
BRAIN
A JOURNAL OF NEUROLOGY

Myelin-mediated inhibition of oligodendrocyte
precursor differentiation can be overcome by
pharmacological modulation of Fyn-RhoA and
protein kinase C signalling
Alexandra S. Baer,1,* Yasir A. Syed,1,* Sung Ung Kang,2,* Dieter Mitteregger,1 Raluca Vig,2

Charles ffrench-Constant,3 Robin J. M. Franklin,4 Friedrich Altmann,5 Gert Lubec2 and
Mark R. Kotter1,6

1 Department of Neurosurgery, Medical University Vienna, Vienna, Austria

2 Department of Pediatrics, Medical University Vienna, Vienna, Austria

3 MS Society/University of Edinburgh Centre for Translational Research, Centre for Inflammation Research, The Queen’s Medical Research

Institute, Edinburgh, UK

4 Cambridge Centre for Brain Repair and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK

5 University of Natural Resources and Applied Life Sciences Vienna, Vienna, Austria

6 Department of Neurosurgery, Georg-August University, Goettingen, Germany

�These authors contributed equally to this work.

Correspondence to: Dr Mark R. Kotter,

Max Planck Institute for Experimental Medicine and

Department of Neurosurgery,

Georg-August University Goettingen,

37075 Goettingen, Germany

E-mail: mark.kotter@med.uni-goettingen.de

Abstract
Failure of oligodendrocyte precursor cell (OPC) differentiation contributes significantly to failed myelin sheath regeneration

(remyelination) in chronic demyelinating diseases. Although the reasons for this failure are not completely understood, several

lines of evidence point to factors present following demyelination that specifically inhibit differentiation of cells capable of

generating remyelinating oligodendrocytes. We have previously demonstrated that myelin debris generated by demyelination

inhibits remyelination by inhibiting OPC differentiation and that the inhibitory effects are associated with myelin proteins. In the

present study, we narrow down the spectrum of potential protein candidates by proteomic analysis of inhibitory protein fractions

prepared by CM and HighQ column chromatography followed by BN/SDS/SDS–PAGE gel separation using Nano-HPLC-ESI-

Q-TOF mass spectrometry. We show that the inhibitory effects on OPC differentiation mediated by myelin are regulated by

Fyn-RhoA-ROCK signalling as well as by modulation of protein kinase C (PKC) signalling. We demonstrate that pharmacological

or siRNA-mediated inhibition of RhoA-ROCK-II and/or PKC signalling can induce OPC differentiation in the presence of myelin.

Our results, which provide a mechanistic link between myelin, a mediator of OPC differentiation inhibition associated

with demyelinating pathologies and specific signalling pathways amenable to pharmacological manipulation, are therefore of

significant potential value for future strategies aimed at enhancing CNS remyelination.
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Introduction
It is well established that cell populations in the adult CNS exist

which are able to give rise to cells of all major cell lineages includ-

ing neurons, oligodendrocytes and astrocytes (Alvarez-Buylla and

Lois, 1995; Horner et al., 2000; Nunes et al., 2003). Although the

ability of these cells to replace lost neurons is relatively poor their

ability to replace oligodendrocytes (and hence remyelinate demye-

linated axons) can be very efficient in both experimental models

and sometimes in clinical disease (Patrikios et al., 2006; Patani

et al., 2007; Blakemore and Franklin, 2008). Remyelination in

the CNS is mediated by a multipotent adult stem/precursor cell

population traditionally referred to as oligodendrocyte precursor

cells (OPCs) (ffrench-Constant and Raff, 1986; Wolswijk and

Noble, 1989; Gensert and Goldman, 1997; Carroll et al., 1998;

Sim et al., 2002). Although remyelination can be efficient it often

fails in clinical disease for reasons that are not fully understood

(Franklin, 2002). The chronic demyelination that follows is asso-

ciated with axonal loss, so providing a possible mechanism for

progressive disability in patients suffering from diseases in which

chronic demyelination occurs of which the most important is mul-

tiple sclerosis. Several lines of evidence both experimental

(Woodruff et al., 2004; Foote and Blakemore, 2005) and clinical

(Wolswijk, 1998, 2002; Chang et al., 2000; Totoiu and Keirstead,

2005; Kuhlmann et al., 2008) point to the failure of OPC differ-

entiation as a major cause of remyelination failure. Indeed, regu-

lation of OPC differentiation in remyelination represents an

attractive model for the more general stem cell medicine challenge

of inducing differentiation of repair cells from adult neural stem/

precursor cells.

A possible explanation for the failure of OPC differentiation in

multiple sclerosis is the presence of inhibitors within demyelinated

lesions. A number of potential inhibitors have been proposed

including axonal PSA-NCAM in chronically demyelinated lesions

(Charles et al., 2002), astrocytic hyaluronan (Back et al., 2005)

and notch-jagged (John et al., 2002) signalling, although these

are not always supported by functional studies in animals

models (Stidworthy et al., 2004). We have previously shown

that myelin debris accumulating in lesions as a result of demyeli-

nation exerts a powerful inhibitory effect on OPC differentiation

unless it is cleared by phagocytes (Kotter et al., 2006). With

ageing, the efficiency of myelin debris removal decreases (Ibanez

et al., 2004) and this may contribute to the impairment in OPC

differentiation that underlies the age-associated decline in remye-

lination efficiency (Sim et al., 2002; Woodruff et al., 2004).

In this study, we identified potential protein inhibitors by

column-chromatography based purification of inhibitory fractions

followed by 3D gel electrophoresis and Nano-HPLC-ESI-Q-TOF

mass spectrometry. We explored the cell intrinsic mechanisms by

which myelin inhibits OPC differentiation in order to identify

pathways that can be pharmacologically modulated and hence

used as potential remyelination-enhancing therapies. We address

the hypothesis that myelin-mediated inhibition of OPC differenti-

ation is mediated by (i) Src-family (Fyn-1)–RhoA-ROCK-II signal-

ling or (ii) protein kinase C (PKC) pathway signalling. By assessing

the activation of key molecules of both pathways, we provide

evidence of a direct involvement of Src family kinase Fyn and

RhoA in mediating the inhibitory effects as well as a modulation

of PKC signalling. Our results demonstrate that inhibition of either

ROCK-II or PKC is able to induce OPCs differentiation in the pres-

ence of myelin thus providing a mechanism which could be of

significant therapeutic value.

Materials and methods

Preparation and purification of OPC
Primary cultures of OPCs were isolated from P0 to P2 neonatal Sprague-

Dawley rat forebrains following a standard protocol (McCarthy and

de Vellis, 1980) that we have adapted for our purposes (Syed et al.,

2008). In brief, hemispheres were stripped free of meninges, after a

digestion step the cells were plated into cell culture flasks and mixed

glia cultures were grown for �10 days in DMEM medium supplemented

with 10% FCS at 37�C and 7.5% CO2. To remove the loosely attached

microglia, the flasks were shaken for 1 h at 260 r.p.m. on an orbital

shaker before being shaken at 260 r.p.m. overnight to dislodge the

loosely attached oligodendrocyte precursors. OPCs were further puri-

fied from contaminating microglia by a differential adhesion step.

Subsequently, OPCs were plated onto polylysine (PLL)-coated or

substrate coated dishes. To maintain cells at an early precursor stage

PDGF-AA (Pepro Tech, Rocky Hill, NJ, USA) and FGF (Pepro Tech)

were added (10 ng/ml) to SATOs medium. To induce differentiation,

cells were incubated in SATOs medium supplemented with 0.5% FCS.

The purity of each culture was monitored following OPC purification

by immunocytochemistry and only cultures with 494% purity were

used. Minor contaminations of microglia, that can be detected by

isolectin staining and which amount to 4–5% of the cells, astrocytes

(detectable by GFAP) and fibroblasts with distinct morphology and

which account for �1–2% of the cells, were present in the cultures.

Preparation of myelin membrane
substrates and myelin protein extracts
Myelin was purified by two rounds of discontinuous density gradient

centrifugation and osmotic disintegration (Norton and Poduslo, 1973).

Total brains of young Sprague-Dawley rats were homogenized

mechanically in ice-cold 0.32 M sucrose using a mechanical blender

(Ultra-Turrax; IKA, T18 basic, Germany). Sucrose was dissolved in ster-

ile 2.5 mM Tris/HCl, pH 7.0, to form 0.25, 0.32 and 0.88 M solutions.

