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Abstract 

The main focus of the work presented within this thesis was the testing and development 

of condition monitoring procedures for detection and diagnosis of HATT rotor imbalance 

faults. The condition monitoring processes were developed via Matlab with the goal of 

exploiting generator measurements for rotor fault monitoring. Suitable methods of turbine 

simulation and testing were developed in order to test the proposed CM processes. The 

algorithms were applied to both simulation based and experimental data sets which related 

to both steady-state and non-steady-state turbine operation.     

 

 The work showed that development of condition monitoring practices based on 

analysis of data sets generated via CFD modelling was feasible. This could serve as a useful 

process for turbine developers. The work specifically showed that consideration of the 

torsional spectra observed in CFD datasets was useful in developing a, ‘rotor imbalance 

criteria’ which was sensitive to rotor imbalance conditions. Furthermore, based on the CFD 

datasets acquired it was possible to develop a parametric rotor model which was used to 

develop rotor torque time series under more general flow conditions.  

 

To further test condition monitoring processes and to develop the parametric rotor model 

developed based on CFD data a scale model turbine was developed. All aspects of data 

capture and test rig control was developed by the researcher. The test rig utilised data capture 

within the turbine nose cone which was synchronised with the global data capture clock 

source. Within the nose cone thrust and moment about one of the turbine blades was 

measured as well as acceleration at the turbine nose cone.  The results of the flume testing 

showed that rotor imbalance criteria was suitable for rotor imbalance faults as applied to 
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generator quadrature axis current measurements as an analogue for drive train torque 

measurements. It was further found that feature fusion of the rotor imbalance criterion 

calculated with power coefficient monitoring was successful for imbalance fault diagnosis.  

 

The final part of the work presented was to develop drive train simulation processes 

which could be calculated in real-time and could be utilised to generate representative 

datasets under non-steady-state conditions. The parametric rotor model was developed, 

based on the data captured during flume testing, to allow for non-steady state operation. A 

number of simulations were then undertaken with various rotor faults simulated. The 

condition monitoring processes were then applied to the data sets generated. Condition 

monitoring based on operational surfaces was successful and normalised calculation of the 

surfaces was outlined. The rotor imbalance criterion was found to be less sensitive to the 

fault cases under non-steady state condition but could well be suitable for imbalance fault 

detection rather than diagnosis.  
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Nomenclature 

λ Tip Speed Ratio 

θ Rotor displacement, o 

ρ Fluid Density, Kgm-3  

τ Torque, Nm 

φ Magnetic Flux, Wb  

ω Rotational Velocity, Rads-1 

A Rotor Area, m2 

ai Harmonic Amplitude 

C Rotor Imbalance Measure 

Cl Logarithmic Rotor Imbalance Measure  

Cp Power Coefficient 

CT Thrust Coefficient 

Cθ Torque Coefficient  

fs Sampling Frequency, Hz 

id, iq Generator Current Quadrature and Direct Axis, Amps 

J Moment of Inertia, Kgm2 

j Imaginary Number 

Ld, Lq Inductance, H  

P No. Poles 

Pi Harmonic Phase Angle 

1P Rotational Speed of Turbine in Hz 

 

 

Acronyms 

BEMT Blade Element Momentum Theory 

CFD Computational Fluid Dynamics 

CM Condition Monitoring  

EMD Empirical Mode Decomposition 

FFT Fast Fourier Transform 

FMEA Failure Mode Effects Analysis 

HATT Horizontal Axis Tidal Turbine 
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HHT Hilbert-Huang Transform 

IGBT Insular Gate Bipolar Transistor 

NBC Naïve Bayes Classifier 

NI National Instruments 

PLC Programmable Logic Controller 

PMSM/PMSG Permanent Magnet Synchronous Machine / Permanent Magnet 

Synchronous Generator 

PSD Power Spectral Density 

PWM Pulse Width Modulation 

PXI Rugged PC and Real-Time based platform for measurement and 

automation systems. 

RPM Revolutions per Minute 

RPN Risk Priority Number 

SOSE Sum of Surface Error 

STFT Short Time Fourier Transform 

TCP/IP Modbus TCP/IP Communications Protocol 

TMS Transient Monitoring Surface 

TSA Time-Synchronous Averaging 

TSR Tip Speed Ratio 

TST Tidal Stream Turbine 

VATT Vertical Axis Tidal Turbine 

VOC Vector Oriented Control 
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 Introduction 

1.1 Tidal Energy 

Energy extraction from the ocean’s tides has gained widespread acceptance as a potential 

contributor to the UK energy mix (DECC, 2013). The driving factor behind the uptake in 

tidal energy extraction has, in part, been driven by the realisation of finite global resources 

and environmental impacts of burning fossil fuels (Zhang and Zeng, 2013). The EU 

Renewable Energy Directive outlines ambitions of the EU community to fulfil 20% of its 

energy needs via renewable sources by 2020 – it is foreseen that tidal energy extraction 

could go some way to helping achieve this target (European Union Committee, 2008). 

Tidal energy falls into two categories tidal range and tidal stream (Morris, 2014), the 

focus of this research is on the latter.  Tidal stream energy generation directly extracts energy 

from tidal current, details of the resource in the UK and the technologies currently 

envisioned are given in Sections 1.2 and 1.3, respectively.  A number of tidal stream energy 

devices have now passed the prototyping phase with companies recently gaining permission 

to install MW arrays of marine current turbines (Renewable Energy World, 2013). Tidal 

stream turbines of the horizontal axis arrangement are likely to become the industry 

standard, although competing design arrangements are still being considered (Chen et al, 

2012). At this stage of development tidal energy technology has yet to be proven with regard 

to long term operational availability and reliability. It is accepted that the harsh marine 

environments and problems with accessibility for maintenance may exasperate availability 

and reliability problems. Minimising uncertainty surrounding the operation and maintenance 

of such devices will thus be crucial in improving investor confidence and achieving 

economically viable power extraction (Bahaj, 2011). 
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1.2 UK Tidal Resource  

It has been reported that 10 – 15 % of the world’s tidal stream resource and 50% of the 

European tidal stream resource is available in the national waters of the UK (Black and 

Veatch, 2005). Initially Black and Veatch reported that 58% of the resource of the UK was 

situated of the coast of Scotland. However, a more recent study by Black and Veatch report 

a more equal distribution of tidal stream resources of the cost of England, Scotland and 

Wales (Black and Veatch, 2011). Figure 1.1 shows the distribution of the tidal stream 

resource throughout the UK (Crown Estate, 2011).  

 

Figure 1.1: Tidal stream resource around the UK (Crown Estate, 2011) 

 

 

 

1.3 Tidal Stream Device Types 

There are a variety of energy extraction technologies that have been proposed of tidal 

stream energy extraction. The majority of these devices are tidal stream turbines 
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characterised by the rotational motion and categories by the axis of rotation as vertical axis 

tidal stream turbines (VATT) or horizontal axis tidal stream turbines (HATT). 

1.3.1 Vertical Axis Tidal Stream Turbines 

Vertical axis tidal turbines are characterised by having the axis of rotation perpendicular 

to the flow direction (Renewable UK, 2011). Whilst the VATT setup hasn’t been as widely 

adopted as the HATT counterpart, VATTs have one distinct advantage in that the can 

operate regardless of the flow direction without major impacts on operational efficiencies 

(Eriksson et al, 2008).   Operating efficiencies for VATTs of 37% to 40% have been reported 

(Han et al, 2013; Eriksson et al, 2008) although it has been argued that these lower 

efficiencies could be due to less research into the operating principle during wind turbine 

development (Eriksson et al, 2008). The ability to utilise straight turbine blades with little 

or no twist has also been sighted as an advantage of the VATT setup, leading to a reduction 

manufacturing cost for VATTs in comparison to the more complex blade designs required 

for HATT devices (Khan et al, 2009). Figure 1.2 shows two examples of the VATT namely 

the Kobold turbine and Gorlov turbine.   

 

 

 

Figure 1.2: Examples of vertical axis tidal stream turbines (Morris, 2014) 
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1.3.2 Horizontal Axis Tidal Stream Turbines 

Horizontal Axis Tidal Turbines (HATT) are characterised by the rotational axis of the 

turbine being parallel to the fluid flow (EMEC, 2012). The majority of tidal stream devices 

currently under development or full-scale deployment are of this type (Chen el al, 2012). 

HATTs required more hydro-dynamically complex blade designs incorporating complex 

blade profile, tapers and twists (Khan et al, 2009). However HATTs generally have higher 

efficiencies than VATTs; reported peak efficiencies range from 39% to 48% of the energy 

in the fluid flow over the swept area of the turbine (Mason-Jones, 2010; Jo et al, 2013; 

Faudot et al, 2013; Walker et al, 2013).  In order for HATTs to operate in both flood and 

ebb tides HATTs must incorporate a global yawing system, blade pitch or bi-directional 

blades which can add to the manufacturing cost and reliability burden of such devices (Liu 

and Veitch, 2012; Nicholls-Lee, 2011). HATTs exhibit faster rotational velocities than 

VATT counterparts which to some degree alleviates the problem of generator matching 

(Khan et al, 2009). Figure 1.3 shows a number of HATTs currently under commercial or 

prototype deployment.  
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MCT Seagen S (Marine Current Turbines, 2013) b)  Alstom DeepGen (Alstom, 2013) 

  

c) TEL Delta Stream (Tidal Energy Ltd, 2014) d) SME Plat-O incorporating Schottel Instream 

Turbines (SIT) (Sustainable Marine Energy Ltd, 

2016) 

  

e) OpenHydro Open Centre Turbine (Brooks-

Roper, 2012) 

f) Atlantis AS 140 (Atlantis Resources, 2008) 

 

g) Altantis AR1000 (Atlantis Resources, 2012) 

Figure 1.3: Examples of HATT under development, prototyping and deployment. 
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1.4 HATT Operating Principle  

The theoretical power available for extraction by HATTs is equal to the energy flux 

through the swept turbine area normal to the predominant fluid flow direction. This is given 

by the well-known equation: 

 

 𝑃 = 0.5 𝜌 𝐴 𝑈3 (1.1) 

   

 Where ρ is the density of the sea water, A is the swept area of the turbine given by π R2 

and U is the free stream velocity of the water. This is the power in the fluid stream hitting a 

turbine of swept area A. However, full extraction of this power is physically unachievable. 

Application of the conservation of momentum and Bernoulli’s equation to an actuator 

disk can be used to calculate the maximum extractable power within a tidal stream of a given 

swept area. This work was originally undertaken by Albert Betz in 1920 (Betz, 1920) and 

Manwell et al (2009) present a thorough outline of this process. Figure 1.4 shows an actuator 

disk within a tidal stream control volume.   

 

 

Figure 1.4: Schematic of a tidal stream tube and actuator disc (Manwell et al, 2009). 

 

The setup is subject to the following assumptions: 

1. The fluid is incompressible, homogenous and the flow is steady-state (u2 = u3).  

2. No friction drag; 

3. Infinite number of turbine blades; 

4. Non-rotating wake; 
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5. Static pressure far upstream and downstream of the turbine is equal to the 

undisturbed ambient pressure (p1 = p4). 

 

The thrust on the turbine can then be calculated via conservation of momentum, where 

the force on the control volume is equal and opposite to that of the thrust. The thrust is then 

given by:  

 𝑇 = 𝑚 ̇ (𝑈1 − 𝑈4) (1.2) 

where �̇� is the mass flow rate. The thrust on the actuator disc is positive meaning that U4 

is lower than U1.The thrust on the disk can also be expressed in terms of the net forces on 

the disc, in this way the thrust is given by: 

 𝑇 = 𝐴2(𝑝2 − 𝑝3) (1.3) 

As no work is done between points 1 to 2 and between points 3 to 4, Bernoulli’s relation 

can be used to express p2 in terms of U1 and p3 in terms of U4, equation 1.3 can then be 

written as follows:  

 𝑇 = 0.5𝜌𝐴2(𝑈1
2 − 𝑈4

2) (1.4) 

Equating equations 1.2 and 1.4, given that �̇� can be set equal to 𝜌𝐴2𝑈2 results in the 

following expression for the velocity at the turbine rotor in terms of the inlet and outlet 

velocities:  

 
𝑈2 =  

𝑈1 + 𝑈4

2
 

(1.5) 

one can define an axial induction factor a that considers the drop in velocity between the 

free stream and the turbine rotor as a fraction of the free stream velocity:  

 
𝑎 =  

𝑈1 − 𝑈2

𝑈1
 

(1.6) 

The axial induction factor a is a measure of the reduction in flow speed downstream of 

the turbine rotor. When a = 0.5 the fluid velocity downstream of the turbine rotor becomes 

zero. The power generated by the turbine can then be written as the product of the thrust on 

the actuator diskand the fluid velocity at the actuator disk: 
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 𝑃 = 0.5𝜌𝐴2(𝑈1 − 𝑈4)𝑈2 (1.7) 

here, A2 refers to the area of the actuator disk. Writing U2 and U4 in terms of the free 

stream velocity and the axial induction factor, then completing the square in the resulting 

equation the power extracted from the fluid by the rotor can be written as:  

 𝑃 = 0.5𝜌𝐴𝑈34𝑎(1 − 𝑎)2 (1.8) 

One can then define the power extracted by the turbine rotor as: 

 𝑃 = 0.5𝐶𝑝𝜌𝐴𝑈3 (1.9) 

Where Cp is the power coefficient for the rotor: 

 
𝐶𝑝 =  

𝑃

0.5𝜌𝐴𝑈3
 

(1.10) 

Using Cp = 4a(1-a)2, by equations 1.8 and 1.9, one can find the theoretical maximum 

efficiency of a given rotor, which is known as the Betz limit and is equal to 0.5926. Similar 

treatments lead to coefficients for the thrust, Ct and the torque Cθ developed at the turbine 

rotor.  

 
𝐶𝑡 =

𝑇

0.5𝜌𝐴𝑈2
 

(1.11) 

 
𝐶𝜃 =

𝑇

0.5𝜌𝐴𝑟𝑈2
 

(1.12) 

Equations 1.10 to 1.12 are three equations characterising the performance of a given rotor 

in extracting power, developing thrust and torque from the on-coming fluid velocity, in 

terms of the free stream velocity approaching the turbine rotor.  The non-dimensional 

quantities are often used for comparison between differing turbine designs and can be 

utilised to model the expected power output, thrust loading and torque developed for a given 

rotor and upstream fluid velocity.  

Lastly, the tip speed ratio (λ) is the ratio of the tangential velocity of the blade tip to the 

velocity of the fluid flow perpendicular to the turbine rotor plane. The tip speed ratio or λ is 

given by:  



32 

 

 λ =  
𝜔 ∙ 𝑟

U
 

(1.13) 

Often the non-dimensional parameters outlined in equations 1.10 to 1.12 are plotted 

against λ allowing comparisons of turbines of differing scales and dimensions.  

1.5 Research Objectives 

The aims of this work were to consider the condition monitoring of tidal stream turbine 

rotors. Specifically the work considered the approach of utilising generator measurements 

to detect rotor damage under non-steady state turbine operation. This aim was met by the 

following objectives: 

 Investigate the suitability of utilising transient CFD model data for generation of 

condition monitoring approaches.  

 Development of a variety of condition monitoring approaches for testing and 

development in both steady-state and non-steady state turbine operating 

conditions based on easily acquired generator signals.  

 Development of scale model turbine for testing of condition monitoring processes 

under flume testing conditions. 

 Utilise flume results taken at a variety of operating condition to develop a 

parametric rotor model for real-time turbine simulations.   

  Development of drive train simulation apparatus and model to replicate non-

steady state turbine operation for testing of CM processes on the data sets acquired 

from non-steady state turbine operation.  

 

1.6 Thesis Structure 

The thesis has been organised to provide the reader with clarity regarding the sequential 

contributions to the above research objectives achieved during each phase of simulation and 

testing. As such the thesis has been arranged, henceforth, into the three chapters addressing 
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differing stages of development; both of the condition monitoring approaches and 

testing/simulation methods. The three chapters proceed as follows:  

 

Chapter 2 - Literature Review:  

The literature review presents a selection of findings from literature relating to turbine 

reliability, condition monitoring of HATTs. The review also draws experience from rotor 

monitoring of WTs and the development of scale model TST by researchers.  

Chapter 3 - Methodology: 

The methodology presents an outline of a condition monitoring architecture and 

associated development process. The development process is then applied to monitoring of 

turbine rotor imbalance faults. Lastly the specifics of the monitoring approaches in terms of 

physical considerations and processing methods are outlined.  

Chapter 4 - Initial Steady State Simulatio: 

The chapter outlines a parametric approach to transient TST rotor simulations based on 

CFD data which is then developed further in Chapter 6. The structure and details of the 

condition monitoring algorithms utilised throughout. The chapter provides initial 

confirmation of the effectiveness of the condition monitoring algorithms applied in the 

steady state – constant omega.  
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 Literature Review 

2.1 Introduction 

This chapter provides a survey of relevant literature relating to the research activities 

covered within this thesis. This review was conducted to give scope and guide research 

activities throughout the period of study. The aim of the presentation of literature is to 

construct a basis upon which a clear methodology for condition monitoring research could 

be built. Furthermore the literature review allows for the identification of required and novel 

areas of condition monitoring research related to the tidal stream turbine (TST) application. 

The chapter is starts by giving an initial overview of reliability issues facing the TST energy 

sector, in Section 2.2. The goal of this section is to identify key TST sub-assemblies which 

can be successfully aided via the adoption of condition monitoring (CM). This notion is 

developed further in Section 2.3 where the failure modes and reliability of TST rotors is 

considered. Condition monitoring research specifically related to TSTs is considered in 

Section 2.4 with the goal of identifying candidate condition monitoring processes for testing 

and development. Identification of successful monitoring approaches is then presented in 

Section 2.5 with the goal of gaining insight from the similar application of CM practices. 

Lastly literature related to scaled TST testing and development is outlined in Section 2.7. 

The goal of this section is to produce a set of possible testing and simulation procedures 

which could be adopted for realistic testing and development of the previously proposed 

condition monitoring processes. 

2.2 Tidal Stream Turbine Reliability 

The improvement and assurance of the reliability of tidal stream turbines and their sub-

assemblies must be considered to be a major factor in the realisation of a well-functioning 
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tidal stream energy industry. Tidal stream turbines are to face operation in the harsh marine 

environment and are to be exposed to cyclic and extreme loading. Cyclic loading is enforced 

on the tidal stream device both the presence of turbulence in the fluid field and due to semi-

diurnal tidal cycles which dominate the UK tidal resource. Mixed tidal cycles are found in 

many other areas where tidal stream energy extraction is feasible.  It has been argued that in 

order to achieve a localised cost of energy (LCOE) that is competitive within the market 

place, component and turbine availability should be above 75% (Maganda et al, 2014).  In 

moving toward a higher technology readiness level (TRL) and to underpin the significant 

levels of investment required it has also been stated that the reliability of TSTs and their 

components must be demonstrated (Wolfram, 2006; Weller et al, 2015).  

In order to better understand the reliability challenges facing TSTs, research into their 

reliability has begun to proliferate. The research presented includes work by the author’s 

research group (Prickett et al, 2011). The limited level of actual TST device installation and 

implementation means that much of this current work considers TST reliability under 

minimal operational feedback.  Scenarios are applied assuming simplified mechanisms such 

as the stochastic and cyclic loading of TST assemblies (Wolfram, 2006; Delrom et al, 2011; 

Delrom, 2014).  For this reason one key aspect of the research published over the last ten 

years is the issue of the effective sharing and organisation of TST operational data. The need 

for such information to support the industry’s understanding of TST reliability issues and 

challenges has been identified (Wolfram, 2006; Weller, 2015). As an alternative a number 

of the works published consider the use of surrogate failure data which is modified and then 

related to the operation of TST components. This enables scenarios to be explored within 

differing applications to help develop reliability estimates relating to the use of such 

components in the TST application. In this regard the experience drawn from the wind 

turbine (WT) industry has been shown to be helpful in generating understanding of TST 

reliability issues (Wolfram, 2006; Val, 2009).  
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To date research conducted specifically to address the reliability of TSTs, whilst essential 

to the sector, hasn’t produced a definitive reliability study. The lack such a study, which 

would fully characterise the reliability issues facing differing TST sub-assemblies, means 

the CM research could end up being somewhat misguided (Allmark et al 2013). In order to 

remedy this, the author considered the results of a collection of reliability studies undertaken 

considering the failure data acquired during wind turbine deployment.  

The approach of utilising failure data from related industries to guide TST development 

has been considered to be suitable by a variety of researchers. The approach of using WT to 

consider reliability issues within the TST industry has been tested (Val 2009) and it was 

argued that TSTs will be required to be more robust than WTs.  A methodology for 

conducting an Failure Modes Effects Analysis (FMEA) based on estimations regarding the 

severity, likelihood of occurrence and the likelihood of detection of faults using analogous 

wind turbine behaviour has been reported (Prickett et al, 2011). The process was informed 

by applicable data from relevant industries and the insight of experienced engineers.  A 

similar approach used failure data from WTs of a similar power rating to the counterpart 

TSTs, as well as other marine industries, to populate a number of TST reliability models 

(Delorm et al 2011). The reliability models were populated with failure data related to 

surrogate industries and were then utilised to generate understanding of the reliability issues 

faced by differing TST setups.  

A novel approach to conducting FMEA studies whereby the indicators traditionally used 

to calculate Risk Priority Numbers (RPNs) were replaced by measures relating to the cost 

of failure has been presented (Xie 2013). The approach incorporated historical WT data into 

the reliability analysis presented illustrating this was done to allow for more clarity when 

comparing the RPNs developed under differing reliability studies.   

To consider the overall reliability and the impacts of failures of differing sub-assemblies 

for tidal stream turbines WT reliability data has been presented and considered (Tavner, 
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2010). The selection of a sub-assembly to which CM research could be usefully applied was 

therefore based on this work. Figure 2.1 shows the observed number of failures per annum 

and the downtime, in days, associated with sub-assembly failure for WTs. The data shows a 

number of critical sub-assemblies which either have a high likelihood of occurrence or 

which have long down times associated with the failure of the given sub-assembly. It was 

considered that failure of the rotor sub-assembly would result in prohibitively long 

downtimes and had a reasonably high likelihood of occurrence. As such the author chose to 

direct the CM research activities undertaken within this doctoral project towards detection 

and diagnosis of TST rotor fault conditions.  

 

Figure 2.1: Failure rates and downtimes for differing turbine sub-assemblies (Tavner et al, 2010). 

2.3 TST Rotor Reliability and Failure Modes 

A number of research papers have been published considering the reliability of TST rotor 

blades. Most recently Kumar and Sarkar (2016) provided a review of hydrokinetic turbine 

reliability as part of a broader review of the industry. The review considers that torque 

fluctuations have a major impact on turbine reliability due to fatigue loading and vibration. 

This view is supported by the consideration of the work conducted by Hu et al (2012) which 

explores both time dependent and instantaneous probability of turbine rotor failure. The 
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work reported that the time dependent probability of failure has a greater impact on turbine 

reliability than the instantaneous probability of rotor failure. 

Chen et al 2014 also provides a brief review of many of the works published and outlined 

many of the contributing factors impacting on TST rotor blade reliability. Chen points out 

that extreme loading, cyclic loading, the saline environment and biofouling will have an 

impact on TST blade reliability. Byrne et al (2011) investigate the likelihood and conditions 

required for cavitation to occur during the operation of TSTs. In considering the effects of 

cavitation Byrne et al note that the cavitation can cause or exacerbate blade pitting which 

can result in reduced power output, water ingress and rotor imbalance.  

Sloan et al (Sloan et al, 2009) conducted a reliability assessment of tidal stream turbines 

or ocean turbines and address in detail the effects of biofouling on tidal stream turbine 

operation. Initially the study highlights biofouling, impact of marine life, fluid salinity, 

underwater turbulence and difficulties in accessing machinery as key factors effecting tidal 

stream turbine operation. The authors, as well as highlighting the effect of biofouling on the 

ability of TSTs to efficiently generate electrical energy, also point out the effect of 

biofouling on rotor condition monitoring systems. The authors acknowledge that biofouling 

will reduce the ability of sensors to measure key rotor condition indicators and could well 

lead to sensor data masking rotor fault conditions. The study goes on to consider methods 

for reducing the extent to which biofouling will occur by considering the micro-geometry 

of turbine blade coatings.  

Val et al (2014) considered the reliability of TST rotor blades when subjected to extreme 

loading due to turbulent velocity fluctuations impacting a TST subjected blade pitch control. 

Specifically the work generates a probabilistic model of the likelihood of bending failure 

considering the stochastic nature of the fluid velocity, the resistance of turbine blades and 

the pitch response cut-off frequency. The paper generates results relating to design safety 

factors in terms of load factors and resistance factors.  
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Li et al (2014) present a hydrokinetic turbine blade reliability study considering the effect 

of cyclic loading on composite blade fatigue life. Three differing blade structures were 

compared within the study, namely a hollow blade, a blade filled with a reinforcement foam 

core and a blade with a shear web. The study used Hashin damage theory (Hashin, 1980) to 

identify key failure modes and critical design points for each of the blade structures. A 

coupled BEM-FEM method was then utilised to calculate the stress response of each of the 

blade designs to hydrodynamic loading. The hydrodynamic input to the model was 

developed utilising the Expansion Optimal Linear Estimation (EOLE) method and the 

Hashin damage initiation criteria was applied to the stress response results to identify critical 

design points and failure modes for each of the blade designs.  

This section has considered elements of the current body of research relating to TST rotor 

reliability. This has shown that attention has been paid to methods of estimation of TST rotor 

reliability.  In the cases used the failure modes considered are likely to result in rotor weight 

imbalance (water ingress) or hydrodynamic performance imbalance (biofouling, blade 

pitting, pitching mechanism failure, composite delamination).  Less clear consideration has 

been given to the physical mechanisms of TST rotor failure and the symptoms of such 

failures. In the author’s view the body of research currently available gave little guidance on 

how to simulate rotor fault conditions. Such simulations are required to underpin research 

aimed at producing reliable TST rotor CM methods.  

2.4 Condition Monitoring of Tidal Stream Turbines 

Experience within the wind energy sector has suggested that online CM and fault 

detection could minimise maintenance costs and improve availability of the energy 

extraction technology (Hameed et al, 2010; Yang et al, 2010; Tian and Jin, 2011).  The 

definition of effective CM practices at this stage in the device technological development 

will also offer the added benefit of informing the design process. Not least of the 

considerations that can be made relate to the embedding of monitoring functions into the 
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device; the use of sensors that are already included in the design of the device can reduce 

cost and increase effectiveness. In particular it is envisaged that operating conditions leading 

to failure can be examined in detail as a consequence of the development and testing of 

monitoring functions, providing invaluable insight into robust turbine design. Whilst the 

design enhancements enabled by CM will give rise to such benefits, at this stage of 

technological development the largely undefined and novel nature of the energy extraction 

technology poses significant difficulties in producing robust well suited monitoring 

approaches. This notion of the novel application area was reflected in the state of the 

research conducted into CM of TST rotors.  

In order to identify research aimed specifically at CM approaches for TSTs a 

comprehensive search of publications in the topic was made. The search was conducted 

using 5 prominent publication databases, namely ACM, Compendex, Google Scholar, IEEE 

explore and Scopus. The search was conducted using the following terms for TST devices, 

“Tidal Stream Turbines”, “Marine Current Turbines”, “Ocean Turbines” and “Hydrokinetic 

Turbines”. The device terms were coupled with the following process terms “Condition 

Monitoring”, “Fault Diagnosis” and “Fault Detection”. The searches were set to return 

results containing both one of the device terms and the process terms in either the publication 

title or body of text.  This resulted in 12 search queries over 5 research databases. The search 

results are presented in Table 2.1, where it can be seen that 173 papers were returned via the 

search. 
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Table 2.1: Results of the literature survey into condition monitoring research aimed specifically at 

tidal stream turbines.  

Database No. of Results Returned 

via Search Term. 

No. of RELEVANT 

Results Returned via 

Search Term. 

ACM 0 - 

Compendex 4 0 

Google Scholar 95 10 

IEEE Explore 50 13 

Scopus  24 14 

 

 

Of the 173 publications returned during the search, 37 publications were considered to 

specific relevance to the application of condition monitoring techniques to tidal stream 

turbines.  Due to results repeated in multiple databases the final figure of unique publications 

deemed to have relevance specifically to the condition monitoring of tidal stream turbines 

was found to be 30. Lastly it was noted that 5 of the 30 unique results were publications 

upon which the researchers was a lead or named author.    

