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Figure 1: Using LBC for 3D cage-based manipulation allows for local, smooth, and shape-aware deformations. Only parts near the
manipulated control points are deformed, as indicated by the logarithmic color-coding of the displacement magnitude.

Abstract 1 Introduction

Barycentric coordinates yield a powerful and yet simple paradigm Barycentric coordinates provide a simple and convenient way to
to interpolate data values on polyhedral domains. They representinterpolate values from a set of control points over the interior of
interior points of the domain as an af ne combination of a set of 3 domain, using weighted combinations of values associated with
control points, de ning an interpolation scheme for any function the control points. Due to their simplicity and ef ciency, they have
de ned on a set of control points. Numerous barycentric coordinate heen successfully applied to various problems in computer graphics,
schemes have been proposed satisfying a large variety of propertieSncluding image composition and warping [Farbman e2aD9],
However, they typically de ne interpolation as a combinatiorayf shape deformation [Ju et £005; Lipman et al2007], texture map-
control points. Thus #cal change in the value at a single control  ping [Desbrun et al2002], and synthesis [Takayama et2010].
point will create aglobal change by propagation into the whole  Current barycentric coordinates typically are of global nature, mean-
domain. In this context, we present a familylo€al barycentric ing that the interpolated value depends on many, potenidlly
coordinateLBC), which select for each interior point a small set  control points. This implies two main drawbacks. The rst one is
of control points and satisfy common requirements on barycentric the lack of locality and control over a deformation. For example, in
coordinates, such as linearity, non-negativity, and smoothness. LBC design tasks such as shape and image deformation, where the users
are achlgved through a convex optimization based on total variation, directly manipulate control points, editing just one control point
and provide a compact representation that reduces memory footprintpotentially in uences the whole design, yielding a counter-intuitive
and allows for fast deformations. Our experiments show that LBC pehavior. Even worse, manually achieving any localized edit might
provide more local and ner control on shape deformation than be impossible since it would involve manipulating a large amount
previous approaches, and lead to more intuitive deformation results.of control points to achieve the desired deformation. The second
drawback is scalability. Most practical applications store barycentric
CR Categories: 1.3.5 [Computer Graphics]: Computational Geom- coordinates using one scalar value per control point for every vertex
etry and Object Modeling—Geometric algorithms, languages, and of the target domain. For high-resolution shapes with many control
systems; points, this leads to high memory consumption. Furthermore, the
interpolation is computationally expensive: it involves a weighted
Keywords:  barycentric coordinates, total variation, locality, sum of all control points for each interior vertex. Thus, barycen-
smoothness, shape deformation, image warping. tric coordinates with locality provide bene ts in terms of storage
_ requirements as well as computational cost.
Links: ©DL BPDF & CobE

Joint rst authors. Email: juyong@ustc.edu.cn, bailin.deng@ep .ch  Overview and contributions. This paper introduces a novel
method to derivdocal barycentric coordinate@ BC), which de-
pend only on a small number of control points. LBC are computed
arg, 51JT JT UIF BVUIPShT WHAZSH T B 6 EPyanigimizingragarget fynctional based ¢otal variation (TV),
IFSGPZPMVBFSTPOBMOGWEFEJTUSJICEBGB O J BMRIEEt to a set of constraints that ensure desired properties such as

7FSTPBEDPSEDVCMITISESBEBOT (SBQI partition of unity, reproduction, and non-negativity. The TV energy,
IUUQ EY EPJ PSH widely used for image smoothing and reconstruction [Rudin.et al

1992], induces locality and regularity of the computed coordinates.
The resulting LBC are local, meaning that each control point only
in uences a nearby region. As a result, LBC induce lower computa-
tional cost for applications such as cage-based deformation, since
each point on the target shape is only determined by a small number



of control points. A main advantage of our formulation is that it target functional, without requiring a proper threshold value.
leads to a convex optimization problem, whose global minimum
can be ef ciently computed. Moreover, the TV energy penalizes
local extrema in the coordinate functions. Local extrema are typi-
cally due to high order Laplacian energy terms used to improve the
smoothness of the resulting barycentric coordinates. While previous
work [Jacobson et aR012] reduces oscillations of the coordinate
functions by introducing more constraints, the TV energy inhibits
local extrema without the need for extra terms.

Jacobson et al. [2011] propose a constrained optimization approach
to computebounded biharmonic weight8BW) that are both
smooth and local. The constraints they enforce are similar to those
from our method, except that they do not impose the reproduction
property. As a result, BBW are not barycentric coordinates, and
do not provide linear precision for interpolation. In comparison,
LBC are more local than BBW, while achieving the linear precision
property.

Gardca et al. [2013] propose a multi-cage mesh deformation ap-
proach called*Cages which achieves local deformation by em-
ploying independent control weight schemes in each subcage and
blending the weights from different subcages. As pointed out by the
uthors, their method complements existing control weight schemes
rather than competing with them, and the user is free to choose the
control weight scheme of each subcage. As a result, when employ-
ing LBC for the subcages, *Cages will bene t from the locality of
LBC and provide more localized deformations with lower memory
footprints, compared to other subcage control weight schemes.

Our optimization automatically determines a local in uence region
for each control point, and only needs to be performed once for a
given cage. In contrast to [Li et.@2010], LBC do not require a
priori selection of in uence regions of the control points. Unlike
the Poisson-based approach in [Landreneau and Schaefer 2010], th
locality and smoothness of LBC are induced by TV minimization,
without requiring user-de ned parameters to manage the number of
control points in uencing a vertex during mesh deformation. LBC
achieve better locality thamounded biharmonic weigh{8BW) [Ja-
cobson et al. 2011], while also satisfying the reproduction property
that is not available from BBW.