The homogenized brains were diluted to a final 0.25 M sucrose

solution and pelleted in an ultra-centrifuge (55 000 g, 4�C, 15 min).

The pellet was re-suspended in 0.88 M sucrose solution and overlaid
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with 0.25 M sucrose. After an ultracentrifugation step (100 000 g, 4�C,

1 h), the interface was collected and washed in 30 ml of distilled

H2O (55 000 g, 4�C, 10 min). The pellet was re-suspended in

dH2O and incubated for 60 min on ice for osmotic disintegration.

After centrifugation (55 000 g, 4�C, 10 min), the flotation step was

repeated. The interface was collected and washed twice in dH2O

(55 000 g, 4�C, 10 min), and the pellet was stored at –80�C until iso-

lation of myelin protein extracts (MPEs).

To prepare MPE the pellets were resuspended in 1% N-octyl b-D-

glucopyranoside, 0.2 M Sodiumphosphate pH 6.8, 0.1 M Na2SO4 and

1 mM EDTA and incubated at 23�C for 2 h. Following an ultracentri-

fugation step (100 000 g, 18�C, 30 min) the supernatants were col-

lected and stored at –20�C until further usage (Kotter et al., 2006;

Syed et al., 2008).

Isolation of liver membrane fractions
Sucrose (0.85 and 1.23 M) in 2.5 mM Tris/HCl was prepared as

outlined above. The liver of a young adult Sprague-Dawley rat was

extracted and homogenized in 0.85 M sucrose (using an Ultra-Turrax).

The homogenate was layered onto a 1.23 M sucrose solution. After

centrifugation (100 000 g, 4�C, 1 h) the interface was collected and

washed in dH2O (55 000 g, 4�C, 10 min). Finally, the pellet was resus-

pended in an equal volume of 1� PBS containing 1% octyglucoside

and 1 mM EDTA. After incubation at 25�C for 2 h in a shaker the

sample was ultracentrifuged at 100 000 g for 30 min and finally, the

supernatant was stored at –20�C until further use. The protein con-

centration was estimated by BCA assay (Pierce, Rockford, IL, USA)

(Kotter et al., 2006).

Chromatography column based
separation of inhibitory myelin
protein fractions
About 50 ml of the MPE (�1 mg/ml) were filtered through a 0.22 m
Millipore membrane filter. The filtrate was desalted and concentrated

using Amicon ultrafiltration cell (Millipore, Billerica, MA, USA; mem-

brane diameter 44.5 mm; cut off 10 000 Da) with 50 mM sodium

acetate (pH4). This step was repeated three times to ensure that the

sample was maximally desalted. The concentrated and desalted

lysate was subsequently loaded on a CM column (Econo-Pac CM

cartridges, 1 ml, Biorad, Hercules, CA, USA). Column chromatography

was performed using an FPLC System with a built in detector (Pharmacia

Fine Chemicals, GE Healthcare, Bucks. UK). The injection volume was

10 ml; 50 mM sodium acetate buffer containing 1% octlyglucoside

(mobile phase A) was used as washing buffer and 1 M NaCl containing

1% octylglucoside (mobile phase B) was used as elution buffer. The

following chromatographic gradients were applied: 0% B for 15 min,

0–70% B, hold with 70% B for 10 min followed by a wash with A for

10 min. The flow rate used was 2 ml/min, the fraction size 1 ml/min and

sensitivity of the detector was 1 U at a wavelength of 280 nm.

The non-binding fractions and the binding fractions were pooled

together separately and assessed for inhibitory activity on OPC differ-

entiation using the in vitro substrate assay outlined below. Repeat

experiments demonstrated that the inhibitory effects on OPC differ-

entiation were associated with the nonbinding fraction of the CM

column.

To further eliminate proteins with non-inhibitory activity, the inhib-

itory non-binding fraction was concentrated and the buffer exchanged

to a 0.1 M Tris–Cl buffer containing 1% octlylglucoside (pH 8). The

concentrate was subsequently loaded on an anion exchange EconoPac

High Q cartridge (1 ml; Bio-Rad) and coupled to the FPLC system

(GE Healthcare UK Ltd, Little Chalfont, Buckinghamshire, UK).

0.1 M Tris–Cl containing 1% octylglucoside was used as washing

buffer (Mobile phase A). The binding fraction was eluted using 1 M

NaCl in 0.1 M Tris–Cl containing 1% octylglucoside (Mobile Phase B).

The injection volume was 10 ml. The reaction conditions were as fol-

lows: 0% B in 5 min and 0–100% B in 10 min, 100% B for 10 min and

washing with A for 5 min. The flow rate was maintained at 2 ml/min at

25�C. The detection wavelength was 280 nm and sensitivity set at 1 U.

The resulting binding and non-binding fractions were again pooled

separately. When tested for their inhibitory effects the inhibitory activ-

ity was associated with the binding fraction. The pooled binding

fractions were further concentrated and the buffer exchanged to a

buffer composed of 250 mM 6-aminocaproic acid, 25 mM Bis–Tris,

pH 7.0 using Amicon ultra centrifugal filter devices.

One dimensional electrophoresis:
BN-PAGE
60 ml of purified inhibitory myelin protein fractions (�2 mg/ml) was

added to 10ml of G250 solution [5% (w/v) Coomassie G250 in

10 mM 6-aminocaproic acid] and loaded onto the gel. BN-PAGE

(Wittig et al., 2006) was performed in a PROTEAN II xi Cell

(BioRad, Germany) using a 4% stacking and a 5–13% separating

gel. The gel buffer contained 250 mM 6-aminocaproic acid, 25 mM

Bis-Tris, pH 7.0; the cathode buffer 50 mM Tricine, 15 mM Bis-Tris,

0.05% (w/v) Coomassie G250, pH 7.0; and the anode buffer 50 mM

Bis-Tris, pH 7.0. For electrophoresis, the voltage was set to 70 V

for 2 h, and was increased to 250 V (10 mA/gel) until the dye

front reached the bottom of the gel. BN-PAGE gels were cut

into small pieces of �1–3 cm depending on the intensity of pro-

tein bands for the BN/SDS/SDS–PAGE three dimensional electropho-

resis (3DE).

Three dimensional electrophoresis:
BN/SDS/SDS–PAGE
The experimental procedures and advantages of BN/SDS/SDS–PAGE

(3DE) are summarized in Kang et al. (2008). Briefly, 1–3 cm gel pieces

from BN-PAGE were soaked for 2 h in a solution of 1% (w/v) SDS and

1% (v/v) 2-mercaptoethanol. Gel pieces were then rinsed twice with

SDS–PAGE electrophoresis buffer [25 mM Tris–HCl, 192 mM glycine

and 0.1% (w/v) SDS; pH 8.3], then the gel pieces were placed onto

the wells. 2DE-SDS–PAGE was performed in PROTEAN II xi Cell using

a 4% stacking and a 6–13% separating gel for BN/SDS–PAGE (2DE).

Electrophoresis was carried out at 25�C with an initial current of 70 V

(during the first hour). The voltage was then set to 100 V for the next

12 h (overnight), and increased to 200 V until the bromophenol blue

marker moved 17 cm from the top of separation gel.

2DE gels were cut again into lanes and gel strips from each lane

were soaked for 20 min in a solution of 1% (w/v) SDS and 1% (v/v)

2-mercaptoethanol. Gel strips were then rinsed twice with SDS–PAGE

electrophoresis buffer (25 mM Tris–HCl, 192 mM glycine and 0.1%

(w/v) SDS; pH 8.3), and were placed onto the wells of another

gel (3DE). SDS–PAGE was performed in PROTEAN II xi Cell using

a 4% stacking and a 7.5–17% separating gel. Electrophoresis

was carried out at 25�C with an initial current of 70 V (during

the first hour). Then, the voltage was set to 100 V for the next 12 h

(overnight), and increased to 200 V until the dye front reached the

bottom of the gel. Colloidal Coomassie blue staining was used for

visualization.
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In-gel digestion of purified myelin
fraction with trypsin
The gel pieces of interest were cut into small pieces to increase surface

and collected in a 0.6 ml tube. They were initially washed with 50 mM

ammonium bicarbonate and then twice with 50% 50 mM ammonium

bicarbonate/50% acetonitrile for 30 min with occasional vortexing.

The washing solution was discarded at the end of each step.

100 microlitre of 100% acetonitrile was added to each tube to

cover the gel piece followed by incubation for at least 5 min.