 Caselitz and Giebhardt (2005) presented one of the earliest papers aimed specifically at 

the condition monitoring of TSTs. The paper aimed to apply and adapt knowledge acquired 

in the condition monitoring of both on-shore and off-shore WTs to the task of CM of TSTs. 

Figure 2.2 shows an example of the possible structure and hardware of a condition 

monitoring system of TSTs. The system contains many of the elements included in a WT 

monitoring systems, including accelerometers for gearbox and baring vibration monitoring 

and fibre bragg gratings for blade and structural load monitoring. The system is supported 

by environmental measurements, specifically by measurements of the fluid velocity 

upstream of the turbine rotor. This work goes on to outline the generalities of some condition 

monitoring algorithms to be applied to TSTs based on the hardware setup outlined. The 

algorithms presented include overall performance monitoring to observe deviation of power 
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output for a given fluid velocity from the characteristic output for the turbine. Other 

algorithms mentioned within the publication involve vibration measurement of structural 

components with subsequent observation of Eigen frequencies with the deviation of Eigen 

frequencies from expected values highlighting changes in structural properties of the 

component being monitored. The paper lastly considers internet based communications and 

database management systems.  

 

 

Figure 2.2: Figure showing the possible structure of a condition monitoring system for use in TST 

deployments (Caselitz and Giebhardt, 2005). 

 

Beaujeany et al (2009) presented considerations of many of the reliability issues faced by 

TSTs and the associated monitoring hardware. Mjit et al (2010) conducted work considering 

order analysis of vibrational data as a means of fault detection, the work was first conducted 

on a commercial fan and later extended to monitoring of a small boat propeller. The work 

also discussed elements of the data storage and capture processes. The order analysis 
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methods applied were successful in identification of imbalance and misalignment. The 

research undertaken and presented by Mjit et al was extended in 2011 (Mjit et al, 2011a) to 

incorporate a more fully developed Smart Vibration Monitoring System (SVMS) which 

handled much of the data capture storage and processing autonomously. The system 

included many of the techniques performed off-line by vibration monitoring specialists 

including advanced signal processing of vibration data. Specifically the software processed 

raw vibrational data via Power Spectral Density, Fractional Octave, Cepstrum, Hilbert 

Envelope, Wavelet Transform and overall vibrational statistical characteristics. The process 

was developed using LabVIEW and tested using a drive train test rig setup to harbour fault 

conditions by attaching weights to the drive train. Changes to the performance metrics 

calculated via the advanced signal processing operations listed above were successfully 

tracked for three differing levels of fault severity and for two rotational velocities. 

Further works were published by (Mjit et al, 2011b), the publication presented an 

overview of many of the condition monitoring processes as applied by the researchers to the 

TST drive train simulation apparatus previously developed (Mjit et al, 2011a). The work 

presents details of power spectrum analysis, Cepstrum Analysis, kurtosis measurements, 

STFT and Hilbert transform processes as applied to vibrational data captured using the 

outline test rig, Figure 2.3Figure 2.2 shows a schematic of the test rig used. 

 

Figure 2.3: Schematic and photograph of a dynamometer test rig for undertaking TST simulations for 

CM process development (Mjit et al, 2011a). 
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Research based upon a dynamometer setup similar to that shown in figure 2.3 was 

reported by Duhaney et al (2011a). One important aspect of this research considered the 

fusion of data from numerous accelerometers, both low and high frequency, mounted 

throughout the dynamometer. Specifically low frequency accelerometers were mounted on 

components between the high speed shaft of the generator and the motor used to simulate 

turbine rotor inputs to the system. The components between the generator and motor 

included two planetary gearboxes. Faults in the system were then simulated by applying 

periodic impacts to the gearbox connected to the turbine simulating motor. The impacts were 

applied at two differing intensities.  The researches acquired data from the six 

accelerometers for baseline or normal turbine operation, low fault severity and high fault 

severity. The data sets were pre-processed to extract time-frequency information via the 

Haar Wavelet transform, resulting in 18 files of 10,000 readings. Seven machine learning 

processes (decision tree, Naive Bayes, 5-NN, Logistic Regression, MLP, SVM and random 

forest) were then applied to the data sets in order to test the ability of the machine learning 

procedures to make successful fault or no-fault classification. Mixed results were found for 

the differing machine learning algorithms with the random forest and decision tree classifiers 

having 100% correct classifications and Naïve Bayes, 5-Nearest Neighbour and logistic 

regression having the highest misclassification rates.  

In related research (Dehaney et al, 2011b) consideration of feature fusion processes were 

also considered. This involved a similar application of the vibration monitoring and machine 

learning processes to a commercial fan, which was subjected to ‘tilting’ faults and a fault 

case achieved by slowing the fan rotor via a foreign object. The study showed that feature 

fusion resulted in more effective classification of the fault vs no-fault state of the fan rotor. 

A third publication by Dehaney et al (2011c) builds directly upon the study previously 

presented. The work considers the same test rig setup along with the same fault simulation 

procedures but develops the work by further fusion of the information extracted via the Haar 
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wavelet transform. As well as further fusion of each of the accelerometer channels, differing 

feature selection processes were applied to reduce the dimensionality of the fused 

application before applying machine learning algorithms. The study was also extended to 

include five-fold cross validation in the training and application of the machine learning and 

feature selection processing. A varying number of the features ranked by the feature 

selection algorithms were chosen and used to train the fault detection machine learning 

algorithms. The results show that fault detection can be improved via feature fusion and can 

perform well under the use of a reduced number of features as highlighted by the feature 

selection processes.  

Dehaney et al (2012a) also extended the application of machine learning processes in 

TST fault detection. The goal of this extended study was to consider the effects of class 

imbalance (having more data related to one state than the other) on the successful 

implementation of machine learning method for TST fault characterisation. The study found 

that the performance applied machine learning algorithms suffered significantly when large 

class imbalances were simulated. The same researchers also published further research based 

on the experimental setup previously outlined in (Dehany et al, 2011a). The methods applied 

were concerned with the application of Wavelet transforms as a feature extraction technique 

and the subsequent comparison of feature fusion and non-feature fusion applications of 

machine learning algorithms (Dehaney et al, 2012 b-e). The research was further extended 

in 2013 to the classification of turbine state rather than fault detection. The work showed 

that the five nearest neighbour algorithm gave 100% correct classifications (Dehaney and 

Khoshgoftaar, 2013).   

Two publications by Waters et al in (2012 and 2013) presented research considering the 

detection, localisation and identification of bearing faults in TST applications. The two 

papers presented similar studies within which models for bearing loading under bearing race 

cracking were developed. The models were then used to guide the development signal 
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processing methods which were then applied to vibration signals acquired from two 

accelerometers mounted on dynamometer test beds. In order to detect bearing damage the 

power spectral density of the measured accelerometer signals was utilised as well as the 

coherency between them. A fault condition was said to exist if the power observed at 

frequencies of interest (found via impact test) exceeded a given threshold. The fault was 

then localised to a given bearing by comparison of the power spectral density measurements 

at the frequencies of interest from the two accelerometer measurements. Envelope tracking 

was then used to identify the fault type (inner vs outer race fracture) by considering the 

timing of the observed impacts yielding the observed increases in spectral power at the 

frequencies identified.  

The need, requirement and impact of the adoption of CM systems within the TST industry 

was considered by Elasha et al (2013). The publication lists a number of observed failures 

during the limited number of TST deployments. These are: 

 

1.  The failure of turbine blades mounted on the open hydro device in 2009 due to 

fatigue in the Bay of Fundy.  

2. A single blade failure of the two-bladed Atlantis AK100 in Orkney during 2010 

due to a manufacturing fault. 

3. Removal of the Race Rock turbine from Middle Island in 2011 due to large 

reductions in power output caused by a build-up of micro algae, Figure 2.4. 
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Figure 2.4: Condition of the Race Rock turbine after deployment (Elasha et al, 2013). 

 

The researchers also present a comparison of the load cases of a wind turbine and TST of 

similar power ratings, the comparison is presented in table 2.2. The authors then develop 

CM approaches to gearbox monitoring, gearbox monitoring was considered due to the high 

torque loads expected in TST drive trains and the long down times observed in the WT 

industry for such failures. They then outlined the structure of a horizontal axis turbine with 

a hydraulic yaw system and use the MADe software to model reliability of the system. The 

model considered a number of operating parameters for each of the components of the 

turbine including the functionality of each assembly, the associated failure modes and 

symptoms and lastly the criticality of each component. The model was then used to generate 

RPNs for each of the components.  

Table 2.2: Comparison of the operating parameters of a TST and WT of similar power ratings (Elasha 

et al, 2013). 

Wind Turbine Parameters Tidal Turbine Parameters 

Density = 1.22 kgm-3 Density = 1000 kgm-3 

Rotor Diameter = 27.1 m Rotor Diameters = 9.31 m 

Velocity = 12 ms-1 Velocity = 2.6 ms-1 

Thrust Load = 146 kN Thrust Load = 675 kN 

Torque = 564 kNm Torque = 837 kNm 
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The impact of CM on system reliability was then studied using the developed model. 

Specific attention was given to the reliability analysis of the gearbox sub-assembly under 

vibration, oil debris and torque monitoring regimes. The work showed that the adoption of 

CM strategies must be developed with consideration of the failure modes and symptoms of 

related to the given failure mode. The paper also noted the highest improvement in sub-

assembly reliability after adopting a CM regime was observed for the turbine blades, 

gearbox, yaw system and generator sub-assemblies.  

Work undertaken within the author’s research group considering the use of TST 

stanchion thrust measurements for CM of TST blades has been published (Grosvenor et al, 

2014). This utilised a combination of CFD modelling exercises with flume testing 

experiments to develop and test a CM approach based on frequency analysis of both 

computed and measured turbine thrust signals. The work showed that increasing presence 

of the turbine rotational frequency observed in thrust spectra was a useful indicator of turbine 

rotor imbalance. The work utilised a combination of CFD modelling and flume testing 

results to study the applicability of thrust monitoring – this process of utilising both CFD 

modelling and testing to develop and test monitoring hypothesis will be utilised within this 

research. 

Whilst the number of research publications in the specific area of TST condition 

monitoring was found to be limited, research in this area has been highlighted as an 

important aspect of TST development. To support this notion a research project known as 

TidalSense was setup and funded under a European Commission in 2009, (CORDIS, 2009). 

The project was then extended to become TidalSense Demo in 2011 (CORDIS, 2012). The 

work undertaken by the research project utilised a number of industrial partners and research 

institutions with the goal developing and demonstrating approaches to the CM of TST. The 

work focused on the use of Long Range Ultrasonic Technology (LRUT) to inspect cabling 

and turbine blades (CORDIS, 2012). The process of using guided Ultrasonic waves imparted 
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by an actuator with the blade response to the waves recorded by sensors was developed and 

illustrated over the course of the two projects (Makaya et al, 2011; TidalSense, 2011).  The 

work developed throughout the overall TidalSense project allowed for the imbedding of 

ultrasonic sensors during composite turbine blade manufacture creating a robust solution.  

2.5 Experience in Failure and Monitoring of Wind Turbine Rotors 

and Blades 

Wind turbine blades can account for between 15% and 20 % of the capital cost of a given 

wind turbine (Liu et al, 2015). The large portion of the cost attributed can to some degree be 

attributed to the growth in the diameter of wind turbine rotor in recent years. By necessity 

TST rotor diameters are set to be significantly smaller than those of wind turbines of a 

similar rating. However, due to the higher loading on a TST, it is likely the blade cost will 

still account for a significant portion of the whole capital cost.  

Within the literature a variety of WT blade and hub failure modes have been considered 

including rotor imbalance and asymmetries, blade and hub corrosion, blade cracking and 

deformation, fatigue damage, reduced blade stiffness and increased surface roughness (Liu 

et al, 2015, Qiao and Lu, 2015a and Qiao and Lu, 2015b). Rotor imbalance failures have 

been noted to arise from two main sources aerodynamic imbalance and blade mass 

imbalance, furthermore it has been reported that 20% of wind turbines operated with either 

mass or aerodynamic imbalance (Losi and Becker, 2009). Aerodynamic imbalance occurs 

when the aerodynamic properties of the blades are not balanced leading to differing levels 

of thrust and tangential force developed by each blade. Aerodynamic imbalance can also 

occur due to pitch control actuator failure (Zeng et al, 2013), asymmetric icing, accumulation 

of dirt or blade damage due to impact or fatigue loading (Kusnick et al, 2015; Gardels et al, 

2010; Gong and Qiao, 2012).  

Blade mass imbalance occurs when the distribution of mass about the rotor is not 

balanced correctly. This can occur due to manufacturing error, errors during construction 
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and varying degrees of shift and wear of blades over the operating life of the turbine 

(Kusnick et al, 2015; Gardels et al, 2010; Gong and Qiao, 2012). Blade mass imbalance can 

also occur due to water ingress and distortion of the blade (Hyers and McGowan, 2006;  

Giebhardt, 2007). It must also be noted that the associated rotor imbalance leads to increased 

stress on the turbine system via the introduction of speed and torsional fluctuations. This can 

reduce the operational of many turbine sub-assemblies, including the rotor assembly, drive 

train and gearbox assemblies (Hyers and McGowan, 2006; Hameed et al, 2009).   

Failure of rotor blades due to fatigue damage occurs due to the cyclic loading of the 

blades over the operational life of the turbine. It has been stated that fatigue damage of WT 

blades can lead to delamination of composite blade materials as well as cracking of turbine 

blades (Qiao and Lu, 2015a). The nature of cyclic loading in the marine environment may 

be considered to be greater than that of the operational environment of wind turbines; as 

such fatigue damage to TST rotor assemblies is set to be a major cause for concern for TST 

developers.  

Increases in blade roughness and decrease in blade surface conditions occur in WTs due 

to icing and the build-up of debris. In the context of TSTs this problem is thought to be 

exacerbated due the saline environment of the ocean and the biofouling that is likely to occur 

as a result of operation in the ocean environment.  

2.6 Applicable Condition Monitoring techniques 

Due to the large number of failure modes and the associated expense of such failures 

wind turbine rotor assemblies are the subject of a range of research projects. A number of 

these have been conducted to consider effective ways to monitor wind turbine rotor 

condition.  This section outlines the main research trends in four classes of monitoring 

methods and processes, namely: acoustic emission monitoring, vibration monitoring, 

electrical signal monitoring and strain monitoring. The selected methods were identified 

from within more comprehensive reviews of CM research applied to WTs (Qiao and Lu, 
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2015a and 2015b, Liu et al, 2015 and Antoniadou et al, 2015). An example of this is given 

in Table 2.3 which shows details of the CM processes applied to WTs (Qiao and Lu, 2015a). 

 

Table 2.3: Outline of the use of differing monitoring approaches (Qiao et al, 2015a). 

 

 

 

2.6.1 Acoustic Emissions Monitoring 

Acoustic emissions are resultant from the release of energy in the form of elastic waves 

within a material subject to dynamic deformation (Balageas et al, 2006). Turbine blades 

which are subjected to stresses and strains may emit sound waves referred to as acoustic 

emissions (Bouno et al, 2005).  Typical sources of AE include such events as, crack initiation 

and propagation, breaking of fibres, matrix cracking, fretting between surfaces at de-bonds 

and de-laminations (Schubel et al, 2013). The potential causes of AE can be linked to the 

failure mechanism expected in wind turbine blades, suggesting that AE can be utilised for 

WT blade monitoring purposes. AE are generally measured via piezoelectric sensors 

mounted directly on the turbine blade and AE detected by the sensors which are deemed to 

be outside normal operating conditions are referred to as ‘hits’ that are characterised by 

amplitude, energy counts, rise time and average signal level, as well as other characteristics 

(Schubel et al, 2013). Many properties of the ‘hits’ encountered by the sensor equipment are 



52 

 

used to determine if, what and where damage has occurred in the turbine blade. The 

application of AE to tidal stream turbine monitoring could well be useful and more research 

in this area is required. It considered the harsh marine environment may cause reliability 

issues for the imbedded sensors required for such a monitoring approach.  

2.6.2 Vibration Monitoring 

Vibration monitoring has been used consistently in commercially deployed WTs for CM. 

It has been used for fault detection in sub-assemblies and has to some degree been 

standardised by the introduction of the ISO 10816 standard (2014). The goal of vibration 

monitoring of turbine blades is to view changes in the vibrational response of turbine blades 

under differing blade fault conditions. Often to enable the vibration monitoring of turbine 

blade condition the sensor (which may be an accelerometer, velocity sensor or displacement 

sensor) is mounted directly on the turbine blade (Qiao and Lu, 2015b and Kusnick et al, 

2015). Generally two types of feature extraction process are used in the analysis of vibration 

data, namely; statistical and time-frequency methods. Typical examples include the use of 

vibration monitoring to identify WT rotor asymmetry by changes in the observed 1P 

frequency (Caselitz and Giebhardt, 2005). In other work researchers applied Empirical 

Mode Decomposition (EMD) to vibration data and used the extracted Intrinsic Mode 

Functions (IMFs) as an indicator of blade cracking (Abdelnasser and Alhussien, 2012).  In 

another case accelerometers were applied to blade tips and changes in the RMS and mean 

values of the vibration data used to observe the effect of rotor pitch imbalance; the method 

was able to identify which blade was misaligned (Kusnick et al, 2015).  Whilst vibration 

monitoring could well be suitable for application to TST rotor monitoring further research 

in this area is required. As with AE monitoring it is considered that there may be reliability 

issues relating to the vibration sensors due to the harsh marine environment. 
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2.6.3 Electrical Signal Monitoring 

Measuring changes to the current and voltage at the generator terminals has been utilised 

to undertake monitoring of a number of turbine assemblies. Academic researchers and 

commercial WT operators have deployed this technique to monitor WT rotor imbalance 

(Qiao and Lu, 2015b). The use of such monitoring practices has gained significant attention 

in research due to the ease of implementation and the negation of need for additional sensors 

suits (Qiao et al, 2015). Generally monitoring of generator stator currents in the frequency 

domain is used to observe frequencies relating to rotor fault behaviours, predominantly an 

increase in the 1P frequency which has been reported to be a good indicator of rotor 

imbalance (Caselitz and Giebhardt, 2005; Kusnick et al, 2015; Qiao et al, 2015).  This 

approach is considered to be suitable to the TST application, whilst early detection may be 

infeasible utilising such methods, it was considered that this approach has the advantage of 

not requiring additional sensors which may have reliability issues. The research presented 

within seeks to develop understanding in the application of such processes to TST rotor 

monitoring.  

 

2.6.4 Strain Monitoring 

Strain monitoring of turbine blades requires embedded sensors in the turbine blade and 

has been used for blade monitoring in a variety of ways (Qiao and Lu, 2015b). It has been 

reported that strain measurements can be utilised for detection of structural defects, blade 

icing, mass imbalance and lightning strikes (Crabtree et al, 2014). Strain measurement 

sensors are available in two main categories electrical sensors, for example traditional 

resistance strain gauges, and fibre optic sensors such as, Fibre Bragg Gratings (Schubel, 

2013). Generally Fibre Bragg Gratings are preferred to the traditional electrical resistance 

based methods for WT blade monitoring (Hyers et al, 2006). Fatigue damage monitoring via 

FBGs has undertaken by monitoring load cycles and creating RUL estimates based on S-N 
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curves for a given blade material (Hyers et al, 2006). Strain measurements have been used 

for crack initiation detection citing uniform strain, compressive strain and non-uniform 

strain as potential crack initiation indicators (Pereira et al, 2015). Recently strain monitoring 

has been utilised for potential blade-tower impact monitoring via estimation of blade 

deflection fromm strain measurements. The process used linear correlation between 

measured strain and blade deflections to generate alarms if possible blade-tower impacts 

could occur (Lee et al, 2016).  

2.7 TST Scale Model Development and Testing 

The CMERG has previously developed two working 0.5m meter diameter flume based 

turbines. These have been used to conduct turbine design studies using CFD. Both of the 

turbines were developed using the horizontal axis tidal turbine (HATT) form. Details of the 

first turbine setup can be found in (Mason-Jones, 2010). This turbine consisted of a rotor 

submerged in a re-circulating flume tank. The rotor could be coupled via either a flexible or 

rigid drive shaft to a 1.28 KW Baldor brushless AC servomotor, which was situated above 

the flume. The Baldor motor was used to supply a braking torque to the rotor to provide 

control over the turbine’s rotational velocity for a given flow rate. The regeneration energy 

produced was dumped into a 1 KΩ resistor and dissipated as heat. Testing with the first 

generation turbine was successful in validating and informing CFD models developed within 

the research group. The turbine did, however, have shortcomings in the form of limited 

operational data produced. This consisted of only torque (via motor current) and angular 

velocity (via motor encoder) measurements. There were also problems in use arising due to 

the long drive train coupling between the turbine rotor and the braking motor.   

During this early work on turbine characterisation and model validation a BEMT model 

was used to test the given blade design for optimum pitch angle of the blade tip measured 

relative to the rotational plane of the turbine (Mason-Jones, 2010). The optimum pitch angle 

for the blade profile used was found to be 6o.  . The previously proven blade design was used 
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in the 2nd generation turbine model. This allowed the same blade sets to be used on each 

turbine, minimising the relatively high cost of blade manufacture; each of the 21 blades 

manufactured cost approximately £1 000. Furthermore this allowed further testing to 

confirm the observed power coefficient of 0.4 in the original set of flume tests which were 

subject to high levels of uncertainty. The high levels of uncertainty observed in these test 

was considered to be an artefact of using the non-direct drive coupling.  

The details of second-generation turbine are outlined in (Mason-Jones et al, 2012) 

(Morris, 2014). It was developed by mounting the braking motor directly behind the turbine 

rotor. The turbine rotor and braking motor were directly coupled via a short drive shaft. This 

required that the motor was mounted inside the turbine housing, i.e. in the manner that is 

similar to many commercial turbine setups with the motor taking the position of a permanent 

magnet synchronous generator (typically used for direct drive applications). The turbine was 

made waterproof via the use of O-rings and threaded end plates. The thrust on the turbine 

structure, including the stanchion, was measured via a 50 Kg force block mounted at the 

connection between the turbine stanchion and the crossbeam holding the stanchion in the 

centre of the flume working section. This turbine was used extensively in studying the power 

converted and wake recovery associated with the rotor under plug flows, profiled flows, and 

under wave current interaction scenarios (Tedds et al, 2011) (Mason-Jones et al, 2012) (de 

Jesus Henrique, 2013).  

Limitations of this turbine setup arose due to the motor used to oppose hydrodynamic 

torque. It was found that the setup was unable to provide enough power to operate the turbine 

over the full range of operating conditions required. Specifically, testing was only able to 

proceed between the freewheeling and peak power portion of the associated turbine power 

curve. Furthermore the data capture from the motor drives was at a sample rate of 1.75 Hz 

and the sample rate for thrust measurements was 47.6 Hz leading to problems when 

performing frequency analysis on the acquired datasets. An identified shortcoming of the 
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second and first generation turbines was the lack of synchronisation or global timestamping 

of data captured from differing sources. This limited the study of turbine rotational 

displacement against points of interest in the acquired datasets. It should, however, be noted 

that the test rig setups were suitable when designed. The initial goal of the testing was to 

validate steady-state CFD models and as such the data was predominately averaged over 

time to generate non-dimensional power curves – accordingly, high sample rates were not 

required.   

The third generation turbine, detailed throughout the remainder of the chapter, was 

considered as an evolution of the previous turbine setups created within CMERG. It was 

therefore convenient to maintain the HATT form and also to design the new turbine to be 

capable of using the same blade geometry. This was done so that the blade sets already 

manufactured could be re-used to allow for direct comparisons of research findings, as well 

as producing cost savings. At this stage consideration was given to lab-scale turbines 

developed outside of the research group to inform the turbine specification process and help 

in developing best practices for the new turbine setup.   

In Bahaj et al (2007) outline the design and testing of a similar lab scale turbine for both 

cavitation tunnel and tow tank testing. The turbine was 800mm in diameter and was 

instrumented with an inline strain gauge dynamometer, located immediately behind the 

rotor, for torque and thrust measurement. The dynamometer was wired into a full bridge 

circuit with two gauges on each bridge arm with the output of the bridge wired through slip 

rings to conditioning circuitry. The measurement range of the instrumentation allowed for 

accuracies of 71.3% for power and 71.1% for thrust at the expected loading magnitudes. The 

bridge voltages and signal conditioning was achieved via a Flyde box the output of which 

was acquired via an A/D card connected to a laptop. The drive shaft was connected via a 

pulley and timing belt through the vertical support to a further system of pulleys and finally 

to a DC generator mounted on a platform above the water surface. The DC generator was 
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connected to three rheostats which, for each flow velocity, were altered to control the speed 

of the turbine rotor.   

Various tests were performed in a cavitation tunnel using five pitch angles ranging from 

15o to 30o with tunnel speed of up to 2.0 ms-1. For each test the turbine RPM was increased 

or decreased until cavitation occurred. As well as cavitation testing, tow testing was also 

conducted for two tip immersion depths of 150mm (0.19D) and 440m (0.55D) at speeds 

between 0.8 and 1.5 ms-1. Yaw angles of 0o to 30o were investigated along with the operation 

of the turbine with the addition of a second dummy rotor. The testing regime shows that the 

rig design was versatile and gave consistent results which were validated against established 

BEMT theory. From this work the importance of well-considered signal conditioning and 

turbine control was evident; as such the turbine designed was specified in order to adhere to 

these good practices. 

Clarke et al (2007) designed a turbine for tank testing to study the positive effects of 

utilising a contra rotating turbine design to minimise reaction torque on the turbine support 

structure and swirl in the turbine wake. The diameter of each rotor was 820 mm and the 

spacing between each rotor was adjustable from 45mm to 100mm. Opposing torques were 

achieved by the mechanical action of applying a hydraulically actuated disk brake. In order 

to maintain zero net torque on the drive shaft the braking load was applied to both rotors. 

Consequently a differential gearbox was designed in order to allow the blades to rotate at 

different speeds. The turbine was instrumented with optical encoders placed on each of the 

drive shafts above the water level. Strain gauges were used to measure the thrust on the 

support, the braking force and therefore the frictional torque as well as the in-plane and 

normal bending moment on a single blade on each rotor. LabView was used for data 

sampling and processing with the final solution implementing multiplexing between the 

various strain gauges on a single LabView input channel. Data was sampled at 1.3 KHz 

equating to a rotor angular resolution of less than 1o. The design of the turbine highlighted 
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the need for measurement synchronisation or global timestamping and required sample rates 

in excess of 1 KHz. This was required to study in detail the transient relationships of blade 

loading over a single turbine rotation. Also of merit was the use of strain gauges to measure 

blade loading. The paper mentions difficulties in synchronising data when initially recording 

at hub level, later recorded via LabVIEW. It was noted that this problem must be considered 

and mechanism for synchronising hub measurements for hub level logging within the new 

hub had to be devised.    

Walker et al (Walker et al, 2014) produced a model turbine to study the effects of blade 

roughness and bio-fouling on the TST energy extraction process. The turbine used was a 

two-bladed 0.8 m diameter model, based on the NREL turbine design. The blade profile 

adopted was the NACA 63-618. The test was conducted in a towing tank with the velocity 

of the tow carriage set to 1.68 ms-1. The dimensions of the tank were 116 m in length, 7.9 m 

in width and 4.9 m in depth. The turbine was connected directly to a dynamometer and then 

through a 90o gearbox to a differential electromagnetic brake system for turbine speed 

control. The dynamometer was used to measure the thrust and torque generated by the 

turbine rotor.  The rotational velocity and displacement of the turbine was measured via an 

encoder. The sample rate for the data acquisition was set at 700 Hz from each of the various 

sources. The measurement uncertainty was estimated via Taylor series techniques and a 

confidence figure of 95% was given. Also a process of removing offset bias was built into 

the system whereby measurements from each of the sources are taken prior to a testing 

period, then averaged and the DC bias is removed.  

For experimental investigations into turbine mean wake characteristics in shallow 

turbulent flows Stallard et al (2014) produced a 0.27 m diameter model turbine. The testing 

was undertaken in a channel of 5 m width and 0.45 m depth.  A 3 bladed rotor was used to 

drive a 90o bevel gearbox which was coupled, via a 4 mm diameter drive shaft, to a motor, 

mounted above the water level, used to control the turbine velocity. The blade profile used 
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was the Göttingen 804. Thrust on the turbine was measured via strain gauges connected in 

a full bridge configuration mounted on the rotor support shaft. 

