., 2013). 

Biological activity in cryoconite holes likely results in long-term net carbon fixation, 

which may be an important source of DOM for nutrient-poor downstream ecosystems 

(Bagshaw et al., 2016a) and, potentially, the protein-like DOM (Component 7) observed in 

this study. The relative abundance of this DOM fraction in cryoconite holes and cryolakes, 

and its depletion downstream, suggest that this fraction of the DOM pool may be labile and 

provide a metabolic substrate for downstream ecosystems. Other studies have identified 

similar autochthonous/microbial/protein-like DOM compounds in cryoconite holes world-

wide (Lawson et al., 2013, 2014; Pautler et al., 2013) and uniquely supraglacial fractions of 

DOM which are likely labile (Bhatia et al., 2010; Dubnick et al., 2010; Barker et al., 2013; 

Lawson et al., 2014), show non-conservative behaviour, and are depleted in downstream 
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ecosystems (Barker et al., 2006, 2013; Hood et al., 2009; Scott et al., 2010) by biotic or 

abiotic processes (e.g. photochemical reactions).  

5.1.2 Ice-marginal Environments 

Solute-poor meltwaters from the supraglacial environment are routed into sediment-rich 

ice-marginal gullies, where large increases in NO3
-
 occur (Figure 3b; Figure 6). A large 

portion of DIN supplied to meltwaters in the ice-marginal system may be sourced from the 

dissolution of nitrogen-containing salts. Low precipitation rates, humidity, and overland flow 

allow salts to accumulate in Dry Valley soils, similar to other arid regions where evaporation 

and sublimation exceed precipitation (Bisson et al., 2015). Nitrates of sodium and 

magnesium, including Darapskite (Na3NO3SO4H2O) and soda niter (NaNO3), are widespread 

in South Victoria Land (Claridge and Campbell, 1968; Keys and Williams, 1981), are highly 

soluble and, if present, could readily contribute NO3
-
 to meltwaters. The ice-marginal water 

chemistries observed here are similar to those observed in ice-marginal ponds elsewhere in 

the Dry Valleys where the dissolution of atmospheric aerosols (e.g. HNO3, (NH4)2SO4) and 

nitrate-bearing salts contribute significantly to the solute load (Healy et al., 2006; Wait et al., 

2006; Webster-Brown et al., 2010).  

Biogeochemical activity in the ice-marginal system may also supply meltwaters with 

DIN. Active microbial communities, which are likely important in N cycling, have been 

identified in recently deglaciated ice-marginal soils (Strauss et al., 2012). Studies of freshly-

exposed, ice-marginal soils report that in situ N-cycling is initially dominated by nitrogen 

mineralization via the decomposition of organic matter (<10 yrs exposed), followed by N-

fixation (50 to 70 years exposed) (Brankatschk et al., 2011). Other studies have identified the 

presence of nitrification in ice-marginal environments (Wynn et al., 2007; Hodson et al., 

2009; Ansari et al., 2012), and suggest that the amount of NO3
- 
derived from nitrification can 

exceed that derived from atmospheric deposition (Roberts et al., 2010).  
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There may be similar sources of DIN along the secondary flow path where meltwaters 

are routed from the apron of calved ice blocks along the terminus and the vertical ice cliffs to 

the ice-marginal pond. The ice-marginal pond was the most nutrient-rich environment along 

the flow path and contained the highest concentrations of DIN and DIP. These high 

concentrations may result from extensive access to nitrogen-containing salt deposits and 

longer contact with relatively phosphorus-rich glacial till (Gudding, 2003) as waters follow 

spatially and temporally dynamic flow paths in the shallow subsurface between the glacier 

terminus and the pond. Pond waters may also acquire DIN and DIP from the melting of basal 

ice, which is found in nearby ice-cored moraines. Basal ice usually contained NH4
+ 

at 

concentrations at least an order of magnitude higher than found in most other environments, 

which could be oxidized to NO3
-
 by nitrifying bacteria in the hyporheic zone or the soil, as 

has been reported for other Dry Valley streams (McKnight et al., 2004) subglacial and ice-

marginal sediments (Wynn et al., 2007; Hodson et al., 2009; Ansari et al., 2012).  