The gel pieces were dried completely in a Speedvac Concentrator

5301 (Eppendorf, Germany). Cysteines were reduced with a

10 mM dithiothreitol solution in 0.1 M ammonium bicarbonate pH

8.6 for 60 min at 56�C. The same volume of a 55 mM solution of

iodoacetamide in 0.1 M ammonium bicarbonate buffer pH 8.6 was

added and incubated in darkness for 45 min at 25�C to alkylate

cysteine residues. The reduction/alkylation solutions were replaced

by 50 mM ammonium bicarbonate buffer for 10 min. Gel pieces

were washed and dried in acetonitrile followed by Speedvac

concentration.

The dried gel pieces were re-swollen with 12.5 ng/ml trypsin

(Promega, WI, USA) solution buffered in 25 mM ammonium bicarbo-

nate. They were incubated for 16 h (overnight) at 37�C. Supernatants

were transferred to new 0.6 ml tubes, and gel pieces were extracted

again with 50 ml of 0.5% formic acid/20% acetonitrile for 15 min in a

sonication bath. This step was performed twice. Samples in extraction

buffer were pooled in a 0.6 ml tube and evaporated in a Speedvac.

The volume was reduced to �10ml and 10ml water was added.

Protein identification with Nano-HPLC-
ESI-Q-TOF mass spectrometry
LC-ESI-MS/MS analyses were carried out with the UltiMate 3000

system (Dionex Corporation, Sunnyvale, CA, USA) interfaced to the

QSTAR Pulsar mass spectrometer (Applied Biosystems, Foster City, CA,

USA). A nanoflow HPLC equipped with a reversed phase PepMap

C-18 analytic column (75mm� 150 mm) was used. Chromatography

was performed using a mixture of two solutions, A (0.1% formic acid

in water) and B (80% acetonitrile/0.85% formic acid in water), with a

flow rate of 300 nl/min. First a linear gradient between 4% and 60%

B was run over 45 min, then 90% B was used for 5 min and 0% B for

25 min. Peptide spectra were recorded over the mass range of m/z

350–1300, and MS/MS spectra were recorded under information

dependent data acquisition (IDA) over the mass range of m/z

50–1300. One peptide spectrum was recorded followed by three

MS/MS spectra on the QSTAR Pulsar instrument; the accumulation

time was 1 s for peptide spectra and 2 s for MS/MS spectra. The col-

lision energy was set automatically according to the mass and charge

state of the peptides chosen for fragmentation. Doubly or triply

charged peptides were chosen for MS/MS experiments due to their

good fragmentation characteristics. MS/MS spectra were interpreted

by the MASCOT software (mascot.dll 1.6b21; Matrix Science, London,

UK) in Analyst QS 1.1 (Applied Biosystems). Searches were done by

using the MASCOT 2.1 (Matrix Science, London, UK) against

Swissprot 53.3 and MSDB 20051115 database for protein identifica-

tion. Searching parameters were set as follows: enzyme selected as

trypsin with a maximum of two missing cleavage sites, species limited

to mouse, a mass tolerance of 500 ppm for peptide tolerance, 0.2 Da

for MS/MS tolerance, fixed modification of carbamidomethyl (C) and

variable modification of methionine oxidation and phosphorylation

(Tyr, Thr and Ser).

Immunocytochemistry
The pooled OPCs harvested as outlined above were seeded at a

density of 20 000 cells per well into PLL-coated eight-well chamber

slides. Cells were differentiated for 48 h and subsequently fixed with

4% paraformaldehyde in PBS, permeabilized and blocked with 0.3%

Triton X-100 and 10% NGS. To assess the differentiation state of

OPCs the cells were incubated with O4 antibody (1:100; Millipore

Corporation, Billerica, MA, USA) for 1 h in the presence of 0.1%

Triton X-100 and 2% NGS, washed, and incubated for another 1 h

with the appropriate fluorescent secondary antibody (Cy3-conjugated

antibody 1:100; Jackson Immuno Research, Suffolk, UK) and the nuclei

were stained using DAPI (Robinson and Miller, 1999; Syed et al.,

2008). It is important to note that permeabilization of cells results in

a punctate representation of the extracellular antigen O4 (Reynolds and

Weiss, 1993; Weiss et al., 1996; Syed et al., 2008). Under an Olympus

X51 fluorescent microscope using a triple-filter we determined the per-

centage of O4-positive cells in relation to4100 DAPI-stained nuclei in

randomly selected eye fields for each experimental condition.

To establish the purity of our OPC cultures immunocytochemistry for

A2B5 (1:100; Millipore Corporation, Billerica, MA, USA) was performed

according to the same principles and the percentage of A2B5+ cells to

4100 DAPI-stained nuclei in randomly selected eye fields was deter-

mined. Only cell cultures with 494% A2B5+ cells were used for our

study. To assess the morphological phenotype of OPCs, A2B5+ cells

were categorized according to the following criteria: stage I: mono/bipo-

lar; stage II: multipolar, primary branched; stage III: multipolar, secondary

branched; stage IV: secondary branched cells with membranous processes.

qPCR for myelin basic protein versus
b-2-microglobulin
Total RNA of OPCs grown on PLL control or MPE substrates with

various concentrations (0.4 mg MPE, 4 mg MPE and 40mg MPE) was

harvested after the cells were differentiated for 3 days using RNeasy

Mini Kit (Quiagen, Hilden, Germany) according to the manufacturer’s

instruction.

First strand cDNA synthesis kit for RT–PCR (Roche Applied Science,

Vienna, Austria) was used for reverse transcription of 500 ng RNA

(each sample) according to the manufacturer’s instructions.

q-PCR was performed using Taqman gene expression assays for myelin

basic protein (MBP) (ABI, Foster City, CA, USA, Rn 00566745_M1) and

b-2-microglobulin (b2-MG) (ABI, Rn 00560865). Three independent

experiments were conducted and all reactions were performed in tripli-

cate on a 7500 Fast Real-Time PCR System. Semi-quantitative mRNA

expression levels were calculated with the 7500 Fast System Software

(ABI, Foster City, CA).

Pharmacological inhibition of ROCK-II
and PKC
To examine whether ROCK-II and PKC signal transduction is impli-

cated in the myelin mediated differentiation block, pharmacological

inhibitors were added to the culture medium immediately after cell

seeding. The selective PKC-inhibitor Gö6976 specific for PKC-� and

PKC-b (12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-

indolo[2,3-a]pyrrollo[3,4-c]carbazole; CAS-number: 136194-77-9)

and BIM (Ro 31-8220, Bisindolylmaleimide IX; CAS-number:

125314-64-9) selectively affecting all PKC isoforms were used to

block PKC-signalling. To inhibit ROCK-II, an orally available drug cur-

rently evaluated for the treatment of vascular disease named Fasudil
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(HA-1077 dihydrochloride; 1-(5-Isoquinolinesulfonyl)-1H-hexahydro-

1,4-diazepine 2 HCl; CAS-number: 103745-39-7) was used with the

potential of interfering with Rho kinase, PRK2, MSK1, PKA, PKG,

S6K1, MAPKAP-K1b, MLCK and CaMKII signalling. Gö6976 and

BIM were solubilized in DMSO. OPCs plated on different substrates

were differentiated for 48 h and subsequently fixed for immunocyto-

chemistry. To quantitate differentiation, the ratio of O4 positive cells

and the number of Hoechst-positive nuclei was determined by cell

counts using an Olympus IX 51 fluorescence microscope. A minimum

of 200 cells were counted for each experiment and a minimum of

three independent experiments were conducted.

siRNA-based downregulation of
RhoA and PKC-a
Ten days after plating mixed glial cultures were transfected with

siRNA for PKC-�, RhoA, negative control siRNA and CyTM3 labelled

negative control (Applied Biosystems) using Lipofectamine 2000

(Invitrogen, Paisley, UK) at a concentration of 100 nM according to

the manufacturer’s protocol. Twenty-four hours later OPCs were

harvested as outlined above. To determine the knock-down efficiency

of the targeted genes Western blot analyses were performed for RhoA

(Millipore Corporation) or PKC-� (Cell Signalling, Danvers, MA, USA).

OPC differentiation was assessed as outlined above 48 h after plating

cells onto the experimental substrates; at least three independent

experiments were conducted for each condition.

TUNEL assay
Fragmented DNA was detected by incorporation of biotinylated

nucleotides at the 30-OH DNA ends using terminal deoxynucleotidyl

transferase recombinant (rTdT) enzyme according to the manufac-

turer’s instruction (Promega, Madison, WI, USA). Stained cells were

visualized by light microscopy and the percentage of apoptotic nuclei

was determined.