The effect of turbulence intensity on TST performance was studied by Mycek et al via a 

three bladed HATT of 0.7 m diameter (Mycek et al, 2013; Mycek et al, 2014a and Mycek 

et al, 2014b). The rotor was connected to a speed control motor through a gearbox and used 

NACA 63418 profile blades.  A six component load cell was used to measure the thrust and 

moment on the turbine, the instrumentation was rated for 1500 N and 1500 Nm and was 

sampled at 100 Hz. A torque sensor was mounted behind the motor and was sampled at 100 

Hz. Flow measurements were made with a laser Doppler velocimeter (LDV).  

The work outlined in the papers presented above gave a suitable overview of the current 

research trends regarding the deployment of scale TST for flume and tow-tank testing. Of 

particular interest is the focus on load measurements which have been carried out in all cases 

to some degree of success. The turbine developed and outlined herein was expected to 

achieve high quality load measurements, both on a turbine wide and single blade scales. 

Currently the experimental trend within research is to use experimental data to study mean 

effects at differing operating conditions, with the exception of, whereby higher sample rates 

were attend to afford transient analysis of the turbine performance datasets. The developed 

turbine was conceived to make progress into the capture and analysis of transient datasets 

relating to turbine performance and as such high sample rates were sort after.  
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 Methodology 

3.1 Introduction 

This chapter outlines the approach to HATT rotor imbalance monitoring utilised 

throughout the research presented. To supplement the outlining of the condition monitoring 

and fault detection procedures the process of using a combination of CFD modelling, 

parametric rotor modelling and flume testing to test the applicability of the monitoring 

approaches is also outlined. 

3.2 Overall Testing and Simulation Methodology 

The following section outlines the approach adopted to effectively develop and confirm 

the successful application of the monitoring approaches as applied to rotor fault detection. 

As outlined below there are three interacting methods of verification, the relationship 

between them is outlined in this section. An overview of the testing and simulation 

methodology is presented in Figure 3.1. The three methods of testing are namely, CFD based 

simulations, 1/20th turbine flume testing and lastly, drivetrain simulation and testing. The 

combinations of the three methods have been used to study the condition monitoring 

algorithms under various operating conditions and turbine scales. Figure 3.1 shows the 

relationship between each of the three processes. Utilising the three approaches has been 

advantageous in that the simulations have been developed in stages. At each stage 

complexity has been added and the monitoring processes applied, tested and developed. In 

this way the strengths and weakness of the monitoring approaches have been appraised and 

developed in a logical manner allowing for the creation of implementation recommendations 

for turbine manufacturers. Whilst advantageous the various scales and operating conditions 

inherent to each of the three approaches has required care, both in comparison and in data 

interpretation at each stage.  
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The CFD based methods represent near full-scale (5m radius turbine) simulations in the 

steady-state and are related to a narrow operating range of the turbine, at roughly peak 

power. The CFD simulations are used two-fold; firstly CFD data is used to develop initial 

rotor condition monitoring approaches based on the structure of drive shaft torque time-

series under fault conditions. Secondly, the CFD data is used to parameterise a turbine rotor 

torque model which is then utilised to conduct quasi-steady-state simulations based on a 

fixed turbine rotational velocity and fluctuating fluid velocity. This initial simulation is 

outlined in Chapter 4. 

 The 1/20th scale turbine testing was conducted for a wider range of operating conditions 

and the data acquired from this experimentation were inherently more stochastic due to the 

inclusion of measurement error and small scale turbulence. The data produced during the 

1/20th scale testing is clearly related to a much smaller scale turbine. However, this data will 

also be used to appraise monitoring techniques and parameterise a more complex rotor 

torque model over a greater range of turbine operating conditions (i.e at a wider range of λ 

values (TSRs)). This more complex model will be utilised in the drivetrain simulations and 

testing. The development of the 1/20th scale turbine is presented in Chapter 5, with results 

presented in Chapter 6.  

The drivetrain simulations and testing utilised coupled deterministic and stochastic 

modelling techniques along with more realistic turbine control processes and fluid velocity 

simulations to provide non-steady-state verification and development of the monitoring 

approaches. In-terms of turbine scale, the physical testing conducted on the drive train test 

bed will be conducted at the 1/20th scale. 
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Figure 3.1: Overview of the testing and simulation methodology followed throughout the research. 
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3.3 Blade fault and rotor imbalance simulation 

It was proposed that off-setting the pitch angle of turbine blades in varying combinations 

and to varying degrees offered a convenient method of simulating turbine rotor imbalance 

faults. This convenience was afforded across each of the three simulation and testing phases 

outlined above. As such, blade-offsetting functioned in this research as a convenient and 

economical method for generating simulations and test scenarios relating to HATT operation 

under rotor imbalance. As noted in Chapter 2, Section 2.3 imbalanced rotor conditions can 

arise from a number of turbine rotor fault conditions and can be significant in reducing the 

useful life of the turbine and its sub-assemblies.  Furthermore, offset blade faults can occur 

in turbines adopting blade pitching control strategies. Although offsetting a single turbine 

blade was considered to be a convenient method of simulating rotor imbalance faults it is 

noted here that this method has short-comings. Specifically it was noted that this process 

creates a non-dynamic rotor imbalance fault due to the fixed change in hydrodynamic 

characteristics resultant from the blade offset. A number of other approaches to rotor 

imbalance fault simulation were considered, such as attaching masses to differing blades or 

changing areas of the surface finish of certain blades. Although this notion was explored it 

was considered that many of these fault simulation approaches were impractical for CFD 

and flume simulations as such the blade offset approach was adopted.  

3.4 Application of Generator Signal Monitoring to Rotor Fault 

Detection 

As discussed in Section 2.6.3 the main focus of the research presented is the use of 

generator signals to monitor turbine rotor condition. The use of such processes were 

researched as it was believed such processes could be useful in the HATT context and help 

alleviate reliability issues faced by other monitoring approaches such as strain and vibration 

monitoring.   
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3.4.1 Tidal Stream Turbine Topology 

The drive train setup and generator type used within a given TST topology impacts on 

the processes used for rotor imbalance monitoring based on generator signals. In order to 

consider the process of generator parameter monitoring for rotor fault detection a TST 

topology studied was first defined. The topology to be considered is that of the direct-drive 

permanent magnet synchronous generator type, connected to the grid via back-to-back 

power converters. A schematic of the setup can be seen in Figure 3.2: Schematic of the TST 

topology represented throughout out the work presented. The figure shows a grid connected 

direct drive turbine with a Permanent Magnet Synchronous Generator (PMSG). A full-rated 

convert setup is also shown with the grid side VSC utilised for turbine control and the grid-

side VSC utilised for control of power flow to the grid (Anaya-Lara et al, 2009).as adapted 

from (Anaya-Lara et al, 2009). 

The impact of having a direct drive setup is twofold and both impact on the generator 

sizing. Firstly as the power balance through the gearbox, neglecting losses, is unity; an 

increase in rotational velocity by a factor equal to the gear ratio will result in a reduction in 

the torsion on the high speed shaft connected to the generator rotor. Heuristically, it is 

considered that generator sizing has a near directly proportional relationship to the torque 

magnitude applied to the generator rotor. Therefore the higher torque values related to the 

tidal stream turbine application will result in the requirement of a larger generator to allow 

for the higher expected torque. A larger size generator is required for higher torque 

applications as higher currents will be developed in the generator windings leading to the 

requirement of larger generator winding sections and the implementation of generator 

cooling. Furthermore due to the larger loads associated with the higher torque application a 

larger structure will also be required. In such applications a gearbox is often used to negate 

the need for a high torque generator, however the addition of a gearbox can lead to reliability 

problems.  
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 Secondly, in order to maintain power quality in the system a full rated convert is often 

required adding to the electrical conditioning requirements of the application.   

 

Figure 3.2: Schematic of the TST topology represented throughout out the work presented. The figure shows 

a grid connected direct drive turbine with a Permanent Magnet Synchronous Generator (PMSG). A full-rated 

convert setup is also shown with the grid side VSC utilised for turbine control and the grid-side VSC utilised 

for control of power flow to the grid (Anaya-Lara et al, 2009).  

 

 

The topology shown in Figure 3.2 (Anaya-Lara et al, 2009), highlights a direct drive TST 

coupled to the grid through two Voltage Source Control (VSC) power converters.  In this 

case a 6 – level Insulated-Gate Bipolar Transistor (IGBT) converter is utilised to allow for 

the control of the generator shaft, and hence turbine rotational velocity, via the generator 

side converter. The generator side converter controls the field current flowing into the DC 

bus effectively controlling the load on the turbine generator. Power flow to the grid is then 

controlled via the grid side converter, with the requirement of a DC bus with a high 

capacitance between the two converters. It is further noted that the use of IGBTs for turbine 

control as outlined above will require the inclusion of a filter bank over each of the three 

phases to filter out harmonics introduced by the high speed switching of the IGBTs. The 

research was not focused on the development of turbine control strategies and topologies so 

full details of the setup have been omitted here and are covered more fully in Chapter 7, 

Section 7.5. At this stage it noted that the proposed turbine setup allows for variable speed 

turbine control schemes, such as optimal lambda control, which is achieved by controlling 
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the generator feedback torque. Furthermore, the turbine drive shaft will be directly coupled 

to the turbine rotor on one side and the generator rotor at the other.     

3.4.2 Steady–state operation of PMSG direct drive TST 

Central to the process of utilising readily available generator signals for rotor monitoring 

is the impact of the rotor condition on the characteristics of the torque delivered to the turbine 

drive shaft by the rotor. Both the mean and transient characteristics of the tidal turbine rotor 

induced drive shaft torque can in theory be interrogated to provide information on the 

condition of the turbine rotor.  This notion follows directly from the ability of the turbine 

blades, based on their condition, to develop lift and drag forces as a result of the fluid flow 

over them. Furthermore, cyclic changes in the torque magnitude over a single or multiple 

rotations of the turbine can be exploited to further inform rotor fault detection and diagnosis.  

The process of exploiting generator parameters was proposed by Yang et al (Yang et al, 

2008; Yang, 2014). In the development of this notion the dynamic equations for the turbine 

were exploited, the dynamic equations governing the turbine behaviour, neglecting losses, 

can be expressed as: 

 

 
𝐽

𝑑𝜔

𝑑𝑡
= 𝜏𝑅𝑜𝑡𝑜𝑟 −  𝜏𝑝𝑚 

(3.1) 

       

by simply considering steady-state operation of the turbine (ω = constant) it is clear that 

the following holds:    

 
𝐽

𝑑𝜔

𝑑𝑡 
 ≈ 0 

(3.2) 

therefore:  

 

 𝜏𝑝𝑚 ≈ 𝜏𝑅𝑜𝑡𝑜𝑟 (3.3) 
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This consideration leads to notion that generator feedback torque can be utilised to 

measure the rotor input torque and hence provide information on the condition of the turbine 

rotor. Further consideration is now required to show that measuring the generator feedback 

torque is possible and less costly than installation of a torque transducer on the turbine drive 

shaft. Transducers or sensors of this type may be expensive and prone to reliability issues. 

The consideration follows the standard formulation of the equations governing the behaviour 

of a synchronous generator in the direct and quadrature (dq) reference frame. In the dq 

reference frame the generator torque developed is given by the cross-product of the stator 

flux and the stator current, as derived from the Lorentz force equation (Heaviside, 1889; 

Anaya-Lara et al, 2009; Pyrhönen et al, 2008):     

 

 𝜏𝑆𝐺 =  𝜑𝑑𝑠 ∙ 𝑖𝑞𝑠 −  𝜑𝑞𝑠 ∙ 𝑖𝑑𝑠 (3.4) 

 

The stator flux in the d-q reference frame can be calculated by approximating the 

generator as a set of three inductance coils organised on the d-q axis. The stator coils have 

induced voltages vqs and vds, which results from the rotating magnetic field developed in the 

rotor by the application of the rotor voltage  vf  and the resulting current if. The voltages 

induced in the stator coils if connected to a load will result in currents to flow, ids and iqs. 

The currents generate a sinusoidal magnetic flux in the generator air gap as a result of current 

flowing through inductances Ld and Lq. The magnetic flux magnitude in the air gap is then 

given by the following equations (Anaya-Lara et al, 2009): 

 

 𝜑𝑑𝑠 =  −𝐿𝑙𝑠 ∙ 𝑖𝑑𝑠 +  𝐿𝑑(−𝑖𝑑𝑠 + 𝑖𝑓) (3.5) 

 

 𝜑𝑞𝑠 =  −𝐿𝑙𝑠 ∙ 𝑖𝑞𝑠 +  𝐿𝑞(−𝑖𝑞𝑠) (3.6) 
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 Where the Lls are self-inductance terms and lead to losses in the system. Substituting 

the (3.5) and (3.6) into (3.4) and simplifying gives the following expression for the torque 

developed via the generator: 

 

 𝑇𝑆𝐺 = ( (𝐿𝑞 − 𝐿𝑑 )𝑖𝑑𝑠 + 𝐿𝑑𝑖𝑓)𝑖𝑞 (3.7) 

 

For a permanent magnetic synchronous generator the term Ld if is replaced by the 

magnetic flux of the permanent magnets. This is proportional to product of the poles in the 

motor and the magnetic flux associated with each pole pair, denoted here as φpm: 

 

 𝑇𝑃𝑀 = ( (𝐿𝑞 − 𝐿𝑑 )𝑖𝑑𝑠 + φ𝑃𝑀)𝑖𝑞 (3.8) 

 

The optimal torque to current ratio for a PMSG generator is achieved when the rotor flux 

vector and the stator flux vector are at 90o to each other. This can be achieved by setting the 

direct axis current to zero, id = 0. As such if the generator is operating at its greatest 

efficiency then the feedback torque of the PMSG can be given by: 

 

 𝑇𝑃𝑀 = φ𝑃𝑀 ∙ 𝑖𝑞 (3.9) 

 

From the above considerations it can then be concluded that under the steady-state 

assumption presented in (3.3) that the rotor torque can then be approximated by: 

 

 𝑇𝑟𝑜𝑡𝑜𝑟 ≈ 𝑇𝑃𝑀 = φ𝑃𝑀 ∙ 𝑖𝑞 (3.10) 
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The above considerations are utilised in the development of the vector oriented control 

(VOC) scheme for a PMSG (Anaya-Lara et al, 2009; Liang and Whitby, 2011; Whitby and 

Ugalde-loo, 2014) and if such a control scheme is adopted measurements of the id and iq 

currents developed within the generator can be calculated from measured three phase 

currents flowing to the generator side converter. This is in fact required for the execution of 

VOC, therefore the signals proposed for rotor condition monitoring can be taken directly 

from the turbine control scheme and so will require no additional instrumentation. Thus 

savings on instrumentation cost can be achieve by utilising the proportionality of iq to the 

generator feedback torque and under steady state operation to the rotor torque developed.   

3.5 Outline signal processing techniques utilised 

3.5.1 Time Synchronous Averaging 

Time Synchronous Average has been utilised extensively in the application of vibration 

monitoring to rotating machines (Vachtsevanos et al, 2006; Tavner et al, 2008; Ha et al, 

2015) and has a natural application in this area. The algorithms utilised are often simple and 

seek to characterise the underlying transient artefacts in a signal taken from rotational 

machinery. The general process of TSA can be considered to consist of three phrases: 

1. Data Capture in the time-domain,  

2. Re-sampling to fixed locations in the displacement domain, and  

3. Averaging over multiple machinery rotations at each (re)sample location.   

The effect of averaging at specific sample points for multiple rotations has the effect of 

reducing noise in the signal and highlights any underlying characteristic fluctuations over a 

single turbine rotation. 

Although TSA is a promising technique there are shortcomings and caveats to be noted. 

The re-sampling exercise and the true representation of the signal being measured at the 

defined displacement indexes are highly dependent on the interpolation scheme utilised and 
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the rotation velocity of the machine. The rotational velocity has an impact on the required 

time-domain sampling rate which must be, 

 

 𝑓𝑠 = 2 ∙ 𝑋 ∙  𝜔𝑚𝑎𝑥 (3.11) 

 

Where X is the number of displacement points over which the interpolation is conducted. 

The effectiveness of the interpolation scheme is highly dependent on the statistical nature of 

the signal being measured and the method assumes that the data related to each interpolation 

displacement point is normally distributed.  

In this work encoder measurements were available for the experimental data and the 

position of the turbine at each calculation time step was used in the case of the simulations. 

In this case the process of conducting TSA is simplified. Figure 3.3 shows the overall 

process undertaken, and was adapted from the work of Ha et al (2015). The algorithm for 

conducting TSA is illustrated via the following pseudo code.  

1. Use encoder data to identify zero crossing sample number. 

2. Split the measured data at the zero crossing samples, right inclusion (Each zero 

sample belongs to the proceeding rotation.  

3. Resample, M, measured data points with time index to, N, data points with fixed 

displacement index using cubic spline interpolation. 

4. Calculate ensemble average. 

The effectiveness of the TSA process is highly dependent  on the number of rotations 

used to create the ensemble average. The noise reduction given by applying the TSA process 

has been quoted as having been effectively modelled by (Ha et al, 2015), 1/sqrt(number of 

rotations). As the specific noise reduction requirements will vary depending on the specific 

application, averaging over various numbers of rotations will be conducted to find the most 

appropriate noise reduction factor whilst minimising the number of rotations averaged.  



71 

 

 

Figure 3.3: Schematic of the TSA process (Ha et al, 2015). 

 

 

3.5.2 Discrete Time Fourier Transform 

Feature extraction for rotating machines has for many years been conducted utilising 

frequency domain representations of time-domain signals (Vachtsevanos et al, 2006; Tavner 

et al, 2008). The frequency characteristic extraction processes adopted for such feature 

extractions are thus numerous and are related to the characteristics of the signal being 

considered. The most basic method is the Fourier transform. This has formed the foundations 

of many transformations of time series data into the frequency domain. As the data utilised 

throughout this thesis has been sampled or synthesised through discrete modelling processes 

the discrete counter-part of the Fourier transform, namely the Discrete Fourier transform 

(DFT) is deployed here. Both the discrete and continuous Fourier transforms are taken by 

considering the projection of a time domain signal onto the orthogonal basis of sinusoidal 

functions (Osgood, 2007). This process is represented mathematically by the following 

discrete case formula (Smith, 1997): 

 𝑋(𝑓) =  ∑ 𝑥(𝑛𝑇)𝑒−2𝜋𝑗𝑓𝑇𝑛

∞

𝑛= −∞

 
(3.12) 

 

1. Divide and 

Resample 

2. Ensemble average.  

Number of rotations  
3. TSA Signal  



72 

 

 

 

The DFT is calculated throughout this research utilising the Matlab implementation of 

the FFT (Mathwork, 2016). The implementation is based on the open source FFTW library 

and allows the calculation of 3.12 with n log n calculations rather than the required n2 if 

calculating the transform directly via 3.12 (Frigo and Johnson, 2005).  

3.5.3 Short-Time-Fourier-Transform and the Spectrogram 

Spectrograms are produced by windowing time-series (or indeed displacement series 

data) into segments and taking the Fourier transform of each segment. This gives an 

estimation of the change in frequency content of a given signal over time. The Fourier 

transform can be, in simple terms, considered as a projection of a data set onto a basis of 

sine and cosine (complex exponential) terms at increasing frequencies highlighting the 

frequency content of a given dataset. The resolution of the Fourier transform is given as the 

reciprocal of the data set length or indeed -the window length when producing a 

spectrogram. The maximum observable frequency is then given by the half the reciprocal of 

the sample period. The windowing process is given mathematically by multiplying the signal 

x(t) by a window function w(τ-t) and observing the Fourier transform. The windowing 

function is then progressed through the dataset with a given overlap between transforms. 

This is known as the Short Time Fourier Transform (STFT) (Feng et al, 2013) and is given 

by: 

 
𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = ∫ 𝑥(𝜏)𝑤(𝜏 − 𝑡) EXP(−𝑗2𝜋𝑓𝜏) 𝑑𝜏

∞

−∞

 
(3.13) 

 

Within the process of conducting the STFT it is assumed the signal is stationary at the 

scale of the window length used to segment the dataset. This along with the fixed nature of 

the time frequency resolution for a given window length and the unresolvable issues 

associated with the Heisenberg uncertainty principle means that the transform is best suited 
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for analysing quasi-static (stationary at the scale of the windowing function) signals (Feng 

et al, 2013). 

 The application of the STFT results in a Spectrogram as the output. Throughout the 

course of the research Spectrograms were utilised to inspect the results of applying the STFT 

signal processing to time series of interest. As such the author has included a brief guide to 

the format and interpretation of the spectrogram figures presented throughout the thesis. To 

present the correct interpretation of a spectrogram and indeed, to show that the process of 

calculating the spectrograms throughout the thesis was correct a spectrogram of a known 

signal was created. The following signal was generated using Matlab:  

 𝑥(𝑡) = 5 ∙ sin(200 ∙ 2 ∙ 𝜋 ∙ 𝑡) + 1 ∙ sin (0.25 ∙ 2 ∙ 𝜋 ∙ 𝑡3) (3.14) 

The signal was created to harbour content of both fixed and varying frequencies. One can 

note in equation (3.14) that the signal is made up of two sinusoids the first with an amplitude 

of 5 and a fixed frequency of 200 Hz; the second sinusoid has an amplitude of 1 and has a 

frequency that increases as a function of time. Figure 3.4 shows the spectrogram of the above 

signal generated via the STFT in Equation (3.13). The interpretation of the spectrogram can 

be readily understood by noting that the x-axis refers to time, the y-axis frequency and lastly 

the colour of spectrogram to amplitude. It can be seen that the fixed frequency sinusoid 

appears as a straight line through the spectrogram and the time-varying frequency can be 

observed as polynomial varying with time. Furthermore is can be noted that the fixed 

frequency content sinusoid has the lightest colour as it has the highest amplitude of 5 and 

the time varying sinusoid has a slight darker colour corresponding to an amplitude of 1. 

Throughout the thesis the spectrograms calculated, via both the STFT and the Hilbert-Huang 

Transform, are presented to give the reader a qualitative view of the observed changes in 

spectrums for differing turbine rotor imbalance settings. The amplitudes of interest are 

extracted as time-series, as outlined in Sections 3.6.4 to 3.6.6, and then used to train and test 
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a naïve Bayesian classifier, as presented in Section  3.6.7 – this given a quantitative indicator 

of the performance of each monitoring approach.  

 

Figure 3.4: Spectrogram of the test signal defined by Equation (3.14). 

 

3.5.4 Empirical Mode Decomposition 

This section considers the use of Empirical Mode Decomposition (EMD) for fault feature 

extraction. EMD is considered as a strong candidate for feature extraction as the selection 

of a prior basis on which to decompose the given signal is not required. The process 

generates a basis empirically adapting to the specific data set at hand. EMD was developed 

originally as the initial step required during the Hilbert-Huang transformation and generates 

a series of monotonic signal components to which the Hilbert transform can be applied in 

order to accurately estimate instantaneous frequency of the monotonic components, 

although just the EMD process is studied here.  

EMD utilises the intuition of local high frequency artefacts in a signal. These can be 

estimated by considering, for example, two subsequent extrema. Utilising this intuition and 

considering the overall ‘trend’ or structure of the time series local high frequency artefacts 

can be extracted from the overall time series in an iterative manner (Rilling et al, 2003). 

EMD is utilised to represent the signal as a sum of Intrinsic Mode Functions (IMFs) which 

adhere to the mono-component requirement needed for suitable estimate of the 
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instantaneous frequency for a given signal. An IMF function must satisfy two stipulations 

(Yang et al, 2008b):  

1. The number of extrema and zero crossings in the IMF must be equal of vary at 

most by 1. 

2.  The mean at any point in the signal of the maxima envelope and the minima 

envelope must be zero.  

The EMD process involves IMF sifting, an iterative process for extracting IMFs by cubic 

spline interpolation of local minima and maxima for envelope estimation, a detailed 

algorithm can be found in (Huang et al, 1998). Essentially the output from the EMD process 

is the signal as a summation of IMFs with an associated residue which gives the underlying 

slow moving changes in the signal. This is written as: 

 
𝑥(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)

𝑛

𝑖=1

 
(3.5) 

where ci(t) is the ith IMF and rn(t) is the process residual.  

3.5.5 Hilbert Huang-Transform. 

The extension of the EMD process outlined in the section above to the full Hilbert Huang 

transform involves taking the Hilbert transform of each of the developed IMFs acquired 

from application of the EMD procedure developed in the previous section. The 

instantaneous frequency of the IMF can then be estimated by calculating the derivative of 

the phase information resultant from the application of the Hilbert transform with respect to 

time.  The summation in equation can then be expressed as a generalised Fourier 

decomposition of the IMFs as such: 

 

 
𝑥(𝑡) = ∑ 𝑎𝑖(𝑡)𝑒𝑥𝑝 ( 𝑗 ∫ 2𝜋𝑓𝑛(𝑡)𝑑𝑡)

𝑛

𝑖=1

 
(3.6) 
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this information can then be plotted as a time-frequency amplitude surface or contour 

plot. This method creates a generalised time-frequency representation of a given signal 

without requiring stationarity of the signal being analysed (Huang et al, 1998). Throughout 

the thesis the Hilbert Spectrograms created will be plotted to be consistent with the STFT 

spectrograms, as such the interpretation presented in Section 3.5.3 will apply equally. 

3.6 Formulation of feature extraction techniques 

3.6.1 The initial CFD dataset 

Cardiff marine energy research group (CMERG) has expertise in producing and 

validating CFD models (Mason-Jason 2010; Mason-Jones et al, 2012; Morris, 2013; Frost 

et al, 2014). In order to conduct an initial study into TST rotor monitoring this knowledge 

base was utilised. Research group members with CFD experience were asked to provide 

CFD model results for differing rotor conditions. The rotor utilised has generally been 

consistent throughout the CFD modelling work conducted within the research group. This 

provides a high level of confidence that the data sets produced are closely representative of 

the expected turbine characteristics for the given rotor type as indicated by the various 

validation campaigns undertaken (Mason-Jones, 2010; Mason-Jones et al, 2012). 

Within the CFD models a 5m radius rotor equipped with three adapted Wortman FX-63 

-137 blades was utilised. Figure 3.5 shows the previously derived and validated non-

dimensional performance curves for the rotor (Mason-Jones et al, 2012). The models were 

setup with constant fluid velocity at the model inlet, both in time and spatially (plug-flow). 

Through previous research it was found that the optimum blade pitch angle, balancing power 

extraction and thrust loading, was at 6o to the rotor plane (Mason-Jones, 2010). To 

conveniently model rotor fault conditions of varying levels of severity a single-blade (blade 

1) was offset from the optimum pitch angle by varying degrees. Table 3.1 shows the fault 

cases modelled.  
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The fluid domain for the model was 150 m by 50 m by 50 m and utilised a moving 

reference frame at the turbine rotor. The mesh had approximately 6 million elements and the 

model utilised a shear stress transport viscous model. The inlet fluid velocity was set to 3.09 

ms-1. The turbine rotational velocity was set to 2.23 rads-1 resulting in a λ value of 3.61 for 

each of the simulations which correspond to operation at peak power coefficient for the rotor 

used.  

 

Table 3.1: Blade fault scenarios modelled via CFD. 

Fault Class  Blade 1 Offset  

Optimum No offset blades 

Sensitivity Case Blade 1 Offset by +0.5o 

Minor Fault  Blade 1 Offset by + 3 o 

Major Fault  Blade 1 Offset by +6 o 

 

 

 

 

Figure 3.5: Performance curves developed for the adapted Wortmann FX 63 - 137 bladed rotor utilised 

throughout this research [Mason Jones et al, 2012]. 

 

 

Figure 3.6 shows the data output from the CFD models for the optimum rotor setting 

case. The figure highlights both the cyclic nature of the drive shaft torque imposed by the 

rotor and the form of the results output from the CFD modelling exercise. Conveniently the 

data is output in the form of the overall torque imposed on the turbine drive shaft and the 
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contribution by each blade to the turbine drive shaft torque. This was exploited in the initial 

steady state simulations where the overall rotor torque contribution was considered for 

condition monitoring process development, as this will be the quantity measured in reality, 

and the blade contribution datasets where utilised to construct a parametric rotor torque 

model (Section 4.2.4). 

 

Figure 3.6: Example of the CFD data output for plug flow steady state simulations with optimum rotor 

conditions. 

 

  
Figure 3.7: Drive shaft torque spectrum for optimum, offset +0.5o, offset +3o and offset +6o conditions.  
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3.6.2 Power Monitoring 

 As the power output of a TST is likely to a readily available measurement of the turbine 

performance it makes a suitable measurement for rotor fault detection and diagnosis. A 

simplistic method, assuming adequate measurements of the on-coming fluid velocity, was 

used as an illustrative example within this research. The process consists of using fluid 

velocity and rotational velocity measurements to lookup the expected power coefficient for 

the given turbine conditions. The measurement of the on-coming fluid velocity and the 

power output from the turbine are then used to calculate that actual power coefficient. This 

process is applied in Section 6.4.1. 

