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Abstract

Cloud computing is used extensively in Architecture/ Engineering/ Construction projects for

storing data and running simulations on building models (e.g. energy efficiency/environmental

impact). With the emergence of multi-Clouds it has become possible to link such systems and

create a distributed cloud environment. A multi-Cloud environment enables each organisation

involved in a collaborative project to maintain its own computational infrastructure/ system (with

the associated data), and not have to migrate to a single cloud environment. Such infrastructure

becomes efficacious when multiple individuals and organisations work collaboratively, enabling

each individual/ organisation to select a computational infrastructure that most closely matches

its requirements. We describe the“Clouds-for-Coordination” system, and provide a use case to

demonstrate how such a system can be used in practice. A performance analysis is carried out

to demonstrate how effective such a multi-Cloud system can be, reporting “aggregated-time-to-

complete” metric over a number of different scenarios.
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1. Introduction

Cloud computing enables applications in the Architecture/ Engineering/ Construction (AEC)

to dynamically scale-up (increasing volume of data/computation) & scale-out (increasing diver-

sity of computational infrastructures involved). This becomes more relevant when projects are

being undertaken by a consortia of companies, who work collaboratively for the duration of

the project. Such projects are complex and the consortia members provide a range of skills to

the project from its inception to completion. During this process, various data artifacts are also

generated that need to be stored and shared between project members (generally using access

control strategies – which limit what can be accessed at a particular stage of the AEC project

lifecycle). The planning, implementation and running of these AEC industry projects requires

the formation of secure Virtual Enterprises (VEs) to enable collaboration between its members

by sharing project information and resources. An important feature of the consortia is that they

are dynamic in nature and are formed for the lifetime of the project. Members can participate in

several consortia at the same time and can join or leave a consortium as the project evolves.

Cloud computing offers an important computing infrastructure to facilitate the establishment

and coordination of such VEs. As well as remote access, Cloud computing also provides en-

hanced security, including single sign-on capability, security between consortia members, sim-

ple setting up of networks to support VEs, distribution of computationally intensive jobs across

multiple distributed processors (based on shared information about available resources). Each

organisation involved in a VE may have access to its own Cloud computing system (privately

managed internally within the organisation, or acquired through a public provider such as Ama-

zon.com or Microsoft (via their Azure platform)). It is unlikely that all members of a consortium

will share the same platform. Integrating capability across multiple platforms is therefore an

essential requirement for such VEs to function in an efficient and reliable manner. The alterna-

tive would be for all members of the consortia to migrate to the same platform. Unless there is

industry-wide (or consortia-wide) agreement on what this platform should be, such a migration

process can be costly and error prone, and often the outcome of the process for a specific project

can be unclear.
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Various efforts have been proposed to implement such multi-Clouds, ranging from research

efforts focused on Cloud interoperability e.g. the Open Cloud Computing Interface (OCCI) ef-

forts at the Open Grid Forum [1]. OCCI provides an API and a set of protocols to enable manage-

ment capability to be carried out across multiple Cloud providers. A variety of implementations

are currently available, in systems such as OpenStack and OpenNebula (two open source Cloud

platforms). An alternative approach to interoperability is through the development of specialist

gateway nodes which enable mapping between different Cloud systems and the implementation

of specialist gateways to connect different Cloud systems, the development of a Cloud Operating

System (CloudOS) to connect distributed Clouds to the use of specialist in-network capability

to process data in network elements between different end points (GENICloud [2]). Similarly,

on-line sites such as CloudHarmony [3] report over 100+ Cloud providers that offer capability

ranging from storage and computation to complete application containers that can be acquired at

a price, primarily using service-based access models. As the multi-Cloud market and associated

number of Cloud providers who could offer services in such a market increase in number, there

is often a need to understand which Cloud providers are likely to be of most benefit in the con-

text of a given application requirement. Matchmaking becomes an important capability in such

a marketplace – enabling application users to map their requirements to infrastructure capability

that may be hosted across a number of different types of Cloud systems.