Pond water maintained high DIN and DIP concentrations despite the presence of 

abundant algae that likely function as a sink for inorganic nutrients. Extensive phytoplankton 

and microbial mat communities dominated by cyanobacteria have been observed in other Dry 

Valley ice-marginal ponds (Webster-Brown et al., 2010). The presence of algal communities 

in the pond may also affect the DOM characteristics of these waters. The ice-marginal pond 

waters had the highest fluorescence of the humic-like Component 2 DOM fraction and the 

highest C/N ratio of all meltwater environments sampled (Figure 3d,f). Both observations are 

consistent with the presence of humic substances that fluoresce at long wavelengths and have 

relatively high C content, and they suggest that the ice-marginal pond may be a source of 

humic DOM. Although humic DOM is typically produced by terrestrial vascular plants, 

which are absent from the Garwood Valley, a similar humic-like fluorescent component can 

be produced in aquatic environments by the microbial degradation of phytoplankton DOM 
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(Stedmon and Markager, 2005). Previous studies suggest that production and consumption of 

similar humic-like DOM can occur very rapidly, and that degradation can occur by microbial 

and photochemical processes (Stedmon and Markager, 2005).  

Although the ice-marginal zone is a potentially important source of nutrients to 

downstream ecosystems, nutrient transfer from the ice-marginal pond to the proglacial stream 

occurs only intermittently. Outflow from the ice-marginal pond was typically active only 

during the daily flow peak (~12:00-24:00), on days with high solar radiation and/or during 

seasonal peak melt conditions (~Jan/Feb). The hydrology of the ice-marginal zone therefore 

plays an important role in the timing of nutrient transport to the proglacial stream. 

5.1.3 Proglacial Environments 

DIN and DIP are supplied to meltwaters in the supraglacial and ice-marginal 

environments and are likely depleted in the proglacial stream. Decreases in DIN and DIP 

concentrations have been observed in other Dry Valley proglacial streams and have usually 

been attributed to nutrient uptake by benthic algal communities and mosses (McKnight et al., 

1998, 1999, 2004). Microbial processes in the hyporheic zone, including denitrification and 

dissimilatory NO3
- 
reduction to NO2

-
 and NH4

+
, are also likely to contribute to DIN losses 

(Maurice et al., 2002; McKnight et al., 2004), however these losses are likely minor in 

comparison to those attributable to benthic algal communities (McKnight et al., 2004). Dry 

Valley streams and lake ecosystems have been identified as among the most nutrient-poor 

ecosystems on Earth (Vincent and Vincent, 1982; Parker and Simmons, 1985; Priscu et al., 

1989; Priscu, 1995; Dore and Priscu, 2013) and consequently have a high capacity for 

nutrient uptake (McKnight et al., 2004).  

5.2. Trickle or Treat: hydrologically controlled nutrient dynamics 

Distinct biogeochemical environments exist in the supraglacial, ice-marginal and 

proglacial systems explored in this study (Figure 6). Nutrient fluxes from the entire system 
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are therefore likely to be sensitive to the proportions of water that are routed through each 

individual environment, and their respective residence times. The strong variability in 

meltwater fluxes and flow routing at daily, seasonal, and inter-annual timescales that is 

observed in the Dry Valleys led us to hypothesize that there would be a corresponding 

dynamic in the mix and quantity of nutrients exported to downstream ecosystems under 

changing hydrological regimes. To explore this hypothesis, we examined the relationship 

between discharge and nutrient concentrations and fluxes in the Holland Stream (upstream 

site) to determine whether nutrient export from the glacial system throughout the melt season 

occurs as a constant “trickle” or as a series of episodic “treats”.  

We found differences in the dynamics of nutrient export to downstream environments 

under changing discharge regimes. The concentrations of most solutes in proglacial stream 

water are controlled primarily by chemical weathering of the highly permeable, 

unconsolidated sediments found in the channel margins and hyporheic zone (Gooseff et al., 

2004) including carbonate and silicate weathering, and by salt dissolution (Lyons et al., 1998; 

Maurice et al., 2002; Fortner et al., 2005). Weathering takes place where source material is 

supplied directly to the channel by aeolian transport, atmospheric deposition (Fortner et al., 

