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Abstract

Most of the literature which has considered the small sample bias of limited informa-

tion estimators in simultaneous equation models has done so in the context of the

static rather than the dynamic simultaneous equations model (DSEM). Therefore,

an analysis of the performance of estimators in the general dynamic simultaneous

equations case is timely and this is what is provided in this paper. By introducing an

asymptotic expansion for the estimation errors of estimators, we are able to obtain bias

approximations to order T −1. Following this we constructed bias corrected estimators

by using the estimated bias approximation to reduce the bias. As an alternative, the

use of the non-parametric bootstrap as a bias correction procedure was also examined.

In Chapter 2, we analyse the Two Stage Least Squares ( 2SLS ) Estimator in the

general DSEM. Based on the result in Chapter 2, Chapter 3 compared the Fuller

modification of the limited information maximum likelihood estimator (FLIML) with

the 2SLS estimator. The bias approximation and reduction in the pth-order dynamic

reduced form are analysed in Chapter 4.

The results indicate that FLIML gives much less biased estimates than the 2SLS

estimation in the general DSEM. We have also observed that the bias correction method

based on the estimated bias approximation to order T −1 provides almost unbiased

estimates and it does not lead to an inflation of the mean squared errors compared with

the associated uncorrected estimators. We suggest that the corrected estimators, based

upon the O(T −1), should be used to reduce the bias of the original estimators in small



x

samples. Alternatively, the numerical results show that the bootstrap method leads to

an effective reduction of the bias and an inflation of MSE, however this reduction is

not as effective as the first one.

Keywords :General Dynamic simultaneous equations model; Asymptotic approxi-

mations; Bias correction; Bootstrap; Monte Carlo simulations; 2SLS; FLIML; OLS;

C2SLS; CFLIML; COLS.

JEL classification: C13; C32
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Chapter 1

Introduction

Economic modelling provides the relationships between economic variables which are

useful in making predictions and conducting policy evaluations. Well known examples

of econometric models include the classical linear regression models (CLRM), where

the regressors are assumed to be non-stochastic, the model is linear and the errors

independent and identically distributed normal random variables. However, these

assumptions are rather far from economic reality, it has long been realized that a

relaxation of these assumptions is necessary in empirical work. The non-classical i.e

statistical models for which these assumptions are violated and the inference procedures

of CLRM are not applicable, include the simultaneous equations model (SEM) which

was introduced by Haavelmo (1943). Since then the SEM has been used extensively to

analyse economic phenomena which gives a more realistic representation of an economic

process. However this relaxation of the assumptions of the CLRM usually makes it

impractical to derive the exact distributional properties of estimators and test statistics

in finite samples. Thus a simpler approach is required and instead of basing analysis

on the exact properties of estimators reliance is placed on their asymptotic properties

which can be obtained over a wide range of models and which are generally assumed

to provide a reasonable approximation to finite sample properties.
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The asymptotic theory of estimators and test statistics plays an important role

in econometric inference for analysing economic phenomena. However, asymptotic

properties hinge upon a crucial condition that the number of observations be infinitely

large; this condition is generally not met in the practice though and the quantity and

quality of economic data are not controllable. In many cases, only small sample sizes

of data or poor quality data are observed. How large the sample of observations should

be to achieve the asymptotic properties remains unanswered. Fisher (1921) originally

pointed out that the asymptotic theory which requires the number of observations to be

infinitely large for the asymptotic results to hold true may not imply the finite sample

behaviour of economic estimators and the test statistics in many practical applications.

As well they may give misleading results for small or even moderately large samples.

Even if a large number of observations is available, such as with an increasing number

of data sets in finance, development economics, and labour economics etc., it may not

desirable to use them because of the non-compliance with the other conditions required

for the asymptotic theory to hold. Moreover, Leamer (1978) pointed out that sequential

application of asymptotically equivalent procedures, might lead to results that are

not asymptotically equivalent under the data instigated models. It was shown that

asymptotically equivalent estimators may have very different finite sample properties.

For these and the other important reasons, it seems that the information about the

small sample behaviour of estimators and test statistics is of great value in econometrics.

This thesis is devoted to obtaining such information in a form that is easy to interpret

and practical to use.

There are three main tools of analysis for obtaining more information for the small

sample behaviour of the econometric estimators and test statistics: exact finite sample

theory, the use of asymptotic expansions or large sample approximation, and more

recently, the application of the bootstrapping (resampling) technique.
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Fisher (1921), Fisher (1922), and then the work of Cramér (1945) laid the foundation

of statistical finite sample theory on the exact distributions and moments which are valid

for any sample size. This exact theory on distributions and moments was introduced

into econometrics by Haavelmo (1947) and Anderson and Rubin (1950) on the exact

confidence region of structural coefficient, Hurwicz (1950) on the exact least square

bias in an autoregressive model, Basmann (1963), Richardson (1968), Sawa (1969),

Sawa (1972), Anderson and Sawa (1973), Ullah and Nagar (1974), Phillips (1983), and

Ullah (2004) on the exact density and moments of the estimators in the simultaneous

equations model. All these important contributions were related to obtaining exact

results, which hold for any sample size, small, moderately large, or very large. However,

the density functions of estimators have a complicated mathematical structure which

makes it difficult to draw the meaningful inference from them.

The second method uses asymptotic approximations, with errors of smaller order of

magnitude than the first order asymptotic approximation, to obtain more information

on small sample behaviour. It provides results which will tend to lie between the exact

and asymptotic results. Thus it can tell us how much we lose by using asymptotic theory

and how far is it from the exact results. It includes the saddlepoint approximation,

the large-T approximation and the small σ approximation.

The saddlepoint approximation can be obtained for any statistic which admits

a cumulative generating function. It is based on the Fourier inversion formulae for

the density, and applies the steepest decent method to the integration to derive an

approximation for the density function. However, it is not widely used in econometrics,

see Daniels (1954) and Daniels (1956).

The second approximation method is the large-T approximation. A significant

growth in the literature took place following the work of the Sargan school, Nagar

school, Basmann school, Anderson school, and P.C B. Phillips school. Most of the
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contributions of these schools, however, were confined to the analytical derivation of

the moments and distribution in the static simultaneous equations model and the

dynamic first order autoregressive model, with i.i.d normal disturbances. First, we

should clarify the difference between the large-T approximation and large sample

asymptotic theory. The inferences from the asymptotic theory are simply based on

the limiting distribution when T goes to infinity, while, the large-T approximation

uses an asymptotic expansion to approximate the exact distribution or moments of

the statistic, and then it provides inferences based on some leading terms of the

expansion. The accuracy of the large-T approximation increases as the sample size

increases. There are two different popular ways to derive this large-T approximation

in econometrics; using the Edgeworth approximation and Nagar’s approximation. It is

useful to distinguish between Sargan school (who used the Edgeworth approximation)

and the Nagar school(who focused on finding approximations to estimator moments)

to facilitate our discussion. The Sargan school which is exemplified by Sargan (1975),

Sargan (1976), Mariano (1972), and Phillips (1980), rigorously developed the theory and

applications of the Edgeworth (1896) expansions to derive the approximate distribution

function of econometric estimators. The Nagar school, Nagar (1959), Kadane (1971),

obtained the approximate moments of the k-class estimators in simultaneous equations.

This thesis can be classified as belonging to the Nagar school since the approximation

employed is essentially based on a Taylor series expansion to approximate the sampling

error (the difference between the statistic and the parameter), so that the successive

terms are in the descending order of the sample size T , in probability. He found

expressions of bias to the order of T −1, and for the second moment to the order of T −2

for general k-class estimators.

To illustrate, suppose a sample size T and an estimate α̂ of a coefficient vector

α, the large-T approach in Nagar (1959) starts by expanding the estimation error as
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follows:

√
T (α̂ −α) =

p∑
s=1

es

T (1/2)(s−1) + rp

T (1/2)p

where es, for s = 1, ...,p, and rp are all Op(1) as T → ∞. Here rp is the remainder

term in an expansion up to order p. A bias approximation is then obtained by taking

expectations of the terms in the summation.

An alternative is the small-σ approach due to Kadane (1971). This method uses a

Taylor series expansion to expand the expression for the estimation error, so that the

successive terms are in increasing powers of σ in probability, in contrast to the large-T

asymptotic expansion which orders these terms in descending order of the sample size,

T, in probability. The general expansion is

1
σ

(α̂ −α) =
p∑

s=1
σs−1ės +σpṙp

and where ės , for s = 1, ...,p, and ṙp are also bounded in probability, this time as

σ, the standard deviation of the equation disturbance, tends to zero. The bias is

then approximated to an appropriate order by taking expectations of the terms in the

summation.

It has been shown that the two approaches give essentially the same bias approxi-

mations in the static SEM case. However, as shown by Kiviet and Phillips (1989) the

two approximations are not the same in dynamic models and the large-T approach

is superior. In addition, the small-σ approximation requires that the disturbance

be suitably small and approaches zero in limit. The rationale is that when σ gets

progressively smaller the econometric model gives a progressively better explanation of

the data. Hence both large-T and small-σ are idealisations.
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The third approach and the most recent tool for gaining the information of small

sample behaviour was introduced by Efron (1979), Hall (1997). Both Monte Carlo and

Bootstrap methods are based on the use of simulation techniques to generate some

specific numerical approximations to the sample distribution in selected case. In this

thesis, we will explore the bootstrap method in reducing the bias of the estimates

based on the approach of Freedman (1984) and Ip (1991), which is the non-parametric

residual bootstrap method.

From the literature, it is apparent that most of work done to explore the small

sample properties in simultaneous equation models covers only the static case, whilst

any work in the dynamic case considers only first order dynamics. This is true, for

example, in the work of Phillips and Liu-Evans (2015) which considered the properties

of the two stage least squares (2SLS) in a DSEM with just one lagged endogenous

variable. We are not aware of any work in the literature which explores the properties

of estimators in the general dynamic simultaneous equations model. In the case of

the Fuller limited information maximum likelihood (FLIML) estimator, there are no

reported results at all for the DSEM even for the one lagged case. In Kiviet, Phillips,

and Schipp (1999) a bias approximation was presented for the maximum likelihood

estimation of the reduced form parameters of a first order DSEM while again the general

case was not considered. However Kiviet and Phillips (1994) had previously presented

a bias approximation for the least squares estimator in a single equation dynamic

regression of general order. This thesis is interested in extending Kiviet, Phillips,

and Schipp (1999), and Kiviet and Phillips (1993) of a one period lagged-dependent

variables, and Kiviet and Phillips (1994) of high-order dynamic single regression and

that of Phillips and Liu-Evans (2015), to high order dynamic simultaneous equations

models.
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Two alternative approaches could be used to estimate the simultaneous equations

model: limited information estimators(LIE) (single equation estimation) which estimate

a system of simultaneous equations by estimating each equation (provided it is identified)

separately, and Full information estimators(FIE) (system estimation) which estimate

all the (identified) equations in the system simultaneously. FIE is more efficient, but it

puts more constraints on the model compared with LIE. FIE incorporates knowledge

of all the restrictions in the system when estimating each parameter, while LIE only

utilizes knowledge of the restrictions in the particular equation being estimated. Hence,

in the FIE approach the misspecification of one behavioural equation affects the other

behavioural equations, while the LIE is not as prone to misspecification (due to fewer

assumptions). This thesis focuses on the behaviour of LIE in the context of the general

dynamic simultaneous equations models in finite sample cases. The commonly used

limited information estimators are the least squares (ordinary least squares (OLS),

indirect least squares (ILS), generalised least squares (GLS) and two stage least squares

(2SLS), and the limited information maximum likelihood (LIML)). When the model

has endogenous variables, the OLS estimator could be seriously biased and inconsistent.

Hence in this thesis we merely analyse the behaviour of OLS in the reduced form when

the sample size is small. As we mentioned before, in truly large samples, asymptotically

equivalent estimates should not be very different, however, if the sample size is small

or moderate, various asymptotically justified estimators of the same coefficients can

assume quite different numerical values, and they exhibit different properties. Such as,

in the case of the 2SLS estimator which only possesses finite moments up to the degree

of over-identification and the limited information maximum likelihood estimator which

does not possess moments of any integral values.

For static models, 2SLS has historically been the most commonly used limited

information estimation method. Another popular method is LIML. The fact that LIML
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does not possess finite moments of any order is well known, see for example Roberto

S. Mariano (1972). More recently Chao et al. (2013a), Chao et al. (2013b) provide

proofs that LIML does not have any finite moments , which leads to particularly

dispersed estimates, see Hahn, Hausman, and Kuersteiner (2004). To solve the problem

of LIML estimation Hahn, Hausman, and Kuersteiner (2004), Hausman et al. (2009)

suggested the estimator proposed by Fuller (1977) which we refer to as FLIML and

which has a k-class representation based on k = λF uller, where λF uller = λ∗ − α
T −K =

min β′
∗Y ′

∗P̄Z1Y∗β∗

β′
∗Y ′

∗P̄ZY∗β∗
− α

T −K , has all necessary moments and which has a small bias property.

In the static case, the FLIML estimator yields estimates which are unbiased to order

T −1, and order σ2 respectively, see Anderson, Kunitomo, and Morimune (1986). As

noted earlier,while some literature has explored the small sample properties of 2SLS in

a one lagged dependent variable DSEM, no literature has explored the general DSEM

case. In reference to the FLIML estimator, I am not aware of any literature that has

presented its properties in the DSEM when the sample size is small. Hence in this

thesis, we will explore the small sample properties of 2SLS and FLIML estimators

in the general DSEM, assess the bias approximation, and subtract the bias from the

initial estimator to develop bias corrected estimators.

Chapter 2 examines estimation in over-identified equations for the general DSEM

with p lagged dependent variables, strong exogenous variables and innovation errors;

moreover, this system is stable. In particular,we show how the new corrected 2SLS

estimator gives almost unbiased estimation based on the bias approximation which

is obtained by first taking Taylor expansions to order T −1. The bias approximation

is then decomposed into the simultaneity bias and dynamic bias components. The

dynamic bias follows the results presented in Kiviet, Phillips, and Schipp (1999), Kiviet

and Phillips (1993) and Phillips(2011). Interestingly, in our results we observe that

the dynamic bias and simultaneity bias have opposite signs which indicates that some
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correction method which is suitable for the static case may not be so in the case of

dynamic models. In this Chapter we also employ the non-parametric bootstrap to

correct the bias and the results point out that it could be an alternative way to correct

the bias when the computer cost is a consideration. The new bias correction procedure

does not lead to an inflation in the mean squared errors. While, the non-parametric

bootstrap method leads to an increase in mean squared errors, but this increase is not

likely to be substantial.

Chapter 3 contributes to the literature in three ways. First, under regularity condi-

tions, we derive the bias approximation to order 1/T for the Fuller limited information

maximum likelihood(FLIML) estimator in the general DSEM which has not been

reported in previous literature. We do this by using Nagar type expansions which

makes the results comparable. Secondly, we compare the analytical bias approximation

for FLIML with the corresponding bias approximation for 2SLS and we observe that

the FLIML estimator, which removes the O(T −1) simultaneity bias completely and

dynamic bias partially, gives much less biased estimates. Third, we have constructed

a bias corrected procedure for the original FLIML by employing the estimated bias

approximation. We observe that this corrected FLIML (CFLIML) gives almost un-

biased estimates numerically and analytically. Moreover, the MSE of endogenous

and exogenous variables’ coefficients in FLIML are much smaller than that of 2SLS.

However, the MSEs for some dynamic coefficient estimates are found to increase in

FLIML. The corrected estimators do not lead to an inflation in the MSE compared

with the non-corrected methods in general.

Chapter 2 and Chapter 3, both analyse the bias approximation in the same general

DSEM, with the same assumptions. These two chapters show that the bias corrected

estimators, based upon O(T −1) can be recommended as a bias reduction technique in

the general DSEM.
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Independent of the analysis of the structural form model estimator properties,

Chapter 4 focuses on exploring the classical estimator OLS in the pth order dynamic

reduced form model which comes from the general DSEM. In this chapter, we extend

the analysis in Kiviet, Phillips, and Schipp (1999) to the general pth-order dynamic

reduced form case. Without losing generality, we focus on the bias in the OLS

estimates for the first equation of a multi-equations system, where p lagged endogenous

variables are included. The bias approximation to order T −1 is derived by using the

Nagar expansion, and the bias corrected estimators are constructed by employing the

estimated bias approximation. We set up a set of Monte Carlo experiments to examine

the performance of COLS and the residual bootstrap OLS in this general reduced

form model. The simulations and numerical results suggest that the OLS bias can

be substantial which was also observed in Kiviet, Phillips, and Schipp (1999). The

COLS estimator gives almost unbiased estimation, and the residual bootstrap method

is also well behaved as a bias reduction procedure. From the results, it is obvious that

bias correction using the O(T −1) bias expansion is more effective compared to the

bootstrap method. In addition bias correction with either method does not result in

an increase of the MSE. Hence, the bias corrected estimator COLS, based upon the

O(T −1) bias approximation can be recommended as a bias reduction technique in the

pth order dynamic reduced form. Alternatively, the non-parametric bootstrap is also

an appropriate way to reduce the bias if the computer cost is a consideration.

In Chapter 5 of this thesis, we provide the summary of conclusions of our research

and we suggest the future direction for further research studies in relation to relevant

chapters of this thesis.



Chapter 2

The bias of 2SLS estimator in

general dynamic simultaneous

equations models

2.1 Introduction

To explore the finite sample properties of estimators in the static simultaneous equations

model(SEM), Nagar (1959) found the bias approximation for k-class estimators to

the order of T −1, and also derived an approximation for the second moment to order

T −2, by using asymptotic expansions essentially based on employing Taylor expansions.

Later work in this area included Phillips (2000), Mikhail (1972), Hahn and Hausman

(2002), and Bun and Windmeijer (2011) examined bias approximation and reduction

in the static simultaneous equation models.

In the dynamic regression models, a number of researchers show that least squares

estimators can be seriously biased in small samples. They include Grubb and Symons

(1987), Hoque and Peters (1986), and Peters (1989). Kiviet, Phillips, and Schipp (1999),

Kiviet and Phillips (1993), Kiviet and Phillips (1995) while Phillips and Liu-Evans
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(2015) show that the bias in 2SLS in a dynamic simultaneous equation model (DSEM)

can be expressed in two parts, a part which derives from simultaneity and a part which

is due to the dynamics. However, this latter paper only focuses on the first order

DSEM rather than the general DSEM(p lagged dependent variables). In the high order

dynamic case, Kiviet and Phillips (1994) present the small sample bias of OLS for the

standard ARMAX (p,0,k) model; however, this is a single equation regression model

rather than a DSEM.

In this paper, we are interested in extending the Phillips and Liu-Evans (2015), and

Kiviet, Phillips, and Schipp (1999) analysis for the first order DSEM to the general

order DSEM assuming that the structural disturbances are normally and independently

distributed with mean vector 0′ and fixed covariance matrix Σ = (σij). This general

dynamic simultaneous equations model includes the endogenous variables which are

lagged p time periods, and strongly exogenous I(0) regressors lagged q time period.

With this model, we analyse the behaviour of 2SLS when sample size is small.

Analytically, we derive the bias approximation of 2SLS to order T −1, and confirm

the evidence which has been observed in Kiviet, Phillips, and Schipp (1999), Kiviet

and Phillips (1993) and Phillips and Liu-Evans (2015), i.e the bias comes from the

simultaneity and dynamics respectively. Interestingly, the numerical results show that

these two parts actually have opposite signs. In this case, bias correction methods

which effectively reduce the bias in the static case (Kiviet and Phillips (1989), Sawa

(1973) and Iglesias and Phillips (2012), etc.) may not be suitable for our dynamic

models. However, if we subtract the observed bias approximation in estimation from

the corresponding estimator, the bias corrected estimator may be unbiased to order T −1

theoretically. Kiviet and Phillips (2005) show that O(σ2) bias approximation can be

used for corrected 2SLS (C2SLS) estimation of dynamic models. Kiviet, Phillips, and

Schipp (1999) and Liu-Evans and Phillips (2012) use the O(T −1) bias approximation in
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COLS estimation of autoregressive models, and it presents almost unbiased estimators.

Phillips and Liu-Evans (2015) show in Monte carlo simulations that by using the C2SLS

in the first order DSEM, the new C2SLS method gives almost unbiased estimation.

Hence, we develop the bias corrected estimator by employing the estimated bias

approximation applied to the traditional 2SLS estimator. Ideally, using the large-T

approximation in this paper directly for a reduced-bias estimator may tend to yield

more accurate numerical results than any existing approximation. Hence we would

expect the O(T −1) bias approximation in our paper to yield a substantial improvement

over the uncorrected 2SLS estimator.

Our numerical results show that the bias approximation may tend to overstate

the magnitude of the "true" bias as given by the Monte Carlo estimates in 2SLS.

However, importantly, the bias corrected estimator, based upon O(T −1) approximation,

very substantially reduces the Monte Carlo 2SLS bias. Moreover, in most cases, it

does not inflate the MSE. Hence, the bias corrected estimator, based upon O(T −1)

bias approximation, can be recommended as a bias reduction technique for practical

use. The other alternative bias reduction method is also considered in this chapter.

Freedman (1984) pointed out that the residual bootstrap method could be useful in

bias reduction in 2SLS estimation, since it may have some effect in eliminating the

bias that comes from the dynamic part. Ip (1991) provides strong support that the

bootstrap 2SLS can correct bias for both static and dynamic parts to order T −1. In our

experiments, the bootstrap method is not as good as C2SLS, but it may still effectively

reduce the bias in the 2SLS. When L , the order of over-identification is large, the

estimates of endogenous and exogenous coefficients may have small MSE when using

the bootstrap 2SLS.

The next section will introduce the general model. Section 2.3 evaluates the bias

approximation for the first equation in the structural form. Section 2.4 introduces the
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new bias correction method C2SLS. The numerical experiments and the associated

results are present in section 2.5, and 2.6. In these two sections we also employ the

non-parametric residual bootstrap 2SLS estimator. The last section is our conclusion

part.

2.2 The Model

The complete system we are interested in:

Y B +
p∑

i=1
Y−iA

(i) +
q∑

j=0
X−jC

(j) = Ũ , (2.1)

where Y is a T ×G matrix of T observations on G endogenous variables, X is a T ×K

matrix of observations on K stationary ( we will relax this assumption in our further

work) and strongly exogenous variables, Y−i is a T ×G matrix of observations on the

endogenous variables lagged i time periods (G lagged endogenous explanatory variables

) and we assume that the initial values (Y1−p,, ...,Y0) are non-stochastic. The model

also involves K current strictly exogenous variables in the matrix X which is assumed

to be of full rank K, and has q lags X−j . They are assumed to be the I(0) process.

Ũ is a T ×G matrix of structural disturbances. The matrices B,A(i) and C(j) are of

dimension G×G,G×G and K ×G, respectively, and B is assumed to be non-singular.

The rows of Ũ are assumed to be normally and independently distributed with zero

mean and fixed covariance matrix Σ̃ = (σ̃mn).

Furthermore, we assume that the eigenvalues ( real or complex values) of the system

of difference equations are inside the unit circle which ensures the stability for our

system. Thus the roots (real or complex values) of the determinantal equation

det|Bϖp +A(1)ϖp−1 +A(2)ϖp−2 + ...+A(p)|= 0

are smaller than unity in absolute value: |ϖ|h< 1,h = 1,2, ...,p. This statement of



2.2 The Model 15

the system essentially follows that of Dhrymes (1970), Chapter 12; Davidson (2000),

Section 4.3.2.

The reduced form of the model is:

Y = −
p∑

i=1
Y−iA

(i)B−1 −
q∑

j=0
X−jC

(j)B−1 + ŨB−1 (2.2)

=
p∑

i=1
LiY Γ(i) +

q∑
j=0

LjXΠ(j) + Ṽ

= ZA∗ + Ṽ ,

where Γ(i) = −A(i)B−1, Π(j) = −C(j)B−1 and Ṽ = ŨB−1. The rows of Ṽ are normally

and independently distributed with zero mean and covariance matrix Ω̃ = (ω̃mn) =

E(Ṽ ′
Ṽ )/T . Also Z = [R : S] is a T × (P +Q) matrix where P =∑G

m=1 p(m) and Q =∑K
n=1 q(n). Here the T ×P matrix R includes all the observations for the (stochastic)

lagged endogenous variables, and the T ×Q matrix S includes the observations for all

the other regressors. A∗ is the (P +Q)×G coefficients matrix.

The stochastic part W̃ of Y = Ȳ + W̃ from equation (2.2) has rows w̃
′
t, t = 1,2...T ,

which can be written as follows.

w̃1
′
= ṽ1

′
,

w̃2
′
= ṽ2

′
+ w̃1

′
Γ(1),

w̃3
′
= ṽ3

′
+ w̃1

′
Γ(2) + w̃2

′
Γ(1),

w̃4
′
= ṽ4

′
+ w̃1

′
Γ(3) + w̃2

′
Γ(2) + w̃3

′
Γ(1),

...

w̃p
′
= ṽp

′
+ w̃1

′
Γ(p−1) + w̃2

′
Γ(p−2) + w̃3

′
Γ(p−3) + ...+ w̃

′
p−1Γ(1),

˜wp+1
′
= ˜vp+1

′
+ w̃1

′
Γ(p) + w̃2

′
Γ(p−1) + w̃3

′
Γ(p−2) + ...+ w̃

′
pΓ(1),

...
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w̃T
′
= ṽT

′
+ w̃

′
T −pΓ(p) + ...+ w̃

′
T −2Γ(2) + w̃

′
T −1Γ(1).

Let the T ×T matrix D be such that,

D =



0 0 . . . . 0

1 0 0

0 1 0

. . . . .

. . . . .

0 0 . . 0 1 0



, D2 =



0 0 . . . . 0

0 0 0

1 0 0

. . . . .

. . . . .

0 0 . . 1 0 0



,

where DT −1.D = DT = 0 and D0 is IT . Also we define a TG×G matrix J formed by

stacking the matrices Jt, t = 0,1, ...,T −1, as follows

J0 = IG,

J1 = Γ(1),

J2 = Γ(2) +Γ(1)J1,

J3 = Γ(3) +Γ(2)J1 +Γ(1)J2,

J4 = Γ(4) +Γ(3)J1 +Γ(2)J2 +Γ(1)J3,

...

Jp = Γ(p) +Γ(p−1)J (1) + ...+Γ(1)Jp−1,

Jp+1 = Γ(p)J1 + ...+Γ(1)Jp,

Jp+2 = Γ(p)J2 + ...+Γ(1)Jp+1,

...

JT −1 = Γ(p)JT −p + ...+Γ(1)JT −2.
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The matrix J can be written as:

J =



J0

J1

J2
...

Jp

Jp+1

Jp+2
...
...

JT −1



=



I 0 0 0 0 ... ... 0 0 0

Γ(1) 0 0 0 0 ... ... 0 0 0

Γ(2) Γ(1) 0 0 0 ... ... 0 0 0
... ... . . . . .

...

Γ(p) Γ(p−1) ... Γ(1) 0 ... ... .

0 Γ(p) Γ(p−1) ... Γ(1) 0 ... ... .

0 0 Γ(p) Γ(p−1) ... Γ(1) 0 ... ... .

... ... . . . . .
...

... ... . . . . .
...

0 .... . . . . Γ(p) Γ(p−1) ... . . . Γ(1)





I

J1

J2
...

Jp

Jp+1

Jp+2
...

JT −2



.

With these definitions W̃ can be represented in terms of Ṽ as follows:

W̃ =
T −1∑
t=1

DtṼ Jt + Ṽ =
T −1∑
t=0

DtṼ Jt. (2.3)

In equation (2.3), ∑T −1
i=0 DtṼ Jt is the stochastic part of Y . In equation (2.2)

Z = [R : S], and in accordance with our notation, Z may be decomposed as:

Z = Z̄ + W̃ ∗. (2.4)

Here Z̄ = [R̄ : X] is taken to be the non-stochastic part of Z, whose component matrix

R̄ is the non-stochastic part of R. The stochastic part of Z is W̃ ∗ = ωW ∗, and W̃ ∗

can be expressed as:

W̃ ∗ = [R̃ : 0] = [LW̃ : L2W̃ : .... : LpW̃ : 0]
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= [
T −1∑
t=1

DtṼ Jt−1 :
T −1∑
t=2

DtṼ Jt−2 : ... :
T −1∑
t=p

DtṼ Jt−p : 0].

The standardized form of W̃ ∗ can be presented as:

W̃ ∗ =
 p∑

i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
i : 0

 , (2.5)

where Ψ′
i = e

′
i ⊗ IG is G × P matrix with P = ∑G

m=1 p(m) and where all component

G×G matrices are zero except the ith which is an identity matrix. ei is the p×1 unit

vector with all elements equal to zero except the ith which is unity.

2.3 Structural Form Estimation–Two Stage Least

Square Estimation

In this section we derive the large T approximations to the bias of 2SLS estimators

when estimating the structural coefficients of the first equation which forms part of

the complete system equation (2.1), and we shall write the equation as:

y1 = Y2β1 +
p∑

i=1
LiY1a

(i)
1 +

q∑
j=0

LjX1c
(j)
1 + ũ1 = Υδ1 + ũ1, (2.6)

where

Υ = [Y2 : R1 : S1] and δ
′
1 = (β1,a

(1)
1 , ...,a

(p)
1 , c

(1)
1 , ..., c

(q)
1 ).

Here Y1 = [y1 : Y2] is a T ×(g+1) matrix of observations on g+1 included endogenous

variables. LiY1 is the i period lagged version of Y1, X1 is a T ×k matrix of observations

on k stationary exogenous variables. Υ is a T × (g +P ∗ +Q∗) matrix which includes

the T ×g matrix Y2, the T ×P ∗ matrix R1 contains the lagged endogenous regressor

values and the T × Q∗ matrix S1 contains the exogenous regressor values which are
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taken as fixed. P ∗ =∑g+1
m=1 p(m) and Q∗ =∑k

n=1 q(n) which allows for the equations to

contain different numbers of lagged endogenous and exogenous regressors respectively.

δ1 is a (g + P ∗ + Q∗) × 1 vector which contains all the structural form parameters. We

shall denote:

Ῡ = [Ȳ2 : R̄1 : S̄1] and F̃ = [W̃2 : R̃1 : 0] (2.7)

as, respectively, the non-stochastic and stochastic parts of Υ which will be used in

later analysis. Notice that the non-stochastic part of Y contains Ȳ2 and R̄1 which are

the unconditional expectations of Y2 and R1 respectively. Note also that in F̃ , W̃2 is

the relevant stochastic part of W̃ for Y2 as given in equation (2.3).

The standard 2SLS estimator of δ1 can be written as:

δ̂1 = (Υ̂
′
Υ̂)−1Υ̂

′
y1 (2.8)

= δ1 +(Υ̂
′
Υ̂)−1Υ̂

′
ũ1

where

Υ̂ = [Ŷ2 : R1 : S1] and Ŷ2 =
p∑

i=1
LiY Γ̂(i)

2 +
q∑

j=0
LjXΠ̂(j)

2

and Ŷ2 is obtained when the reduced form equation (2.2) is estimated by OLS. The

matrix R1 which refers to LiY1 is T × P ∗, where P ∗ =∑g+1
m=1 p(m). Γ̂(i)

2 , i = 1,2, ...,p

and Π̂(j)
2 , j = 1,2, ..., q are respectively, G×g and K ×g matrices of estimated reduced

form coefficients in equation (2.2). Υ̂ can be also decomposed into non-stochastic part

Ῡ and stochastic part (Υ̂− Ῡ), hence:

Υ̂ = Ῡ+(Υ̂− Ῡ).
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Using equation (2.7) and (2.8), and Ȳ2 =∑p
i=1 LiȲ Γ(i)

2 +∑q
j=0 LjXΠ(j)

2 , the stochas-

tic part of Υ̂ can be written as:

Υ̂− Ῡ =
 p∑

i=1
LiȲ (Γ̂i

2 −Γi
2)+

q∑
j=1

LjX(Π̂j
2 −Πj

2)+
p∑

i=1
LiW̃ Γ̂i

2 :
p∑

i=1
LiW̃1 : 0

 (2.9)

=
 p∑

i=1
LiȲ (Γ̂(i)

2 −Γ(i)
2 )+

q∑
j=1

LjX(Π̂j
2 −Πj

2)+
p∑

i=1
LiW̃ (Γ̂(i)

2 −Γ(i)
2 ) : 0 : 0


+[

p∑
i=1

LiW̃Γ(i)
2 : R̃1 : 0].

We define:

∆1 =
 p∑

i=1
LiȲ (Γ̂(i)

2 −Γ(i)
2 )+

q∑
j=1

LjX(Π̂j
2 −Πj

2)+
p∑

i=1
LiW̃ (Γ̂(i)

2 −Γ(i)
2 ) : 0 : 0

 , (2.10)

∆2 = [
p∑

i=1
LiW̃Γ(i)

2 : R̃1 : 0].

Then Υ̂ = Ῡ+∆1 +∆2 and it is possible to write

Υ̂
′
Υ̂ = Ῡ

′
Ῡ+∆

′
1∆1 +∆

′
2∆2 +Ῡ

′
∆1 +Ῡ

′
∆2 +∆

′
1Ῡ+∆

′
2Ῡ+∆

′
1∆2 +∆

′
2∆1 (2.11)

= Ῡ
′
Ῡ+E(∆

′
2∆2)+∆

′
1∆1 +(∆

′
2∆2 −E(∆

′
2∆2))+(Ῡ

′
∆1 +∆

′
1Ῡ)

+(Ῡ
′
∆2 +∆

′
2Ῡ)+(∆

′
1∆2 +∆

′
2∆1).

Let H−1 = Ῡ′Ῡ +E(∆′
2∆2) which is O(T ), then put the Op(T 1/2) component of

Υ̂′Υ̂ as J∗
1 and the Op(1) component as J∗

2 . Where, J∗
1 includes (∆′

2∆2 −E(∆′
2∆2)),

((Ῡ′∆1 +∆′
1Ῡ), and (Ῡ′∆2 +∆′

2Ῡ) (∆′
1∆2 +∆′

2∆1) , and the component of J∗
2 is ∆′

1∆1.

We can then express (Υ̂′Υ̂)−1 from equation (2.11)as follows:

(Υ̂
′
Υ̂)−1 = (H−1 +J∗

1 +J∗
2 )−1 = H(I +J∗

1 H +J∗
2 H)−1 (2.12)

= H −HJ∗
1 H +op(T −3/2)
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and noting that Υ̂ = Ῡ+∆1 +∆2 , we have

Υ̂
′
ũ1 = Ῡ

′
ũ1 +∆

′
1ũ1 +∆

′
2ũ1. (2.13)

Here ∆′
1ũ1 is Op(1), Υ̂′

ũ1 and ∆′
2ũ1 are Op(T 1/2). Combining equation (2.12) with

(2.13) gives:

δ̂1 − δ1 = (Υ̂
′
Υ̂)−1Υ̂

′
ũ1 = HῩũ1 +H∆

′
1ũ1 +H∆

′
2ũ1 −HJ∗

1 HῩ
′
ũ1 (2.14)

−HJ∗
1 H∆2ũ1 +op(T −1).

Taking expectations term by term yields the 2SLS bias, and this is given in Theorem

1 below. Defining H∗−1 = E(Z ′
Z), where recall that Z = [R̃ : S] which includes all the

lagged endogenous variables and all the exogenous variables and let I2 =

IP

0

 which is

(P +Q)×P selection matrix, then I ′
2H∗I2 = H∗∗, a sub-matrix of H∗. We also define

the matrix C∗ =
[
Γ(∗)

2 : I1 : 0
]

which is P ×(g +P ∗ +Q∗) matrices. It contains the

P ×g matrix Γ(∗)
2 = (Γ(1)

2 ,Γ(2)
2 , ...,Γ(p)

2 )′ , the P ×P ∗ selection matrix I1, and the P ×Q∗

matrix (0P ×Q∗). It then follows that we may write ∆2 = [∑p
i=1 LiW̃Γ(i)

2 : R̃1 : 0] = R̃C∗,

where R̃ = [LW : L2W : ... : LpW ] includes all the stochastic part of lagged dependent

variables. We will use this expression for further calculations in the appendix. Define

τ = σ2φ and ϑ = Λ∗∗′
τ , φ is defined by using, Nagar (1959), the decomposition for Ṽ ,

Ṽ = S∗ + ũ1φ
′ , where S∗ and ũ1 are normally and independently distributed. Then

φσ2 = E
(

1
T Ṽ

′
ũ1
)
. We define Λ∗∗ =

Ig : 0

0

 which is a G × (g + P ∗ + Q∗) dimension

selection matrix, then Ṽ2 is the T ×g sub-matrix of matrix Ṽ , which can be expressed

as [Ṽ2 : 0 : 0] = Ṽ

Ig : 0

0

. With these and earlier definitions of terms we may state the

following:
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Theorem 1 . The bias of the 2SLS estimator of the first structural equa-

tion parameters to order T −1 is given by:

E(δ̂1 − δ1) =Htr{Z̄H∗Z̄
′
}ϑ−HῩ

′
Z̄H∗Z̄

′
ῩHϑ (2.15)

−Htr{Z̄H∗Z̄
′
ῩHῩ

′
}ϑ

+H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr{ΩJt−iΨ
′
iH

∗∗ΨjJ
′
t−j}ϑ

−H
p∑

l=1

p∑
j=1

T −1∑
r=l,j

(T − r)
(
tr
{
Z̄H∗I2ΨlJ

′
r−lΩJs−jΨ

′
jC

∗HῩ
′})

ϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2H∗Z̄

′
ῩHϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨlJ
′
t−l})ϑ

−HῩ
′
Z̄H∗

p∑
i=1

p∑
j=1

T −1∑
t=i,j

I2(T − t)ΨiJ
′
t−iΩJt−jΨ

′
jC

∗′
Hϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)Ψj

×Js−jΩJs−mΨ
′
mC∗

HC∗′
ΨlJ

′
s−l


ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ′

jH
∗∗

×
p∑

l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−lΩJr−mΨ

′
mC∗Hϑ

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDs′
ῩH(tr{ΩJs−jΨ

′
jH

∗∗ΨiJ
′
t−i})ϑ

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDsῩHΛ∗∗′
ΩJt−iΨ

′
iH

∗∗ΨjJs−jτ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{ΨjJ
′
s−jΩJt−iΨ

′
iH

∗∗})(tr{DtDs′
ῩHῩ

′
})ϑ

−HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jH

∗∗ΨiJ
′
t−i(tr{DtῩHῩ

′
Ds})τ
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−HῩ
′

p∑
i=1

T −1∑
t=i

DtῩH
′
C∗′

ΨiJ
′
t−iτ

−H
p∑

i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−i(tr{Ῡ

′
Dt′

ῩH})τ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{DtDs′
Z̄H∗I2ΨiJ

′
t−iΩJs−jΨ

′
jC

∗HῩ
′
})ϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

Λ∗∗′
ΩJs−jΨ

′
jC

∗HῩ
′
Dt′

Ds′
Z̄H∗I2ΨiJ

′
t−iτ

−HΛ∗∗
p∑

l=1

T −1∑
r=l

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jC

∗HῩ
′
Dr′

DsZ̄H∗I2ΨlJ
′
r−lτ

−HΛ∗∗
p∑

l=1

T −1∑
r=l

p∑
j=1

T −1∑
s=j

ΩJr−lΨ′
lI

′
2H∗Z̄ ′Dr′

DsῩHC∗′
ΨjJ

′
s−jτ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩJs−jΨ

′
jI

′
2H∗Z̄

′
DtDs′

ῩHϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩΛ∗∗HῩ

′
Dr′

Dt′
Z̄H∗I2ΨjJ

′
s−jτ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−i(tr{Dt′

DsZ̄H∗I2ΨjJ
′
s−jΩΛ∗∗HῩ

′
})τ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩΛ∗∗HῩ

′
Ds′

DtZ̄H∗I2ΨjJ
′
s−jτ

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDstr
{
ΩJt−iΨ′

iC
∗HΛ∗∗′}

I2Z̄H∗I2ΨjJ
′
s−jτ

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDs′
Z̄H∗I2ΨjJ

′
s−jΩJt−iΨ′

iC
∗Hϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

Λ∗∗′
tr
{
Z̄H∗I2ΨiJ

′
t−iΩJs−jΨ′

jC
∗HῩ′DtDs′}

τ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

Λ∗∗′
ΩJs−jΨ′

jC
∗HῩ′DtDsZ̄H∗I2ΨiJ

′
t−iτ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−i(tr{ΩΛ∗∗HC∗′

ΨjJ
′
s−j})

× (tr{Dt′
Z̄H∗Z̄

′
Ds′

}.I)τ
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−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{Dt′
Z̄H∗Z̄

′
Ds′

})C∗′
ΨiJ

′
t−iΩHC∗′

ΨjJ
′
s−jϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{ΩJt−iΨ
′
iC

∗HC∗′
ΨjJ

′
s−j})(tr{Z̄H∗Z̄

′
DtDs′

})ϑ

−HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jC

∗HC∗′
ΨiJ

′
t−i(tr{Z̄H∗Z̄

′
DtDs})τ

+o(T −1).