This paper has two major contributions: (i) we present the implementation and use of a dis-

tributed Clouds4Coordination system used to coordinate large construction projects based on

requirements of the AEC sector. We emphasise the need to aggregate capability across multiple

systems, rather than require all project members to migrate to a single system, and (ii) we demon-

strate the capability of the system to provide the required quality of service and functionality in

use by running performance analysis and measurement. Our approach involves the implementa-

tion of a logical “shared” space that is physically distributed across multiple sites involved in a

cloud federation. Such a shared coordination space enables various project members to interact

with each other during the stages of a project. We compare our approach to general cloud feder-

ation efforts, specifically adapted for the needs of the AEC industry in Section 2. In Section 3 we
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present the CometCloud system and how this system has been used to create the federated cloud

framework, followed by a description of the “Cloud4Coordination” (C4C) system and the asso-

ciated Application Programming Interface (API) that makes use of CometCloud in Sections 4

and 5. In Section 6 we evaluate the C4C system in terms of its performance with a scenario, and

provide overall conclusions in Section 7.

2. Related work

Through the federation of cloud systems it has become possible to connect local infrastruc-

ture providers to a common framework where participants can exchange data and collaborate.

The mechanisms used to support cloud federation can bring substantial benefits for service

providers by offering facilities for accessing global services instead of increasing costs asso-

ciated with building new infrastructure (which may not be fully utilized and may only be needed

to support peaks in workload over short time frames). More importantly, organisations with

spare capacity in the data centre are now provided with a simple way to monetize that capacity

by submitting it to the marketplace for other providers to buy, creating an additional source of

revenue. Even if computational infrastructure was made available, it may not be possible to host

services or data due to issues associated with licensing and intellectual property. Federation in

cloud systems has led to a real democratisation of cloud markets – enabling businesses to make

use of a variety of different cloud providers in different geographic areas. A federated cloud also

enables users to host applications with their cloud provider of choice – thereby making local de-

cisions about pricing, software libraries/ systems and deployment environments, while still being

able to connect to other computational resources.

In a federation context there are several parameters that need to be considered in order to de-

termine the type of interactions possible between sites. When two or more sites come together, it

is important to identify not only the incoming workload of each site but also the cost of outsourc-

ing to resources managed externally, the revenue obtained from outsourcing tasks or the cost of

maintaining a reasonable level of utilisation. Identifying a set of such parameters is a challeng-

ing task due to the variability in the parameters of a federated environment (such as number of
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resources allocated to local vs. remote jobs, how many jobs to outsource to another site, the time

interval over which access to remote jobs should be allowed, etc) and the fluctuation of resource

demand. Depending on the value of such parameters, a site manager must decide whether to

outsource resources, compute tasks locally or reject remote task requests altogether [6].

Our system shares commonalities with these federation solutions in terms of general cloud

bursting and cloud bridging policies related to data sharing and task execution. Beyond these

general terms also we differ in the type of coordination approach used. We are more focused on

creating a collaboration environment between sites and supporting a data-aware workflow where

users can access real time project information and make decisions according to project stages.

We therefore use the core principles of federation to enable a more controlled environment where

each user contributes based on roles and responsibilities.

3. CometCloud Federation

Through the federation of Cloud systems it has become possible to connect local infrastruc-

ture providers to a global marketplace where participants can transact (buy and sell) capacity

on demand. The mechanisms used to support cloud federation can bring substantial benefits for

service providers by offering facilities for accessing global services instead of increasing costs

associated with building new infrastructure (which may not be fully utilized and may only be

needed to support peaks in workload over short time frames). More importantly, organisations

with spare capacity in the data centre are now provided with a simple way to monetize that capac-

ity by submitting it to the marketplace for other providers to buy, creating an additional source

of revenue [8].

The federation model is based on the Comet coordination “spaces” – an abstraction, based

on the availability of a distributed shared memory that all users and providers can access and

observe, enabling information sharing by publishing requests/offers to/for information to this

shared memory. In particular, we have decided to use two kinds of spaces in the federation.

First, we have a single federated management space used to create the actual federation and or-

chestrate the different resources. This space is used to exchange any operational messages for
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discovering resources, announcing changes at a site, routing users’ request to the appropriate

site(s), or initiating negotiations to create ad-hoc execution spaces. On the other hand, we can

have multiple shared execution spaces that are created on-demand to satisfy computing needs of

the users. Execution spaces can be created in the context of a single site to provision local re-

sources or to support a cloudburst (i.e. when additional capacity is needed to respond to a sudden

peak in demand) to public clouds or external high performance computing systems. Moreover,

they can be used to create a private sub-federation across several sites. This case can be useful

when several sites have some common interest and they decide to jointly target certain types of

tasks as a specialized community.