We apply LBC to mesh deformation, where contrary to previous [ocal interpolation schemes.  Within the literature of scattered
barycentric coordinate approaches, our method allows both high-data interpolation, there exist schemes that enforce local in uence
quality deformations and control at different levels of granularity from the input sample points. For example, Sibson [1981] develop
without the need for xing an in uence region manually. Control  the natural neighbor interpolation schemes where the interpolated
over the locality of deformations is an important feature as natural values are computed as a linear combination of the sample values,

surfaces and images are intrinsically multi-scale. with the linear combination coef cients determined from the Voronoi
diagram of the sample points; the Voronoi diagram determines a
2 Related work local in uence region for each sample point, and the interpolation

schemes achieve up @' continuity. For higher order continuity,
Hiyoshi and Sugihara [2000] extend Sibson's method using recursive
integration. When considering cage vertices as sample points for
these Voronoi-based interpolation schemes, the interpolation coef -
cient functions share many desirable properties with LBC, such as
artition of unity, reproduction, and non-negativity. However, since
he Voronoi diagrams are computed from the Euclidean distance,
such approaches can produce coef cients functions that are local
with respect to the ambient Euclidean metric but non-local with

- . respect to the distance inside the cage, which leads to unintuitive
value [Flpater 2003; Ju et.eQOOS,_Hormann and Floater 2006].' deformations. On the contrary, LBC enforce locality within the cage,
Green [Lipman et al008], and Poisson [Li and Hu 2013] coordi- and provide more intuitive control.

nates. Barycentric coordinates have been enriched with constraints
on their regularity and accuracy [Li et &013], harmonicity [Joshi
et al 2007; Jacobson et.8011; Weber et aR012], positiveness  Total variation.  In this paper, we compute LBC by minimizing
[Lipman et al 2007; Hormann and Sukumar 2008], with generaliza- the sum of total variation of the barycentric coordinate functions for
tions to the complex plane [Weber et 2009; Weber and Gotsman  all control points. For a functioh de ned on adomain ~ R®,
2010; Weber et aR011]. However, to the best of our knowledge, no  its TV is de ned as
existing barycentric coordinate scheme explicitly enforces locality. z

Ji = jr f(x)jdx; @

Barycentric coordinates. Barycentric coordinates, introduced

by Mobius [1827], remain an active area of research in computer
graphics and mathematics with numerous applications in image
and geometry processing. While being uniquely de ned for sim-
plices, numerous extensions of barycentric coordinates have bee
presented for convex [Pinkall and Polthier 1993; Dasgupta and
Wachspress 2008] and arbitrary polygons [Hormann and Floater
2006] and curves [Schaefer et @aD07]. Variants include mean

Local deformation using control weights. Despite the large

number of control weight schemes that have been proposed, few ofwherejr f j is the ;-norm of the gradient f . TV is a popular tool
them address the issue of locality for deformation. Li et al. [2010] for image processing tasks, such as denoising, reconstruction, and
propose a cage-free local deformation method with vertex handles,segmentation [Chambolle et &010]. Two key properties of TV
using an umbrella-shaped shell and a local in uence region asso-have led to its success. First, TV provides a measure of oscillation,
ciated to the vertex. The in uence region needs to be speci ed thus TV minimization reduces oscillation from the resulting function
by the user, and the umbrella shell needs to be constantly updatedChan et al2011]. This is the foundation of the image denoising
during deformation. Unlike this method, our optimization approach method from Rudin et al.'s seminal paper [1992], as well as many
automatically determines a local in uence region for each control TV-based image smoothing schemes [Chan.e2@06]. In our for-
point, and this optimization only needs to be done once for a given mulation, this property inhibits local extrema in LBC. The other
cage. Landreneau and Schaefer [2010] introduce a Poisson-baselley property is that for the characteristic function of a set, its TV
approach to reduce the number of control points in uencing a vertex equals the perimeter of the set [Evans and Gariepy 1992]. Therefore,
during mesh deformation by limiting the number of nonzero control TV is widely used in image segmentation as a regularization term
weights for the vertex to a user-speci ed threshold. This threshold for boundary curves [Chan and Vese 2001; Goldstein.&Ml0].
needs to be properly chosen, in order to achieve weight reductionThis property is crucial for the locality and smoothness of LBC. In
without sacri cing their smoothness. On the contrary, in our method particular, it relates TV to the length/area of levelset curves/surfaces,
the locality and smoothness properties are induced by the TV-basedwhich is also related to the area/volume of the domain bounded by



them due to the isoperimetric inequality [Osserman 1978]. Besides measured by it5-norm, which is the number of its nonzero com-
image applications, TV has also been applied to geometry processponents. Due to the combinatorial complexity of minimizing the
ing problems such as surface fairing and reconstruction [Elsey and " o-norm, it is often relaxed using thg-norm withO <p 1 [Bach
Esedoglu 2009]. Despite being non-smooth, TV regularization is et al. 2012], leading to the following target energy

convex and leads to convex optimization problems, which can be

z
ef ciently handled by various numerical algorithms [Weiss et al Fo= X oD 3
2009; Goldstein and Osher 2009; Wu and Tai 2010]. =W (i ®)
i=
3 Local barycentric coordinates Settingp = 1 is the most popular approach for inducing sparsity,

since it leads to a convex term that is effective for nding the sparsest
solutions for many problems [Bruckstein et 2009]. However, it is
not suitable for our case, begause the non-negativity and partition
of unity properties imply that [, jwi(x)j =1 8x 2 ;asa
result,F-, always equals the area/volume of regardless of the
actual values of the coordinate functions. THus is unable to
reveal sparsity among the candidate functions. On the other hand,
choosingp 2 (0; 1) provides a tighter relaxation of th@-norm
[Chartrand 2007], and captures sparsity better than;therm. But