Western blot analysis
OPCs differentiated for 24 h and 9 days on PLL were lysed in a

buffer containing 10 mM Tris, pH 7.4, 100 mM NaCl, 1 mM EDTA,

1 mM EGTA, 1 mM NaF, 20 mM Na4P2O7, 2 mM Na3VO4,

0.1% SDS, 0.5% Sodium Deoxcholate, 1%Triton-X100, 10%

Glycerol, 1 mM PMSF, 60 mg/ml Aprotinin, 10 mg/ml Leupeptin,

1 mg/ml Pepstatin. After high speed centrifugation, protein concentra-

tion was measured using BCATM protein assay (Pierce) and 15 mg were

loaded on SDS–PAGE for separation. Western blot was conducted

using a Multiphor II Electrophoresis System (GE Healthcare UK Ltd)

at 200 mA for 1.30 h. After blocking with 5% BSA in TBS-T (0.1% Triton

X 100 in TBS) for 1 h at room temperature the blots were incubated with

antibodies against ROCK II/ROK� (BD Biosciences, San Jose, CA, USA),

RhoA (Millipore Corporation) or PKC-� (Cell Signalling) antibodies

over night (4�C). Following incubation with horseradish-peroxidase

conjugated secondary antibody (GE Healthcare UK Ltd) for 1 h the

immunoreactive bands were detected by ECLTM chemiluminescence

(GE Healthcare UK Ltd) reagent on a film.

To confirm the presence of proteins identified by MS analysis in the

purified inhibitory fractions, 10 mg of protein was separated using 12%

Novex gel (Invitrogen). MPE was used as positive control and protein

extracts of liver membrane preparation as negative control. Following

SDS–PAGE, the protein was then transferred to PVDF membrane using

an Xcell II Blot Module (Invitrogen). After blocking with 5% BSA in

TBS-T (0.1% Triton X 100 in TBS) for 1 h at room temperature it

was probed overnight at 4�C with the following antibodies: myelin-

associated glycoprotein (MAG) (Millipore Corporation), PLP (kindly

provided by Lees MB), MBP (DAKO). Following a wash step the

membranes were incubated with the appropriate horseradish-

peroxidase conjugated secondary antibody (GE Healthcare UK Ltd)

for 1 h. The immunoreactive bands were detected by ECLTM chemilu-

minescence (GE Healthcare UK Ltd) reagent on a film.

Evaluation of Fyn activation
Cells were washed twice with ice cold PBS before being lysed in

10 mM Tris, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF,

2 mM Na3VO4, 0.1% Triton, 10% Glycerol, 1 mM PMSF, 0.5%

Na-Deoxycholate, 20 mM Na4P2O7 and protease inhibitor (Roche).

Cell lysates were centrifuged (1 h, 3200 rpm, 4�C) and the protein

concentration was estimated by BCATM assay (Pierce). The lysates

were pre-cleared with A/G Plus Agarose beads (Santa Cruz, CA,

USA) for 30 min at 4�C and incubated with total Fyn antibody

(Santa Cruz) for 2 h in a rotary mixer following addition of A/G Plus

Agarose beads for overnight incubation. Before performing SDS–PAGE

and Western blot the immune complexes were washed extensively

with NP-40 buffer and PBS. The precipitates were re-suspended

in sample buffer, heated to 95�C for 5 min, and subjected to

SDS–PAGE. Proteins were transferred to a PVDF membrane, blocked

with bovine serum albumin and incubated with Y-418-phospho-Src

(Biosource) antibody. Finally a horseradish-peroxidase conjugated

secondary antibody was added and detected by ECLTM chemilumines-

cence (GE Healthcare UK Ltd) reagent on film. The optical density

of the bands was estimated with NIH-Image J (free download at

http://rsb.info.nih.gov/ij/) on digitized images.

RhoA GTPase activity assay
For the detection of active RhoA, OPCs were lysed (125 mM HEPES,

pH 7.5, 750 mM NaCl, 5% Igepal CA-630, 50 mM MgCl2, 5 mM

EDTA, 10% Glycerol, 25 mM NaF, 1 mM Na3VO4) according to the

manufacturer’s instructions (Millipore Corporation) and active GTP-

Rho was precipitated by the use of beads specific for the GST-binding

domain (RBD) of rhotekin. After removing cell debris the lysates were

incubated with Rho Assay Reagent Slurry, which specifically binds

Rho-GTP and not Rho-GDP (30 min, 4�C). Beads were then washed

with Mg2+ lysis/wash buffer and bound material was eluted with 25 ml

2� Laemmli sample buffer, boiled for 5 min, resolved by SDS–PAGE

and immunoblotted using mouse anti-RhoA antibody (3 mg/ml).

Peroxidase-conjugated anti-mouse IgGs (GE Healthcare UK Ltd)

were used as secondary antibodies. Immunoreactive proteins were

visualized using ECLTM detection system (GE Healthcare UK Ltd).

Densitometric analysis was performed using NIH-Image J software.

Statistical analysis
For all studies at least three independent experiments (n as detailed in

results) were conducted and statistically assessed using Graph Pad

Prism software (Graph Pad, San Diego, CA). To test the concentration

dependent inhibition of OPC differentiation on MPE and the effect of

various concentrations of pharmacological inhibitors one way ANOVA

followed by Dunett’s multiple comparison test was used. ROD values

from Western blot following immunoprecipitation or pull-down assay

were compared with Student-t-test.
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Results

Soluble myelin molecules inhibit
the differentiation of OPCs
To establish an in vitro assay for assessing the effects of myelin on

OPC differentiation we adapted an approach previously reported

by Robinson and Miller and plated neonatal OPCs on myelin

substrates produced by incubation of myelin preparations on

poly-L-lysine covered culture dishes (Robinson and Miller, 1999).

The differentiation of oligodendrocyte lineage cells (OLCs) in vitro

is characterized by distinct morphological and immunological fea-

tures. Antibodies against O4 identify late OPCs by reacting with a

sulphated glycolipid antigen named POA (Proligodendrocyte

Antigen), while the same antibody also recognizes terminally dif-

ferentiated OLCs by reacting with sulphated galactosylcerebroside

(Bansal et al., 1989). The differentiation block mediated by pres-

ence of myelin is manifested as a reduction in O4-expression by

OPCs (Robinson and Miller, 1999). In a previous study we showed

that MPEs prepared with n-octyl-glycoside induce a concentration-

dependent inhibition of differentiation in OPCs cultured in differ-

entiation medium for 48 h similar to that observed with crude

myelin membrane preparations (Syed et al., 2008). The inhibition

of OPC differentiation is not only reflected by a reduction of O4

expression but also by a corresponding downregulation of mRNA

expression for MBP, a late marker of mature oligodendrocytes, as

assessed by qPCR (Fig. 1; n = 3). The presence of myelin was

associated with a reduction in the complexity of OPC processes

resulting in an increase of early OPC phenotypes with bipolar

(stage I) morphology or primary branches (stage II) and a consec-

utive reduction of OPCs with secondary branched or membranous

processes (stage III/IV) (Fig. 6) (one-way ANOVA P50.0001). We

also confirmed previous data (Robinson and Miller, 1999) demon-

strating that no changes occurred in the rate of cell proliferation as

assessed by BrdU staining (no BrdU-positive cells were detected in

the experimental groups) or apoptosis assessed by TUNEL assay,

indicating that differences in the proportion of O4-positive cells

reflect changes of cell differentiation and that these were not

caused by an increase of OPC proliferation or differences in the

rate of apoptosis (Supplementary Fig. 1).

Purification of inhibitory myelin
fractions and proteomic analysis
The myelin proteins responsible for the inhibition of OPC differ-

entiation are unknown. The most prominent myelin associated

inhibitors (MAI) NogoA, MAG and Omgp do not affect OPC dif-

ferentiation (Syed et al., 2008). To identify potential candidates

we developed a column-chromatography fractionation protocol.

In the first step MPE was submitted to a CM-column, and

the resulting fractions tested by plating OPCs on the eluates.

The fraction carrying inhibitory activity was then submitted to a

second purification step using an ion exchange column (HighQ).

The eluates obtained were tested in the same manner and the

final inhibitory fraction was used for proteomic analysis.

