This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/98567/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Publishers page:
Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Guided Mesh Normal Filtering: Supplementary Material

Figure A: Comparison of denoising algorithms for meshes with additive Gaussian noise. The intensity σ_E of the noise is from top to bottom 0.3 and 0.2.

1 More results

In Fig. A we provide more results of denoising meshes with additive Gaussian noise. The corresponding error metrics are provided in Table A.

Table A: Error metrics for different methods. For each model, the best error metric value is highlighted in bold.

<table>
<thead>
<tr>
<th>Model</th>
<th>Error</th>
<th>[FDCO03]</th>
<th>[JDD03]</th>
<th>[SRML07]</th>
<th>[ZFAT11] (local)</th>
<th>[ZFAT11] (global)</th>
<th>[HS13]</th>
<th>[WYP*15]</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fandisk</td>
<td>D_{mean}</td>
<td>$1.34 \cdot 10^{-2}$</td>
<td>$1.21 \cdot 10^{-2}$</td>
<td>$7.45 \cdot 10^{-3}$</td>
<td>$6.18 \cdot 10^{-3}$</td>
<td>$9.42 \cdot 10^{-3}$</td>
<td>$9.42 \cdot 10^{-3}$</td>
<td>$5.74 \cdot 10^{-3}$</td>
<td>$5.16 \cdot 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>D_{max}</td>
<td>$2.94 \cdot 10^{-1}$</td>
<td>$2.61 \cdot 10^{-1}$</td>
<td>$2.35 \cdot 10^{-1}$</td>
<td>$2.25 \cdot 10^{-1}$</td>
<td>$2.53 \cdot 10^{-1}$</td>
<td>$2.59 \cdot 10^{-1}$</td>
<td>$2.12 \cdot 10^{-1}$</td>
<td>$2.09 \cdot 10^{-1}$</td>
</tr>
<tr>
<td>Nicolo</td>
<td>δ</td>
<td>8.88</td>
<td>7.13</td>
<td>6.38</td>
<td>6.74</td>
<td>5.79</td>
<td>7.66</td>
<td>7.05</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td>D_{mean}</td>
<td>$3.47 \cdot 10^{-1}$</td>
<td>$2.74 \cdot 10^{-1}$</td>
<td>$2.32 \cdot 10^{-1}$</td>
<td>$2.06 \cdot 10^{-1}$</td>
<td>$2.01 \cdot 10^{-1}$</td>
<td>$2.87 \cdot 10^{-1}$</td>
<td>$2.17 \cdot 10^{-1}$</td>
<td>$1.97 \cdot 10^{-1}$</td>
</tr>
<tr>
<td></td>
<td>D_{max}</td>
<td>1.77</td>
<td>1.25</td>
<td>1.47</td>
<td>1.06</td>
<td>1.26</td>
<td>1.35</td>
<td>1.35</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Table A: Error metrics for different methods. For each model, the best error metric value is highlighted in bold.

2 Parameters for denoising methods

Tables B to I provide the parameters for the methods compared in our paper. These parameters are applied to the denoising of the following models:

- In the paper:
 - Fig. 7: Fandisk ($\sigma_E = 0.7$), Julius, Sphere, Bunny.
 - Fig. 8: Block.
 - Fig. 9: Twelve.
2.1 Explanation of parameters

- **[FDCO03]** (Table B):
 - \(k_{\text{iter}}\): number of iterations.

- **[JDD03]** (Table C):
 - \(\sigma_f/\|e\|\), \(\sigma_g/\|e\|\): parameters that determine the variance for spatial and range kernels, with \(\|e\|\) being the average edge length.

- **[SRML07]** (Table D):
 - \(T\): threshold for controlling the averaging weights (see Equation (8) of [SRML07]).
 - \(k_{\text{iter}}\): number of iterations for updating normals.
 - \(v_{\text{iter}}\): number of iterations for a vertex update.

- Local scheme of **[ZFAT11]** (Table E):
 - \(\sigma_s\): variance parameter for the spatial kernel.
 - \(k_{\text{iter}}\): number of iterations for updating normals.
 - \(v_{\text{iter}}\): number of iterations for a vertex update.