+

Figure 1: The overall Federation Management Space, here (M) denotes a master, (W) is a worker, (IW) an isolated
worker, (P) a proxy, and (R) is a request handler.

As shown in Figure1, each shared execution space is controlled by an agent that initiates

the creation of such a space and subsequently coordinates access to resources for the execution

of a particular set of tasks. Agents can act as a master node within the space to manage task

execution, or delegate this role to a dedicated master (M) when some specific functionality is

required. Moreover, an agent deploys a number of workers to carry out execution of tasks. These
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workers can be in a trusted network and be part of the shared execution space, or they can be

hosted on external resources such as a public cloud and therefore in a non-trusted network. The

first type of worker is called a “secure worker” (W) and can pull tasks directly from the space.

Meanwhile, the second type of worker is called an “isolated worker” (IW) and cannot interact

directly with the shared space. Instead, they have to interact through a proxy (P) and a request

handler (R) to be able to retrieve task information from the space and execute these.

3.1. CometSpace

CometCloud uses a Linda-like tuple space [7] referred to as “CometSpace” which is im-

plemented using a Peer-2-Peer overlay network. A tuple space enables the implementation of

an associative memory-based search strategy, whereby the search term is described as a set of

items/terms, which can be mapped against a table of stored data. This search strategy is of-

ten easier to implement in hardware and therefore provides a significant improvement in search

performance. As an illustrative example, consider that there are a group of data producers and

consumers, producers post their data as tuples in the space, and consumers then retrieve data that

match a certain pattern. The producers/consumers only have a reference to where such data items

should be posted/retrieved from, but do not need to know the physical location/ storage device

for such data items. CometSpace is an extension to this tuple space-based abstraction, in that the

tuple space can be physically distributed across multiple sites, and a “logical” space is produced

by combining these physically distributed sites. Each producer/ consumer now accesses the log-

ical space, asynchronously, and does not need to know the physical location of the site actually

hosting the data [10]. In this way, a virtual shared space for storing data can be implemented

by aggregating the capability of a number of distributed storage and compute resources. Comet-

Cloud therefore provides a scalable backend deployment platform that can combine resources

across a number of different cloud providers dynamically, often seen as a key requirement for a

project in the AEC sector.

CometCloud is based on a decentralized coordination substrate, and supports highly hetero-

geneous and dynamic cloud infrastructures, integration of public/private clouds and cloudbursts.

The coordination substrate (based on a distributed Linda-based model) is also used to support
7



a decentralized and scalable task space that coordinates the scheduling of tasks, submitted by a

dynamic set of users, onto sets of dynamically provisioned workers on available private and/or

public cloud resources based on their Quality of Service (QoS) constraints such as cost or perfor-

mance. These QoS constraints along with policies, performance history and the state of resources

are used to determine the appropriate size and mix of the public and private clouds that should

be allocated to a specific application request. Additional details about CometCloud can be found

at [5].

For developing our C4C solution we extend the CometCloud system with the following fea-

tures: (i) a BIM API based on the requirements of the AEC industry; (ii) a multi-cloud API

by implementing new methods required for modelling the workflow associated with an AEC

project; (iii) specification of the tuple-space mechanisms and the format of tuples to comply with

requirements related to data processing, data sharing and data storage. In addition to these, we

have also implemented an event propagation mechanism for monitoring the various operations

appearing when working on IFC based construction projects, a metadata model for storing in-

formation about each individual object and a versioning system to record all the versions that an

IFC object may have over time.

4. C4C project

In this section we outline the key industry-based requirements of the “Clouds-for-Coordination”

(C4C) project. We subsequently describe the Cloud4Coordination system that has been imple-

mented to address these requirements.

4.1. Project background

The C4C project aims to address data management challenges due to the increasing adoption

of Building Information Modelling (BIM) in the AEC sector. In principle, BIM presents the

possibility of sharing information throughout the construction and property management sectors.