To identify the protein species contained in the inhibitory frac-

tion we employed a 3D gel-based separation protocol (BN-SDS-

SDS) specifically tailored for identification of membrane-bound

proteins (Kang et al., 2008). The protein spots on the 12 resulting

gels were picked, digested and analysed on a nano-HPLC-ESI-Q-

TOF mass spectrometer. The proteins identified are presented in

Table 1 according to their annotation to the spots picked

(Supplementary Fig. 2A–F). Of the 137 proteins detected, 18

were previously identified in proteomic analyses of myelin mem-

brane fractions (Taylor and Pfeiffer, 2003; Taylor et al., 2004;

Vanrobaeys et al., 2005; Werner et al., 2007). To confirm the

presence of selected protein species we conducted Western blots

on fractions generated as outlined above (Supplementary Fig. 3).

These data provide a list of potential candidates that may be

responsible for the inhibitory effect on OPC differentiation and

illustrate the complexity of the myelin proteome, which becomes

specifically apparent when highly abundant protein species are

removed by column-chromatography based separation techniques.

Myelin impairs activation of the Src
family tyrosine kinase Fyn-1
To investigate the basis of the myelin mediated inhibition of OPC

differentiation we examined the activation of Src family tyrosine

kinase Fyn-1. Several lines of evidence implicate an important role

for Fyn-1 in the formation of myelin sheaths: first, the myelin

content found in brains of fyn-deficient mice is reduced, and

Fig. 1 OPCs plated on MPEs (protein/cm2) display a con-

centration dependent down-regulation of relative MBP mRNA

expression as assessed by qPCR after 3d culture in differenti-

ation medium (for this and subsequent figures: MPE: myelin

protein extract; error bars: SEM).
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Table 1 Identified protein list from BN/SDS/SDS–PAGE (3DE) from purified myelin protein fraction

Protein Name Swiss-Prot
ID

NCBI
Acc. Noa

Theoretical
molecular
weight

No. of
TMDb

Total
ion-score

No. of matched
peptides
(MS/MS)

Sequence
coverage
(%)

Spot
No.

Known myelin proteins

Myelin-associated glycoprotein precursor P07722 gi|126685 69353 1 294 8 21 18

Myelin basic protein S P02688 gi|17378709 21546 0 36 1 5 131

Myelin-oligodendrocyte glycoprotein precursor Q63345 gi|2497314 27882 2 112 3 13 77

Myelin proteolipid protein P60203 gi|41019153 30077 4 124 3 18 3

Membrane proteins

Abhydrolase domain-containing protein 6 Q5XI64 gi|81883706 38312 1 155 4 13 89

Acyl-CoA-binding domain-containing protein 5 A0FKI7 gi|123797828 56782 1 59 1 4 58

Basigin precursor P26453 gi|51704207 42436 1 89 2 5 117

Brain acid soluble protein 1 Q05175 gi|730110 21790 0 321 10 41 17

CD9 antigen P40241 gi|729088 25215 4 239 7 32 2

CD63 antigen P28648 gi|113331 25699 4 79 2 11 101

CD81 antigen Q62745 gi|11131474 25889 4 211 5 16 4

CD82 antigen O70352 gi|9296930 29487 4 45 2 10 21

CD151 antigen Q9QZA6 gi|11131479 28355 4 160 4 20 51

CD166 antigen precursor O35112 gi|47605356 21635 1 194 6 29 74

Cell adhesion molecule 2 precursor Q1WIM2 gi|150438865 47528 1 194 4 11 53

Cell adhesion molecule 4 precursor Q1WIM1 gi|123778954 42781 1 193 6 15 28

Cell cycle exit and neuronal differentiation protein 1 Q5FVI4 gi|81882797 15043 1 88 3 23 44

Choline transporter-like protein 1 Q8VII6 gi|73918925 73092 10 61 3 4 27

Clathrin coat assembly protein AP180 Q05140 gi|2492686 93519 0 96 3 3 92

Claudin-11 Q99P82 gi|20532024 22046 4 189 6 37 45

Disks large-associated protein 2 P97837 gi|71153508 118978 0 164 6 8 34

DnaJ homolog subfamily C member 5 P60905 gi|46397406 22101 0 42 2 11 50

Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 precursor P84039 gi|108862048 54290 1 164 5 12 71

Embigin precursor O88775 gi|61223483 37005 1 176 5 23 72

Erythropoietin receptor precursor Q07303 gi|729431 55500 1 88 4 6 94

FXYD domain-containing ion transport regulator 6 precursor Q91XV6 gi|20138106 10388 1 229 7 26 63

FXYD domain-containing ion transport regulator 7 P59649 gi|30315809 8487 1 38 1 19 5

Golgin subfamily A member 2 Q62839 gi|6226622 111428 0 106 3 4 14

Junctional adhesion molecule C precursor Q68FQ2 gi|83286894 34783 1 168 5 16 38

Leukocyte surface antigen CD47 precursor P97829 gi|76364105 32995 5 69 3 14 33

Limbic system-associated membrane protein precursor Q62813 gi|2497324 37324 0 114 2 7 26

Lysosome-associated membrane glycoprotein 1 precursor P14562 gi|126378 43969 1 225 5 11 16

Lysosome-associated membrane glycoprotein 2 precursor P17046 gi|126382 45591 1 203 6 17 136

Lysosome membrane protein 2 P27615 gi|126291 54091 2 268 12 33 22

Major prion protein precursor P13852 gi|2507236 27804 0 33 1 7 49

Membrane transport protein XK Q5GH61 gi|77417634 51050 10 133 4 10 23

Metabotropic glutamate receptor 4 precursor P31423 gi|400255 101819 7 39 2 1 121

Myosin-9 Q62812 gi|13431671 226338 0 108 4 2 102

Neural cell adhesion molecule 1, 140 kDa isoform precursor P13596 gi|127859 94658 1 203 5 6 115
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Table 1. Continued

Protein Name Swiss-Prot
ID

NCBI
Acc. Noa

Theoretical
molecular
weight

No. of
TMDb

Total
ion-score

No. of matched
peptides
(MS/MS)

Sequence
coverage
(%)

Spot
No.

Neurofilament medium polypeptide P12839 gi|128150 95791 0 110 4 6 128

Neuromodulin P07936 gi|128102 23603 0 116 3 14 110

Neuroplastin precursor P97546 gi|81870588 31292 1 278 7 36 19

Neurotrimin precursor Q62718 gi|2497325 37998 0 44 2 7 39

Nicastrin precursor Q8CGU6 gi|37081094 78400 1 332 12 32 15

Neuritin precursor O08957 gi|81882120 15289 0 103 3 10 66

Nuclear envelope pore membrane protein POM 121 P52591 gi|1709213 120785 1 226 5 4 80

Opioid-binding protein/cell adhesion molecule precursor P32736 gi|1352640 38068 0 138 3 11 25

Phosphatidylethanolamine-binding protein 1 P31044 gi|400734 20801 0 154 5 21 62

Phospholemman precursor O08589 gi|22654268 10365 1 100 3 19 60

Prostaglandin-H2 D-isomerase precursor P22057 gi|1346697 21301 0 201 4 16 137

Protocadherin Fat 2 precursor O88277 gi|22095688 480654 1 119 3 6 57

Sodium channel protein type 9 subunit alpha O08562 gi|55976160 226039 24 144 5 2 83

Sodium channel subunit beta-2 precursor P54900 gi|1705870 24145 1 121 4 19 36

Sodium/potassium-transporting ATPase subunit beta-1 P07340 gi|114395 35202 1 88 3 7 56

Synaptosomal-associated protein 23 O70377 gi|41017815 23235 0 79 2 9 65

Synaptosomal-associated protein 25 P60881 gi|46397720 23315 0 114 3 8 67

Syntaxin-1B P61265 gi|47117736 33245 1 188 6 17 64

Tetraspanin-2 Q9JJW1 gi|23396887 24190 4 63 2 8 29

Thioredoxin domain-containing protein C5orf14 homolog Q5BJT4 gi|81882519 37928 1 205 5 8 107

Tyrosine-protein phosphatase non-receptor type substrate 1 precursor P97710 gi|29427383 55691 1 105 4 10 122

Thy-1 membrane glycoprotein precursor P01830 gi|135832 18172 0 99 3 11 130

Voltage-dependent anion-selective channel protein 2 P81155 gi|46397780 31746 0 133 5 14 37

20,30-cyclic-nucleotide 30-phosphodiesterase P13233 gi|51338709 47268 0 319 6 13 7