X the optimization problem becomes nonconvex, making it dif cult to
f(x)= w;i (X)f (ci): ) nd the global minimum [Ge et al. 2011].

vertices of a closed control cage, and lebe the domain bounded
by the cage. Our goal is to nd a functiom;: 7! R for each

coordinates ok 2  with respect to the control poinfgig. These
coordinate functions are used for interpolating function vafues),
.11, f(cn), given at the control points over the interior ofoy

i=1 To make the optimization approach effective, we prefer a target
functional that re ects locality and smoothness for the coordinate
functions while still being convex. For a function and a given
values, denote byfw; > sg := fx j wj(x) > sgandfw; =

sg = fx j wi(x) = sgthesuperlevel seand thelevel setof s,

Such an interpolation scheme enables shape deformationusimg
the control points as handles. For the quality of the interpolation, we
are interested in coordinate functions with the following properties:

P
1. Reproduction [, w;i(x)ci = X; 8x 2 ; respectively. Locality requires the area/volume of the superlevel set
o . n .. fw; > Og to be small, while for smoothness it is necessary that all
2. Partition of unity i, wi(x)=1; curves/surfacebw; = const are smooth. We make the following

3. Non-negativityw; (x) 0 8i; observations in the 2D case:
o ifi6i For a domain irR?, its perimetet provides an upper bound
4. Lagrange propertyw;(cj) = 1 other\/J\;ise onits area\, due to the isoperimetric inequaliyA  L?;

. . . . ) For a domain with xed area, its perimeter indicates the reg-
5. Linearity: functionsf w; g are linear on cage edges and faces; ularity of its boundary curve, with the minimum perimeter

6. Smoothnesgunctionsf w; g vary smoothly on ; achieved by a circular boundary;

If a level set curvd w; = sg exists, then it is the boundary

7. Locality. a control point only in uences its nearby regions,
W P y ¥ reg curve of the superlevel séwv; > s g.

and apoink 2 isin uenced by a small number of control
points, i.e., the vectdwy (x);:::;wn (x)] is sparse Similar observations are made in 3D as well. They motivate us to
induce the locality and smoothnessvaf by minimizing the sum
of the perimeters of superlevel séts; > s g for all s. In this way,
the perimeter of each superlevel set regularizes the smoothness of
its boundary level curve/surface, while the perimetefnef > 0g
penalizes the area/volume of the in uence region. It turns out that
this sum is exactly the TV of;. Speci cally, letP (fw; >sg; )
be the perimeter dfw; > s g on the domain . Then, the TV ofw;
satis es the followingcoarea formuldAmbrosio et al. 2000]:

YA z +1

irwij= P(fw; >sg;) ds: 4)
1

Here, the reproduction and partition of unity properties are the de n-
ing properties for barycentric coordinates and imply linear precision
of the interpolation, i.e., linear functions can be reproduced from
their values on the control points by an interpolation using barycen-
tric coordinates. Non-negative coordinates prevent unintuitive defor-
mations that result from inconsistent deformation directions between
the control points and the cage interior [Jacobson et al. 2011].

3.1 Formulation

Achieving all the target properties listed above is not an easy task.
While properties 1-6 are satis ed by many existing barycentric co- Utilizing this strategy, our formulation minimizes the sum of TV for
ordinate schemes, the locality property adds complexity and hasall coordinate functions, subject to the constraints of reproduction,
received much less attention in previous work. The main challenge partition of unity, non-negativity, linearity, and Lagrange property:
here is that the coordinate functions are globally coupled: reduc- 7

ing the in uence region for one control point might lead to more . X ) )

global in uence of other control points. Therefore, all control points MM Ir wij

must be considered simultaneously to achieve a barycentric coor- i=1

dinate scheme with local in uence. To this end, we formulate our

coordinate functions as the solution of a constrained optimization s.t. wi (X)Ci = X; wi=1;w 0;8x2 ;
problem. The constraints correspond to a subset of the target proper- i=1 i=1

ties de ned above, while the target functional induces locality for wi(c)= i 8ijj;

the solution functions. Since locality implies sparsity of the vector w; is linear on cage edges and fa@s (5)

a sparsity term in the target functional while imposing smoothness Thanks to the convexity of TV, this is a convex optimization problem,
constraints, similar to [Rustamov 2011]. The sparsitwd@k) is and its global minimum can be computed ef ciently.



3.2 Properties of LBC

Our formulation is effective in en- Ci

suring all the desired properties of W > S b
the coordinate functions. As con- !

straints, properties 1-5 are auto- Ci 1 Cit

matically satis ed by the optimiza-
tion result. In the following, we
focus on the locality and smooth-
ness properties.