Alongside the issue of ownership, the rapid sharing of data also raises the question of trust in

the data – more commonly recognised in the AEC industry through the use of ‘Issue Status’ for
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physical documents (where documents are given statuses that equate to what they can be reliably

used for, and therefore what the issuing party accepts responsibility and/or liability for). In the

UK in particular this is driven by the government’s aim to achieve fully collaborative Building

Information Modelling (BIM) (with all project and asset information, documentation and data

being electronic) across the AEC sector. This is an especially challenging proposition as the

successful delivery of a construction project is a highly complex process; requiring collaboration

between designers, suppliers and facilities managers through a range of design and construction

tasks. This complexity in itself is a key motivation for the use of BIM, with anticipated financial

and time savings offered by its adoption [12]. Other motivating factors for BIM adoption include:

(a) project failure caused by lack of effective project team integration across supply chains [13,

14], (b) emergence of new challenging new forms of procurement i.e. Private Finance Initiative,

Public-Private Partnership and the design-build-operate [15], and (c) decreasing the whole life

cost of a building through the adoption of BIM in facilities management[16].

Figure 2: Clouds for coordination workflow.

The C4C project addresses the issue of BIM “ownership” by adopting the approach that each

party involved creates and stores (and is responsible for) their own BIM information, rather than

uploading it to a central server. More specifically our architecture imposes the following key

aspects: (i) the ownership of data remains with the discipline that created that data – which also
9



delegates any updates needed on the data to the discipline ensuring that there is a consistent view

also maintained by the discipline owner; (ii) the use of a coordination layer to allow other users

to transparently view data and make modification to it; (iii) enable information to be replicated

across multiple disciplines (but remain consistent with the data owner), allowing for fault tol-

erance and prevent data loss. Another important aspect of a management model for BIM data

is understanding the data and the stages (workflow) of an AEC project, in the context of how a

BIM model is populated with data. In order to do this an abstract process has been defined as the

result of our requirements gathering execise. This process has abstracted the approaches defined

in BS1192a[11].

Individual “nodes” that store BIM data, located at different organisations that are part of a

project, must deploy agents that interact with each, using the CometCloud system. In essence,

C4C will allow a complete BIM dataset to be visualised, sourced from the information stored at

multiple locations (locally managed Cloud systems), without changing how or where the origi-

nal source material is kept, and ensuring that the capability of the owner to revoke and manage

updates is not affected. The project goal is to create a framework for AEC project information

“Issue Status”, which recognises both the issuing party’s status (and consequentially the respon-

sibility/liability associated), as well as acknowledging the receiving party’s need or reliance on

the data.

4.2. Project implementation

In the C4C project we consider that each site (organisation) involved in a particular project

can have one master (agent) and several workers. We have also considered the scenario where a

new site may be added during the lifetime of the project, for instance, when a project member

may gain access to additional data centres. For addressing these requirements we have developed

a multi-cloud API which provides all the necessary operations for managing collaboration once

an AEC project has been initiated and launched.

We implement a multi-cloud API for creating publishers, subscribers and exchanging mes-

sages within our CometCloud-based system. The key benefit of the publisher-subscriber model

enables us to associate a distinct discipline reference with each data producer. A user belonging
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to a particular discipline (e.g. architect, electrical engineer, mechanical engineer etc) is able to

have limited visibility of BIM objects across the different sites that are part of a particular project.

What is visible within a specific discipline is dependent on: (i) the current stage at which par-

ticular data has been produced; (ii) the maturity of the generated object – referenced through a

“suitability” level. Both of these parameters are AEC industry specific requirements, and ensure

that objects can be managed and updated without conflict during the lifetime of the project. By

using the publisher-subscriber model we enable sites to interact with each other on a common

project, using publishers to generate project tasks and subscribers to execute these tasks. We

consider the following properties for a site:

• Industry Foundation Class (IFC) objects: a generic language and data model for each of

the sites in the coordination space. In our C4C framework we operate with IFC objects.

• Roles/Disciplines: we consider that sites can have different roles/ disciplines – which are

considered when propagating notification messages associated with updates to particular

IFC objects, i.e. which site should be involved at project collaboration stage.

