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The prognostic significance of trisomy 4 in acute myeloid
leukaemia is dependent on age and additional abnormalities
Leukemia (2016) 30, 2264–2267; doi:10.1038/leu.2016.200

It is well recognised that cytogenetics is a key prognostic factor in
acute myeloid leukaemia (AML)1 and that trisomy 4 occurs as a
rare chromosomal abnormality (o1%).1–3 The additional chromo-
some 4 may be present as a sole abnormality or occur in
association with other chromosomal changes. To date the
prognostic significance of trisomy 4 in AML is unclear, partly
due to its rarity. Here, we examined clinical and genetical
characteristics, remission rates and survival outcomes of 87
patients with AML and trisomy 4 to ascertain the prognostic
significance of this abnormality.
Patients with trisomy 4 were identified among those recruited to

UK-based AML treatment trials (AML10, AML11, AML12, AML14,
AML15 and AML16) between May 1989 and October 2009.4–9

Median follow-up time for the cohort was 10.1 years (range 0.3–21.9
years). The Ethics Committee of each participating centre and R3
(Wales) approved these studies. Informed consent was obtained
from all patients in accordance with the Declaration of Helsinki.
Cytogenetic analysis of pre-treatment bone marrow or periph-

eral blood was performed locally, reviewed centrally by the

Leukaemia Research Cytogenetics Group and collated retrospec-
tively. Karyotypes were reported using the International System
for Human Cytogenetic Nomenclature (ISCN).10 Cases with trisomy
4 in addition to chromosomal abnormalities that we have
previously defined as favourable and adverse risk1 were removed
in order to investigate the independent prognostic relevance of
trisomy 4 among the intermediate risk group. As we have
previously defined cases with a complex karyotype based solely
on the number of chromosomal abnormalities as intermediate
risk,11 they were retained in the study.
To examine the effects of age, patients were divided into

three groups (1–16 years (paediatric), adults o60 years and adults
60+ years).
Survival analysis was performed on patients treated with

intensive curative intent. The comparator group comprised of
5003 patients with a normal karyotype, classified as intermediate
risk, treated on the same protocols. Complete remission (CR) was
defined as a bone marrow aspirate with o5% leukaemic blasts
and evidence of regeneration of normal hematopoietic cells.
Overall survival (OS) was calculated from the date of entry onto
the trial, to death from any cause or the date of last follow-up. For
those patients who achieved CR, relapse-free survival was time
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from CR to first event (relapse or death in CR); cumulative
incidence of relapse is the cumulative probability of relapse with
death in CR as a competing risk. OS/relapse-free survival/
cumulative incidence of relapse percentages are quoted at 5
years. Event-free survival was defined as time from randomisation
to either relapse or death in CR for patients who achieved a
remission, censored at date last known to be alive in remission.
Patients not achieving remission were deemed to have an event
on day 1. Surviving patients were censored on 31 March 2010
(AML10/11/12/14), or 1 January 2014 (AML15/16), when follow-up
was complete for 95% of patients.
Survival rates were calculated and compared using the Kaplan–

Meier method, log-rank test and Cox regression. Multivariate
analyses were adjusted for additional factors: age (as continuous
variable), protocol (paediatric/young adult/older adult), white
blood cell count, secondary disease and performance status.
Effect sizes are given as odds or hazard ratios with 95% confidence
intervals. Categorical data were compared using Χ2 and Mantel–
Haenszel tests, and continuous variables using the Wilcoxon rank-
sum test. All P-values were two-tailed. Analyses were performed
using Intercooled Stata 13.1 for Windows (Stata Corporation,
College Station, TX, USA) and SAS v9.3 (SAS Institute Inc., Cary,
NC, USA).
We identified 87 patients with trisomy 4, who were stratified as

intermediate risk. Trisomy 4 was the sole cytogenetic abnormality
in 35 cases (40%), while 18 (35%) had additional chromosomal
gains. Among the structural abnormalities found in the remaining
34 cases (39%), the only recurrent changes were abnormalities of
12p (n= 3). The ratio of males to females was 1:1.5 with a median
age of 51 years (range 1–83 years). There was no difference in
distribution by sex or age based on whether trisomy 4 was found
alone or in association with other abnormalities (P = 0.359 and
P= 0.904 respectively; Table 1).
There were no differences in demographics according to the