Locality.  The Lagrange and linearity properties of our coordinate

functions de ne Dirichlet boundary conditions. In the 2D case,

the coordinate functiow; attains valuel at control pointc; and Figure 2: Comparison of locality between mean value coordinates
decays linearly to zero along its neighboring cage edges, while (MVC), harmonic coordinates (HBC), and local barycentric coordi-
vanishing on other cage edges. For a continuous funation  nates (LBC). The color-coding shows the coordinate function values
under such boundary conditions, the boundary of the superlevelfor a convex (top) and a concave (bottom) control point in red.
setfw; > sg (0 < s < 1) connects two points, b on the

cage wherew;(a) = wi(b) = s (inset above). If we mini-

mize the TV ofw; over under its boundary conditions only

then the boundary dfw; >

sg contains the shortest path
betweera andb in , because
TV penalizes its length (inset,
top left). In particular, ifci isa
convex vertex of the cage, and
no other control point lies on
the trianglecic; 1Ci+1 , then
the resulting level set curve
fw; = sgis a straight line
segment connecting andb;

it follows thatw; is linear on
the trianglecici 1ci+1 , and
vanishes outside the triangle
(inset, top left). Ifc; is a con-

necessary condition of locality in terms of the gradient norm. More-
over, since thé;-norm regularization allows for large values of the
resulting function in its nonzero region, LBC have large gradients
in neighboring regions of the control point. Thus LBC decrease
rapidly when moving away from the control point, resulting in local
in uence (Fig. 4, bottom). On the other hand, harmonic coordinates
[Joshi et al2007] are harmonic functions. They are critical points
of the Dirichlet energy, thus minimizing the-norm of the gradient
norm function.”2-norm regularization penalizes large values of the
resulting function and inhibits its sparsity [Bach et2012]. This
prevents harmonic coordinates from having large regions of zero
gradient, which violates the above necessary condition of locality
and leads to their global in uence. In fact, since harmonic coordi-
nates are analytic functions and non-constant, their zero level sets
can only have zero measure [Krantz and Parks 2002].

cave vertex, then the shortest path betwaamdb lies on the cage,

implying a degenerate case whevevanishes in the interior of Remark.In Fig. 4, we choos&0 *=n as the threshold to indicate
(inset, bottom left). In either case, TV effectively induces local- pegligible in uence from a control point, based on the following
ity. Similar arguments apply to the 3D case. In our formulation, gpservation: if alin control vertices have the same in uence at a
all coordinate functions are optimized simultaneously under global point, then their coordinate functions have valsa, due to the
constraints. Since they are globally coupled, the resulting functions partition of unity and non-negativity properties. Thus the threshold
have larger support compared to unconstrained TV minimization 109 3= js chosen to take into account the total number of control

(inset, right). Nevertheless, they are still local compared to other yertices. This threshold value is used throughout the whole paper.
barycentric coordinate schemes, due to the effect of TV (Fig. 2).

One bene t of the TV formulation is that it measures the superlevel . ) ) )

set perimeters within the cage, and the resulting solution functions Smoothness.  Ata pointx 2, if the solution functiorw; for
are local with respect to the distance inside the cage. In comparisonProblem(5) has nonzero gradient, then it will satisfy the following
Voronoi-based interpolation schemes such as [Sibson 1981] and

[Hiyoshi and Sugihara 2000] determine the in uence of sample

points based on the Euclidean distance, which might be different

from the distance inside the cage. As a consequence, Voronoi-based

interpolation schemes can lead to in uence regions that are local in

the ambient space but non-local within the cage, which is unintuitive

for cage-based deformation (Fig. 3).

The difference in locality between LBC and harmonic coordinates
can also be understood from the perspective of sparsity optimization.
For a coordinate functiow; to have local in uence, it needs to

vanish over a large region, which also means that the gradiant Figure 3: Comparison between LBC and Sibso@$ natural neigh-

is zero in this region. Thus, necessary condition for local support ~ POr interpolation scheme. The color-coding shows respectively the
of w; is that the gradient norm functioH; (x) = jr w; (x)j van- interpolation coef cient function (for Sibson's method) and the coor-
ishes over a large domaifThe TV ofw; is the'1-norm ofH; (x). dinate function (for LBC) for the red vertex. Using Sibson's method,

Since the ;-norm regularization promotes sparsity and penalizes the red vertexin uences the other end of the cage due to their prox-
the sizes of nonzero regions for the resulting function [Bach.et al IMity according to the Euclidean distance. On the contrary, with
2012], our optimization for LBC produces coordinate functions with LBC it only in uences nearby regions according to the distance
large regions of vanishing gradient (Fig. 4 top), satisfying the above InSide the cage, providing more intuitive control.



Figure 5: Relaxing the TV according to E) guarantees global
Figure 4: Comparison of gradient norm and in uence region. The C* smoothness, at the expense of more global in uence. For a small
color-coding shows the weight function values (bottom row) for the value of , the result is still more local than BBW.
red control point and their normalized gradient norm (top row). The
bottom row also shows the level set curves for the threshold value
10 *=n (in blue). Compared to other weighting schemes, LBC have No local extrema.  For cage-based deformation, it is desirable
the smallest region with values greater thed °=n. that the weight functions are free of local extremal values in the
interior of the cage, to prevent unintuitive deformation. In all our
experiments, we observed that LBC have no local extrema. This is

Euler—Lagrange equation (see Appendix A for its derivation) not surprising, since TV measures oscillation, and hence its mini-
mization inhibits local extremal values. On the contrary, optimizing
r wi(x) . energies with higher order differential operators often induces local
irwi (X)) 1(X) it 2(x)+ a(x)=0;  (6) extrema [Jacobson et al. 2012].

where |; 2; 3 are the Lagrange multiplier functions for the con- 3.3 Controlling locality
straints of reproduction, partition of unity, and non-negativity prop-

erties, respectively. Since E(§) involves second derivatives of;, When minimizing the TV energy, the penalty for the gradient norm
the functionw; needs to be at lea€t' atx. On the other hand, i is uniform across the whole domain To obtain coordinate func-

is in the interior of a region whenew; = 0, thenw; is constantin tions with more local support, it is preferable to penalize the gradient
a neighborhood at and thusC* as well. Thereforew; is guaran- norm based on the distance to the control points within the cage.
teed to beC?! except at the boundaries of regions where its gradient Ideally, for a control point;, its coordinate functiomv; should de-
vanishes, and the set of n@* points in has zero measure. crease quickly to zero when moving away framand remain zero

at regions far away frorg; . In other words, it is desirable that the
gradient nornjr w;j is large at regions close ), and vanishes far
away fromc;. Accordingly, regions farther away from should re-
ceive a higher penalty fgr w;j. Based on these considerations, we
extend our formulation by incorporating a spatially varying weight