Each site must support a local C4C environment, which enables other sites to interact with

it. In the workflow presented in Figure 3, Site 1 creates the C4C project which is formed of IFC

objects locally stored as Version1. All other sites participating in the project (Site 2 and Site 3)

will be notified about the new project being created (based on their roles in the project). Based on

the notification, Site 2 retrieves and updates the C4C project with Version 1, Site 2 then creates

a new version of the C4C project as Version2. When a new version is created the interested

sites are again notified. Site 3 will also retrieve the latest version Version2 and apply updates as

part of a new project version – Version3. Another round of notifications will be propagated to

interested sites (Site 1 and Site 2). Site 4, although part of the coordination space, is expected to

contribute to the project at later stages thus will not receive a notification event. It is important

to note that Site 1 is the owner of the project, along with the organisation that creates the project

and can always retrieve the latest version of the C4C project. In addition, Site 1 also keeps a list

of the changes that have been applied to the C4C project over time in a “provenance” (metadata)
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Figure 3: Aggregate-time-to-complete metric and workflow

file.

This workflow is supported by the modules that we have implemented to facilitate project

coordination and IFC data sharing. In this respect, we have implemented an event propagation

mechanism for monitoring the various operations than appear when working on IFC based con-

struction projects, a metadata model for storing information about each individual object and a

versioning system to record all the versions that an IFC oject may have over time. All these

modules serve to the provenance model that enables users to monitor and observe the system and

make informed decisions.
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5. C4C Application Programming Interface (API)

In this section we present the two APIs that have been developed as part of our system:

(i) an API to support multi-cloud use based on the publisher-subscriber (master-worker) model

(presented in Table 1) and (ii) a BIM-based API to comply with industry standards (presented

in Figure 4). For facilitating disciplines to use the background of a project we have developed

methods for manipulating IFC objects and corresponding metadata. We have also developed

a set of methods for enabling the distributed manipulation of these IFC objects where various

disciplines associated with a project can work on the same IFC model.

Figure 4: The C4C BIM API

The resulting functionality supports multi-cloud operation carried out over an IFC model,

by providing mechanisms to transfer data between different disciplines. This allows disciplines

to retrieve, in real-time, the latest version of an IFC object and to reconstruct the IFC model

accordingly. Table 1 presents how the multi-cloud API can be used to enable collaboration

between different partner sites.

We assume that each discipline has access to a cloud/data centre. The framework is initialized
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Table 1: Multi-cloud API

METHOD DESCRIPTION

addC4CBootStrapNodes() Sets the bootstrap node
addPorts() Adds ports for later configurations
bootstrapnodeIsUp() Checks for any working bootstrapnode
createC4CMaster() Creates a new master
createC4CWorker() Creates a new worker
createC4CMasterGeneric() Implements a generic master
findFreePort() Looks for available free ports
isBootstrapNode() Compares the current node with the bootstrapNode
sendMsg() Sends a message to a destination IP on a specific port
sendMsgToAll() Sends local subscription list to all nodes(not to bootstrapnodes)
startC4CManager() Starts federation by creating a master and worker
startC4CWorker() Starts a C4C local worker
startC4CMasterServer() Starts a local C4C master
startC4CIsolatedWorker() Starts a C4C isolated local worker
checkAvailableC4CWorker() Checks for one available worker
checkAvailableC4CWorkers() Checking for all available workers based on the number of tasks
getAvailableC4CWorker() Checks for an idle worker
createTaskData() Creates data associated with a task
getTaskInfo() Retrieves task info. based on taskID
selectC4CWorkerCreateTask() Selects a worker, then creates a task to insert to tuple space

by calling “startC4CManager()” which then creates the Masters and the Workers based on spe-

cific configuration files. If a site is not set to be a Master then the C4CManager will create a proxy

in order to connect with the existing data centre Worker by calling “createIsolatedWorker()”

method. After the multi-cloud entities have been created, the C4CManager starts all the associ-

ated Masters and Workers by calling “startC4CMasterServer()” and “startC4CWorker()” respec-

tively.

6. Evaluation

We use as input IFC models of different sizes to investigate the time taken to exchange data

between sites. This preliminary set of experiments are used to benchmark the system, and inves-

tigate estimate potential management overhead. The AEC project being considered is a bridge

structure with auxiliaries, which involves different disciplines contributing to various parts of the

structure. We use four disciplines:(i) C-Contractor, (ii) Q-Cost Consultant, (iii) E-Engineer, (iv)

O-Client. The IFC models sizes that we utilise in the experiments are: 250MB, 145MB, 3.44MB,

48KB. These input models and the output model are presented in Figure 7.
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(a) Input IFC Model: Size 3.44MB (b) Input IFC Model: Size 48KB