A proof of this result is given by Appendix A.1 and it is obtained by evaluating the

expectations of each term.

From the result, we note that the bias of 2SLS to order T −1 of the first structural

form equation has two distinct parts: a part is due to the simultaneity of the system

which is represented by the first three terms in the above, and a part which is due

to the dynamic nature of the structural equation which is represented by all the

remaining terms. Here, H = (Ῡ′Ῡ +E(∆′
2∆2))−1, H∗ = (Z̄ ′Z̄ +E(W̃ ∗′

W̃ ∗)−1) and

H∗∗ = I ′
2H∗I2 = I

′
2(Z̄ ′Z̄ +E(W̃ ∗′

W̃ ∗)−1)I2, from which, we observe that the bias that

comes solely from the simultaneity terms should not include the expected stochastic

parts in the first three terms. In fact, the expression in Theorem 1 should reduce

to the Nagar (1959) bias approximation in static models when any terms that result

from the inclusion of lagged endogenous regressors are removed. This means that a

reduction of the above result to that for the static case will obtain with the removal of

any terms involving the ”D” matrix and the expected stochastic parts in the first three

terms, and this may be shown to be the case. Note that the first ten items without D

terms, will be removed by using the FLIML which will be analysed in chapter 3. The

numerical results will be discussed in section 2.6.
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2.4 Bias corrected 2SLS Estimator

Biased corrected 2SLS estimator for structural form equations parameters can be

obtained by estimating the approximating bias and then subtracting this bias estimate

from the corresponding estimator. As we showed in section 2.3, the bias approximations

depend upon the reduced form coefficient matrices Γ(1),Γ(2)...,Γ(p),Π(1),Π(2)...,Π(q),

the non-stochastic matrices X,LX,....LqX , the starting values y
′
0,Ly

′
0,L2y

′
0 and L3y

′
0

vectors. The G×1 column vector τ , is equal to σ2φ = E( 1
T

Ṽ
′
ũ1).

To obtain the estimated bias terms, the reduced form parameter matrices Γ(1),Γ(2)...,

Γ(p),Π(1),Π(2)...,Π(q) are replaced by their OLS estimates. The G×1 column vector τ is

estimated from [Y −∑p
i=1 LiY Γ̂(i) −∑q

j=0 L(j)XΠ(j)]′(y1 −Υδ̂1)/T , the inner product of

the G reduced form residuals vectors and the first equation of structural form residuals

vector, which is obtained when equation 2.6 is estimated by 2SLS. Then ϑ is replaced

by estimated ϑ , where ϑ̂ = Λ∗∗′
τ̂ , where Λ∗∗′ =

Ig : 0

0

 which is G × (g + P ∗ + Q∗)

dimension selection matrix.

Definition 1. Given δ̂1,b(2SLS) is estimated 2SLS bias approximations

for the coefficient bias

δ1,b(2SLS) =
(
β1,b(2SLS),α

(1)
1,b(2SLS), ...,α

(p)
1,b(2SLS), c

(0)
1,b(2SLS), c

(1)
1,b(2SLS), ..., c

(q)
1,b(2SLS)

)
,

and given that δ̂1,2SLS is the 2SLS estimator of δ1, the C2SLS bias cor-

rected estimator δ̂1,C2SLS is as following:

δ̂1,C2SLS = δ̂1,2SLS − δ̂1,b(2SLS). (2.16)

To examine how well the C2SLS works for practical bias correction, a set of Monte

Carlo experiments were conducted and the results are discussed in section 2.6.
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2.5 Numerical Experiments Design

2.5.1 Numerical Model

The experiments were conducted using a three equation dynamic simultaneous equation

model with four lagged endogenous variables based on sample sizes 50 and 100. Hence

the matrix of endogenous variables is Y = (y1,y2,y3). Under the condition for the

existence of the moments for the 2SLS estimator 1, in our experiment the degree of over-

identification L is greater or equal to 2, so that 2SLS estimates possess a finite mean and

variance. In our experiments, we chose L = 2, 4 and 6 . To commence, we generated two

exogenous variables in each equation respectively. L is varied by augmenting the exoge-

nous variables in both second and third equations. Hence, when L = 2, the exogenous

variable matrix X = (x1,x2,x3,x4,x5,x6); when L = 4, X = (x1,x2,x3,x4,x5,x6,x7,x8);

and when L = 6, X = (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10). Following the I(0) strictly

exogenous assumption in section 2.2, each exogenous variable is generated as Gaussian

autoregressive process with mean zero and with an autoregressive coefficient of 0.9,

and they are independent of each other.

xjt = 0.9xj(t−1) + ςjt ςjt ∼ N (0, 1).

The coefficient matrices are as follows (The coefficients are chosen arbitrarily

following with the stability assumption in section 2.2):

B =


1 −1.11 −3

−β21 1 −4.6

−β31 −8 1

 , A(1) =


α

(1)
11 0.56 −0.45

−α
(1)
21 −0.62 0.28

−α
(1)
31 −0.90 −0.32

 ,

1Sargan (1974) showed that the moments of the 2SLS exist up to the order of over-identification in
the static SEM. We shall assume the result is valid for the DSEM also.
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A(2) =


α

(2)
11 −0.80 −0.82

−α
(2)
21 0.72 −0.90

−α
(2)
31 −0.50 0.78

 , A(3) =


−α

(3)
11 −0.46 −0.80

−α
(3)
21 −0.72 0.31

−α
(3)
31 −0.31 0.74

 ,

A(4) =


α

(4)
11 −0.36 −0.2

−α
(4)
21 −0.46 0.58

−α
(4)
31 0.58 0.70

 .

L = 2 C
′
=


c11 c21 c31 0.00 0.00 0.00 0.00

−1.00 0.00 0.00 0.75 −0.24 0.00 0.00

1.00 0.00 0.00 0.00 0.00 −0.15 0.86

 ;

L = 4 C ′ =


c11 c21 c31 0.00 0.00 0.00 0.00 0.00 0.00

−1.00 0.00 0.00 0.75 −0.24 0.35 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 −0.15 0.86 −0.58

 ;

L = 6 C ′ =


c11 c21 c31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−1.00 0.00 0.00 0.75 −0.24 0.35 0.68 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.15 0.86 −0.58 0.33

 .

There are 17 coefficients in the first equation to be estimated and they are given

below:

β21 = 2.00, β31 = 5.00, α
(1)
11 = 0.50, α

(1)
21 = 0.36, α

(1)
31 = 0.40, α

(2)
11 = 1.20,

α
(2)
21 = 0.60, α

(2)
31 = −0.38, α

(3)
11 = 0.65, α

(3)
21 = 1.20, α

(3)
31 = 0.38, α

(4)
11 = 0.50,

α
(4)
21 = 0.60, α

(4)
31 = −0.20, c11 = 1.00, c21 = 0.60, c31 = −0.50.

.
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The model disturbances are generated as standard normal random variables. The

reduced form of the model is:

Y = LY Γ(1) +L2Y Γ(2) +L3Y Γ(3) +L4Y Γ(4) +XΠ+ Ṽ ,

where Ṽ = (ṽ1, ṽ2, ṽ3) is a T ×3 matrix of reduced form disturbances. We use a matrix

P from a Choleski factorisation of Ω to generate the reduced form errors. Hence each

row of Ṽ is obtained from the transpose of


ṽ1,t

ṽ2,t

ṽ3,t

= P


ẽ1,t

ẽ2,t

ẽ3,t

 ,

where ẽ1,t, ẽ2,t and ẽ3,t denote the standardised disturbances. Each row of Ũ has mean

0′ and covariance matrix Σ, and is i.i.d.. Ũ is the structural form disturbances. Hence

the distribution of the structural disturbances can be evaluated from

B
′
ṽt = ũt ⇒ ũt ∼ N (0, Σ) where Σ = B

′
ΩB.

We set the structural covariance matrix is as follows:

Σ =


0.3524 0.3448 0.3112

0.3448 0.3668 0.2984

0.3112 0.2984 0.4064

 ,
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from which the reduced form covariance is:

Ω =


0.0055 0.0054 0.0030

0.0054 0.0844 0.0085

0.0030 0.0085 0.0069

 .

Based on the above parameters, the relevant eigenvalues of the reduced form

equations which determine the stationarity condition can be calculated from the

following determinantal equation.

det | Γ(4) +ϖΓ(3) +ϖ2Γ(2) +ϖ3Γ(1) −ϖ4I3 |= 0.

All the roots ϖ are complex , but they are inside the unit circle Holmgren (2000),

which ensures the stability of this system.

ϖ1 = 0.6947+0.4789i, ϖ2 = 0.6947−0.4789i, ϖ3 = −0.0561+0.5955i,

ϖ4 = −0.0561−0.5955i, ϖ5 = 0.0996+0.7235i, ϖ6 = 0.0996−0.7235i,

ϖ7 = −0.5847+0.0909i, ϖ8 = −0.5847−0.0909i ϖ9 = −0.2039+0.4099i,

ϖ10 = −0.2039−0.4099i, ϖ11 = 0.4688+0.0000i, ϖ12 = −0.2651+0.0000i.

This system above is slightly different from the general model equation (2.1). We

have normalized with respect to β11 = 1 = β22 = β33. To achieve the general case (with

high lag order), we choose 4 lags (most macroeconomic data are quarterly data). While

many of the simulations conducted in the literature focus on two equation models, we

decided to simulate a three equations model in this paper.

The initial values, y
′
0,Ly

′
0,L2y

′
0,L3y

′
0 are generated by averaging the simulated

reduced form 1000 times. We first take the expectation of the reduced form, where
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E(y′) = E(y′)−1 = E(y′)−2 = E(y′)−3 = E(y′)−4, and x̄′ = E(X), which is as follows:

E(y
′
) = E(y

′
)Γ(1) +E(y

′
)Γ(2) +E(y

′
)Γ(3) +E(y

′
)Γ(4) + x̄′Π.

From it we obtain E(y′). Then using this 1×3 vector E(y′) as the starting value in

the reduced form to generate T ×G matrix (Y0)1 which is
(
(y′

01)1,(y′
02)1...(y′

0T −1)1,(y′
0T

)1
)′

.

Following this procedure, we generate the M = 1,000 sets of T × G matrices Y0

which is (Y0)1,(Y0)2...(Y0)M−1,(Y0)M . Then the pool of initial value Y0 is Y0 =∑M
m=1(Y0)m which is T × G matrix. Hence, the initial value in this four lagged

dependent variables model is given by y
′
0 =∑M

m=1(y′
0T

)m/M , Ly
′
0 =∑M

m=1(y′
0T −1)m/M ,

L2y
′
0 =∑M

m=1(y′
0T −2)m/M and L3y

′
0 =∑M

1 (y′
0T −3)m/M .

2.5.2 The Simulation model

The number of Monte Carlo replications is 20,000, while 199 bootstrap replicates are

used when constructing the bias corrected bootstrap.

Bootstrap

Based on Freedman (1984), Ip (1991) provides support for the asymptotic validity

of the 2SLS bootstrap in static and dynamic models where errors are normal, and

MacKinnon (2002) conducted hypothesis testing in static model which also supports

the asymptotic validity of the 2SLS bootstrap.

The residual bootstrap 2SLS is simulated by first estimating the equation of interest

using 2SLS. Then by using the estimates and resampling the estimated residuals, pseudo-

data (B sets ) are generated. Bootstrap replicates are obtained by implementing 2SLS

on each of B sets. The bias corrected bootstrap estimate of δ1 can be calculated as

2δ̂1 − δ̂1,b̄, where δ̂1 is the original estimate, and δ̂1,b̄ is the mean of the bootstrap

replicates.



2.5 Numerical Experiments Design 31

Freedman’s bootstrap remains the same steps as the usual residual bootstrap,

except the generation of the pseudo data.

Our target is to estimate

y1 = Y2β1 +LY1α
(1)
1 +L2Y1α

(2)
1 +L3Y α

(3)
1 +L4Y1α

(4)
1 +X1c1 + ũ1 (2.17)

and we would like to generate the pseudo data y∗
1 , LY ∗

1 , L2Y ∗
1 , L3Y ∗

1 , L4Y ∗
1 and Y ∗

2

from equation (2.17) by resampling the residuals û1,2SLS . However, the first element

y∗
1 cannot be obtained without knowing the first element of Y ∗

2 . Hence, we use the

reduced form of Y2, which is estimated by OLS as,

Y2 = LY Γ̂(1)
2 +L2Y Γ̂(2)

2 +L3Y Γ̂(3)
2 +L4Y Γ̂(4)

2 +XΠ̂2 + ˆ̃V2. (2.18)

Equation (2.18) is used in conjunction with the 2SLS estimate of equation (2.17),

which will become,

y1 = Y2β̂1 +LY1α̂
(1)
1 +L2Y1α̂

(2)
1 +L3Y1α̂

(3)
1 +L4Y1α̂

(4)
1 +X1ĉ1 + ˆ̃u1. (2.19)

Then, we can resample the ˆ̃u1 in equation (2.19) to generate ˆ̃u∗
1 and then resample the

ˆ̃V2 in equation (2.18) to give ˆ̃V ∗
2 . Note that the disturbances are resampled from the

rows of (ˆ̃u1, ˆ̃V2), so that the elements in the resampled residuals ˆ̃u∗
1 and ˆ̃V ∗

2 correspond

to each other.

Based on the resampled residuals, we can generate the pseudodata which we need.

Here we use the same procedure as we defined in section 2.5 to get the initial values of

y
′∗
0 ,Ly

′∗
0 ,L2y

′∗
0 ,L3y

′∗
0 , but the parameters now are replaced by the estimated value in

this 2SLS-bootstrap method. Then, it is possible for us to generate y
′∗
21 from equation

(2.18) by using ˆ̃v′∗
21 . This can be then substituted into equation (2.19) and used with



32 The bias of 2SLS estimator in general dynamic simultaneous equations models

Ly
′∗
11 , L2y

′∗
11 ,L3y

′∗
11 , L4y

′∗
11 and ˆ̃u∗

11 to generate y∗
11 . Then y∗

11 can be put into equation

(2.18) to generate the second vector element of (Y ∗
2 ) which can be used in (2.19) to

give the next element (y∗
1) to put in equation (2.18). Continuing this iteration gives

the full vectors of y∗
1 , LY ∗

1 , L2Y ∗
1 , L3Y ∗

1 , L4Y ∗
1 and Y ∗

2 .

Finally the actual data are replaced by pseudodata to estimate the equation of

interest by using the traditional 2SLS estimation method. Thus, Y ∗
2 is regressed on

(LY ∗ : L2Y ∗ : L3Y ∗ : L4Y ∗ : X) in order to generate the fitted values Ŷ ∗
2 , the y∗

1 is

regressed on (Ŷ ∗
2 : LY ∗ : L2Y ∗ : L3Y ∗ : L4Y ∗ : X1) to give the bootstrap 2SLS replicates

β̂∗
1,b, α̂

(1)∗
1,b , α̂

(2)∗
1,b , α̂

(3)∗
1,b , α̂

(4)∗
1,b and ĉ∗

1,b. For each δ1 ∈ (β1,α(1),α(2),α(3),α(4), c1), the

bias corrected bootstrap 2SLS estimate is given by δ̂1,b = 2δ̂1,2SLS − δ̂∗
1,b̄

,where δ̂∗
1,b̄

=
1
B

∑B
b=1 δ̂∗

1,b.

The bias corrected bootstrap based on our numerical design is as follows:

Definition 1. Given δ̂1,b̄ as the mean of the bootstrap 2SLS replicates for the coefficient

δ1 = (β1,α(1),α(2),α(3),α(4), c1), and given δ̂1,2SLS as the 2SLS estimator of δ1, the

bootstrap bias corrected estimator δ̂1,b is as follows:

δ̂1,b = 2δ̂1,2SLS − δ̂∗
1,b̄

.

2.6 Numerical Results

The numerical results show a comparison of the performance of 2SLS, and the residual

bootstrap 2SLS and C2SLS, which is summarized in Table A.1 to Table A.3. Table

A.1 reports the overall bias approximation, simultaneity bias, and dynamic biases,

respectively. Table A.2 presents the bias of 2SLS, the bias of Bootstrap 2SLS, and

the bias of C2SLS respectively. Table A.3 presents the MSE of 2SLS, Bootstrap 2SLS,

and C2SLS respectively. β21, β31 are the coefficients of endogenous variables of the

first structural form equation. α1
11 to α4

31 are the coefficients of the lagged endogenous
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variables ( 4 lagged endogenous variables ). c11 is the constant, and c21, c31 are the

parameters of exogenous regressors.

Table A.1 shows that the bias approximation may tend to overstate the magnitude

of the "true" bias as given by the Monte Carlo estimates in 2SLS. For example, when

β21 = 2.00, L = 2, and T = 50, the 2SLS bias is −0.3042, whilst the bias approximation

slightly higher than the 2SLS bias of −0.3229. Moreover, when we numerically evaluate

the dynamic bias and the simultaneity bias separately, the results show that they

have opposite signs. If we still look at the coefficient above, the approximated bias is

−0.3229 where −0.5322 comes from simultaneity, and 0.2093 comes from the dynamics.

It implies that if the bias correction method can only eliminate either the simultaneity

bias or the dynamic bias but not both, then instead of decreasing the overall bias, the

bias correction method could possibly provide more biased estimates. Hence, a bias

correction method which effectively reduces the bias in the static case may not do so

in the dynamic case.

When the sample size increases, both approximated bias and the bias of 2SLS

decreases. At the same time, when the order of over-identification L increases, this

is followed by an increase in the 2SLS bias and a corresponding increase in the

approximation.

The results for the corrected 2SLS(C2SLS) estimator which was constructed by

subtracting the bias estimate are presented in Table A.2. This bias corrected estimator,

based upon O(T −1) approximation, significantly reduces the 2SLS bias. For α2
31,

the coefficient of L2y3 in the first equation, in fact when L = 2 and sample size is

T = 50, by using the new C2SLS estimator, the bias reduced from +61% to +9%.

Generally, C2SLS gives almost unbiased estimators in both sample size 50 and 100,

when over-identification level is L = 2,4 and 6. The alternative approach based on the

non-parametric residual bootstrap applied to 2SLS also reduces the bias effectively; in
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most cases the bootstrap 2SLS gives almost unbiased estimates when sample size is

100. However, in general, compared with C2SLS, the performance of bootstrap 2SLS

is weaker in reducing the bias. As we have shown for α2
31, when the bootstrap method

is used the bias is reduced to +30%, and when the sample size increases to T = 100

and over-identification level is still L = 2, both these two bias correction methods yield

almost unbiased results eliminating around a 15% bias from the 2SLS estimator. It is

clear that, generally, these two bias corrected estimators have a substantially smaller

bias than their uncorrected counterparts.

Table A.3 reports the MSE of 2SLS, C2SLS, and Bootstrap 2SLS respectively .

Generally, the MSE for C2SLS is smaller than the corresponding MSE for the 2SLS

while both are smaller than the bootstrap 2SLS MSE. Interestingly, the MSE of the

bootstrap 2SLS is lower than that of the 2SLS for the coefficient of endogenous variables

and exogenous variables when L = 4,6, in both sample size sets. In few cases, the

MSE of C2SLS is slightly larger than that of 2SLS because of the almost unbiasedness

estimates of 2SLS itself when sample size is large. However, this increasing is trivial.

For α2
21, which is the coefficient of L2y2 in the first equation of the structural form,

when sample size is 100 and the over-identification level is L = 2,4 and 6, the percentage

of bias for 2SLS is −2% , −3%, −2% and the MSE is 0.0375, 0.0294, 0.0250, while

for C2SLS, the MSE is 0.0398, 0.0294, 0.0272. It is clear that the C2SLS has the

smallest MSE, and the bootstrap 2SLS has the largest MSE . However,the MSE of

the bootstrap 2SLS is not far from the results for 2SLS, and when L increases, the

difference becomes smaller.

2.7 Conclusion

The O(T −1) bias in 2SLS estimation of a general DSEM can be decomposed into two

parts, which come from the simultaneity and dynamics respectively. These two bias
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components may be of opposite signs which indicates that the bias correction used

should be able to reduce the bias that comes from both components; otherwise the

overall bias could become absolutely larger. Notice that the bias approximation tends

to overstate the magnitude of the "true" bias as given by the Monte Carlo estimates in

2SLS. Even so, the bias corrected estimator, based upon the O(T −1) approximation,

very substantially reduces the 2SLS bias. In addition, it was found to be better

overall in terms of MSE, as there is no inflation of the 2SLS MSE. Hence, from the

theoretical and analytic analysis, the bias corrected estimator, based upon O(T −1) can

be recommended as a bias reduction technique.

The bootstrap simulation results in this paper provide evidence in support of the

alternative bias correction technique based on the bootstrap. It performs particularly

well in bias correction. While the bias correction is not as effective as C2SLS, the

computer cost is less which may be a consideration. The bootstrap also reduces the

MSE in 2SLS for both endogenous and exogenous variables when L is large.





Chapter 3

A Comparison of Limited

Information Estimators in Dynamic

Simultaneous Equations Models

3.1 Introduction

An important distinction of this paper is that it is the first paper that investigates

the performance of the modified limited information maximum likelihood ( Fuller

(1977)(FLIML)) estimator in the general dynamic simultaneous equation model (DSEM)

when the sample size is small.

This chapter compares the bias approximations of 2SLS and FLIML in the general

DSEM without any restrictions on the order of the dynamics, whereby there may

be any number of lagged regressor variables, both lagged endogenous and exogenous,

provided that the required identification conditions are met. This chapter represents a

considerable extension of earlier work cited below. The corresponding bias approxima-

tion in 2SLS is given in Chapter 2. I then evaluate the bias approximation for FLIML

and represent this result in the context of the approximated bias in 2SLS to make
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these two bias approximations comparable. An improved estimator which is unbiased

to order T −1 is proposed by incorporating estimates of the bias approximation into

the corresponding estimators, i.e. 2SLS and FLIML.

Analytically, the FLIML estimator gives much less biased estimates than the 2SLS;

it removes the simultaneity bias completely and dynamic bias partially to order T −1.

This is a result which has not been observed in the previous literature. The bias

corrected estimators, CFLIML and C2SLS, give almost unbiased results to order T −1.

Numerically, the Monte Carlo experiments also support the analytical analysis. In

addition, in general the mean squared errors of CFLIML and C2SLS are less than the

associated uncorrected estimators.

The linear simultaneous equations model is one of the most important models in

economics and there are several estimators for estimating its unknown parameters.

For static models, two stage least squares (2SLS) has, historically, been the the most

commonly used limited information estimation method. Another popular method is

that of limited information maximum likelihood, LIML. The fact that LIML does not

possess finite moments of any order is well known, see for example Roberto S. Mariano

(1972). More recently Chao et al. (2013a), Chao et al. (2013b) also provide proofs

that LIML does not have any finite moments , which leads to particularly dispersed

estimates, see Hahn, Hausman, and Kuersteiner (2004). To solve the problem of limited

information maximum likelihood estimation Hahn, Hausman, and Kuersteiner (2004),

Hausman et al. (2009) suggested the estimator proposed by Fuller (1977) which we

refer to as FLIML. This estimator has a k-class representation based on k = λF uller,

where λF uller = λ∗ − α
T −K = min β′

∗Y ′
∗P̄Z1Y∗β∗

β′
∗Y ′

∗P̄ZY∗β∗
− α

T −K . It has all necessary moments and

has a small bias property. In the static case, the FLIML estimator yields estimates

which are unbiased to order T −1, and order σ2 respectively, see Anderson, Kunitomo,

and Morimune (1986).
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However, I am not aware of any work in the literature which explores the properties

of FLIML in the dynamic simultaneous equations model; in particular, it is not known

if the approximate unbiasedness property which obtains in static models carries over

to the dynamic case. My paper is interested to explore this area.

The seminal paper is Nagar (1959) where the approximation employed is essentially

based on a Taylor series expansion to approximate the sampling error (the difference

between the statistic and the parameter), so that the successive terms are in the

descending order of the sample size T, in probability. He found expressions for the

bias to the order of T −1, and for the second moment to the order of T −2; for general

k-class estimators.

To illustrate, suppose a sample size T and an estimate α̂ of a coefficient vector

α, the large-T approach in Nagar (1959) starts by expanding the estimation error as

follows:

√
T (α̂ −α) =

p∑
s=1

es

T (1/2)(s−1) + rp

T (1/2)p ,

where es, for s = 1, ...,p, and rp are all Op(1) as T → ∞. Here rp is the remainder

term in an expansion up to order p. A bias approximation is then obtained by taking

expectations of the terms in the summation.

An alternative is the small-σ approach due to Kadane (1971). This method uses a

Taylor series expansion to expand the expression for the estimation error, so that the

successive terms are in a power series of σ in probability, in contrast to the large-T

asymptotic expansion which orders these terms in descending order of the sample size,

T, in probability. The general expansion is

1
σ

(α̂ −α) =
p∑

s=1
σs−1ės +σpṙp
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and where ės , for s = 1, ...,p, and ṙp are also bounded in probability, this time as

σ, the standard deviation of the equation disturbance, tends to zero. The bias is

then approximated to an appropriate order by taking expectations of the terms in the

summation.

It has been shown that the two approaches give essentially the same bias approxi-

mations in the static SEM case. However, as shown by Kiviet and Phillips (1989) the

two approximations are not the same in dynamic models and the large-T approach

is superior. In addition, the small-σ approximation requires that the disturbance

be suitably small and approaches zero in limit. The rationale is that when σ gets

progressively smaller the econometric models gives a progressively better explanation

of the data. Hence both large-T and small-σ are idealisations.

Hahn and Hausman (2002), and Bun and Windmeijer (2011) investigate the use

of bias approximation and reduction in static simultaneous equations models. These

papers also use the asymptotic expansion to obtain the bias approximation to order T −1,

then investigate the performance of estimated approximated bias in bias reduction.

There has been some research which has explored the properties of estimators in the

DSEM. The earliest known work is Kiviet and Phillips (1989). Phillips and Liu-Evans

(2015) shows in Monte carlo simulations that by using the C2SLS in the first order

DSEM, the new C2SLS method gives almost unbiased estimation. This work however,

considered only the restricted case of one lag for the lagged endogenous regressor

variables, yet it is recognised that often dynamic models will have higher order lags

especially when quarterly models are specified. Chapter 2 extends this paper into p

high order lags. Moreover in this chapter a bias approximation was used to obtain a

bias corrected estimator which was shown to be, at least, comparable to the bootstrap

in reducing bias. In this chapter, based on Chapter 2 and the extended general model,

I analytically and numerically compare the corresponding results of 2SLS in Chapter 2
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with the FLIML estimator results. The bias corrected 2SLS (Chapter 2), C2SLS, and

corrected FLIML, CFLIML, are also presented in this paper.

The structure of the chapter is as follows. The next section outlines the general

model. Section 3.3 evaluates and compares the bias approximation of FLIML and 2SLS

estimators. Section 3.4 investigates how to apply the approximated bias to correct

the original estimators and construct new estimators (C2SLS/CFLIML). Numerical

experiments and results are present in section 3.5. The conclusion is presented in the

section 3.6.

3.2 Model

In this Chapter, without losing generality, we are still focusing on analysing the first

equation of a general dynamic simultaneous equations model, with innovation errors

and p lagged-endogenous and q strongly exogenous, explanatory variables, which has

been discussed in Chapter 2:

y1 = Y2β1 +
p∑

i=1
LiY1a

(i)
1 +

q∑
j=0

LjX1c
(j)
1 + ũ1 = Υδ1 + ũ1, (3.1)

where

Υ = [Y2 : R1 : S1] and δ
′
1 = (β′

1,a
(1)′

1 , ...,a
(p)′

1 , c1(1)′, ..., c1(q)′).

Here Y1 = [y1 : Y2] is a T ×(g+1) matrix of observations on g+1 included endogenous

variables. LiY1 is the i period lagged version of Y1, X1 is a T ×k matrix of observations

on k stationary exogenous variables.Υ is a T × (g + P ∗ + Q∗) matrix which includes

the T × g matrix Y2, the T × P ∗ matrix R1 which contains the lagged endogenous

regressor values and the T × Q∗ matrix S1 which contains the exogenous regressor

values which are taken as fixed. P ∗ =∑g+1
m=1 p(m) and Q∗ =∑k

n=1 q(n) which allows

for the equations to contain different numbers of lagged endogenous and exogenous
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regressors respectively. δ1 is a (g +P ∗ +Q∗)×1 vector which contains all the structural

form parameters. We shall denote:

Ῡ = [Ȳ2 : R̄1 : S̄1] and F̃ = [W̃2 : R̃1 : 0] (3.2)

as the non-stochastic and stochastic parts of Υ which will be used in later analysis.

Notice that the non-stochastic part of Y contains Ȳ2 and R̄1 which are the unconditional

expectations of Y2 and R1 respectively. Note also that in F̃ , W̃2 is the relevant stochastic

part of W̃ for Y2 as given in equation (2.3).

3.3 Fuller Limited information maximum likelihood

Estimators

The Fuller Limited Information Maximum Likelihood (FLIML) estimator, see Fuller

(1977), is based on a modification of the LIML estimator and can be written in the form

of k-class estimator, where k = λ− a

T −K
, λ is the smallest root of the determinantal

equation,

det|Y1(I −PX1)Y1 −λY1(I −PX)Y1| = 0,

PX1 = X1(X ′
1X1)−1X ′

1, PX = X(X ′X)−1X ′, and X1 and X are the sets of exogenous

variables in the first equation and the whole system respectively. K is the total number

of exogenous variables in the system, and a is a positive integer in the range 1 to 4,

Fuller found that in the static case when a = 1, the estimator has a small bias, and

when a = 4 the estimator has smallest MSE but the bias is typically larger than when

a = 1. We will explore the behaviour of FLIML when a = 1 by comparing the FLIML

bias approximation with the 2SLS bias approximation. The FLIML estimate we shall



3.3 Fuller Limited information maximum likelihood Estimators 43

write as:

δ̂F LIML =


Y2′Y2 −

(
λ− 1

T −P −Q

)
V̂2

′

V̂2 Y ′
2

[
R1 : S1

]
[
R1 : S1

]′
Y2

[
R1 : S1

]′ [
R1 : S1

]


−1

(3.3)

×


Y

′
2 −

(
λ− 1

T −P −Q

)
V̂2

′

[
R1 : S1

]′

y1

= (Υ̂
′
F ΥF )−1Υ̂

′
F y1

= δ1 +(Υ̂
′
F ΥF )−1Υ̂

′
F u1,

where Υ̂F =
[
Ŷ2 +(1− (λ− 1

T −P −Q))V̂2 : R1 : S1
]

and ΥF = Υ = [Y2 : R1 : S1].

Ŷ2 is obtained as the predicted value of Y2 when the reduced form equation (2.2) is

estimated by OLS. ΥF , and Υ̂F can be decomposed into their non-stochastic part ῩF

and stochastic part ΥF − ῩF , and (Υ̂F − ῩF ) respectively, hence:

Υ̂F = ῩF +(Υ̂F − ῩF ),

ΥF = ῩF +(ΥF − Ῡ),

using equation (3.3), and noting that ΥF = Υ, ῩF = Ῡ and Ȳ2 = ∑p
i=1 LiȲ Γ(i)

2 +∑q
j=0 LjXΠ(j)

2 .

So that the above stochastic parts can be written as:

Υ̂F − ῩF =
[
Ŷ2 − Ȳ2 +(1− (λ− 1

T −P −Q
))V̂2 : (R1 − R̄1) : 0

]
(3.4)

=
[
Ŷ2 − Ȳ2 : R1 − R̄1 : 0

]
+
[
(1− (λ− 1

T −P −Q
))V̂2 : 0 : 0)

]
.
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Also,

ΥF − ῩF =
[
Y2 − Ȳ2 : R1 − R̄1 : 0

]
(3.5)

=
[
Ŷ2 − Ȳ2 : R1 − R̄1 : 0

]
+
[
V̂2 : 0 : 0

]
.

Then,

Υ̂′
F ΥF = Υ̂′Υ̂+(1− (λ− 1

T −P −Q
))


V̂ ′

2V̂2 0 0

0 0 0

0 0 0



where Υ̂′Υ̂ is the counterpart expression in 2SLS. Recall that from equation 2.12:

(Υ̂′Υ̂)−1 = (H−1 +J∗
1 +J∗

2 )−1 = H −HJ∗
1 H +op(T −3/2). (3.6)

The extra term in FLIML is (1 − (λ − 1
T −P −Q))V̂ ′

2V̂2 = (1 − (λ − 1
T −P −Q))Ṽ ′

2(I −

Pz)Ṽ2 which is Op(1). Hence ,

(Υ̂′
F ΥF )−1 = H −HJ∗

1 H +op(T −3/2), (3.7)

so that (Υ̂′
F ΥF )−1 and (Υ̂′Υ̂)−1 are the same to order T −3/2. The remaining part of

FLIML compared with 2SLS in Chapter 2 is:

Υ̂′
F ũ1 = Υ̂ũ1 +

[
(1− (λ− 1

T −P −Q
))V̂2 : 0 : 0

]′

ũ1 (3.8)
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where, Υ̂′ũ1 is the relevant part in 2SLS. Recall from equation 2.13 and 2.10 the

definitions of ∆1 and ∆2 :

Υ̂ũ1 = Ῡ′ũ1 +∆′
1ũ1 +∆′

2ũ2.

Then combining equations 3.7 and 3.8 gives the approximate estimation error as,

δ̂F LIML − δ = (Υ̂
′
F LIMlΥF LIML)−1Υ̂

′
F LIMLũ1 (3.9)

= HῩũ1 +H∆
′
1ũ1 +H∆

′
2ũ1 −HJ∗

1 HῩ
′
ũ1 −HJ∗

1 H∆2ũ1︸ ︷︷ ︸
The same bias as in 2SLS

+H

[
(1− (λ− 1

T −P −Q
))V̂2 : 0 : 0

]′

ũ1︸ ︷︷ ︸
The extra term compared with 2SLS

+op(T −1).

Notice that it is the last term in the above which gives an extra bias approximation

term to the FLIML expansion compared with 2SLS and taking expectations term by

term will yield the FLIML bias approximation to order T −1. As I have mentioned in

the Theorem 1( Chapter 2), FLIML eliminates the first ten terms which are without

matrix D terms in the Theorem 1. This result is shown in Theorem 2.

Theorem2: FLIML gives less biased estimates compared to 2SLS, it

removes completely that part of the O(T −1) bias approximation which is

associated with the simultaneity bias. Moreover FLIML also partially re-

moves the bias comes from the dynamic part. The bias of the FLIML

estimator of the first structural form equation to order T −1 is given by:

E
(
δ̂F LIML − δ

)
=−HῩ

′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDsῩHΛ∗∗′
ΩJt−iΨ

′
iH

∗∗ΨjJs−jτ (3.10)

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDs′
ῩH(tr{ΩJs−jΨ

′
jH

∗∗ΨiJ
′
t−i}.I)ϑ
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−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{ΨjJ
′
s−jΩJt−iΨ

′
iH

∗∗}.I)(tr{DtDs′
ῩHῩ

′
}.I)ϑ

−HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jH

∗∗ΨiJ
′
t−i(tr{DtῩHῩ

′
Ds}.I)τ

−HῩ
′

p∑
i=1

T −1∑
t=i

DtῩH
′
C∗′

ΨiJ
′
t−iτ

−H
p∑

i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−i(tr{Ῡ

′
Dt′

ῩH}.I)τ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{DtDs′
Z̄H∗I2ΨiJ

′
t−iΩJs−jΨ

′
jC

∗HῩ
′
}.I)ϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

Λ∗∗′
ΩJs−jΨ

′
jC

∗HῩ
′
Dt′

Ds′
Z̄H∗I2ΨiJ

′
t−iτ

−HΛ∗∗
p∑

l=1

T −1∑
r=l

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jC

∗HῩ
′
Dr′

DsZ̄H∗I2ΨlJ
′
r−lτ

−HΛ∗∗
p∑

l=1

T −1∑
r=l

p∑
j=1

T −1∑
s=j

ΩJr−lΨ′
lI

′
2H∗Z̄ ′Dr′

DsῩHC∗′
ΨjJ

′
s−jτ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩJs−jΨ

′
jI

′
2H∗Z̄

′
DtDs′

ῩHϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩΛ∗∗HῩ

′
Dr′

Dt′
Z̄H∗I2ΨjJ

′
s−jτ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−i(tr{Dt′

DsZ̄H∗I2ΨjJ
′
s−jΩΛ∗∗HῩ

′
}.I)τ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩΛ∗∗HῩ

′
Ds′

DtZ̄H∗I2ΨjJ
′
s−jτ

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDstr
{
ΩJt−iΨ′

iC
∗HΛ∗∗′}

IZ̄H∗I2ΨjJ
′
s−jτ

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDs′
Z̄H∗I2ΨjJ

′
s−jΩJt−iΨ′

iC
∗Hϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

Λ∗∗′
tr
{
Z̄H∗I2ΨiJ

′
t−iΩJs−jΨ′

jC
∗HῩ′DtDs′}

τ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

Λ∗∗′
ΩJs−jΨ′

jC
∗HῩ′DtDsZ̄H∗I2ΨiJ

′
t−iτ
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−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−i(tr{ΩΛ∗∗HC∗′

ΨjJ
′
s−j}.I)

× (tr{Dt′
Z̄H∗Z̄

′
Ds′

}.I)τ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{Dt′
Z̄H∗Z̄

′
Ds′

}.I)C∗′
ΨiJ

′
t−iΩHC∗′

ΨjJ
′
s−jϑ

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{ΩJt−iΨ
′
iC

∗HC∗′
ΨjJ

′
s−j}.I)

× (tr{Z̄H∗Z̄
′
DtDs′

}.I)ϑ

−HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jC

∗HC∗′
ΨiJ

′
t−i(tr{Z̄H∗Z̄

′
DtDs}.I)τ

+o(T −1).

A proof of this result is given in Appendix B.1 by evaluating the expectation of each

term. The two stage least squares result is given in Chapter 2.

3.4 Bias corrected 2SLS/FLIML Estimators

The procedure is the same as shown in section 2.4 for the bias corrected 2SLS estimator.

Bias corrected 2SLS/FLIML estimators for structural form equations can be obtained

by estimating the approximating bias and then subtracting this bias estimate from the

corresponding estimators.

Definition 1. Given δ̂1,b(2SLS/F LIML) as estimated 2SLS/FLIML bias

approximations replicates for the coefficient bias

δ1,b(2SLS/F LIML) =
(
β1,b(2SLS/F LIML),α

(1)
1,b(2SLS/F LIML), ...,α

(p)
1,b(2SLS/F LIML),

c
(0)
1,b(2SLS/F LIML), c

(1)
1,b(2SLS/F LIML), ..., c

(q)
1,b(2SLS/F LIML)

)
,

and given δ̂1,2SLS/F LIML as the 2SLS/FLIML estimator of δ1, the C2SLS
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and CFLIML bias corrected estimator δ̂1,C2SLS/CF LIML is as follows:

δ̂1,C2SLS/CF LIML = δ̂1,2SLS/F LIML − δ̂1,b(2SLS/F LIML). (3.11)

To examine how well the C2SLS/CFLIML works for practical bias correction, a set

of Monte Carlo experiments were conducted and the results are discussed in section

3.5.

3.5 Numerical Results

To be consistent, the numerical model and coefficient set up of this chapter is exactly

the same as in Chapter 2, three dependent variables simultaneous equations models,

with four lagged dependent variables. See the Chapter 2 numerical design numerical

model part. The number of Monte Carlo replications is 20,000.

The numerical results of 2SLS, FLIM, C2SLS, and CFLIML are summarized in

Appendix. B.2 from Table B.1 to Table B.3. Table B.1 shows the bias approximation in

both cases. Table B.2 presents the simulated estimation bias of 2SLS, FLIML, C2SLS,

and CFLIML respectively. Table B.3 presents the MSE of these estimators. β21 and

β31 are the coefficients of endogenous variables of the first structural form equation.

α1
11 to α4

31 are the coefficients of the lagged endogenous variables. c11 is the constant

term, and c21, c31 are the parameters of exogenous variables.

In Table B.1 most of the bias approximations actually provide an overstated

indication of the magnitude of the "true" bias as given by the Monte Carlo estimates

in 2SLS and FLIML. The bias approximations of FLIML are generally smaller than

those of 2SLS, and many of them have opposite signs. This latter characteristic arises

because the bias that results from simultaneity and dynamics have opposite signs in
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2SLS which was observed in Chapter 2, while FLIML removes the simultaneity bias

and part of the dynamic bias.

Both Table B.1 and Table B.2 show that when the sample size increases, the bias

of estimators decreases, and when the level of over-identification L increases, the bias

of estimators also increases. Comparing the two uncorrected estimators, FLIML has

superior performance to 2SLS in reducing the estimated bias for the endogenous and

exogenous variable’s coefficients. The bias that is left is relatively small and many

estimated coefficients are almost unbiased. As was discussed in section 3.3, the bias

approximation of FLIML concerns only the dynamic part (compared to 2SLS, FLIML

eliminates the bias from simultaneity and some parts of the dynamics that are present

in 2SLS). The estimated values of parameters based on FLIML are much less biased

than the 2SLS in most cases, however, when sample size is 50, the bias of α1
21, for

the FLIML estimator is larger than for 2SLS. When the sample size is 50, with the

over-identification level L =2, the bias of FLIML estimator for α4
31 is 10% more than

2SLS. The bias corrected estimators in the Monte Carlo simulations, i.e.C2SLS and

CFLIML, are obtained by replacing the unknown coefficients in the bias approximation

with estimates, which has been discussed in section 3.4.