Cytoplasmic proteins

Amphiphysin O08838 gi|14916529 74878 0 118 3 5 114

Branched-chain-amino-acid aminotransferase, cytosolic P54690 gi|1705438 46046 0 226 7 24 98

Calmodulin P62161 gi|49037408 16838 0 125 3 16 111

Coiled-coil domain-containing protein 93 Q5BJT7 gi|81882521 72636 0 152 4 6 104

COP9 signalosome complex subunit 1 P97834 gi|2494624 53428 0 108 4 9 24

ERC protein 2 Q8K3M6 gi|51701368 110618 0 98 2 3 42

FKBP12-rapamycin complex-associated protein P42346 gi|1169736 288794 0 68 2 1 87

Glial fibrillary acidic protein P47819 gi|115311597 49957 0 113 3 10 31

Glutathione transferase omega-1 Q9Z339 gi|12585231 27669 0 113 3 9 106

Heat shock cognate 71 kDa protein P63018 gi|51702273 70871 0 271 5 6 135

Huntingtin P51111 gi|1708162 343762 0 101 3 1 91

Hypoxanthine-guanine phosphoribosyltransferase P27605 gi|123501 24477 0 32 1 4 124

Junction plakoglobin Q6P0K8 gi|81885083 81801 0 105 4 5 41

LAMA-like protein 2 precursor Q4QQW8 gi|146324959 65456 0 201 5 9 90

Myc box-dependent-interacting protein 1 O08839 gi|14916534 64533 0 229 8 12 113

NAD-dependent deacetylase sirtuin-2 Q5RJQ4 gi|81883338 39319 0 91 2 5 109
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Neurocalcin-delta Q5PQN0 gi|81909955 22245 0 126 4 20 61

Neuron-specific calcium-binding protein hippocalcin P84076 gi|51317364 22427 0 98 4 23 59

glycosyltransferase GLT28D1 Q5I0K7 gi|81883003 18329 0 62 2 7 69

Phenylalanyl-tRNA synthetase alpha chain Q505J8 gi|81887353 57720 0 88 2 5 118

Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A Q9JMC1 gi|30315961 107208 0 97 4 3 88

Protein kinase C and casein kinase substrate in neurons protein 1 Q9Z0W5 gi|22256946 50449 0 114 5 14 116

Protein S100-A3 P62819 gi|51338664 11747 0 52 1 14 12

Protein S100-A6 P05964 gi|46397773 10035 0 89 2 28 11

Protein S100-B P04631 gi|134139 10744 0 98 3 18 68

Superoxide dismutase [Cu-Zn] P07632 gi|134625 15912 0 106 2 13 55

Thioredoxin P11232 gi|135776 11673 0 135 4 24 1

Tropomyosin alpha-1 chain P04692 gi|92090646 32681 0 88 2 6 76

Tropomyosin alpha-3 chain Q63610 gi|148840439 29007 0 76 2 7 75

Ubiquitin carboxyl-terminal hydrolase 19 Q6J1Y9 gi|81863791 150302 0 119 6 3 99

UDP-glucose:glycoprotein glucosyltransferase 1 precursor Q9JLA3 gi|68052986 174049 0 157 3 2 81

Visinin-like protein 1 P62762 gi|51338688 22142 0 213 6 31 78

14-3-3 protein zeta/delta P63102 gi|52000883 27771 0 228 7 28 54

Nuclear proteins

Calpain-5 Q8R4C0 gi|28376969 73065 0 155 5 10 96

Cell division cycle 5-related protein O08837 gi|73619939 92218 0 33 3 3 79

DNA repair protein RAD50 Q9JIL8 gi|60392975 153784 0 223 5 3 125

Histone H2B type 1 Q00715 gi|399856 13990 0 123 3 21 8

Histone H2B type 1-A Q00729 gi|399855 14225 0 109 2 26 9

Histone H3.1 Q6LED0 gi|81863898 15404 0 49 1 8 13

Histone H4 P62804 gi|51317315 11367 0 102 3 34 10

La-related protein 7 Q5XI01 gi|134034153 64949 0 32 3 10 129

RING finger protein 181 Q6AXU4 gi|81891326 19288 0 34 2 9 119

Small ubiquitin-related modifier 2 precursor P61959 gi|48429128 10871 0 76 3 13 108

Structural maintenance of chromosomes protein 3 P97690 gi|29336525 138448 0 149 4 3 82

UV excision repair protein RAD23 homolog B Q4KMA2 gi|123789085 43497 0 133 4 7 112

Vimentin P31000 gi|401365 53733 0 251 6 14 103

Zinc finger CCCH type antiviral protein 1 Q8K3Y6 gi|47117346 86771 0 100 4 7 84

Secreted proteins

Alpha-1-antiproteinase precursor P17475 gi|112889 46136 0 164 5 19 97

Apolipoprotein D precursor P23593 gi|114035 21635 0 162 5 25 47

C-reactive protein precursor P48199 gi|1345834 25468 0 65 3 17 20

Serine protease inhibitor A3K precursor P05545 gi|266407 46562 0 211 6 16 85

Serine protease inhibitor A3L precursor P05544 gi|2507387 46277 0 206 5 16 86

Sulfated glycoprotein 1 precursor P10960 gi|134219 61124 0 264 5 10 6

Transthyretin precursor P02767 gi|136467 15720 0 76 2 10 134

Extracellular proteins

Annexin A8 Q4FZU6 gi|123792388 36706 0 151 4 15 52

Hemoglobin subunit alpha-1/2 P01946 gi|122477 15329 0 255 7 39 48

Hemoglobin subunit beta-1 P02091 gi|122514 16083 0 245 8 36 46

Lysosomal proteins
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second, Fyn-1 can be co-immuno-precipitated from brain lysates

with antibodies to MAG (Umemori et al., 1994). More recent data

suggest that activation of Fyn-1 is one of the earliest events

triggered in differentiating OPCs and that Fyn-1 tyrosine kinase

regulates process extension and myelin sheath formation

(Osterhout et al., 1999; Colognato et al., 2004).

Protein extracts from OPCs plated on MPE cultured in differen-

tiation medium for 24 h were compared with protein extracts from

OPCs plated on control substrates under the same conditions by

immuno-precipitation with anti-Fyn-1 and immunoblotting with

anti-Src Y-418, to detect phosphorylation at the activation site

of Fyn-1. The results demonstrated a clear impairment of Fyn-1

activation in cells plated on MPE (n = 4; t-test P = 0.0003; Fig. 2A

and B). In OPCs plated on control substrate phosphorylation of

Fyn-1 increased over time as previously reported (Osterhout et al.,

1999).

Myelin molecules mediate inhibitory
signals via activation of RhoA
Fyn-1 kinase regulates the activity of the small GTPase RhoA

(Colognato et al., 2004), which, along with other Rho GTPase

subfamily members is an important regulator of oligodendrocyte

morphology (Mi et al., 2005; Thurnherr et al., 2006). Over-

expression of dominant-negative RhoA causes hyperextension of

oligodendrocyte processes (Wolf et al., 2001) while a reduction of

active RhoA-GTP is necessary for successful oligodendrocyte dif-

ferentiation (Liang et al., 2004). To assess activation of RhoA in

OPCs cultured on MPE and control substrates for 24 h in differ-

entiation medium we performed a RhoA-GTP-pull down assay

followed by Western blot for RhoA. Our data show that the pres-

ence of myelin inhibitors induces an increase of GTP bound RhoA

(n = 3; t-test: P = 0.0113; Fig. 2C and D).

To assess the functional role of RhoA in mediating inhibitory

effects of MAI to OPC differentiation we transfected OPCs with

siRNA specifically directed against RhoA. Cells were transfected

with high efficiency (495%). This induced a marked down-regula-

tion of the expression of RhoA as assessed by Western blot. The

reduction of RhoA powerfully triggered OPC differentiation in the

presence of MPE (Fig. 5; n = 3; mean increase = 233%; ANOVA:

P50.0001, Dunnett’s post-test MPE versus siRNA: P50.0001)

confirming the importance of RhoA in mediating the inhibitory

effects as well as indicating that these can be beneficially modu-

lated by inhibiting RhoA signalling in OPCs.