(c) Input IFC Model: Size 256MB (d) Output IFC Model: Size 366MB

Figure 5: Input and output models

We use an IBM Softlayer 1 virtualized cluster-based infrastructure at the Amsterdam Data

Centre, with dedicated virtual servers. To conduct the experiments we use three different system

configurations:

• Configuration 1 (used in subsection 6.1): In the preliminary evaluation we deploy four

Softlayer virtual machines (VMs), where each VM runs with 1 CPU core at 3.2 GHz and

an IFC model of size 3.44MB (illustrated in Figure 5a). Each VM uses one core with 1GB

of memory. The networking infrastructure is 1Gbps Ethernet with a latency of 14 ms on

average. Each VM runs Ubuntu 12.4 and Java 7.

1https://control.softlayer.com/ Last accessed: Aug 2015
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• Configuration 2 (used in subsection 6.2): In the second part of the evaluation we increase

the server specification to 16CPU cores with 64GB of memory in Softlayer and use IFC

models of size 145MB, 250MB, 3.44MB and 48KB respectively (illustrated in Figure 5).

The networking infrastructure is 1Gbps Ethernet with a latency of 14 ms on average. Each

server runs Ubuntu 12.4 and Java 7.

• Configuration 3 (used in subsection 6.3): In this scenario we use our local cluster system

and deploy four KVM virtual machines (VMs) with 1 CPU core at 3.2 GHz each. Each

VM uses one core with 1GB of memory. We use IFC models of size 145MB, 250MB,

3.44MB and 48KB respectively (illustrated in Figure 5). The networking infrastructure is

1Gbps Ethernet with a latency of 0.42 ms on average. Each server runs Ubuntu 12.4 and

Java 7.

We run performance analysis experiments with the objective to identify how our system

reacts when using different system configurations: (i) small model and low specs infrastruc-

ture (in Subsection 6.1 with Configuration 1), (ii) large models and high specs infrastructure

(in Subsection 6.2 with Configuration 2) and (iii) large models and low specs infrastructure (in

Subsection 6.3 with Configuration 3).

We consider that each server acts as a hosting environment for a discipline/ role and runs

CometCloud (in a more general context, a discipline can have multiple servers). The C4C frame-

work is dynamically created at runtime, enabling sites to join or leave at any given time. Based

on the use of CometCloud [4], each site has a master process that receives task requests (IFC

objects to update or retrieve) from other sites, and is able to forward requests to other sites. Each

site also has multiple worker processes that carry out actual task executions on locally available

resources. We investigate how the aggregated time-to-complete changes when: (i) the number

of IFC objects change, (ii) simultaneous client requests vary, (iii) the number of disciplines in-

crease. From Figure3, the process starts when a client performs an update (changes one or more

IFC object(s)) and finishes when the change can be observed at another discipline, requiring an

object to be transferred from the client’s local machine to the locally available master (on a data

centre or server) and then to the node associated with the remote discipline.
16



Parameter Default Exp. 1 Exp. 2 Exp. 3
No. of disciplines 3 3 3 (2,3,4)
No. of objects 20 (1,5,10,20) 20 20
No. of concurrent requests 1 20 (1,2,3) 1

Table 2: Experimental testbed

To measure this process we use a time metric called “aggregated-time-to-complete” (ATTC)

which is a sum of three individual times: (i)transfer time Tt, (ii) writing time Tw and (iii) over-

heads To/h – as illustrated in figure 3, i.e. ATTC = Tt + Tw + To/h. The ATTC measurement is

applied to the local client that initiates the requests

6.1. Low Spec. Infrastructure and Small Model

The experimental framework has the configuration provided in Table 2. The experimental

setup for this scenario is presented in Configuration 1 identifying four virtual machines where

each virtual machine(VM) has 1 CPU core at 3.2 GHz and an IFC model of size 3.44MB

Experiment 1. : In this experiment we are interested to determine how the C4C system responds

when dealing with an increased number of changes in the IFC model. The changes are identified

by IFC objects which may be added, updated or deleted by the remote disciplines that are part of

the overall C4C framework. Here we effectively measure the robustness of the system in dealing

with events which may happen at different remote sites.

As illustrated in Figure 6a, the system reacts differently at different stages of the update pro-

cess. The ATTC (Aggregated-Time-To-Complete) increases with the number of IFC objects that

are being updated. The difference between updating a single object vs. 20 objects is determined

by the overheads that appear at the master node of the local and the remote discipline, and the

transfer time when migrating objects.