2005, 2013) and/or bed/bank erosion. It is unsurprising then, that the concentrations of these 

solutes increased in the ice-marginal gullies and proglacial stream where rock-water contact 

was high (Figure 3), and that they increased along both flow paths that fed the proglacial 

stream. Because the acquisition of these solutes requires prolonged rock-water contact, it is 

also unsurprising that their concentrations in the proglacial stream decreased with inverse 

proxies for residence time along both flow paths, including air temperature, incident solar 

radiation, and discharge (Figure 4). Consequently, downstream ecosystems receive relatively 

high concentrations of rock-derived solutes during low flow conditions and relatively low 

concentrations during high flow conditions, producing a relatively steady downstream 
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“trickle” of such solutes (Figure 7), as has been observed in other Dry Valley streams (Lyons 

et al., 2003; Fortner et al., 2013).  

NO3
-
 displayed a different hydrologic dynamic, where its concentration in upstream 

sections of the proglacial stream generally increased with discharge and the highest 

concentrations were observed at relatively high discharges (Figure 4). Flux estimates derived 

from this concentration-discharge relationship suggest that, during high flow conditions, NO3
-
 

is exported in stronger pulses of DIN rich “treats” than is the case for most solutes (Figure 7). 

While not every high discharge event corresponds with a DIN “treat”, particularly late in the 

melt season (e.g. January 29), a relatively large portion of the seasonal flux of NO3
- 
occurs in 

pulses at times of high discharge. 

The DIN sources and sinks identified along both flow paths (Figure 6) indicate a 

number of potential mechanisms that may together facilitate the delivery of episodic pulses of 

DIN during high discharge events. First, high melt/flow rates may allow more extensive 

wetting of the ice-marginal zone, where waters can access new stores of reactive geologic 

nitrogen and accumulated NO3
-
 bearing salts. This may be particularly true early in the melt 

season when sediments are first wetted. Second, the ice-marginal zone along the secondary 

flow path, where DIN acquisition occurs (Figure 6), has relatively large meltwater storage 

capacity (in ice-marginal ponds and sediments) and only exports meltwater (and therefore 

DIN) under high melt/flow. Third, the DIN sinks along the flow paths likely consist of 

ecosystems that consume DIN via processes such as microbial denitrification and nitrogen 

assimilation. Under high flow conditions, waters containing DIN may travel downstream too 

rapidly for DIN to be assimilated or converted to N2 by biota in the upper reaches of the 

watershed. Therefore, major sources of NO3
-
 are likely maximized and major sinks of NO3

-
 

are likely minimized under conditions of high melt and runoff, allowing DIN to be mobilized 

and transported downstream as DIN-rich “treats” during pulses of high discharge.  
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The hydrological dynamics of DOM in the proglacial stream are considerably more 

complex than those of total ions and NO3
-
, as there is a less consistent relationship between 

DOC concentrations/DOM composition and either discharge or other indicators of 

hydrological routing or runoff rate (e.g. solar radiation, air temperature, or total ion 

concentrations). DOM cycling in glacier systems is likely complex due to the presence of 

multiple sources (e.g. kerogen/fossil soil carbon, airborne organic matter, necromass, 

excretions from plants and other organisms), modes of transformation, and sinks (e.g. 

consumption, decomposition) that remain poorly understood. The lack of dominant source 

and sink locations for DOM along the flow path (Figure 6) and the complexity of DOM 

cycling processes likely contribute to the high variability in DOC concentrations and DOM 

characteristics observed in this study. While neither DOC concentrations nor DOM 

characteristics appear to be directly influenced by discharge rates, DOC concentrations were 

significantly higher in January 2010 (x฀ = 88 µM) than in December 2008 (x฀= 21 µM), 

and showed considerable variability throughout both melt seasons ( = 47 µM). Therefore, 

while DOC may be delivered to downstream ecosystems in episodic pulses (“treats”), these 

DOC-rich pulses may not occur at times of high discharge as consistently as the NO3
-

 “treats”. Because DOC concentrations and DOM characteristics in Dry Valley proglacial 

streams show high variability both within and between catchments (e.g. McKnight et al., 

2001; Barker et al., 2006, 2013) hydrologic controls on DOM fluxes in proglacial streams 

may also be inconsistent.  