3.6.3 Rotor imbalance criterion 

CFD data was utilised to study the frequency content of the resultant turbine drive shaft 

torque under various rotor conditions in order to develop rotor fault indication metrics. 

Figure 3.7 shows the drive shaft torque spectrum in the turbine displacement domain. The 

peak amplitude in the drive shaft torque spectrum is shown as being three times per turbine 

rotation (0.00833 Hz); this can be attributed to the blade passing or ‘shadowing effect’. More 

interestingly it was noted that the amplitude of the rotational frequency of the turbine 

(0.00278 Hz) is increased with increasing levels of rotor imbalance or damage. This again 

was conveniently simulated via varying the pitch angle of a single blade for the CFD 

simulations. Furthermore, it was observed that the shadowing frequency is reduced, albeit 

to a lesser degree, with increased rotor imbalance. This affect allowed the author to develop 

two condition monitoring criteria based on the outlined amplitude shifts for differing levels 

of rotor damage. Specifically the monitoring metrics developed were given by:  

 

 𝐶 =  
𝐴1𝜔

𝐴3𝜔
 (3.7) 
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 𝐶𝑙 = 20log 
𝐴1𝜔

𝐴3𝜔
 (3.8) 

 

 
  

where A1ω and A3ω are the amplitudes of the rotational frequency of the turbine and the 

blade passing frequency of the turbine, respectively.  

Here the amplitude refers to the amplitude extracted via the signal processing method 

used. The sections below discuss two methods used to calculate A1ω and A3ω as they vary 

over time. The monitoring criteria C and Cl in this case can be considered as a measure of 

the rotor imbalance which could be a valuable fault indicator in an overall monitoring 

system. The two metrics were developed in the above forms to provide a neutral estimate of 

the rotor imbalance state and an exaggerated estimate of the rotor imbalance state, given by 

equations (4.1) and (4.2) respectively.  

3.6.4 Extracting the imbalance measures using the STFT 

In order to estimate the rotor imbalance criteria C and Cl the frequency content of the 

drive shaft torque had to be extracted. This section describes a general algorithm used for 

the estimation of the rotor imbalance criteria C and Cl based on the STFT. The mathematical 

formulation of the transform was outlined in Section 3.5.3. To apply the rotor imbalance 

criterion the following algorithm was developed, assuming the batch processing of data. The 

implementation can be summarised as follows: 

Procedure 1: Procedure utilised to calculate the imbalance criteria C and Cl via STFT amplitude extraction. 

 

1. Apply the STFT to the torque or generator q-axis current data to produce a spectrogram: 

A. Generate STFT settings. Typically these are: 

Window Length = 5 Rotations,  

Overlap = 4 Rotations,   

Window Type = ‘Hanning’ (Default) and  

Sample Rate = 100 Hz.  

B. Calculate the STFT via ‘[…] = spectrogram(STFT Settings…)’ 

C. Store the results. 

2. Calculate condition monitoring criteria ‘C’ and ‘Cl’: 
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A. Calculate rotational velocity of turbine in Hz (ω) and 3 times the rotational velocity in 

hertz (3ω). Note: these are fixed for current simulations. 

B. Extract time varying amplitude at ω ± 0.05Hz and 3ω ± 0.05Hz done via comparison and 

logical indexing of the frequency axis output of the spectrogram. 

C. Calculate ‘C’ and ‘Cl’ via (3.16) and (3.17), respectively.  

3. End.  

 

 

3.6.5 Extracting the imbalance measure using EMD  

In a similar manner to that of the STFT based algorithm an alternative algorithm for 

extracting the required frequency content based on the process of empirical mode 

decomposition was also developed and tested. This utilises the EMD process outlined in 

Section 3.5.4 is based on the EMD algorithm produced by (Tan, 2008). The Matlab script 

implementing the calculations of criteria ‘C’ and ‘Cl’ can be summarised as follows: 

Procedure 2: Procedure utilised to calculate the imbalance criteria C and Cl via EMD amplitude extraction. 

 

1. Capture X samples of the drive shaft torque or generator q-axis current signal and 

rotational velocity. Where X is any convenient number of samples to take.  

2. Apply the EMD algorithm to the drive shaft torque data.  

3. For each intrinsic mode function calculate its FFT and store the amplitude spectrum. 

4. Store the IMFs with the greatest amplitude at ω and 3*ω.   

5. Use the Hilbert transform to estimate the amplitude of the two IMFs identified. 

6. Calculate imbalance criterion ‘C’ and ‘Cl’ where the amplitude of the IMF relating to 

the 1st harmonic is substituted into (3.16) and (3.17) as A1 and the amplitude of the IMF 

relating to the 3rd harmonic of the rotational frequency as A3.  

7. End. 

 

3.6.6 Extracting the imbalance measure using the HHT 

The process of calculating the imbalance measures using the HHT follows the same 

process as described in Procedure 1 from step 2. The HHT is calculated as described in 

Section 3.5.5 to give a spectrum of the data – step 2 from Procedure one is then applied to 

the outputted spectrum.   
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3.6.7 Testing the effectiveness of the imbalance measure 

In order to test the effectiveness of the imbalance measures generated, using the processes 

described above, the imbalance measures calculated for the various simulation and testing 

phases were input into a naïve Bayes classifier. Naïve Bayes classification is termed as such 

because it involves the, so called, Naïve application of Bayes rule to classification. The 

application is Naïve in the sense that it assumes differing measures used in making a 

classification are conditionally independent – i.e. one measure used in making a 

classification has no impact on another. As the classification processes within the research 

generally used a single indicator this assumption has minimal impact on the results given. 

Stated simply a naïve Bayes classifier makes classifications based on the arguments using 

Bayes rule:  

 

 
𝑎𝑟𝑔𝑚𝑎𝑥[𝑃(𝑠𝑡𝑎𝑡𝑒|𝑑𝑎𝑡𝑎)] = 𝑎𝑟𝑔𝑚𝑎𝑥 [

𝑃(𝑑𝑎𝑡𝑎|𝑠𝑡𝑎𝑡𝑒) ∙ 𝑃(𝑠𝑡𝑎𝑡𝑒)

𝑃(𝑑𝑎𝑡𝑎)
] 

(3.19) 

   

The equation gives that the classification of the turbine state is attributed to that which 

maximises the probability of the state given the data, P(state|data). This can be calculated 

via the marginal probability distributions on the right hand side of the equality. The 

calculation requires two steps, initially training and secondly classification.  

In order to conduct the training and classification stages using the imbalance criteria data 

calculated the data is split into two parts. The first segment is used to train the classifier 

which requires choosing and fitting a PDF to the data for each state – this in effect gives the 

term P(data|state) on the left hand side of the equality in Equation 3.18. For the research 

presented Kernal PDFs were used for fault detection classifications and normal or Gaussian 

PDFs were used for fault diagnosis or fault type classification. The PDFs were fitted using 

the common maximum likelihood approach (Bishop, 2006)(Matlab, 2015).  
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The second segment of data can then be used to calculate the right hand term in the 

equality by appraising the fitted distributions at each data point in the second data segment. 

The term P(state) is a discrete PMF and was set to an equal value for each of the states thus 

making the assumption that all fault cases are equally likely. The term P(data) is the sum of 

the probability for the data value input appraised at each of the fitted PDFs for each 

P(data|state). The classification is given to the output of the highest probability. This process 

was undertaken using the built in Matlab Naïve Bayes classifier tool. The results of each 

classification procedure are presented in Appendix A and the classification discussed within 

the appropriate results section.  

3.6.8 Monitoring surface generation 

The notation of defining a surface of observed harmonic amplitudes over a range of 

operational λ was initially considered within this research as a modelling device, see Chapter 

7. These surfaces were then utilised to develop the drive train simulations. It is shown in 

Section 7.4.5 that the amplitude at harmonics of the rotational velocity, when normalised by 

the mean torque value, were in close proximity for various fluid velocities for specific λ 

values. This notion led to the development of so called, Transient Monitoring Surfaces 

(TMS), which are developed and tested as a condition monitoring tool.  

To utilise the TMS as a monitoring tool a trending or characterisation process is first 

required to initially generate the TMS relating to normal turbine operation. Then future 

operational characteristics in the form of observed relative amplitudes at various harmonics 

and at differing λ values can be compared with the trained. The comparison process can be 

utilised to generate alarm conditions or diagnostic reasoning and to further characterise the 

normal turbine operation TMS. 

This section accordingly outlines the general process for developing the aforementioned 

TMS. More detailed procedures for creating TMSs under differing turbine control strategies 

and under non-steady state conditions is presented in Chapter 8 – this was done as the 
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specific process can be more clearly described after consideration of the simulation method 

presented in Chapter 7. The process for generating a TMS is similar to that outlined in 

Chapter 7, however the surfaces generated for condition monitoring relate to the quadrature 

axis current observed in the generator. The general algorithm utilised for the TMS generation 

was:  

1. Normalise data. 

2. Time Synchronous Average data.  

3. Take the FFT of the TSA data. 

4. Add spectrum to surface indexed by harmonics and TSR 

The general algorithm was dependent on correct normalisation and indexing during TMS 

creation. It was found during the construction of TMS that the normalising and indexing for 

surface creation became less well defined with increasingly transient turbine operation, for 

example under high turbulence loading combined with variable speed control. To this end, 

sections 8.4.3 and 8.4.4 present a more detailed approach to monitoring surface generation 

under turbulence intensity of 10% for both optimal TSR control and fixed rotational velocity 

turbine control, respectively.  

To use TMS as monitoring tool a training and comparison approach was utilised. The 

approach in this research was to generate surfaces under normal turbine operating conditions 

as the baseline TMS. TMS generated under differing conditions were then compared with 

the baseline TMS generated utilising data form normal turbine operation. The difference 

between the TMSs were then capture by the so-called sum of surface error (SOSE). To 

calculate the SOSE the magnitude of the discrepancies between the baseline TMS and 

current operational TMS are summed over each of the data points generated.  
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 Initial Steady State 

Simulation 

4.1 Introduction 

This chapter presents an initial approach to testing the effectiveness of the rotor 

imbalance criteria which were developed by the author based on CFD simulation results 

presented in Section 3.6.1. The imbalance criterion were developed based on the prior use 

of two differing signal processing approaches and associated feature extraction methods. 

Each of the processing approaches and their application to the calculation of the rotor 

imbalance criteria were presented in Section 3.5 and Section 3.6, respectively.  

To test the effectiveness of the outlined approach to rotor imbalance detection a 

parametric rotor model was developed based on the frequency content of the CFD data 

presented in Section 3.6.1. The model was developed to harbour the frequency 

characteristics observed in the CFD data but was structured to allow for the generation 

torsional time series under varying levels of turbulence. The model structure is presented in 

Section 4.2. The use of the model to develop TST drive shaft torque time series under various 

conditions is presented in Section 4.3. The results of the simulations and the application of 

the rotor imbalance criteria are presented in Sections 4.4 and 4.5. Lastly the impact of the 

results on the development of rotor imbalance criteria calculation methods is discussed in 

Section 4.6.   
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4.2 TST Drive Shaft Torque Simulations 

4.2.1 Turbine Rotor Torque Simulation Overview 

A simulation process was constructed to test the applicability of the rotor imbalance 

measure as a condition monitoring metric. Specifically the simulations were created to test 

the application of the proposed algorithms under near steady state conditions. In this context 

near steady state conditions are defined as having a fixed turbine rotational velocity with 

varying fluid conditions characterised by turbulence of intensities ranging from 0.5% to 

2.0%.  

In order to construct a parametric rotor model the effects of rotor transients, as seen in 

the transient CFD data, were combined with the expected mean rotor torque for a given 

operating condition. The specifics of the parametric model are outlined in the following 

sections. A flow chart of the process is shown Figure 4.1 as decomposed of steady state and 

transient torque components. In Figure 4.1 the terms in equation 4.6 are highlighted to 

further indicate the structure of the parametric turbine rotor model. It was considered that 

for a given time step, the current fluid velocity (from simulated data, Section 4.2.2) as well 

as the turbine position are measured. These measurements along with the fixed rotational 

velocity of the turbine, the characteristic curves for the given rotor and the model parameters 

derived from the CFD results are then used to calculate the expected torque developed by 

the turbine rotor for the given flow speed and condition. This process is shown in Figure 4.1 

with the mathematical formulations outlined in the following sections. In section 4.2.5 the 

software implementation of both the model parameterisation process and the simulation 

process are both outlined.  
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Figure 4.1: Overview of the parametric rotor simulation process. 
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4.2.2 Fluid Velocity Model 

The current study presented utilises a simple approach to fluid velocity simulation.  A 

simple resource simulation method was sought in order to test the validity of drive shaft 

torque monitoring coupled with the proposed signal processing methods. The model utilised 

is of the following form: 

 

 𝑈𝑥(𝑡) = 𝑈𝑥
̅̅̅̅ + 𝑢′

𝑥(𝑡) (4.1) 

 

 

where Ux(t) is the fluid velocity at time t decomposed into a stationary mean fluid velocity 

𝑈𝑥
̅̅̅̅  and a fluctuating component,  u’x(t) which is time varying with the x direction 

perpendicular to the turbine rotor plane. The fluctuating component for this study was 

simulated via a normally distributed random variable with zero average and standard 

deviation equal to the standard deviation required for the specific turbulence intensity. 

Turbulence intensity here is defined as:  

 

 

 
𝑇𝐼 =  

𝜎𝑢

�̅�
 

(4.2) 

                    

Where, σu is the standard deviation of the fluctuation fluid velocity component, u’x(t). 

4.2.3 Turbine Performance Curves 

Figure 3.5 shows the power curve and the torque curve for the turbine. The data producing 

curves were input as lookup tables in the simulation and cubic spline interpolation was used 

to calculate the torque coefficient between sample points. The magnitude of the drive shaft 

torque is then calculated by:  
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 𝜏𝑐𝑡 =
1

2
∙ 𝐶𝜃 ∙ 𝜌 ∙ 𝐴 ∙ 𝑟 ∙ 𝑈2 (4.3) 

        

 

where τct is the magnitude of the rotor torque, Cϴ is the torque coefficient found via a 

lookup table, ρ is the density of the fluid, A is the swept area of the turbine, U is the fluid 

velocity and r is the turbine radius. 

4.2.4 Parametric Model 

The CFD simulations outlined were used by the author to determine the parametric model 

form and parameter set. This was convenient as the output of CFD models enable the 

evaluation of single blade fault conditions and blade by blade transient torque contributions. 

The characteristics and in particular the periodic nature of the drive shaft torque fluctuations 

under various rotor conditions have accordingly been captured via a parametric model of the 

form of three eight-term Fourier series, one for each blade. The output of the model is a 

simulated rotor torque time series.  

The frequency content of the drive shaft torque calculated via CFD modelling was 

decomposed into the torque contribution by each turbine blade. Figure 3.6 shows two 

revolutions of transient simulation results for each blade contribution and the overall drive 

shaft torque. The setup for the case shown is optimal. 

Figure 4.2 shows the amplitude spectrums for each blade and rotor condition the 

frequency index for the spectrums, the form in Equation 4.4 is shown above the figure with 

the harmonic indexes highlighted. This was scaled relative to turbine position as the data 

related to constant rotational velocity operation. It can be observed that blade offsetting 

distorts the harmonic content of the frequency domain representation from the optimum 

case. Each spectrum also exhibits an exponentially decaying tendency with differing peak 
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values and decay rates, this was utilised in the parametric model as can be seen in Equation 

4.4. The drive shaft torque parametric model utilised a Fourier series of the form: 

 

 

 

 

𝜏𝑟𝑜𝑡𝑜𝑟(𝜃) = 𝜏𝐶𝑡 ∙  (𝑘1 + ∑ 𝑎1

8

𝑖=1

𝑒𝑏1𝑖 ∙ cos(2𝜋𝜔𝜃 + (𝑛1
2𝑖 + 𝑚1𝑖 + 𝑐1) ) 

                 

  +  

𝜏𝐶𝑡 ∙ (𝑘2 + ∑ 𝑎2

8

𝑖=1

𝑒𝑏2𝑖 ∙ cos(2𝜋𝜔𝜃 + (𝑛2
2𝑖 + 𝑚2𝑖 + 𝑐2) ) 

 +  

𝜏𝐶𝑡 ∙ (𝑘3 + ∑ 𝑎3

8

𝑖=1

𝑒𝑏3𝑖 ∙ cos(2𝜋𝜔𝜃 + (𝑛3
2𝑖 + 𝑚3𝑖 + 𝑐3) ) 

(4.4) 

 

where θ is the turbine position and ω the turbine rotational velocity. The remaining 

parameters are discussed below.  

 

 

Figure 4.2: Spectrum of drive shaft torque for each blade contribution under differing rotor conditions, the 

observable exponential decay over multiple harmonics of the turbine rotation were exploited for the 

parametric model. 
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Figure 4.3: Phase spectrum observed for each blade contribution to the turbine rotor torque calculated via 

CFD data, with phase angles in degrees. 

 

 

 

 

 

 

Figure 4.4: Unwrapped phase spectrum for each blade for the optimum and +6o offset cases, showing the 

appropriate choice of 2nd order polynomial form utilised within the parametric model. 

 

 

𝑛𝐵𝑙𝑎𝑑𝑒
2𝑖 + 𝑚𝐵𝑙𝑎𝑑𝑒𝑖 + 𝑐𝐵𝑙𝑎𝑑𝑒 
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It can be seen in equation (4.4) that the relationship between the observed phase angles 

at each harmonic for differing rotor conditions was captured via the parameterisation of the 

quadratic equation with a set of three parameters ‘m’, ‘n’ and ‘c’ for each rotor condition. 

Figure 4.3 shows the phase spectrum observed for the optimum rotor condition with the 

phase angle in degrees with the rotational frequency harmonic numbers shown. The figure 

shows the phase spectrum with no processing to, ‘unwrap’ phase angles. It can be seen that 

the phase spectrum shown exhibits linear trends with phase separation between blades. This 

was not easily characterised by the quadratic form mentioned. Specifically, blade 1 shows 

an almost linear phase spectrum for the optimum case but this was not found for blades 2 

and 3. It was noted that the phase angles for harmonics 3 and 6 were of a similar value for 

all three blades. Further investigation highlighted that a specific pattern of phase shifting 

could be observed for blades 2 and 3 relative to blade 1 for the harmonics where inconsistent 

phase angles were observed.  

To further interrogate the structure of the observed inconsistences it was considered that 

the phase shifts observed maybe related to the blade locations, i.e. related to 120 o 

displacement between blades. It was found that this reasoning was correct and a sequence 

of phase angle shifts could be applied at each harmonic to create consistency between the 

phase spectrums observed for blades 1, 2 and 3. The specific phase angle shifting required 

to create such consistence is presented in Table 4.1: Phase relationship observed over 8 

harmonics of rotation and for each blade. It is noted here that the reasoning behind the 

observed phase angle relationship was not fully considered and the above process was 

applied to afford convenience in parametric model form and parameterisation.  The phase 

shifting process was then applied to the phase spectrums observed for each rotor case. 

Furthermore the phases were unwrapped to fall between the range 0 o ≤ ß ≤ 360 o. The results 

of the phase shifting process are shown in Figure 4.4, along with the parametric form utilised 
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to model the phase angels observed for each harmonic number for differing blades and rotor 

conditions.  

 

Table 4.1: Phase relationship observed over 8 harmonics of rotation and for each blade. 

Harmonic 

No. 

Phase Shift 

Blade 1 

Phase Shift 

Blade 2 

Phase Shift 

Blade 3 

1 0 o +240 o +120 o 

2 0 o +120 o +240 o 

3 0 o 0 o 0 o 

4 0 o +240 o +120 o 

5 0 o +120 o +240 o 

6 0 o 0 o 0 o 

7 0 o +240 o +120 o 

8 0 o +120 o +240 o 

 

 

The focus of this investigation was, by necessity, on TST operation at close to peak power 

conditions, rather than across the entire power curve. Accordingly, parameters where 

determined for a tip speed ratio of 3.6. Although it was likely that, as a result of the fluid 

velocity fluctuations, a wider TSR range would be observed the constant parameter 

assumption was deemed acceptable for the current baseline study. Developments to the 

model have been included in further simulations utilising results of a flume testing campaign 

(see Chapter 7 and Chapter 8). These additions to the research created later in the research 

activities show that the parameter values of such a model vary minimally across 

3.45<λ<3.75. This assumption allowed the parameters in the model to be held constant 

relative to the TSR and parameterisation to be undertaken utilising data from a single 

operating condition (as was the format of the CFD data). Then referring to equation 4.4 the 

parameter set was as follows: 

k – Blade torque contribution for a given TSR 
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a – Depth of shadowing effect 

b – Harmonic decay of the shadowing effect 

n – Phase non-linearity 

m – Phase gradient 

c – Phase offset. 

The parameter k gives the relative contribution of each blade to the total drive shaft 

torque; this in effect sets the DC value of the torque for a given TSR. The parameters a and 

b give the depth of the shadowing effect and the rate of decay of the eight harmonics for 

each blade; this in effect defines the magnitude of torque fluctuations due to the 

aforementioned shadowing effect. Lastly, parameters m, n and c define the phase 

relationships over the eight harmonics for each blade.  

As stated previously, parameter sets were obtained for an optimum case (all blade pitch 

angles set to the 6o) and the three single-blade offset cases. A visual comparison of the 

parametric model and CFD simulations is provided in Figure 4.5.  

4.2.5 Software implementation of parameterisation and simulations. 

The software implementation of the model parameterisation was again undertaken using 

Matlab. The process of rotor model parameterisation was undertaken via the following 

process: 

 

Procedure 3: Procedure used for model parameterisation using the prior CFD dataset. 

 

8. Gather CFD data and organise into a convenient data structure (‘Steady_State_Parameters’ 

in this case.) 

9. Resample the data to include torque data for two turbine revolutions indexed at each degree.  

10. Generate frequency data for curve fitting to find parameters ‘a’, ‘b’, ‘c’, ‘m’, and ‘n’. This 

was done using the ‘Ftrans’ which implements the built in ‘FFT’ function and outputs 

discretised amplitude and phase spectrums. The amplitude spectrums have been scaled by 

half the number of points used for the FFT to preserve the units of Nm for the amplitudes 

observed.  

11. Parameterise ‘k’, ‘a’ and ‘b’  for blade 1 utilising the current dataset: 
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A. Create required variables for indexing. 

B. ‘k’ is parameterised by equating with the ratio of the mean torque for blade 1 to the mean 

torque developed by the rotor (as calculated utilising the rotor characteristics curves). 

C. Scale the amplitude spectrum by the mean drive shaft torque developed by the rotor (as 

calculated utilising the rotor characteristics curves). 

D. Curve fit a decaying exponential to the scaled amplitudes as indexed by harmonics 1 to 

8 where x = harmonic no. and y = scaled amplitude.                                    “eb1 = 

fit(HarmonicIndex,RelativeAmp,'exp1');” 

E. Set parameter ‘a’ to the exponential scaling parameter and set parameter ‘b’ to the 

exponential decay rate.  

12. Repeat sub-steps 4 for blades 2 and 3.  

13. Parameterise ‘m’, ‘n’ and ‘c’ utilising the current dataset, for blade 1: 

A. Unwrap phase spectrum and convert to degrees, range (0 o to 360 o). 

B. Fit 2nd order polynomial to phase angles for each harmonic 1 to 8, where x = 

harmonic no. and y = phase angle. [pb1 = fit(HarmonicIndex,phase,'poly2');] 

C. Equate parameters ‘m’, ‘n’ and ‘c’ with the x2, x1 and x0 coefficients. 

14. Parameterise ‘m’, ‘n’ and ‘c’ utilising the current dataset, for blades 1 and 2: 

A. Unwrap phase spectrum and convert to degrees, range (0 o to 360 o). 

B. Correct phase relationships as per section 4.4.4. 

C. Fit 2nd order polynomial to phase angles for each harmonic 1 to 8, where x = 

harmonic no. and y = phase angle. pb1 = fit(HarmonicIndex,phase,'poly2'); 

D. Equate parameters ‘m’, ‘n’ and ‘c’ with the x2, x1 and x0 coefficients. 

15. Repeat for each rotor condition and output parameters to data structure – 

‘Steady_State_Parameters’. 

 

 

The software implementation of the simulations based on the above parameterisation 

process was also engineered utilising Matlab. The process of the undertaking the simulation 

was implemented as a Matlab function using the following algorithm:  

 

Procedure 4: The procedure followed to create the parametric simulations of the rotor torque given the model 

parameters and simulated fluid time series.  

 

1. Import required simulation details: Rotor Radius, Turbine Rotational Velocity, Mean 

Fluid Velocity, Turbulence Intensity, Fault setting and Steady_State_Parameters’. 

2. Create position, time indexes and harmonic frequency index (scaled by postion).  
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3. Get model parameters from ‘Steady_State_Parameters’ and make pre-allocation of output 

variables. 

4. Create fluid velocity time series via random sampling from normal distribution as in: 

Output.Vel=(randn(1,20001)'*(Vmean*(TI/100))); 

5. For each time step:  

a. Get current fluid velocity (index the fluid time series vector created in step 4) and 

turbine rotational velocity (fixed).  

b. Calculate current tip-speed ratio and use to lookup current Cθ value, done via linear 

interpolation of the rotor torque performance curve.  

c. Calculate mean torque using (4.6).  

d. Calculate harmonic amplitudes for blades 1, 2 and 3 using parameters ‘a’ and ‘b’ and 

the exponential form in (4.7) and scale by mean torque.  

e. Calculate phase angles at harmonic intervals for blades 1,2 and 3, using parameters 

‘m’, ‘n’ and ‘c’ and the quadratic form in (4.7).  

f. For blades 2 and 3 undo phase wrapping required for linear fit.  

g. Calculate the transient torque component using the Fourier series in (4.7) with 

amplitude and phase angles calculated in  

h. Calculate the mean torque contribution for blades 1, 2 and 3 using parameters ‘k’ and 

the overall mean torque.  

i. For each blade sum the mean and fluctuating torque components and output.  

j. Sum each blade contribution.  

6. Repeat for each time step. 

7. End.  

 

 

4.3 Condition Monitoring Study 

4.3.1 TST Rotor Fault Simulations 

In order to appraise the effectiveness of rotor the imbalance criteria C and Cl, extracted 

via the signal processing methods outlined, a set of TST drive train torque time series 

simulations were developed. The simulations were generated for the 10 m fixed pitched 

diameter turbine outlined with a 3.086 ms-1 free-stream flow velocity. The optimum pitch 

angle for the rotor design (adapted Wortman FX 63-137 profile) was 6o, for the study three 

blade 1 offset cases of +0.5o, +3o and +6o from the optimum pitch angle were considered as 

dictated by the CFD data utilised. For each rotor condition 50 simulations were constructed. 
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Each of these was 200 seconds in length. The time step for the simulations was 0.01 equating 

to 20,000 samples. The simulations were conducted for various levels of turbulence intensity 

to further interrogate the ability of signal processing algorithms to extract fault features 

under stochastic conditions.  Specifically the datasets were produced with turbulence 

intensities of 0 %, 0.5 %, 1 % and 2 %. Although it was noted that TI values of between 10 

% and 15 % are to be expected for fluid velocities of greater than 2 ms-1, the levels of 

turbulence intensity were selected to adhere to the fixed parameter assumption made during 

the development of the parametric rotor model. The signal processing methods and 

subsequent extraction of the rotor imbalance criteria C and Cl were applied to 5 of the 50 

simulation outputs for each of the turbulence intensity values considered; the 5 cases were 

chosen at random. For each of the cases to which the signal processing methods were applied 

the effect of turbulence on the extraction of the required amplitudes, A1 and A2, was 

considered. Finally the 5 cases for each turbulence intensity setting were used as training 

data for a naïve Bayes classifier, as described in Chapter 3, Section 3.6.7. The output of the 

training of the naïve Bayes classifier was studied via consideration of the likelihood function 

(that is, the probability of the data given the fault setting) found for each of the fault cases 

and turbulence intensities. This was done to objectively appraise the use of the monitoring 

criteria for fault detection and diagnosis via a simplistic classification method.    

4.4 Simulation Results 

Figure 4.5 shows the parametric model output for the drive shaft torque contribution by 

each blade for each of the blade cases with TI = 0%. Also displayed are the CFD results 

used to parameterise the model. An average RMSE of approximately 0.0551 Nm was 

obtained.  Figure 4.6 shows an example of the simulation results. The figure shows model 

output for the optimum rotor case with increasing levels of turbulence. The first case has no 

turbulent loading and the time series patterns correspond to the reported frequency content 
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for the torque models. The three other cases have increasing turbulences, set at   0.5 %, 1.0 

% and 2.0% of the mean flow velocity respectively. 