Experiment 2. In this experiment we investigate how a number of simultaneous client requests

can impact ATTC, demonstrating how the C4C system can deal with an increase in the number

of tasks received from remote clients. We increase the number of clients within the set [1,2,3]
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(a) Aggregated-Time-To-Complete at different stages of objects up-
dates.

(b) Aggregated-Time-To-Complete at simultaneous client requests.

(c) Aggregated-Time-To-Complete when varying the number of disci-
plines.

Figure 6: Preliminary experiments: Update model: a) Object updates, b) Concurrent time requests, c) Multiple disciplines

and the default number of requests (IFC objects to update) that a client can submit from a remote

disciplines is 20.

Figure 6b shows an increase in ATTC with an increase in the number of concurrent requests

submitted to the C4C system. In this case the discipline master not only has to look after internal

tasks (received from the local client) but also deal with requests for IFC object updates submitted

by remote clients.
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Experiment 3. In this experiment we vary the number of disciplines and measure the impact on

the system. When varying the number of disciplines that participate in a C4C project the number

of IFC objects change as wells. In the AEC context this experiment demonstrates the scalability

of the system, when there is an increase in the number of disciplines involved.

As illustrated in Figure 6c, the response time is relatively stable when the number of dis-

ciplines change. Increasing the number of disciplines requires a one-to-many communication,

leading to a higher time-to-complete.

6.2. Performance analysis with high specs infrastructure and large models

In this second round of experiments we increase the size of the IFC models (illustrated in

Figure 5b) and the configuration of the virtualized cluster-based infrastructure. In this scenario

each server has 16 CPU cores at 3.2 GHz and 64GB of memory. The networking infrastructure

is 1Gbps Ethernet with a measured latency of 14 ms on average. Each server runs Ubuntu 12.4

and Java 7. The experimental setup for this scenario is presented in Configuration 2.

Within this new setup we investigate how the aggregated-time-to-complete changes when: (i)

update model is called from a discipline client, (ii) fetch model is called from a discipline client,

(iii) concurrent client requests take place within the system. The overall system workflow and

time-to-complete can be found in Figure 3.

Experiment 4. In this experiment we investigate how the aggregated-time-to-complete varies

with the size of the IFC models in the context of an update model request – in Figure 7a. The

greater the number of objects in a model, the greater the increase in the time-to-transfer and

time-to-write object data to disk, and associated overheads. Although relatively small models

containing few objects lead to a relatively small time-to-write, in this case the aggregated-time-

to-complete is influenced by the transfer time of the metadata across disciplines and the over-

heads at both the local and the remote disciplines.

Experiment 5. Figure 7b illustrates time-to-complete when changing the number of disciplines

and models in a fetch operation. In this experiment we consider that a disciplines can store

multiple IFC models (i.e. three models distributed across two disciplines). When fetching from
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(a) Aggregated-Time-To-Complete with different model sizes. (b) Aggregated-Time-To-Complete with different number of disciplines
and models

(c) Aggregated-Time-To-Complete with different concurrent client re-
quests.

Figure 7: Update and Fetch with complex IFC models and high specs infrastructure: a) Update Model with model sizes,
b) Fetch Model with multiple disciplines, c) Update and Fetch Model with concurrent client requests

multiple disciplines there are several writing and parsing stages involved. It is observed that

fetching four models from three disciplines determines a higher aggregated-time-to-complete

than fetching three models from three disciplines. Fetching multiples models from a disciplines

requires additional parsing and imposes overheads, hence the increase of aggregated-time-to-

complete.

Experiment 6. In this experiment we investigate performance overheads associated with updat-

ing and fetching a model with a varying number of concurrent client requests. From Figure 7c we
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can observe that fetching is always more demanding in terms of aggregated-time-to-complete.

We can also note that aggregated-time-to-complete increases with the number of concurrent

client requests. In the context of the update model request, the higher the number of client

requests the greater the time-to-write, thereby leading to higher system overheads – due to mul-

tiple endpoints where model and metadata is saved. In the context of fetch model, fetching with

concurrent requests involves simultaneous writes and data transfers across disciplines.