Remark Eq. (6) is only applicable to points with nonzero gradients,
since the ternm  (r wijr w;j) is not well-de ned wherr w; = 0

as the 2-norm function is not differentiable at zero. This prevents
Eq. (6) from ensuringC* continuity of w; at the boundaries of

regions with vanishing gradients. Global continuity can be ¢ hction = 71 [0; 1] into the evaluation of TV. Speci cally, the
achieved by relaxing the target functional in (5) to target functional in (’5) is modi ed to '
Z o Z
f(rw); 7 irowij; (10)
i=1 i=1
where the functiofi : R® 7! Ris de ned as with | determined by the normalized distarize(x) fromx toc;,
C i, . ifjuj ()= (D(X); (12)
f(u)= Uik uit s herwi ®) _ , ,
3zt 3 wise where :[0;1] 7! [0; 1]is a continuous function, and
for some small > 0. The functiorf is C* and convex, and bounds Di(x) = ﬂ; (12)
the 2-norm function from abovef: (u) is different fromjuj only rynzax g (y)

whenjuj < , with the maximum difference being3, achieved
atu = 0. Thus, the functional i1t7) provides a tight upper bound ity () being the geodesic distance ¢o within . Using a
for the original target functional i(6), and its minimization still monotonically increasing function, this weighting scheme imposes
penalizes the superlevel set perimeters, albeit not as strongly as TVg larger penalty for points further away. Fig. 6 shows the results of
The Euler-Lagrange equation of this relaxed problem becomes \yeighted TV minimization with different choices of The case
0 where 1 is equivalent to unweighted TV minimization. It

rofrwi)+ (x) ci+ 200+ s(x)=0; (9) shows that a monotonically increasindeads to more local support
than the unweighted case. We can even choose a monotonically
decreasing , which results in more global support. Thus, the choice
of weighting schemes enables the user to ne-tune the locality of
optimization results, providing more exibility in our framework.

which is satis ed at every interior point of. Thenw; is C* every-
where due to the presence of its second derivatives. This, however,
comes at the price of locality: due to the gap between the relaxed
functional in(7) and the original TV-based functional, the solution

to the relaxed problem is less local. The largés, the more global The effects of weighting can also be interpreted using a weighted
the solution functions become (Fig. 5). Nevertheless, with a small version of the coarea formula that generalizes(BY.For a weight-
value of , the solution functions are still more local than BBW, ing function ;, we denote byP , (fw; > sg; ) the weighted
while achieving globaC? continuity. In the remainder of this paper, perimeter of the superlevel se; > s g, which is evaluated by lo-

all LBC examples are computed without relaxation. cally scaling the length/area element at each poiaf its boundary



Figure 6: Weighted formulation of LBC. Using weighted TV, we can control the level of locality for LBC. From left to right, we show the effect
of different functions in (11). Monotonically increasing functionslead to more local support, while monotonically decreasing functions
lead to more global support. The rightmost image shows the normalized distance fy@eifor the control point.

curve/surface by (x). It can be shown [Grasmair 2010] that where the matriceK andB are derived from the reproduction and
z z,, partition of unity properties,
ijrowij = P . (fwi >sg;) ds: 13 2 3 2 3
ijrowij ) i (Fwi g ) (13) Jd 1 vI 1
L . L _ .. (D+1) . p — . . (D +1) .

Thus the weighting function controls the contribution to the su- K= ﬁ B g 2R" B = 2 o g 2 R" I
perlevel set perimeters at different locations in In 2D, with a ch 1 VAR
monotonically increasing, the superlevel set boundaries closer to (16)

control pointc; contribute less to the weighted perimeter. Therefore, Although this is a convex problem, its target function is not smooth.
compared to the unweighted results, the superlevel set boundaries offo solve it ef ciently, we rst convert the problem into a separa-
w; curve towards:;, leading to more local support (see Fig. 6). On  ple form using variable splitting [Combettes and Pesquet 2011].
the other hand, with a monotonically decreasinghe superlevel  Speci cally, for each celk we introduce auxiliary variables® 2

set boundaries curve away fram, since they are subjectto less  RP (i =1:::::n) to replace the gradient expressiBaW ; + &f
penalty for their length when being farther away frem In 3D, the in the target function. Moreover, the constraiiK = B in the
effect on level surfaces is similar. original optimization problem implies tha¥ can be written as
W = YM + H, where the rows oM form an orthonormal basis
4 Numerical optimization of the null space oK T, andH 2 R™ " is the least-norm solution

to the linear systemdK = B. BothM andH can be computed

LBC are computed by numerically solving a convex optimization €f ciently using the SVD ofK, due to the small size ¢ . Then the
problem. To this end, we rst triangulate the domainsuch that ~ original problem is converted into an optimization problem about
the triangulation vertices include sample points in the interior of the W and the auxiliary variablefx?g, Y :
domain and on the cage, as well as all the control points. Egch
is represented as a function that is linear within each cell (triangle in . X X s s
2D or tetrahedron in 3D) and fully determined by its values at the Wiy o TAskdke (W) a7
triangulation vertices. In this way, the gradientafis constant on s2C i=1
each cell, and linear with respect to the valuewphit the vertices st. X=G(YM +H)+ E; W =YM +H,;
of the cell. LetCbe the set of cells in the triangulation. Then the
target functional (10) can be discretized as where the matriceX ;E 2 Rl " andG 2 RPI© ™ collect all