 

 
Figure 4.5: Comparison of the parametric model output with the CFD data used to parameterise the model. 

 

 

 

 

 

 

 

 

Figure 4.6: Torque time series output from the simulation process for optimum conditions and varying levels 

of turbulence intensity. 
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4.5 Monitoring Criteria Performance  

4.5.1 STFT Amplitude Extraction 

Figure 4.7 shows an instance of the application of the STFT amplitude extraction process 

defined in Section 3.6.4. The example shown presents the spectrograms and extracted A1 

and A3 amplitudes for the offset +6o case with increasing levels of turbulence.  

It can be seen from Figure 4.7 that the STFT algorithm worked well in extracting the 

frequencies of interest for each of the turbulence intensity levels considered. However, it 

can also be seen that the presence of the amplitudes at the harmonics of interest relative to 

the spectrum noise floor is decreased with increasing turbulence intensity. It was considered 

that this observed trend would become problematic during turbine operation in higher 

turbulence levels as expected during full-scale deployment. Furthermore, it was also noted 

that extracted amplitudes became increasingly spread with turbulence intensity, i.e. a higher 

standard deviations were be observed.  

It was also noted that the time-frequency resolution was poor. In the steady-state case 

presented in this chapter the poor time-frequency resolution did not impact on the result. 

However, it was considered that under more transient turbine operation the time-frequency 

resolution could become prohibitive. Lastly, to note, the application of the STFT feature 

extraction process was relatively convenient with low computational times and data burdens.  
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a1) Spectrogram Offset +6o TI = 0.5% b1) Extracted Amplitudes Offset +6o TI = 

0.5% 

  

a2) Spectrogram Offset +6o TI = 1.0% b2) Extracted Amplitudes Offset +6o TI 

= 1.0% 

  

a3) Spectrogram Offset +6o TI = 2.0% b3) Extracted Amplitudes Offset +6o TI = 

2.0% 

Figure 4.7: Spectrograms and extracted A1 and A3 amplitudes for the offset +6o fault setting and varying 

levels of turbulence. 
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4.5.2 EMD Feature Extraction 

Figure 4.8 shows an instance of the application of the EMD amplitude extraction process 

outlined in Section 3.6.5. The figure shows the extracted IMFs corresponding to the 

amplitudes A1 and A3. The frequency spectrums for each observed for each IMF, which were 

utilised for appropriate IMF extraction, is also plotted. Figure 4.8 shows the results of the 

EMD amplitude extraction process were far less reliable than the results of the STFT 

process. Specifically the amplitudes observed for the A3 amplitude were highly variable 

which would cause the monitoring criteria calculated via the EMD process to vary greatly.  

The correct identification of the IMFS relating to the frequency content of interest was 

also an issue. This can be seen in Figure 4.8 b2 and Figure 4.8 b3 whereby the IMFs extracted 

corresponding to the A3 amplitude are incorrect when considering the unexplained reduction 

of the amplitudes in the IMF spectrums at 3*ω.  Furthermore the EMD process took longer 

to compute and resulted in a far larger data set which may be prohibitive for real world 

applications.  
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a1) Extracted IMFs Offset +6o TI = 0.5% b1) Spectrum of IMFs Offset +6o TI = 

0.5% 

  

a2) Extracted IMFs Offset +6o TI = 1.0% b2) Spectrum of IMFs Offset +6o TI = 

1.0% 

  

a3) Extracted IMFs Offset +6o TI = 2.0% b3) Spectrum of IMFs Offset +6o TI = 

2.0% 

Figure 4.8: Extracted IMFs for A1 and A3 amplitudes with the amplitude spectrums plotted to show the 

appropriateness of IMF extraction via the algorithm outlined in section 4.3.3. 
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4.5.3 Fault Detection and Diagnosis Utilising STFT Extracted Amplitudes  

Figure 4.9 shows the results of the application of the naïve Bayes classifier training 

process to the two monitoring criteria for each of the turbulence intensity cases and 

corresponds to C and Cl values extracted via the STFT. The pdf distributions shown relate 

to the normal or Gaussian family of pdfs fitted to the data for each fault case as discussed in 

Section 3.6.7. Figure 4.9 presents the probability of observing values of C and Cl for each of 

the rotor states.  The classification results can be found in Appendix 10.2A in Tables A.1 to 

A.12, with the result classifications highlighted. It was found in the results of the application 

of NBC that the STFT based imbalance measures C and Cl could be used to successfully 

detect an anomalous rotor condition. In general the imbalance criterion was used to 

successfully classify the rotor fault severity. An exception to the successful classification of 

rotor fault severity was the single case of the C measure at turbulence intensity of 2%. Under 

these conditions the 0.5o
 offset case was misclassified as the optimal case and the 6o offset 

case was misclassified as the 3o offset case, this can be seen in Table A.6. The Cl measure 

resulted in correct fault detection and diagnosis results for all conditions simulated. This 

suggests that the Cl imbalance criterion is more robust than the C criterion for the STFT 

feature extraction process. 
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a1) Monitoring Criterion C TI = 0.5% b1) Monitoring Criterion Cl TI = 0.5% 

  

a2) Monitoring Criterion C TI = 1.0% b2) Monitoring Criterion Cl TI = 1.0% 

  

a3) Monitoring Criterion C TI = 2.0% b3) Monitoring Criterion Cl TI = 2.0% 

Figure 4.9: Normal probability distributions constructed via the 5 training datasets giving and estimate of 

P(Data|State) for varying levels of turbulence intensities for the STFT feature extraction process. 
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a1) Monitoring Criterion C TI = 0.5% b1) Monitoring Criterion Cl TI = 0.5% 

  

a2) Monitoring Criterion C TI = 1.0% b2) Monitoring Criterion Cl TI = 1.0% 

   

a3) Monitoring Criterion C TI = 2.0% b3) Monitoring Criterion Cl TI = 2.0% 

Figure 4.10: Normal probability distributions constructed via the 5 training datasets giving and estimate of 

P(Data|State) for varying levels of turbulence intensities for the EMD feature extraction process. 
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4.5.4 Fault Detection and Diagnosis Utilising EMD Extracted Amplitudes 

Figure 4.10 shows that results of the same naïve Bayes classifier train process as 

discussed above for the EMD amplitude extraction process. It can be seen that in the case of 

the EMD extraction algorithm a negative result was found. Specifically large overlapping 

regions were observed for the probability of the data given the rotor state. These overlapping 

regions accordingly led to detections and diagnosis with unacceptable levels of uncertainty 

due to the similarities in the values observed for C and Cl under differing rotor condition. 

This can be seen in the NBC results presented in Appendix A in Tables A.13 to A.24. 

4.6 Imbalance Algorithm Development  

Based on the results of the above application of the proposed time-frequency monitoring 

processes a number of developments to the condition monitoring processes adopted were 

undertaken in order to improve the ability to detect and diagnose rotor fault conditions. The 

changes presented were then applied in-part to the experimental data captured (Section 6.4) 

and were further applied to the drive train simulations presented in Section 8.4. The proposed 

developments were as follows: 

 

1. Inclusion of further monitoring criteria based on mean turbine operations in the 

form of non-dimensional turbine performance curves. Inclusion of any further 

metrics developed as a result of findings in Chapter 6.4. The goal here is to produce 

a fault vector in ℝn rather than ℝ1 in order to minimise uncertainty in detection and 

diagnostic processes.  

2. Due to the limited success of the application IMF resulting from EMD for 

extraction of amplitudes A1 and A3 the EMD process utilised will be developed to 

produce the full Hilbert Huang Transform. The inclusion of this process was 

adopted as a method to overcome the Time-Frequency limitations of the STFT. In 
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reality this process is a development to the point of considering the instantaneous 

frequency of the IMF to give point estimates of the Spectrogram. 

3. Due to the relatively transient nature of the calculated rotor imbalance criteria a 

smoothing operation will be applied to the outputted criterion time-series and 

compared with the unprocessed imbalance criteria time-series. 

4. Lastly the monitoring criteria Cl was utilised for further testing due to the improved 

classification results.  
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 Scale Flume Testing: 

Experimental Design. 

5.1 Introduction 

In order to further study the CM of TST rotors subjected to rotor imbalance faults a 1/20th 

scale flume testing campaign was under taken. The results of the experimental campaign 

were used in two ways: to further test the developed CM approaches outlined in Chapter 3 

and to acquire data for a broader parameterisation of the rotor model outlined in Chapter 4. 

As discussed the CM approaches developed in Chapter 3 were done so based on frequency 

domain considerations of CFD results provided by co-researchers. The successful 

application of the CM approaches goes someway in showing the CFD modelling maybe a 

useful tool for developing CM approaches as well as providing more insight into how useful 

the CM approaches may be in practice.  

The further parameterisation of the parametric rotor model is presented in Chapter 7; this 

process is informed by the results of the experimental campaign detailed within this chapter. 

The extended parameterisation was done to allow for non-steady state drive train simulations 

which were seen as a central requirement for the testing of the CM approaches developed.  

This chapter goes on to describe the considerations made in developing the experimental 

approach.  The chapter opens with a brief overview of the developed turbine used during the 

experimental campaign. The re-circulating flume used of the testing is briefly described 

followed by discussion of aspects of commissioning, calibration and setup. This is followed 

by a section considering the effects of Reynolds number on the experimental campaign. 

Lastly the testing procedure is outlined.  
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Figure 5.1: Overview of the 1/20th scale turbine test apparatus. A) Shows the motor drive cabinet, B) Shows 

the PXI system used for DAQ and test control and C) Shows the turbine without blades during tub testing. 

 

5.2 1/20th Scale Turbine Design 

Figure 5.1 shows an overview of the test rig during initial tub testing of the 1/20th scale 

turbine at Cardiff University. The TST test rig is made up of three main assemblies, namely, 

a drive cabinet (Figure 5.1a), a test control and data acquisition system (Figure 5.1b) and the 

1/20th scale turbine (Figure 5.1c). Each of these assemblies is labelled and an overview of 

each is given in this section. 

A schematic of the cross-section of the developed turbine is shown in Figure 5.2: Cross-

section of the 1/20th scale turbine.. The rotor is directly coupled to a motor enclosed in a 

stainless steel nacelle. A nacelle mounting sleeve was used to attach the turbine to a 

supporting stanchion which is attached to a supporting beam via a load bearing block and 

support screws. The stanchion is instrumented with a force block measuring the thrust 

loading on the turbine.  
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Figure 5.2: Cross-section of the 1/20th scale turbine. 

 

The Bosh Rexroth synchronous torque motor was used to provide the breaking torque 

and turbine velocity control. The motor model was the MST130E-0035; the motor had a 

peak and rated torque values of 65 Nm and 22.5 Nm. The rated velocity was 350 RPM with 

a peak velocity of 700 RPM. 



111 

 

 Moflon MUSB2121 USB slip ring with two addition lines was mounted behind the motor, 

in a third chamber, on the drive shaft, as shown in Figure 5.3A.  This enables connectivity 

to the hub via the hollow drive shaft to provide communication between the Arduino and 

the turbine controller and data acquisition set-up. The motor encoder was mounted on the 

end of the turbine drive shaft. The power connections to the motor were also made in the 

chamber with the slip ring and motor encoder; this was done using solder sleeves. The 

turbine was sealed with a threaded end plate; the end plate used two O-rings to stop water 

ingress. The power leads and data leads were output through a hydraulic pipe threaded into 

the turbine end plate (Figure 5.3B).  

 

 

Figure 5.3: a) USB slip ring mounted at in the back turbine chamber for data communication and 

instrumentation power, b) Hydraulic hose attached to the turbine end plate through a threaded connection 

facilitating the motor and instrumentation cabling. 

 

 

The turbine rotor houses an instrumented hub and a hollow nose cone. The instrumented 

hub had two strain gauged beams for measuring axial thrust and blade torque. The 

mechanical design of this element was undertaken by a co-researcher. The hub design allows 

the configuration of different blade arrangements, with 2, 3 or 4 blades being installed as 

required.  

a b 
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The data acquisition and processing functions were designed and implemented by the 

author and are detailed in this section. The supporting instrumentation circuitry was mounted 

within the hollow nose cone, with power, synchronising pulse train and serial 

communications leads fed through a hollowed drive shaft. On the back end of the turbine 

the drive shaft was terminated at an encoder for servo motor control and turbine velocity 

measurements. In this end section a USB slip ring is used for sending communications and 

power to the nose cone circuitry. Furthermore the required motor connections were made at 

this point.  

Communication and power cables are fed into the nose cone via the hollow drive shaft. 

This drive shaft enters into the turbine body via a hole that has been closed with a PTFE 

seal. As a safety feature the initial section of the turbine body forms a sealed chamber. This 

provides the space needed for the possible future integration of a torque transducer. The 

section was equipped with a moisture sensor to monitor any seal failure and subsequently 

shut down the motor before water could cause any more serious damage. The braking motor 

is then located within a separate chamber. The turbine drive shaft was formed from the motor 

rotor. The motor stator was machined to closely fit within the turbine housing. Thus the two 

separate parts of the motor were integrated into the turbine, providing an elegant yet 

effective design. 

The instrumented hub enabled the measurement of blade thrust and twist about the blade 

axis using two separate strain-gauged beams. In order to acquire and record the data from 

the strain gauged beams a circuit was designed by the author and a PCB was commissioned, 

as shown in Figure 5.4.  The circuit, shown in Figure 5.5, was designed to achieve the desired 

sensitivity and accuracy from the beams while allowing data to be logged in real-time. The 

PCB design made use of an Arduino Nano for data logging and control, two bridge circuits 
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for the strain-gauged beams, two single rail instrument amplifiers, an ADXL 335 

accelerometer and a serial connected SD card read/write board for data storage.  

The effect of the water surrounding the hub housing the strain gauge beams meant that 

temperature compensation, usually achieved via a half-bridge setup, was thought to be 

unnecessary.  This effect and consideration of the space constraints in the hub meant that a 

quarter-bridge configuration was considered suitable. The nominal resistance of the strain 

gauges was given by the manufacturer to be 119.8 Ω. The complimentary resistance on the 

same bridge was created using a 115 Ω fixed resistance in series with a 0-10 Ω range, 13 

turn, variable resistor. This allowed the bridge to be balance easily at the high gain levels 

required. The other bridge arm was balanced to the required 2.5 V via two fixed resistors of 

1 kΩ, which as well as balancing the bridge helped avoid currents running through the 

system above 500 mA.  The output from each of the strain gauged beams was fed into a 

single-rail instrument amplifier (AD627), in the case of the thrust beam the input differential 

was taken relative to the circuit ground. In the case of the twist beam the differential input 

was taken relative to the midpoint of the measurement range of the ADC in the Arduino 

Nano, to accommodate the possibility of recording twist about the blade axis in both 

directions. To achieve this, a potential divider with two equal resistances with a 5 V potential 

was used and the output from this was fed into the instrument amplifier reference pin. 

Evidence for the bidirectional nature of the twist about the blade axis was taken from CFD 

models constructed within the research group. The CFD models were also used to give an 

estimate of the blade loading likely to be observed at differing turbine operating conditions. 

From this data the operating range of the axial thrust strained beam was set at 0 to 50 N and 

likewise on the blade twist strain gauged beam the range was considered to be -0.5 to 0.5 

Nm.  The gain for each amplifier was set via a fixed resistance of 180 Ω, producing a gain 

of 1,111. This was calculated via the equation given on the AD627 datasheet (Analog 
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Devices, 2013). The gain value was set after a number of calibration tests in order to 

maximise the signal-to-noise ratio for a desired sensitivity.    

 

 

Figure 5.4: Nose cone circuitry used for signal conditioning and data acquisition via an SD for real-time data 

logging. Included in the circuitry is the ADXL 335 Accelerometer. 

 

 

 

 

Figure 5.5: Circuit diagram of the instrumented hub PCB consisting of signal amplification and quarter 

bridge configuration signal conditioning circuitry. 

 

 



115 

 

5.3 Flume Facilities  

The 1/20th scale testing undertaken as part of this research was conducted at the 

circulating flume tank facilities at the University of Liverpool. A schematic of the flume 

facilities is shown in Figure 5.6. The flume is operated via a 75 kW motor used to drive an 

impeller, the flow is pumped through flow straighteners prior to entering the working 

section. Previously detailed Laser Doppler Anemometry measurement have been taken and 

indicate that on average the TI observed within the flume is approximately 2% for fluid 

velocities between 0.5 ms-1 and 1.5 ms-1 (Tedds et al, 2013) . To ensure no velocity deficit 

at the free surface of the working section, due to the contraction into the working area, an 

energising jet is added to the flow – the jet injection speed were calibrated by the facility 

operators prior to testing (Mason-Jones et al, 2012; Tedds et al, 2013).  

The working section is 3.7 m in length, 1.4 m in width and 0.84 m in depth. The turbine 

was mounted at the mid-point of the working section length and width. The turbine was 

mounted at a depth of 0.425 m at the turbine rotor centre, this gave a blockage ratio of 17%. 

The flume can generate up to 6 ms-1 flow speeds however for the associated 1/20th scale 

testing fluid velocities between 0.5 and 1.1 ms-1 were used leading to diameter based 

Reynold’s Numbers between 249,000 and 495, 000. The effect of the ratio of inertial to 

viscous forces, captured by the Reynolds number, to allow for non-dimensional scaling 

using λ as a kinematic relationship is considered in Section 5.5.  

A similar setup presented by Tedds et al (2013) was used for fluid velocity measurements 

– although in this case, as wake characteristics are not the object of the research, only the 

fluid flow upstream from the turbine was measured. The fluid velocity was measured using 

an Acoustic Doppler Velocimeter (ADV), specifically the Nortek Vectrino+ was used. ADV 

measurements provided x, y and z fluid velocity measurement with manufacturer 

calibrations quoting an uncertainty of 1% in measurements.  The fluid velocity 
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measurements were sampled at 200 Hz and logged by the PXI. A full characterisation of the 

flume settings can be found in Tedds (2014). 

 

Figure 5.6: Schematic of the Liverpool of University test facilities used during 1/20th scale testing. 

 

5.4 Commissioning 

5.4.1 PMSM Calibration.  

As the PMSM was used for drive shaft torque measurements as well as providing a 

resistive torque the manufacturer’s specifications were tested via calibration. The calibration 

was undertaken by applying known moments to the turbine rotor in the clockwise direction 

– the direction of motion for the given blade setup. The moments were applied bout the 

centre of the turbine drive shaft by applying weights to a rod inserted in the blade housing 

holes. Using a process similar to that outlined in Section 5.6.3, the rod has held horizontal 

by the motor. The rod was loaded and unloaded with known weights at a known distance 

for the centre of the turbine drive shaft, specifically at 83.5 mm, to create a moment about 

the turbine drive shaft. The data was captured via the PXI system outlined above.  
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For each applied load 300 samples of the quadrature axis current (torque generating 

current) were measured via the motor drives over 30 seconds. This process was then repeated 

5 times; the results for all 5 test are shown in Figure 5.7.  

 

Figure 5.7: Calibration curves showing the relationship between applied moment and measured quadrature 

axis current. 

 

As expected a linear trend was observed for each test case – the corresponding results of 

the linear regression are shown in Figure 5.7. Below  

 

 

 

 

 

 

Table 5.1 shows the linear regression results. Minimal offset values were observed and 

an average slope of 6.390 was found. The regressions gave a minimum coefficient of 

determination value of 0.989 and mean value of 0.992. Using the uncertainty estimation 
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process outlined by Doman et al (2014) the overall (combining bias and precision 

uncertainties) uncertainty was found to be 0.07 Nm.  

 

 

 

 

 

 

Table 5.1: Table showing the results of the linear regression to the PMSM calibration data. 

Test 

No. 

TGC 

Offset 

A 

TGC 

Gradient 

Nm/A 

TGC 

R2 

1 0.018 6.418 0.994 

2 0.009 6.596 0.989 

3 0.004 6.101 0.993 

4 0.014 6.519 0.991 

5 0.009 6.317 0.992 

Mean 0.011 6.390 0.992 

Standard 

Deviation 
0.004 0.157 0.002 

 

5.4.2 Frictional Losses Quantification 

In order to accurately measure the torque developed at the turbine rotor due to the fluid 

flow the frictional losses in the turbine drive shaft had to be characterised. This is a clear 

requirement as the rotor torque will have to overcome shaft losses during testing and the 

motor will therefore measure the rotor torque minus the shaft losses observed. This was done 

in the lab by running the motor at various rotational velocities with no blades installed in the 

turbine nose cone. For each velocity setting 12000 readings of the power and torque required 

to maintain the rotational velocity of the turbine were measured. Polynomial functions were 

then fitted to the data and used to correct the torque and power values measured during flume 
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testing. Figure 5.8 shows the results of the shaft loss testing along with the polynomial 

functions fitted to the acquired data. 

 

Figure 5.8: Shaft losses characterisation data taken under lab conditions with no blades installed in the 

turbine. 

 

5.5 Reynolds Independence Testing 

Upon commissioning and confirmation of the correct operation of the 1/20th scale model 

turbine Reynolds independence testing was undertaken. The testing was undertaken for a 

number of λ values and for 5 differing fluid velocities. This testing was done sequentially 

by setting the flume velocity to a given value and then setting the PMSM speed to a given 

value to achieve the λ of interest. Data was then captured for approximately 16 differing λ 

settings from freewheeling passed the stall region; at each point data was recorded for 

approximately 90 seconds. Once the data for each of the λ settings had been recorded the 

fluid velocity of the recirculating flume was increased to the next required velocity. The 

flume was allowed to settle for approximately 1 minute and the ADV measurements were 

checked to confirm the flume was operating at the correct speed. Once this was confirmed 

the process data capture process was repeated.  
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Figure 5.9 and Figure 5.10 show the power and torque curves developed during the 

Reynolds independence testing. As can be seen the testing was undertaken for fluid 

velocities between 0.7 ms-1 and 1.1 ms-1 in increments of 0.1 ms-1. The point at which the 

power and torque coefficients observed became independent of the Reynold’s number can 

be seen to be between 1.0 ms-1 and 1.1 ms-1, as indicated by the close proximity of observed 

power and torque coefficients for each fluid velocity cases. Invariance of the non-

dimensional turbine coefficients to Reynolds numbers simplifies the comparison of large 

scale CFD data with the 1/20th scale experimental data as similar turbine performance 

coefficients are expected for given kinematic scaling numbers, specifically for a given λ 

value. This finding is consistent with the work of Tedds et al (Tedds et al, 2011) where it 

was found that so-called Reynolds independence was observed for a 0.5 m diameter rotor in 

flow velocities above 1 ms-1.  

 

   
 

Figure 5.9: Power coefficient values observed for the Reynolds independence testing undertaken. 
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Figure 5.10: Torque coefficient values observed for the Reynolds independence testing undertaken. 

 

5.6 Experimental Campaign 

5.6.1 Turbine Control  

For the set of tests undertaken as outlined in Section 5.6 it was considered that speed 

control of the PMSM would be the most suitable control approach. This was considered to 

be the case as the PMSM was used to undertake rotor torque measurements as well as 

provide a resistance to the rotor torque developed via the oncoming fluid flow. As outlined 

in Section 3.4.2 in order to accurately measure the rotor torque via the PMSM minimising 

the acceleration of the turbine rotor was required. As a result of the above reasoning all of 

the rotor imbalance test cases undertaken speed control of the PMSM was utilised in order 

to best measure the rotor transient characteristics.  

5.6.2 Test Cases 

The purposes of the flume testing campaign undertaken as part of the research activities 

were two-fold as noted in Section 5.1. In order to test CM approaches at the 1/20th scale and 

provide data for parametric model development an experimental campaign utilising testing 

at differing fluid velocities, turbine rotational velocities and with differing rotor conditions 
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was undertaken. Table 5.2 shows the rotor cases and the fluid velocities tested at the 

University of Liverpool; for each case five turbine rotational velocities were tested leading 

to λ values of: 1.5, 2.5, 3, 3.5, 4, 4.5 and 5.5. These test cases gave data relating to turbine 

operation at both differing diameter based Reynolds numbers and at differing kinematic 

scaling values – this allowed for transient relationships to be developed for turbine model 

development and to test the performance of monitoring approaches at a variety of turbine 

operating conditions. 

 

Table 5.2: Outline of the rotor imbalance test cases simulated during the 1/20th scale testing along with the 

fluid velocities set. 

Rotor Condition  Fluid Velocity  

Optimum: 

All blades at 6o pitch angle setting 
0.9 ms-1, 1.0 ms-1 and 1.1 ms-1 

Offset +3: 

Blade 1 at 9o pitch angle, all others at 6o 
0.9 ms-1, 1.0 ms-1 and 1.1 ms-1 

Offset +6: 

Blade 1 at 12o pitch angle, all others at 6o 
0.9 ms-1, 1.0 ms-1 and 1.1 ms-1 

Two Blades Offset: 

Blade 1 at 12o, Blade 2 at 9o, Blade 3 at 

6o. 

0.9 ms-1, 1.0 ms-1 and 1.1 ms-1 

 

 

In the considerations made for the testing campaign it was noted that the flume and 

turbine setups may exhibit some inherent imbalance as such the optimal case was included 

and the processing of condition monitoring approaches were compared with the optimal 

case. Furthermore considerable effort was made to reduce any unintentional imbalances 

introduced during the process of setting the blade pitch angles between tests as by necessity 

the turbine was removed to undertake this process. These provision are outlined in the 

following sections.  

5.6.3 Instrumented Blade Position Setting 

In order to set a consistent reference for the turbine rotor position relative to the 

stanchion, the encoder reference was set to 0o when the instrumented blade was at top dead 

centre or pointing vertically parallel to the stanchion. This was done by exploiting the flat 
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surface which was created by the blade housing – this can be seen in Figure 5.11a. The flat 

surface highlighted on the figure was 90o ± 0.5o to the blade orientation. A digital protractor 

- zeroed relative to the horizontal cross beam to which the turbine was mounted - was then 

used to confirm the blade housing was at the required angle namely, 0o. This can be seen 

in Figure 5.11b. Once the position was correct the encoder reference was programmatically 

set to zero using the Bosch Rexroth IndraWorks software.  

 

  
a b 

Figure 5.11: Blade positioning setup, a) Blade Housing b) Setting the housing position using a digital 

protractor. 

  

5.6.4 Blade Pitch Angle Setting 

The process developed for setting the turbine blade pitch again utilised a digital protractor 

and the encoder reference set as outlined in the previous section. The turbine rotor was set 

such the blade undergoing the pitch setting was positioned horizontal relative to the turbine 

stanchion – in terms of the encoder reference the three angles which set the blades to the 

horizontal positon required were 90o, 210o and 330o. Once the blade is horizontal, the pitch 

angle setting relative to the turbine rotational plane can be done relative to the vertical. To 

achieve this the digital protractor was zeroed relative to the turbine stanchion, which served 

as a useful vertical reference – see Figure 5.12a.  
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The digital protractor was then positioned across the turbine blade tip and the angle set. 

Once the angle was set the blade was secured via the grub screws – the angle was then 

checked and corrected if necessary. The digital protractor used had a resolution of 0.1o, 

however due to human error the angles set were subjected to an error of ± 1o. This was 

considered generating the test cases presented in Table 5.2: Outline of the rotor imbalance 

test cases simulated during the 1/20th scale testing along with the fluid velocities set. 

 

  

a b 

Figure 5.12: The blade pitch setting process, a) Zeroing the digital protractor relative to the vertical stanchion 

b) setting the blade pitch angel relative to the vertical. 

 

5.6.5 Test Procedure  

Testing was undertaken with care to ensure consistent results, specifically in terms of 

setting the turbine in place and allowing the flume to settle at the next fluid velocity or 

turbine rotational velocity. Once the 0o zero position of the encoder was set the digital 

protractor zeroed vertically relative to the turbine stanchion. The process outlined above was 

then followed to set each blade pitch angle. Once the turbine blades were all set to the 

required pitch the turbine was moved into position with a crane. The turbine stanchion was 

y  
y  
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bolted to a cross beam mounted perpendicular to the flow direction across the recirculating 

flume – this was checked by measuring the distance of the cross beam from the flume inlet 

on either side of the flume. The recirculating flume was then set to the required fluid 

velocity, again, this was checked with ADV. The turbine, generally self-starting was allowed 

to freewheel for a minimum of 100 seconds. The turbine was then set to the required 

rotational velocity to achieve the desired λ value, again the turbine was allowed to rotate at 

this velocity for a minimum of 100s and then the data capture was initiated. Data was 

collected for 300 seconds and the next rotational velocity set. This process was repeated for 

each required λ value, as noted in Section 5.6.2.  Once all the λ values for the fluid velocity 

setting were captured the flume was set to the next required flow velocity. This process was 

repeated for each setting outlined in Section 5.6.2.  
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 Scale Turbine Flume-

Testing Results 

6.1 Introduction  

This chapter presents key results from the flume based test campaign in order to provide 

an overview of the turbine performance under the differing operating conditions as well as 

to give an initial insight into the performance of condition monitoring algorithms under 

flume tank testing.  