- Global scheme of **[ZFAT11]** (Table F):
 - \(\sigma_s\): variance parameter for the spatial kernel.
 - \(\lambda\): smoothness parameter in the target function.
 - \(v_{\text{iter}}\): number of iterations for a vertex update.
Table F: Parameters used for [ZFAT11] (global).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fandisk(0.3)</th>
<th>Fandisk(0.7)</th>
<th>Julius</th>
<th>Sphere</th>
<th>Bunny</th>
<th>Nicolo</th>
<th>Block</th>
<th>Twelve</th>
<th>Angel</th>
<th>Rabbit</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_s</td>
<td>0.35</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.5</td>
<td>0.35</td>
<td>0.38</td>
<td>0.38</td>
<td>0.4</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>λ</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.005</td>
<td>0.01</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>v_{iter}</td>
<td>20</td>
<td>30</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td>8</td>
<td>18</td>
<td>20</td>
<td>6</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Table G: Parameters used for [HS13].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fandisk(0.3)</th>
<th>Fandisk(0.7)</th>
<th>Julius</th>
<th>Sphere</th>
<th>Bunny</th>
<th>Nicolo</th>
<th>Block</th>
<th>Twelve</th>
<th>Angel</th>
<th>Rabbit</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_s</td>
<td>0.00346</td>
<td>1.0</td>
<td>0.001</td>
<td>0.0007</td>
<td>0.0026</td>
<td>1.0</td>
<td>0.00149</td>
<td>0.00389</td>
<td>0.00351</td>
<td>0.000924</td>
<td>0.000809</td>
</tr>
<tr>
<td>β_0</td>
<td>0.001</td>
</tr>
<tr>
<td>μ</td>
<td>1.414</td>
</tr>
<tr>
<td>β_{max}</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table H: Parameters used for [WYP∗15].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fandisk(0.3)</th>
<th>Fandisk(0.7)</th>
<th>Julius</th>
<th>Sphere</th>
<th>Bunny</th>
<th>Nicolo</th>
<th>Block</th>
<th>Twelve</th>
<th>Angel</th>
<th>Rabbit</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.12 (2 × r)</td>
<td>0.18 (2 × r)</td>
<td>0.3 (2 × r)</td>
<td>0.05 (2 × r)</td>
<td>0.45 (2 × r)</td>
<td>0.45 (2 × r)</td>
<td>0.35 (2 × r)</td>
<td>0.35 (2 × r)</td>
<td>0.35 (2 × r)</td>
<td>0.35 (2 × r)</td>
<td>0.35</td>
</tr>
<tr>
<td>σ_r</td>
<td>0.25</td>
<td>0.3</td>
<td>0.45</td>
<td>0.45</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>k_{iter}</td>
<td>25</td>
<td>50</td>
<td>5</td>
<td>30</td>
<td>6</td>
<td>6</td>
<td>40</td>
<td>75</td>
<td>3</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>v_{iter}</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>30</td>
<td>20</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Table I: Parameters used for our approach.

- [HS13] (Table G):
 - λ: weight for the L_0 term in the target function.
 - α_0, β_0: initial values for α and β in Algorithm 1 of [HS13].
 - μ, μ: update ratios for α and β.
 - β_{max}: maximum value of β.

- [WYP∗15] (Table H):
 - σ_s: parameter for local face normal initialization.
 - k_{iter}: number of iterations for normal update in the local face normal initialization.
 - σ_s: parameter for global face normal refinement.
 - v_{iter}: number of iterations for a vertex update.

- Ours (Table I): spatial variance is always chosen as the average distance between neighboring face centroids. Below are the tunable parameters:
 - r: radius for the geometrical neighborhood, also shown as the ratio with respect to the average distance between neighboring face centroids; not applicable if a topological neighborhood is used.
 - σ_r: variance of the range kernel.
 - k_{iter}: number of iterations for updating normals.
 - v_{iter}: number of iterations for a vertex update.
References