X 0 X7, €7, andG s, respectively, and the indicator function

SAGkr swiky; (14)

s2C i=1 W)=
whereA; is the area/volume of ced, r sw; is the gradient ofv; in
cells, and § is the value of the weighting function at the centroid
of s. For triangulation vertices lying on the cage, the valuesioére

already determined according to the boundary conditions due to the
Lagrange and linearity properties. Thus the optimization variables

0; if W 0;

+1 ; otherwise (18)

matrixW 2 R™ ". Each romW ' of W collects the values of all
coordinate functions at vertex , while each columi ; collects

the values of functiomv; at all interior vertices. Sinceswi; is af ne

with respect td\V i, it can be written as swi = GsW i + € with

a sparse matriGs 2 R° ™ (D = 2;3) and a vectoe} 2 RP

that represents the contribution from the boundary vertices. If no
vertex of the cell lies on the cage, theh = 0. The discretized
optimization problem becomes

XX s s Figure 7: Comparison of support size between MVC, HBC, BBW,
min iAskGsWi + erke and LBC. The color-coding shows the weight function values for the
s2C i=1 red control point, indicating better locality of LBC. A full comparison
stWK =B; W O (15) for all control points is presented in the supplementary material.



Figure 8: Deformation of the cactus model with different control weight functions. The control points in red and in green are subject to rigid
and non-rigid transformations, respectively. The color-coding shows the absolute sums of weight functions for the green and red control
points, respectively. LBC preserve the shape of the hat, since it is only in uenced by the red control points, and deformed by the same rigid
transformation. Other coordinate schemes distort the hat shape, due to the in uence from the green control points.

enforces the non-negativity constraint\dh. Problem(17) has a serves its shape as shown by the checkerboard texture. On the
separable target function and linear side constraints. It can be solvedcontrary, with other control weight schemes the hat region is also
ef ciently using the Alternating Direction Method of Multipliers  in uenced by the control points around the neck, whose non-rigid
(ADMM) [Boyd et al. 2011], which is popular for separable convex transformation distorts the hat shape. The non-negativity of LBC
problems. The steps of our ADMM solver are presented in Ap- also prevents unintuitive deformation, in contrast to the MVC result
pendix B. Thanks to the separable structure, each step of the solvewhere negative weights lead to local ipping of the shape. Similarly,
handles a set of independent subproblems that can be solved in paiigs. 9 and 10 show the bene t of LBC for enabling local control and
allel, which leads to signi cant speedup on multi-core processors. producing intuitive deformations. Figs. 1, 11, 12, and 13 illustrate
the smoothness and locality of LBC when applied to 3D cage-based

5 Results

This section provides examples that demonstrate the main charac-
teristics of LBC, as well as a comparison between LBC and other
control weight schemes, includimgean value coordinatg$/1VC)

[Ju et al 2005; Hormann and Floater 2006kRrmonic barycentric
coordinateHBC) [Joshi et al2007],bounded biharmonic weights
(BBW) [Jacobson et aP011], andPoisson-based weight reduction
(PWR) [Landreneau and Schaefer 2010]. In all examples, LBC are
computed using weighted TV, where the weight function in @)

is chosen as(x) = x°.

Locality.  Fig. 7 illustrates the locality-inducing effect of TV mini-
mization. The color-coding of the coordinate function values shows
the clear advantage of LBC in terms of locality. The comparison for
other control points can be found in the supplementary material.

For cage-based deformation, the local in uence of LBC provides

better preservation of local shapes. This is shown in Fig. 8, where _ ) . ) )

we deform a cactus model. Here, a group of control points around Flgurg 9.: The gecko image is deformed using control points close to
the hat undergoes a rigid transformation, while another set of control the tail (in red) and the feet (in green). The color-coding shows the
points around the neck are subject to a non-rigid transformation. absolute sum of control Welg.ht functlpns for the red cpntrol points.
Thanks to the locality of LBC, the control points around the neck 1 n€ élbow and the head remain xed with LBC, while being deformed
have negligible in uence on the hat. Hence the hat undergoes thebY othgr weight functions. A comparison of the deformations can be
same rigid transformation as the control points around it, and pre-found in the supplementary video.



Figure 10: Deformation of an image by moving two control points (in green), and color-coding for the magnitude of deformation. LBC not
only produce a more local deformation, but also preserve the linear features of the texture better.

deformation. A comparison of 3D deformation using LBC and other the graphs of) show that with LBC each point inside the cage is
control weight schemes can be found in the supplementary video. only in uenced by a small number of control points. They clearly

. . . - . . indicate the locality of LBC.
The locality of LBC is also veri ed by statistics of its coordinate indicate the focality 0

function values. Speci cally, for a set of control weight functions

W1;::;Wn, we denote by i (t) the normalized area/volume inside  Weight reduction.  The above statistics reveal that we can adopt a
the cage where the magnitudevaf is no greater thah, compact representation for LBC that only stores the control weight
values greater than the threshdld 3=n. Such a representation
) = (fx2 jjwi(xX)j tg). (19) not only reduces the amount of required memory storage, but also

leads to faster deformation since fewer control points are involved in
the interpolation computations. Table 1 lists the memory footprints

Q) ’

where () denotes the area/volume of a set. Then the function and deformation timings using the reduced weights from LBC, com-
pared against the dense storage of MVC weights without reduction.