The chapter presents both mean value characteristics expressed in the usual performance 

coefficient curves and transient characteristics which were analysed in a variety of ways. 

Non-dimensional performance curves have been developed to confirm Reynold’s 

independence during testing. These are used to compare recorded values with the previous 

values calculated via CFD computations. This is used to compare turbine operation under 

differing control schemes and rotor conditions. The non-dimensional turbine performance 

curves are supplemented by drive shaft torque transient results analysis. The transient results 

have been included in the appropriate sections for comparison of CFD calculated drive shaft 

torque transients. They also enable the consideration of turbine drive shaft torque transients 

observed under differing turbine control settings and thus highlight the effect of rotor 

condition on transient drive shaft torque characteristics. The latter considerations of the 

effect of rotor condition on drive shaft torque transients culminate in the frequency 

characterisation of the turbine rotor torque over a range of tip-speed ratios. These 

characterisations are then used to develop performance surfaces which are then utilised in 

two ways which are consistent with the goals of the research. Firstly, the surfaces are used 
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to provide ‘parameter surfaces’ for an empirical parametric rotor model presented in Chapter 

7. They are further utilised in CM processes outlined in Chapter 3 and applied in Chapter 8.  

The chapter ends with the presentation of the application of these CM algorithms the use 

of the developed surfaces. 

6.2 Comparisons of flume data with CFD results 

In order to validate CFD calculations and further confirm the expected rotor 

characteristics observed in previous test phases both the transient and steady state turbine 

characteristics were compared with CFD results. The data used for the comparison with the 

CFD values calculated were taken at a fluid velocity of 1 ms-1 for an optimum rotor setup. 

Figure 6.1 and Figure 6.2 show good agreement between the current experimental campaign 

and the legacy testing and simulations undertaken within the research group for the 

measured non-dimensional power and torque coefficients, respectively. Specifically, the 

non-dimensional power and torque coefficients observed passed the point of peak torque for 

the legacy data sets all fall within the 95 % (2 standard deviations) confidence interval of 

the data acquired as part of the research presented. This has been highlighted on both Figure 

6.1 and Figure 6.2 by the error bars plotted. 

At lower tip-speed ratios, at λ ≈ 1.5, it was found that the power and torque coefficients 

observed during the current testing phase were in disagreement with the results generated 

via CFD calculations. This data set represents the first, taken by the research group, at lower 

tip-speed ratio values than the peak torque operating point. These measurements were made 

available by the more advanced motor control system which allowed for turbine speed 

control, as discussed in chapter 5. The data would suggest that the CFD calculations are over 

estimating the expected power output from the turbine at tip-speed ratios lower than the peak 

torque setting, at λ ≈ 2.1. This suggests that the CFD calculations may need to be adapted 

when calculating the turbine performance in the stall region. As noted the diameter based 
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Reynolds Number for the test cases shown is 250,000 relative to 36,100,000 for the full scale 

rotor modelled using CFD. As the testing approached Reynolds independence at 1 ms-1 it 

was thought that, considering the relative velocity of the fluid given the turbine rotational 

velocity, the significance of viscous effects in the region of λ ≈ 2.1 maybe the cause of the 

discrepancy. As such further testing is required to confirm why the discrepancies between 

the experimental data and CFD data exist in the stall region.   

 

Figure 6.1: Power coefficient plot comparing the observed power curve from previous testing and simulation 

campaigns and the power curve observed during the current testing phase. 

 

 

 

Figure 6.2: Torque coefficient plot comparing the observed power curve from previous testing and 

simulation campaigns and the power curve observed during the current testing phase. 
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Assure and progress the process of validating transient CFD calculations the spectrum of 

the calculated rotor torque via transient CFD simulation was compared with the spectrum 

observed for the turbine rotor torque measured during flume experimentation. The data used 

to undertake the validation exercise was again from testing at 1 ms-1 fluid velocity for 

optimum rotor condition at peak power (λ ≈ 3.5).  As CFD results were not available for the 

0.5 m flume scale rotor so the comparison was made with the available CFD results for 5 m 

radius turbine at peak power operating condition for a fluid velocity of 3.086 ms -1. Due to 

the difference in turbine scale the transient validation proceeded by using the amplitude 

spectrum observed in each case scaled by the mean torque value calculated or measured for 

the given case, referred to as relative amplitude herein. This was considered the most 

appropriate method for making the comparison of turbines of differing scales and was 

justified in that the structure of the observed spectra was of greater interest than the 

numerical values of the amplitudes observed.  

Figure 6.3 shows a spectrum plot comparing the relative torque fluctuation amplitude at 

harmonic intervals up to the 8th harmonic of the rotational velocity of the turbine. In the case 

of the flume testing the fundamental frequency was 2.23 Hz whereas for the CFD 

calculations the fundamental frequency was significantly lower at 0.33 Hz. As such the 

harmonic number was used for the frequency axis in order to make a meaningful 

comparison. 
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Figure 6.3: Spectrum plot comparing the observed transient torque characteristics calculated via transient 

CFD simulation campaigns and the transient torque characteristics observed during the current testing phase. 

 

Although relative amplitudes have been considered to minimise the effects of the two 

differing turbine scales it can still be seen that the larger scale represented via the CFD has 

a significantly larger relative fluctuation amplitude up to the 7th harmonic of the turbine 

rotational velocity.  Whilst there are undoubtedly inconsistencies between the two datasets 

the overall spectrum characteristics are similar, as characterised by the two peak amplitudes 

at the 3rd and 6th harmonics of the turbine rotational velocity. The amplitudes at these 

frequencies are associated with the torque rotor torque fluctuations introduced as each 

turbine blade passes the turbine stanchion. It was also noted that the flume testing rotor 

torque spectrum exhibited higher relative amplitude at the 1st harmonic when compared to 

the relative amplitude of the 3rd harmonic in the same data set. 

6.3 Rotor Fault Simulations 

As discussed in Section 3.3 and in-line with both the CFD and parametric simulations 

presented in Chapters 3 and 4, respectively, the turbine was set up to harbour rotor fault 

defects in the form of blade pitch errors. Specifically blade pitch errors of differing levels 

were applied to the instrumented blade, to further the scope of the study tests were also 

undertaken with blade pitch errors of differing degrees applied to two blades.  
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6.3.1 Scale turbine performance Curves 

The first characterisation undertaken for the turbine rotor fault conditions was to study 

the effect of the rotor anomalies on the non-dimensional characteristic curves. Figure 6.4 

and Figure 6.5 show the non-dimensional performance curves observed for each of the rotor 

conditions tested, the fluid velocity for the data presented was 1 ms-1. Figure 6.4 shows the 

power coefficients, Cp and Figure 6.5 the torque coefficients, Cθ. In both figures it can be 

seen that significantly lower values of the non-dimensional coefficients where measured for 

each of the offset blade tests. In each case this decrease in the non-dimensional performance 

coefficients was expected. The greatest reduction was observed for the two-blade offset case 

followed by the offset +6 o case. The offset +3o case whilst deviating significantly from the 

Cp and Cθ values observed for the optimum case at higher tip speed ratios showed negligible 

deviation from the optimum case in the peak power and peak torque neighbourhoods, i.e. 

for 1.5 ≤ λ ≤  3.54. 

 

Figure 6.4: Non-Dimensional power curve for the rotor fault scenarios for a fluid velocity of 1 ms-1. 
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Figure 6.5: Non-Dimensional torque curve for the rotor fault scenarios for a fluid velocity of 1 ms-1. 

 

It was also noted that the spread in the values observed for the non-dimensional 

coefficients reduced towards peak torque (λ ≈ 2.1) when moving from higher tip-speed ratios 

to lower tip-speed ratios. It was also observed that, at the tip-speed ratios lower than that of 

peak torque for which data was measured (λ = 1.5), the non-dimensional coefficients are in 

much closer agreement. Furthermore, it can be seen that at this λ value the non-optimum 

rotor conditions yield slightly higher Cp and Cθ values.  

6.3.2 Time-Synchronous Averaging of Torque Data 

Time synchronous averaging (TSA) as outlined in Section 3.5.1 was utilised to produce 

an estimate of the underlying torque transients in the data sets observed for differing rotor 

conditions. The process was utilised in this case for explorative analysis rather than as a CM 

algorithm. The TSA CM method will be utilised for subsequent datasets acquired via drive 

train simulations. The goal of the application of TSA was to highlight the average cyclic 

torque variations over a single rotation of the turbine. These average characteristics were 

then utilised to produce a more developed parametric rotor model as presented in Chapter 7. 
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Figure 6.6 and Figure 6.7 show the results of the TSA process for a fluid velocity of 1 

ms-1 and a rotational velocity of approximately 134 RPM for the optimum and the offset +6o 

rotor cases, respectively. The figures show both the results of the data resampling process 

and the characteristics against the turbine rotation. The mean characteristic is represented by 

the thick black traces whereas the resampled data is indicated by the thin traces. The blade 

pass events are highlighted by the vertical lines with the specific blade number labelled 

above. The data was sampled at 1 kHz and resampled to 1 o increments of the turbine rotor 

position, yielding 360 resample points.   

It can be observed that the mean trace does indeed represent the average transient 

characteristics over a single rotation adequately. In both cases a reduction in torque output 

can be observed at each of the blade pass events.  

 

 

Figure 6.6: Time synchronous averaged data for the optimum rotor condition. The resampled data is plotted 

along with the process mean (thick line). Flume conditions 1ms-1 and rotational velocity 134 RPM. 
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Figure 6.7: Time synchronous averaged data for the offset +6o rotor condition. The resampled data is plotted 

along with the process mean (thick line). Flume conditions 1ms-1 and rotational velocity 133 RPM. 

 

 

However for the imbalanced rotor condition shown in Figure 6.7 the reduction in torque 

at the blade pass events has been distorted with both more variable torque reductions 

observed at each blade pass event and a shift in position of the local minima of the blade 

pass torque fluctuation by approximately +10o. Further cyclic variations were observed 

which occurred roughly ten times per rotation and were considered to be the effect of pole 

pass events associated with the PMSM operation.  

In order to confirm that the mean of the process calculated via the TSA procedure was a 

suitable representation of the data the dispersion of data about the mean value at each 

resample point was considered. In order for the data to be adequately represented via the 

mean process a normal distribution of the data should be observed. This was expected as 

measurement data most often exhibits normal distribution characteristics. It was confirmed 

that normal characteristics were observed throughout the data sets recorded. This was 
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achieved using normal parameter estimation via the maximum likelihood method (Bishop, 

2006).  Figure 6.8 shows the results of fitting a normal distribution to the resampled data for 

varying rotor positions (90 o, 120 o and 240o) and for both the optimum (a) and offset +6o (b) 

cases. 

In order to measure the effectiveness of the TSA procedure, and in particular to quantify 

the performance of the procedure under varying quantifies of data, the deviation of the 

dataset from the TSA mean was considered for datasets of differing sizes. The varying data 

set lengths were created by inclusion and exclusion of the measured flume data. The data set 

lengths were measured in number of rotations, i.e. the number of rotations worth of data 

included in the TSA result. The deviation was calculated by taking, at each resample point, 

the mean value of the magnitude of the raw data deviation from the TSA mean value for the 

given resample point. The mean of the deviations was then taken over the set of all 360 

resample points.  
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a) b) 

Figure 6.8: Normal distribution fitting to the observed torque data sets after TSA re-sampling for differing 

rotor positions and for a) optimum rotor condition and b) Offset +6o rotor condition. 

 

 

The results of the calculation are plotted in Figure 6.9. Referring to Figure 6.9 it was 

considered that the TSA process, when applied to more rotations, supplied a better estimate 

of the mean characteristics throughout a single turbine rotation as expected. As noted in the 

literature (Ha et al, 2015) this deviation shows an exponentially decaying tendency with the 

data set length. It was also considered that, due to this tendency and the reasonably fast 
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decay rate, the 20 rotations included in the process average calculation gave a good 

representation of the underlying transient torque characteristics. The asymptotic nature of 

the deviation from the TSA after 20 rotations suggests that improved process representation 

via the inclusion of more data would require much greater data set sizes which were 

impractical in during the course of the research. Figure 6.10 shows the deviation from the 

TSA process mean with turbine position for various data set sizes.  Characteristic spikes in 

deviation due to rotor position were not observed further confirming the normal distribution 

of the data at each resample point and as such the validity of the TSA process applied to the 

data set. 

 

 

 

Figure 6.9: Reduction of the mean standard deviation of each entire data set for increasing inclusion of 

rotations in the TSA calculation for each rotor condition.  
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Figure 6.10: The figure shows the mean deviation from the process mean against the position index for 

increasing numbers of rotations. 

 

 

 

 

Figure 6.11: Polar plot showing the results of the TSA process for both the optimum and offset +60 cases. 

Showing the values observed during blade pass events. 

 

Figure 6.11 shows the results of the TSA process in the form of polar plots for the same 

cases shown in Figure 6.6 and Figure 6.7, with the DC value of the torque preserved. The 

plots highlight the relative size of the fluctuation amplitudes with respect to the DC value. 

It can be seen that the torque fluctuations are minimal, in the order of 2 %, when compared 

with the mean torque value for the flume scale turbine.  

The TSA process was applied to each of the datasets acquired during the flume testing. 

This was done to create a full transient characterisation of the turbine. Figure 6.12 shows the 
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results of the application of the TSA procedure to each operating point measured for the 

optimum rotor case at 1 ms-1; this was repeated for each of the rotor cases at the same lambda 

values for fluid velocities of 0.9 ms-1, 1.0 ms-1 and 1.1 ms-1.   

Figure 6.12 highlights the variety of transient characteristics observed for differing λ 

values. It was noted that a general trend could be observed when considering the prominence 

of the pole pass torque transient and that the prominence of such fluctuation was reduced 

with increasing turbine rotational velocity. Furthermore and perhaps related to the previous 

observation, it could be seen that the torque fluctuations attributed to the blade pass events 

was generally more observable at higher rotational velocities with the most prominent 

fluctuation in the measured torque occurring at freewheeling.  
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Figure 6.12: Application of the TSA process to data sets relating to differing operating λ values, for the 

optimum rotor setting and v = 1ms-1 
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6.3.3 Frequency Characteristics 

The results of the TSA procedure applied to the torque data observed during testing were 

then utilised for a more complete characterisation of rotor torque transients under the 

differing operating conditions. This characterisation was applied in the frequency domain 

within which the amplitudes considered were scaled by the mean torque value observed for 

the given time series. In order to confirm that the TSA procedure effectively preserved the 

frequency characteristics observed in the raw data sets, the spectrums of both the TSA and 

raw data sets were compared. Figure 6.13 and Figure 6.14 show the spectrums for the 1 ms-

1 fluid velocity tests for a rotational velocity of approximately 134 RPM for the optimum 

and offset +6o rotor conditions, respectively. It is noted that due to the TSA process the 

frequency resolution for the TSA data was fixed at multiples of the rotational frequency of 

the turbine.  

The figures show good agreement between the spectrums observed for the raw data sets 

and the TSA data sets. This was used as confirmation that the transient characterisation could 

proceed in the frequency domain utilising the output of the TSA procedure with a good level 

of validity. The spectrums show characteristic peaks at 1, 3, 6, 9 and 10 times the rotational 

frequency of the turbine. The peaks at 3, 6, 9 and 10 are observable under both rotor 

conditions however there is a marked increase in the amplitude of the 1st harmonic observed 

in the offset +6o case as predicted. Between the harmonics of the rotational velocity the raw 

data sets exhibit no significant amplitudes, furthermore between these rotational harmonics 

the frequency content was considered to consist of low level noise.   

A comparison of the spectrums observed for each of the rotor cases as calculated via 

CFD, presented in Section 3.6.1, and as measured during flume testing was also undertaken. 

The comparison was made both to validate the transient CFD modelling process and to 

confirm that development of monitoring approaches based on the CFD data were suitable. 
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Figure 6.13: Comparison of the spectrum observed for the TSA data and the raw data for the optimum rotor 

case. 

 

 

 

 

Figure 6.14: Comparison of the spectrums observed for the TSA data and the raw data for the offset +6o case. 

 

Figure 6.15 shows the relative amplitude observed against harmonic number for three 

rotor conditions for the CFD data and the experimental data. It can be seen that, as in the 
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initial comparison with CFD results, considerably higher relative amplitudes were in general 

observed for the CFD data in comparison to the experimental data. However, similar overall 

characteristics can be observed when neglecting the difference in amplitude which may be 

due to the effect of turbine scale.  Considering the observed amplitudes at the first harmonic 

of the turbine rotational frequency it can be seen that the amplitude is increased with 

increasing fault severity. It was also noted that at the 1st harmonic the experimental data 

showed higher amplitudes relative to subsequent harmonics this was attributed to the 

imperfect experimental setup relative to the geometrically correct CFD models. In both data 

sets peaks can be observed at the 3rd and 6th harmonics. It was considered that the general 

similarity between the two characteristics gave  sufficiently good validation for both the 

CFD models and the process of developing monitoring approaches based on CFD data 

output.  

 

 

Figure 6.15: Comparison of the relative amplitudes observed in the flume data testing and the CFD data 

introduced in chapter 4. 

 

 

 

Figure 6.16 shows the phase angle observed for a given harmonic number for three rotor 

conditions for the CFD data and the experimental data. The phase spectrum observed shows 
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a far more stochastic characteristic. At closer inspection it can be seen that the CFD data 

shows a fixed characteristic over the harmonics which has been shifted due to the differing 

rotor conditions. The experimental data shows an underlying trend over the harmonic values 

for the optimum and offset +6o cases. It can be noted that at the 4th harmonic the phase 

wrapping makes the phase angles appear more disparate than they are in reality. The offset 

+3o
 shows significant deviation from the trend observed for the previously mentioned rotor 

conditions. Whilst the CFD data and experimental data show little agreement in phase angles 

for a given harmonic two similarities were noted. The phase angles at the third harmonic 

were considered comparable and the greatest deviation in like data sources for differing rotor 

conditions were the same, namely the deviation between the optimum condition and the 

offset +3o condition.   

 

 

Figure 6.16: Comparison of the phase angles observed in the flume data testing and the CFD data introduced 

in chapter 4. 
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6.4 Application of Monitoring Algorithms 

  The remainder of the chapter considers the application of a variety of the CM 

approaches, outlined in Chapters 3 and 4, to the rotor fault data acquired during flume 

testing. The monitoring algorithms were applied to the 1 ms-1 case to datasets for each rotor 

fault scenario tested at the tip-speed ratio closest to peak power. The three algorithms 

presented in the remainder of the chapter are the performance curve monitoring process and 

two instances of the calculation of the rotor imbalance indicator, criterion “C” introduced in 

Section 3.6.3, utilising frequency feature extraction via the STFT and the HHT. In the 

context of the application of the rotor imbalance measurement algorithms the optimum data 

set is used to represent prior knowledge. It is applied in defining the correct turbine 

operational characteristics to which the blade fault cases are compared. For the power curve 

monitoring process all datasets are compared to the prior performance characteristics 

generated for the rotor during previous CFD modelling exercise and flume testing 

campaigns.  

Lastly the chapter is concluded by presentation of the likelihood functions for a naïve 

Bayes classifier calculated in two-dimensional fault vector space, consisting of a fusion of 

outputs from the power curve monitoring process and rotor imbalance measurement process. 

As such two sets of likelihood functions are presented for each fault case tested, one utilising 

STFT frequency extraction method and the other utilising the HHT frequency extraction 

method.    

 

6.4.1 Performance Curve Monitoring 

Figure 6.17 shows λ versus Cp plots for 5 second intervals of the recorded flume data at 

20 seconds and 50 seconds. On each figure the calculated non-dimensional values are plotted 

along with the expected non fault characteristics observed for the rotor design during 
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previous modelling and flume testing experiments (Mason-Jones, 2010; Mason-Jones et al, 

2013). The no fault characteristics presented in the figures refers to the results of previous 

testing and simulation campaigns for the rotor utilised under optimum conditions.  In this 

way the prior characteristics, in a real world application, represents knowledge of the rotor 

characteristic which have been characterised prior to installation or during initial data 

trending. The plotted results from this phase of flume testing then represent monitoring data 

taken in five second intervals at 1 kHz at some later time. It was observed that the optimum 

and offset +3o data closely matched the expected turbine characteristics.  This was in contrast 

to the offset +6o and two-blade offset data which gave lower values for the non-dimensional 

power coefficient.  

 

 

 

Figure 6.17: Illustration of the power curve monitoring process applied to 5 seconds worth of data at a) t = 20 

secs and b) t = 50 secs. 

 

 

Figure 6.18 shows the Cp error calculated for each dataset and plotted as a time series. It 

can be seen, as shown in Figure 6.17, that the Cp values calculated during flume testing for 
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the optimum rotor case was greater than the prior characteristic value for the given tip speed 

ratio value. This is represented in Figure 6.18 by the predominately negative trace. The same 

can be seen for the offset +3o
 case. It was also noted that the power curve monitoring was 

ineffective, due to the similarity of the error values observed for the optimum and offset +3o. 

This indicates the difficulty in descriminating between optimum conditions and a 

moderately damaged rotor state at λ ≈ 3.54. However with reference to Figure 6.4 it can be 

expected this process would be more effective at higher tip speed ratios. It can be clearly 

seen in Figure 6.18 that diagnosis and detection of the offset +6o and two-blade offset  would 

be feasibile using the power curve monitoring process.  

 

 

Figure 6.18: Discrepancy between the characteristic Cp values and the observed values under rotor fault 

testing plotted as a time series. 

 

6.4.2 STFT frequency feature extraction 

As in Chapter 4, the appraisal of the rotor imbalance measure algorithm would be 

undertaken with the aid of two pre-processing methods. This section corresponds to the use 

of the STFT frequency domain feature extraction as the pre-processing method. For the 

STFT a Hanning window of length of five rotations or 211 samples was used with an overlap 

of 4 rotations (211
 – 450 samples). These settings gave good time-frequency resolution in 
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region of the 1st to 8th harmonics of the turbine rotational velocity as required for meaningful 

feature extraction. Figure 6.19 shows the spectrograms produced for the each of the rotor 

conditions, again for a fluid velocity of 1 ms-1 and a rotational velocity of 134 RPM. 

The amplitude of the spectrograms was plotted as power spectral density in decibels and 

the frequencies of interest can be seen as the darker horizontal lines.  For the feature 

extraction process the time series of the amplitudes for the first and third harmonic were 

extracted and applied to the calculation of the CM criterion C which is considered to be a 

measure of the turbine rotor imbalance.   
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Figure 6.19: Spectrograms produced for each of the rotor conditions tested highlighting the time frequency 

characteristics of the rotor torque. a) Optimum b) Offset +3o c) Offset +6o and 

d) Two-blade offset
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Figure 6.20 shows the mean values of the monitoring criterion C for each rotor condition 

at the previously specified operating conditions. The averages were taken over the entire 

time series extracted via the STFT. The plot shows that the mean the condition monitoring 

criterion could be effective for both fault detection and diagnosis. 

 

 

Figure 6.20: Mean values of the monitoring Criterion C for each of the rotor conditions tested the data for 

which was extracted via STFT calculations. 

 

 

Figure 6.21 indicates that the time series of the condition monitoring criterion C shows a 

reasonable variation around the mean values observed in Figure 6.20. It was observed that, 

at multiple points in the time series, the condition monitoring criterion C for a given rotor 

condition overlaps with the criterion calculated for other rotor conditions. This is particularly 

prominent between the optimum, offset +3o and two-blade offset cases. 

 

 

Figure 6.21: Time series of the condition monitoring criterion C for each rotor condition, the data for which 

was extracted utilising the STFT. 
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Figure 6.22 shows the time series after smoothing via convolution with a simple 

averaging function, equating to each sample being equal to the average of the four previous 

samples and the current sample. The effect of the averaging process reduced the overlap 

between the time series of differing rotor conditions leading to a more robust monitoring 

process. However a number of overlaps still remained in the data. 

 

 

Figure 6.22: Smoothed time series plot of the condition monitoring criterion C, the data for which was 

extracted via the STFT and subsequently smooth via convolution with and averaging signal. 

 

 

Tables A.25 to A.28 show the results of the NBC process as applied to both the smoothed 

and raw Cl time series data. The results show that the raw Cl data led to incorrect fault 

detection classification however correct fault severity classification was observed for the 

raw data. In comparison the smoothed data performed better under the classification process 

with correct detection and diagnostic classifications observed.  

 

6.4.3 Hilbert-Huang Transform based frequency feature extraction 

As with STFT and led to by considerations outlined in Chapter 4 the EMD process was 

developed into the HHT which was used for frequency feature extraction. This section 

outlines the results of the application of the frequency content extraction for the calculation 

of the CM criterion C.  
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The first step in conducting the HHT is to perform EMD on the measured rotor torque 

time-series to extract IMFs or monotonic functions. Using these the Hilbert transform can 

be applied for amplitude and instantaneous frequency estimation. Figure 6.23 shows the 

empirical mode decomposition process for the optimum rotor condition data set. The IMFs 

were used to reconstruct the original signal to highlight the effectiveness of the EMD 

algorithm used. The reconstructed signal successfully equated to the original signal as 

highlighted via the reconstruction error plot shown in Figure 6.23.  

The IMF functions were then subjected to the Hilbert transform whereby the amplitude 

of the signal was extracted by taking the magnitude of the transform result. The 

instantaneous frequency was extracted by the derivative of the phase angle of the complex 

Hilbert transform result. The Hilbert transforms of IMFs were then interpolated over the 

frequency and time scales to build the Hilbert-Huang Transform.  As the data led to point 

estimates of the frequency and amplitudes observed at each time step a Gaussian smoothing 

function was convolved with the surface. This highlights the uncertainty of the point 

estimates and gives a workable surface as an output.  

Figure 6.24 shows the results of the HHT operation.  The 1st rotational harmonic and the 

3rd rotational harmonic, which are of interest, can be seen in each figure for each rotor 

condition. It can be seen that a greater time-frequency resolution is achieve by using the 

HHT as opposed to the STFT. Also the spectrograms obtained via the HHT show 

fluctuations in frequency content due to the slight non-stationarities in the signal resultant 

from the minimal acceleration and deceleration of the turbine.  
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Figure 6.23: EMD of the torsional time series for the optimum rotor case at 1 ms-1 fluid velocity and a rotational 

velocity of 134 RPM. The figure shows the original signal, the extracted IMFs, the signal reconstructed via the 

IMFS and the reconstruction error (residual between original signal and the reconstructed signal.
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Figure 6.24: Hilbert-Huang Transform of the recorded flume data time series taken for a fluid velocity of 1ms-1 

and a rotational velocity of 134 RPM. a) Optimum b) Offset +3o c) Offset +6o and d) Two-blade offset.
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Figure 6.25: Mean values of the CM criterion C that for which was extracted via the HHT method. 

 

 

Figure 6.25 shows the mean values of the CM criterion C for each of the rotor conditions 

tested at the operating point specified above. The figure shows that the HHT process of 

calculating the monitoring criterion C yields workable results for both detection and 

diagnosis processes. Whilst showing similar results to that of the STFT calculated 

monitoring criterion the HHT process yields less clear results.  

 

 

Figure 6.26: Time series of the CM criterion C the data for which was extracted via the HHT method. 



156 

 

 

Figure 6.27: Smoothed time series of the CM criterion C the data for which was extracted via the HHT 

method and smoothed via convolution with an averaging function. 

 

 

Figure 6.26 shows the time series of the CM criterion C calculated via the HHT process.  

As with the STFT extracted monitoring criterion, extensive overlap of the values exist 

between differing rotor conditions. Figure 6.27 shows the time series for the HHT extracted 

condition monitoring criterion C subjected to the same convolution averaging process as the 

STFT data. Again in this case the ability to distinguish between rotor conditions is improved. 

However, in this case significant overlap still exists between the optimum, offset +3o and 

the two-blade offset case.  

Appendix A tables A.29 to A.32 show the results of the NBC process applied to the HHT 

extracted Cl imbalance measure for both raw and smoothed data. In both cases false alarms 

are generated for the detection classification. In the case of the raw data the Offset 6o and 

the two blades offset cases are correctly classified. The smoothed data gave comparatively 

better classification results with the classification of the two blade offset case as the no-fault 

case being the only observed misclassification. 