Comparing the Monte Carlo bias estimates for C2SLS, CFLIML, with those for 2SLS,

FLIML, it is clear that, generally, the bias corrected estimators have a substantially

smaller bias than their uncorrected counterparts. In general, C2SLS and CFLIML yield

almost unbiased estimators in both sample size 50 and 100, when over-identification

level is L = 2,4 and 6.

While the uncorrected FLIML estimates are much less biased than the uncorrected

2SLS, the mean squared errors of the parameter estimates of the endogenous and

exogenous variables for the FLIML estimator are smaller in the simulations than

those of 2SLS. However, the MSEs of dynamic coefficient estimators in FLIML are
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slightly larger than in 2SLS, though the percentage increase is not large. The MSEs of

CFLIML and C2SLS exhibit similar characteristics. The MSE decreases when sample

size increases; the MSE of the corrected estimators are smaller than the associated

uncorrected estimators in general. In few cases, when sample size is large and the bias

of uncorrected estimators is small, the MSE of corrected estimators is slightly larger

than the associated uncorrected estimators. However, this increase is not likely to

be substantial. For α1
11, which is the coefficient of L1y1 in the first equation of the

structural form, when sample size is 100 and the over-identification level is L = 2,4

and 6, the percentage of bias for 2SLS is +2% , −0%, +3% and the MSE is 0.0152,

0.0104, 0.0084, while for C2SLS, the MSE is 0.0160, 0.0105, 0.0097. The percentage of

bias for FLIML is +1% , −1%, +1% and the MSE is 0.0165, 0.0118, 0.0102, while for

the CFLIML, the MSE is 0.0168, 0.0121, 0.0101.

3.6 Conclusion

The O(T −1) bias in 2SLS estimation of a general DSEM can be decomposed into two

parts, which can be related to the simultaneity and dynamics respectively. However,

the bias of FLIML effectively comes from the dynamics. It removes the simultaneity

bias to order T −1 which is in 2SLS and some part of the dynamic bias. It gives less

biased estimates compared to 2SLS. Notice that the bias approximation provides an

overstated indication of magnitude of the "true" bias as given by the Monte Carlo

estimates in 2SLS/FLIML. The mean squared errors of endogenous and exogenous

variables’ coefficients in FLIML are smaller than in 2SLS. However, the MSEs for

some dynamic coefficient estimates are found to increase in FLIML. The bias corrected

estimator, based upon the O(T −1) approximation, very substantially reduces the

2SLS/FLIML bias. In addition, it was found to be better overall in terms of MSE, as

there is no inflation of the MSE of uncorrected estimators. Hence, the bias corrected
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estimator, based upon O(T −1) can be recommended as a bias reduction technique for

either estimator from our analytic and numerical analysis.





Chapter 4

Bias Approximation and Reduction

in the pth -order Dynamic Reduced

Form

4.1 Introduction

Many papers have examined the properties of least squares estimators in dynamic

regression models with white noise innovation disturbances. It is consistent, however,

it exhibits serious bias when sample size is small. In this paper, we extend the analysis

in Kiviet, Phillips, and Schipp (1999) to the general pth-order dynamic reduced form

case. Two most popular approximation expansions are used to derive the properties of

the ordinary least square estimators in dynamic regression models; Nagar’s large-T

approximation method and Kadane’s small-σ approximation. The latter one was first

employed by Kadane (1971) for k-class estimators to analyse the coefficients of a single

equation of linear simultaneous stochastic equations with normal disturbances. This

method uses a Taylor series expansion to expand the expression for the sample error,

so that the successive terms are in descending order of σ in probability, in contrast to
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the large-T asymptotic expansion which orders these terms in increasing order of the

sample size, T , in probability. The general expansion is

1
σ

(α̂ −α) =
p∑

s=1
σs−1ės +σpṙp

and where ės , for s = 1, ...,p, and ṙp are also bounded in probability, this time as

σ, the standard deviation of the equation disturbance, tends to zero. The bias is

then approximated to an appropriate order by taking expectations of the terms in the

summation. Kiviet and Phillips (1993), Kiviet and Phillips (1994) applied the small-σ

approximation in the context of ARX models.

The large-T approximation in OLS, was first used by Grubb and Symons (1987) for

the OLS estimator of the lagged dependent variable parameter in a first order stable

autoregressive model with exogenous variables (ARX(1)). Then Kiviet and Phillips

(1993), Kiviet and Phillips (1994) provided a series of extensions of Grubb and Symons

(1987). They extended the analysis to the estimator of the full coefficient vector and

the high order dynamic regression model, ARX(p). All the papers above are in a

stable model context. Kiviet and Phillips (2005) extended the Nagar approximation

to examine the bias, variance and mean square error of the OLS estimator for the

coefficient vector in a linear dynamic regression model with a unit root. Kiviet, Phillips,

and Schipp (1999) also explored both small- σ and larger-T approximations for the OLS

estimator in the context of a first order dynamic reduced form model with normally

distributed white noise disturbances and an arbitrary number of exogenous regressors.

Then the bias approximation was used to construct the corrected OLS (COLS),

respectively, unbiased to order σ2 and order T −1, Kiviet and Phillips (1993), Kiviet

and Phillips (1994), Kiviet, Phillips, and Schipp (1999).

It has been shown that the two approaches give essentially the same bias approx-

imations in the static case, and have almost the same effect in the bias correction
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procedures. However, as shown by Kiviet and Phillips (1989), Kiviet and Phillips

(1994) and Kiviet, Phillips, and Schipp (1999), the two approximations are not the

same in dynamic models, the results that come from small-σ approximation are proved

rather poor and the performance of biased corrected estimator is poor as well. The

large-T approach is superior, it leads to the bias corrected estimators continuing to

perform satisfactorily and it would be much preferred.

The numerical method, the bootstrap, is a most popular tool in econometrics for

improving estimation and inference. In the normal distributed errors ARX(1) model,

Ip (1991) has proven that the residual bootstrap bias correction removes the O(T −1)

part of the bias. Surprisingly, Inoue and Kilian (2002) shows that even under the case

where the process is integrated to order unity, as long as the number of lags p > 1,

the residual bootstrapping in the high order AR(p) processes is valid. Hence, we are

interested in exploring the performance of this residual bootstrap method in the pth

lagged dependent variables reduced form model.

In this chapter, without losing generality, we focus on the bias in the OLS estimates

for the first equation of a multi-equations system, where p lagged dependent variables are

included. The bias approximation to order T −1 is derived by using the Nagar expansion,

and the bias corrected estimators are constructed by employing the estimated bias

approximation. We set up a series of Monte Carlo experiments to show the performance

of COLS, and the residual bootstrap OLS in this general reduced form model. The

simulations and numerical results suggest that the OLS bias can be substantial which

was also observed in Kiviet, Phillips, and Schipp (1999). The COLS estimator gives

almost unbiased estimation, and the residual bootstrap method is also well behaved

in the bias reduction procedure. However comparing these two methods, the O(T −1)

expansion is more effective. Moreover, these two bias correction methods do not lead

to an increase in the MSE.
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The structure of this chapter is as follows. Section 4.2 introduces the general

reduced form model, and section 4.3 presents the bias approximation to order T −1 .

Section 4.4 constructs the COLS by introducing the bias approximation. The numerical

design which includes the bootstrap methodology is presented in section 4.5. The

numerical results and our conclusion are in section 4.6 and section 4.7 respectively.

4.2 The Model

The complete system is presented in Chapter 2.2, with innovation errors and p lagged-

dependent and q lagged strongly exogenous explanatory variables. The exogenous

variables are with I(0) process. The first equation of the reduced form system in

equation (2.2) is given by:

y1 =
p∑

i=1
LiY γ

(i)
1 +

q∑
j=0

LjXπ
(j)
1 +ω1v1, (4.1)

where v1 is the first column of V , v1 ∼ N(0, I). y1 is a T ×1 vector and the observations

on the regressors are contained in a T ×(P +Q) matrix Z = [R : S]. P =∑G
m=1 p(m) and

Q =∑K
n=1 q(n). Here the T ×P matrix R includes all the stochastic lagged dependent

variables, and T ×Q matrix S includes all the other regressors.

In what follows we shall rewrite equation (4.1) as:

y1 = Zα1 +ω1v1, (4.2)

where α
′
1 = (γ(i)′

1 ,π
(j)′

1 ) = (γ(1)
1, ...,γ

(p)
1, ,π

(0)
1 , ...,π

(q)
1 ) are the reduced form parameters.
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4.3 Reduced Form Estimation: OLS bias

The OLS estimator of α1 in equation (4.2) is given by:

α̂1 = (Z
′
Z)−1Z

′
y1 = α1 +(Z

′
Z)−1Z

′
ω1v1 (4.3)

= α1 +(Z
′
Z)−1Z

′
ṽ1.

Corollary 1. X is I(0) which implies that (i)X ′
X = O(T ); (ii)Z̄ ′

Z̄ = O(T );

(iii)Z ′
Z = Op(T ); (iv)E(Z̄ ′

ṽ1) = 0 and Z̄
′
ṽ1 = Op(T 1/2); (v)E(Z ′

ṽ1) = 0 and Z
′
ṽ1 =

Op(T 1/2).

To find a bias approximation to order T −1, upon substituting equation (2.4), we

start from:

(Z
′
Z)−1 =

[
E(Z

′
Z)+Z

′
Z −E(Z

′
Z)
]−1

(4.4)

= [H∗−1 + Z̄
′
W̃ ∗ + W̃ ∗′

Z̄ + W̃ ∗′
W̃ ∗ −E(W̃ ∗′

W̃ ∗)]−1

= H∗
[
I +

(
Z̄

′
W̃ ∗ + W̃ ∗′

Z̄
)

H∗ +
(
W̃ ∗′

W̃ ∗ −E(W̃ ∗′
W̃ ∗)

)
H∗
]−1

,

where

H∗−1 = E(Z
′
Z) = Z̄

′
Z̄ +E(W̃ ∗′

W̃ ∗).

The stochastic term inside the inverse term of equation (4.4) are of stochastic order

of T −1/2, then

Z ′ṽ1 = Z̄
′
ṽ1 + W̃ ∗′

ṽ1 (4.5)

and each term on the right hand side of equation (4.5) is Op(T 1/2). Expanding equation

(4.4) and keeping terms up to Op(T −1), then substituting the expanding form and

equation (4.5) into equation (4.3), yields the following expansion of the estimator of
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α1.

α̂1 −α1 = H∗
[
I +

(
Z̄

′
W̃ ∗ + W̃ ∗′

Z̄
)

H∗ +
(
W̃ ∗′

W̃ ∗ −E(W̃ ∗′
W̃ ∗)

)
H∗
]−1

(4.6)

×
(
Z̄

′
ṽ1 + W̃ ∗′

ṽ1
)

= H∗Z̄
′
ṽ1 +H∗W̃ ∗′

ṽ1 −H∗Z̄
′
W̃ ∗H∗Z̄

′
ṽ1

−H∗W̃ ∗′
Z̄H∗Z̄

′
ṽ1 −H∗Z̄

′
W̃ ∗H∗W̃ ∗′

ṽ1

−H∗W̃ ∗′
Z̄H∗W̃ ∗′

ṽ1 −H∗
(
W̃ ∗′

W̃ ∗ −E(W̃ ∗′
W̃ ∗)

)
H∗Z̄

′
ṽ1

−H∗
(
W̃ ∗′

W̃ ∗ −E(W̃ ∗′
W̃ ∗)

)
H∗W̃ ∗′

ṽ1 +op(T −1).

Taking expectations of each term above leads to the following:

Theorem 3. The bias of the OLS estimator of the first reduced form equation to order

T −1 is given by

E(α̂1 −α1) = −H∗Ξ∗Ω̃.1 −H∗

Θ

0

 Ω̃.1 +o(T −1), (4.7)

where

H∗ =

Z̄
′
Z̄ +

p∑
i=1

p∑
j=1

T −1∑
t=i,j

(T − t)

ΨiJ
′
t−iΩ̃Jt−iΨ

′
i 0

0 0




−1

,

Ξ∗ =
p∑

i=1

T −1∑
t=i

Λ∗
t

(
Jt−iΨ

′
i : 0

)′

,

Λ∗
t = Z̄

′
DtZ̄H∗ + tr

(
Z̄

′
DtZ̄H∗

)
IP +Q, where P =

G∑
m=1

p(m),Q =
K∑

n=1
q(n)
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and Ψ is a P ×P matrix which equals to:

Θ =
p∑

i=1

T −1∑
t=i

p∑
l=1

T −1∑
r=l

p∑
b=i+l

T −1∑
s=t+r

(T − s)
[
(ΨlJ

′
s−lΩ̃Jr−bΨ

′
bH

∗∗ + tr
{
(ΨlJ

′
s−lΩ̃Jr−bΨ

′
bH

∗∗
}

I

]

×ΨiJ
′
t−i,

where recall that in section 2.3, we defined H∗∗ = I
′
2H∗I2 as the P ×P leading submatrix

of matrix H∗, with I2 =

IP

0

 which is a (P +Q)×P selection matrix, and Ω̃.1 is the

first column of

Ω̃ = E
[ 1
T

Ṽ
′
Ṽ
]
.

A proof of this result is given in Appendix C.1 by evaluating the expectations of

each terms.

Then, the bias approximation can be evaluated straightforwardly once the structure

is known.

4.4 Bias corrected OLS Estimator in Reduced Form

Bias corrected OLS is similar to the C2SLS, and CFLIML in the last two chapters,

via, employing the simulated bias approximation into the OLS estimator.

Definition 1. Given α̂1,b(OLS) as estimated OLS bias approximations

replicates for the coefficient bias

α1,b(OLS) =
(
γ

(1)
1,b(OLS), ...,γ

(p)
1,b(OLS),π

(0)
1,b(OLS),π

(1)
1,b(OLS), ...,π

(q)
1,b(OLS)

)
, and given α̂1,OLS

as the OLS estimator of α1, the COLS bias corrected estimator α̂1,COLS is

as follows:

α̂1,COLS = α̂1,OLS − α̂1,b(OLS). (4.8)
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To examine how well the COLS works for practical bias correction, a set of Monte

Carlo experiments were conducted and the results are discussed in section 4.6.

4.5 Numerical Experiments Design

4.5.1 Numerical Model

The system was still constructed as in Chapter 2.5 and Chapter 3.2 using a three

equations dynamic simultaneous equations model with four lagged endogenous variables

based on sample sizes 50 and 100 and it’s over-identified. Hence the first equation of

reduced form is the following:

y1 =
4∑

i=1
L4Y γ

(4)
1 +

q∑
j=0

LjXπ
(j)
1 +ωv1, (4.9)

where Y = (y1,y2,y3). We analyse the reduced form properties of the general dynamic

simultaneous equations models and in this chapter we only focus on the case when

L = 2, X = (x1,x2,x3,x4,x5,x6) , since the over-identification level will not influence

the properties of the reduced form. Each exogenous variable is generated as Gaussian

autoregressive process with mean zero and with an autoregressive coefficient of 0.9,

and they are independent of each other.

xjt = 0.9xj(t−1) + ςjt, ςjt ∼ N (0, 1).
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The coefficient matrices of reduced form based on the structural form coefficients

set up in Chapter 2.5 are as follows:

Γ(1) = −A(1)B−1 =


γ

(1)
11 −0.2093 0.0192

γ
(1)
21 0.0271 −0.0777

γ
(1)
31 −0.0141 −0.0979

 ,

Γ(2) = −A(2)B−1 =


γ

(2)
11 −0.2374 −0.1360

γ
(2)
21 −0.2951 0.0306

γ
(2)
31 0.2142 −0.0251

 ,

Γ(3) = −A(3)B−1 =


γ

(3)
11 −0.1637 −0.0725

γ
(3)
21 −0.1253 −0.1402

γ
(3)
31 −0.0581 0.0154

 ,

Γ(4) = −A(4)B−1 =


γ

(4)
11 −0.0808 −0.0603

γ
(4)
21 −0.0061 −0.0826

γ
(4)
31 0.0593 0.0479

 ,

and for,

L = 2, Π
′
=


π11 π21 π31 π41 π51 π61 π71

−0.1949 −0.1191 0.0992 −0.0830 0.0266 −0.0161 0.0921

−0.1382 −0.0384 0.0320 0.0628 −0.0201 0.0014 −0.0083

 .
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The coefficients we are interested in from the first equation are:

γ
(1)
11 = 0.1774, γ

(1)
21 = 0.0258, γ

(1)
31 = −0.1177, γ

(2)
11 = 0.0454, γ

(2)
21 = 0.1626,

γ
(2)
31 = −0.0768, γ

(3)
11 = −0.0397, γ

(3)
21 = 0.2487, γ

(3)
31 = 0.3409, γ

(4)
11 = 0.0371,

γ
(4)
21 = 0.1751, γ

(4)
31 = 0.1584.

.

When L = 2,

π11 = −0.0806, π21 = 0.1697, π31 = −0.1414 π41 = 0.1482, π51 = −0.0474,

π61 = −0.0249, π71 = 0.142.
.

We use a matrix P from a Choleski factorosation of the reduced form covariance Ω

to generate the reduced form errors. Hence,


ṽ1,t

ṽ2,t

ṽ3,t

= P


ẽ1,t

ẽ2,t

ẽ3,t



where ẽ1,t, ẽ2,t and ẽ3,t denote the standardised disturbances. The distribution of the

rows of Ũ always have mean 0 and covariance matrix Σ, and they are i.i.d. Ũ is the

structural form disturbances. Then, the distribution of the structural disturbances can

be evaluated from

B
′
ṽt = ũt ⇒ ũt ∼ N (0, Σ), where Σ = B

′
ΩB.

We arbitrarily set the structural covariance matrix is as follows:

Σ =


0.3524 0.3448 0.3112

0.3448 0.3668 0.2984

0.3112 0.2984 0.4064

 (4.10)
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from which the reduced form covariance is:

Ω =


0.0055 0.0054 0.0030

0.0054 0.0844 0.0085

0.0030 0.0085 0.0069

 . (4.11)

The setting up of initial values is exactly the same as in our Chapter 2 and 3.

4.5.2 The Simulation Model

The number of Monte Carlo replications is 20,000, and 199 bootstrap replicates are

used when achieving the bias corrected bootstrap.

Bootstrap

Based on Freedman (1984), Ip (1991) provides support for the asymptotic validity

of the 2SLS bootstrap in static and dynamic models where errors are normal, and

MacKinnon (2002) conducted hypothesis testing in a static model which also supports

the asymptotic validity of the 2SLS bootstrap.

With the standard residual bootstrap, the bias corrected bootstrap estimators are

calculated by first estimating the equation of interest using the original estimation

method, and then by using this to generate pseudo-date (B sets ) by resampling the

residual from the initial estimated equation. Bootstrap replicates are obtained by

implementing the original estimation method on each of B sets. The bias corrected

bootstrap estimate of α1 can be calculated as 2α̂1 − α̂1,b̄, where α̂1 is the original

estimate, and α̂1,b̄ is the mean of the bootstrap replicates.

Freedman’s bootstrap contains the same steps as the usual residual bootstrap ,

except for the generation of the pseudo data.
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The target equation is :

y1 =
4∑

i=1
LiY γ

(i)
1 +

j∑
j=0

LjXπ
(j)
1 + ṽ1. (4.12)

To set up bootstrap procedure for the above reduced form, we generate the y1 =

(y11,y12...y1T )′ , and the initial value y
′
0 , Ly

′
0, L2y

′
0, L3y

′
0 which are obtained in Chapter

2, then by using OLS estimator, obtain α̂1 and v̂1 = (v̂1, ..., v̂T )′. Then the re-sampling

data y∗
1 = (y∗

11,y∗
12...y∗

1T )′ and Y ∗
0 , LY ∗

0 , L2Y ∗
0 , L3Y ∗

0 are generated recursively as

y∗
1 =∑4

i=1 LiY ∗γ̂
(i)
1 +∑j

j=0 LjXπ̂
(j)
1 + ˆ̃v∗

1, where we resample the ˆ̃v1 in equation (4.12)

to generate ˆ̃v∗
1.

In each bootstrap replication, y∗
1 is regressed on [LY ∗ : L2Y ∗ : L3Y ∗ : L4Y ∗ : X] to

get the bootstrapped estimates α̂∗
1 , then the bias corrected bootstrap estimates are

given by the definition 2:

Definition 2. Given α̂1,b̄ as the mean of the bootstrap OLS replicates for the coeffi-

cient α1 ∈ (γ(1),γ(2),γ(3),γ(4),π1), and given α̂1,OLS as the OLS estimator of α1, the

bootstrap bias corrected estimator α̂1,b is as follows:

α̂1,b = 2α̂1,OLS − α̂1,b̄, where α̂1,b̄ = 1
B

B∑
b=1

α̂1,b.

4.6 Numerical Results

The numerical results of OLS, COLS, and residual bootstrap OLS are summarized in

Appendix. C.2 from Table C.1 to Table C.2. Table C.1 shows the bias approximation,

the OLS bias, the COLS bias, and the bootstrap bias when the sample size is 50 and

100 respectively. Table C.2 presents the MSE of these estimators. γ1
11 to γ4

31 are the

coefficients of lagged endogenous variables of the first reduced form equation. π11 is
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the constant team, and π21 to c71 are the parameters of exogenous variables in the

reduced form.

In Table C.1 most of the bias approximations actually provide an overstated

indication of the magnitude of the "true" bias as given by the Monte Carlo estimates

in OLS, but this over-stating is not likely to be substantial. When the sample size

increases, the bias approximation and OLS bias drop sharply. Both corrected OLS, and

residual bootstrap OLS effectively reduce the bias in the relevant uncorrected method,

especially for the lagged dependent variables. For instance, the first order dependent

variable, γ1
21 = 0.0258, while the OLS bias and bias approximation is −0.0375(−145%),

and −0.0387(150%) respectively. When we apply the bias corrected method on the

OLS, the bias drop sharply; in the COLS case, the bias reduces from 145% to 16%, and

in the bootstrap case, the the bias decreases from 145% to 47%. In Table C.1, the COLS

presents less biased estimates compared with the bootstrap method; however, this

advantage is not that obvious in some estimated coefficients. For example, for γ3
21, these

two correction methods reduce the bias from −4% to −2%. OLS itself gives an almost

unbiased estimates for the exogenous variables, hence in this case, the bias correction

is not that necessary to employ into the correction. For example, π51 = −0.0474, the

OLS bias is 0.0005(+1%) which gives an almost unbiased estimate; certainly the bias

approximation in this case is also close to zero (0.0009(+2%)). When sample size

increases to 100, many coefficients of lagged endogenous variables actually present

almost unbiased properties, so in these cases, the bias advantage of the correction

method is not so obvious; however, nearly half of the estimated coefficients are far

away from the actual values. The properties of the constant term among these three

estimators are similar to those for the lagged endogenous variables.

Table C.2 presents the mean squared errors for these three estimators where it

is seen that when sample size increases, MSE decreases. Surprisingly, the results
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are unlike the results in Chapter 2 and Chapter 3, since the three estimators have

almost the same level of MSEs. Meanwhile, the MSE in the case of COLS is slightly

smaller than in the other two cases which is similar as in Chapter 2 and Chapter 3. As

reported in Table C.1, OLS gives almost unbiased estimates for the exogenous variable

coefficients, while the MSE of them are close to zero. However, it is not the case for the

constant term, which is 0.0053 for OLS , 0.0051 for COLS, 0.0049 for bootstrap OLS

when sample size is 50, and 0.0016 for OLS , 0.0015 for COLS, 0.0015 for bootstrap

OLS when sample size is 100.

4.7 Conclusion

The O(T −1) bias approximation in the OLS estimation of a pth order dynamic reduced

form is presented in our analytic analysis part. The ordinary least squares bias can

be substantial in dynamic reduced form equations based on both simulations and

numerical results, which has also been observed in Kiviet, Phillips, and Schipp (1999).

Analytically, the bias corrected estimator, based upon an O(T −1) approximation,

very substantially reduces the OLS bias. The residual bootstrap procedure in OLS

also effectively reduces the bias. However, from the results, it is obvious that using

the O(T −1) bias approximation is more effective in bias reduction compared to the

bootstrap method. The MSEs, in these three cases, are almost at the same level; in

other words, these two bias correction methods do not lead to an increasing of the MSEs.

Hence, the bias corrected estimator, COLS, based upon the O(T −1) bias correction

can be recommended as a bias reduction technique for the p lagged dependent variable

reduced form. Alternatively, the non-parametric bootstrap is also a way to reduce the

bias and may be considered especially if the computer cost is of importance.



Chapter 5

Summary of the Conclusions

The asymptotic distributions of estimates and test statistics play more and more

important roles in the development of econometric theory. However, knowledge of their

finite sample properties is limited in many cases. Based on the asymptotic properties

of estimators and test statistic, inference may not be reliable for small samples or even

moderately large samples. Hence, it is worthwhile to explore the relevant properties

when the sample size is small; furthermore, it is important to derive the analytical

results at the most general level possible, which can help us understand the quality

of inference in practice. This thesis analyses the limited information estimators in

general dynamic simultaneous equation models which will extend our knowledge of the

small sample properties of estimators in this area of econometrics and which will be

of benefit to economists in estimating economic models under the linear DSEM when

sample size is small.

In this thesis, a standard system is introduced which contains normally and inde-

pendently distributed structural disturbances with mean vector 0 and fixed covariance

matrix Σ = (σij), and strictly exogenous I(0) regressors . This general dynamic si-

multaneous equations model includes endogenous variables which are lagged p time

periods, and exogenous variables which are lagged q time period. Based on this general
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DSEM, we explore the properties of the two most popular estimators in the linear

SEM, that is the 2SLS and FLIML estimators, in the small sample environment. In

the pth order reduced form model which comes from the general DSEM, we analyse

the behaviour of the classical estimator, the ordinary least squares estimator, when the

sample size is small. The bias corrected estimators are constructed by subtracting the

estimated bias approximations from the corresponding estimators. We also conducted

Monte Carlo experiments to compare the performance of corrected and uncorrected

estimators. The three equations model which was employed includes four lagged

dependent variables, normally distributed innovation errors, and I(0) strong regressors.

The over-identification level of this model is set up as 2, 4, and 6, and the model

is stable. An alternative estimation procedure, a numerical bias correction method

known as the residual bootstrap, is also introduced and applied to 2SLS and FLIML

estimators.

Chapter 2 examines the small sample properties of 2SLS in the general DSEM. We

analytically derived the bias approximation of 2SLS to order T −1 by using the Nagar

expansion method, and showed that the bias approximation has a simultaneity part

and a dynamic part (Kiviet, Phillips, and Schipp (1999), Kiviet and Phillips (1993)

and Phillips(2011)). Then, the bias corrected method is constructed by estimating

the approximating bias and subtracting this bias estimate from the corresponding

estimators. Theoretically, it could reduce bias to order T −1.

Numerical results show that the bias that comes from the dynamic part has an

opposite sign compared to the bias that comes from the simultaneity part which

indicates that the bias correction method which effectively reduces the bias in the static

case may not do the same in the dynamic case. The bias corrected estimator, based

upon the O(T −1) approximation, very substantially reduces the 2SLS bias. It does not
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inflate the MSE in the most cases. Hence, the bias corrected estimator, based upon

the O(T −1) bias approximation can be recommended as a bias reduction technique.

The bootstrap simulation results in this paper provide evidence for an alternative

bias correction technique; it is shown to perform particularly well at bias correction.

The bias correction is not as effective as with C2SLS, but the computing cost is less.

The Bootstrap also reduced both standard error and MSE in 2SLS for both endogenous

and exogenous variable coefficients when L is large.

A comparison between 2SLS and FLIML estimators is made in Chapter 3. We

derive the bias approximation for the FLIML estimator to order T −1, and separate it

into two parts, one part representing the bias as in 2SLS, and the other part which we

call it the extra term is an additional term compared to the 2SLS bias approximation.

Comparing these two parts analytically, the results show that the FLIML estimator

gives much less biased estimates than 2SLS ; hence this extra term has a sign opposite

to the part which represents the 2SLS bias approximation. As a result the O(T −1)

simultaneity bias is removed completely and the dynamic bias partially. To remove the

O(T −1) dynamic part bias completely from the FLIML, the corrected FLIML, CFLIML,

is conducted by subtracting this bias estimate from the corresponding estimators.

Numerical results show that the bias in FLIML is smller than the 2SLS bias. The

mean squared errors of endogenous and exogenous variables’ coefficients in FLIML are

also smaller than in 2SLS. However, the MSEs for some dynamic coefficient estimates

are found to increase in FLIML.

The bias corrected estimator, based upon the O(T −1) approximation, very substan-

tially reduces the 2SLS/FLIML bias. Moreover, it does not inflate the MSE. Hence,

the bias corrected estimator, based upon the O(T −1) can be recommended as a bias

reduction technique for either estimator.
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In Chapter 4, we move to the pth order reduced form which is transformed from the

general DSEM. To estimate the single equation model, OLS is the classical estimator.

Analytically, we present the bias approximation of OLS using a large-T approximation

and our corrected OLS gives unbiased estimation to order T −1 by subtracting this bias

estimate from the corresponding estimators. The ordinary least squares bias can be

substantial in dynamic reduced form equations as indicated by both simulations and

numerical results which has also been shown in Kiviet, Phillips, and Schipp (1999).

Numerically, the bias corrected estimator, based upon the O(T −1) approximation,

very substantially reduces the Monte Carlo OLS bias. From the results however, it

is shown that OLS itself may give almost unbiased estimates of the coefficients of

the exogenous regressors which implies that the bias correction is not necessary for

these estimated coefficients. The residual bootstrap procedure in OLS also effectively

reduces the bias. However, from the results it is obvious that employing the O(T −1)

bias approximation is more effective in bias reduction compared to the bootstrap

method. Surprisingly, the MSEs in these three cases, are almost at the same level; in

other words, these two bias correction methods do not lead to an increase of the MSE.

Hence, the O(T −1) bias corrected estimator, COLS, can be recommended as a bias

reduction technique in the pth lagged dependent variables reduced form. Alternatively,

the non-parametric bootstrap is also a way to reduce the bias if the computer cost is

the consideration.

Notice that the bias approximation provides an overstated indication of magnitude

of the "true" bias as given by the Monte Carlo estimates in all these three estimators.

In these three chapters, we have not considered the moments existence problem in the

dynamic models. We all know these three estimators do not have a moments problem

in the static case from our discussion in each chapter and in this thesis we assume

there is no moments problem in the dynamic case either.
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In this thesis, we numerically and analytically derive some results for limited

information estimators in the general DSEM. However, there are still many ways in

which further research could extend our current findings. As shown above, exploring

the conditions for the existence of moments in the FLIML would be particularly

interesting; however investigating the properties of inference procedures based on these

three estimators of the general DSEM would be an obvious next step.

Our model is based on normally distributed innovation errors. If this assumption

is relaxed to include other distributions including asymmetry, how might the results

compare with the current results? Is the bias correction method based on the bias

approximation still reliable? What the effect would be if the instruments are weak

instruments is also interesting to explore. The small sample properties of estimators in

panel data models is the another interesting direction to explore. We are also interested

in applying our results in applications of economic and financial models to test to what

extent our methods can improve estimation in practice.
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Appendix A

Appendix for Chapter 2

A.1 The Evaluation for Theorem 1

A.1.1 Lemmas

The following lemmas will be used in later evaluations for Theorem 1 in section 2.6.

Lemma 1: The expectation of a product of three normal ( means of

zero) random variables is zero. i.e

E(ΞAΨBΦ) = 0

where Ξ, Ψ, and Φ are three normal ( means of zero) random variables.

Lemma 2: (Z ′Z)−1 = [E(Z ′Z)]−1 +Op(T −3
2 ),

where Z = [R : S] =
[
LY,L2Y...LpY : X,LX,L2X...LqX

]
.
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Proof:

Z ′Z = E(Z ′Z)+(Z ′Z −E(Z ′Z))

= E(Z ′Z)
[
I +

[
E(Z ′Z)

]−1 (
Z ′Z −E(Z ′Z)

)]
.

(Z ′Z)−1 =
[
I +

[
E(Z ′Z)

]−1
(Z ′Z −E(Z ′Z))

]−1 (
E(Z ′Z)

)−1

where,

[
I +

[
E(Z ′Z)

]−1
(Z ′Z −E(Z ′Z))

]−1
=
[
I −

[
E(Z ′Z)

]−1
(Z ′Z −E(Z ′Z))

]
+op(T −1/2).

Hence,

(Z ′Z)−1 =
[
I −

[
E(Z ′Z)

]−1
(Z ′Z −E(Z ′Z))

](
E(Z ′Z)

)−1
+op(T −3/2)

=
[
E(Z ′Z)

]−1
−
[
E(Z ′Z)

]−1 (
Z ′Z −E(Z ′Z)

)[
E(Z ′Z)

]−1
+op(T −3/2)

=
[
E(Z ′Z)

]−1
+Op(T −3/2).

Lemma 3: Based on Nagar (1959)’s decomposition, the reduced form

disturbances can be decomposed as Ṽ = S∗ + ũ1φ
′, where ũ1 and S∗ are

normally distributed but independent, φσ2 = E
(

1
T Ṽ

′
ũ1
)
.

E(S∗AS∗′
) = tr(C∗

2A).I,

E(S∗′
AS) = tr(A).IC∗

2 ,

E(S∗AS∗) = A
′
C∗

2 ,

E(S∗′
AS∗′

) = C∗
2A,

where A is a corresponding and constant matrix, C∗
2 = Ω−σ2φφ

′ , Ω is the covariance

matrix of Ṽ .
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Lemma 4: Mikhail (1972) Suppose also that U , V , W and X are matrices,

with the same number of rows, whose elements are normally distributed

random variables with the properties that if φri and Ψsj are elements of any

of these matrices

E(φriΨsj) = 0, r ̸= s

= ωφΨij , r = s

and denote the matrix whose elements are ωφΨij by ΩφΨ for φ, Ψ = U , V , W

and X.

Suppose also that A, B and C are constant matrices of such dimensions

that the various products considered below exist, then:

1. E(UAV BWCX) = A′ΩuvBC ′Ωwx +B′Ωvx tr(ΩuwCA′)+C ′ΩwvBA′Ωux,

2. E(U ′AV BWCX) = ΩuvBC ′Ωwx tr(A)+ΩuwCA′B′Ωvx +Ωux tr(AB′ΩvwC),

3. E(UAV ′BWCX) = BC ′Ωwxtr(ΩuvA′)+B′C ′ΩwuAΩvx +C ′ΩwvA′Ωuxtr(B),

4. E(UAV BW ′CX) = A′ΩuvBΩwxtr(C)+CA′ΩuwB′Ωvx +C ′A′Ωuxtr(BΩwv),

5. E(U ′AV ′BWCX) = ΩuvA′BC ′Ωwx +ΩuwCBAΩvx +Ωuxtr(AΩvwC)tr(B),

6. E(U ′AV BW ′CX) = ΩuvBΩwxtr(C)tr(A)+ΩuwB′Ωvxtr(AC ′)+Ωuxtr(AC)tr(B′Ωvw),

7. E(UAV ′BW ′CX) = BΩwxtr(A′Ωuv)trC +CBΩwuAΩvx +C ′BΩwvA′Ωux,

8. E(U ′AV ′BW ′CX) = ΩuvA′BΩwxtr(C)+ΩuwB′C ′AΩvx +Ωuxtr(AΩvwB′C).

A.1.2 Evaluating the Expectations

From equation 2.14

E(δ̂1 − δ1) = E
{
HῩũ1 +H∆

′
1ũ1 +H∆

′
2ũ1 −HJ∗

1 HῩ
′
ũ1 −HJ∗

1 H∆2ũ1
}

+o(T −1),

(A.1)
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evaluating the expectation for each term.

The first term,

(i) E{HῩũ1} = HῩE{ũ1} = 0. (A.2)

The second term,

(ii) E{H∆
′
1ũ1} = HE{∆

′
1ũ1}.

Recalling equation 2.10 for the definition of ∆1, we have:

H∆
′
1ũ1 = H

(
Z̄(Z

′
Z)−1Z

′
[Ṽ2 : 0 : 0]+

[
R̃I

′
2(Z

′
Z)−1Z

′
Ṽ2 : 0 : 0)

])′

ũ1

= HΛ∗∗′
Ṽ

′
Z̄(E(Z

′
Z))−1Z̄

′
ũ1 +HΛ∗∗′

Ṽ
′
Z̄(E(Z

′
Z))−1I2R̃

′
ũ1

+HΛ∗∗′
V̄

′
W̃ ∗′

(E(Z
′
Z))−1Z̄

′
ũ1 +HΛ∗∗′

Ṽ
′
W̃ ∗(E(Z

′
Z))−1I2R̃′u1 +op(T −1)

where, Ṽ2 is the T ×g submatrix of matrix Ṽ , which can be expressed as [Ṽ2 : 0 : 0] =

Ṽ

Ig : 0

0

, and we define Λ∗∗ =

Ig : 0

0

 which is with G × (g + P ∗ + Q∗) dimension

selection matrix. Also by using Lemma 2,



Γ̂(1)
2 −Γ(1)

2
...

Γ̂(p)
2 −Γ(p)

2

Π̂(1)
2 −Π(1)

2
...

Π̂(q)
2 −Π(q)

2



= (Z
′
Z)−1Z

′
Ṽ2 = (E{Z

′
Z})−1Z̄

′
Ṽ2 +(E{Z

′
Z})−1W̃ ∗′

Ṽ2 +op(T −1/2)
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and


Γ̂(1)

2 −Γ(1)
2

...

Γ̂(p)
2 −Γ(p)

2

= I
′
2(Z

′
Z)−1Z

′
Ṽ2 = I ′

2(E{Z
′
Z})−1Z̄

′
Ṽ2 + I ′

2(E{Z
′
Z})−1W̃ ∗′

Ṽ2 +op(T −1/2),

and

[Ṽ2 : 0 : 0] = Ṽ Λ∗∗.

Taking expectation, the last two terms are zero, then this gives

E{H∆
′
1ũ1} = HΛ∗∗′

E
{
Ṽ

′
Z̄(E(Z

′
Z))−1Z̄

′
ũ1
}

(A.3)

+HΛ∗∗′
E
{
Ṽ

′
W̃ ∗(E(Z

′
Z))−1I2R̃′u1

}
+o(T −1).

The first term can be expressed as:

(1)

HΛ∗∗′
E
{
Ṽ

′
Z̄(E(Z

′
Z))−1Z̄

′
ũ1
}

= HΛ∗∗′
E
{
(S∗ + ũ1φ

′
)Z̄(E(Z

′
Z))−1Z̄

′
ũ1
}

= H(tr{Z̄(E(Z
′
Z))−1Z̄

′
Λ∗∗′

}.I)(σ2
1φ).

The second term can be evaluated as:

(2)

HΛ∗∗′
E
{
Ṽ

′
W̃ ∗(E(Z

′
Z))−1I2R̃′u1

}
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Note:

1. Recalling equation 2.5 in Chapter 2, W̃ ∗ =
[∑p

i=1
∑T −1

t=i DtṼ Jt−iΨ
′
i : 0

]
, and R̃ =∑p

i=1
∑T −1

t=i DtṼ Jt−iΨ
′
i.

HΛ∗∗′
E
{
Ṽ

′
W̃ ∗(E(Z

′
Z))−1I2R̃′u1

}
= HΛ∗∗′

E

(S∗ + ũ1φ′)′

 p∑
i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
i : 0

 [E(Z ′Z)]−1I2

p∑
j=1

T −1∑
s=j

ΨjJ
′
s−jṼ

′Ds′
ũ1


= HΛ∗∗′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
{
φũ′

1Dtũ1φ′Jt−iΨ′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ′

1Ds′
ũ1
}

+HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
{
φũ′

1DtS∗Jt−iΨ′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jS

∗′
Ds′

ũ1
}

+HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
{
S∗′

DtS∗Jt−iΨ′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ′

1Ds′
ũ1
}

+HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
{
S∗′

Dtũ1φ′Jt−iΨ′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jS

∗′
Ds′

ũ1
}

= (T − t)HΛ∗∗′
φσ2tr

{
ΩJt−iΨ′

iI
′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j

}

Note:

1. The last step is obtained by using Lemma 4.

Combining these two terms together, the result for equation (A.3) is:

E{H∆
′
1ũ1} (A.4)

= H(tr{Z̄(E(Z
′
Z))−1Z̄

′
Λ∗∗′

}.I)(σ2
1φ)

+(T − t)HΛ∗∗′
φσ2tr

{
ΩJt−iΨ′

iI
′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j

}
+o(T −1).

The third term in equation A.1 is:

(iii) E{H∆
′
2ũ1} = HE(∆

′
2ũ1) = 0. (A.5)
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Recalling equation 2.10 for the definition of ∆2, then clearly E{R̃
′
ũ1} = 0.