1 X Speci cally, the dense storage represents MVC weights as a matrix

P=— ") (20) where each columns collects the weights from a control point, and

i=1 each row collects the weights for a data point. The reduced LBC

weights are stored as a sparse matrix of the same dimension, using
the compressed sparse column (CSC) format. The deformations
are computed by multiplying the weight matrices with a matrix that
stores the control point positions. Table 1 shows that the compact
representation of LBC brings signi cant reduction in memory stor-
(tx2 | (x) ko) age and de_formation timing for most models. Note that the Logo
(fork 2 N) (21) model requires more memory and time to deform with the reduced
O weights, because there are only 6 control points, which prevents
LBC from being sparse enough to compensate for the storage and
computation overheads induced by the CSC data structure.

indicates the average in uence of the control points. Additionally,
forapointx 2, we denote by (x) the number of control points
whose control weight functions &tare greater than the threshold
10 3=n of negligible in uence. Then the function

Q(k) =

provides the statistics about the number of control points that in u-

ence the cage interior. Figs. 14 and 15 provide the grapRsarfd

Q for HBC, BBW, and LBC, for the models of Armadillo (Fig. 1),  Compared to other weight reduction schemes such as PWR, LBC are

Woody (Fig. 7), Gecko (Fig. 9), and Horse (Fig. 11). The graphs aple to improve memory storage and deformation timings without

of P show that LBC have small values over large regions, while sacri cing the quality of the deformations, thanks to their locality
and smoothness (Figs. 12, 16). Note that with PWR, the user needs
to specify a set of example poses, as well as the maximum number

Figure 12: Local 3D deformation. For the armadillo model, a set
of control points near the left hand is moved, with the deformed
cage edges shown in red. The color-coding shows the magnitudes of
mesh vertex deformations, normalized by the maximum deformation
Figure 11: Cage-based deformation of the horse model illustrates magnitude among all vertices. The PWR parame2érand12 are
the smoothness of LBC. the maximum and average value<fn (21) for LBC.



Model n Memory | Timing
ARMADILLO (Fig.1) | 110 | 16.58% | 17.57%
Wooby (Fig. 7) 26 | 30.80% | 41.99%
CacTtus (Fig. 8) 27 | 23.23% | 38.71%
Gecko (Fig. 9) 34 | 23.93% | 31.44%
Loco(Fig. 10) 6 98.19% | 105.46%
HorsEe(Fig. 11) 51 | 20.75% | 30.85%

Table 1: Memory storage and deformation timings using the reduced
weights from LBC, relative to those using the dense storage of MVC.
Heren is the number of control points.

Figure 13: Comparison of the level set surfaces at valife *=n

for the weight functions of a control point (in red), wherés the
number of control points. TV regularization leads to a smaller area
of the level set surface for LBC, resulting in locality.

this paper, in comparison to BBW, since BBW also require solving
a convex problem. We compute BBW on the same triangulations
of control points that in uence an interior point. The example poses as LBC. To accelerate the BBW computations, we only compute
we used for PWR can be found in the supplementary material. For approximate solutions to the BBW optimization problem by com-
the maximum number of control points, we use two values for each puting the weight functions of each control point independently and
model: (i) the maximum value @ for LBC, which allows PWR to normalizing them to enforce partition of unity, as recommended by
have at least as many weight values as LBC on all interior points; [Jacobson et ak011]. All BBW results are computed using-
and (ii) the average value @ for LBC, which requires PWR to BIGL (http://igl.ethz.ch/projects/libigl/ ). The
achieve the same amount of reduction as LBC. LBC are either asLiBIGL code provides two choices for the backend QP solver, us-
smooth as PWR (Fig. 12), or smoother than PWR (Fig. 16). In both ing the active-set method and theddEk interior point optimizer
cases, LBC require no more storage than PWR, and achieve bette(http://www.mosek.com ), respectively. In all examples, the
locality. active set method requires less computation time and produces re-
sults that are more local and achieve lower values of the optimization
target function. We have also implemented a BBW solver based
on the SOCP formulation proposed in [Jacobson.e2@12], using
MosEk as the backend SOCP solver. Itis also outperformed by the
active-set code fromiBIGL, in terms of both timing and quality
of the results. Thus, all BBW examples are computed withGL
using the active-set solver. The weight functions for different control
points are computed in parallel to achieve maximum performance
of the BBW solver. Table 2 shows that the speed of our solver is
Implementation and performance.  Our LBC solver is imple- ~ comparable to the BBW solver. Despite the large scale of the opti-
mented in C++. All linear algebra computations are done using the Mization problem, the performance of our solver makes it suitable
EIGEN library (http://eigen.tuxfamily.org ). The trian- for real-world applications, since the coordinate functions only need
gulation is computed usingRIANGLE (http://www.cs.cmu. to be computed once for each cage. The source code of our solver is
edu/ ~ quake/triangle.html ) in 2D and TETGEN (http: available ahttps://github.com/bldeng/LBC
/ltetgen.org ) in 3D. The geodesic distance values required
for the weighting functions are computed according to [Crane.etal § Limitations and future work
2013], which amounts to solving a set of linear systems with the
same matrix and requires only one factorization of the matrix to Oyr method is built upon a trade-off between locality and smooth-
solve for different right-hand sides. In each iteration of our solver, ness. TV minimization induces locality, but only guarantees that
independent subproblems are solved in parallel using OpenMP. Tathe result isC* almost everywhere. Glob&* continuity can be
ble 2 provides the timings of our solver for different models shownin  achieved with the relaxation in EZ), but at the expense of less

Linear precision.  As a barycentric coordinate scheme, LBC enjoy
the linear precision property. This is shown in Fig. 17, where LBC
reproduce a linear deformation eld from its values at the control
points, preserving the linear features of the original image. On the
contrary, BBW lack the linear precision property and distort the
straight lines of the checkerboard pattern.