6.4.4 Classification via performance curve and rotor offset measure feature 

fusion 

Finally, the features extracted above from the flume test data for the four rotor conditions 

were used to as a ‘training data set’ in order to define the likelihood functions. This 
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establishes the probability of the data observed given the fault condition, which could be 

used in naïve Bayes classifier. The two sets of likelihood functions were generated in the 

form of 2 – dimensional multivariate Gaussian distributions fusing the power curve results 

and the monitoring criterion results. One set of likelihood functions utilised the STFT 

calculated monitoring criterion data whereas the other utilised the HHT calculated 

monitoring criterion.  

Figure 6.28 and Figure 6.29 show contour plots of the multivariate Gaussian likelihood 

functions developed over the power curve monitoring data and the monitoring criterion data 

calculated via the STFT and the HHT methods, respectively.  The figures highlight the effect 

of monitoring feature fusion characteristics for fault classification and shows reasonably 

good results. That is the probability distributions for each fault case are generally disjoint 

other than the slight overlap in the Optimum and offset +3o cases. 

 

 

Figure 6.28: Contour plot of the likelihood function of the form of 2-dimensional multivariate Gaussian 

distributions over the input vector consisting of the performance monitoring data and the STFT based 

monitoring criterion. 
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Figure 6.29: Contour plot of the likelihood function of the form of 2-dimensional multivariate Gaussian 

distributions over the input vector consisting of the performance monitoring data and the HHT based 

monitoring criterion. 

 

 

Appendix A Tables A.33 to A.36 shows the results of the NBC process applied to the 

ensemble data. Although false alarms were observed for the detection classification for all 

cases other than the HHT extracted and smooth Cl measurement correct fault classification 

was observed throughout the data sets.  
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 Drive Train Simulation 

Development 

7.1 Introduction 

This chapter extends the simulation and testing of CM processes under both steady 

state and non-steady state turbine operation. This follows from the recognition that in 

site turbine operation will inevitably vary from steady state operation to non-steady-

state operation as defined by both the turbine design and the characteristics of the tidal 

resource. Details of the developed simulation approach are outlined herein. The 

specifics of a simulation campaign utilizing the outlined simulation process are 

presented in Chapter 8 along with the application of developed monitoring approaches 

to the acquired datasets.  

 

7.2 Simulation Overview 

The simulations presented in Chapter 4 assumed steady-state balances in equalising 

the rotor and generator feedback torque. In a similar sense the flume tank testing, 

reported in Chapters 5 and 6, was of steady-state operating conditions, with the turbine 

controlled to a constant angular velocity per test whilst the experimental driveshaft 

torque was measured.  

In order to adequately develop and appraise the use of generator parameters as 

means for turbine rotor monitoring, as per the hypothesis developed in Chapter 3, an 

extension to more representative turbine operating conditions was required. A 

principal decision was to allow for such additional considerations via the addition of 
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both stochastic fluid flow artefacts and differing turbine control processes. The 

developed and extended simulation structure is described in detail in the rest of this 

chapter.  

Figure 7.1 provides an overview and introduction to the simulation structure. The 

main observation is that the structure developed by the author allows the appraisal of 

turbine rotor torque at differing rotor displacements under a wide range of operating 

conditions. It is set up to use a one-dimensional stochastic fluid velocity model. The 

dynamic effects of tip-speed ratio based control to maintain the optimum power 

production operational conditions are also now included. The structure culminates in 

the ability to observe and test differing scenarios using a physical, scaled, drive train 

test rig. 

Figure 7.1 accordingly provides a schematic point-of-reference of the simulation 

approach highlighting the interaction between the various developed models and 

control procedures. The resource model, presented in Section 7.3, provides flow 

velocity information to the parametric torque model and to the control actions, 

presented in section 7.5, to maintain a set-point tip speed ratio or fixed turbine velocity. 

The parametric model parameters are also set in an informed manner drawing on the 

scale model flume test results which were presented in Chapter 6 and developed upon 

herein. The form and parameterization process used for the model are presented in 

Section 7.4.  
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Figure 7.1: Schematic of the simulation process utilised in generating turbine simulations and scaled 

drive shaft emulator testing. The figure shows the 1/20th scale testing results as an input to the parametric 

rotor model along with the input of a resource simulation model 
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7.3 Tidal Resource Simulation 

The simulations outlined in this chapter use the simplification that the turbine would 

be subjected to plug flow (non-profile flow) conditions. This simplification was 

necessary as this was the flow condition set for the CFD models and the approximate 

conditions for the flume testing. The plug flow assumption leads to a convenient 

representation of the flow conditions ‘hitting’ the turbine rotor. The flow is represented 

by: 

 

 𝑈𝑥(𝑡) = 𝑈𝑥
̅̅̅̅ + 𝑢′

𝑥(𝑡) (7.1) 

 

where Ux(t) is the fluid velocity at time t decomposed into a stationary mean fluid 

velocity Ūx and a fluctuating component u’x(t) which is time varying with the x direction 

perpendicular to the turbine rotor plane. A natural model for representing the fluid flow 

given by the above is to model the fluid velocity fluctuations as a stationary process with 

given power spectral density characteristics. Furthermore utilising Kolomogrov’s theory 

of turbulence the amplitude of the power spectrum should be proportional to f - 5/3 as  f  

→ ∞. The von Kaman spectrum, as utilised by previous investigators (Val et al, 2014) 

for reliability simulations adheres to the above condition and can be written in the non-

dimensional form: 

 

 
𝑓𝑆𝑢(𝑓)

𝜎𝑢
2

=

4𝑓𝐿
�̅�

[1 + 70.78(
𝑓𝐿
�̅�

)2]

5
6

 (7.2) 
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where Su(f) is the spectral density function for the process, L is the length scale, σu is 

the standard deviation of the process u’x(t). In the above the x subscript has been omitted 

for brevity as the formulation outlined relates to a one-dimensional simulation.  

The associated length scale of the turbulent process, L, for channel flows, has been 

shown to be approximately equal to 0.8 of the channel depth (Nezu et al, 1994). In the 

case of the CFD models this was taken to be 40 m and in the case of the flume testing it 

was 0.64 m. The standard deviation for the turbulent process is commonly normalised by 

the mean flow and is named the turbulence intensity. For flows greater than 1.5 m/s the 

expected range of turbulence intensities is between 0.05 and 0.1 (Osalusi, 2010). Here 

turbulence intensity is given by:  

 

 𝐼𝑈 =
𝜎𝑢

�̅�
 (7.3) 

 

 

In order to generate time series of turbulent flow adhering to the above criteria the so-

called inverse Fourier Monte Carlo simulation method was used as outlined by Grigoriu 

(Grigoriu, 2000). The method is reliant on the spectral representation theorem for weakly 

stationary processes (Grigoriu, 2000; Pourahmadi, 2001; Chatfield, 2004).  Such a 

process can be modelled in the flowing manner:  

 

 𝑈′
𝑥(𝑡) = ∑ 𝜎𝑘[𝐴𝑘 cos(𝜔𝑘𝑡) + 𝐵𝑘 sin(𝜔𝑘𝑡)]

𝑛

𝑘=1

 (7.4) 

 

where: 

 

 𝜎𝑘
2 = ∫ 𝑆𝑢(𝜔)

𝜔𝑘+
∆𝜔
2

𝜔𝑘−
∆𝜔
2

 (7.5) 
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Where the frequency term in (6.2) gives: 

 

 𝜔𝑘 = 2𝜋𝑓 (7.6) 

 

Ak and Bk are uncorrelated random variables. A realization of the process can be 

computed by sampling 2n random variables {Ak,Bk}  from a normal distribution with μ = 

0 and σ2 = 1. The process can be considered simply as constructing a time series from a 

summation of sine and cosine functions evaluated at increasing frequencies with 

stochastic amplitudes scaled by the power spectral density function, represented as a von 

Karman spectrum, for the given frequency index k.  

In order to generate the aforementioned fluid velocity time series a Matlab script was  

developed. The script constructs the time series given the inputs of required variance for 

a given turbulence intensity, the mean fluid velocity, length scale, integration resolution 

parameter and a frequency index. The output from the script is the constructed Von 

Karman spectrum with frequency index, the fluid velocity time series with time index 

and an estimate of the PSD of the constructed time series. The code was constructed via 

three functions. Namely, ‘VonKarmanSpec.m’, ‘FluidTimeSeries.m’ and the built in 

‘periodogram.m’ function.  

The ‘VonKarmanSpec.m’ function calculates a numerical approximation of the Von 

Karman spectrum by first converting the length scale parameter into Hz using the mean 

fluid velocity and then calculating the non-dimensional Von Karman spectrum directly 

using equation 7.2. The non-dimensional Von Karman spectrum is scaled by the variance 

parameter and the frequency index as per equation 7.2 to output the dimensional Von 

Karman spectrum. The spectrum is then input to ‘FluidTimeSeries.m’. 

 The second function, ‘FluidTimeSeries.m’ then undertakes the Monte Carlo inverse 

Fourier transform process outlined in equations 7.4 to 7.6. To make this calculation the 

discrete approximation of the Von Karman spectrum generated via the previous function 
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is input along with the frequency index and integration resolution parameter. Firstly the 

frequency index is resampled and a numerical approximation of the integration in 

equation 7.5 is undertaken. The integration is performed via trapezoid numerical 

integration and has the limits of integration set by the resolution parameter, which 

specifies the number of points in the original frequency index to integrate over. Next the 

time-series index is constructed followed by sampling of the random parameters {Ak,Bk}. 

Lastly a discrete inverse Fourier transform is undertaken utilising equation 7.4 and the 

generated time series is output. 

The last function utilised is the built-in Matlab function, ‘periodogram’ which can be 

used to generate an estimate of the PSD of the generated time-series. This was done to 

confirm that the generated time series’ PSD adheres to an approximation of the Von 

Karman spectrum.   

 As the fluid velocity input to the parametric rotor model has been outlined the next 

section presents the formulation of the rotor model utilising the data captured from the 

1/20th scale testing campaign.  

7.4 Parametric rotor model development and parameterisation based 

on flume testing results.  

7.4.1 Model formulation 

Chapter 4 outlines the development of a rotor torque model for a specific turbine rotor 

based on the results of a transient CFD modelling exercise. The model views the torque 

on the turbine drive shaft developed by the rotor as a composite of three blade 

contributions each deconstructed into a mean component and a fluctuating component. 

The mean component was calculated based on the turbine performance curves and the 

plug-flow fluid velocity at the rotor. The fluctuation component was represented as an 8-

term Fourier series with amplitudes relative to the mean torque value appraised by the 
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angle of displacement of the turbine rotor. Each of the blade contributions were then 

summed for a given tip-speed ratio and rotor position to give the torque developed by the 

rotor, at the given position. Such a formulation, whilst incorporating many 

simplifications, was convenient for two reasons. Firstly, the turbine rotor torque could be 

appraised simply with knowledge of the turbine characteristic curves, the model 

parameters and the position of the turbine. Secondly, the process of constructing the 

model in itself gave insight into the frequency content of the drive shaft torque observed 

within the CFD models utilised. These insights then formed the basis of reasoning behind 

the CM algorithm used for rotor fault detection.  

In this way a similar model structure is heralded for a more complete rotor model 

based on parameterisations from the flume data captured and outlined in chapter 6. 

However, a blade by blade deconstruction of the drive shaft torque is not convenient 

given the flume data content. As such the model form will be that of a mean component 

based on the turbine characteristic curves, a fluctuation component based on the 

frequency content of the drive shaft torque fluctuations measured and a stochastic 

component simulating experimental, measurement and chaotic effects associated with the 

experimental setup.  

This model formulation was justified also by the convenience afforded during 

simulations. The knowledge of the current TSR, rotor position and model parameters was 

sufficient for the calculation of the rotor torque at a given rotor displacement. However 

the model parameters in this updated model required definition over a wider range of 

turbine operating conditions to allow for the use of the rotor model with the stochastic 

fluid velocity time series outlined above along with the turbine control processes outlined 

in the subsequent sections.  
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Having considered the strength of the previous formation and the updated 

requirements of the next generation model formation, the following rotor model was 

proposed:   

 

 

 𝜏 =  𝜏̅ +  ∑ 𝜏̅ ∙ 𝑎𝑖 ∙ cos(2𝜋𝜃 + 𝑝𝑖) + 𝑍

𝑥

𝑖=1

 (7.7) 

 

 

where: 

Z is a normally distributed strictly stationary random process with mean, μ = 0 and 

standard deviation σ = f(λ) 

x  is highest harmonic considered in the model. 

𝜏̅ is the mean torque developed by the rotor and is given by: 

 

 𝜏̅ = 𝐶𝜏 ∙ 𝜌 ∙ 𝐴 ∙ 𝑟 ∙ 𝑈2 (7.8) 

 

ai  is the relative amplitude of fluctuations at various harmonics, 1 to x. 

pi  is the phase angle at various harmonics , 1 to x. 

θ  is the position of the turbine rotor with 0o defined as where blade 1 is at top dead 

centre.  

 

The formulation of the model in this way required a number of assumptions and further 

investigation to confirm the structure of such a model. The assumptions and requirements 

are highlighted below and linked with the sections of this chapter in which they are 

addressed: 

 

16. Requirement: the raw flume data will require appropriate processing to define the 

‘average’ drive train torque fluctuation characteristics. The data is considered in Section 

6.5.2 and this requirement is developed Section 7.4.2 
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17. Requirement: The highest harmonic number, x, considered within the model must 

be defined such that the fluctuations in rotor torque due to the underlying physical 

mechanism are adequately captured. This requirement is developed Section 7.4.3. 

18. Requirement: in such a model to allow for the operation of the turbine over a range 

of TSR from 0 – 7, a and p must be defined over the harmonics i and the values of TSR, 

can then be considered to be represented as surfaces. This requirement is developed 

Section 7.4.4. 

19. Assumption: in defining such surfaces it is assumed that ai and pi are not functions 

of the turbine rotational velocity nor the fluid velocity but only the non-dimensional 

quantity λ and the turbine position. This assumption is developed Section 7.4.5. 

20. Assumption: to define Z as a normally distributed strictly stationary random variable 

with  mean, μ = 0 and standard deviation σ ≠ f(ϴ):  

A. The raw flume data at various points should be stationary and normally distributed.  

B. The standard deviation of the raw data throughout the rotation of the turbine should be 

approximately constant, as identified in Section 6.3.2.  This requirement is developed 

Section 7.4.6. 

21. Requirement:  the variation of the standard deviation of Z should be defined over 

the required λ operating range, as identified in Section 6.3.2. This requirement is 

developed in Section 7.4.6. 

 

7.4.2 Model structure relative to the flume Data 

Pre-processing of the raw flume data to highlight the ‘average’ drive shaft torque 

fluctuation characteristics was undertaken and presented in Section 6.3.2. Figure 6.11 

presented two polar plots of the flume data at 1 m/s flow velocities for the optimum blade 

pitch angle and the single blade 6o offset pitch angle, respectively. These two polar plots 

represent the, ‘training data’ for the parametric model for a specific flow speed, rotational 

velocity and the resulting λ value.  

Observing Figure 6.11 and the results outlined in Section 6.3.2 it can be seen that the 

TSA process can be used to capture the average or underlying fluctuations in drive shaft 

torque as a function of the turbine position. Furthermore it can be seen that the raw data 

plotted in the same figures, in grey, represents the distribution of torque values about a 
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mean given by the TSA trace. Viewing the raw data in this way led to the following 

consolidation of the model structure with the raw data: the drive shaft torque for a given 

position is a stationary process with mean defined by the above Fourier series and a 

distribution about this mean given by the standard deviation of the random variable, Z. 

This idea is shown conceptually in Figure 7.2. The mean value of the process is shown 

in the bold trace; the Gaussian distribution from which a ‘realisation’ of drive shaft torque 

is sampled is shown for the 240o rotor position. The distribution of the process over the 

turbine position is shown in underlying shading. It is noted that the process shown 

conceptually in Figure 7.2 is equivalent to a maximum likelihood fitting of a Gaussian 

process to the data. This is the case as, for a Gaussian process, the maximum likelihood 

estimation of the process distribution is given by a Gaussian distribution with the mean 

given by the mean value of the data and the standard deviation given by the standard 

deviation of the data (Bishop, 2006) 

 

 

Figure 7.2: A diagrammatic representation of the structure of the rotor model as a realisation of a normal 

process with a mean (thick line) and data distribution (shaded region) with the normal distribution show at 

the 270o rotor displacement. 

 

The data captured during the flume based experimentation was representative of a 

variety of turbine operating conditions, i.e. for various values of λ composed of differing 

rotor velocities and fluid velocities. Utilising such data the torque fluctuations over a 
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turbine rotation were studied for a range of operating conditions; an example of the results 

of are presented for a flow velocity of 1 ms-1 in Figure 6.12.  The analysis outlined below 

relating to the turbine rotor simulation development was applied to each of the turbine 

rotor conditions for flow velocities of 0.9, 1.0 and 1.1 ms-1.  By defining the torque 

fluctuations over a range of operating conditions the parametric model was extended to 

allow for variable speed turbine simulation. Flume data was taken for the following 

values of λ: 1.5, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.5.  The knowledge of the turbine characteristic 

at these points we used to interpolate and extrapolate to λ values ranging from 0-7. 

 

7.4.3 Frequency content of the flume data 

In order to further interrogate the data sets spectrums relating to each condition for 

both the raw and TSA data were calculated, as detailed in Section 6.3.3. From these 

results it was noted that the TSA processed data suitably represented frequency domain 

characteristics of the measured rotor torque during the flume testing campaign. This 

confirmed that the TSA data provides an accurate representation of the turbine 

characteristics and can therefore be used as parameterisation data in further 

developments. 

 Figure 7.3 shows the spectrum for the optimum setup relating to the polar plots shown 

in Figure 6.11 for the optimum. Figure 7.4 shows the spectrum for the six degree offset 

pitch angle case. In both figures the darker plots highlight the spectrum of the TSA data 

and the lighter plots shows that of the raw data. The frequency axis of each spectrum has 

been normalised by the mean turbine rotational velocity for each given dataset. The 

frequency content is thus presented in-terms of the harmonics of the rotational frequency 

of the turbine. Data for the time synchronous average processing and raw data were 

compared to confirm no spurious artefacts were introduced via the processing method.  
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In terms of the prominent amplitudes observed in the two spectrums, harmonic 

numbers 1, 3, 6, 9 and 10 show the greatest contribution to drive shaft torque fluctuations, 

relative to the mean torque. In order to parameterise the model effectively it was required 

that the model consider harmonics that relate only to torque fluctuations resultant from 

fluid-rotor interaction. Specifically harmonic amplitudes relating to the PMSM and the 

drive shaft bearings needed to be neglected or reduced to provide a more satisfactory 

rotor torque parametric model.  

 

 

Figure 7.3: Amplitude spectrum of the drive shaft torque for the optimum rotor setting with a flow velocity 

of 1 m/s.  
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Figure 7.4: Amplitude spectrum of the drive shaft torque for the offset 12 rotor setting with a flow velocity of 

1 m/s.  

 

 

 

To make this judgement the harmonic characteristic observed in the CFD data were 

used as a guide. With reference to Figure 3.7: Drive shaft torque spectrum for optimum, 

offset +0.5o, offset +3o and offset +6o conditions. in Chapter 4 it can be noted that in the 

overall torque spectrum shown little significance in amplitude passed the eighth 

harmonic. Furthermore, and in agreement with this notion, it was considered that the 9th 

and 10th harmonic amplitudes were due to the pole passing frequency associated with the 

PMSM which had 10 pole pairs. This is further confirmed by the slight peak at the 20th 

harmonic also.  This distinction has been highlighted in Figure 7.3 and Figure 7.4. The 

distinction between the lower frequency rotor artefacts and the higher frequency motor 

artefacts is also highlighted. 

7.4.4 Parameter surface development 

In Chapter 6, Figure 6.12 shows the results of applying the TSA pre-processing to data 

sets captured to differing λ values. The spectrums shown in Figure 7.3 and Figure 7.4 

were calculated for each of the blade fault cases for each λ value, the spectrum data 

pertaining to the TSA data were then used throughout. The amplitudes were scaled by the 
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average torque 𝜏̅ developed for the given operating condition. The surfaces were 

developed showing the fluctuation depth (relative amplitude surface) and phase of drive 

shaft torque over 8-harmonics and the 0-7 range for λ.  

The surfaces were developed by inputting the known relative amplitudes and phase 

angles at the 8 harmonics considered and over the λ values measured in the flume 

experimentation as a 3-dimensional array into the Matlab curve fitting applet. The ranges 

of the surfaces for the harmonics were constrained between 1 and 8 with the range of the 

fit over λ constrained between 0 and 7. It should be noted that during the drive train 

experimentation data from the surfaces was output from Matlab and used as a look-up 

table within LabVIEW to minimise computational expense during real-time calculations, 

as outlined in Section 7.6.3.  

In the case of the phase surface fit the phases were ‘unfolded’ empirically to minimise 

spurious surface gradients which arose from the phases being close to the   -180o and 180o 

boundaries.    

 

 

Figure 7.5: Amplitude surface generated via Bi-Harmonic Spline interpolation over harmonics and λ values 

of turbine operation, for 1 m/s fluid velocity and optimum rotor condition. 
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Figure 7.6: Phase surface generated via Bi-Harmonic Spline interpolation over harmonics and λ values of 

turbine operation, for 1 m/s fluid velocity and optimum rotor condition. 

 

Examples of the surfaces generated are shown in Figure 7.5 and Figure 7.6. The figure 

show the relative amplitude and phase surfaces for the optimum case at a flow velocity 

of 1 ms-1, respectively. Figure 7.7 and Figure 7.8 show the corresponding surfaces for a 

blade fault case of offset 6o. It can be observed that a similar surface structure was found 

for both relative amplitude and phase surface for the two cases. This was consistent over 

all the flume data cases used to develop the surfaces. Furthermore it is highlighted in the 

developed surfaces that an increase in relative amplitude for the 1st, 3rd and 6th harmonics 

correspond with increasing values of λ.  In the case of the phase surfaces the phase 

wrapping used is highlighted on the phase axis.  
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Figure 7.7: Amplitude surface generated via Bi-Harmonic Spline interpolation over harmonics and λ values 

of turbine operation, for 1 m/s fluid velocity and Offset 6o rotor condition. 

 

 

 

 

 

Figure 7.8: Phase surface generated via Bi-Harmonic Spline interpolation over harmonics and λ values of 

turbine operation, for 1 m/s fluid velocity and Offset 6o rotor condition. 

 

It can be noted that conceptually the drive shaft torque fluctuations can be viewed as 

a set of 8 data points on the surface aligned with the 8 harmonics and during variable 

speed simulations are moving along the λ axis as the fluid velocity changes and the 

turbine control system tries to maintain peak power.  
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7.4.5 Torque distribution characteristics vs tip-speed-ratio. 

In this section consideration is given to the use of the developed surfaces for varying 

fluid velocities which will be utilised as outlined to provide more realistic turbine 

simulations. In order to verify that the rotor model under development could be utilised 

for varying fluid velocity levels both the relative amplitude and phase spectrums were 

plotted for each value of λ for the three fluid velocity values tested within the flume 

testing campaign. Figure 7.9 and Figure 7.10 show the relative amplitude spectrums and 

phase spectrums, respectively, for the optimum rotor turbine setup. The figures present 

the data used to construct the surface presented above – they represent the surface values 

for differing harmonics for each given λ value. 

It is clear that the relative amplitude spectrums for each of the three fluid velocities in 

general show good agreement, with the exception of the spectrum observed for λ equal 

to 1.5. This suggests that for λ values above 1.5 the relative drive train torque fluctuations 

are a function of the non-dimensional quantity and not the specific flow speed and 

rotational velocity used to calculate said non-dimensional value. Therefore the rotor 

torque simulation method proposed can be utilised for variable speed turbine operation, 

if limited to operation above a λ value of 1.5. This restriction, it should be noted, was 

considered to have little impact on the proposed simulations as, due to the optimal λ 

control schemes utilised, the operating range of λ expected would be, 2 < λ < 4.  

The phase spectrums show an altogether more complicated relationship over the λ 

values studied. There does seem to be agreement between the phase spectrums for λ 

greater than 3.5. Furthermore, it is worthwhile noting that the phase angles seem to be 

consistent and in good agreement for the 1st, 3rd and 6th harmonics. Specifically it was 

observed that the 1st harmonic occurs between the 70o and 90o phase angles. Between 

350o (-170 o) and 380o (+160o)  were generally observed for the 3rd harmonic and phase 

values of between 150o and 180o were observed for the 6th harmonic. As such it was 
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considered suitable to assume a single surface structure for the range of fluid velocities 

utilised in the simulations.   

 

Figure 7.9: The amplitude spectrum for the 1/20th scale turbine driveshaft torque at varying λ values 

comparing the relative fluctuation depth for flow velocities: 0.9 m/s, 1 m/s and 1.1 m/s, the rotor setting for 

the case shown is optimum.
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Figure 7.10: The phase spectrum of the 1/20th scale turbine driveshaft torque at varying tip-speed-ratio 

values comparing the phase angles for flow velocities: 0.9 m/s, 1.0 m/s and 1.1 m/s. The rotor case is that 

of the optimum rotor condition. 

 

7.4.6 Consideration of the distribution of the raw data 

The generation of the above surfaces and the associated considerations outlined 

formed the development of Fourier series based process mean calculation. As specified 

in the model formulation, however, the actual torque value for a single ‘realisation’ for 

a given turbine position would be sampled from a normal distribution with the mean 

defined by the aforementioned Fourier series and the standard deviation of the 
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distribution defined by study of the raw flume data. Specifically it was required to show 

that the raw data for a given turbine rotor position was distributed normally and that the 

standard deviation of the process was consistent overall turbine rotor positions. This was 

shown to be true in Section 6.3.2.  

It was also required to study the effect of the turbine operating conditions on the 

spread of the raw torque data. To this end the standard deviation of torque data was 

calculated for each of the λ values measured. In order to study the effect of the turbine 

operating conditions on the torque data distribution from the process mean the standard 

deviation relative to the mean torque developed was plotted for each rotor condition and 

for each flow velocity measured during the flume testing. Figure 7.11: Plot showing the 

SD of the raw data over varying λ values for each of the rotor cases. shows an example 

of the variation in standard deviation of the raw data with λ value. This is indicative of 

the variation for each of the fluid velocity values. It was concluded that for convenience 

due to the relative consistancy of these variations a single second order polynomial in 

terms of the λ value could be utilised to represent the process distribution from the mean. 

Figure 7.11 highlights the second order polynomial fitted to the standard deviations 

obsereved for varying λ values. Below the curve fit and data values the residuals 

between the fitted polynomial and the training data are shown. As can be seen 

insignificant residuals were obsereved over the range λ values considered.        
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Figure 7.11: Plot showing the SD of the raw data over varying λ values for each of the rotor cases.  

 

7.4.7 Final model outline 

The formulations developed over the previous sections were used to define the inputs 

into the model resulting in the final model form as given in equation 7.9.   

 

 𝜏 =  𝜏̅ +  ∑ 𝜏̅ ∙ 𝑎𝑖 ∙ cos(2𝜋𝜃 + 𝑝𝑖) + 𝑍

8

𝑖=1

 (7.9) 

 

where: 

Z is a normally distributed strictly stationary random process with mean, μ = 0 and standard 

deviation: 

  𝜎 = 0.011𝜆2 − 0.074𝜆 + 0.13 (7.10) 

 

𝜏̅ is the mean torque developed by the rotor and is given by (7.8). 

 

ai is the relative amplitude of fluctuations at various harmonics, i to 8 – represented as a 

surface. 

pi is the phase angle at various harmonics , i to 8 – represented as a surface. 

 

The simulation and drive train testing results are presented fully in chapter 8. 

However, to illustrate the output of the model formulated and to compare it with the 
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flume data used to parameterise the model, two instances of steady-state simulation are 

shown below. Specifically Figure 7.12 shows the model data calculated for 50 turbine 

rotations with a fixed fluid velocity of 1 ms-1. The TSA of the 50 rotations is shown 

along with the TSA data from the flume testing for comparison. A more detailed 

discussion of the results will be provided in subsequent chapters however, it seems that 

the proposed rotor model adequately captures the lower frequency content of the flume 

data as was the desired outcome.  

 

 

Figure 7.12: Model output under fix fluid velocity operation.  Raw and TSA data are shown along with the 

TSA flume data for comparison. A) Shows the optimum rotor case. B) Shows the offset 6o rotor case. 