Inhibition of ROCK-II induces
differentiation of OPCs in the
presence of myelin
Rho kinases (ROCK) are important effector proteins of RhoA and

phosphorylate a number of downstream molecules that regulate

actin filaments (Riento and Ridley, 2003). Since ROCK-II is the

isoform predominantly expressed in the CNS, we hypothesized

its participation in transducing myelin derived inhibitory signals in

OPCs. We first confirmed ROCK-II expression in OPCs

by Western blot analysis and then examined its functional roleT
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by plating OPCs on MPE and adding different concentrations of

the ROK�/ROCK II-inhibitor HA-1077 (Fasudil) to the differenti-

ation medium (Fig. 3). Treatment with HA-1077 for 48 h resulted

in a dramatic increase in the number of differentiating OPCs

(n = 4; mean increase at 5 mM = 174%; ANOVA: P50.0001,

Dunnett’s post tests MPE versus 5 and 10 mM: P50.001). To

exclude changes in cell survival we conducted TUNEL assays

which showed no significant differences between OPCs plated

on PLL and cells plated on MPE treated with HA-1077

(Supplementary Fig. 1).

Thus, we conclude that RhoA-ROCK signalling plays an

important role in mediating myelin derived inhibitory effects

in differentiating OPCs that can be beneficially modulated by

the use of pharmacological inhibitors and siRNA-mediated gene

silencing.

Myelin inhibitors retain Myristoylated,
alanine-rich C-kinase substrate within
the cytosolic compartment
PKC has also been implicated in OPC differentiation since PKC

activation mimicked by the phorbol ester PMA inhibits OPC dif-

ferentiation (Baron et al., 1998) while at late stages of OPC dif-

ferentiation, PKC may also facilitate process extension and

expression of myelin proteins (Althaus et al., 1991; Yong et al.,

1991; Asotra and Macklin, 1993; Stariha and Kim, 2001).

Myristoylated, alanine-rich C-kinase substrate (MARCKS) is a sub-

strate of PKC that has been used as an indirect marker for PKC

activation in OPCs (Baron et al., 1999). Inhibitory PKC mediated

signalling is associated with phosphorylation and membrane-to-

cytosol translocation of MARCKS (Baron et al., 1999) and may

cause disorganization of the cytoskeleton and redistribution of

actin filaments (Baron et al., 1998, 1999). MARCKS has been

implicated in several cellular processes such as secretion, phago-

cytosis, cell motility, membrane traffic, growth suppression and

regulation of the cell cycle as well as OPC differentiation (Baron

et al., 1998, 1999; Arbuzova et al., 2002). Phosphorylated

MARCKS is translocated from the plasma membrane to the cyto-

sol (Wang et al., 1989; Thelen et al., 1991; Byers et al., 1993;

Allen and Aderem, 1995). To detect changes in the intracellular

distribution of MARCKS OPCs plated on MPE and control-PLL

stained for A2B5 and MARCKS were compared using a laser scan-

ning microscope (Fig. 4A–F). In differentiating OPCs MARCKS

was distributed to the cell membrane whereas in OPCs in which

differentiation was inhibited by the presence of MPE a clear cyto-

solic presence of MARCKS was detected supporting the notion

that PKC is activated by myelin and that myelin inhibitors modu-

late cytoskeletal dynamics by MARCKS.

Fig. 2 (A) Myelin inhibitors impair Fyn-1/Y-418 phosphorylation in OPCs, (B) immunoblot following anti-Fyn-1-immunoprecipitation

and loading control. (C) Myelin inhibitors also induce activation of RhoA. (D) Autoradiograph of Rho assay (MPE: 40mg/cm2;

PLL: poly-L-lysine; incubation in differentiation medium for 24 h).

Fig. 3 (A) Immunoblot of OPC lysates demonstrates that differentiating OPCs express ROCK-II. (B) Inhibition of ROCK-II by culturing

OPCs on MPE with Fasudil (HA-1077) results in a more than 160% increase of differentiating cells after 48 h culture in differentiation

medium. (C) Whereas OPCs on MPE down-regulate O4 immunoreactivity. (D) O4 expression is largely restored by treatment with

HA-1077 (scale bar = 30mM).
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PKC inhibitors promote OPC
differentiation in the presence of
myelin inhibitors
In order to test whether inhibition of PKC signalling is able to

modulate the myelin-mediated differentiation block OPCs plated

on myelin were treated with the two selective PKC inhibitors, BIM

(Bisindolylmaleimide IX, Methasulfonate Salt) and Gö6976.

We found that treatment with BIM (n = 4; mean increase at

6.25 nM = 169%; ANOVA: P50.0001, Dunnett’s post tests MPE

versus 6.25 nM: P50.001; 12.5 nM: P50.05) and even more so

with Gö6976 (n = 3; mean increase at 50 nM = 267%; ANOVA:

P50.0001, Dunnett’s post-test MPE versus 25 nM: P50.05;

Fig. 4 (A–F) MARCKS is a down-stream effector of PKC. While in control cells MARCKS expression is associated with the cell

membrane, myelin inhibitors lead to a cytoplasmatic MARCKS presence. (G–N) Inhibition of PKC signaling in OPCs on MPE with BIM

(G–J; max. mean increase 169%) or Gö6976 (K–N; max. mean increase 269%) strongly induces OPC differentiation after 48 h

incubation in differentiation medium. (Scalebar: in A–C: 15.9 mm, in D–F: 14.6mm in H–J, L–N: 30 mm).
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50 nM: P50.001) was able to stimulate OPC differentiation in the

presence of myelin (Fig. 4G–N). TUNEL assays showed no differ-

ences in the rate of apoptosis between control cells and OPCs

plated on myelin treated with Bim or Gö-6976 (Supplementary

Fig. 1). As the use of pharmacological inhibitors entails the risk

of regulating cascades other than the targeted, we used siRNA to

down-regulate PKC-� expression in OPCs plated on myelin

(Fig. 5). SiRNA-mediated silencing of PKC-� was successful and

cells transfected displayed a marked decrease of PKC-� at protein

level. The reduction of PKC-� potently induced OPC differentia-

tion on MPE confirming the validity of the pharmacological

approach (n = 3; mean increase = 232%; ANOVA: P50.0001,

Dunnett’s post test MPE versus siRNA: P50.0001) (Fig. 5).

Blocking both ROCK-II and PKC further
promotes OPC differentiation
We next investigated whether ROCK-II and PKC transduce inhib-

itory signals via common or separate mechanisms and whether

blocking both pathways at the same time could further promote

OPC differentiation in the presence of myelin inhibitors. Treatment

with Fasudil and Gö6976 simultaneously induced a further

increase of the percentage of differentiating OPCs (Fig. 6; t-test:

HA-1077 versus co-incubation: P = 0.0009; Gö6976 versus

co-incubation: P = 0.0288). Furthermore, the treatment of OPCs

on MPE with the inhibitors was able to reverse the effects

of myelin on OPC morphology and resulted in the presence of

more mature phenotypes (stages III and IV, Fig. 6; ANOVA of

early stages (I/II) in PLL, MPE, and co-treatment P = 0.0027;

Dunn post-test: MPE versus co-treatment P50.01). MPE may

not include all inhibitory factors present in crude myelin prepara-

tions. To ensure that the beneficial treatment effects were not

restricted to substrates prepared with MPE we incubated OPCs

plated on crude myelin preparations with HA-1077, Gö6976,

or a combination of both. This resulted in a similar induction of

OPC differentiation in the presence of myelin inhibitors (data not

shown). Taken together our findings suggest that the inhibitory

effects of myelin molecules are mediated by at least two indepen-

dent pathways. Furthermore, blocking both pathways simulta-

neously may provide an even more potent strategy to improve

OPC differentiation in an in vivo setting.