The fourth term of equation A.1 is:

(iv) −E{HJ∗
1 HῩ

′
ũ1} = −E{H[(∆

′
2∆2 −E(∆

′
2∆2))+((Ῡ

′
∆1 +∆

′
1Ῡ)+(Ῡ

′
∆2

+∆
′
2Ῡ)+(∆

′
1∆2 +∆

′
2∆1)]HῩ

′
ũ1}

= −E

HῩ
′
 p∑

i=1
LiȲ (Γ̂(i)

2 −Γ(i)
2 )+

q∑
j=1

LjX(Π̂(i)
2 −Π(i)

2 )

+
p∑

i=1
LiW̃ (Γ̂(i)

2 −Γ(i)
2 ) : 0 : 0

]
HῩ

′
ũ1

}

−E

H

 p∑
i=1

LiȲ (Γ̂(i)
2 −Γ(i)

2 )+
q∑

j=1
LjX(Π̂(i)

2 −Π(i)
2 )

+
p∑

i=1

]
LiW̃ (Γ̂(i)

2 −Γ(i)
2 ) : 0 : 0]

′
ῩHῩ

′
ũ1

}

−E

H

Ῡ
′

p∑
i=1

LiW̃C∗ +C∗′
( p∑

i=1
LiW̃

)′

Ῡ

HῩ
′
ũ1


−E

H

 p∑
i=1

LiȲ (Γ̂(i)
2 −Γ(i)

2 )+
q∑

j=1
LjX(Π̂i

2 −Πi
2)

+
p∑

i=1
LiW̃ (Γ̂(i)

2 −Γ(i)
2 ) : 0 : 0

]′ [ p∑
i=1

LiW̃Γ(i)
2 : R̃1 : 0

]
HῩ

′
ũ1


−E

H

[ p∑
i=1

LiW̃Γ(i)
2 : R̃1 : 0

]′ [ p∑
i=1

LiȲ (Γ̂(i)
2 −Γ(i)

2 )

+
q∑

j=1
LjX(Π̂i

2 −Πi
2)+

p∑
i=1

LiW̃ (Γ̂(i)
2 −Γ(i)

2 ) : 0 : 0
HῩ

′
ũ1


+o(T −1),

where the definition of ∆1 and ∆2 is from equation 2.10, and the expression of J∗
1 is in

the footnote 1 in section 2.3.
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By using the expression



Γ̂(1)
2 −Γ(1)

2
...

Γ̂(p)
2 −Γ(p)

2

Π̂(1)
2 −Π(1)

2
...

Π̂(q)
2 −Π(q)

2



= (Z
′
Z)−1Z

′
Ṽ2 = (E{Z

′
Z})−1Z̄

′
Ṽ2 +(E{Z

′
Z})−1W̃ ∗′

Ṽ2 +op(T −1/2)

and


Γ̂(1)

2 −Γ(1)
2

...

Γ̂(p)
2 −Γ(p)

2

= I
′
2(Z

′
Z)−1Z

′
Ṽ2 =I ′

2(E{Z
′
Z})−1Z̄

′
Ṽ2 + I ′

2(E{Z
′
Z})−1W̃ ∗′

Ṽ2

+op(T −1/2)

and

[Ṽ2 : 0 : 0] = Ṽ Λ∗∗,

the above (iv) expression can be written as:

−E{HῩ
′
Z̄[E(Z

′
Z)]−1Z̄

′
Ṽ Λ∗∗HῩ

′
ũ1}−E{HῩ

′
R̃I

′
2[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HῩ
′
ũ1}

−E
{
HΛ∗∗′

Ṽ
′
Z̄[E(Z ′Z)]−1Z̄

′
ῩHῩ

′
ũ1
}

−E{HΛ∗∗′
Ṽ

′
W̃ ∗[E(Z ′Z)]−1I2R̃

′
ῩHῩ

′
ũ1}

−E{HῩ
′
R̃CHῩ

′
ũ1}−E{HC∗′

R̃
′
ῩHῩ

′
ũ1}

−E{HΛ∗∗′
Ṽ

′
W̃ ∗(E(Z

′
Z))−1Z̄

′
R̃CHῩ

′
ũ1}−E{HΛ∗∗′

Ṽ
′
Z̄(E(Z

′
Z))−1I2R̃

′
R̃CHῩ

′
ũ1}

−E{HC
′
R̃

′
Z̄(E(Z

′
Z))−1W̃ ∗′

Ṽ Λ∗∗HῩ
′
ũ1}−E{HC

′
R̃

′
R̃I ′

2(E(Z
′
Z))−1Z̄

′
Ṽ Λ∗∗HῩ

′
ũ1}.
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Using R̃ (R̃ =∑p
i=1

∑T −1
t=i DtṼ JtΨ

′
i, and W̃ ∗ =

[∑p
i=1

∑T −1
t=i DtṼ JtΨ

′
i : 0

]
from equation

2.5, and the decomposition of Ṽ , Ṽ = S∗ + ũ1φ
′ , then (iv) can be obtained from the

sum of (1)− (8) below:

(1)

−E{HῩ
′
Z̄[E(Z

′
Z)]−1Z̄

′
Ṽ Λ∗∗HῩ

′
ũ1} = −E{HῩ

′
Z̄[E(Z

′
Z)]−1Z̄

′
ũ1φ

′
Λ∗∗HῩ

′
ũ1}

(A.6)

= −HῩ
′
Z̄[E(Z

′
Z)]−1Z̄

′
ῩH

′
Λ∗∗′

(σ2
1φ).

(2)

−E{HῩ
′
R̃I

′
2[E(Z ′Z)]−1F̃ ∗′

Ṽ Λ∗∗HῩ
′
ũ1} (A.7)

= −E

HῩ
′

p∑
i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1


∑p

j=1
∑T −1

s=j ΨjJ
′
s−jṼ

′
Dt′

0

 Ṽ Λ∗∗HῩ
′
ũ1

 .

For the moment, we shall focus on the the following equation (Moving the summations

and first three fixed terms H, Ῡ′ , and Dt outside of expectation symbol):

E

Ṽ Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1

ΨjJ
′
s−jṼ

′
Ds′

0

 Ṽ Λ∗∗HῩ
′
ũ1

 (A.8)

= E{ũ1φ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ

′
1Ds′

ũ1φ
′
Λ∗∗HῩ

′
ũ1}

+E{S∗Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jS

∗′
Ds′

ũ1φ
′
Λ∗∗HῩ

′
ũ1}

+E{ũ1φ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jS

∗′
Ds′

S∗Λ∗∗HῩ
′
ũ1}

+E{S∗Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ

′
1Ds′

S∗Λ∗∗HῩ
′
ũ1}}.

Then equation (A.8) will be calculated from (a)− (d) below:
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(a)

E{ũ1φ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ

′
1Ds′

ũ1φ
′
Λ∗∗HῩ

′
ũ1}

= E

ũ1ũ
′
1ῩH

′
Λ∗∗′

φφ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1

ΨjJ
′
s−j

0

φũ
′
1Ds′

ũ1


= σ4

1(tr(Ds′
)I +Ds +Ds′

)ῩH
′
Λ∗∗′

φφ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφ

= σ4
1(Ds +Ds′

)ῩH
′
Λ∗∗′

φφ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφ.

Using Lemma 4.

(b)

E{S∗Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jS

∗′
Ds′

ũ1φ
′
Λ∗∗HῩ

′
ũ1}

= E

S∗Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1

ΨjJ
′
s−j

0

S∗′
Ds′

ũ1ũ
′
1ῩH

′
Λ∗∗′

φ


= σ2tr{C∗

2Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j}Ds′

ῩH
′
Λ∗∗′

φ

= σ2tr{(Ω−φφ
′
σ2)Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j}Ds′

ῩH
′
Λ∗∗′

φ.

Using Lemma 3, E{S∗AS∗′} = tr{C∗
2A}I.

(c)

E{ũ1φ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jS

∗′
Ds′

S∗Λ∗∗HῩ
′
ũ1}

= E

ũ1ũ
′
1ῩH

′
Λ∗∗′

S∗′
DsS∗

ΨjJ
′
s−j

0


′

I
′
2[E(Z ′Z)]−1I2ΨiJ

′
t−iφ


= σ2ῩHΛ∗∗′

E(S∗′
Ds′

S∗)Js−jΨ
′
jI

′
2[E(Z ′Z)]−1I2ΨiJ

′
t−iφ

= σ2ῩHΛ∗∗′
tr{Ds}C∗

2Js−jΨ
′
jI

′
2[E(Z ′Z)]−1I2J

′
t−iΨiφ = 0.



A.1 The Evaluation for Theorem 1 89

Using Lemma 3, E{S∗′
AS∗} = tr{A}C∗

2 .

(d)

E{S∗Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ

′
1Ds′

S∗Λ∗∗HῩ
′
ũ1}

= E{Dsũ1φ
′
Js−jΨ

′
jI

′
2[E(Z ′Z)]−1I2ΨiJ

′
t−iC

∗
2Λ∗∗HῩ

′
ũ1}.

Using the definition of S∗ and ũ1: S∗ and ũ1 are independent, and Lemma 3 that

E{S∗AS∗} = A
′
C∗

2 .

Then, we have:

E{Dsũ1φ
′
Js−jΨ

′
jI

′
2[E(Z ′Z)]−1I2ΨiJ

′
t−iC

∗
2Λ∗∗HῩ

′
ũ1}

= E{Dsũ1ũ
′
1ῩH

′
Λ∗∗′

C∗
2Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφ}

= σ2DsῩHΛ∗∗′
C∗

2Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφ

= σ2DsῩHΛ∗∗′
ΩJt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφ

−σ42DsῩHΛ∗∗′
φφ

′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨiJ

′
s−jφ.

Putting (a)− (d) together, we have:

E

Ṽ Jt−iΨ
′
iI

′
2[E(Z ′Z)]−1

ΨjJ
′
s−jṼ

′
Ds′

0

 Ṽ Λ∗∗HῩ
′
ũ1


= σ2Ds′

ῩHΛ∗∗′
φtr{ΩJt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨiJ

′
s−j}

+σ2DsῩHΛ∗∗′
ΩJt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφ.

Then, equation A.7 becomes:

−E{HῩ
′
R̃I

′
2[E(Z ′Z)]−1F̃ ∗′

Ṽ Λ∗∗HῩ
′
ũ1} (A.9)
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= −HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDs′
ῩHtr

{
Ω
[
Js−jΨ

′
j : 0

]
[E(Z ′Z)]−1I2ΨiJ

′
t−i

}
Λ∗∗′

(σ2φ)

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDsῩHΛ∗∗′
ΩJt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j(σ2φ).

(3)

−E{HΛ∗∗′
Ṽ

′
Z̄[E(Z ′Z)]−1Z̄

′
ῩHῩ

′
ũ1} (A.10)

= −E{HΛ∗∗′
φũ

′
1Z̄[E(Z ′Z)]−1ῩHῩ

′
ũ1}

= −HΛ∗∗′
φσ2tr{Z̄[E(Z ′Z)]−1ῩHῩ

′
}

= −Htr{Z̄[E(Z ′Z)]−1ῩHῩ
′
}Λ∗∗′

(σ2φ).

(4)

−E{HΛ∗∗′
Ṽ

′
W̃ ∗[E(Z ′Z)]−1I2R̃

′
ῩHῩ

′
ũ1} (A.11)

= −E

HΛ∗∗′
Ṽ

′
 p∑

i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
i : 0

 [E(Z ′Z)]−1I2

p∑
j=1

T −1∑
s=j

ΨjJ
′
s−jṼ

′
Ds′

ῩHῩ
′
ũ1

 .

Here:

E
{
Ṽ

′
DtṼ Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jṼ

′
Ds′

ῩHῩ
′
ũ1
}

= E{φũ
′
1Dtũ1φ

′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ

′
1Ds′

ῩHῩ
′
ũ1}

+E{φũ
′
1DtSJt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2vjJ

′
s−jS

′
Ds′

ῩHῩ
′
ũ1}

+E{S
′
Dtũ1φ

′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jS

′
Ds′

ῩHῩ
′
ũ1}

+E{S
′
DtSJt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφũ

′
1Ds′

ῩHῩ
′
ũ1}

= σ4φφ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−jφtr{(Dt +Dt′

)Ds′
ῩHῩ

′
}
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+σ2tr{ΩJt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j}tr{DtDs′

ῩHῩ
′
}φ

−σ4tr{φJt−iΨ
′
φi

′
I

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j}tr{DtDs′

ῩHῩ
′
}φ

+σ2tr{DtῩHῩ
′
Ds}ΩJs−jΨ

′
jI

′
2[E(Z ′Z)]−1I2viJ

′
t−iφ

−σ4tr{DtῩHῩ
′
Ds}φφ

′
Js−jΨ

′
jI

′
2[E(Z ′Z)]−1I2ΨiJ

′
t−iφ

+0

= σ2tr{ΩJt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j}tr{DtDs′

ῩHῩ
′
}φ

+σ2tr{DtῩHῩ
′
Ds}ΩJs−jΨ

′
jI

′
2[E(Z ′Z)]−1I2ΨiJ

′
t−iφ.

Using Lemma 3.

The final expression for equation (A.11) is :

−E{HΛ∗∗′
Ṽ

′
W̃ ∗[E(Z ′Z)]−1I2R̃

′
ῩHῩ

′
ũ1} (A.12)

= −H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{ΩJt−iΨ
′
iI

′
2[E(Z ′Z)]−1I2ΨjJ

′
s−j}.I)

× (tr{DtDs′
ῩHῩ

′
}.I)Λ∗∗′

(σ2φ)

−HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jI

′
2[E(Z ′Z)]−1I2ΨiJ

′
t−i(tr{DtῩHῩ

′
Ds}.I)(σ2φ).

(5)

−E
{
HῩ

′
R̃C∗HῩ

′
ũ1
}

(A.13)

= −E

HῩ
′

p∑
i=1

T −1∑
t=i

DtSJt−iΨ
′
iC

∗HῩ
′
ũ1

−E

HῩ
′

p∑
i=1

T −1∑
t=i

Dtũ1φ
′
Jt−iΨ

′
iC

∗HῩ
′
ũ1


= −E

HῩ
′

p∑
i=1

T −1∑
t=i

Dtũ1ũ
′
1ῩH

′
C∗′

ΨiJ
′
t−iφ


= −HῩ

′
p∑

i=1

T −1∑
t=i

DtῩH
′
C∗′

ΨiJ
′
t−i(σ2φ).
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(6)

−E
{
HC∗′

R̃
′
ῩHῩ

′
ũ1
}

= −E

HC∗′
p∑

i=1

T −1∑
t=i

ΨiJ
′
t−iṼ

′
Dt′

ῩHῩ
′
ũ1

 (A.14)

= −E

H
p∑

i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−iφũ

′
1Dt′

ῩHῩ
′
ũ1


= −H

p∑
i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−i(tr{Ῡ

′
Dt′

ῩH}.I)(σ2φ).

(7)

−E{HΛ∗∗′
Ṽ

′
W̃ ∗(E(Z

′
Z))−1Z̄

′
R̃C∗HῩ

′
ũ1}−E{HΛ∗∗′

Ṽ
′
Z̄(E(Z

′
Z))−1I2R̃

′
R̃C∗HῩ

′
ũ1}

(A.15)

= −E

HΛ∗∗′
Ṽ

′
 p∑

i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
i : 0

(E(Z
′
Z))−1Z̄

′
p∑

j=1

T −1∑
s=j

DsṼ Js−jΨ
′
jC

∗HῩ
′
ũ1


−E

HΛ∗∗′
Ṽ

′
Z̄(E(Z

′
Z))−1I2

 p∑
l=1

T −1∑
r=l

DrṼ Jr−lΨ
′
l

′ p∑
j=1

T −1∑
s=j

DsṼ Js−jΨ
′
jC

∗HῩ
′
ũ1

 .

This is calculated in two parts (7a) and (7b):

(7a )

E{Ṽ
′
[DtṼ Jt−iΨ

′
i : 0](E(Z

′
Z))−1Z̄

′
DsṼ Jt−jΨ

′
jC

∗HῩ
′
ũ1}

= E{φũ
′
1Dtũ1φ

′
Jt−iΨ

′
iI

′
2(E(Z

′
Z))−1Z̄

′
Dsũ1φ

′
J

′
s−jΨjC

∗HῩ
′
ũ1}

+E{φũ
′
1DtSJt−iΨ

′
iI

′
2(E(Z

′
Z))−1Z̄

′
DsSJs−jΨ

′
jC

∗HῩ
′
ũ1}

+E{S′Dt′
SJt−iΨ

′
iI

′
2(E(Z

′
Z))−1Z̄

′
Dsũ1φ

′
Js−jΨ

′
jC

∗HῩ
′
ũ1}

+E{S
′
Dtũ1φ

′
Jt−iΨ

′
iI

′
2(E(Z

′
Z))−1Z̄

′
DsSJs−jΨ

′
jC

∗HῩ
′
ũ1}

= φσ4tr{(Dt +Dt′
)Ds′

Z̄(E(Z
′
Z))−1I2ΨiJ

′
t−iφφ

′
Js−jΨ

′
jC

∗HῩ
′
}

+σ2φtr{DtDs′
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−iΩJs−jΨ

′
jC

∗HῩ
′
}
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−σ4φtr{DtDs′
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−iφφ

′
Js−jΨ

′
jC

∗HῩ
′
}

+0

+σ2Ω(DtῩHC∗′
ΨjJ

′
s−j)

′
Ds′

Z̄(E(Z
′
Z))−1I2ΨiJ

′
t−iφ

−σ4φφ
′
(DtῩHC∗′

ΨjJ
′
s−j)

′
Ds′

Z̄(E(Z
′
Z))−1I2ΨiJ

′
t−iφ

= (tr{DtDs′
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−iΩJs−jΨ

′
jcHῩ

′
}.I)(σ2φ)

+ΩJs−jΨ
′
jC

∗HῩ
′
Dt′

Ds′
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−i(σ2φ).

Using Lemma 3.

The final expression of the first part of equation (A.15) can be written as:

−E{HΛ∗∗′
Ṽ

′
W̃ ∗(E(Z

′
Z))−1Z̄

′
R̃C∗HῩ

′
ũ1} (A.16)

= −
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

H(tr{DtDs′
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−iΩJs−jΨ

′
jC

∗HῩ
′
}.I)Λ∗∗′

(σ2φ)

−
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

HΛ∗∗′
ΩJs−jΨ

′
jC

∗HῩ
′
Dt′

Ds′
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−i(σ2φ).

(7b)

−E
{
Ṽ

′
Z̄(E(Z

′
Z))−1I2ΨlJ

′
r−lṼ

′Dr′
DsṼ Js−jΨ

′
jC

∗HῩ
′
ũ1
}

= −E
{
φu

′
1Z̄(E(Z

′
Z))−1I2ΨlJ

′
r−lφu

′
1Dr′

Dsu1φ′Js−jΨ
′
jC

∗HῩ
′
ũ1
}

= −E
{
φu

′
1Z̄(E(Z

′
Z))−1I2ΨlJ

′
r−lS

′Dr′
DsSJs−jΨ

′
jC

∗HῩ
′
ũ1
}

= −E
{
S′Z̄(E(Z

′
Z))−1I2ΨlJ

′
r−lφu

′
1Dr′

DsSJs−jΨ
′
jC

∗HῩ
′
ũ1
}

= −E
{
S′Z̄(E(Z

′
Z))−1I2ΨlJ

′
r−lS

′Dr′
Dsu1φ′Js−jΨ

′
jC

∗HῩ
′
ũ1
}

= −φσ2tr
{
Z̄(E(Z

′
Z))−1I2ΨlJ

′
r−lΩJs−jΨ

′
jC

∗HῩ
′}

tr
{
Dr′

Ds
}

−ΩJs−jΨ
′
jC

∗HῩ
′
Dr′

DsZ̄(E(Z
′
Z))−1I2ΨlJ

′
r−lφσ2

−ΩJr−lΨ′
lI

′
2(E(Z

′
Z))−1Z̄ ′Dr′

DsῩHC∗′
ΨjJ

′
s−jφσ2.
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The final expression of the second part of equation (A.15) can be written as:

−E{HΛ∗∗′
Ṽ

′
Z̄(E(Z

′
Z))−1I2R̃

′
R̃C∗HῩ

′
ũ1} (A.17)

= −H
p∑

l=1

p∑
j=1

T −1∑
r=l,j

(T − r)
(
tr
{
Z̄(E(Z

′
Z))−1I2ΨlJ

′
r−lΩJs−jΨ

′
jC

∗HῩ
′}

.I
)

ϑ

−HΛ∗∗
p∑

l=1

T −1∑
r=l

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jC

∗HῩ
′
Dr′

DsZ̄(E(Z
′
Z))−1I2ΨlJ

′
r−lφσ2

−HΛ∗∗
p∑

l=1

T −1∑
r=l

p∑
j=1

T −1∑
s=j

ΩJr−lΨ′
lI

′
2(E(Z

′
Z))−1Z̄ ′Dr′

DsῩHC∗′
ΨjJ

′
s−jφσ2.

(8)

−E{HC∗′
R̃

′
Z̄(E(Z

′
Z))−1W̃ ∗′

Ṽ Λ∗∗HῩ
′
ũ1}−E{HC∗′

R̃
′
R̃I ′

2(E(Z
′
Z))−1Z̄Ṽ Λ∗∗HῩ

′
ũ1}.

(A.18)

Equation (A.18) can be written as the sum of two parts (8a ) and (8b):

(8a) (A.19)

−E{HC∗′
R̃

′
Z̄(E(Z

′
Z))−1W̃ ∗′

Ṽ Λ∗∗HῩ
′
ũ1}

= −E

H
p∑

i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−iṼ

′
Dt′

Z̄(E(Z
′
Z))−1


∑p

i=1
∑T −1

s=j ΨjJ
′
s−jṼ

′
Ds′

0′



× Ṽ Λ∗∗HῩ
′
ũ1

 .

Here,

E

Ṽ
′
Dt′

Z̄(E(Z
′
Z))−1

ΨjJ
′
s−j

0

 Ṽ
′
Ds′

Ṽ Λ∗∗HῩ
′
ũ1


= E

{
φũ

′
1Dt′

Z̄(E(Z
′
Z))−1I2ΨjJ

′
s−jφũ

′
1Ds′

ũ1φ
′
Λ∗∗HῩ

′
ũ1
}
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+E
{
φũ

′
1Dt′

Z̄(E(Z
′
Z))−1I2ΨjJ

′
s−jS

′
Ds′

SΛ∗∗HῩ
′
ũ1
}

+E
{
S′Dt′

Z̄(E(Z
′
Z))−1I2ΨjJ

′
s−jS

′
Ds′

ũ1φ
′
Λ∗∗HῩ

′
ũ1
}

+E
{
S

′
Dt′

Z̄(E(Z
′
Z))−1I2ΨjJ

′
s−jφũ

′
1Ds′

SΛ∗∗HῩ
′
ũ1
}

= σ4φφ
′
Js−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
DtDs′

ῩHΛ∗∗′
φ

+σ4φφ
′
Λ∗∗HῩDs′

Dt′
Z̄(E(Z

′
Z))−1I2ΨjJ

′
s−jφ

+0

+σ2ΩJs−jΨ
′
jI

′
2(E(Z

′
Z))−1Z̄

′
DtDs′

ῩHΛ∗∗′
φ

−σ4φφ
′
Js−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
DtDs′

ῩHΛ∗∗′
φ

+σ2ΩΛ∗∗HῩDs′
Dt′

Z̄(E(Z
′
Z))−1I2ΨjJ

′
s−jφ

−σ4φφ
′
Λ∗∗HῩDs′

Dt′
Z̄(E(Z

′
Z))−1I2ΨjJ

′
s−jφ

= ΩJs−jΨ
′
jI

′
2(E(Z

′
Z))−1Z̄

′
DtDs′

ῩHΛ∗∗′
(σ2φ)

+ΩΛ∗∗HῩ
′
Ds′

Dt′
Z̄(E(Z

′
Z))−1I2ΨjJ

′
s−j(σ2φ).

Using Lemma 3 and 4.

The final result for equation (A.19) is:

−E{HC∗′
R̃

′
Z̄(E(Z

′
Z))−1W̃ ∗′

Ṽ Λ∗∗HῩ
′
ũ1} (A.20)

= −H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩJs−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
DtDs′

ῩHΛ∗∗′
(σ2φ)

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩΛ∗∗HῩDr′

Dt′
Z̄(E(Z

′
Z))−1I2ΨjJ

′
s−j(σ2φ).

(8b)

−E{HC∗′
R̃

′
R̃I

′
2(E(Z

′
Z))−1Z̄

′
Ṽ Λ∗∗HῩ

′
ũ1} (A.21)

= −E

H
p∑

i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−iṼ

′
Dt′

p∑
j=1

T −1∑
s=j

DsṼ Js−jΨ
′
jI

′
2(E(Z

′
Z))−1Z̄

′
Ṽ Λ∗∗HῩ

′
ũ1

 .
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Here,

E
{
Ṽ

′
Dt′

DsṼ Js−jΨ
′
jI

′
2(E(Z

′
Z))−1Z̄

′
Ṽ Λ∗∗HῩ

′
ũ1
}

= E{φũ
′
1Dt′

Dsũ1φ
′
Js−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
ũ1φ

′
Λ∗∗HῩ

′
ũ1}

+E{φũ
′
1Dt′

DsSJs−jΨ
′
jI

′
2(E(Z

′
Z))−1Z̄

′
SΛ∗∗HῩ

′
ũ1}

+E{S
′
Dt′

DsSJs−jΨ
′
jI

′
2(E(Z

′
Z))−1Z̄

′
ũ1φ

′
Λ∗∗HῩ

′
ũ1}

+E{S
′
Dt′

Dsũ1φ
′
Js−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
SΛ∗∗HῩ

′
ũ1}

= σ4φtr{1
2(Dt′

Ds +Ds′
Dt)}tr{ῩHΛ∗∗′

φφ
′
Js−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
}

+2σ4φtr{1
2(Dt′

Ds +Ds′
Dt)}ῩHΛ∗∗′

φφ
′
Js−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′

+σ2φtr{Dt′
DsZ̄(E(Z

′
Z))−1I2ΨjJ

′
s−jΩΛ∗∗HῩ

′
}

−σ4φtr{Dt′
DsZ̄(E(Z

′
Z))−1I2ΨjJ

′
s−jφφ

′
Λ∗∗HῩ

′
}

+σ2tr{Dt′
Dr}ΩJs−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
ῩHΛ∗∗′

φ

−σ4tr{Dt′
Dr}φφ

′
Js−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
ῩHΛ∗∗′

φ

+σ2ΩΛ∗∗HῩ
′
Ds′

DtZ̄(E(Z
′
Z))−1I2ΨjJ

′
s−jφ

−σ4φφ
′
Λ∗∗HῩ

′
Ds′

DtZ̄(E(Z
′
Z))−1I2ΨjJ

′
s−jφ

= (tr{Dt′
DsZ̄(E(Z

′
Z))−1I2ΨjJ

′
s−jΩΛ∗∗HῩ

′
}.I)(σ2φ)

+ΩJs−jΨ
′
jI

′
2(E(Z

′
Z))−1Z̄

′
ῩH(tr{Dt′

Dr}.I)Λ∗∗′
(σ2φ)

+ΩΛ∗∗HῩ
′
Ds′

DtZ̄(E(Z
′
Z))−1I2ΨjJ

′
s−j(σ2φ).

Using Lemma 4.

The final result for equation (A.21) is

−E{HC∗′
R̃

′
R̃I

′
2(E(Z

′
Z))−1Z̄

′
Ṽ Λ∗∗HῩ

′
ũ1} (A.22)

= −H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−i(tr{Dt′

DsZ̄(E(Z
′
Z))−1I2ejJ

′
s−jΩΛ∗∗HῩ

′
}.I)(σ2φ)
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−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩJs−jΨ

′
jI

′
2(E(Z

′
Z))−1Z̄

′
ῩH(tr{Dt′

Dr}.I)Λ∗∗′
(σ2φ)

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

C∗′
ΨiJ

′
t−iΩΛ∗∗HῩ

′
Ds′

DtZ̄(E(Z
′
Z))−1I2ΨjJ

′
s−j(σ2φ).

Therefore, by combining equations (A.6), (A.9), (A.10), (A.12), (A.13), (A.14), (A.16),

(A.17),(A.20), (A.22), we can get the final expression for (iv).

(v) −E{HJ∗
1 H∆

′
2ũ1} =−E{HῩ

′
Z̄[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HC∗′
R̃

′
ũ1}

−E{HῩ
′
R̃I ′

2[E(Z ′Z)]−1Z̄ ′Ṽ Λ∗∗HC∗′
R̃

′
ũ1}

−E{HΛ∗∗′
Ṽ

′
W̃ ∗[E(Z ′Z)]−1Z̄

′
ῩHC∗′

R̃
′
ũ1}

−E{HΛ∗∗′
Ṽ

′
Z̄[E(Z ′Z)]−1I2R̃′ῩHC∗′

R̃
′
ũ1}

−E{HC∗′
R̃

′
R̃I

′
2[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HC∗′
R̃

′
ũ1}

−E{HC∗′
R̃

′
Z̄[E(Z ′Z)]−1Z̄

′
Ṽ Λ∗∗HC∗′

R̃
′
ũ1}

−E{HΛ∗∗′
Ṽ

′
W̃ ∗(E(Z

′
Z))−1I2R̃

′
R̃C∗HC∗′

R̃
′
ũ1}

−E{HΛ∗∗′
Ṽ

′
Z̄(E(Z

′
Z))−1Z̄

′
R̃C∗HC∗′

R̃
′
ũ1}

−E{HC∗′
R̃′R̃C∗HC∗′

R̃
′
ũ1},

where the definition of ∆1 and ∆2 is from equation 2.10.

Then v can be obtained from the sum of (1′)− (9′) below:

(1′)

−E{HῩ
′
Z̄[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HC∗′
R̃

′
ũ1} (A.23)

= −E

HῩ
′
Z̄[E(Z ′Z)]−1


∑p

i=1
∑T −1

t=i ΨiJ
′
t−i

0

 Ṽ
′
Dt′

Ṽ Λ∗∗
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×H
p∑

j=1

T −1∑
s=j

C∗′
ΨjJ

′
s−jṼ

′
Ds′

ũ1

 .

Then, equation (A.23) can be calculated from:

E
{
Ṽ

′
Dt′

Ṽ Λ∗∗HC∗′
ΨjJ

′
s−jṼ

′
Ds′

ũ1
}

= E{φũ
′
1Dt′

ũ1φ
′
Λ∗∗HC∗′

ΨjJ
′
s−jφũ

′
1Ds′

ũ1}

+E{φũ
′
1Dt′

SΛ∗∗HC∗′
ΨjJ

′
s−jS

′
Ds′

ũ1}

+E{S
′
Dt′

SΛ∗∗HC∗′
ΨjJ

′
s−jφũ

′
1Ds′

ũ1}

+E{S
′
Dt′

ũ1φ
′
Λ∗∗HC∗′

ΨjJ
′
s−jS

′
Ds′

ũ1}

= σ4φφ
′
Λ∗∗HC∗′

ΨjJ
′
s−jφtr{(Dt +Dt′

)Ds′
}

+0

+0

+σ2tr{Dt′
Ds}ΩJs−jΨ

′
jC

∗HΛ∗∗′
φ

−σ4tr{Dt′
Ds}φφ

′
Js−jΨ

′
jC

∗HΛ∗∗′
φ

= (tr{Dt′
Ds}.I)ΩJs−jΨ

′
jC

∗HΛ∗∗′
(φσ2).

Then, the final result for equation (A.23) is:

−E{HῩ
′
Z̄[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HC∗′
R̃

′
ũ1} (A.24)

= −HῩ
′
Z̄I2[E(Z ′Z)]−1

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΨiJ
′
t−i(tr{Dt′

Ds}.I)ΩJs−jΨ
′
jC

∗HΛ∗∗′
(φσ2).

(2′)

−E{HῩ
′
R̃I ′

2[E(Z ′Z)]−1Z̄ ′Ṽ Λ∗∗HC∗′
R̃

′
ũ1} (A.25)
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= −E{HῩ
′

p∑
i=1

T −1∑
t=i

DtṼ Jt−iΨ′
iI

′
2[E(Z ′Z)]−1Z̄ ′Ṽ Λ∗∗HC∗′

p∑
j=1

T −1∑
s=j

ΨjJs−jṼ
′Dt′

ũ1}.

Then, equation (A.25) can be calculated from:

−E{Ṽ Jt−iΨ′
iI

′
2[E(Z ′Z)]−1Z̄ ′Ṽ Λ∗∗HC∗′

ΨjJs−jṼ
′Ds′

ũ1}

= −E{u1φ′Jt−iΨ′
iI

′
2[E(Z ′Z)]−1Z̄ ′u1φ′Λ∗∗HC∗′

ΨjJs−jφu′
1Ds′

ũ1}

−E{SJt−iΨ′
iI

′
2[E(Z ′Z)]−1Z̄ ′SΛ∗∗HC∗′

ΨjJs−jφu′
1Ds′

ũ1}

−E{Sφ′Jt−iΨ′
iI

′
2[E(Z ′Z)]−1Z̄ ′u1φ′Λ∗∗HC∗′

ΨjJs−jS
′Ds′

ũ1}

−E{u1φ′Jt−iΨ′
iI

′
2[E(Z ′Z)]−1Z̄ ′SΛ∗∗HC∗′

ΨjJs−jS
′Ds′

ũ1}

= −Dstr
{
ΩJt−iΨ′

iC
∗HΛ∗∗′}

IZ̄[E(Z ′Z)]−1I2ΨjJ
′
s−jφσ2

−Ds′
Z̄[E(Z ′Z)]−1I2ΨjJ

′
s−jΩJt−iΨ′

iC
∗HΛ∗∗′

φσ2.

Then, the final expression of equation (A.25) is:

−E{HῩ
′
R̃I ′

2[E(Z ′Z)]−1Z̄ ′Ṽ Λ∗∗HC∗′
R̃

′
ũ1} (A.26)

= −HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDstr
{
ΩJt−iΨ′

iC
∗HΛ∗∗′}

IZ̄[E(Z ′Z)]−1I2ΨjJ
′
s−jφσ2

−HῩ
′

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

DtDs′
Z̄[E(Z ′Z)]−1I2ΨjJ

′
s−jΩJt−iΨ′

iC
∗HΛ∗∗′

φσ2.

(3′)

−E{HΛ∗∗′
Ṽ

′
W̃ ∗[E(Z ′Z)]−1Z̄

′
ῩHC∗′

R̃
′
ũ1} (A.27)

= −E{HΛ∗∗′
Ṽ

′
 p∑

i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
i : 0

 [E(Z ′Z)]−1Z̄
′
ῩH

p∑
j=1

T −1∑
s=j

C∗′
ΨjJ

′
s−jṼ

′
Ds′

ũ1}.
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Here,

E{Ṽ
′
DtṼ Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−jṼ

′
Ds′

ũ1}

= E{φũ
′
1Dtũ1φ

′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−jφũ

′
1Ds′

ũ1}

+E{φũ
′
1DtSJt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−jS

′
Ds′

ũ1}

+E{S
′
DtSJt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−jφũ

′
1Ds′

ũ1}

+E{S
′
Dtũ1φ

′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−jS

′
Ds′

ũ1}

= σ4φφ
′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−jφtr{1

2(Dt +Dt′
)Dr′

}+

+0

+0

+σ2φtr{DtDs′
}tr{ΩJt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−j}

−σ4φtr{DtDs′
}tr{φφ

′
Jt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−j}

= tr{DtDs′
}tr{ΩJt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−j}(σ2φ).

Then, the final result for equation (A.27) is:

−E{HΛ∗∗′
Ṽ

′
W̃ ∗[E(Z ′Z)]−1Z̄

′
ῩHC∗′

R̃
′
ũ1} (A.28)

= −H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

tr{DtDr′
}(tr{ΩJt−iΨ

′
iI

′
2[E(Z ′Z)]−1Z̄

′
ῩHC∗′

ΨjJ
′
s−j}.I)

×Λ∗∗′
(σ2φ).

(4′)

−E{HΛ∗∗′
Ṽ

′
Z̄[E(Z ′Z)]−1I2R̃′ῩHC∗′

R̃
′
ũ1} (A.29)

= −E{HΛ∗∗′
Ṽ

′
Z̄[E(Z ′Z)]−1I2

p∑
i=1

T −1∑
t=i

ΨiJ
′
t−iṼ

′Dt′
ῩHC∗′

p∑
j=1

T −1∑
s=j

ΨjJ
′
s−jṼ

′Ds′
ũ1}.
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Then, equation (A.29) can be calculated from:

−E{Ṽ
′
Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iṼ

′Dt′
ῩHC∗′

ΨjJ
′
s−jṼ

′Ds′
ũ1}

= −E{φũ
′
1Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iφũ

′
1Dt′

ῩHC∗′
ΨjJ

′
s−jφũ

′
1Ds′

ũ1}

−E{S
′
Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iS

′Dt′
ῩHC∗′

ΨjJ
′
s−jφũ

′
1Ds′

ũ1}

−E{S
′
Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iφũ

′
1Dt′

ῩHC∗′
ΨjJ

′
s−jS

′Ds′
ũ1}

−E{φũ
′
1Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iS

′Dt′
ῩHC∗′

ΨjJ
′
s−jS

′Ds′
ũ1}

= −σ4φφ′Js−jΨ′
jC

∗HῩ′DtDsZ̄[E(Z ′Z)]−1I2ΨiJ
′
t−iφ

−φσ2 tr
{
Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iσ

2φφ′Js−jΨ′
jC

∗HῩ′DtDs′}
−0

− (Ω−σ2φφ′)Js−jΨ′
jC

∗HῩ′DtDsZ̄[E(Z ′Z)]−1I2ΨiJ
′
t−iφσ2

− tr
{
Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−i(Ω−σ2φφ′)Js−jΨ′

jC
∗HῩ′DtDs′}

φσ2

= −tr
{
Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iΩJs−jΨ′

jC
∗HῩ′DtDs′}

φσ2

−ΩJs−jΨ′
jC

∗HῩ′DtDsZ̄[E(Z ′Z)]−1I2ΨiJ
′
t−iφσ2.

Using Lemma 3 and 4.

The final expression for equation (A.29) is:

−E{HΛ∗∗′
Ṽ

′
Z̄[E(Z ′Z)]−1I2R̃′ῩHC∗′

R̃
′
ũ1} (A.30)

= −
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

HΛ∗∗′
tr
{
Z̄[E(Z ′Z)]−1I2ΨiJ

′
t−iΩJs−jΨ′

jC
∗HῩ′DtDs′}

φσ2

−
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

HΛ∗∗′
ΩJs−jΨ′

jC
∗HῩ′DtDsZ̄[E(Z ′Z)]−1I2ΨiJ

′
t−iφσ2.

(5′)

−E{HC∗′
R̃

′
R̃I

′
2[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HC∗′
R̃

′
ũ1} (A.31)
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= −E

HE(R̃′R̃)I
′
2[E(Z ′Z)]−1 1

×


∑p

l=1
∑T −1

r=l ΨlJ
′
r−lṼ

′
Dr′

0

 Ṽ Λ∗∗H
p∑

b=1

T −1∑
h=b

C∗′
ΨbJ

′
h−bṼ

′
Dt′

ũ1


Note:

1. R̃′R̃ = E(R̃′R̃)+(R̃′R̃ −E(R̃′R̃)) ≡ E(R̃′R̃)+Op(T 1/2) , where

E(R̃′R̃) =
p∑

i=1

T −1∑
t=i

ΨiJ
′
t−iṼ

′
Dt′

p∑
j=1

T −1∑
s=j

DsṼ Js−jΨj =
p∑

i=1

T −1∑
t=i

(T − t)ΨiJ
′
t−iΩJt−iΨ

′
i)

. In the following calculation I can replace R̃′R̃ with E(R̃′R̃) to the order of the

approximation.

Hence, equation A.31 can be expressed as:

−E{HC∗′
R̃

′
R̃I

′
2[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HC∗′
R̃

′
ũ1} (A.32)

= −E


H

p∑
i=1

T −1∑
t=i

(T − t)C∗′
ΨiJ

′
t−iΩJt−iΨ

′
i

I
′
2[E(Z ′Z)]−1


∑p

l=1
∑T −1

r=l ΨlJ
′
r−lṼ

′
Dr′

0



× Ṽ Λ∗∗H
p∑

b=1

T −1∑
h=b

C∗′
ΨbJ

′
h−bṼ

′
Dh′

ũ1

+o(T −1).