While we have established general relationships between total solutes and nitrate and 

proglacial stream discharge, considerable scatter exists (Figure 4), likely because watershed 

hydrology and biogeochemical environments evolve over the melt season. This evolution 

may involve, for example, changes in the rates of primary production in cryoconite holes due 

to seasonal variations in light intensity and air temperature (Bagshaw et al., 2016b), changes 
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in the chemistry of ice-marginal pond outflow due to vertical mixing in response to the 

effects of wind, precipitation, evaporation, and/or temperature (Wait et al., 2006), changes in 

the availability of nitrate from the dissolution of salts if supplies become depleted as the melt 

season progresses, and changes in biological nutrient sources/sinks as microbial, benthic 

algae, and moss communities develop during the growing season (McKnight et al., 1998, 

1999, 2004). Similarly, evolution of the hydrological system may involve flushing of the 

supraglacial environment during periods of rapid melt, expansion of the hyporheic zone and 

active layer over the summer, and erosion and sedimentation which can reconfigure 

supraglacial, ice-marginal, and proglacial drainage systems. The co-evolution of 

biogeochemical and hydrological systems suggests that the dynamics of nutrient export from 

these systems may change over time.  

Although the negative relationship between solute concentration and discharge (Figure 

4) is a relatively consistent observation in glacier systems, the strength of this relationship 

show spatiotemporal variability between Dry Valley (Lyons et al., 2003; Fortner et al., 2013) 

and other polar glacier watersheds (Wadham et al., 1998; Brown, 2002; Yde et al., 2014). 

Even more variability is found among polar glacier systems in the case of DIN concentration 

vs discharge relationships. While we observed a positive relationship between NO3
-
 

concentration and discharge in the Holland Stream, these parameters were found to be 

unrelated at a polythermal glacier in the Swiss Alps (Tockner et al., 2002), and inverse 

relationships have been observed in nearby Taylor Valley proglacial streams (Howard-

Williams et al., 1989; Fortner et al., 2013), a polythermal glacier in Greenland (Wadham et 

al., 2016) and a temperate alpine glacier in the Canadian Rockies (Lafrenière and Sharp, 

2005). However, the strengths of these inverse relationships and the degree of scatter show 

considerable spatiotemporal variability. Proglacial NO3
-
 concentration vs discharge 

relationships in waters draining a polythermal glacier system in Greenland (Leverett Glacier, 
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Wadham et al., 2016) and a cold-based Glacier in the Dry Valleys of Antarctica (Canada 

Glacier; Fortner et al., 2013) are more similar to each other than those draining two nearby, 

cold-based glacier systems that have fundamentally similar glacier hydrology, 

biogeochemical systems along the flow path, climate and geology (i.e. Joyce Glacier and 

Canada Glacier). Thus, while there is merit in making broad assumptions about the nutrient 

dynamics based on macro-scale glaciology and hydrology (e.g. cold-based vs warm-based 

glacier systems) and upscaling from measurements on one watershed to produce regional 

nutrient flux estimates (e.g. Bhatia et al., 2013a; Hawkings et al., 2016; Wadham et al., 2016) 

and estimating nutrient fluxes under future climate conditions (e.g. Hawkings et al., 2015), 

this study suggests that the detail of watershed biogeochemistry and hydrology in defining 

proglacial nutrient dynamics and spatiotemporal variability in fluxes may be substantial. The 

influence of nutrient-specific, watershed-specific, and temporal variability on the dynamics of 

nutrient fluxes from polar glacier systems is not a new theme for studies of the chemistry of 

glacially-derived meltwater. However, this study also underlines the important influence of 

dynamic changes in the connectivity of glacier-proglacial biogeochemical systems on nutrient 

fluxes (Gooseff et al., 2016) and emphasizes the need to develop conceptual models that 

thoroughly describe the biogeochemical and hydrological components of the systems. 

6. Conclusions 

This study identifies a series of distinct biogeochemical environments in the 

supraglacial, ice-marginal and proglacial systems of Joyce Glacier in Southern Victoria Land, 

East Antarctica. While dissolved organic nutrient concentrations (DOC, DON and DOP) 

were either below our detection limits or showed little variability between these 

environments, potential sources and sinks for DIN, DIP and specific fractions of organic 

matter were identified. Specifically, snow, glacier ice, and the ice-marginal zone were 

important sources of DIN, and cryoconite holes and supraglacial and proglacial streams were 
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sinks for DIN. Cryoconite holes, cryolakes, supraglacial streams and the ice-marginal 

environment were sources of DIP, which were likely utilized in the proglacial system.  