type of additional abnormalities, both among adults in both age
categories and paediatric patients (n= 10).
The majority of adult (82%) and all paediatric patients (100%)

with trisomy 4 achieved CR. OS was 35% at 5 years both in
patients with trisomy 4 and comparator group (adjusted HR 1.19
(0.91–1.57) P= 0.2). Survival appeared marginally reduced in
patients with trisomy 4 as the sole karyotypic change, but did
not reach significance (OS adjusted HR 1.01 (95% CI 0.56–1.82)
P= 1.0 (Figure 1), event-free survival adjusted HR 1.11 (95% CI
0.85–1.45) P= 0.4) The survival effects of trisomy 4 alone or in
association with other abnormalities were not significantly
different (Figure 1). Regardless of trisomy 4 status, patients 460
years had an overall worse prognosis than the paediatric cases.
There was no significant interaction between protocol and the
effect of trisomy 4.
Relapse occurred in 22% of trisomy 4 patients (n= 19), with a

similar relapse rate of 54% at 5 years to the comparator group
(Figure 1e), regardless of whether trisomy 4 existed alone or
in association with other abnormalities (P= 0.473). Paediatric
patients with trisomy 4 were more likely to relapse than their age
specific comparator group (60% vs 37%, P = 0.06) with most
relapses occurring within the first 12 months following diagnosis
(Figure 1f). Although there was an observed difference in OS for
the paediatric patients, it was not significant (40% vs 63% NK,
P= 0.18). Older adults had an inferior outcome (5-year OS 7% 460
years).
Trisomy 4 is a rare chromosomal abnormality in AML, occurring

at an incidence of o1%. Although its prognostic relevance has
been frequently debated,1–3 its association to outcome remains
unclear. This uncertainty is due partly to the rarity of trisomy 4 and
the restriction of studies to cases in which it occurred as an
isolated abnormality.1–3 Here, we present the largest cohort to
date, of 87 patients treated on sequential MRC-UK AML trials. As
well as cases with trisomy 4 as the sole abnormality, those with

additional chromosomal changes, classified as intermediate risk,
were included in the study. In support of this case selection, we
have recently shown that the subgroup of patients with trisomy 4
in association with the favourable risk abnormality, t(8;21)(q22;
q22), maintained a high 5-year OS of 74% (Standard Error 1.5%),
although an increased rate of relapse was observed compared
with those patients without trisomy 4.12 Similarly, we observed
that patients with adverse risk abnormalities maintained the same
poor outcome regardless of the presence of trisomy 4 (data not
shown). Thus we restricted this study to cases within the
intermediate risk group.

Table 1. Demographic and clinical details of patients with and
without trisomy 4

Trisomy 4 P-value

Sole abnormality
(%)

With additional
abnormalities

(%)

Total 35 (40) 52 (60)

Sex
Male 14 (40) 26 (50) 0.359
Female 21 (60) 26 (50)

Age
o2 — 2 (4) 0.7a

2–5 — 1 (2)
5–15 4 (11) 3 (6)
16–25 2 (6) 4 (8)
26–35 5 (14) 6 (12)
36–45 3 (9) 6 (12)
46–55 6 (17) 10 (19)
56–65 7 (20) 9 (17)
66+ 8 (23) 11 (21)

White Cell Count (x109/L)b

o50 21 (60) 44 (88) 0.04a

⩾ 50 14 (40) 6 (12)

FAB typec

M0 — 10 (19) 0.116
M1 10 (29) 8 (15)
M2 4 (11) 1 (2)
M3 — —

M4 4 (11) 4 (8)
M5 2 (6) 4 (8)
M6
M7
RAEBt 1 (3) —

Other 1 (2)
Intensive treatment 33 (94) 46 (88)
CR 85% 80% 0.6

Transplants given in CR1
Stem cell transplant 10 (36) 7 (10) 0.3
Allograft 9 (90) 4 (57)
Sibling 5 (46) 2 (50)
MUD 4 (54) 2 (50)
Autograft 1 (10) 2 (29)
Unknown 0 (0) 1 (14)
Relapse 9 (26) 10 (19) 0.473
Died 13 (37) 13 (25) 0.225