Here,

E{Ṽ
′
Dr′

Ṽ Λ∗∗HC∗′
ΨbJ

′
h−bṼ

′
Dh′

ũ1}

= E{φũ
′
1Dr′

ũ1φ
′
Λ∗∗HC∗′

ΨbJ
′
h−bφũ

′
1Dh′

ũ1}

+E{φũ
′
1Dr′

S∗Λ∗∗HC∗′
ΨbJ

′
h−bS

∗′
Dh′

ũ1}

+E{S∗′
Dr′

S∗Λ∗∗HC∗′
ΨbJ

′
h−bφũ

′
1Dh′

ũ1}
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+E{S∗′
Dr′

ũ1φ
′
Λ∗∗HC∗′

ΨbJ
′
h−bS

∗′
Dh′

ũ1}

= σ4φφ
′
Λ∗∗HC∗′

ΨbJ
′
h−bφtr{(Dt +Dt′

)Dr′
}

+0

+σ2tr{Dt′
Dr}ΩJh−bΨ

′
bC

∗HΛ∗∗′
φ−σ4tr{Dt′

Dr}φφ
′
Jh−bΨ

′
bC

∗HΛ∗∗′
φ

+0

= ΩJh−bΨ
′
bC

∗H(tr{Dt′
Dr}.I)Λ∗∗′

(σ2φ).

Therefore, the final result for equation (A.32) is :

−E{HC∗′
R̃

′
R̃I

′
2[E(Z ′Z)]−1W̃ ∗′

Ṽ Λ∗∗HC∗′
R̃

′
ũ1} (A.33)

= −H
p∑

i=1

T −1∑
t=i

(T − t)C∗′
ΨiJ

′
t−iΩJt−iΨi)I

′
2[E(Z ′Z)]−1

p∑
l=1

T −1∑
r=l

p∑
b=1

T −1∑
h=b

I2ΨlJ
′
r−lΩJh−bΨ

′
bC

∗H(tr{Dt′
Dr}.I)Λ∗∗′

(σ2φ)+o(T −1).

(6′)

−E{HC∗′
R̃

′
Z̄[E(Z ′Z)]−1Z̄

′
Ṽ Λ∗∗HC∗′

R̃
′
ũ1} (A.34)

= −E{H
p∑

i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−iṼ

′
Dt′

Z̄[E(Z ′Z)]−1Z̄
′
Ṽ Λ∗∗H

p∑
j=1

T −1∑
s=j

C∗′
ΨjJ

′
s−jṼ

′
Ds′

ũ1}.

Here,

E{Ṽ
′
Dt′

Z̄[E(Z ′Z)]−1Z̄
′
Ṽ Λ∗∗HC∗′

ΨjJ
′
s−jṼ

′
Ds′

ũ1}

= E{φũ
′
1Dt′

Z̄[E(Z ′Z)]−1Z̄
′
ũ1φ

′
Λ∗∗HC∗′

ΨjJ
′
s−jφũ

′
1Ds′

ũ1}

+E{φũ
′
1Dt′

Z̄[E(Z ′Z)]−1Z̄
′
SΛ∗∗HC∗′

ΨjJ
′
s−jS

′
Ds′

ũ1}

+E{S
′
Dt′

Z̄[E(Z ′Z)]−1Z̄
′
SΛ∗∗HC∗′

ΨjJ
′
s−jφũ

′
1Ds′

ũ1}

+E{S
′
Dt′

Z̄[E(Z ′Z)]−1Z̄
′
ũ1φ

′
Λ∗∗HC∗′

ΨjJ
′
s−jS

′
Ds′

ũ1}
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= σ4φφ
′
Λ∗∗HC∗′

ΨjJ
′
s−jφtr{(Ds +Ds′

)Dt′
}Z̄[E(Z ′Z)]−1Z̄

′

+σ2φtr{ΩΛ∗∗HC∗′
ΨjJ

′
s−j}tr{Dt′

Z̄[E(Z ′Z)]−1Z̄
′
Ds′

}

−σ4φtr{φφ
′
Λ∗∗HC∗′

ΨjJ
′
s−j}tr{Dt′

Z̄[E(Z ′Z)]−1Z̄
′
Ds′

}

+σ2tr{Dt′
Z̄[E(Z ′Z)]−1Z̄

′
Ds′

}ΩJs−jΨ
′
jC

∗HΛ∗∗′
φ

−σ4tr{Dt′
Z̄[E(Z ′Z)]−1Z̄

′
Ds′

}φφ
′
Js−jΨ

′
jC

∗HΛ∗∗′
φ

= tr{ΩΛ∗∗HC∗′
ΨjJ

′
s−j}(tr{Dt′

Z̄[E(Z ′Z)]−1Z̄
′
Ds′

.I)(σ2φ)

+(tr{Dt′
Z̄[E(Z ′Z)]−1Z̄

′
Ds′

}.I)ΩJs−jΨ
′
jC

∗HΛ∗∗′
(σ2φ).

Then, the final result for equation (A.34) is:

−E{HC∗′
R̃

′
Z̄[E(Z ′Z)]−1Z̄

′
Ṽ Λ∗∗HC∗′

R̃
′
ũ1} (A.35)

= −H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΨiJ
′
t−i(tr{ΩΛ∗∗HC∗′

ΨjJ
′
s−j}.I)

× (tr{Dt′
Z̄[E(Z ′Z)]−1Z̄

′
Ds′

.I)(σ2φ)

−H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{Dt′
Z̄H∗Z̄

′
Ds′

}.I)C∗′
ΨiJ

′
t−iΩHC∗′

ΨjJ
′
s−jHΛ∗∗′

σ2φ.

(7′)

−E{HΛ∗∗′
Ṽ

′
W̃ ∗(E(Z

′
Z))−1I

′
2R̃

′
R̃C∗HC∗′

R̃
′
ũ1} (A.36)

= −E

HΛ∗∗′
Ṽ

′
 p∑

i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
i : 0

(E(Z
′
Z))−1I

′
2

p∑
j=1

T −1∑
s=j

ΨjJs−jṼ
′
Ds′

×
p∑

l=1

T −1∑
r=l

DrṼ Jr−lΨ
′
lC

∗H
p∑

b=1

T −1∑
h=b

C∗′
DhṼ Jh−bΨ

′
bũ1


= −E

HΛ∗∗′
Ṽ

′
 p∑

i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
i : 0

(E(Z
′
Z))−1I

′
2

×
p∑

j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗H
p∑

b=1

T −1∑
h=b

C∗′
ΨbJ

′
h−bṼ

′
Dh′

ũ1

 .



A.1 The Evaluation for Theorem 1 105

Here,

E

Ṽ
′
DtṼ Jt−iΨ

′
iI

′
2(E(Z

′
Z))−1I

′
2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−bṼ

′
Dh′

ũ1


= E

φũ
′
1Dtũ1φ

′
Jt−iΨ

′
iI

′
2(E(Z

′
Z))−1I

′
2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−bφũ

′
1Dh′

ũ1


+E

φũ
′
1DtSJt−ie

′
iI

′
2(E(Z

′
Z))−1I

′
2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−bS

′
Dh′

ũ1


+E

S
′
DtSJt−iΨ

′
iI

′
2(E(Z

′
Z))−1I

′
2

 p∑
j=1

T −1∑
s=j

(T − s)ejJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−bφũ

′
1Dh′

ũ1


+E

S
′
Dtũ1φ

′
Jt−iΨ

′
iI

′
2(E(Z

′
Z))−1I

′
2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−bS

′
Dh′

ũ1


= σ4φφ

′
Jt−iΨ

′
iI

′
2(E(Z

′
Z))−1I ′

2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−bφtr

{
(Dt +Dt′

)Dh′}
+σ2φtr

ΩJt−iΨ
′
iI

′
2(E(Z

′
Z))−1I ′

2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−b

 tr
{
DtDh′}

−σ4φtr

φφ
′
Jt−iΨ

′
iI

′
2(E(Z

′
Z))−1I ′

2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


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×HC∗′
ΨbJ

′
h−b

 tr
{
DtDh′}

+0

+0

= tr

ΩJt−iΨ
′
iI

′
2(E(Z

′
Z))−1I ′

2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−b

 tr
{
DtDh′}

(σ2φ).

Therefore, the final result for equation (A.36) is:

−E
{
HΛ∗∗′

Ṽ
′
W̃ ∗(E(Z

′
Z))−1I

′
2R̃

′
R̃C∗HC∗′

R̃
′
ũ1
}

(A.37)

= −H
p∑

i=1

T −1∑
t=i

p∑
b=1

T −1∑
h=b

tr{ΩJt−iΨ
′
iI

′
2(E(Z

′
Z))−1I ′

2

 p∑
j=1

T −1∑
s=j

(T − s)ΨjJs−jΩJs−jΨ
′
jC

∗


×HC∗′

ΨbJ
′
h−b}.I

(tr{DtDh′
.I}
)

Λ∗∗′
(σ2φ).

(8′)

−E
{
HΛ∗∗′

Ṽ
′
Z̄(E(Z

′
Z))−1Z̄

′
R̃C∗HC∗′

R̃
′
ũ1
}

(A.38)

= −E{HΛ∗∗′
Ṽ

′
Z̄(E(Z

′
Z))−1Z̄

′
p∑

i=1

T −1∑
t=i

DtṼ Jt−iΨ
′
iC

∗H
p∑

j=1

T −1∑
s=j

C∗′
ΨjJ

′
s−jṼ

′
Ds′

ũ1}.

Here,

E{Ṽ
′
Z̄(E(Z

′
Z))−1Z̄

′
DtṼ Jt−iv

′
iC

∗HC∗′
ΨjJ

′
s−jṼ

′
Ds′

ũ1}

= E{φũ
′
1Z̄(E(Z

′
Z))−1Z̄

′
Dtũ1φ

′
Jt−iΨ

′
iC

∗HC∗′
vjJ

′
s−jφũ

′
1Ds′

ũ1}

+E{φũ
′
1Z̄(E(Z

′
Z))−1Z̄

′
DtSJt−iv

′
iC

∗HC∗′
ΨjJ

′
s−jS

′
Ds′

ũ1}

+E{S
′
Z̄(E(Z

′
Z))−1Z̄

′
DtSJt−iΨ

′
iC

∗HC∗′
ΨjJ

′
s−jφũ

′
1Ds′

ũ1}
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+E{S
′
Z̄(E(Z

′
Z))−1Z̄

′
Dtũ1φ

′
Jt−iΨ

′
iC

∗HC∗′
ΨjJ

′
s−jS

′
Ds′

ũ1}

= σ4φφ
′
Jt−iΨ

′
icHc

′
ΨjJ

′
s−jφtr{(Ds +Ds′

)Z̄(E(Z
′
Z))−1Z̄

′
Dt}

+σ2φtr{ΩJt−iΨ
′
iC

∗HC∗′
ΨjJ

′
s−j}tr{Z̄(E(Z

′
Z))−1Z̄

′
DtDs′

}

−σ4φtr{φφ
′
Jt−iΨ

′
iC

∗HC∗′
ΨjJ

′
s}tr{Z̄(E(Z

′
Z))−1Z̄

′
DtDs′

}

+σ2tr{Z̄(E(Z
′
Z))−1Z̄

′
DtDs}ΩJs−jΨ

′
jC

∗HC∗′
ΨiJ

′
t−iφ

−σ4tr{Z̄(E(Z
′
Z))−1Z̄

′
DtDs}φφ

′
Js−jΨ

′
jC

∗HC∗′
ΨiJ

′
t−iφ

+0

= (tr{ΩJt−iΨ
′
iC

∗HC∗′
ΨjJ

′
s−j}.I)(tr{Z̄(E(Z

′
Z))−1Z̄

′
DtDs′

}.I)(σ2φ)

+ΩJs−jΨ
′
jC

∗HC∗′
ΨiJ

′
t−i(tr{Z̄(E(Z

′
Z))−1Z̄

′
DtDs}.I)(σ2φ).

Therefore, the final result of equation (A.38) is:

−E{HΛ∗∗′
Ṽ

′
Z̄(E(Z

′
Z))−1Z̄

′
R̃C∗HC∗′

R̃
′
ũ1} (A.39)

= −H
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

(tr{ΩJt−iΨ
′
iC

∗HC∗′
ΨjJ

′
s−j}.I)

× (tr{Z̄(E(Z
′
Z))−1Z̄

′
DtDs′

}.I)Λ∗∗′
(σ2φ)

−HΛ∗∗′
p∑

i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

ΩJs−jΨ
′
jC

∗HC∗′
ΨiJ

′
t−i(tr{Z̄(E(Z

′
Z))−1Z̄

′
DtDs}.I)(σ2φ).

(9′)

−E{HC∗′
R̃′R̃C∗HC∗′

R̃
′
ũ1} (A.40)

= −E

H
p∑

i=1

T −1∑
t=i

C∗′
ΨiJ

′
t−iṼ

′
Dt′

p∑
j=1

T −1∑
s=j

DsṼ Js−jΨ
′
jC

∗H
p∑

l=1

T −1∑
r=l

C∗′
ΨlJ

′
r−lṼ

′
Dr′

ũ1


= −E

H

 p∑
i=1

T −1∑
t=i

(T − t)C∗′
ΨiJ

′
t−iΩJt−iΨ

′
iC

∗

H
p∑

l=1

T −1∑
r=l

C∗′
ΨlJ

′
r−lṼ

′
Dr′

ũ1


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= −E

H

 p∑
i=1

T −1∑
t=i

(T − t)C∗′
ΨiJ

′
t−iΩJt−iΨ

′
iC

∗

H
p∑

l=1

T −1∑
r=l

C∗′
ΨlJ

′
r−lφũ

′
1Dr′

ũ1


= 0.

Therefore, by combining equation (A.24),(A.26), (A.28), (A.30), (A.33), (A.35), (A.37),

(A.39), (A.40), we can get the final expression for (v).

Rearranging for the final expression

Recall H∗ = [E(Z ′
Z)]−1, set H∗∗ = I

′
2H∗I2 and assume τ = σ2φ and ϑ = Λ∗∗′

τ . We will

add all the expectations from ((i)−(v) which refer to equation (A.4, (A.6),(A.9), (A.10),

(A.12), (A.13), (A.14), (A.16),(A.19) (A.20), (A.22), (A.24),(A.26), (A.28),(A.30),

(A.33), (A.35), (A.37), (A.39), (A.40)) we can get the final expression which is our

Theorem 1 equation (2.15).
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A.2 Numerical Results

Table A.1 Approximation bias and MC 2SLS bias, when L=2, 4, 6; T=50, 100

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

β21 = 2.00

MC 2SLS bias -0.3042 -0.6434 -0.6338 -0.1253 -0.1600 -0.2250

Approximation bias -0.3229 -0.7150 -0.8931 -0.1597 -0.1799 -0.3233

Simultaneity part -0.5322 -0.8123 -0.9305 -0.2831 -0.3641 -0.5643

Dynamic Part 0.2093 0.0973 0.0374 0.1234 0.1842 0.2410

β31 = 5.00

MC 2SLS bias -0.6466 -1.0910 -1.0130 -0.2604 -0.3115 -0.3958

Approximation bias -0.6439 -1.1902 -1.4003 -0.3015 -0.2159 -0.4608

Simultaneity part -0.9908 -1.4162 -2.7651 -0.6001 -0.4621 -0.7661

Dynamic Part 0.3469 0.2260 1.3648 0.2986 0.2462 0.3053

α1
11 = 0.50

MC 2SLS bias 0.0241 -0.0919 -0.0127 0.0082 0.0078 0.0120

Approximation bias 0.0365 -0.0784 -0.0241 0.0120 0.0106 0.0198

Simultaneity part 0.1815 -0.0926 -0.1079 0.0310 0.1028 0.0603

Dynamic Part -0.1450 0.0142 0.0838 -0.0190 -0.0922 -0.0405

α1
21 = 0.36

MC 2SLS bias 0.0291 -0.0110 0.0158 0.0134 0.0206 0.0243

Approximation bias 0.0513 -0.0216 0.0251 0.0252 0.0196 0.0351

Simultaneity part 0.0501 -0.0285 -0.0732 0.1096 0.0561 0.0571

Dynamic Part 0.0012 0.0069 0.0481 -0.0844 -0.0365 -0.0220

α1
31 = 0.40

MC 2SLS bias 0.0297 0.1265 -0.2573 0.0346 0.0343 -0.0264

Approximation bias 0.0337 0.1593 -0.2149 0.0283 0.0525 -0.0407

Simultaneity part 0.1247 0.3770 -0.5128 0.0403 0.1698 -0.0700

Dynamic Part -0.091 -0.2177 0.2979 -0.012 -0.1173 0.0293

α2
11 = 1.20

MC 2SLS bias -0.1651 -0.2898 -0.2569 -0.0636 -0.0688 -0.1028

Approximation bias -0.1324 -0.3514 -0.3281 -0.0804 -0.1095 -0.1502

Simultaneity part -0.1889 -0.7067 -1.4103 -0.1007 -0.2154 -0.2771

Dynamic Part 0.0565 0.3553 1.0822 0.0203 0.1095 0.1269

Continued on next page
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Table A.1 – continued from previous page

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

α2
21 = 0.60

MC 2SLS bias -0.0613 -0.0793 -0.0952 -0.0152 -0.0197 -0.0114

Approximation bias -0.0580 -0.0803 -0.0811 -0.0191 -0.0217 -0.0247

Simultaneity part -0.0590 -0.0972 -0.1033 -0.0679 -0.1000 -0.0189

Dynamic Part 0.0010 0.0169 0.0222 0.0488 0.0783 -0.0058

α2
31 = −0.38

MC 2SLS bias 0.2232 0.0391 0.1675 0.0800 0.0688 0.0994

Approximation bias 0.3746 0.0407 0.1803 0.1018 0.0825 0.1098

Simultaneity part 0.7055 0.0967 0.4849 0.1164 0.0755 0.3245

Dynamic Part -0.3309 -0.0056 -0.3046 -0.0146 0.007 -0.2147

α3
11 = 0.65

MC 2SLS bias -0.0639 -0.0962 -0.2440 -0.0231 -0.0297 -0.0596

Approximation bias -0.0702 -0.1208 -0.2921 -0.0259 -0.0540 -0.0732

Simultaneity part -0.1840 -0.5007 -0.3786 -0.1027 -0.0708 -0.1102

Dynamic Part 0.1138 0.3799 0.0865 0.0768 0.0168 0.0370

α3
21 = 1.20

MC 2SLS bias -0.1081 -0.2849 -0.2184 -0.053 -0.0465 -0.0876

Approximation bias -0.1399 -0.2087 -0.2034 -0.0507 -0.0603 -0.1280

Simultaneity part -0.1539 -0.5886 -0.2733 -0.1497 -0.1010 -0.3024

Dynamic Part 0.0140 0.3799 0.0699 0.0990 0.0407 0.1744

α3
31 = 0.38

MC 2SLS bias -0.0874 -0.1323 -0.1399 -0.0386 -0.0318 -0.0435

Approximation bias -0.1064 -0.2073 -0.1601 -0.0411 -0.0535 -0.0739

Simultaneity part -0.1559 -0.3960 -0.2609 -0.0533 -0.0720 -0.1032

Dynamic Part 0.0495 0.1887 0.1008 0.0122 -0.0185 0.0293

α4
11 = 0.50

MC 2SLS bias -0.0006 -0.1251 -0.0851 0.0017 0.0062 -0.0023

Approximation bias -0.0011 -0.0987 -0.1003 0.0020 0.0110 -0.0004

Simultaneity part -0.0096 -0.1703 -0.0673 -0.0170 -0.0413 -0.0107

Dynamic Part 0.0085 0.0716 -0.033 0.0150 0.0303 0.0103

Continued on next page
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Table A.1 – continued from previous page

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

α4
21 = 0.60

MC 2SLS bias -0.0261 -0.0246 -0.1820 -0.0055 -0.0187 -0.0450

Approximation bias -0.0258 -0.0208 -0.1921 -0.0068 -0.0335 -0.0410

Simultaneity part -0.1456 -0.0736 -0.8031 -0.0108 -0.1024 -0.1599

Dynamic Part 0.1198 0.0528 0.6110 0.0040 0.0689 0.1189

α4
31 = −0.20

MC 2SLS bias 0.0204 0.2545 -0.0040 0.0076 0.0181 0.0100

Approximation bias 0.0340 0.3612 -0.0091 0.0030 0.0211 0.0263

Simultaneity part 0.1723 0.4532 -0.0195 0.0010 0.0760 0.0781

Dynamic Part -0.1383 -0.092 0.0104 0.0020 -0.0549 -0.0518

c11 = 1.00

MC 2SLS bias -0.0944 -0.2015 -0.2674 -0.0373 -0.0437 -0.0721

Approximation bias -0.0821 -0.2872 -0.3813 -0.0374 -0.0386 -0.1071

Simultaneity part -0.1966 -0.5648 -0.5241 -0.1067 -0.0977 -0.2654

Dynamic Part 0.1145 0.2776 0.1428 0.0693 0.0591 0.1583

c21 = 0.60

MC 2SLS bias -0.0570 -0.1148 -0.1111 -0.0231 -0.0275 -0.0410

Approximation bias -0.0846 -0.1590 -0.1846 -0.0252 -0.0290 -0.0572

Simultaneity part -0.1129 -0.3222 -0.4027 -0.1016 -0.0713 -0.1404

Dynamic Part 0.0283 0.1632 0.2181 0.0764 0.0423 0.0832

c31 = −0.50

MC 2SLS bias 0.0471 0.1004 0.0973 0.0188 0.0247 0.0325

Approximation bias 0.0778 0.1264 0.0703 0.0221 0.0240 0.0488

Simultaneity part 0.1543 0.2651 0.1176 0.0731 0.0381 0.0529

Dynamic Part -0.0765 -0.1387 -0.0473 -0.0510 -0.0141 -0.0041

Table A.1 presents the bias approximation of the 17 first structural form coefficients in two stage

least square estimators and the bias of the Monte Carlo two stage least square estimator. The

bias approximation comes from dynamic part and simultaneity part are also reported separately

in Table A.1.The sample size is 50 and 100 respectively, and for the over-identification level we

choose three different cases (L = 2, L = 4 and L = 6).

* Both the Monte Carlo bias and the bias approximation increase when the sample size increases

from 50 to 100 in the coefficients α1
21 = 0.36, when L = 4,6; α2

31 = −0.38, when L = 4; α4
31 = −0.2,

when L = 6). It seems abnormal, however,that as in my other experiments, the bias increases

when the sample size increases from 50 to 70, then decreases again when the sample size increases.

Thus, the trend of the bias of these coefficients decreases when sample size increases. Please see

the Note table D.1 .
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Table A.3 The MSE of Bootstrap and C2SLS, when L=2, 4, 6; T=50, 100

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

β21 = 2.00

MSE of MC 2SLS 0.5033 0.6161 0.5510 0.1580 0.0956 0.1169

MSE of Bootstrap 0.9837 0.5892 0.4768 0.1970 0.0992 0.1077

MSE of C2SLS 0.4173 0.4360 0.4275 0.1334 0.0829 0.0991

β31 = 5.00

MSE of MC 2SLS 2.0151 1.8829 1.4067 0.6353 0.3847 0.3905

MSE of Bootstrap 3.6960 1.8449 1.2041 0.7848 0.4005 0.3647

MSE of C2SLS 1.5251 1.3289 1.0154 0.6003 0.3419 0.3509

α1
11 = 0.50

MSE of MC 2SLS 0.0399 0.0326 0.0175 0.0152 0.0104 0.0084

MSE of Bootstrap 0.0544 0.0395 0.0224 0.0172 0.0119 0.0098

MSE of C2SLS 0.0368 0.0322 0.0180 0.0160 0.0105 0.0097

α1
21 = 0.36

MSE of MC 2SLS 0.0703 0.0514 0.0438 0.0315 0.0267 0.0254

MSE of Bootstrap 0.1024 0.0738 0.0561 0.0359 0.0306 0.0294

MSE of C2SLS 0.0464 0.0477 0.0451 0.0332 0.0290 0.0277

α1
31 = 0.40

MSE of MC 2SLS 0.3922 0.2388 0.3113 0.1783 0.1446 0.1257

MSE of Bootstrap 0.6026 0.3167 0.3708 0.2034 0.1654 0.1501

MSE of C2SLS 0.3392 0.2297 0.3106 0.1542 0.1445 0.1302

α2
11 = 1.20

MSE of MC 2SLS 0.1794 0.1567 0.1102 0.0585 0.0332 0.0362

MSE of Bootstrap 0.3237 0.1647 0.1012 0.0713 0.0367 0.0366

MSE of C2SLS 0.1774 0.1581 0.1012 0.0546 0.0337 0.0308

α2
21 = 0.60

MSE of MC 2SLS 0.1081 0.0625 0.0577 0.0375 0.0294 0.0250

MSE of Bootstrap 0.1897 0.0868 0.0713 0.0442 0.0346 0.0298

MSE of C2SLS 0.1056 0.0610 0.0569 0.0398 0.0294 0.0272

α2
31 = −0.38

MSE of MC 2SLS 0.4005 0.1734 0.1813 0.1604 0.1238 0.1123

MSE of Bootstrap 0.6020 0.2404 0.2166 0.1863 0.1413 0.1270

MSE of C2SLS 0.4003 0.1641 0.1802 0.1409 0.1238 0.1107

α3
11 = 0.65

MSE of MC 2SLS 0.0940 0.0415 0.1167 0.0331 0.0214 0.0245

MSE of Bootstrap 0.1662 0.0550 0.1194 0.0394 0.0246 0.0277

MSE of C2SLS 0.0923 0.0404 0.1069 0.0328 0.0213 0.0270

Continued on next page
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Table A.3 – continued from previous page

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

α3
21 = 1.20

MSE of MC 2SLS 0.1317 0.1758 0.1044 0.055 0.0348 0.0401

MSE of Bootstrap 0.2106 0.1893 0.1070 0.0653 0.0392 0.0434

MSE of C2SLS 0.1300 0.1752 0.0833 0.0545 0.0342 0.0417

α3
31 = 0.38

MSE of MC 2SLS 0.2642 0.1577 0.1408 0.1273 0.1057 0.0923

MSE of Bootstrap 0.3739 0.2131 0.1668 0.1469 0.1234 0.1086

MSE of C2SLS 0.2138 0.1483 0.1357 0.1264 0.1068 0.0920

α4
11 = 0.50

MSE of MC 2SLS 0.0592 0.0523 0.0434 0.0196 0.0124 0.0188

MSE of Bootstrap 0.0925 0.0631 0.0524 0.0224 0.0141 0.0138

MSE of C2SLS 0.0584 0.0522 0.0434 0.0203 0.0124 0.0136

α4
21 = 0.60

MSE of MC 2SLS 0.0631 0.0317 0.0791 0.0252 0.0203 0.0216

MSE of Bootstrap 0.0990 0.0438 0.0842 0.0293 0.0234 0.0246

MSE of C2SLS 0.0635 0.0301 0.0677 0.0260 0.0199 0.0234

α4
31 = −0.20

MSE of MC 2SLS 0.2089 0.1930 0.1031 0.0879 0.0663 0.0602

MSE of Bootstrap 0.2914 0.2207 0.1326 0.1009 0.0754 0.706

MSE of C2SLS 0.2075 0.1852 0.1031 0.0820 0.0661 0.0585

c11 = 1.00

MSE of MC 2SLS 0.1111 0.0892 0.1125 0.0277 0.0138 0.0169

MSE of Bootstrap 0.2136 0.100 0.1042 0.0344 0.0153 0.0171

MSE of C2SLS 0.0982 0.0901 0.1042 0.0254 0.0135 0.0137

c21 = 0.60

MSE of MC 2SLS 0.0214 0.0209 0.0177 0.007 0.0036 0.0046

MSE of Bootstrap 0.0425 0.0210 0.0160 0.0088 0.0040 0.0045

MSE of C2SLS 0.0150 0.0203 0.0086 0.0069 0.0034 0.0038

c31 = −0.50

MSE of MC 2SLS 0.0139 0.0160 0.01380 0.0049 0.0030 0.0030

MSE of Bootstrap 0.0272 0.0115 0.01250 0.0062 0.0032 0.0029

MSE of C2SLS 0.0097 0.0164 0.0115 0.0040 0.0026 0.0031

Table A.3 presents the mean squared errors of the 17 first structural form coefficients in

the Monte Carlo two stage least squares, corrected two stage least squares and bootstrap

two stage least squares respectively. The sample size is 50 and 100 respectively, and for the

over-identification level we choose three different cases (L = 2, L = 4 and L = 6) .



Appendix B

Appendix for Chapter 3

B.1 The Evaluation for Theorem 2

Taking the expectation of equation 3.9

E
(
δ̂F LIML − δ

)
= E

(
(Υ̂

′
F LIMlΥF LIML)−1Υ̂

′
F LIMLũ1

)
(B.1)

= E
(
HῩũ1 +H∆

′
1ũ1 +H∆

′
2ũ1 −HJ∗

1 HῩ
′
ũ1 −HJ∗

1 H∆2ũ1
)

︸ ︷︷ ︸
The same as 2SLS bias

+E

H

[
(1− (λ− 1

T −P −Q
))V̂2 : 0 : 0

]′

ũ1


︸ ︷︷ ︸

Extra term in FLIML compared with 2SLS

+o(T −1).

In the expansion, ∆1 and ∆2 are defined in equation 2.10.

E
(
HῩũ1 +H∆′

1ũ1 +H∆′
2ũ1 −HJ∗

1 HῩ′
ũ1 −HJ∗

1 H∆2ũ1
)

is the bias approxima-

tion in 2SLS, and E
(

H
[
(1− (λ− 1

T −P −Q))V̂2 : 0 : 0
]′

ũ1

)
is the extra term of bias

approximation in the Fuller limited information maximum likelihood estimation com-

pared with 2SLS. Hence, we start to calculate from this extra term, then compare the
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results with the 2SLS results obtained in section 2.3.

E

H

[
(1− (λ− 1

T −P −Q
))V̂2 : 0 : 0

]′

ũ1

 (B.2)

= HE
(

(1−λ+ 1
T −P −Q

)(Ṽ2 : 0 : 0)′P̄Z ũ1

)

= HΛ∗∗′
E
(

(1−λ+ 1
T −P −Q

)Ṽ ′P̄Z ũ1

)
,

where V̂2 = P̄Z Ṽ2, P̄Z = I −Z(Z ′Z)−1Z ′, and recall that [Ṽ2 : 0 : 0] = Ṽ

Ig : 0

0

= Ṽ Λ∗∗,

and Z = [R : S] is T × (P +Q) dimension matrix.

To proceed, using Kadane (1974) and Kadane (1970), we have

1−λ = −ũ′
1(P̄Υ̃ − P̄Z)′ũ1

ũ′
1P̄Z ũ1

+op(T −1)

where P̄Υ̃ = I − Υ̃(Υ̃′Υ̃)−1Υ̃′, and recall that Υ̃ = [Ỹ2 : R1 : S1] is a T × (g +P ∗ +Q∗)

dimension matrix, and Ỹ2 = Y2 − V2 = ∑p
i=1 L(i)Y Γi

2 +∑q
j=0 LjXΠ(j)

2 . Then, we can

rewrite equation B.2 as:

HΛ∗∗′
E
(

(1−λ+ 1
T −P −Q

)Ṽ ′P̄Z ũ1

)
(B.3)

= HΛ∗∗′
E
(

−ũ′
1(P̄Υ̃ − P̄Z)ũ1

ũ′
1P̄Z ũ1

Ṽ ′P̄Z ũ1

)
+ E(Ṽ ′P̄Z ũ1)

T −P −Q

Notes:

1.Recalling Ṽ = S∗ + ũ1φ
′ , where ũ1 and S∗ are normally distributed but independent,

then,

Ṽ ′P̄Z ũ1 = E
(
Ṽ ′P̄Z ũ1

)
+
(
Ṽ ′P̄Z ũ1 −E

(
Ṽ ′P̄Z ũ1

))
≡ E

(
Ṽ ′P̄Z ũ1

)
+op(T )
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= E
(
S∗′

P̄Z ũ1
)

+E
(
φũ

′
1P̄Z ũ1

)
+op(T ).

2. E(S∗′
P̄Z ũ1) = 0

Proof:

E(S∗′
P̄Z ũ1) = E(S∗′ (

I −Z(Z ′Z)−1Z ′
)

ũ1) = −E(S∗′ (
Z(Z ′Z)−1Z ′

)
ũ1)(ũ1 and S∗

are independent) ⇒ −E(S∗′ ((Z̄ + W̃ ∗)H∗(Z̄ ′ + W̃ ∗′)
)

ũ1)(W̃ ∗ is lagged stochastic part

and W̃ ∗, ũ1 and S∗ are independent between each other )⇒ −E(S∗′ (
W̃ ∗H∗W̃ ∗′)

ũ1) =

0.

Hence, we can express equation (B.3) as follows:

HΛ∗∗′
E
(

(1−λ+ 1
T −P −Q

)Ṽ ′P̄Z ũ1

)
(B.4)

= HΛ∗∗′
φE

(
−ũ′

1(P̄Υ̃ − P̄Z)ũ1
E(ũ′

1P̄Z ũ1)+E(S′P̄Z ũ1)
ũ′

1P̄Zu1

)
+HΛ∗∗′

φ
E(ũ′

1P̄Z ũ1)
T −P −Q

Note:

1. 1
ũ′

1P̄Z ũ1
≡ 1

E(ũ′
1P̄Z ũ1)

+op(T −3/2)

Proof:

ũ′
1P̄Z ũ1 = E(ũ′

1P̄Z ũ1)+ ũ′
1P̄Z ũ1 −E(ũ′

1P̄Z ũ1) = E(ũ′
1P̄Z ũ1)

[
1+ ũ′

1P̄Z ũ1 −E(ũ′
1P̄Z ũ1)

E(ũ′
1P̄Z ũ1)

]
.

⇒ 1
ũ′

1P̄Z ũ1
= 1

E(ũ′
1P̄Z ũ1)

[
1+ ũ′

1P̄Z ũ1 −E(ũ′
1P̄Z ũ1)

E(ũ′
1P̄Z ũ1)

]−1

≡ 1
E(ũ′

1P̄Z ũ1)
+Op(T −3/2).

Hence, we can express equation (B.3) as follows:

HΛ∗∗′
E
(

(1−λ+ 1
T −P −Q

)Ṽ ′P̄Z ũ1

)
(B.5)

= HΛ∗∗′
φE

(
−ũ′

1((I − Υ̃(Υ̃′Υ̃)−1Υ̃′)− (I −Z(Z ′Z)−1Z ′))ũ1
E(ũ′

1P̄Z ũ1)
E(ũ′

1P̄Zu1)

)
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+HΛ∗∗′
φ
E(ũ′

1P̄Z ũ1)
T −P −Q

= HΛ∗∗′
φE

(
−ũ′

1(Z(Z ′Z)−1Z ′ − Υ̃(Υ̃′Υ̃)−1Υ̃′)ũ1
E(ũ′

1P̄Z ũ1)
E(ũ′

1P̄Zu1)

)
+HΛ∗∗′

φ
E(ũ′

1P̄Z ũ1)
T −P −Q

= −HΛ∗∗′
φE

(
ũ′

1Z(Z ′Z)−1Z ′ũ1
)

+HΛ∗∗′
φE

(
ũ′

1Υ̃(Υ̃′Υ̃)−1Υ̃′ũ1
)

+HΛ∗∗′
φ
E(ũ′

1P̄Z ũ1)
T −P −Q

.

We shall shortly evaluate these terms but first we note the following Lemmas.

B.1.1 Lemmas

The following lemma may be used in the late evaluations.

Lemma 1: The expectation of a product of three normal random vari-

ables is zero. i.e

E(ΞAΨBΦ) = 0

, where Ξ,Ψ, and Φ are three normal (means of zero) random variables.

Lemma 2: (Z ′Z)−1 = [E(Z ′Z)]−1 +Op(T −3
2 ) and (Υ̃′Υ̃)−1 = [E(Υ′Υ)]−1 +Op(T −3

2 ).

where Z = [R : S] =
[
LY,L2Y...LpY : X,LX,L2X...LqX

]
,

Υ = [Y2 : R1 : S1] =
[
Y2 : LY1,L2Y1...LpY1 : X,LX1,L2X1...LqX1

]
.

Proof:

(Z ′Z)−1 = [E(Z ′Z)]−1 +Op(T −3
2 ), see A.1, Lemma 2.

One may follow the same procedure to derive (Υ̃′Υ̃)−1 = [E(Υ′Υ)]−1 +Op(T −3
2 ).

In what follows frequent use will be made of this lemma when replacing (Z ′Z)−1

and (Υ̃′Υ̃)−1 with [E(Z ′Z)]−1 and [E(Υ′Υ)]−1 respectively, while retaining the order

of the approximation at T −1.
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B.1.2 The extra term expression

As has been noted the bias approximation to order T −1 for FLIML is equal to the

order T −1 bias approximation for 2SLS plus the expected value to order T −1 of the

additional terms presented in equation B.2 and equation B.5. Hence we shall evaluate

the three terms in equation B.5. Recall that H = (E(Υ′Υ))−1 = (Ῡ′Ῡ+E(∆′
2∆2))−1

and H∗ = (E(Z ′Z))−1 = (Z̄ ′Z̄ +E(W ∗′
W ∗))−1.

1. The first term in equation B.5 can be evaluated as:

−HΛ∗∗′
φE

(
ũ′

1(Z(Z ′Z)−1Z ′ũ1)
)

(B.6)

= −HΛ∗∗′
φE

(
ũ′

1(Z̄ + W̃ ∗)
[
E(Z ′Z)

]−1
(Z̄ ′ + W̃ ∗′

)ũ1

)

Using Lemma 2

= −HΛ∗∗′
φE

(
ũ′

1Z̄H∗Z̄ ′ũ1
)

−HΛ∗∗′
φE

(
ũ′

1W̃ ∗H∗W̃ ∗′
ũ1
)

(B.7)

= −HΛ∗∗′
φσ2

(
tr
{
Z̄H∗Z̄ ′

}
.I
)

−HΛ∗∗′
φE

ũ′
1

 p∑
i=1

T −1∑
t=i

DtṼ Jt−iΨ′
i : 0

H∗

 p∑
j=1

T −1∑
s=j

ΨjJ
′
s−jṼ

′Ds′
: 0
 ũ1


= −HΛ∗∗′

φσ2
(
tr
{
Z̄H∗Z̄ ′

}
.I
)

−HΛ∗∗′
φ

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
(
ũ′

1DtṼ Jt−iΨ′
iI

′
2H∗I2ΨjJ

′
s−jṼ

′Ds′
ũ1
)

= −HΛ∗∗′
φσ2

(
tr
{
Z̄H∗Z̄ ′

}
.I
)

−HΛ∗∗′
φ

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
(
ũ′

1Dt(S∗ + ũ1φ′)Jt−iΨ′
iH

∗∗ΨjJ
′
s−j(S∗′

+φũ′
1)Ds′

ũ1
)

= −HΛ∗∗′
φσ2

(
tr
{
Z̄H∗Z̄ ′

}
.I
)

−HΛ∗∗′
φ

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
(
ũ′

1Dtũ1φ′Jt−iΨ′
iH

∗∗ΨjJ
′
s−jφũ′

1Ds′
ũ1
)

−HΛ∗∗′
φ

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
(
ũ′

1DtS∗Jt−iΨ′
iH

∗∗ΨjJ
′
s−jS

∗′
Ds′

ũ1
)
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= −H
(
tr
{
Z̄H∗Z̄ ′

}
.I
)

ϑ−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iH
∗∗ΨjJ

′
t−j

)
ϑ.

By using Lemma 2 and Lemma 4 in Appendix.A.

2. The second term in equation B.5 :

HΛ∗∗′
φE

(
ũ′

1Υ̃(Υ̃′Υ̃)−1Υ̃′ũ1
)

(B.8)

= HΛ∗∗′
φE

(
ũ′

1(Ῡ+∆2)
[
E(Υ′Υ)

]−1
(Ῡ′ +∆′

2)ũ1

)
= HΛ∗∗′

φE
(
ũ′

1ῩHῩ′ũ1
)

+HΛ∗∗′
φE

(
ũ′

1∆2H∆′
2ũ1

)
= HΛ∗∗′

φσ2
(
tr
{
ῩHῩ′

}
.I
)

+HΛ∗∗′
φE

ũ′
1

p∑
i=1

T −1∑
t=i

DtṼ Jt−iΨ′
iC

∗H
p∑

j=1

T −1∑
s=j

C∗′
ΨjJ

′
s−jṼ

′Ds′
ũ1


= HΛ∗∗′

φσ2
(
tr
{
ῩHῩ′

}
.I
)

+HΛ∗∗′
φ

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
(
ũ′

1Dt(S∗ + ũ1φ′)Jt−iΨ′
iC

∗HC∗′
ΨjJ

′
s−j(S∗′

+φũ′
1)Ds′

ũ1
)

= HΛ∗∗′
φσ2

(
tr
{
ῩHῩ′

}
.I
)

+HΛ∗∗′
φ

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
(
ũ′

1Dtũ1φ′Jt−iΨ′
iC

∗HC∗′
ΨjJ

′
s−jφũ′

1Ds′
ũ1
)

+HΛ∗∗′
φ

p∑
i=1

T −1∑
t=i

p∑
j=1

T −1∑
s=j

E
(
ũ′

1DtS∗Jt−iΨ′
iC

∗HC∗′
ΨjJ

′
s−jS

∗′
Ds′

ũ1
)

= H
(
tr
{
ῩHῩ′

}
.I
)

ϑ+H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ.

By using Lemma 2 and Lemma 4 in Appendix.A.