6.3. Low Spec. Infrastructure and Large Models

In this round of experiments we use the same size for the IFC models as in subsection 6.2

(illustrated in Figure 5) using our local cluster system and deploy four VMs, each with 1 CPU

core at 3.2 GHz each. The experimental setup for this scenario is presented in Configuration 3.

We change the experimental setup to a low specs infrastructure to test our system and observe

how aggregated-time-to-complet changes when: (i) update model, (ii) fetch model, is called from

a discipline client. The overall system workflow and time-to-complete can be found in Figure 3.

(a) Aggregated-Time-To-Complete with different model sizes. (b) Aggregated-Time-To-Complete with different number of disciplines
and models

Figure 8: Update and Fetch with complex IFC models and low specs infrastructure: a) Update Model with model sizes,
b) Fetch Model with multiple disciplines

Experiment 7. In comparison to Experiment 4, we observe from Figure 8a that aggregated-time-

to-complete changes when using a low specs computing infrastructure (refer to Configuration 3).
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We use large IFC models and observe that update model can only be completed for smaller mod-

els of 3.44MB and 48KB. For models of size 145MB and 250MB respectively, we observe that

update model cannot be completed. By using such large models over a low specs infrastructure of

1 VM with 1 CPU cores and 1GB of RAM, our system outperforms. This is mainly determined

by the amount of RAM memory which is insufficient to deal with the number of IFC objects

embedded in large models of 250MB and 145MB respectively. After additional testing we have

determined that our system requires at least 4 GB of RAM to cope with large IFC models.

Experiment 8. In this experiment we investigate large IFC models executed over a low spec.

computing infrastructure (refer to Configuration 3). From Figure 8b we observe that fetch model

cannot be completed when distributing large models over the disciplines. The configurations

considered (3 discipines/4 models , 3 disciplines/3 models, 2 disciplines/3 models) involve at

least one large IFC model. Experiments 7 and 8 demonstrate performance of our system deployed

over IBM Softlayer, with configurations similar to Configuration 2. Using virtual machines in

the same cluster improves time-to-complete for both fetch and update model.

Figure 9: Fetch and Update – centralised vs. decentralised
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6.4. High Spec. Infrastructure and Large Models

To demonstrate the benefits of our system to coordinate models which can be distributed over

disciplines within a project we verify how the system behaves in comparison to the centralised

approach. We use large IFC models (illustrated in Figure 5b) and the configuration of the vir-

tualized cluster-based infrastructure. The experimental setup for this scenario is presented in

Configuration 2.

Experiment 9. In this experiment, the number of concurrent requests are considered in: (a)

decentralised and (b) centralised system. The decentralised context identifies a federated cloud

distributing the IFC models. The centralised approach identifies a cloud system where the IFC

models are stored and accessed locally. From Figure 9 we observe that the distributed federated

cloud provides better time-to-complete than the centralised cloud. This is mainly determined by

the multiple access points that the distributed cloud offers to users, where a model can be fetched

and updated via multiple sites.

7. Conclusion

Companies involved in an AEC project often have their own data, hosted on local infrastruc-

ture, which they may be reluctant to move to a single data centre. Many existing Cloud solutions

however require this, i.e. all data is moved to a single server or location, with subsequent access

being controlled to various data sources at such a single location. The approach advocated in this

work suggests that each company maintain its own data (on a local server, within a private Cloud

environment, or on storage acquired from a public Cloud provider), without a need to migrate

this data to a central site. Subsequently, an overlay-based Cloud environment is created, where

all participants in a project can get access to a ”logically” shared data/compute space. This is

achieved in this project by using the CometCloud system, which enables a number of different

sites to be federated using the concept of a “CometSpace”. Access to data is through references

that are maintained in CometSpace, with physical instances of data being maintained at their

original point of creation. Data transfer is only undertaken if a user requesting the data has
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suitable access rights to it. In this way, CometCloud differs from other Cloud systems (such as

OpenStack), as it provides an important abstraction for supporting Cloud federation and ”cloud

bridging”. We use the aggregated-time-to-complete metric to observe how the C4C system re-

acts in different scenarios. We observed that the time-to-complete is dependant on the number of

concurrent client requests. We have also concluded that the number of disciplines that are part

of an IFC project may also increase the time-to-complete. We demonstrate how this metric is

influenced by the choice of the underlying infrastructure used to deploy the C4C system.
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