Complex
1–3 abns 35 (100) 22 (42) o0.0001
⩾ 4 abns — 30 (58)

Abbreviations: CR, complete remission; FAB, French-American-British
Classification; MUD, matched unrelated donor. aWilcoxon rank-sum test.
bavailable for 85 patients (98%). cavailable for 55 patients (64%).
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Trisomy 4 often occurs as the sole cytogenetic change. However
it may also be a component of a hyperdiploid karyotype,11 or
associated with other structural abnormalities. We showed no
significant difference in distribution or outcome based on these
potential classifications. Abnormalities of 12p were the only
recurrent structural changes identified. We and others have
previously described 12p aberrations to be a poor prognostic
marker in childhood AML.13,14

Although patients in this cohort were treated on a number of
trials, the regimens were similar and performed within the same
institutions, thus reducing treatment bias. In this study, the
outcome of trisomy 4 patients was compared with those with a
normal karyotype, classified as intermediate risk, treated on the
same protocols. Trisomy 4 patients responded well to induction
chemotherapy with the majority in all age groups achieving
remission. Their 5-year OS was intermediate, comparable to those
with a normal karyotype. Outcome was similar irrespective of
whether the trisomy occurred alone or in association with other
abnormalities. Age is a well-known prognostic factor in AML,1,8

also reflected in this cohort, in which older patients, notably
adults 460 years had an inferior outcome. Despite an initial
good response to treatment, patients with trisomy 4 were
susceptible to relapse. In adults the relapse rate was similar to
other patients with an intermediate risk profile. However

paediatric patients with trisomy 4 had a significantly
higher relapse rate than adults with the same abnormality,
occurring within the first year following diagnosis. Although
patient numbers in this study were small, the increased rate
of relapse was significant. As OS was not different from those
with a normal karyotype, these observations suggest that
trisomy 4 patients are being salvaged by relapse therapy.
It has previously been suggested that c-KIT mutations (located

to 4q12) may influence the function of trisomy 4 in
leukaemogenesis.2,3,15 Although mutation data were not available
for these patients, the impact would be insignificant, due to the
low reported incidence (10%) of c-KIT mutations in association
with trisomy 4 as the sole abnormality.2

This is the largest reported series of trisomy 4 in AML with
extensive follow-up data. Evidence from this study confirms that
these patients belong to the intermediate risk group, by
comparison with patients with intermediate risk normal karyotype
AML. The conclusion is that paediatric patients should be closely
monitored for risk of relapse.
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Figure 1. Kaplan–Meier survival curves demonstrating OS for AML patients with trisomy 4 compared with patients with a normal karyotype
classified as intermediate risk.
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Concurrent PI3K and NF-κB activation drives B-cell
lymphomagenesis
Leukemia (2016) 30, 2267–2270; doi:10.1038/leu.2016.204

Aberrant activation of the PI3K and NF-κB pathways occurs
frequently in human B-cell lymphomas.1,2 Recent studies sug-
gested reciprocal molecular interactions between these two
pathways in lymphomagenesis. For example, PI3K inhibition
suppresses NF-κB activity in human Burkitt’s lymphoma and
diffuse large B-cell lymphoma,3,4 while blockade of NF-κB causes
suppression of PI3K activity in primary effusion lymphoma cell
lines.5 Despite frequent alterations and molecular interactions of
these two pathways in human lymphomas, genetic activation of
anyone of these two pathways was not sufficient to initiate
lymphoma development in mice.6–8

We recently reported that mutant mice (termed miR-17 ~ 92
TG mice) with B-cell-specific transgenic expression of
miR-17 ~ 92, a cluster of six microRNAs (miRNAs) that are
frequently upregulated in human cancers,9–11 spontaneously
developed B-cell lymphomas with a high incidence.12 Subse-
quent molecular analyses showed that transgenic miR-17 ~ 92
expression led to constitutive activation of the PI3K and
canonical NF-κB pathways by suppressing the expression of
multiple negative regulators of these pathways.12 However, it
remains unclear whether functional cooperation of these two
pathways is sufficient to drive lymphoma development and,
thereby, to mediate the lymphomagenic effect of miR-17 ~ 92
overexpression.
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