3. The third term in equation B.5 :

HΛ∗∗′
φ
E(ũ′

1P̄Z ũ1)
T −P −Q

(B.9)
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= HΛ∗∗′
φ
E(ũ′

1(I −PZ)ũ1)
T −P −Q

= HΛ∗∗′
φ

Tσ2 −E(ũ′
1PZ ũ1)

T −P −Q

= HΛ∗∗′
φ

Tσ2 −E
(
ũ′

1(Z(Z ′Z)−1Z ′ũ1)
)

T −P −Q

= HΛ∗∗′
φ

Tσ2 −E
(
ũ′

1(Z̄ + W̃ ∗) [E(Z ′Z)]−1 (Z̄ ′ + W̃ ∗′)ũ1
)

T −P −Q

= HΛ∗∗′
φ

Tσ2 −E
(
ũ′

1Z̄H∗Z̄ ′ũ1
)

−E
(
ũ′

1W̃ ∗H∗W̃ ∗′
ũ1
)

T −P −Q
.

Notes:

1. Using the result in equation B.6 E
(
ũ′

1Z̄H̄∗Z̄
′
ũ1
)

= tr{Z̄H∗Z̄ ′}, then HΛ∗∗′
φtr{Z̄H∗Z̄ ′}

T −P −Q

is O(T −2) which is of lower order than order T −1 .

2. E
(
ũ′

1W̃ ∗H∗W̃ ∗′
ũ1
)

is O(1), then
HΛ∗∗′

φE
(
ũ′

1W̃ ∗H∗W̃ ∗′
ũ1
)

T −P −Q
is of lower order than

T −1 .

Hence, we can express equation (B.9) as follows:

HΛ∗∗′
φ
E(ũ′

1P̄Z ũ1)
T −P −Q

(B.10)

= Hϑ+o(T −1).

Then combining these three terms, the extra bias term in FLIML given by B.5 can

be written as:

E

H

[
(1− (λ− 1

T −P −Q
))V̂2 : 0 : 0

]′

ũ1

 (B.11)

= −H
(
tr
{
Z̄H∗Z̄ ′

}
.I
)

ϑ−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iH
∗∗ΨjJ

′
t−j

)
ϑ

+H
(
tr
{
ῩHῩ′

}
.I
)

ϑ+H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ

+Hϑ+o(T −1).
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B.1.3 The Related terms in 2SLS compared with B.1.2

The extra terms in equation B.11 which have been presented in Theorem 1, section 2.3.

We shall show that the first ten terms in Theorem 1 are cancelled out by the terms in

equation B.11 thus demonstrating that the FLIML bias approximation contains only

those components which explicitly involve the D matrices. To show this we first note

the first ten terms in Theorem 1:

H
(
tr{Z̄H∗Z̄ ′}.I

)
ϑ (B.12)

H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iH
∗∗ΨjJ

′
t−j

)
ϑ (B.13)

−H
(
tr{Z̄H∗Z̄ ′ῩHῩ′}.I

)
ϑ (B.14)

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ (B.15)

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
{
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗HῩ
′}

ϑ (B.16)

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j (B.17)

×ΩJs−mΨ
′
mC∗

]
Hc

′
ΨlJ

′
s−l

}
.I

)
ϑ

−HῩ′Z̄H∗Z̄ ′ῩHϑ (B.18)

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2H∗Z̄

′
ῩHϑ (B.19)

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ′

jH
∗∗

p∑
l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−lΩJr−mΨ

′
mC∗Hϑ

(B.20)

−HῩ
′
Z̄H∗

p∑
i=1

p∑
j=1

T −1∑
t=i,j

I2(T − t)ΨiJ
′
t−iΩJt−jΨ

′
jC

∗′
Hϑ. (B.21)
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B.1.4 Comparing the terms in Appendix B.1.2 and Appendix

B.1.3

Here we show how the the FLIML estimator eliminates the bias terms in B.12 to B.21.

1. Terms B.12 and B.13 are eliminated by the first two terms in equation B.11.

H
(
tr{Z̄H∗Z̄ ′}.I

)
ϑ−H

(
tr{Z̄H∗Z̄ ′}.I

)
ϑ (B.22)

+H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iH
∗∗ΨjJ

′
t−j

)
ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iH
∗∗ΨjJ

′
t−j

)
ϑ

= 0.

2. Comparing the terms B.14, B.15 with the third term in equation B.11:

Recalling W̃ ∗ =
[
R̃ : 0

]
= R̃I

′
2(Chapter 2), where I2 is defined as I2 =

IP

0

 in Chapter

2

H
(
tr{ῩHῩ′}.I

)
ϑ−H

(
tr{Z̄H∗Z̄ ′ῩHῩ′}.I

)
ϑ (B.23)

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

= H
(

tr
{

ῩHῩ′Z̄
(
Z̄ ′Z̄

)−1
Z̄ ′
}

.I
)

ϑ−H
(

tr
{

ῩHῩ
′
Z̄
(
Z̄

′
Z̄ +E

{
W̃ ∗′

W̃
})−1

Z̄ ′
}

.I
)

ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

= H
(

tr
{

ῩHῩ
′
Z̄
((

Z̄ ′Z̄
)−1

−
(
Z̄

′
Z̄ +E

{
W̃ ∗′

W̃
})−1)

Z̄ ′
}

.I
)

ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

= H
(

tr
{

ῩHῩ
′
Z̄
(
Z̄ ′Z̄

)−1 (
Z̄

′
Z̄ +E

{
W̃ ∗′

W̃ ∗
})−1

E
{
W̃ ∗′

W̃ ∗
}

Z̄ ′
}

.I
)

ϑ
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−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

= H
(

tr
{

ῩHῩ
′
Z̄
(
Z̄ ′Z̄

)−1
H∗I2E

{
R̃′R̃

}
I ′

2Z̄ ′
}

.I
)

ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

=
p∑

i=1

p∑
j=1

T −1∑
t=i

T −1∑
s=j

H
(

tr
{

ῩHῩ
′
Z̄
(
Z̄ ′Z̄

)−1
H∗I2E

{
ΨiJ

′
t−iV

′Dt′
DsV Js−jΨ′

j

}
I

′
2Z̄ ′

}
.I
)

ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

=
p∑

i=1

p∑
j=1

T −1∑
t=i

T −1∑
s=j

H
(

tr
{

ῩHῩ
′
Z̄
(
Z̄ ′Z̄

)−1
H∗I2E

{
ΨiJ

′
t−iS

′Dt′
DsSJs−jΨ′

j

}
I

′
2Z̄ ′

}
.I
)

ϑ

+
p∑

i=1

p∑
j=1

T −1∑
t=i

T −1∑
s=j

H
(

tr
{

ῩHῩ
′
Z̄
(
Z̄ ′Z̄

)−1
H∗I2E

{
ΨiJ

′
t−iφu′

1Dt′
Dsu1φ′Js−jΨ′

j

}
I

′
2Z̄ ′

}
.I
)

ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)
(

tr
{

ῩHῩ
′
Z̄
(
Z̄ ′Z̄

)−1
H∗I2ΨiJ

′
t−iΩJs−jΨ′

jI
′
2Z̄ ′

}
.I
)

ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ.

Note:

1. Ῡ =
[
A

(∗)
2 : I3 : I4

]
Z̄. Where,

[
A

(∗)
2 : I3 : I4

]
is a (P + Q) × (g + P ∗ + Q∗) matrix.

A
(∗)
2 =

[
Γ(∗)

2 : Π(∗)
2

]′
is a (P +Q)×g matrix and recalling that Γ(∗)

2 = (Γ(1)
2 ,Γ(2)

2 , ...,Γ(p)
2 )′

and Γ(∗)
2 = (Π(1)

2 ,Π(2)
2 , ...,Π(q)

2 )′. I3 is a (P + Q) × P ∗ selection matrix and I4 is (P +

Q)×Q∗ selection matrix.

Hence, we can express equation (B.23) as follows:

H
(
tr{ῩHῩ′}.I

)
ϑ−H

(
tr{Z̄H∗Z̄ ′ῩHῩ′}.I

)
ϑ (B.24)

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ
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= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)
(

tr

{
ῩH

([
A

(∗)
2 : I3 : I4

])′

Z̄
′
Z̄
(
Z̄ ′Z̄

)−1
H∗I2ΨiJ

′
t−iΩJs−jΨ′

jI
′
2

}
.I

)
ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩHC∗′

ΨjJ
′
t−j}.I)ϑ

= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)(tr{ΩJt−iΨ
′
iI

′
2H∗Z̄

′
ῩH

(
C∗′

−
([

A
(∗)
2 : I3 : I4

])′

I2

)
ΨjJ

′
t−j}.I)ϑ

= 0.

Note:

1. C∗′ −
[
A

(∗)
2 : I3 : I4

]′
I2 = 0, where I2 is defined as I2 =

IP

0

 in Chapter 2.

3. Comparing the term B.16, B.17 with the fourth term in equation B.11:

H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ (B.25)

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
{
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗HῩ
′}

ϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j

× ΩJs−mΨ
′
mC∗

]
HC∗′

ΨlJ
′
s−l

}
.I

)
ϑ

= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
{
Ῡ

′
Z̄(E(Z

′
Z))−1I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗H
}

ϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j

×ΩJs−mΨ
′
mC∗

]
HC∗′

ΨlJ
′
s−l

}
.I

)
ϑ

= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ
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−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
{([

A
(∗)
2 : I3 : I4

])′

Z̄
′
Z̄
(
Z̄

′
Z̄ +E

{
W̃ ∗′

W̃
})−1

× I2ΨiJ
′
t−iΩJt−jΨ

′
jC

∗H

}
ϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j

×ΩJs−mΨ
′
mC∗

]
HC∗′

ΨlJ
′
s−l

}
.I

)
ϑ

= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
{([

A
(∗)
2 : I3 : I4

])′

Z̄
′
Z̄

×
((

Z̄ ′Z̄
)−1

−
(
Z̄ ′Z̄

)−1 (
Z̄

′
Z̄ +E

{
W̃ ∗′

W̃ ∗
})−1

E
{
W̃ ∗′

W̃
})

× I2ΨiJ
′
t−iΩJt−jΨ

′
jC

∗H
}

ϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j

×ΩJs−mΨ
′
mC∗

]
HC∗′

ΨlJ
′
s−l

}
.I

)
ϑ

Using the result in Appendix.A.1, E{W̃ ∗′
W̃ ∗} =

p∑
i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩI2Jt−iΨ

′
iΨiJ

′
t−jI

′
2
)

,

= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩJt−iΨ′

iC
∗HC∗′

ΨjJ
′
t−j

)
ϑ

+H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
{([

A
(∗)
2 : I3 : I4

])′

H∗I2

×
p∑

l=1

p∑
m=1

T −1∑
s=l,m

(T − s)ΨlJ
′
t−lΩJt−mΨ

′
mI

′
2I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗H

ϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j

×ΩJs−mΨ
′
mC∗

]
HC∗′

ΨlJ
′
s−l

}
.I

)
ϑ
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*Note:
[
A

(∗)
2 : I3 : I4

]
is a (P +Q)× (g +P ∗ +Q∗) matrix, C∗′

=
[
A

(∗)
2 : I3 : I4

]′
I2

= H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j

×ΩJs−mΨ
′
mC∗

]
HC∗′

ΨlJ
′
s−l

}
.I

)
ϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,l

(T − t)
tr

ΩJt−iΨ
′
iH

∗∗

 p∑
j=1

p∑
m=1

T −1∑
s=j,m

(T − s)ΨjJs−j

×ΩJs−mΨ
′
mC∗

]
HC∗′

ΨlJ
′
s−l

}
.I

)
ϑ

= 0.

4. Comparing the term B.18, B.20, B.19, B.21 with the last term in equation B.11:

Hϑ−HῩ′Z̄H∗Z̄ ′ῩHϑ (B.26)

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2H∗Z̄

′
ῩHϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ′

jH
∗∗

p∑
l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−lΩJr−mΨ

′
mC∗Hϑ

−HῩ
′
Z̄H∗

p∑
i=1

p∑
j=1

T −1∑
t=i,j

I2(T − t)ΨiJ
′
t−iΩJt−jΨ

′
jC

∗′
Hϑ

= Hϑ−HῩ′Z̄H∗Z̄ ′
[
Z̄A

(∗)
2 Z̄

[
I3 : I4

]]
Hϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2H∗Z̄

′
[
Z̄A

(∗)
2 Z̄

[
I3 : I4

]]
Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ′

jH
∗∗

p∑
l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−lΩJr−mΨ

′
mC∗Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)Ῡ
′
(Z̄)H∗I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

= Hϑ−HῩ′Z̄
(
Z̄ ′Z̄ +E

{
W̃ ∗′

W̃ ∗
})−1

Z̄ ′Z̄
[
A

(∗)
2

[
I3 : I4

]]
Hϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2
(
Z̄ ′Z̄ +E

{
W̃ ∗′

W̃ ∗
})−1

Z̄
′
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×
[
Z̄A

(∗)
2 Z̄

[
I3 : I4

]]
Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ′

jH
∗∗

p∑
l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−lΩJr−mΨ

′
mC∗Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)Ῡ
′
(Z̄)H∗I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

= Hϑ−HῩ′Z̄
(
(Z̄ ′Z̄)−1 −H∗E{W̃ ∗′

W̃ ∗}(Z̄ ′Z̄)−1
)

Z̄ ′Z̄
[
A

(∗)
2

[
I3 : I4

]]
Hϑ

−H
p∑

i=1

p∑
l=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2
(
(Z̄ ′Z̄)−1 −H∗E{W̃ ∗′

W̃ ∗}(Z̄ ′Z̄)−1
)

Z̄
′
[
Z̄A

(∗)
2 Z̄

[
I3 : I4

]]
Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ′

jH
∗∗

p∑
l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−lΩJr−mΨ

′
mC∗Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)Ῡ
′
(Z̄)H∗I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

*Note: Ῡ = Z̄
[
A

(∗)
2 : I3 : I4

]
= Hϑ−HῩ′ῩHϑ+HῩ′Z̄H∗E{W̃ ∗′

W̃ ∗}(Z̄ ′Z̄)−1Z̄ ′ῩHϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

+H
p∑

i=1

p∑
l=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2H∗I2

p∑
l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−l

ΩJr−mΨ
′
mI

′
2

[
A

(∗)
2 : I3 : I4

]
Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ′

jH
∗∗

p∑
l=1

p∑
m=1

T −1∑
r=l,m

(T − l)ΨlJ
′
r−lΩJr−mΨ

′
mC∗Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)Ῡ
′
(Z̄)H∗I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

*Note:
[
A

(∗)
2 : I3 : I4

]
is a (P +Q)× (g +P ∗ +Q∗) matrix, C∗′

=
[
A

(∗)
2 : I3 : I4

]′
I2

= Hϑ−HῩ′Ῡ
((

Ῡ′Ῡ
)−1

−
(
Ῡ′Ῡ

)−1
HE{∆

′
2∆2}

)
ϑ

+HῩ′Z̄H∗E{W̃ ∗′
W̃ ∗}(Z̄ ′Z̄)−1Z̄ ′ῩHϑ
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−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)Ῡ
′
(Z̄)H∗I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

Using the result in Appendix.A.1, E{W̃ ∗′
W̃ ∗} =

p∑
i=1

p∑
j=1

T −1∑
t=i,j

(T − t)tr
(
ΩI2Jt−iΨ

′
iΨiJ

′
t−jI

′
2
)

,

= H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

+H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)Ῡ
′
(Z̄)H∗I2ΨiJ

′
t−iΩJt−jΨ

′
jI

′
2(Z̄)−1ῩHϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)C∗′
ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

−H
p∑

i=1

p∑
j=1

T −1∑
t=i,j

(T − t)Ῡ
′
(Z̄)H∗I2ΨiJ

′
t−iΩJt−jΨ

′
jC

∗Hϑ

= 0.

Then the bias approximation to O(T −1) for FLIML estimator is the remaining part

in 2SLS which is summarized in Theorem 2 in section 3.3.
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B.2 Numerical Results

Table B.1 Bias Approximation of 2SLS and FLIML to O(T −1), when L=2,
4, 6; T=50, 100

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

β21 = 2.00
2SLS bias -0.3229 -0.7150 -0.8931 -0.1597 -0.1799 -0.3233

FLIML bias -0.1359 -0.2886 -0.0517 -0.0739 -0.0629 -0.0567

β31 = 5.00
2SLS bias -0.6439 -1.1902 -1.4003 -0.3015 -0.2159 -0.4608

FLIML bias -0.2487 -0.3905 -0.1410 -0.1531 -0.2017 -0.0712

α1
11 = 0.50

2SLS bias 0.0365 -0.0784 -0.0241 0.0120 0.0106 0.0198

FLIML bias 0.0212 -0.0395 0.0261 0.0073 -0.0070 0.0016

α1
21 = 0.36

2SLS bias 0.0513 -0.0216 0.0251 0.0252 0.0196 0.0351

FLIML bias 0.0613 0.0324 0.0715 0.0208 0.0189 0.0398

α1
31 = 0.40

2SLS bias 0.0337 0.1593 -0.2149 0.0283 0.0525 -0.0407

FLIML bias 0.0784 0.1396 0.0701 0.0716 0.0478 0.0300

α2
11 = 1.20

2SLS bias -0.1324 -0.3514 -0.3281 -0.0804 -0.1095 -0.1502

FLIML bias -0.0765 -0.1032 -0.0378 -0.0297 -0.0469 -0.0210

α2
21 = 0.60

2SLS bias -0.0580 -0.0803 -0.0811 -0.0191 -0.0217 -0.0247

FLIML bias -0.0183 -0.0108 0.0319 0.0175 0.0011 0.0089

α2
31 = −0.38

2SLS bias 0.3746 0.0407 0.1803 0.1018 0.0825 0.1098

FLIML bias 0.1692 0.0610 0.0996 0.0667 0.0578 0.0501

α3
11 = 0.65

2SLS bias -0.0702 -0.1208 -0.2921 -0.0259 -0.0540 -0.0732

FLIML bias -0.0321 -0.0261 0.0157 -0.0183 -0.0072 0.0028

α3
21 = 1.20

2SLS bias -0.1399 -0.2087 -0.2034 -0.0507 -0.0603 -0.1280

FLIML bias -0.0702 -0.1305 -0.0201 -0.0214 -0.0161 -0.0211

α3
31 = 0.38

2SLS bias -0.1064 -0.2073 -0.1601 -0.0411 -0.0535 -0.0739

FLIML bias -0.0805 -0.0388 -0.1057 -0.0309 -0.0200 -0.0401

α4
11 = 0.50

2SLS bias -0.0011 -0.0987 -0.1003 0.0020 0.0110 -0.0004

FLIML bias 0.0340 -0.0270 0.0397 0.0209 0.0132 0.0147

Continued on next page
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Table B.1 – continued from previous page

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

α4
21 = 0.60

2SLS bias -0.0258 -0.0208 -0.1921 -0.0068 -0.0335 -0.0410

FLIML bias 0.0067 -0.0190 0.0701 0.0081 0.0091 0.0070

α4
31 = −0.20

2SLS bias 0.0340 0.3612 -0.0091 0.0030 0.0211 0.0263

FLIML bias 0.0421 0.0800 0.0201 0.0049 0.0189 0.0310

c11 = 1.00
2SLS bias -0.0821 -0.2872 -0.3813 -0.0374 -0.0386 -0.1071

FLIML bias 0.0351 -0.1926 0.0386 0.0006 -0.0077 -0.0007

c21=0.60
2SLS bias -0.0846 -0.1590 -0.1846 -0.0252 -0.0290 -0.0572

FLIML bias -0.0241 -0.0491 0.0015 -0.0064 -0.0070 -0.0051

c31 = −0.50
2SLS bias 0.0778 0.1264 0.0703 0.0221 0.0240 0.0488

FLIML bias 0.0217 0.0781 -0.0103 0.0042 0.0062 0.0002

Table B.1 presents the bias approximation of the 17 first structural form coefficients in

two stage least squares and Fuller limited information maximum likelihood. The sample

size is 50 and 100 respectively, and for the over-identification we choose three different

cases (L = 2, L = 4 and L = 6).

The bias approximation of 2SLS increase when the sample size increases from 50 to 100

in the coefficients α1
21 = 0.36, when L = 4,6; α2

31 = −0.38, when L = 4; α4
31 = −0.2, when

L = 6). It seems abnormal, however,that as in my other experiments, the bias increases

when the sample size increases from 50 to 70, then decreases again when the sample size

increases. Thus, the trend of the bias of these coefficients decreases when sample size

increases. Please see the Note table D.1 .



134 Appendix for Chapter 3
Ta

bl
e

B.
2

M
on

te
C

ar
lo

2S
LS

vs
M

on
te

C
ar

lo
F

LI
M

L
vs

C
2S

LS
vs

C
F

LI
M

L,
w

he
n

L=
2,

4,
6;

T
=

50
,

10
0

T
=

50
T

=
10

0

L
=

2
L

=
4

L
=

6
L

=
2

L
=

4
L

=
6

β
21

=
2.

00

M
C

2S
LS

bi
as

-0
.3

03
2(

-1
5%

)
-0

.6
44

4(
-3

2%
)

-0
.6

31
8(

-3
2%

)
-0

.1
26

0(
-6

%
)

-0
.1

60
0(

-8
%

)
-0

.2
24

3(
-1

1%
)

M
C

FL
IM

L
bi

as
-0

.1
09

9(
-5

%
)

-0
.1

52
8(

-8
%

)
-0

.0
57

3(
-3

%
)

-0
.0

54
4(

-3
%

)
-0

.0
47

6(
-2

%
)

-0
.0

35
5(

-2
%

)

C
2S

LS
bi

as
-0

.0
20

0(
-1

%
)

0.
04

52
(-

2%
)

0.
03

96
(+

2%
)

0.
02

92
(+

2%
)

0.
01

88
(+

1%
)

-0
.0

27
8(

-1
%

)

C
FL

IM
L

bi
as

-0
.0

22
0(

-1
%

)
0.

04
24

(-
2%

)
0.

01
18

(+
1%

)
-0

.0
12

5(
-1

%
)

-0
.0

17
8(

-1
%

)
-0

.0
14

9(
-1

%
)

β
31

=
5.

00

M
C

2S
LS

bi
as

-0
.6

47
3(

-1
3%

)
-1

.0
95

4(
-2

2%
)

-1
.0

06
8(

-2
0%

)
-0

.2
53

9(
-5

%
)

-0
.3

10
9(

-6
%

)
-0

.3
94

7(
-8

%
)

M
C

FL
IM

L
bi

as
-0

.2
66

5(
-5

%
)

-0
.2

03
9(

-4
%

)
-0

.1
17

0(
-2

%
)

-0
.1

19
9(

-2
%

)
-0

.0
87

8(
-2

%
)

-0
.0

50
2

(-
1%

)

C
2S

LS
bi

as
0.

09
73

(+
2%

)
0.

18
75

(+
3%

)
-0

.0
01

6(
-0

%
)

0.
08

30
(+

2%
)

0.
03

15
(+

0%
)

-0
.0

82
8(

-2
%

)

C
FL

IM
L

bi
as

0.
09

02
(-

2%
)

-0
.1

22
2(

-2
%

)
-0

.0
01

78
(-

0%
)

0.
01

82
(+

0%
)

0.
03

30
(+

0%
)

-0
.0

20
6(

-0
%

)

α
1 11

=
0.

50

M
C

2S
LS

bi
as

0.
02

59
(+

5%
)

-0
.0

91
5(

-1
8%

)
-0

.0
13

6(
-3

%
)

0.
00

78
(+

2%
)

-0
.0

00
1(

-0
%

)
0.

01
44

(+
3%

)

M
C

FL
IM

L
bi

as
0.

02
96

(+
6%

)
-0

.0
25

6(
-5

%
)

+
0.

01
73

(+
3%

)
0.

00
70

(+
1%

)
-0

.0
04

8(
-1

%
)

0.
00

30
(+

1%
)

C
2S

LS
bi

as
0.

01
71

(+
3%

)
0.

00
57

(+
3%

)
0.

00
15

(+
0%

)
0.

00
68

(+
1%

)
0.

00
04

(+
0%

)
0.

00
30

(-
1%

)

C
FL

IM
L

bi
as

0.
01

66
(+

3%
)

-0
.0

11
1(

-2
%

)
0.

00
10

(+
0%

)
-0

.0
03

9(
-1

%
)

0.
00

06
(+

0%
)

0.
00

33
(+

1%
)

α
1 21

=
0.

36

M
C

2S
LS

bi
as

0.
03

27
(+

9%
)

-0
.0

10
7(

-3
%

)
0.

01
40

(+
4%

)
0.

01
51

(+
4%

)
0.

01
95

+
5%

0.
02

82
(+

8%
)

M
C

FL
IM

L
bi

as
0.

04
19

(+
12

%
)

0.
02

71
(+

8%
)

0.
05

24
(+

15
%

)
0.

01
79

(+
5%

)
0.

01
30

(+
4%

)
0.

02
29

(+
6%

)

C
2S

LS
bi

as
0.

01
21

(+
2%

)
0.

00
33

(+
1%

)
0.

01
09

(+
3%

)
-0

.0
05

0(
-1

%
)

0.
00

31
(+

1%
)

0.
00

41
(+

1%
)

C
FL

IM
L

bi
as

0.
01

30
(+

3%
)

-0
.0

03
2(

-1
%

)
0.

00
66

(+
2%

)
-0

.0
05

2(
-1

%
)

0.
00

33
(+

1%
)

0.
00

68
(+

2%
)

C
on

tin
ue

d
on

ne
xt

pa
ge



B.2 Numerical Results 135
T

ab
le

B
.2

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

T
=

50
T

=
10

0

L
=

2
L

=
4

L
=

6
L

=
2

L
=

4
L

=
6

α
1 31

=
0.

40

M
C

2S
LS

bi
as

0.
02

87
(+

7%
)

0.
12

80
(+

32
%

)
-0

.2
58

3(
-6

5%
)

0.
03

10
(+

8%
)

0.
03

46
(+

9%
)

-0
.0

31
2(

-8
%

)

M
C

FL
IM

L
bi

as
0.

06
60

(+
16

%
)

0.
11

78
(+

22
%

)
0.

04
51

(+
11

%
)

0.
03

98
(+

10
%

)
0.

03
50

(+
9%

)
0.

02
18

(+
5%

)

C
2S

LS
bi

as
0.

02
84

(+
1%

)
0.

03
31

(+
6%

)
0.

02
35

(+
6%

)
-0

.0
03

9(
-1

%
)

-0
.0

03
0(

-1
%

)
0.

00
77

(+
0%

)

C
FL

IM
L

bi
as

0.
00

08
(+

1%
)

0.
01

98
(+

5%
)

-0
.0

19
8(

-5
%

)
+

0.
00

42
(+

1%
)

0.
00

45
(+

1%
)

0.
00

03
(+

0%
)

α
2 11

=
1.

20

M
C

2S
LS

bi
as

-0
.1

68
0(

-1
4%

)
-0

.2
93

9(
-2

4%
)

-0
.2

55
2(

-2
1%

)
-0

.0
61

5(
-5

%
)

-0
.0

66
4(

-6
%

)
-0

.1
02

5(
-9

%
)

M
C

FL
IM

L
bi

as
-0

.0
64

2(
-5

%
)

-0
.0

83
4(

-7
%

)
-0

.0
30

0(
-2

%
)

-0
.0

28
1(

-2
%

)
-0

.0
20

2(
-2

%
)

-0
.0

12
2(

-1
%

)

C
2S

LS
bi

as
0.

02
92

(+
2%

)
0.

08
27

(+
7%

)
0.

04
70

(+
4%

)
0.

00
24

(+
0%

)
0.

00
97

(+
0%

)
0.

00
59

(+
0%

)

C
FL

IM
L

bi
as

-0
.0

29
7(

-2
%

)
0.

04
43

(-
4%

)
-0

.0
02

6(
-0

%
)

0.
00

41
(+

0%
)

-0
.0

05
2(

-0
%

)
-0

.0
05

7(
-0

%
)

α
2 21

=
0.

60

M
C

2S
LS

bi
as

-0
.0

64
6(

-1
1%

)
-0

.0
77

8(
-1

3%
)

-0
.0

92
3(

-1
5%

)
-0

.0
14

7(
-2

%
)

-0
.0

18
6(

-3
%

)
-0

.0
13

1(
-2

%
)

M
C

FL
IM

L
bi

as
-0

.0
10

5(
-2

%
)

-0
.0

12
2(

-2
%

)
0.

02
76

(+
5%

)
0.

00
12

(+
0%

)
0.

00
27

(+
0%

)
0.

00
93

(+
2%

)

C
2S

LS
bi

as
0.

01
68

(+
0%

)
-0

.0
07

9(
-0

%
)

0.
02

04
(+

4%
)

0.
00

13
(+

0%
)

0.
00

42
(+

0%
)

-0
.0

04
1(

-1
%

)

C
FL

IM
L

bi
as

-0
.0

01
8(

-0
%

)
0.

00
76

(+
0%

)
0.

01
31

(+
2%

)
0.

00
02

(+
0%

)
-0

.0
01

7(
-0

%
)

0.
00

13
(+

0%
)

α
2 31

=
−

0.
38

M
C

2S
LS

bi
as

0.
23

24
(+

61
%

)
0.

04
33

(+
11

%
)

0.
16

45
(+

43
%

)
0.

07
93

(+
21

%
)

0.
07

26
(+

19
%

)
0.

10
56

(+
28

%
)

M
C

FL
IM

L
bi

as
0.

15
70

(+
41

%
)

0.
05

05
(+

13
%

)
0.

09
27

(+
24

%
)

0.
05

17
(+

14
%

)
0.

04
11

(+
11

%
)

0.
03

90
(+

10
%

)

C
2S

LS
bi

as
0.

03
45

(+
9%

)
0.

02
00

/(
+

5%
)

0.
02

41
(+

6%
)

0.
01

48
(4

%
)

0.
00

43
(+

1%
)

-0
.0

18
6(

-5
%

)

C
FL

IM
L

bi
as

0.
02

99
(+

8%
)

0.
01

15
/(

+
3%

)
0.

01
31

(+
3%

)
0.

00
81

(+
2%

)
0.

00
23

(+
1%

)
0.

01
49

(+
4%

)

C
on

tin
ue

d
on

ne
xt

pa
ge



136 Appendix for Chapter 3
T

ab
le

B
.2

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

T
=

50
T

=
10

0

L
=

2
L

=
4

L
=

6
L

=
2

L
=

4
L

=
6

α
3 11

=
0.

65

M
C

2S
LS

bi
as

-0
.0

60
1(

-9
%

)
-0

.0
91

9(
-1

4%
)

-0
.2

44
5(

-3
8%

)
-0

.0
23

7(
-4

%
)

-0
.0

30
4(

-5
%

)
-0

.0
56

8(
-9

%
)

M
C

FL
IM

L
bi

as
-0

.0
23

8(
-4

%
)

-0
.0

13
3(

-2
%

)
0.

01
82

(+
3%

)
-0

.0
22

9(
-2

%
)

-0
.0

03
0(

-0
%

)
0.

00
32

(+
0%

)

C
2S

LS
bi

as
-0

.0
12

9(
-2

%
)

-0
.0

43
7(

-7
%

)
0.

01
82

(+
3%

)
0.

00
40

(+
1%

)
0.

00
42

(+
0%

)
0.

00
73

(+
1%

)

C
FL

IM
L

bi
as

-0
.0

01
8(

+
0%

)
0.

01
00

(+
2%

)
0.

01
04

(+
2%

)
-0

.0
01

2(
-0

%
)

-0
.0

02
4(

-0
%

)
-0

.0
01

5(
-0

%
)

α
3 21

=
1.

20

M
C

2S
LS

bi
as

-0
.1

11
6(

-9
%

)
-0

.2
87

1(
-2

4%
)

-0
.2

16
1(

-1
8%

)
-0

.0
51

8(
-4

%
)

-0
.0

46
6(

-4
%

)
-0

.0
83

4(
-7

%
)

M
C

FL
IM

L
bi

as
-0

.0
60

6(
-5

%
)

-0
.0

93
9(

-8
%

)
-0

.0
18

3(
-2

%
)

-0
.0

22
0(

-2
%

)
-0

.0
13

4(
-1

%
)

-0
.0

12
1(

-1
%

)

C
2S

LS
bi

as
-0

.0
19

2(
-2

%
)

-0
.0

38
2(

-3
%

)
0.

00
63

(+
1%

)
0.

00
24

(+
0%

)
0.

00
97

(+
0%

)
0.

00
60

(+
0%

)

C
FL

IM
L

bi
as

-0
.0

18
4(

-2
%

)
-0

.0
31

6(
-3

%
)

0.
00

41
(+

1%
)

-0
.0

04
5(

-0
%

)
-0

.0
04

0(
-0

%
)

-0
.0

04
2(

-0
%

)

α
3 31

=
0.

38

M
C

2S
LS

bi
as

-0
.0

94
1(

-2
5%

)
-0

.1
34

3(
-3

5%
)

-0
.1

42
5(

-3
8%

)
-0

.0
38

3(
-1

0%
)

-0
.0

36
1(

-1
0%

)
-0

.0
52

0(
-1

4%
)

M
C

FL
IM

L
bi

as
-0

.0
96

2(
-2

5%
)

-0
.0

92
4(

-2
4%

)
-0

.0
63

9(
-1

7%
)

-0
.0

34
6(

-9
%

)
-0

.0
28

3(
-7

%
)

-0
.0

31
7(

-8
%

)

C
2S

LS
bi

as
-0

.0
06

0(
-1

%
)

-0
.0

30
1(

-8
%

)
-0

.0
20

8(
-6

%
)

-0
.0

03
8(

-1
%

)
0.

00
48

(+
1%

)
-0

.0
26

8(
-7

%
)

C
FL

IM
L

bi
as

+
0.

00
91

(-
2%

)
-0

.0
29

2(
-8

%
)

-0
.0

18
4(

-5
%

)
0.

00
44

(+
1%

)
0.

00
46

(+
1%

)
-0

.0
09

3(
-2

%
)

α
4 11

=
0.

50

M
C

2S
LS

bi
as

-0
.0

00
5(

-0
%

)
-0

.1
26

7(
-2

5%
)

-0
.0

83
6(

-1
7%

)
0.

00
15

(+
0%

)
0.

00
53

(+
1%

)
-0

.0
02

2(
-0

%
)

M
C

FL
IM

L
bi

as
0.

02
31

(+
5%

)
-0

.0
18

3(
-4

%
)

0.
04

70
(9

%
)

0.
01

26
(+

3%
)

0.
01

23
(+

2%
)

0.
01

26
(+

3%
)

C
2S

LS
bi

as
-0

.0
03

1(
-1

%
)

0.
02

50
(+

5%
)

0.
01

17
(-

2%
)

0.
00

07
(+

0%
)

0.
00

10
(+

0%
)

0.
00

10
(+

0%
)

C
FL

IM
L

bi
as

-0
.0

04
6(

-1
%

)
0.

00
47

(+
1%

)
-0

.0
17

5(
-4

%
)

0.
00

19
(+

0%
)

0.
00

19
(+

0%
)

0.
00

33
(+

1%
)

C
on

tin
ue

d
on

ne
xt

pa
ge



B.2 Numerical Results 137
T

ab
le

B
.2

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

T
=

50
T

=
10

0

L
=

2
L

=
4

L
=

6
L

=
2

L
=

4
L

=
6

α
4 21

=
0.

60

M
C

2S
LS

bi
as

-0
.0

24
1(

-4
%

)
-0

.0
25

4(
-4

%
)

-0
.1

81
6(

-3
0%

)
-0

.0
05

9(
-1

%
)

-0
.0

19
4(

-3
%

)
-0

.0
45

4(
-8

%
)

M
C

FL
IM

L
bi

as
0.

00
93

(+
2%

)
0.

01
44

(+
2%

)
0.

04
04

(7
%

)
0.

00
75

(+
0%

)
0.

00
72

(+
1%

)
0.

00
52

(+
1%

)

C
2S

LS
bi

as
0.

00
11

(+
0%

)
-0

.0
15

7(
-2

%
)

-0
.0

13
5(

-2
%

)
0.

00
70

(-
0%

)
0.

00
23

(+
0%

)
0.

00
38

(+
0%

)

C
FL

IM
L

bi
as

0.
00

74
(-

1%
)

0.
00

73
(1

%
)

0.
01

49
(2

%
)

0.
00

66
(+

0%
)

0.
00

01
(+

0%
)

-0
.0

01
5(

-0
%

)

α
4 31

=
−

0.
20

M
C

2S
LS

bi
as

0.
02

01
(+

10
%

)
0.

25
38

(+
12

7%
)

-0
.0

08
4(

-4
%

)
0.

00
37

(+
2%

)
0.

01
71

(+
9%

)
0.

01
34

(+
7%

)

M
C

FL
IM

L
bi

as
0.

03
90

(+
20

%
)

0.
08

44
(+

42
%

)
0.

01
2(

+
6%

)
0.

00
61

(+
3%

)
0.

01
34

(+
7%

)
0.

01
34

(+
7%

)

C
2S

LS
bi

as
0.

00
36

(+
2%

)
0.

02
01

(+
10

%
)

-0
.0

02
4(

-0
%

)
-0

.0
01

2(
-1

%
)

-0
.0

10
40

(-
1%

)
0.

00
31

(+
2%

)

C
FL

IM
L

bi
as

+
0.

00
26

(+
1%

)
-0

.0
07

1(
-4

%
)

0.
00

25
(+

1%
)

-0
.0

01
4(

-1
%

)
0.

00
13

(+
1%

)
0.

00
26

(+
1%

)

c 1
1=

1.
00

M
C

2S
LS

bi
as

-0
.0

94
7(

-9
%

)
-0

.2
02

4(
-2

0%
)

-0
.2

68
3(

-2
7%

)
-0

.0
36

5(
-4

%
)

-0
.0

44
0(

-4
%

)
-0

.0
70

7(
-7

%
)

M
C

FL
IM

L
bi

as
-0

.0
38

0(
-4

%
)

-0
.1

23
7(

-1
2%

)
0.

03
38

(+
3%

)
-0

.0
08

9(
-1

%
)

-0
.0

04
5(

-0
%

)
-0

.0
01

4(
-0

%
)

C
2S

LS
bi

as
-0

.0
25

2(
+

2%
)

-0
.0

08
0(

-1
%

)
-0

.0
09

1(
-1

%
)

0.
00

24
(+

0%
)

0.
00

72
(+

1%
)

0.
00

81
(+

1%
)

C
FL

IM
L

bi
as

-0
.0

09
(-

0%
)

0.
00

01
(+

0%
)

0.
00

38
(+

0%
)

0.
00

13
(+

0%
)

-0
.0

02
8(

-0
%

)
-0

.0
02

3(
-0

%
)

c 2
1

=
0.

60

M
C

2S
LS

bi
as

-0
.0

57
2(

-1
0%

)
-0

.1
15

4(
-1

9%
)

-0
.1

10
8(

-1
8%

)
-0

.0
23

1(
-4

%
)

-0
.0

27
3(

-5
%

)
-0

.0
40

4(
-7

%
)

M
C

FL
IM

L
bi

as
-0

.0
31

7(
-5

%
)

-0
.0

37
6(

-6
%

)
0.

00
72

(+
1%

)
-0

.0
07

3(
-1

%
)

-0
.0

05
6(

-1
%

)
-0

.0
03

7(
-1

%
)

C
2S

LS
bi

as
-0

.0
12

7(
-2

%
)

-0
.0

29
1(

-5
%

)
-0

.0
07

6(
-1

%
)

0.
00

14
(+

0%
)

0.
00

31
(+

0%
)

0.
00

40
(+

1%
)

C
FL

IM
L

bi
as

-0
.0

08
2(

-1
%

)
-0

.0
20

8(
-3

%
)

-0
.0

05
1(

-1
%

)
0.

00
13

(+
0%

)
-0

.0
02

6(
-0

%
)

-0
.0

02
1(

-0
%

)

C
on

tin
ue

d
on

ne
xt

pa
ge



138 Appendix for Chapter 3
T

ab
le

B
.2

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

T
=

50
T

=
10

0

L
=

2
L

=
4

L
=

6
L

=
2

L
=

4
L

=
6

c 3
1

=
−

0.
50

M
C

2S
LS

bi
as

0.
04

71
(+

9%
)

0.
10

06
(+

20
%

)
0.

09
69

(+
19

%
)

0.
01

89
(+

4%
)

0.
02

47
(+

5%
)

0.
03

22
(+

6%
)

M
C

FL
IM

L
bi

as
0.

02
69

(+
5%

)
0.

03
22

(+
6%

)
-0

.0
08

7(
-2

%
)

0.
00

57
(+

1%
)

0.
00

48
(+

1%
)

0.
00

33
(+

1%
)

C
2S

LS
bi

as
-0

.0
08

7(
-2

%
)

-0
.0

23
2(

-5
%

)
-0

.0
09

7(
-2

%
)

0.
00

41
(-

0%
)

-0
.0

03
0(

-1
%

)
-0

.0
02

3(
-0

%
)

C
FL

IM
L

bi
as

0.
00

74
(+

1%
)

0.
01

73
(+

3%
)

0.
00

29
(+

1%
)

-0
.0

02
0(

-0
%

)
0.