100% 100%

HBC
— BBW
—LBC

o
110 20 30 4 50 60 70 8 90 100 110 1 5 10 15 20 26

Armadillo Woody

1 5 10 15 20 25 0 34

Gecko

15 10 15 20 25 30 35 40 45 51

Horse

Figure 14: Graphs ofP in (20)for HBC, BBW and LBC. Figure 15: Graphs ofQ in (21) for HBC, BBW and LBC.



Figure 16: Comparison of weight reduction using LBC and PWR.
The color-coding shows the weight functions for the red control
point. The PWR parametel$ and7 are the maximum and average
values ofQ in (21)for LBC.

local results. Neither approach guaranté&scontinuity. In the
future we would like to work on barycentric coordinate schemes
with locality as well as higher order continuity.

Since LBC are computed by numerical optimization, we consider the
in uence from a control point to be negligible when its numerically

computed coordinate function value is close enough to zero. Itis an

Figure 17: Linear precision of LBC. For the original image in
Fig. 10, its control points are moved according to a linear func-
tion. LBC recover the linear deformation function, and preserve the
straight lines in the original image. On the other hand, BBW distort
the lines, due to their lack of linear precision.
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A Euler-Lagrange equations for LBC

To derive the optimality condition for Proble(®), we get rid of the
inequality constraintvy; 0 by introducing functions : 7! R
(i =1;:::;n) together with constraints; (x) = [ g (x)]* 8x 2

. Problem(5) is then converted into a constrained optimization
problem abouf w; g andf g g with pointwise equality constraints,

- X.I Z .
R ir wij
d1::54d n i=1
s.t w;i (X)ci = X; wi(x)=1;8x2 ;

i=1
wi(x)=[g(x)]% 8x 2 ;
wi(x)= i(x); 82 @,

i=1

(22)

where@ is the boundary of , and the function; : @ 7! R
represents the boundary valuesigfderived from the Lagrange and
linearity properties. Then an optimal solution functiwnshould be
part of a stationary point for the functional [Wan 1995]

[[W1; 00 Wni Oy iiiOns 15 25 3]
Z x X
= [ rwij+ . ( wici x)+ 2o wi 1)
i=1 i=1 i=1
+ awi g)]dx; (23)
where ;| : 7"RY, L, 7' R, and 3 : 7! R are the

Lagrange multiplier functions. The Euler-Lagrange equation of the
functional in (23) forw; is

r Wi

— 2+
rowi)

, Gi+ 3=0: (24)

B ADMM solver for LBC

Using ADMM, we solve Problen{l15) by searching for a saddle
point of its augmented Lagrangian function

L(W;X;Y; 15 2)

X X

= SAskxTka+ (W)+ 1 (X GYM  J)
s2C i=1

* 2 (W YM H)+ S(kXx GYM JkE
+kW YM  HKE); (25)

whereJ = GH + E, the matrices 1, » are Lagrange multipliers,
k kg is the Frobenius norm, denotes the inner product between
the vectorization of two matrices, ang 0 is a penalty parameter.

Solver. ADMM iteratively updates the variables and multipliers
until convergence. Lavy ); X 0y (0. (9. () he their values
at iterationk. Then each iteration consists of the following steps:

1. Updatew ; X :
(W ED KDy = argmin . LW XGY &5 805 §9):
2. UpdateY :
Yy & = argmin, L *D KDy (00 00y

wherefy <D = w &y vy OM+H),RKED =
XDy GeY M + J),and 2 [1:5;1:8] is an
over-relaxation parameter [Boyd et al. 2011].
3. Update 1; »:
(lk+1) = (lk) + (g(kﬂ) Gy k*D'm J);
(2k+1) - (2k) + (W (k+1) Y(k+1) M H)

Thanks to the convexity of the problem, this solver is guaranteed
to converge to the solution [Boyd et.&011]. Convergence is
indicated by the primal residug} and the dual residual that are
small enough, where

_ X(k+l) GY (k+1) M J )

fp = Wk oy kS oy (26)
_ G(Y (k+1) Y(k))M

Fa= (Y 6Dy (yy (@7)

Thus, the solver terminates wh&ny ke p andkrpke
where ,; ¢ are convergence thresholds given by the user.

dy

Solutions.  Step 1 consists of the following subproblems
min Ekx? al k3 +  sAskxTkz; (28)
min - kw QMKEZ + (W); (29)

which can be solved in parallel, whméfi) are the components of
matrixGY M +J (Y= that correspond ta?, andQ*) =

Y®©M+H = . These problems have closed-form solutions
. 8 0; if kall'k  —=As;
Xi =, k;gs)k agﬁ); otherwise (30)
Wi =max(0;QY); (31)

whereW ;Qi(;jk) are the(i;j )-th elements ofV , Q¥ respec-

tively. In Step 2 (**V) is the solution to a set of symmetric positive

de nite linear systems with matri€ " G + | and right-hand sides

GT (k(k+l) J+ (lk): )+ D Ho+ (Zk): M T . Note

that the linear system matrix remains xed in all iterations. So we
precompute the sparse Cholesky factors of the system matrix once,
and use them to solve the system in subsequent iterations. In all
iterations, different right-hand sides are solved in parallel.

Parameters. The solver requires user-speci ed values of the
penalty weight , the over-relaxation parameter the convergence
thresholds ,, 4, as well as initial values for the variables and
Lagrange multipliers. For all examples in this paper, we rescale
the models to have bounding box diameter 1, and set 10.
The other parameters are chosen as 1:65, , = N, 10 ¢,

4= Ng 10 8, whereN, andNy are the dimension af, and

rq, respectively. The initial values of variables and multipliers are

settoy @ =0, © = O =