Seasonal changes in the routing and residence times of meltwaters through the various 

biogeochemical environments along the flow path yielded nutrient-specific dynamics. The 

concentration of solutes (total ions) decreased with increasing meltwater discharge and 

resulted in a relatively constant “trickle” of solutes to downstream ecosystems. In contrast, 

DIN concentrations increased with discharge, resulting in episodic pulses of DIN-rich 

“treats” during high discharge events. While DOC concentrations did not correlate with 

discharge rate, high variability in DOC concentrations may indicate that DOC is also 

exported downstream as episodic “treats”, but that the timing of these “treats” may not 

coincide with peak discharge conditions as consistently as is the case for DIN. These 

nutrient-specific dynamics are not always consistent between proglacial streams in 

watersheds with similar climates, geology, and/or glacial thermal regimes, highlighting the 

important influence of dynamic changes in the connectivity of glacier-proglacial 

biogeochemical systems on nutrient fluxes (Gooseff et al., 2016) and emphasizes the need to 

develop conceptual models that thoroughly describe the biogeochemical and hydrological 

components of the systems. 
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Table 1 

 

  

Environment Description # of sites 
# of samples 

(2010 only) 

Cryoconite holes 

/Cryolakes 

Representing both open and ice lidded systems near the 

margin of the Joyce Glacier 
7 20 

Supraglacial Streams 
Representing cryoconite holes/cryolake outflow streams 

and larger cumulative supraglacial streams 
10 22 

Gullies 
At the glacier margin between the supraglacial and 

moraine environments 
3 7 

Pond At the inflow to the Holland stream 1 5 

Upstream 
Daily samples immediately downstream of the tributary 

inflow 
1 28 

Lake At the moat on the north shore of the Proglacial Lake 1 5 

Downstream 
Daily samples from the outflow of the proglacial lake 

(upstream of Garwood Glacier inflows) 
1 26 

Snow Supraglacial and fresh proglacial snow 10 10 

Glacier Ice From ice cliff exposures and the supraglacial environment 16 16 

Moraines 
Ice cored moraines from within 100 m of the glacier 

terminus 
5 5 

Basal Ice Joyce Glacier basal ice 5 5 
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Figure 1: Location of the Garwood Valley (top) and study site (bottom) indicating sample locations in italics. Supraglacial samples 

(cryoconite holes/cryolakes, streams, snow and ice) were collected within the region indicated by the grey dotted line on the Joyce 

Glacier. 
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Figure 2: (a) Net shortwave radiation on the Joyce Glacier at 15 minute and 24 hour running averages. (b) Discharge rates at the 

“upstream” (Holland Stream) monitoring site during the study period. 
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Figure 3: ANOVA with Tukey’s range test for various biogeochemical parameters along the flow path. Circles represent the mean 

and lines indicated the 95% confidence intervals. 
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Figure 4: Concentration and fluxes of total ions (top) and nitrate (bottom) in the Holland Stream (Upstream Site). x represent the 

concentrations measured in samples vs the discharge in the stream at the time of sampling and the number corresponds to the day of 

month for each data point. The black solid line represents the concentration-discharge relationship determined via LOWESS 

smoothing, and the dashed grey line indicates the confidence intervals (calculated as ± two times the standard deviation of 1000 

LOWESS curves derived by bootstrapping). 
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Figure 5: Percentage of samples above the PO4
3-

 and NH4
+ 

detection limits. Letters above each bar indicate significant differences 

with other environments. Significance was determined using Fisher’s exact test (FET) and p<0.05. 
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Figure 6: Summary of the sources and sinks for organic and inorganic nutrients in the supraglacial, ice-marginal and proglacial 

environments. Arrows indicate flow paths, “+” indicate sources, “-” indicate sinks. 
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Figure 7: Estimated total ion and NO3
- fluxes in the Holland Stream (Upstream site) over the study period. 

Ranges were calculated using the upper and lower confidence intervals presented in Figure 4. 

 