00
23

(+
0%

)
0.

00
22

(+
0%

)

Ta
bl

e
B

.2
pr

es
en

ts
th

e
bi

as
an

d
th

e
bi

as
pr

op
or

tio
n

of
fo

ur
di

ffe
re

nt
es

tim
at

or
s

(t
he

un
co

rr
ec

te
d

tw
o

st
ag

e
le

as
t

sq
ua

re
s,

th
e

un
co

rr
ec

te
d

Fu
lle

rl
im

ite
d

in
fo

rm
at

io
n

m
ax

im
um

lik
el

ih
oo

d,
th

e
co

rr
ec

te
d

tw
o

st
ag

e
le

as
e

sq
ua

re
sa

nd
th

e
co

rr
ec

te
d

Fu
lle

rl
im

ite
d

in
fo

rm
at

io
n

m
ax

im
um

lik
el

ih
oo

d
es

tim
at

or
s)

co
m

pa
re

w
ith

th
e

ac
tu

al
va

lu
e

of
th

e
17

co
effi

ci
en

ts
we

ar
e

in
te

re
st

ed
in

.
T

he
sa

m
pl

e
siz

e
is

50
an

d
10

0
re

sp
ec

tiv
el

y,

an
d

fo
r

th
e

ov
er

-id
en

tifi
ca

tio
n

w
e

ch
oo

se
th

re
e

di
ffe

re
nt

ca
se

s
(L

=
2,

L
=

4
an

d
L

=
6)

**
T

he
M

on
te

C
ar

lo
bi

as
of

2S
LS

in
cr

ea
se

s
w

he
n

th
e

sa
m

pl
e

siz
e

in
cr

ea
se

s
fr

om
50

to
10

0
in

th
e

co
effi

ci
en

ts
α

1 21
=

0.
36

,w
he

n
L

=
4,

6;

α
2 31

=
−

0.
38

,w
he

n
L

=
4;

α
4 31

=
−

0.
2,

w
he

n
L

=
6)

.
It

se
em

s
ab

no
rm

al
(

we
su

pp
os

e
w

he
n

sa
m

pl
e

siz
e

in
cr

ea
se

s,
th

e
bi

as
wo

ul
d

de
cr

ea
se

),

ho
we

ve
r,

th
at

as
in

m
y

ot
he

r
ex

pe
rim

en
ts

,t
he

bi
as

in
cr

ea
se

s
w

he
n

th
e

sa
m

pl
e

siz
e

in
cr

ea
se

s
fro

m
50

to
70

,t
he

n
de

cr
ea

se
s

ag
ai

n
w

he
n

th
e

sa
m

pl
e

siz
e

in
cr

ea
se

s.
T

hu
s,

th
e

tr
en

d
of

th
e

bi
as

of
th

es
e

co
effi

ci
en

ts
de

cr
ea

se
s

w
he

n
sa

m
pl

e
siz

e
in

cr
ea

se
s.

Pl
ea

se
se

e
th

e
N

ot
e

ta
bl

e
D

.1
.



B.2 Numerical Results 139

Table B.3 The MSE of 2SLS, C2SLS, FLIML, and CFLIML when L=2, 4,
6; T=50, 100

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

β21 = 2.00

MSE of MC 2SLS 0.5033 0.6161 0.5510 0.1580 0.0956 0.1169

MSE of MC FLIML 0.3549 0.4109 0.4297 0.1554 0.0868 0.0952

MSE of C2SLS 0.4173 0.4360 0.4275 0.1334 0.0829 0.0991

MSE of CFLIML 0.2704 0.3209 0.4305 0.1565 0.0844 0.0897

β31 = 5.00

MSE of MC 2SLS 2.0151 1.8829 1.4067 0.6353 0.3847 0.3905

MSE of MC FLIML 1.4421 1.3333 1.0301 0.6237 0.3515 0.3280

MSE of C2SLS 1.5251 1.3289 1.0154 0.6003 0.3419 0.3509

MSE of CFLIML 1.1372 1.5247 1.0397 0.5971 0.3521 0.2962

α1
11 = 0.50

MSE of MC 2SLS 0.0399 0.0326 0.0175 0.0152 0.0104 0.0084

MSE of MC FLIML 0.0486 0.0460 0.0359 0.0165 0.0118 0.0102

MSE of C2SLS 0.0368 0.0322 0.0180 0.0160 0.0105 0.0097

MSE of CFLIML 0.0382 0.0394 0.0227 0.0168 0.0121 0.0101

α1
21 = 0.36

MSE of MC 2SLS 0.0703 0.0514 0.0438 0.0315 0.0267 0.0254

MSE of MC FLIML 0.0820 0.0932 0.0890 0.0342 0.0302 0.0308

MSE of C2SLS 0.0464 0.0477 0.0451 0.0332 0.0290 0.0277

MSE of CFLIML 0.0550 0.0520 0.0438 0.0338 0.0303 0.0247

α1
31 = 0.40

MSE of MC 2SLS 0.3922 0.2388 0.3113 0.1783 0.1446 0.1257

MSE of MC FLIML 0.4544 0.4071 0.5253 0.1949 0.1640 0.1553

MSE of C2SLS 0.3392 0.2297 0.3106 0.1542 0.1445 0.1302

MSE of CFLIML 0.3877 0.2178 0.3112 0.1652 0.1441 0.1597

α2
11 = 1.20

MSE of MC 2SLS 0.1794 0.1567 0.1102 0.0585 0.0332 0.0362

MSE of MC FLIML 0.1452 0.1347 0.1032 0.0591 0.0341 0.0346

MSE of C2SLS 0.1774 0.1581 0.1012 0.0546 0.0337 0.0308

MSE of CFLIML 0.1422 0.1348 0.1034 0.0551 0.0353 0.0331

α2
21 = 0.60

MSE of MC 2SLS 0.1081 0.0625 0.0577 0.0375 0.0294 0.0250

MSE of MC FLIML 0.1055 0.1055 0.1085 0.0406 0.0336 0.0310

MSE of C2SLS 0.1056 0.0610 0.0569 0.0398 0.0294 0.0272

MSE of CFLIML 0.1056 0.0609 0.1063 0.0410 0.0323 0.0313

Continued on next page
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Table B.3 – continued from previous page

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

α2
31 = −0.38

MSE of MC 2SLS 0.4005 0.1734 0.1813 0.1604 0.1238 0.1123

MSE of MC FLIML 0.4043 0.2999 0.3119 0.1695 0.1379 0.1287

MSE of C2SLS 0.4003 0.1641 0.1802 0.1409 0.1238 0.1107

MSE of CFLIML 0.3935 0.1707 0.1811 0.1500 0.1238 0.1121

α3
11 = 0.65

MSE of MC 2SLS 0.0940 0.0415 0.1167 0.0331 0.0214 0.0245

MSE of MC FLIML 0.0928 0.0612 0.1369 0.0355 0.0235 0.0274

MSE of C2SLS 0.0923 0.0404 0.1069 0.0328 0.0213 0.0270

MSE of CFLIML 0.0939 0.0553 0.1165 0.0363 0.0209 0.0299

α3
21 = 1.20

MSE of MC 2SLS 0.1317 0.1758 0.1044 0.0550 0.0348 0.0401

MSE of MC FLIML 0.1306 0.1725 0.1277 0.0570 0.0379 0.0426

MSE of C2SLS 0.1300 0.1752 0.0833 0.0545 0.0342 0.0417

MSE of CFLIML 0.1307 0.1732 0.1041 0.0546 0.0361 0.0381

α3
31 = 0.38

MSE of MC 2SLS 0.2642 0.1577 0.1408 0.1273 0.1057 0.0923

MSE of MC FLIML 0.3152 0.2556 0.2438 0.1384 0.1205 0.1119

MSE of C2SLS 0.2138 0.1483 0.1357 0.1264 0.1068 0.0920

MSE of CFLIML 0.2453 0.1444 0.1400 0.1272 0.1132 0.1114

α4
11 = 0.50

MSE of MC 2SLS 0.0592 0.0523 0.0434 0.0196 0.0124 0.0188

MSE of MC FLIML 0.0680 0.0647 0.0856 0.0213 0.0141 0.0146

MSE of C2SLS 0.0584 0.0522 0.0434 0.0203 0.0124 0.0136

MSE of CFLIML 0.0592 0.00639 0.0448 0.0180 0.0120 0.0129

α4
21 = 0.60

MSE of MC 2SLS 0.0631 0.0317 0.0791 0.0252 0.0203 0.0216

MSE of MC FLIML 0.0690 0.0552 0.1099 0.0274 0.0228 0.0249

MSE of C2SLS 0.0635 0.0301 0.0677 0.0260 0.0199 0.0234

MSE of CFLIML 0.0701 0.0438 0.0850 0.0264 0.0203 0.0216

α4
31 = −0.20

MSE of MC 2SLS 0.2089 0.1930 0.1031 0.0879 0.0663 0.0602

MSE of MC FLIML 0.2472 0.2344 0.2041 0.0951 0.0746 0.0734

MSE of C2SLS 0.2075 0.1852 0.1031 0.0820 0.0661 0.0585

MSE of CFLIML 0.2003 0.1892 0.1500 0.0764 0.0663 0.0602

Continued on next page
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Table B.3 – continued from previous page

T = 50 T = 100

L = 2 L = 4 L = 6 L = 2 L = 4 L = 6

c11 = 1.00

MSE of MC 2SLS 0.1111 0.0892 0.1125 0.0277 0.0138 0.0169

MSE of MC FLIML 0.0932 0.0890 0.1076 0.0282 0.0140 0.0159

MSE of C2SLS 0.0982 0.0901 0.1042 0.0254 0.0135 0.0137

MSE of CFLIML 0.0980 0.0890 0.1038 0.0211 0.0145 0.0149

c21 = 0.60

MSE of MC 2SLS 0.0214 0.0209 0.0177 0.0070 0.0036 0.0046

MSE of MC FLIML 0.0154 0.0147 0.0148 0.0069 0.0035 0.0041

MSE of C2SLS 0.0150 0.0203 0.0086 0.0069 0.0034 0.0038

MSE of CFLIML 0.0161 0.0167 0.0152 0.0070 0.0037 0.0048

c31 = −0.50

MSE of MC 2SLS 0.0139 0.0160 0.0138 0.0049 0.0030 0.0030

MSE of MC FLIML 0.0103 0.0114 0.0122 0.0050 0.0029 0.0027

MSE of C2SLS 0.0097 0.0164 0.0115 0.0040 0.0026 0.0031

MSE of CFLIML 0.0100 0.0131 0.0124 0.0046 0.0029 0.0023

Table B.3 presents the mean squared errors of the 17 target coefficients in four different

estimators (the uncorrected two stage least square, the uncorrected Fuller limited information

maximum likelihood, the corrected two stage lease square and the corrected Fuller limited

information maximum likelihood estimators). The sample size is 50 and 100 respectively, and

for the over-identification we choose three different cases (L = 2, L = 4 and L = 6).
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Appendix for Chapter 4

C.1 The evaluation of Theorem 3

E(α̂1 −α1) = E
{
H∗Z̄

′
ṽ1 +H∗W̃ ∗′

ṽ1 −H∗Z̄
′
W̃ ∗H∗Z̄

′
ṽ1 −H∗W̃ ∗′

Z̄H∗Z̄
′
ṽ1 (C.1)

−H∗Z̄
′
W̃ ∗H∗W̃ ∗′

ṽ1

−H∗W̃ ∗′
Z̄H∗W̃ ∗′

ṽ1 −H∗
(
W̃ ∗′

W̃ ∗ −E(W̃ ∗′
W̃ ∗)

)
H∗Z̄

′
ṽ1

−H∗
(
W̃ ∗′

W̃ ∗ −E(W̃ ∗′
W̃ ∗)

)
H∗W̃ ∗′

ṽ1
}

+o(T −1).

Clearly, terms involving a product of an odd number of normal random variables

have zero expectation and these items can be eliminated. Hence, we should evaluate

the first four terms and the last term in equation (C.1). In section 4.3 we define

H∗ =
[
E(Z ′

Z)
]−1

and W̃ ∗ =
[∑p

i=1
∑T −1

t=i DtṼ Jt−iΨ
′
i : 0

]
. Hence we can write the

expectation for each term:

(i) E(H∗Z̄
′
ṽ1) = H∗Z̄E(ṽ1) = 0,

(ii) E(H∗W̃ ∗′
ṽ1) = H∗E(W̃ ∗′

ṽ1).
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The definition of W̃ ∗′ is from section 2.2, and following Nagar (1959) we decompose

the reduced form disturbance matrix Ṽ into two independent parts as:

Ṽ = S̃ + ṽ1Ω̃
′
.1,

where Ω̃.1 is the first column of the reduced form disturbance’s covariance matrix, S̃,

and ṽ1 are independent, then we can rewrite W̃ ∗ as:

W̃ ∗ =
 p∑

i=1

T −1∑
t=i

DtS̃Jt−iΨ
′
i : 0

+
 p∑

i=1

T −1∑
t=i

Dtṽ1Ω̃
′
.1Jt−iΨ

′
i : 0

 . (C.2)

Therefore for the second term (ii),the expectation becomes:

E(W̃ ∗′
ṽ1) = E


 p∑

i=1

T −1∑
t=i

Dtṽ1Ω̃
′
.1Jt−iΨ

′
i : 0


′

ṽ1


= E


p∑

i=1

T −1∑
t=i

ΨiJ
′
t−iΩ̃.1ṽ

′
1Dt′

ṽ1


= E


p∑

i=1

T −1∑
t=i

ΨiJ
′
t−iΩ̃.1E

(
ṽ

′
1Dt′

ṽ1
) ,

where E
(
ṽ

′
1Dt′

ṽ1
)

= 0, t = 1, ...,T −1. Notice that the first part of equation (C.2 ) is

independent of ṽ1, hence this element is eliminated in evaluation. It is obvious that

our final result of (ii) is:

E(H∗W̃ ∗′
ṽ1) = 0

(iii) E(−H∗Z̄
′
W̃ ∗H∗Z̄

′
ṽ1) = −H∗Z̄

′
E(W̃ ∗H∗Z̄

′
ṽ1)

= −H∗Z̄
′
E


 p∑

i=1

T −1∑
t=i

Dtṽ1Ω̃
′
.1Jt−iΨ

′
i : 0

H∗Z̄ ′ṽ1


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= −H∗Z̄
′

p∑
i=1

T −1∑
t=i

Dtṽ1ṽ
′
1Z̄H∗ (IP : 0)

′
ΨiJ

′
t−iΩ̃.1,

where P =∑G
m=1 p(m) which is clarified in equation (4.2).

(iv) E(−H∗W̃ ∗′
Z̄H∗Z̄

′
ṽ1) = −H∗E(W̃ ∗′

Z̄H∗Z̄
′
ṽ1)

= −H∗E


 p∑

i=1

T −1∑
t=i

Dtṽ1Ω̃
′
.1Jt−iΨ

′
i : 0


′

Z̄H∗Z̄ ′ṽ1


= −H∗tr

 p∑
i=1

T −1∑
t=i

Z̄
′
DtZ̄H∗

(Jt−iΨ
′
i : 0

)′

Ω̃.1.

Then, we add the first four items together which yields:

−H∗
p∑

i=1

T −1∑
t=i

Λ∗
t

(
Jt−iΨ

′
i : 0

)′

Ω̃.1 (C.3)

where Λ∗
t = Z̄

′
DtZ̄H∗ + tr

(
Z̄

′
DtZ̄H∗

)
IP +Q, and here P = ∑G

m=1 p(m) and Q =∑K
n=1 q(n) which is clarified in equation (4.2).

The remaining term is:

(v) E
{
−H∗

(
W̃ ∗′

W̃ ∗ −E(W̃ ∗′
W̃ ∗)

)
H∗W̃ ∗′

ṽ1
}

= −H∗E
{(

W̃ ∗′
W̃ ∗

)
H∗W̃ ∗′

ṽ1
}

+H∗E(W̃ ∗′
W̃ ∗)H∗E(W̃ ∗′

ṽ1)

= −H∗E
{(

W̃ ∗′
W̃ ∗

)
H∗W̃ ∗′

ṽ1
}

since E(W̃ ∗′
ṽ1) = 0

= −H∗E



∑p

i=1
∑T −1

t=i ΨiJ
′
t−iṼ

′Dt′∑p
l=1

∑T −1
s=l DsṼ Js−lΨ

′
l 0

0 0

H∗

×


∑p

b=1
∑T −1

r=b ΨbJ
′
r−bṼ

′Dr′

0

 ṽ1


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= −H∗E



∑p

i=1
∑T −1

t=i

∑p
l=1

∑T −1
s=l

∑p
b=1

∑T −1
r=b ΨiJ

′
t−iṼ

′Dt′
DsṼ Js−lΨ

′
lH

∗∗ΨbJ
′
r−bṼ

′Dr′

0



× ṽ1

 ,

recalling that in section 2.3, we defined H∗∗ = I
′
2H∗I2 is the P ×P leading submatrix

of matrix H∗, where I2 =

IP

0

 which is (P +Q)×P selection matrix.

Follow with Mikhail (1972) Lemma 6:

Suppose A, B and C are constant matrices of such dimensions that the various products

exists:

E{Ṽ
′
AṼ BṼ

′
Cṽ1} = Ω̃BΩ̃.1trCtrA+Ω̃B

′
Ω̃1.tr(AC

′
)+ Ω̃.1tr(AC)tr(B′Ω̃). (C.4)

Hence, we can evaluate the expectation by using this lemma:

E


p∑

i=1

T −1∑
t=i

p∑
l=1

T −1∑
s=l

p∑
b=1

T −1∑
r=b

ΨiJ
′
t−iṼ

′Dt′
DsṼ Js−lΨ

′
lH

∗∗ΨbJ
′
r−bṼ

′Dr′
ṽ1


=
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i=1

T −1∑
t=i
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l=1

T −1∑
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b=1

T −1∑
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ΨiJ
′
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′
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tr
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}

+
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l=1
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b=1

T −1∑
r=b

ΨiJ
′
t−iΩ̃Jr−lΨ

′
lH

∗∗ΨbJ
′
s−bΩ̃1.tr

{
Dt′

DsDr
}

+
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t=i
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T −1∑
s=l

p∑
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T −1∑
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ΨiJ
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t−iΩ̃.1tr

{
Dt′

DsDr′}
tr
{
Jr−lΨ

′
lH

∗∗ΨbJ
′
s−bΩ̃

}
.
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The first term equals to zero, since tr
{
Dr′}= tr{Dr} = 0. The trace in the second

term would be:

tr
{
Dt′

DsDr
}

=


0, t ̸= s+ r

T − t, t = s+ r

.

The trace in the third term becomes:

tr
{
Dt′

DsDr′}
=


0, s ̸= t+ r

T − s, s = t+ r

.

Hence, finally, it has been shown that:

−H∗E
{(

W̃ ∗′
W̃ ∗

)
H∗W̃ ∗′

ṽ1
}

(C.5)

= −H∗
p∑
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p∑
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b=1

T −1∑
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(T − s)ΨlJ
′
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′
bH

∗∗ΨiJ
′
t−iΩ̃.1

−H∗
p∑
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′
s−lΩ̃Jr−be

′
bH

∗∗
}

ΨiJ
′
t−iΩ̃.1
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t=i

p∑
l=1

T −1∑
r=l
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b=i+l

T −1∑
s=t+r

(T − s)(Js−lΨ
′
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′
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′
bH

∗∗ΨiJ
′
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−H∗
p∑

i=1

T −1∑
t=i
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l=1

T −1∑
r=l

p∑
b=i+l

T −1∑
s=t+r

(T − s)tr
{
(ΨlJ

′
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′
bH

∗∗
}

(Jt−iΨ
′
i : 0)

′
Ω̃.1.

Collecting equation (C.3) and (C.5), Theorem 3 is proved. Notice that in section

4.3 we define H∗ =
[
E(Z ′

Z)
]−1

. It can be evaluated as follows. We start from
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Z̄
′
Z̄ +E(W̃ ∗′

W̃ ∗), then:

E(W̃ ∗′
W̃ ∗) = E



∑p

i=1
∑T −1

t=i ΨiJ
′
t−iṼ

′Dt′∑p
l=1

∑T −1
s=l DsṼ Js−lΨ

′
l 0

0 0


 .

Using Mikhail (1972) lemma 6,we can write:

E
(
Ṽ ′Dt′

DsṼ
)

= Ω̃tr
{
Dt′

Ds
}

=


0, t ̸= s

(T − t)Ω̃, t = s.

Hence,

H∗ =

Z̄
′
Z̄ +

p∑
i=1

p∑
l=1

T −1∑
t=i,l

(T − t)

ΨiJ
′
t−iΩ̃Jt−lΨ

′
l 0

0 0




−1

.
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C.2 Numerical Results

Table C.1 Bias approximation, MC OLS bias, MC COLS bias and BOLS; T=50, 100

T = 50 T = 100

γ1
11 = 0.1774

Bias Approximation -0.0341(-19%) -0.0142 (8%)

MC OLS -0.0330 (-19%) -0.0146 (-8%)

MC COLS -0.0071(-4%) -0.0020 (-1%)

BOLS -0.0107(-6%) -0.0020 (-1%)

γ1
21 = 0.0258

Bias Approximation -0.0387(150 %) -0.0211 (82%)

MC OLS -0.0375(-145%) -0.0198 (-77%)

MC COLS -0.0041(-16%) -0.0010 (-4%)

BOLS -0.0122(-47%) -0.0023 (-9%)

γ1
31 = −0.1177

Bias Approximation -0.0301(-25 %) 0.0001 (0%)

MC OLS -0.0254(-22%) 0.0004 (0%)

MC COLS -0.0032(-3%) -0.0005 (-1%)

BOLS -0.0109(-9%) -0.0007 (-1%)

γ2
11 = 0.0454

Bias Approximation -0.0109(-24%) -0.0055 (-12%)

MC OLS -0.0100(-22%) -0.0053(-12%)

MC COLS -0.0005(-1%) -0.0007(-2%)

BOLS -0.0050(-11%) -0.0007(-2%)

γ2
21 = 0.1626

Bias Approximation -0.0119(-7 %) -0.0041 (-3%)

MC OLS -0.0132 (-8%) -0.0056 (-3%)

MC COLS -0.0027(-2%) -0.0009 (-0%)

BOLS -0.0062(-4%) -0.0015 (-1%)

γ2
31 = −0.0768

Bias Approximation -0.0518(-67 %) -0.0251 (-33%)

MC OLS -0.0480 (-62%) -0.0232 (-30%)

MC COLS -0.0097(-13%) -0.0010 (-1%)

BOLS -0.0193(-25%) -0.0041 (-5%)

γ3
11 = −0.0397

Bias Approximation -0.0061(-15 %) -0.0015 (-4%)

MC OLS -0.0056 (-14%) -0.0012 (-3%)

MC COLS -0.0010(3%) -0.0004 (-1%)

BOLS -0.0014(-4%) -0.0002 (-1%)

Continued on next page
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Table C.1 – continued from previous page

T = 50 T = 100

γ3
21 = 0.2487

Bias Approximation -0.0135(-5%) -0.0043 (-2%)

MC OLS -0.0100 (-4%) -0.0039 (-2%)

MC COLS -0.0042(-2%) -0.0011 (-0%)

BOLS -0.0038(-2%) -0.0004 (-0%)

γ3
31 = 0.3409

Bias Approximation 0.0172(+5%) 0.0023 (+1%)

MC OLS 0.0132 (+4%) 0.0021 (+1%)

MC COLS 0.0031(+1%) -0.0002 (-0%)

BOLS 0.0037(+1%) -0.0002 (-0%)

γ4
11 = 0.0371

Bias Approximation -0.0293(-77 %) -0.0135 (-36%)

MC OLS -0.0235 (-63%) -0.0126 (-34%)

MC COLS -0.0012(-3%) -0.0020 (-6%)

BOLS -0.0093(-25%) -0.0024 (-6%)

γ4
21 = 0.1751

Bias Approximation 0.0041(+2 %) -0.0023 (+1%)

MC OLS 0.0033 (+1%) 0.0022 (+1%)

MC COLS 0.0017(+1%) -0.0000 (+0%)

BOLS 0.0010(+1%) -0.0000 (+0%)

γ4
31 = 0.1584

Bias Approximation 0.0206(+13 %) 0.0088 (+6%)

MC OLS 0.0122 (+8%) 0.0088 (+6%)

MC COLS 0.0029(+2%) 0.0017 (+1%)

BOLS 0.0060(+4%) 0.0016 (+1%)

π11 = −0.0806

Bias Approximation -0.0.0301(-37 %) -0.0139 (-17%)

MC OLS -0.0233 (-29%) -0.0101 (-13%)

MC COLS -0.0007(-1%) -0.0010 (-1%)

BOLS -0.0091(-11%) -0.0019 (-2%)

π21 = 0.1697

Bias Approximation -0.0041(-2 %) -0.0020 (-1%)

MC OLS -0.0034 (-2%) -0.0014 (-1%)

MC COLS -0.0009(-0%) -0.0001 (-0%)

BOLS -0.0013(-1%) -0.0003(-0%)

Continued on next page
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Table C.1 – continued from previous page

T = 50 T = 100

π31 = −0.1414

Bias Approximation 0.0030(+2 %) 0.0006 (+0%)

MC OLS 0.0023 (2%) 0.0006 (+0%)

MC COLS 0.0015(+1%) -0.0001 (-0%)

BOLS 0.0010(+1%) 0.0001(+0%)

π41 = 0.1482

Bias Approximation 0.0000(+0 %) 0.0001 (0%)

MC OLS -0.0000 (-0%) 0.0012 (+1%)

MC COLS 0.0003(+0%) -0.0003 (-0%)

BOLS 0.0001(+0%) 0.0002 (+0%)

π51 = −0.0474

Bias Approximation 0.0009(+2 %) -0.0004 (-1%)

MC OLS 0.0005 (+1%) -0.0004 (-1%)

MC COLS 0.0001(+0%) 0.0000 (+0%)

BOLS 0.0003(+1%) -0.0001 (-0%)

π61 = −0.0249

Bias Approximation -0.0029(-12 %) -0.0010 (-4%)

MC OLS -0.0032 (-14%) -0.0006 (-2%)

MC COLS -0.0007(-3%) +0.0003 (+1%)

BOLS -0.0011(-4%) -0.0001 (-0%)

π71 = 0.1427

Bias Approximation 0.0102(+7 %) 0.0059 (+4%)

MC OLS 0.0086 (+6%) 0.0043 (+3%)

MC COLS -0.0013(-1%) 0.0010 (+0%)

BOLS 0.0031(+2%) 0.0007 (+0%)

Table C.1 presents the bias approximation of the 19 first reduced form coefficients (the

over-identification level of the structural form is L = 2) in the ordinary least square

estimator. It also reports the bias of the Monte Carlo ordinary least square estimator,

the bias of the corrected ordinary least square estimator, and the residual bootstrap

ordinary least square estimator. The sample size is 50 and 100 respectively.
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Table C.2 The MSE of OLS, COLS, BOLS; T=50, 100

T = 50 T = 100

γ1
11 = 0.1774

MSE of MC OLS 0.0072 0.0026

MSE of MC COLS 0.0060 0.0020

MSE of BOLS 0.0068 0.0025

γ1
21 = 0.0258

MSE of MC OLS 0.0129 0.0054

MSE of MC COLS 0.0120 0.0049

MSE of BOLS 0.0125 0.0052

γ1
31 = −0.1177

MSE of MC OLS 0.0750 0.0286

MSE of MC COLS 0.0759 0.0279

MSE of BOLS 0.0771 0.0294

γ2
11 = 0.0454

MSE of MC OLS 0.0049 0.0024

MSE of MC COLS 0.0049 0.0022

MSE of BOLS 0.0051 0.0025

γ2
21 = 0.1626

MSE of MC OLS 0.0122 0.0047

MSE of MC COLS 0.0117 0.0050

MSE of BOLS 0.0129 0.0049

γ2
31 = −0.0768

MSE of MC OLS 0.0604 0.0223

MSE of MC COLS 0.0521 0.0223

MSE of BOLS 0.0614 0.025

γ3
11 = −0.0397

MSE of MC OLS 0.0067 0.0026

MSE of MC COLS 0.0068 0.0021

MSE of BOLS 0.0072 0.0027

γ3
21 = 0.2487

MSE of MC OLS 0.0110 0.0048

MSE of MC COLS 0.0100 0.0043

MSE of BOLS 0.0119 0.0051

γ3
31 = 0.3409

MSE of MC OLS 0.0484 0.0188

MSE of MC COLS 0.0472 0.0190

MSE of BOLS 0.0497 0.0194

γ4
11 = 0.0371

MSE of MC OLS 0.0057 0.0023

MSE of MC COLS 0.0055 0.0020

MSE of BOLS 0.0055 0.0022

Continued on next page
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Table C.2 – continued from previous page

T = 50 T = 100

γ4
21 = 0.1751

MSE of MC OLS 0.0091 0.0039

MSE of MC COLS 0.0093 0.0031

MSE of BOLS 0.0095 0.0040

γ4
31 = 0.1584

MSE of MC OLS 0.0542 0.0144

MSE of MC COLS 0.0493 0.0137

MSE of BOLS 0.0545 0.0144

π11 = −0.0806
MSE of MC OLS 0.0053 0.0016

MSE of MC COLS 0.0051 0.0015

MSE of BOLS 0.0049 0.0015

π21 = 0.1697
MSE of MC OLS 0.0003 0.0001

MSE of MC COLS 0.0002 0.0002

MSE of BOLS 0.0003 0.0001

π31 = −0.1414
MSE of MC OLS 0.0002 0.0001

MSE of MC COLS 0.0002 0.0001

MSE of BOLS 0.0002 0.0001

π41 = 0.1482
MSE of MC OLS 0.0005 0.0002

MSE of MC COLS 0.0003 0.0002

MSE of BOLS 0.0005 0.0002

π51 = −0.0474
MSE of MC OLS 0.0003 0.0001

MSE of MC COLS 0.0003 0.0001

MSE of BOLS 0.0003 0.0001

π61 = −0.0249
MSE of MC OLS 0.0005 0.0001

MSE of MC COLS 0.0005 0.0001

MSE of BOLS 0.0005 0.0001

π71 = 0.1427
MSE of MC OLS 0.0006 0.0001

MSE of MC COLS 0.0006 0.0001

MSE of BOLS 0.0006 0.0001

Table C.2 presents the mean squared errors of the 19 target coefficients

in least squares on three occasions (the uncorrected ordinary least

square estimator, the corrected ordinary least square estimator, and

the residual bootstrap ordinary least square estimator) in the pth

order reduced form. The sample size is 50 and 100 respectively.
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Appendix for the Note table

D.1 Other Experiments for 2SLS

Table D.1 Percentages of the bias of 2SLS estimation, when L= 4, 6; T=50,
70, 90, 100

L = 4 L = 6

T = 50 T = 70 T = 90 T = 100 T = 50 T = 70 T = 90 T = 100

α1
21 = 0.36 -3% 8% 6% 5% 4% 8% 8% 8%

α2
31 = −0.38 - - - - 11% 25% 21% 19%

α4
31 = −0.20 -4% 51% 18% 7% - - - -

Table D.1 presents the trend of some related coefficients in certain cases. The over-

identification level is L = 4,6. The sample size is 50, 70, 90 and 100 respectively. Note that

when L = 4, the bias of α2
31 decreases when sample size increases and so does α4

31, when

L = 6. Hence these two are not in this abnormal case.
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Appendix for the Programming

Main Script

% Main

%MAX_SAMPLE_SIZE = 1000;

%matlabpool close force

%matlabpool open

clear all;

load 'exgenous.mat'

config.model(1).Bi = [ 1.000 2.000 5.000 ;

1.110 1.000 8.000;

3.000 4.600 1.000]';

config.model(1).Ai1 = [ 0.500 0.360 0.400 ;

0.560 0.620 0.900 ;

0.450 0.280 0.320 ]';
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config.model(1).Ai2 = [ 1.200 0.600 0.380;

0.800 0.720 0.500;

0.820 0.900 0.780]';

config.model(1).Ai3 = [ 0.65 1.200 0.380;

0.46 0.720 0.560;

0.800 0.310 0.740]';

config.model(1).Ai4 = [ 0.500 0.600 0.200;

0.360 0.460 0.500;

0.200 0.580 0.700]';

config.model(1).Ci = [ 1.000 0.600 0.5 0 0 0

0 0.00 0.00 0.00 0.00;

1.000 0 0 0.750 0.24 0.35

0.68 0 0.00 0.00 0.00;

1.000 0 0 0 0 0.00

0.00 0.15 0.86 0.58 0.33]';

% config.model(1).Ci = [ 1.000 0.600 0.5 0 0 0

0.00 0.00 0.00 ;

% 1.000 0 0 0.750 0.24 0.35

0.00 0.00 0.00 ;

% 1.000 0 0 0 0 0.00

0.15 0.86 0.58 ]';

% config.model(1).Ci = [ 1.000 0.600 0.5 0 0

0.00 0.00 ;

% 1.000 0 0 0.750 0.24

0.00 0.00 ;
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% 1.000 0 0 0 0

0.15 0.86 ]';

config.model(1).Sigma = [ 0.3524 0.3448 0.3112;

0.3448 0.3668 0.2984;

0.3112 0.2984 0.4064];

config.eq = 1;

config.replications = 20000;

config.bst = 199;

config.X = X_N_M0_V1_B09;

%Exgenous, Normal Distribution, Mean=0, Variance=1, AR(1) Beta=0.9

config.constT = 1;

config.dList = [1]; % 1=Normal; 2=Uniform

config.tList = [100];

%config.tlist = [50]

config.eList=[...

10001 ...

10002 ...

10003 ...

30011 ...

30021 ...

30012 ...

];

doMonteCarlosSimulation(config);

%matlabpool close

Monte Carlo Experiment
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% domontecarlosimulation

function doMonteCarlosSimulation (config)

replications = config.replications; % number of replications

eq = config.eq; % esitmated equation

bst = config.bst; % number of bootstrapping

constT = config.constT; % with/without constant term

mListLen = length(config.model);

tListLen = length(config.tList);

dListLen = length(config.dList);

eListLen = length(config.eList);
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eList = config.eList;

O = zeros(mListLen,eListLen,tListLen,dListLen,17,14);

%R1 = zeros(eListLen,1,r);

%** LAYER 1: Model*********************************

for mptr = 1:mListLen

Bi = config.model(mptr).Bi;

Ci = config.model(mptr).Ci;

Ai1 = config.model(mptr).Ai1;

Ai2 = config.model(mptr).Ai2;

Ai3 = config.model(mptr).Ai3;

Ai4 = config.model(mptr).Ai4;

Sigma = config.model(mptr).Sigma;

Gamma1 = 1 * Ai1/Bi;
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Gamma2 = 1 * Ai2/Bi;

Gamma3 = 1 * Ai3/Bi;

Gamma4 = 1 * Ai4/Bi;

Pi = 1 * Ci/Bi;

Omega = Bi'\Sigma/Bi;

EigVal = polyeig(Bi, Ai1, Ai2, Ai3, Ai4);

rho = chol(Omega);

% Get included (endogenous/lagged endogenous/exgenous) index

indX = find(Ci(:,eq) ~= 0);

indY = find(Bi(:,eq) ~= 0);

indY(eq,:) = [];

indLY = find(Ai1(:,eq) ~= 0);
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indL2Y = find(Ai2(:,eq) ~= 0);

indL3Y = find(Ai3(:,eq) ~= 0);

indL4Y = find(Ai4(:,eq) ~= 0);

% Ignore the index of (Ci) with row elements all equal to zero

inxX0 = find(sum(abs(Ci),2) ~= 0);

exdX = find(Ci(:,eq) == 0);

exdX = intersect(exdX, inxX0);

% Ignore the index of (Bi) with row elements all equal to zero

inxYO = find(sum(abs(Bi),2) ~= 0);

exdY = find(Bi(:,eq) == 0);

exdY = intersect(exdY, inxYO);
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% Ignore the index of (Ai) with row elements all equal to zero

inxLYO = find(sum(abs(Ai1),2) ~= 0);

exdLY = find(Ai1(:,eq) == 0);

exdLY = intersect(exdLY, inxLYO);

inxL2YO = find(sum(abs(Ai2),2) ~= 0);

exdL2Y = find(Ai2(:,eq) == 0);

exdL2Y = intersect(exdL2Y, inxL2YO);

inxL3YO = find(sum(abs(Ai3),2) ~= 0);

exdL3Y = find(Ai3(:,eq) == 0);

exdL3Y = intersect(exdL3Y, inxL3YO);

inxL4YO = find(sum(abs(Ai4),2) ~= 0);

exdL4Y = find(Ai4(:,eq) == 0);
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exdL4Y = intersect(exdL4Y, inxL4YO);

% Coefficients(True value) of estimated equation

delta1 = 1*[Bi(indY, eq); Ai1(indLY, eq);Ai2(indL2Y,

eq);Ai3(indL3Y, eq);Ai4(indL4Y, eq); Ci(indX, eq)];

delta1Len = length(delta1);

K = length([indX; exdX ]);

G = length([indY; exdY]) + 1;

J = length([indLY; exdLY; indL2Y; exdL2Y; indL3Y; exdL3Y; indL4Y;

exdL4Y]);

k = length(indX );

g = length(indY);

j = length([indLY; indL2Y; indL3Y; indL4Y] );

L = (K + J) (k + j) g;
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%** LAYER 2: Sample Size ******************************************

for tptr = 1:tListLen

T = config.tList(tptr);

rw = 200; % runway length

if constT == 1

cX = config.X(rw+1:T+rw,1:K);

% below is for calculation of expected inital value of Y

mX=mean(cX);

ftX = config.X(rw T+1:rw,1:K);

else

cX = config.X(rw+1:T+rw,2:K+1);
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% below is for calculation of expected inital value of Y

mX=mean(cX);

ftX = config.X(rw T+1:rw,2:K+1);

end

X = cX;

X1 = cX(:,indX);

X2 = cX(:,exdX);

%** LAYER 3: Distributions ************************************

for dptr = 1:dListLen

dist = config.dList(dptr);
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% Below is for calculation of expected starting value of Y

% instead of setting as zero or other arbitrary choice.

Iy=eye(3);

mY=(mX*Pi)/(Iy Gamma1 Gamma2 Gamma3 Gamma4);

l3my0 =mY;

l2my0 =mY;

lmy0 =mY;

my0 =mY;

y01=zeros(T,G);

for i=1:10000

[temp11, ~, ~, ~ , ~ ] = genY(l3my0,l2my0,lmy0,my0, ftX, rho,

Gamma1, Gamma2, Gamma3, Gamma4, Pi, T, G, dist) ;

y01 =y01+temp11;

end
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y0=y01(T,:)/10000;

ly0 =y01(T1,:)/10000;

l2y0 =y01(T2,:)/10000;

l3y0 =y01(T3,:)/10000;

%** LAYER 4: Simulation ***************************************
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V = zeros(delta1Len,eListLen,replications);

R = zeros(2,eListLen,replications);

tic

h=waitbar(0, 'please wait...');

for rptr = 1:replications

waitbar(rptr/replications)

[Y, LY, L2Y, L3Y, L4Y ] = genY(l3y0,l2y0,ly0,y0, X,

rho, Gamma1, Gamma2, Gamma3, Gamma4, Pi, T, G, dist);

y = Y(:,eq);

Y2 = Y;

Y2(:,eq) = [];

LY1 = LY(:,indLY);

L2Y1 = L2Y(:,indL2Y);

L3Y1 = L3Y(:,indL3Y);

L4Y1 = L4Y(:,indL4Y);
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LY1X1 = [LY1 L2Y1 L3Y1 L4Y1 X1];

LYX = [LY(:,[indLY exdLY]) L2Y(:,[indL2Y

exdL2Y]) L3Y(:,[indL3Y exdL3Y]) L4Y(:,[indL4Y exdL4Y])

X];

for eptr = 1:eListLen

switch eList(eptr)

case 10001; [V(:,eptr,rptr), R(:,eptr,rptr) ]

=c2SLS( y, Y2,LY1X1, LYX);

case 10002; [V(:,eptr,rptr), R(:,eptr,rptr) ]

=Cc2SLS( y,Y, Y2,LY1X1, LYX,l3y0, l2y0, ly0 ,y0,

X, X1, G, g, K, k, j, indY,

indLY,indL2Y,indL3Y,indL4Y, T)

case 10003; [V(:,eptr,rptr), R(:,eptr,rptr)] =

c2SLS_boot( y0,ly0,l2y0,l3y0,y,Y, Y2,LY1X1, LYX,

ftX, X,mX,Iy, X1, indLY, exdLY, indL2Y, exdL2Y,

indL3Y, exdL3Y, indL4Y, exdL4Y, T,g,G, bst );
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case 30011; [V(:,eptr,rptr), R(:,eptr,rptr)]

=fuller(y, Y2, LYX, LY1X1, T, 1/(T K J));

case 30021; [V(:,eptr,rptr), R(:,eptr,rptr)]

=fuller(y, Y2, LYX, LY1X1, T, 4/(T K J));

case 30012; [V(:,eptr,rptr), R(:,eptr,rptr)]

=cfuller(cfuller(y,Y, Y2,LY1X1, LYX,l3y0, l2y0,

ly0 ,y0, X, X1, G, g, K, k, j, indY,

indLY,indL2Y,indL3Y,indL4Y, T, adj), 1/(T K));

otherwise;

end

end

end

close(h)

toc

a = getApproximation(l3y0, l2y0, ly0 ,y0,ftX, X, X1,

Gamma1,Gamma2,Gamma3,Gamma4,Bi, Omega,Sigma,
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Pi, G, g, K, k,

J,j, indY, indLY,indL2Y,indL3Y,indL4Y,eList, T,

eq);

O(mptr,:,tptr,dptr,:,:) = getInfo(V,R,delta1);

O(mptr,:,tptr,dptr,:,2) = a;

ahat = reshape(O(mptr,:,tptr,dptr,:,4),

eListLen,delta1Len);

O(mptr,:,tptr,dptr,:,3) = ((a ahat)./abs(ahat))*100;

B = reshape(O(mptr,:,tptr,dptr,:,:),eListLen,delta1Len,14);

printResult(mptr, eq, T, replications, bst, constT,

dist, L, Bi, Ai1, Ai2, Ai3,Ai4, Ci, Gamma1,

Gamma2,Gamma3, Gamma4, Pi, Sigma,
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Omega, EigVal, B, eList)

end

end

end

date_string = datestr(now(), 'yyyymmdd_HHMMSS');

savefile = ['output' ' (' date_string ').mat'];

save(savefile, 'O');

end

function A = getInfo(V, R, delta1)

eListLen = size(V(:,:,1),2);

cListLen = size(V(:,:,1),1);



175

% Total 13 things to be reported.