Discussion
Axonal integrity is tightly coupled with myelin function as subtle

changes in the molecular composition can result in mid- to long

term axonal degeneration under otherwise physiological conditions

(Griffiths et al., 1998; Garbern et al., 2002; Lappe-Siefke et al.,

Fig. 5 (A and B) Transfection efficiency of OPCs was monitored by transfecting cells with RNAi (cy-3) and assessing the proportion of

cy-3-labelled cells after 48 h in differentiation medium (n = 3); in all experiments495% of the cells were cy-3 positive. Immunoblots of

OPC lysates after transfection with (C) RNAi for RhoA as well as (D) RNAi for PKC-� demonstrate downregulation of RhoA or PKC-�

on protein level after 48 h. (D) Silencing of RhoA or PKC-� results in a significant increase of O4 positive cells when cultured for 48 h on

MPE. (F) Whereas transfection with control RNAi (RNAi(scrambled, scr)) was not able to restore O4-immuroreactivity of OPCs on

MPE (G and H) gene silencing induced a strong increase in the number of differentiating cells (scalebar = 30 mM).
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2003; Nave and Trapp, 2008). The trophic function of myelin

sheaths is also very likely to be of significance for maintaining

axonal integrity in both acute and chronic CNS pathology, a situ-

ation in which denuded axons may be more prone to injury or

degeneration than axons bearing functionally intact myelin

sheaths. Thus increasing efforts have been placed in the develop-

ment of strategies by which remyelination may be enhanced ther-

apeutically (Dubois-Dalcq et al., 2005). Although much is known

about the biology of OPCs attempts to stimulate remyelination

in vivo by increasing or modulating the expression proliferation

or differentiation inducing factors have not been universally suc-

cessful, especially when older adult animals are used in which

myelin debris clearance is poor and remyelination inefficient

(Shields et al., 1999; O’Leary et al., 2002; Sim et al., 2002;

Penderis et al., 2003; Ibanez et al., 2004; Woodruff et al.,

2004). The presence of inhibitory molecules in myelin debris gen-

erated as a consequence of oligodendrocyte degeneration may in

part provide an explanation for the so far generally frustrating

failure of these different strategies (Kotter et al., 2006).

The key aim of our study was to examine the mechanisms that

control the myelin mediated inhibition of OPC differentiation. The

myelin molecules blocking OPC differentiation remain unknown.

However, it is a plausible hypothesis that these molecules

expressed on mature oligodendrocytes provide a feed-back inhibi-

tion for early (A2B5+) precursor cells. Under normal physiological

situations this feed-back system may serve to prevent inappropri-

ate differentiation of OPCs in normal adult white matter

(Robinson and Miller, 1999), while in development one might

speculate that signalling from mature oligodendrocytes to early

precursors may play a functional role in regulating OPC differen-

tiation. The situation following demyelination entails profound

environmental changes as large amounts of degenerated myelin

can accumulate within lesions. In experimental models this is effi-

ciently cleared by macrophages of microglial and monocytic origin

(Kotter et al., 2001, 2005). However, it is conceivable that if

clearance of myelin debris is disturbed by alterations of the inflam-

matory response the presence of myelin debris can persist and

thus for a prolonged period inhibit myelin repair. Recent studies

suggest that remyelination requires the signalling environment

provided by an acute inflammatory response (Mason et al.,

2001; Foote and Blakemore, 2005; Kotter et al., 2005; Setzu

et al., 2006). Therefore, it could be speculated that a situation

may occur in which the initial inclination OPCs to differentiate is

inhibited by the presence of myelin and turns into reluctance as

the expression of signalling molecules required to activate OPCs

diminishes.

The cascades that we found to be modulated by the presence of

myelin inhibitors are similar to the ones that regulate the inhibition

of axon growth via NogoR and Lingo-1 signalling (Lee et al.,

2004; Mi et al., 2005). However, there is no evidence that

Fig. 6 (A–C) Blocking PKC and ROCK-II simultaneously in OPCs plated on myelin by co-incubation with HA-1077 and Gö6976

induces an additional increase in the percentage of O4-positive cells as compared to single treatment after incubation in differentiation

medium for 48 h. (B) While MPE induces down-regulation of O4 immunoreactivity in OPCs (C: the same cells stained for A2B5),

(D) O4 expression is restored after treatment with the pharmacological inhibitors. (E–G) The presence of MPE is associated with a

reduction of the complexity of OPC processes and earlier morphological stages as compared to OPCs plated on control substrate.

(H) Treatment with HA-1077 and Gö6976 restores the presence of more mature phenotypes (scalebar = 30 mM).
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NogoR is expressed by OPCs and we ourselves were not able to

detect NogoR expression in our cultures. While immunocytochem-

istry for Lingo-1 is inconclusive we found evidence of Lingo-1

mRNA in cultured OPCs (unpublished data). Furthermore, we

have not seen evidence of an inhibitory effect of any of the clas-

sical myelin inhibitors of axon growth on OPC differentiation

(Syed et al., 2008). Thus the molecular substrate present in

myelin mediating the inhibitory effects remains unknown.

In this study, we developed a biochemical and proteomic pro-

tocol to identify potential candidates responsible for the myelin

differentiation block. With the criteria we applied this resulted in

a list of 137 myelin proteins—18 of which were previously identi-

fied using a proteomic approach. The detection of so many pre-

viously unidentified proteins in myelin can be explained in part

by the biochemical separation process we developed, which

removes many of the most abundant proteins. On the other

hand, we applied a gel-based separation technique that is specif-

ically tailored for the study of membrane-bound proteins that has

not been previously used for the analysis of the myelin proteome.

To identify the myelin protein(s) responsible for the inhibition of

OPC differentiation further separation steps may be helpful.

However, stringent data assessment may help to narrow down

the list of potential candidates. Apart from providing a list of

potential candidates our data illustrates the complexity of myelin

and will provide a reference for further studies of the biology of

myelin membranes.

Our results provide a model of how myelin exerts inhibitory

effects on OPC differentiation. In inhibiting RhoA-ROCK and

PKC(-�) signalling we have identified pharmacological targets by

which OPC differentiation can be powerfully stimulated in the

context of myelin inhibitors.

Fasudil is currently evaluated in a clinical setting for treatment of

vasospasm as well as angina pectoris in humans (Vicari et al.,

2005). Similarly, a number of clinical studies investigate the effects

of PKC inhibitors in cancer (Mackay and Twelves, 2007). While it

has to be expected that not all inhibitors can pass the brain blood

barrier, a number of PKC inhibitors (e.g. Tamoxifen, Calphostin-C,

HA-1004 and Ro 32-0432) (Gozal et al., 1998; Cerezo et al.,

2002; Zarate et al., 2007) as well as Rho-cascade inhibitors

(e.g. Fasudil) are able to cross the brain blood barrier (Satoh

et al., 2008).

PKC and ROCK inhibition have shown to exert stimulating

effects on neurite outgrowth in the presence of myelin inhibitors,

and thus synergistic effects with respect to neural repair could be

expected (Sivasankaran et al., 2004). As far as effects on other cell

types are concerned, inhibition of PKC in microglia is associated

with e.g. downregulation of MHC-II (Nikodemova et al., 2007), a

reduction of proinflammatory cytokine, iNOS (Kang et al., 2001;

Min et al., 2004), and TNF-� release (Jeohn et al., 2002) in

response to various inflammatory modulators including LPS, gan-

glioside and IFN� suggesting a reduction of proinflammatory

activity in microglia. On the other hand, it has been reported

that PKC inhibition lead to reduced CR3/Mac-1 and SRAI/II

mediated myelin phagocytosis (Cohen et al., 2006) which may

be relevant to myelin repair although the mechanisms we report

aim at neutralizing the effects of MAI on OPC differentiation.

Astrocytes react upon PKC inhibition by e.g. decreased activa-

tion of ATP-mediated glutamate outwards channels (Rudkouskaya

et al., 2008) and TGFb1 production (Wang et al., 2003), further-

more, the response to LPA is altered by a reduced proproliferative

intracellular Ca2+ increase (Keller et al., 1997) and NGF secretion

(Furukawa et al., 2007). It is difficult to interpret these findings

in the light of remyelination as little is known about the molecular

events in astrocytes during myelin repair. However, it seems

unlikely that the effects of PKC inhibition on astrocytes reported

will negatively impact remyelination.

Under the influence of Fasudil rat astrocytes transform in vitro

into process bearing cells (Abe and Misawa, 2003) which can be

explained by direct effects of the Rho-cascade on the cytoskele-

ton, on the other hand there are no data available how changes in

astrocyte processes impact myelin repair.

Finally, little is known of how microglia react to inhibition of

the Rho-cascade. A recent paper suggests that inhibition of

RhoA by C3 induces NO and proinflammatory cytokine release,

however, this is independent of ROCK signalling and was instead

found to be under the control of NFkappaB suggesting that tar-

geting down-stream signalling events may circumvent problems

that may arise as a consequence of microglia activation

(Hoffmann et al., 2008).

Our data suggest that inhibiting PKC and/or Rho-signalling

would be beneficial either acutely following demyelination,

where exposure to myelin debris that has yet to be cleared

might critically interrupt the initiation of remyelination resulting

in its long term failure or in chronic disease where OPCs remain

exposed to a differentiation-inhibitory environment. The data in

the current study paves the way for subsequent testing of phar-

macological interventions in animal models and further clinical

evaluation if the outcome were to be successful.
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Supplementary material is available at Brain online.
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