A = zeros(eListLen,cListLen, 14);

for eptr = 1:eListLen

for cptr = 1:cListLen

tmp = V(cptr,eptr,:);

A(eptr,cptr,1) = delta1(cptr);

A(eptr,cptr,4) = mean(tmp) delta1(cptr);

A(eptr,cptr,5) = ((mean(tmp)

delta1(cptr))/abs(delta1(cptr)))*100;

A(eptr,cptr,6) = std(tmp);

A(eptr,cptr,7) = max(tmp);

A(eptr,cptr,8) = min(tmp);

A(eptr,cptr,9) = median(tmp) delta1(cptr);

A(eptr,cptr,10) = iqr(tmp);

A(eptr,cptr,11) = mean((tmp delta1(cptr)).^2);
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A(eptr,cptr,12) = mean(R(1,eptr,:));

A(eptr,cptr,13) = mean(R(2,eptr,:));

A(eptr,cptr,14) = var(tmp);

end

end

end

function [b, I] = c2SLS( y, Y2,LY1X1, LYX)

%Y = [y Y2];

%GP_hat = LYX\Y;

% Gamma_hat = GP_hat(1:G,:);



177

% Pi_hat = GP_hat(G+1:end,:)

V2 = Y2 LYX*(LYX\Y2);

% V = Y LYX*GP_hat;

% V2 = V(:,2:end);

UL = Y2'*Y2 V2'*V2;

UR = Y2'*LY1X1;

LL = UR';

LR = LY1X1'*LY1X1;

b = ([UL UR; LL LR])\([(Y2 V2)'*y; LY1X1'*y]);
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I (1)= 0;

%I = 1 (V2'*V2)/(Y2'*M*Y2);

end

function [b, I] = Cc2SLS( y,Y, Y2,LY1X1, LYX,l3y0, l2y0, ly0 ,y0, X, X1, G, g,

K, k, j, indY, indLY,indL2Y,indL3Y,indL4Y, T)

[b, I] = c2SLS( y, Y2,LY1X1, LYX);

GP_hat = LYX\Y;

Gamma1_hat=GP_hat(1:G,:);

Gamma2_hat=GP_hat(G+1:G+G,:);

Gamma3_hat=GP_hat(G+G+1:G+G+G,:);

Gamma4_hat=GP_hat(G+G+G+1:j,:);

Pi_hat=GP_hat(j+1:end,:);

V = Y LYX*GP_hat;
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R = [Y2 LY1X1];

phi = V'*(y R*b)/T;

Omega_hat = V'*V;

a = Dynamic_2SLS_LT_bias_approximation(l3y0, l2y0, ly0 ,y0, X, X1,

Gamma1_hat,Gamma2_hat,Gamma3_hat,Gamma4_hat, Omega_hat,phi, Pi_hat, G,

g, K, k,j, indY, indLY,indL2Y,indL3Y,indL4Y, T);

b = b a;

I (1)= 0;

%I = 1 (V2'*V2)/(Y2'*M*Y2);

end
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%% Fuller

function [b, I] = fuller(y, Y2, LYX, LY1X1, T, adj)

Yd = [y Y2];

YdtYd = Yd'*Yd;

%Wsdd = Yd' * Yd Yd' * X1 * inv(X1' * X1) * X1' * Yd; %#ok<MINV>

Wsdd = YdtYd ( Yd' *LY1X1/(LY1X1' * LY1X1)*LY1X1' * Yd );

%Wdd = Yd' * Yd Yd' * X * inv(X' * X) * X' * Yd;

Wdd = YdtYd ( Yd' *LYX/(LYX' * LYX) * LYX' * Yd );

%lambda = min(eig(inv(Wdd) * Wsdd));

lambda = min(eig( Wsdd/Wdd));

lambda = lambda adj;
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[b, I] = kClass(y, Y2, LYX, LY1X1, lambda, T);

end

function [b, I] = cfuller(y,Y, Y2,LY1X1, LYX,l3y0, l2y0, ly0 ,y0, X, X1, G, g,

K, k, j, indY, indLY,indL2Y,indL3Y,indL4Y, T, adj)

[b, I] = cfuller(y, Y2, LYX, LY1X1, T, adj);

GP_hat = LYX\Y;

Gamma1_hat=GP_hat(1:G,:);

Gamma2_hat=GP_hat(G+1:G+G,:);

Gamma3_hat=GP_hat(G+G+1:G+G+G,:);

Gamma4_hat=GP_hat(G+G+G+1:j,:);

Pi_hat=GP_hat(j+1:end,:);

V = Y LYX*GP_hat;

R = [Y2 LY1X1];

phi = V'*(y R*b)/T;

Omega_hat = V'*V;

af = Dynamic_Full_LT_bias_approximation(l3y0, l2y0, ly0 ,y0, X, X1,
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Gamma1_hat,Gamma2_hat,Gamma3_hat,Gamma4_hat, Omega_hat,phi, Pi_hat, G,

g, K, k,j, indY, indLY,indL2Y,indL3Y,indL4Y, T);

b = b a;

I (1)= 0;

end

function [b, I] = c2SLS_boot( y0,ly0,l2y0,l3y0,y,Y, Y2,LY1X1, LYX,ftX,

X,mX,Iy,X1, indLY, exdLY, indL2Y, exdL2Y, indL3Y, exdL3Y, indL4Y, exdL4Y,

T,g,G, bst )

[b1, I1] = c2SLS( y, Y2,LY1X1, LYX);

GP_hat=LYX\Y;

Gamma1_hat= GP_hat(1:G,:);

Gamma2_hat= GP_hat(G+1:G+G,:);
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Gamma3_hat= GP_hat(G+G+1:G+G+G,:);

Gamma4_hat= GP_hat(G+G+G+1:G+G+G+G,:);

Pi_hat=GP_hat(G+G+G+G+1:end,:);

mYS=(mX*Pi_hat)/(Iy Gamma1_hat Gamma2_hat Gamma3_hat Gamma4_hat);

l3my0s =mYS;

l2my0s =mYS;

lmy0s=mYS;

my0s=mYS;

y01_star=zeros(T,G);

y011_star=zeros(T,G);

VI = Y LYX*GP_hat;

for i=1:1000
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y01_star(1,:)=[l3my0s l2my0s lmy0s

my0s ftX(1,:)]*GP_hat+VI(1,:);

y01_star(2,:)=[l2my0s lmy0s my0s y01_star(1,:)

ftX(2,:)]*GP_hat+VI(2,:);

y01_star(3,:)=[lmy0s my0s y01_star(1,:) y01_star(2,:)

ftX(3,:)]*GP_hat+VI(3,:);

y01_star(4,:)=[my0s y01_star(1,:)

y01_star(2,:) y01_star(3,:) ftX(4,:)]*GP_hat+VI(4,:);

for t=5:T

y01_star(t,:)=[ y01_star(t1,:) y01_star(t2,:)

y01_star(t3,:) y01_star(t4,:) ftX(t,:)]*GP_hat+VI(t,:);

end

y011_star=y011_star+y01_star;

end

y0_star=y011_star(T,:)/1000;

ly0_star=y011_star(T1,:)/1000;
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l2y0_star=y011_star(T2,:)/1000;

l3y0_star=y011_star(T3,:)/1000;

y0_star=y0;

ly0_star=ly0;

l2y0_star=l2y0;

l3y0_star=l3y0;

GP2_hat =LYX\Y2;
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V2 = Y2 LYX*GP2_hat;

%Y2_hat = Y2 V2;

U1 = y [Y2 LY1X1]*b1;

% y_hat=[Y2_hat LY1X1]*b1 U1;

b_star = zeros(bst, size(b1,1));

I_star = zeros(bst, 2);

LY_star = zeros(T, g+1);

y_star = zeros(T, 1);

Y2_star = zeros(T, g);
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for p = 1:bst

inx = randi(T,T,1);

V2_star = V2(inx,:);

U1_star = U1(inx,:);

Y2_star(1,:) =[y0_star(1, indLY) ly0_star(1, indL2Y) l2y0_star(1,

indL3Y) l3y0_star(1, indL4Y) X(1,:)]*GP2_hat+ V2_star(1,:);

y_star(1,:) = [Y2_star(1,:) y0_star(1, indLY) ly0_star(1, indL2Y)

l2y0_star(1, indL3Y) l3y0_star(1, indL4Y) X1(1,:)]*b1 + U1_star(1,:);
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LY_star(1, :) = [y_star(1,:) Y2_star(1,:)];

Y2_star(2,:) = [LY_star(1,[indLY exdLY]) y0_star(1, [indL2Y exdL2Y])

ly0_star(1, [indL3Y exdL3Y]) l2y0_star(1, [indL4Y exdL4Y])

X(2,:)]*GP2_hat + V2_star(2,:);

y_star(2,:) = [Y2_star(2,:) LY_star(1,indLY) y0_star(1, indL2Y)

ly0_star(1, indL3Y) l2y0_star(1, indL4Y) X1(2,:)]*b1 + U1_star(2,:);

LY_star(2, :) = [y_star(2,:) Y2_star(2,:)];

Y2_star(3,:) = [LY_star(2, [indLY exdLY]) LY_star(1, [indL2Y exdL2Y])

y0_star(1, [indL3Y exdL3Y]) ly0_star(1, [indL4Y exdL4Y])

X(3,:)]*GP2_hat + V2_star(3,:);

y_star(3,:) = [Y2_star(3,:) LY_star(2, indLY) LY_star(1,indL2Y)

y0_star(1, indL3Y) ly0_star(1, indL4Y) X1(3,:)]*b1 + U1_star(3,:);

LY_star(3, :) = [y_star(3,:) Y2_star(3,:)];

Y2_star(4,:) = [LY_star(3, [indLY exdLY]) LY_star(2, [indL2Y exdL2Y])

LY_star(1, [indL3Y exdL3Y]) y0_star(1, [indL4Y exdL4Y]) X(4,:)]*GP2_hat

+ V2_star(4,:);

y_star(4,:) = [Y2_star(4,:) LY_star(3, indLY) LY_star(2,indL2Y)

LY_star(1, indL3Y) y0_star(1, indL4Y) X1(4,:)]*b1 + U1_star(4,:);
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LY_star(4, :) = [y_star(4,:) Y2_star(4,:)];

for t = 5:T

Y2_star(t, :) = [LY_star(t 1 , :) LY_star(t 2 , :) LY_star(t 3 , :)

LY_star(t 4 , :) X(t,:)]*GP2_hat + V2_star(t,:);

y_star(t,:) = [Y2_star(t,:) LY_star(t 1 , indLY) LY_star(t 2 , indL2Y)

LY_star(t 3 , indL3Y) LY_star(t 4 , indL4Y) X1(t,:)]*b1 +

U1_star(t,:);

LY_star(t, :) = [y_star(t,:) Y2_star(t,:)];

end

LYS = [y0_star(indLY); LY_star(1:T1,:)];

L2YS= [ly0_star; y0_star; LY_star(1:T2,:)];
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L3YS=[l2y0_star; ly0_star; y0_star; LY_star(1:T3,:)];

L4YS=[l3y0_star; l2y0_star; ly0_star; y0_star;

LY_star(1:T4,:)];

% LYY_star = [LYS L2YS L3YS L4YS];

LYX_star = [LYS(:,[indLY exdLY]),L2YS(:,[indL2Y exdL2Y]),

L3YS(:,[indL3Y exdL3Y]),L4YS(:,[indL4Y exdL4Y]), X];

LY1X1_star = [LYS(:,indLY),L2YS(:,indL2Y),

L3YS(:,indL3Y),L4YS(:,indL4Y) X1];

[b_star(p,:), I_star(p,:) ] = c2SLS( y_star, Y2_star,LY1X1_star,

LYX_star);

end

b = 2*b1' mean(b_star);

I(1) = mean(I_star(1,:));

%I(2) = mean(I_star(2,:));

end
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function printResult(m, eq, T, replications, bst, const, dist, L, Bi, Ai1, Ai2,

Ai3,Ai4, Ci, Gamma1,Gamma2,Gamma3, Gamma4, Pi, Sigma, Omega, EigVal, B, eList)

eListLen = length(B(:,1,1));

cptrLen = length(B(1,:,1));

date_string = datestr(now(), 'yyyy mm dd HHMMSS');

fname = ['M',num2str(m), '_L', num2str(L), '_N',num2str(T),

'_B',num2str(bst), '_',num2str(dist), ' (',date_string, ')', '.txt'];

fileID = fopen(fname,'w');

%fileID = 1;

fprintf(fileID, [date_string, '\r\n']);

fprintf(fileID,'\r\n');

fprintf(fileID, 'Elapsed time is %.4f seconds. \r\n', toc );

fprintf(fileID,'\r\n');
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fprintf(fileID, 'Equation(%d) N(%d) R(%d) Boot(%d) ConstT(%d) Dist(%d)

L(%d) \r\n', eq, T, replications, bst, const, dist, L);

fprintf(fileID, '%s\r\n', '');

fprintf(fileID,'endogenous (structural) = \r\n');

ftmp = [repmat('%+2.4f ', 1, size(Bi',2)), '\r\n'];

fprintf(fileID, ftmp, transpose(Bi'));

fprintf(fileID,'\r\n');

fprintf(fileID,'lagged endogenous|exgenous (structural) = \r\n');

ftmp = [repmat('%+2.4f ', 1, size([Ai1; Ai2; Ai3; Ai4; Ci]',2)),

'\r\n'];

fprintf(fileID, ftmp, transpose([Ai1;Ai2;Ai3;Ai4; Ci]'));

fprintf(fileID,'\r\n');

fprintf(fileID,'lagged endogenous|exgenous (reduced) = \r\n');
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ftmp = [repmat('%+2.4f ', 1, size([Gamma1; Gamma2; Gamma3; Gamma4;

Pi]',2)), '\r\n'];

fprintf(fileID, ftmp, transpose([Gamma1; Gamma2; Gamma3;

Gamma4; Pi]'));

fprintf(fileID,'\r\n');

fprintf(fileID,'Sigma = \r\n');

ftmp = [repmat('%+2.4f ', 1, size(Sigma,2)), '\r\n'];

fprintf(fileID, ftmp, transpose(Sigma));

fprintf(fileID,'\r\n');

fprintf(fileID,'Omega = \r\n');

ftmp = [repmat('%+10.4f ', 1, size(Omega,2)), '\r\n'];

fprintf(fileID, ftmp, transpose(Omega));

fprintf(fileID,'\r\n');

fprintf(fileID,'Eign roots = \r\n');
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ftmp = [repmat('%+2.4f ', 1, size(EigVal,2)), '\r\n'];

fprintf(fileID, ftmp, transpose(EigVal));

fprintf(fileID,'\r\n');

for p = 1:cptrLen

fprintf(fileID,'% 11s', 'Coefficient');

fprintf(fileID,'(%1.f)', p);

fprintf(fileID,'%10s', '');

%fprintf(fileID,'% 14s', '');

fprintf(fileID,'%8s', 'True');

fprintf(fileID,'%17s', 'Approx.');

fprintf(fileID,'%20s', 'Bias');

%fprintf(fileID,'%5s', '(R)');

fprintf(fileID,'%19s', 'Std');

fprintf(fileID,'%12s', 'Max');

fprintf(fileID,'%12s', 'Min');
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fprintf(fileID,'%13s', 'Median');

fprintf(fileID,'%11s', 'IQR');

fprintf(fileID,'%14s', 'Mse');

%fprintf(fileID,'%5s', '(R)');

fprintf(fileID,'%13s', 'R1');

fprintf(fileID,'%11s', 'R2');

fprintf(fileID,'%13s', 'Var');

fprintf(fileID,'\r\n');

fprintf(fileID,'=====================================================

===');

fprintf(fileID,'===================================================

=====');

fprintf(fileID,'=================================================

========\r\n');

%

meanInx = abs(B(:,p,4));

[dummy, meanInx] = sort(meanInx);
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[dummy, meanInx] = sort(meanInx);

mseInx = abs(B(:,p,11));

[dummy, mseInx] = sort(mseInx);

[dummy, mseInx] = sort(mseInx);

%}

for q = 1:eListLen

fprintf(fileID,'%25s', getName(eList(q)));

fprintf(fileID, '%8.4f', B(q,p,1));

fprintf(fileID, '%12.4f',B(q,p,2));

fprintf(fileID, ' (%+4.0f%%)',B(q,p,3));

fprintf(fileID, ' ');

fprintf(fileID, '(%2.0f) %6.4f', meanInx(q), B(q,p,4));

%fprintf(fileID, '%12.4f (%2.0f)', B(q,p,4), meanInx(q));

%fprintf(fileID, '%12.4f',B(q,p,4));
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fprintf(fileID, ' (%+4.0f%%)',B(q,p,5));

fprintf(fileID, '%12.4f', B(q,p,6));

fprintf(fileID, '%12.4f', B(q,p,7));

fprintf(fileID, '%12.4f', B(q,p,8));

fprintf(fileID, '%12.4f', B(q,p,9));

fprintf(fileID, '%12.4f', B(q,p,10));

%fprintf(fileID, '%12.4f', B(q,p,11));

fprintf(fileID, ' ');

fprintf(fileID, '(%2.0f) %6.4f', mseInx(q), B(q,p,11));

fprintf(fileID, '%12.4f', B(q,p,12));

fprintf(fileID, '%12.4f', B(q,p,13));

fprintf(fileID, '%12.4f', B(q,p,14));

fprintf(fileID, '\r\n');

end
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fprintf(fileID, '\r\n');

end

fclose(fileID);

end

function estName = getName(est)

switch est

case 10001; estName='2SLS : ';

case 10002; estName='C2SLS : ';

case 10003; estName = '2SLS_bt : ';

case 30011; estName='FLIML(1) : ';

case 30021; estName='FLIML(4) : ';
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case 30012; estName = 'CFLIML : ';

otherwise;

end

end

function X = genX(T, k, constT, dist, beta)

switch dist

case 1; X = randn(T ,k);

case 2; X = sqrt(12)/2 + sqrt(12).*rand(T, k);

otherwise;

end
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for i = 2:T

X(i,:) = beta * X(i1,:) + X(i,:);

end

if constT == 1

X(:,1) = 1;

end

end

function [Y, LY, L2Y, L3Y, L4Y ] = genY(l3y0,l2y0,ly0,y0, X, rho, Gamma1,

Gamma2, Gamma3, Gamma4, Pi, T, G, dist)

switch dist

case 1; e = randn(T, G);
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case 2; e = sqrt(12)/2 + sqrt(12).*rand(T, G);

otherwise;

end

Vb = e*rho';

Y = zeros(T, G);

XV = X*Pi + Vb;

Y(1,:) = l3y0*Gamma4+l2y0*Gamma3+ly0*Gamma2+y0*Gamma1 + XV(1,:);

Y(2,:) = l2y0*Gamma4+ly0*Gamma3+y0*Gamma2+Y(1,:)*Gamma1 + XV(2,:);

Y(3,:) = ly0*Gamma4+y0*Gamma3+Y(1,:)*Gamma2+Y(2,:)*Gamma1 + XV(3,:);

Y(4,:) = y0*Gamma4+Y(1,:)*Gamma3+Y(2,:)*Gamma2 +

Y(3,:)*Gamma1+ XV(4,:);

for t = 5:T
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%Y(t,:) = Y(t1,:)*Gamma + X(t,:)*Pi + Vb(t,:);

Y(t,:) = Y(t1,:)*Gamma1+Y(t2,:)*Gamma2+Y(t3,:)*Gamma3+

Y(t4,:)*Gamma4+XV(t,:);

end

%LY = [y0; Y(1:T1,:)];

LY = [y0; Y(1:T1,:)];

L2Y= [ly0; y0; Y(1:T2,:)];

L3Y= [l2y0; ly0; y0; Y(1:T3,:)];

L4Y= [l3y0; l2y0; ly0; y0; Y(1:T4,:)];

end

function [Yb, LYb, L2Yb, L3Yb, L4Yb] = genYb(l3y0,l2y0,ly0,y0, X, Gamma1,

Gamma2,Gamma3,Gamma4,Pi, T, G)

Yb = zeros(T, G);

Yb(1,:) =l3y0*Gamma4+l2y0*Gamma3+ly0*Gamma2+y0*Gamma1 + X(1,:)*Pi;

Yb(2,:) = l2y0*Gamma4+ly0*Gamma3+y0*Gamma2+Yb(1,:)*Gamma1
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+ X(2,:)*Pi;

Yb(3,:) = ly0*Gamma4+y0*Gamma3+Yb(1,:)*Gamma2+Yb(2,:)*Gamma1

+ X(3,:)*Pi;

Yb(4,:) = y0*Gamma4+Yb(1,:)*Gamma3+Yb(2,:)*Gamma2 +

Yb(3,:)*Gamma1+ X(4,:)*Pi;

for t = 5:T

Yb(t,:) = Yb(t1,:)*Gamma1+Yb(t2,:)*Gamma2+Yb(t3,:)*Gamma3+

Yb(t4,:)*Gamma4 + X(t,:)*Pi;

end

LYb = [y0; Yb(1:T1,:)];

L2Yb= [ly0; y0; Yb(1:T2,:)];

L3Yb= [l2y0; ly0; y0; Yb(1:T3,:)];

L4Yb= [l3y0; l2y0; ly0; y0; Yb(1:T4,:)];

end

function a = Dynamic_2SLS_LT_bias_approximation(l3y0, l2y0, ly0 ,y0, X, X1,

Gamma1,Gamma2,Gamma3,Gamma4, Omega,phi, Pi, G, g, K, k,j, indY,

indLY,indL2Y,indL3Y,indL4Y, T)



204 Appendix for the Programming

JJ =cell(T,1);

JJ{1,1}=eye(G,G);

JJ{2,1}=Gamma1;

JJ{3,1}=Gamma2+Gamma1*JJ{2,1};

JJ{4,1}=Gamma3+Gamma2*JJ{2,1}+Gamma1*JJ{3,1};

JJ{5,1}=Gamma4+Gamma3*JJ{2,1}+Gamma2*JJ{3,1}+Gamma1*JJ{4,1};

JJ{6,1}=Gamma4*JJ{2,1}+Gamma3*JJ{3,1}+Gamma2*JJ{4,1}+Gamma1*JJ{5,1};

for i=7:T

JJ{i,1}=Gamma4*JJ{(i4),1}+Gamma3*JJ{(i3),1}

+Gamma2*JJ{(i2),1}+Gamma1*JJ{(i1),1};

end

e=cell(4,1);

[e{1:4, 1}] = deal(zeros(G));

el=cell(4,1);

[el{1:4, 1}] = deal(zeros(G));
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D= diag(ones(1,T 1) , 1);

d_hat_t=cell(T1,1);

d_hat_r=cell(T1,1);

for t = 1:T 1

d_hat_t{t,1} = D^t;

end

for r = 1:T 1

d_hat_r{r,1} = D^r;

end

Qw = zeros(j,j);

for l=1:4;

e{l,1}=eye(G);

e=cell2mat(e);
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for h=1:4

el{h,1}=eye(G);

el=cell2mat(el);

for t = l:T 1

Qw2 =e*(JJ{t l+1,:})';

for r=h:T 1

Qw1 =trace((d_hat_t{t,1} )'*(d_hat_r{r,1}));

Qw = Qw + Qw2*Omega*Qw1*(JJ{r h+1,:})*el';

end

end

el= mat2cell(el, [G, G, G,G]);

[el{1:4, 1}] = deal(zeros(G));

end
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e= mat2cell(e, [G, G, G,G]);

[e{1:4, 1}] = deal(zeros(G));

end

[Yb, LYb, L2Yb, L3Yb, L4Yb] = genYb(l3y0,l2y0,ly0,y0, X, Gamma1,

Gamma2,Gamma3,Gamma4,Pi, T, G);

Y2b = Yb(:,indY);

LY1b = LYb(:,indLY);

L2Y1b = L2Yb(:,indL2Y);

L3Y1b = L3Yb(:,indL3Y);

L4Y1b = L4Yb(:,indL4Y);

Rb = [Y2b LY1b L2Y1b L3Y1b L4Y1b X1];

Zb = [LYb L2Yb L3Yb L4Yb X];
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I2s = [eye(4*G); zeros(K,4*G)];

Qz = Zb'*Zb + [Qw zeros(G+G+G+G,K);

zeros(K, G+G+G+G) zeros(K, K)];

Qz = Qz\eye(size(Qz));

Qzs = I2s'*Qz*I2s;

% Gamma12=Gamma1(:,indY);

% Gamma22=Gamma2(:,indY);

% Gamma32=Gamma3(:,indY);

% Gamma42=Gamma4(:,indY);

Gammas2=[Gamma1(:,indY);Gamma2(:,indY);Gamma3(:,indY);Gamma4(:,indY)];

Ed2d2 =[ Gammas2'*Qw*Gammas2 Gammas2'*Qw zeros(g,k); ...

Qw*Gammas2 Qw zeros(4*G,k); ...

zeros(k,g) zeros(k,j) zeros(k,k)];



209

Qs = Rb'*Rb + Ed2d2;

Qs =Qs\eye(size(Qs));

I4 = eye(G);

B = [I4(:,indY) zeros(G,j+k)];

psi=B'*phi;

I1 = eye(j);

A = [Gammas2 I1 zeros(G+G+G+G,k)];

I = eye(g+j+k);
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T1 = zeros(g+j+k,1);

T2 = T1; T3 = T1; T4 = T1; T5 = T1; T6 = T1; T7 = T1; T8 = T1;

T9 = T1; T10 = T1; T11 = T1; T12 = T1; T14=T1;T13 = T1; T15 = T1;

T16 = T1; T17 = T1; T18 = T1; T19=T1;T20=T1;

T21=T1;T22=T1;

T1 = (Rb'*Zb*Qz*Zb'*Rb*Qs + (trace(Zb*Qz*Zb'*Rb*Qs*Rb')*I))*psi;

T5 = ( (trace(Qw*I2s'*Qz*Zb'*Rb*Qs*A')*I) +

Rb'*Zb*Qz*I2s*Qw*A*Qs + A'*Qw*I2s'*Qz*Zb'*Rb*Qs )*psi;

T8 = (A'*Qw*Qzs*Qw*A*Qs + (trace(Qw*Qzs*Qw*A*Qs*A')*I))*psi;

T14=(trace(Qw*Qzs)*I)*psi;

el=cell(4,1);

er=cell(4,1);
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ek=cell(4,1);

[el{1:4, 1}] = deal(zeros(G));

[er{1:4, 1}] = deal(zeros(G));

[ek{1:4, 1}] = deal(zeros(G));

AQs = A*Qs;

AQsA_ = AQs*A';

AQsB_ = AQs*B';

AQsRb_ = AQs*Rb';

RbQs_A_ =AQsRb_';

BQs = B*Qs;

BQsA_ = BQs*A';

BQsRb_ = BQs*Rb';

RbQs = Rb*Qs;
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RbQsB_ = RbQs*B';

RbQsRb_ = RbQs*Rb';

ZbQz = Zb*Qz;

ZbQzI2s = ZbQz*I2s;

I2s_QzZb_ = ZbQzI2s';

ZbQzZb_ = ZbQz*Zb';

B_Omega = B'*Omega;

for ll=1:4

el{ll,1}=eye(G);

el=cell2mat(el);

for t = ll:T 1
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T2a = Rb'*d_hat_t{t,1}*RbQs;

T2b = trace(Rb'*d_hat_t{t,1}*RbQs)*I;

T2 = T2 + (T2a + T2b)*A'*el*(JJ{t ll+1,:})'* phi;

T3c = Qzs*el*(JJ{t ll+1,:})';

T4b = ZbQzI2s*el*(JJ{t ll+1,:})'*Omega;

T6b = Omega*JJ{t ll+1,:}*el'*AQsA_;

T6c = A'*el*(JJ{t ll+1,:})'*Omega;

T7a = T6c;

T9b = RbQs*B'*Omega*JJ{t ll+1,:}*el'*Qzs;

T10a = A'*el*(JJ{t ll+1,:})';

T11a = T10a;

T12a = Qzs*el*(JJ{t ll+1,:})';

T12c = AQsA_*el*(JJ{t ll+1,:})';

T12f = ZbQzI2s*el*(JJ{t ll+1,:})';

T20a = B_Omega*JJ{t ll+1,:}*el'*AQsRb_;
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T20c = B_Omega*JJ{t ll+1,:}*el'*I2s_QzZb_;

T19a =T12f;

T17a = trace(Omega*JJ{t ll+1,:}*el'*AQsB_);

for rr=1:4

er{rr,1}=eye(G);

er=cell2mat(er);

for r = rr:T 1

T3a = Rb'*(d_hat_t{t,1})*(d_hat_r{r,1})'*RbQs;

T3b = trace((d_hat_t{t,1})*(d_hat_r{r,1})'*RbQsRb_)*I;

T4a = (d_hat_t{t,1})*(d_hat_r{r,1})';
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T4c = AQsRb_;

T21a = (d_hat_t{t,1})'*(d_hat_r{r,1});

T6a = trace(ZbQzZb_*(d_hat_t{t,1})*(d_hat_r{r,1})')*I;

T7b = I2s_QzZb_*(d_hat_t{t,1})*(d_hat_r{r,1})'*RbQs*psi;

T9a = Rb'*(d_hat_t{t,1})*(d_hat_r{r,1});

T10b = (d_hat_r{r,1})'*(d_hat_t{t,1})'

+(d_hat_r{r,1})'*(d_hat_r{r,1});

T10c = (d_hat_t{t,1})'*(d_hat_r{r,1})*ZbQzI2s;

T11b = (d_hat_t{t,1})'*ZbQzZb_*(d_hat_r{r,1})';

T12b = (d_hat_t{t,1})*RbQsRb_*(d_hat_r{r,1});

T12d = ZbQzZb_*(d_hat_t{t,1})*(d_hat_r{r,1});

T12e = AQsRb_*(d_hat_t{t,1})'*(d_hat_r{r,1})';

T18a = trace((d_hat_t{t,1})*(d_hat_r{r,1})');
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T19b =AQsRb_*T4a;

T20b = ((d_hat_t{t,1})*(d_hat_r{r,1})+

(d_hat_t{t,1})'*(d_hat_r{r,1}))*ZbQzI2s;

T20d = ((d_hat_t{t,1})'*(d_hat_r{r,1}))*RbQs_A_;

T16a = Rb'*(d_hat_t{t,1})*(d_hat_r{r,1})';

T3 = T3 + (T3a + T3b)*(trace(Omega*JJ{r rr+1,:}*er'*T3c)*I)*psi;

T4 = T4 + (trace(T4a*T4b*JJ{r rr+1,:}*er'*T4c)*I)*psi;

T6 = T6 + T6a * ((trace(T6b*er*(JJ{r rr+1,:})')*I) +

T6c*JJ{r rr+1,:}*er'*AQs)*psi;

T7 = T7 + (T7a*JJ{r rr+1,:}*er'*T7b);

T9 = T9 + ( T9a*T9b*er*(JJ{r rr+1,:})'*phi);

%T9 = T9 +

((D^t)*(D^r)*Rb*Qs*B'*Omega*(Gamma^(t 1))*

Qzs*(Gamma^(r1))'*vphi);
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T10 =T10+ ( T10a* (Omega*BQsRb_*(T10b)*ZbQzI2s*er

*(JJ{r rr+1,:})'

+ ...

(trace(T10c*er*(JJ{r rr+1,:})'*Omega*BQsRb_)

*eye(G)))*phi);

T11 = T11 + ( T11a*

(trace(Omega*BQsA_*er*(JJ{r rr+1,:})')*

trace(T11b)*eye(G)) * phi);

T12 = T12 + ( B'*Omega*JJ{r rr+1,:}*er'*

(T12a*(trace(T12b)*eye(G))

+ ...

T12c*(trace(T12d)*eye(G)) + T12e*T12f)*phi);

T16 =T16+T16a*T4b*JJ{r rr+1,:}*er'*AQs*psi;

T17 =T17+T9a*(T17a*eye(T))*ZbQzI2s*er*(JJ{r rr+1,:})'*phi;

T18 =T18+B'*trace(T19a*Omega*JJ{r rr+1,:}*er'*AQsRb_)*

T18a*eye(G)*phi;

T19 = T19+B'*trace(T19a*Omega*JJ{r rr+1,:}*er'*T19b)*phi;
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T20 = T20+(T20a*T20b+T20c*T20d)*er*(JJ{r rr+1,:})'*phi;

T21b = AQsA_*er*(JJ{r rr+1,:})';

for k=1:4

ek{k,1}=eye(G);

ek=cell2mat(ek);

for s=k:T

if t == r+s

T21 = T21 + ( T6c*JJ{t r k+1,:}*ek'*T21b

*trace(T21a*D^(t r)))*eye(G)*phi;

elseif r == t+s

T22 = T22 + (T10a* trace(JJ{r t k+1,:}*ek'*T21b *Omega)

*trace(T21a*(D^(r t))')*eye(G))*phi;

else

end

end
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ek= mat2cell(ek, [G G G G]);

[ek{1:4, 1}] = deal(zeros(G));

end

end

er= mat2cell(er, [G G G G]);

[er{1:4, 1}] = deal(zeros(G));

end

end

el= mat2cell(el, [G G G G]);
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[el{1:4, 1}] = deal(zeros(G));

end

T1 = Qs*T1;

T2 = Qs*(trace(Zb*Qz*Zb')*I)*psi Qs*T2 ;

T3 = Qs*T3;

T4 = Qs*T4;

T5 = Qs*T5;

T6 = Qs*T6;

T7 = Qs*T7;

T8 = Qs*T8;

T9 = Qs*T9;

T10 = Qs*T10;

T11 = Qs*T11;

T12 = Qs*T12;
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T14= Qs*T14;

T16 = Qs*T16;

T17 = Qs*T17;

T18 = Qs*T18;

T19 = Qs*T19;

T20 = Qs*T20;

T21 = Qs*T21;

T22 = Qs*T22;

a = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 + T11 +

T12+T21+T22+T14+T16+T17+T18+T19+T20

end

function af = Dynamic_Full_LT_bias_approximation(l3y0, l2y0, ly0 ,y0, X, X1,

Gamma1,Gamma2,Gamma3,Gamma4, Omega,phi, Pi, G, g, K, k,j, indY,

indLY,indL2Y,indL3Y,indL4Y, T)

JJ =cell(T,1);
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JJ{1,1}=eye(G,G);

JJ{2,1}=Gamma1;

JJ{3,1}=Gamma2+Gamma1*JJ{2,1};

JJ{4,1}=Gamma3+Gamma2*JJ{2,1}+Gamma1*JJ{3,1};

JJ{5,1}=Gamma4+Gamma3*JJ{2,1}+Gamma2*JJ{3,1}+Gamma1*JJ{4,1};

JJ{6,1}=Gamma4*JJ{2,1}+Gamma3*JJ{3,1}+Gamma2*JJ{4,1}+Gamma1*JJ{5,1};

for i=7:T

JJ{i,1}=Gamma4*JJ{(i4),1}+Gamma3*JJ{(i3),1}+Gamma2*JJ{(i2),1}

+Gamma1*JJ{(i1),1};

end

e=cell(4,1);

[e{1:4, 1}] = deal(zeros(G));

el=cell(4,1);

[el{1:4, 1}] = deal(zeros(G));
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D= diag(ones(1,T 1) , 1);

d_hat_t=cell(T1,1);

d_hat_r=cell(T1,1);

for t = 1:T 1

d_hat_t{t,1} = D^t;

end

for r = 1:T 1

d_hat_r{r,1} = D^r;

end

Qw = zeros(j,j);

for l=1:4;

e{l,1}=eye(G);

e=cell2mat(e);

for h=1:4
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el{h,1}=eye(G);

el=cell2mat(el);

for t = l:T 1

Qw2 =e*(JJ{t l+1,:})';

for r=h:T 1

Qw1 =trace((d_hat_t{t,1} )'*(d_hat_r{r,1}));

Qw = Qw + Qw2*Omega*Qw1*(JJ{r h+1,:})*el';

end

end

el= mat2cell(el, [G, G, G,G]);

[el{1:4, 1}] = deal(zeros(G));

end

e= mat2cell(e, [G, G, G,G]);
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[e{1:4, 1}] = deal(zeros(G));

end

[Yb, LYb, L2Yb, L3Yb, L4Yb] = genYb(l3y0,l2y0,ly0,y0, X, Gamma1,

Gamma2,Gamma3,Gamma4,Pi, T, G);

Y2b = Yb(:,indY);

LY1b = LYb(:,indLY);

L2Y1b = L2Yb(:,indL2Y);

L3Y1b = L3Yb(:,indL3Y);

L4Y1b = L4Yb(:,indL4Y);

Rb = [Y2b LY1b L2Y1b L3Y1b L4Y1b X1];

Zb = [LYb L2Yb L3Yb L4Yb X];

I2s = [eye(4*G); zeros(K,4*G)];
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Qz = Zb'*Zb + [Qw zeros(G+G+G+G,K); zeros(K, G+G+G+G) zeros(K, K)];

Qz = Qz\eye(size(Qz));

Qzs = I2s'*Qz*I2s;

Gammas2=[Gamma1(:,indY);Gamma2(:,indY);Gamma3(:,indY);Gamma4(:,indY)];

Ed2d2 =[ Gammas2'*Qw*Gammas2 Gammas2'*Qw zeros(g,k); ...

Qw*Gammas2 Qw zeros(4*G,k); ...

zeros(k,g) zeros(k,j) zeros(k,k)];

Qs = Rb'*Rb + Ed2d2;

Qs =Qs\eye(size(Qs));
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I4 = eye(G);

B = [I4(:,indY) zeros(G,j+k)];

psi=B'*phi;

I1 = eye(j);

A = [Gammas2 I1 zeros(G+G+G+G,k)];

I = eye(g+j+k);

T1 = zeros(g+j+k,1);

T2 = T1; T5 = T1;

T1 = (Rb'*Zb*Qz*Zb'*Rb*Qs + (trace(Zb*Qz*Zb'*Rb*Qs*Rb')*I))*psi;

T5 = ( (trace(Qw*I2s'*Qz*Zb'*Rb*Qs*A')*I) + Rb'*Zb*Qz*I2s*Qw*A*Qs
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+ A'*Qw*I2s'*Qz*Zb'*Rb*Qs )*psi;

el=cell(4,1);

[el{1:4, 1}] = deal(zeros(G));

RbQs = Rb*Qs;

for ll=1:4

el{ll,1}=eye(G);

el=cell2mat(el);

for t = ll:T 1

T2a = Rb'*d_hat_t{t,1}*RbQs;

T2b = trace(Rb'*d_hat_t{t,1}*RbQs)*I;
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T2 = T2 + (T2a + T2b)*A'*el*(JJ{t ll+1,:})'* phi;

end

end

T1 = Qs*T1;

T2 = Qs*(trace(Zb*Qz*Zb')*I)*psi Qs*T2 ;

T5 = Qs*T5;

af = a (T1+T2 T5 )

end

function b = iqr(X)

XS = sort(X);
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N = length(X);

q1 = (N+1) / 4;

q1L = floor(q1);

q1R = q1L + 1;

qDiff = q1 q1L;

Q1 = XS(q1L) + qDiff * ( XS(q1R) XS(q1L) );

q3 = 3*(N+1) / 4;

q3L = floor(q3);

q3R = q3L + 1;

qDiff = q3 q3L;

Q3 = XS(q3L) + qDiff * ( XS(q3R) XS(q3L) );

b = Q3 Q1;

end
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function b = mse(X, trueValue)

tmp = squeeze(X);

n = length(tmp);

b = ((tmp trueValue)' * (tmp trueValue))/n;

end
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