 

 

7.5 Tidal Stream Turbine Control 

As detailed the simulations implemented via the drive train test rig, were created to 

emulate variable speed turbine and fixed speed turbine control.  Details relating to 

turbine topology and control were presented during in Section 3.4.1 and as such only 

the details directly relevant to the simulations are discussed herein. 
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7.5.1 Fixed-speed turbine control 

Fixed speed turbine control has been included in the simulation capability to allow 

for comparison between flume results and drive train test rig results. It was also 

considered that the fixed speed operation under higher turbulence intensities will 

provide simulations which have similar characteristics to slow acting turbines with 

higher inertia drive trains. Lastly it was considered as an additional turbine setup to 

which the turbine CM approaches could be applied for testing and development. The 

fixed speed operation of the turbine will be achieved by setting the turbine rotational 

velocity to the value that corresponds to the λ value for peak power operation given the 

mean fluid velocity over the entire simulation.   

7.5.2 Optimal λ Control 

To simulate turbine dynamics in a rigorous and representative manner variable speed 

turbine control was utilised for the experimental simulations. This was included to allow 

for adequate appraisal of CM hypotheses based on the simulation results. The variable 

speed turbine control scheme used was that of optimal tip-speed ratio control. The 

method involved taking fluid velocity and turbine rotational velocity measurements 

required to define the turbine operating tip speed ratio. The measured operating point is 

compared with a set-point tip speed ratio, known prior to operation to give maximum 

power output under continuous turbine operation. The error value is passed to a 

controller to regulate the generator load to achieve the torque required to minimise the 

tip speed ratio error. Figure 7.13 shows the control diagram for the optimal tip speed 

ratio tracking control system used during the experimental simulations [Abdullah et al, 

2012].  
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Figure 7.13: An example of optimal λ (TSR) control scheme as presented by (Abdullah et al, 2012). 

 

It can be seen that the essential element in controlling the generator feedback torque 

and hence rotational velocity is controlling the load power output via the power 

converter apparatus. During the experimental simulations the torque set point command 

was input to the motor drive used and the internal control structure was used which is 

outline in Section 7.6.2.   

 

7.6 Drive train test rig implementations 

7.6.1 Overview of hardware 

Figure 7.14 shows the drive train test bed developed for tidal stream turbine 

simulations. The test bed motor can be controlled to replicate the turbine rotor input to 

the drive train. In this case the motor is directly coupled to a generator for power 

extraction thereby effectively enabling the simulation of both a direct-drive and geared 

tidal stream turbine equipped with a permanent magnet synchronous generator. To allow 

for flexibility the two rotating machines are of the servo type with on board encoders 

measuring the rotor velocity and position for feedback control. The machines are Bosch 

Rexroth IndraDyn MSK 050Cs and are synchronous permanent magnet machines rated 

with a maximum velocity of 4300 RPM and a maximum torque of 9 Nm.  A proprietary 

flexible coupling was used to connect the machine’s drive shafts.  
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The motor drives setup is shown in Figure 7.15. The drives used were the Indradrive 

Cs which were set-up as master and slave utilising the SERCOS III communication 

protocol. The master drive was then connected via Modbus TCP/IP to a National 

Instruments Compact RIO. The TST model and maximum power point tracking control 

loops were implemented using the Real-Time operating system in the Compact RIO and 

the rotor and generator commands were sent to the motor drives via the Modbus link. 

The motor drives utilised close-loop vector oriented control to implement the commands 

sent from the Compact RIO. For the simulations undertaken the speed of the turbine was 

set by commanding the rotational velocity of the generator which was achieved via load 

output regulation. The motor was control to replicate torque commands output form the 

parametric model given the current parameters and simulation data.  

  

Figure 7.14: The drive train test rig which was utilised for scale turbine drive train simulations. 
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Figure 7.15: Motor drives and Compact RIO arranged in the drive cabinet. 

 

 

 

 

 

Figure 7.16 shows a schematic of the test rig indicating the interaction between each 

of the hardware elements. The figure also shows the flow of information highlighting 

the use of measured data for recursive simulation calculations and the storing of data for 

further analysis. The numbers circled within each of the elements relate the elements of 

the overall simulation schematic presented in Figure 7.1 to the hardware schematic in 

Figure 7.16. Specifically the calculation of each numbered element is undertaken via 

the hardware labelled with the corresponding number in Figure 7.16.  
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Figure 7.16: Schematic of the interacting hardware elements and the distribution of functionalities across 

the hardware platforms. 

  

 

7.6.2 Vector Oriented Control of PMSM. 

The PMSM utilised for the test rig setup were setup to implement vector oriented 

control (VOC). In the case of the motor the goal of the VOC was to operate the motor 

in a similar fashion to a TST via the application of appropriate torsional loads which are 

calculated via the outlined rotor model. The goal of the VOC for the generator is to 

control the generator load in order to realise optimal TSR control. 

  The idea of vector oriented control has been previously utilised for motor and 

generator control. Its use in relation to tidal stream turbine control has been reported 

(Liang and Whitby, 2011).  The process related to applying this to wind turbine control 

has also been reported (Anaya-Lara, 2009). In the case of a PMSG, this is done by noting 

that under normal operation the id current in Equation 3.8 is weakening the magnetic 

flux producing the generator feedback torque and can therefore be set to zero, this gives:  

 

 

  
𝜏𝑒 =

2

3
 ∙ 𝑝 ∙ 𝜑 ∙ 𝑖𝑞 (7.11) 
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For a set-point torque required to accelerate or decelerate the turbine velocity to the 

required optimal rotational velocity the reference direct and quadrature currents are 

given by: 

 

   
𝑖𝑑𝑟𝑒𝑓 = 0 (7.12) 

 

 

 𝑖𝑞𝑟𝑒𝑓 =
3

2
 

𝑇𝑠𝑝

𝑝 ∙ 𝜑
 (7.13) 

 

 

The required voltage in the direct and quadrature axis can be found be re-arranging 

(7.13) and (7.14).  

 𝑣𝑑𝑟𝑒𝑓 =  𝑅𝑖𝑑 +  𝜔𝑟𝐿𝑞𝑖𝑞 (7.14) 

 

 

 𝑣𝑞𝑟𝑒𝑓 =  −𝑅𝑖𝑑𝑞 −  𝜔𝑟𝐿𝑑𝑖𝑑 + 𝜔𝑟 𝜑 (7.15) 

 

 

 The voltage reference signal is then input into a PWM module which generates the 

switching sequence for the IGBT to regulate the phase voltages of the generator to give 

the required generator feedback torque which will result in the set-point λ value required 

for peak power extraction. The VOC control scheme was implemented in the drive 

systems of the PMSMs and was developed by Bosch Rexroth as a standard control 

system for the machines utilized. A schematic of the control process implemented via 

three cascaded control loops is shown in Figure 7.17 (Bosch Rexroth AG, 2011). 
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Figure 7.17: Control structure implemented in the Bosch Rexroth drive utilising VOC for torque (current), 

velocity and position control of the PMSM (Bosch Rexroth AG, 2011). 

 

7.6.3 Software Implementations 

In order to implement the parametric simulation method constructed by the author 

various software elements had to be incorporated. Specifically the author wrote software 

routines for each of the platforms highlighted in Figure 7.16. The PC and Compact RIO 

ran software routines constructed in LabVIEW which were constructed as a single 

software project distributed between the Windows operating system (Host PC) and the 

NI Real-Time operating system (Compact RIO). The IndraDrive Cs systems ran 

software routines which were implemented via structured text. The majority of the 

software implemented was engineered to allow data capture and sharing between the 

various platforms as required. Furthermore software was implemented to allow for user 

interface functionalities and for the input of test settings, fluid velocity time-series and 
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parameter surfaces. The main element of the software was the parametric model 

implementation, presented below.  

The model calculation is made as highlighted on Figure 7.18. The three main aspects 

of the calculations are using the motor measurements and fluid velocity value for the 

given time step to calculate the current operating tip-speed ratio. In the same stage the 

tip-speed ratio is used to interpolate the turbine non-dimensional torque curve and 

parameter surfaces to obtain the torque coefficient, Cθ, the amplitude parameters, ai, and 

lastly the phase angle parameters pi. In the next step the parameters set outlined, rig 

measurements and the fluid velocity value for the time step are used to calculate the 

turbine rotor torque. The calculation is made using the formulation outline in Section 

7.4 and as discussed returns a realisation of the process for the given rotor position and 

simulation settings. A new ‘realisation’ is returned each time step and time steps 

corresponding to equal rotor displacements and fluid velocity settings will not 

necessarily return equal torque values. However, the process mean for a given 

displacement and fluid velocity value will be equal to the value calculated via equation 

7.9 with the random variable Z set to zero.  

The last step calculates the set point rotational velocity for either optimal TSR control 

or for fixed velocity control. The generator velocity and the motor torque commands are 

output as scaled voltages, in the range 0 V - 10 V, which are input to the built-in 

analogue inputs on the IndraDrives Cs. The new measurements from the motor and 

generator are acquired and used to update the turbine state. The updated variables or 

turbine state is then used for the next execution of the calculation loop.  

In order to undertake the first iteration of the model calculations outlined above the 

first fluid velocity value must be read and the generator set to the required velocity. This 

is done during a 30 second period allowing the rig to reach the required velocity and to 

successfully send data to the Compact RIO. At the end of the 30 second period the final 
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measurements of motor and generator parameters are input to the model for the first 

iteration. 

Prior to the simulation start and run-in period the software is controlled via user input. 

Under this state the user is able to select the fault states to be simulated and if there is to 

be a change in turbine characteristics during the simulations. In order to set the turbine 

characteristics the user loads files in to the software containing the turbine non-

dimensional torque curve, amplitude surface and phase surface. Furthermore the user 

can upload a fluid velocity time series generated via the process outlined in Section 7.3 

prior to simulation. Lastly, it is worthwhile noting that the author made efforts to create 

highly modular software whereby changes to the simulation approach can be easily 

achieved. Chapter 8 presents the results of a CM study made based on the outlined 

simulation approach. The simulations considered fixed speed and optimal TSR turbine 

operations and the impact of such turbine operation on the use of generator signals for 

rotor fault detection and diagnosis are further investigated.  
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Figure 7.18: Screen shot of the LabVIEW code implementation of the parametric rotor model and turbine control 

processes discussed throughout this chapter. 

G
et flu

id
 

v
elo

city
, T

S
R

 

an
d
 P

aram
eters 

fo
r tim

e step
 

C
alcu

late ro
to

r 

to
rq

u
e u

tilisin
g
 

th
e p

aram
etric 

m
o
d
el 

S
tate u

p
d
ate 

fo
r n

ex
t 

calcu
latio

n
 



192 

 

 Drive Train Simulation 

Results  

8.1 Overview of simulation 

This chapter outlines the results and findings of the drivetrain test rig based TST 

simulations. The goal was to further develop and test the applicability of various fault 

detection and diagnosis algorithms under differing turbine operating scenarios. The datasets 

developed to appraise the effectiveness of the CM algorithms are outlined in the test matrix 

shown in Table 8.1. Simulations were undertaken at a variety of tip speed ratio values for 

the optimum turbine setup in order to develop monitoring surfaces. The fault conditions 

were then simulated at a value close to peak power, specifically at λ = 3.6. 

 

Table 8.1: Drive train simulation test matrix. 

Rotor Setting: Optimum.  

Test Type: Steady State. 

𝑈 = 1 ms-1. 

λ = 3.0, 3.6 and 4.2. 

TI = 0 %. 

Rotor Setting: Optimum.  

Test Type: Optimum TSR Tracking. 

𝑈 = 1 ms-1. 

λ = 3.0, 3.6 and 4.2. 

TI = 10 % 

Rotor Setting: Optimum.  

Test Type: Fixed Speed Control. 

𝑈 = 1 ms-1. 

ω = 229 RPM, 275 RPM and 352 

RPM. 

TI = 10 %. 

Rotor Setting: Offset +3o.  

Test Type: Steady State. 

𝑈 = 1 ms-1. 

λ = 3.6. 

TI = 0 %. 

Rotor Setting: Offset +3o.  

Test Type: Optimum TSR Tracking. 

𝑈 = 1 ms-1. 

λ = 3.6. 

TI = 10 % 

Rotor Setting: Offset +3o.  

Test Type: Fixed Speed Control. 

𝑈 = 1 ms-1. 

ω = 275 RPM. 

TI = 10 %. 

Rotor Setting: Offset +6o.  

Test Type: Steady State. 

𝑈 = 1 ms-1. 

λ = 3.6. 

TI = 0 %. 

Rotor Setting: Offset +6o.  

Test Type: Optimum TSR Tracking. 

𝑈 = 1 ms-1. 

λ = 3.6. 

TI = 10 % 

Rotor Setting: Offset +6o. 

Test Type: Fixed Speed Control. 

𝑈 = 1 ms-1. 

ω = 275 RPM. 

TI = 10 %. 

 

Rotor Setting: Two Blades.  

Test Type: Steady State. 

𝑈 = 1 ms-1. 

λ = 3.6. 

TI = 0 %. 

Rotor Setting: Two Blades. 

Test Type: Optimum TSR Tracking. 

𝑈 = 1 ms-1. 

λ = 3.6. 

TI = 10 % 

Rotor Setting: Two Blades.  

Test Type: Fixed Speed Control. 

𝑈 = 1 ms-1. 

ω = 275 RPM. 

TI = 10 %. 
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8.2 Initial results and test rig limitations 

The initial intention of the author was to undertake simulations which related to the 

operation of a turbine of similar characteristics to the one developed and utilised for flume 

testing. However the drive train test rig hardware had two limitations which required 

modification of these simulations. It was found that the measurement system (PLC) 

feedback to the real-time operating system (PXI) in which the turbine model calculations 

took place was of too low a sample rate. Specifically the position, torque and rotational 

velocity measurements used to undertake the hardware in the loop simulation had an 

effective sample rate of 20 Hz due to the Modbus TCP/IP communication method used to 

send the PMSM measurements back to the real-time operating system. This was problematic 

when simulating turbine rotor transient characteristics based on the harmonic structure of 

the observed rotor contribution to the turbine drive shaft torque, as detailed in Chapter 7. 

Secondly the regeneration characteristics of the PMSM utilised for the simulations were 

found to be inconsistent with the required regeneration characteristics required to carry out 

such simulations. Specifically the required torque values necessary for representative 

regeneration characteristics were unobtainable at the rotational velocities required to adhere 

to the turbine scale and operational characteristics. 

These limitations made the goal of simulating the operational characteristics of a TST 

unachievable without changing the test rig setup. The approach adopted meant undertaking 

the simulations which included the drive shaft torque at the high speed shaft of an indirect 

drive turbine. As well as the inclusion of a ‘virtual gear box’ in the simulations the power 

and torque levels had to be scaled to allow for simulations to be undertaken utilising the 

available hardware i.e. within the speed vs torque characteristics of the PMSMs.  

The reasoning behind the changes undertaken was to allow for the simulation of a larger 

diameter turbine which would be feasible given the limitations of the measurement system 

communication rate. This feasibility was afforded as a turbine of greater diameter would by 
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necessity rotate at a lower rotational velocity than the 0.5 m diameter turbine initially 

proposed. The slower rotational velocity meant that the model calculations could be 

undertaken without aliasing of the harmonic content of the simulated rotor contribution to 

the turbine drive shaft torque. The inclusion of the ‘virtual gear box’ and torque scaling was 

then undertaken so that the motor input to the simulated drive train resulted in achievable 

power output characteristics from the generator. The specific adaptations to the simulation 

are shown in Table 8.2.   

 

Table 8.2: Adaptions made to the proposed. 

Characteristic Lab Scale Turbine Simulated Turbine 

Diameter 0.5 m 2.5 m 

Mean Flow Rate, �̅� 1 ms-1 1 ms-1 

Peak Power TSR, 

𝜆𝑚𝑎𝑥 
3.61 3.61 

Rotor Velocity at Peak 

Power and mean flow 

rate, 𝜔𝑚𝑎𝑥,   1 𝑚𝑠−1 

14.4 rads-1 2.88 rads-1 

Maximum model 

harmonic frequency, 

fmax.  

18.33 Hz 3.66 Hz 

Gear Ratio, n 1:1 1:10 

High Speed Shaft 

Velocity, at Peak 

Power and mean flow 

rate, 𝜓𝑚𝑎𝑥,   1 𝑚𝑠−1 

14.4 rads-1, 138 RPM 28.9 rads-1, 260 RPM 

Peak Power at mean 

fluid velocity, P 
39 Watts 981.9 Watts 

Power Scaling Factor 
1 1/25 

Peak Torque at mean 

fluid velocity and λ = 

3.61 

2.70 Nm 340 Nm 

Torque Scaling Factor 
1 1/125 

 

The adaptations to the simulated turbine also impacted on the amplitudes of the harmonic 

content of the rotor torque. Specifically, the introduction of the ‘virtual gearbox’ and the 

artificial torque scaling meant that the torque output of the rotor model had to be scaled by 
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the inverse of the gear ratio utilised and a factor required to allow for safe operation using 

the given hardware. This scaling was also applied to the amplitudes of the torque fluctuation 

harmonics included in the turbine rotor model. This scaling of the torque harmonic 

amplitude became problematic as the resultant amplitude of torque fluctuation after the 

scaling process was of the same scale as the noise of the system. As such the amplitudes of 

the simulations were also scaled to increase the resultant torque fluctuation amplitudes by a 

factor of 20. This allowed the torque fluctuation amplitudes to be observed in the motor 

input to the drive train simulations.   

8.3 Simulation Results 

8.3.1 Fluid velocity simulations 

Figure 8.1 shows a single realisation of the 20 fluid velocity simulations created using 

the process outlined in Section 7.3. The fluid velocity simulations developed were 150 

seconds in length, had a mean fluid velocity of 1ms-1 and a turbulence intensity of 10%.  

 

 
Figure 8.1: Example of the generated fluid velocity time series for a mean fluid velocity 1 ms-1

 and a 

turbulence intensity of 10 %.  
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Figure 8.2: Comparison of the Von Karman spectrum and the spectrum observed for a single instance of the 

fluid velocity time series generated for a mean fluid velocity of 1ms-1 and a turbulence intensity of 10%. 

 

 

Figure 8.2 indicates that the fluid velocity time-series simulated exhibited the required 

Von Karman power spectrum characteristics. This was seen as confirming that the 

simulation method was successful in generating fluid velocity time series with the required 

spectral properties.   

Figure 8.3 is a histogram of the observed mean fluid velocities for the 20 resulting fluid 

velocity time series. The means observed range between 0.98 ms-1 to 1.04 ms-1 which was 

suitable for the simulations being undertaken.  

 
Figure 8.3: Histogram showing the range of mean fluid velocities generated for the 20 time series created for 

the drive train testing campaign for a specified mean fluid velocity of 1 ms-1. 
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Figure 8.4 then shows a histogram of the observed turbulence intensity values of the 20 

simulated fluid velocity time series. The histogram confirms that the simulations resulted in 

time series of approximately 10% turbulence intensity as required. The observed turbulence 

intensities ranged from 8.5 % to 10.5 %.  

 

 
Figure 8.4: Histogram showing the range of turbulence intensities generated for the 20 time series created for 

the drive train testing campaign for a specified mean fluid velocity of 1 ms-1 and TI of 10% 

 

Figure 8.5 shows the effect of the frequency resolution used during the inverse-Fourier 

transform Monte Carlo simulation method. It can be observed that generally as the frequency 

resolution is increased the obtained time series approach the required turbulence intensity.  

 

 
Figure 8.5: Histogram showing the effect of varying the frequency resolution (integration limits in equation) 

on the observed turbulence intensity of 20 generated fluid velocity time series. 
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It can be seen in Figure 8.5 that as the frequency resolution used for the simulation is 

increased the spread of turbulence intensities observed for a given frequency resolution 

decreases. This goes some way to explaining the spread of turbulence intensities observed 

in the 20 fluid velocity time series used for drive train test rig simulations. The fluid velocity 

time series were generated using a frequency resolution of 0.05Hz, which in referring to 

Figure 8.5 still exhibits some spread in the observed turbulence intensities. The frequency 

resolution utilised was applied because the computational time required for greater 

frequency resolution simulations became increasingly prohibitive. 

8.3.2 Real-time model output 

Figure 8.6 and Figure 8.7 show examples of the resulting data sets from the drive train 

simulations undertaken following the process outlined in Chapter 7 along with adaptations 

outlined in Section 8.2. Figure 8.6 shows the results of steady state simulations undertaken 

with a fixed fluid velocity. As a result one can see the fixed rotational velocity set point 

command resulting from the optimal TSR control system. Furthermore the figure shows the 

imparted torsional fluctuations incorporated into the simulations to account for the transient 

characteristics of the rotor behaviour observed during flume testing. The torque fluctuations 

can be seen in the quadrature axis current of the generator and the power output of the 

generator. The power output of the generator PMSM is negative following the motor 

convention and thus signalling operation of the PMSM as generator extracting energy from 

the system. Lastly the effect of the introduction of the ‘virtual gearbox’ can also be seen in 

the position measurements of the rotor and generator. 
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Figure 8.6: Results from the real-time drive train simulations, the case shown is the optimum rotor case with TI 

= 0%. 
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Figure 8.7 : Results from the real-time drive train simulations, the case shown is the optimum rotor case with TI 

= 10% with optimal TSR control utilised.  
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Figure 8.7 shows the results of non-steady state simulations with the inclusion of the 

turbulent fluid velocity time series discussed in Section 8.3.1. Accordingly it can be seen 

that fluid velocity fluctuations are included in the simulations and as a result of the optimal 

TSR control scheme adopted rotational velocity fluctuations of the turbine can also be seen. 

Furthermore due to the change in fluid velocity additional fluctuations can be seen in the 

torsional input of the motor simulating the high speed shaft output from the ‘virtual 

gearbox’. These additional fluctuations are also evident in traces for power output and 

quadrature axis current measured via the generator PMSM control system.  

To confirm the correct operation of the turbine rotor model utilising the generator position 

and velocity measurement feedback, the spectrums input via the amplitude surfaces utilised 

for the model calculation were compared with the spectrums observed for the motor torque 

command value and the achieved motor input torque values. In order to make the 

comparison the data used related to the steady state simulations allowing the surface 

spectrum to be calculated simply by indexing the input amplitude surface at the fixed tip-

speed ratio value for the simulations.  

Figure 8.8 and Figure 8.9 show the model amplitude parameters during steady state 

simulations and observed at the various points in the simulations. Figure 8.8 and Figure 8.9 

show the structure of the torque spectrums calculated and observed at differing points in the 

turbine model. The top plot in both figures shows the model surface values, the second plot 

then shows the torque command spectrum output via the rotor model in real-time. The plot 

at the bottom of both figures shows the motor input to the test rig and as required closely 

matches the command values shown in the plots above.  

As can be seen in both Figure 8.8 and Figure 8.9 the simulation methodology allowed 

adequate simulations of the outlined harmonic content of the rotor torque input, this can be 

seen in the similarity between the spectrums shown in both Figure 8.8 and Figure 8.9. 
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Figure 8.8: Model amplitude parameters input for the optimum rotor setting.  

 

 

 

 

Figure 8.9: Model amplitude parameters input for the offset +6o rotor setting.  
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8.4 CM algorithm application 

8.4.1 STFT imbalance criterion calculation 

The rotor imbalance measurement algorithms utilised in Chapter 6 as applied to the 

measurements undertaken during flume testing were also applied to the drive train 

simulation datasets generated. This was done to gauge the effectiveness of the rotor 

imbalance algorithm for fault detection and diagnosis under differing turbine control 

scenarios. In this section the results of the STFT based rotor imbalance measurement 

algorithm are presented. Figure 8.10 to Figure 8.12 show the spectrums extracted from the 

quadrature axis time series developed for each the fault cases and control types.  

The four figures labelled as Figure 8.10 show the spectrums relating to the steady state 

simulations undertaken with fixed fluid velocity. Figure 8.11 and Figure 8.12 then show the 

four spectrums developed from the quadrature axis current measurement for the optimum 

lambda control datasets and the fixed speed control datasets, respectively. It can be seen that 

the spectrums developed for the steady state simulations clearly show the harmonics inputted 

via the turbine rotor model outlined in Section 7.4. This can be seen by the higher amplitudes 

(brighter areas on the surface) observed at the rotational frequency of the turbine and its 

harmonics.  

Figure 8.10 1 to 4 the effect of the fixed speed turbine control along with the fluid velocity 

time series of turbulence intensity of 10% can be seen. As the rotational velocity of the 

turbine is not changing the harmonics are fixed similar to that of steady state case. It can be 

observed however that the prominence of such harmonic amplitudes in fixed speed control 

case are reduced relative to the steady state case.  Furthermore in both sets of Figure 8.11 

and Figure 8.12 it can be seen that significant harmonic energy at very low frequencies can 

be observed. This effect was considered to be due to the fluctuation of the fluid velocity time 
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series generated for the simulations and was more visible in the case of the fixed speed 

turbine velocity control case (Figure 8.12) 

Figure 8.13a to Figure 8.13c show histograms of the generated monitoring criteria Cl for 

each of the simulation cases. It can be seen that the effect of the inclusion of turbulence 

intensity on the simulations was to reduce the ability of the monitoring criteria Cl to 

discriminate between the differing fault cases, shown by the increasing level of overlap in 

the values for Cl observed for the given cases. However the ability of the monitoring criteria 

Cl to detect the offset +6o case was consistent throughout the simulated datasets. 

Appendix A Tables A.41 to A.48 show the results of the detection and diagnostic 

applications of the NBC process. The STFT based Cl measure resulted in both false alarm 

generation and false negative results for the fault detection classification but gave reasonable 

results when applied to the diagnostic classification. Although reasonable results were found 

for the diagnostic classifications under optimal λ control the two blade offset case was 

misclassified as the no fault case. Furthermore under the fixed speed control case the non-

fault condition was misclassified as the two blade offset case.  
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Figure 8.10: Spectrums developed via STFT for steady state simulations for each of the differing rotor conditions. 
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Figure 8.11: Spectrums developed via STFT for λ control simulations for each of the differing rotor conditions.   
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Figure 8.12: Spectrums developed via STFT for fixed speed control simulations for each of the differing rotor 

conditions.   
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Figure 8.13: Histograms of the values of the monitoring criterion cl calculated via the STFT for 

differing turbine control scenarios. 

 

 

 

a: Steady State 

 

b: Lambda Control 

 

c: Fixed Speed Control 
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8.4.2 HHT imbalance criterion calculation. 

In the final element of this work the rotor imbalance measurement utilising the Hilbert-

Huang transform was also applied to the simulated turbine datasets. This was done to 

consider the effectiveness of the HHT based algorithm for rotor fault detection and 

diagnosis. Figure 8.14 to Figure 8.16 show the developed spectrums of the measured 

quadrature axis current for the differing simulation settings. Figure 8.14 show the results for 

the steady state simulations whereas Figure 8.15 and Figure 8.16 show the spectrums 

developed for the optimal TSR control and fixed speed control datasets, respectively. It can 

be immediately viewed that the Hilbert spectrums developed show very good time frequency 

resolution. However it can be seen that the Hilbert spectrum developed show far more 

chaotic spectrum structures than the STFT counter parts. Within the spectrums the 

prominent harmonics of interest, namely those at harmonic frequencies of the turbine 

rotational velocity, can be detected to some degree by eye. However, the prominence of the 

6th harmonic of the rotational frequency of the turbine is greatly reduced and the clarity with 

which the amplitudes of interest can be seen if generally reduced due to the chaotic nature 

of the spectrum structures.  

Figure 8.17 show the calculated monitoring criterion Cl calculated via the amplitudes 

extract form the Hilbert spectrums as described in chapters 4 and 8. The histograms show a 

high degree of overlap between the observed values of the monitoring criterion Cl for 

differing rotor conditions. The degree of overlap of the monitoring criterions Cl is 

exacerbated by the inclusion of the turbulence intensity in the simulations. This can be seen 

as Figure 8.17b and a shows a greater degree of overlap that Figure 8.17a.  
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Figure 8.14: Hilbert spectrums calculated for each of the rotor fault conditions and steady-state 

simulations. 
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Figure 8.15: Hilbert spectrums calculated for each of the rotor fault conditions and optimal λ turbine 

control scenarios. 
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Figure 8.16: Hilbert spectrums calculated for each of the rotor fault conditions and fixed speed turbine 

control scenarios. 
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Figure 8.17: Histograms of the values of the monitoring criterion cl calculated via the HHT for differing turbine 

control scenarios. 

 

 

a: Steady State 

 

b: Lambda Control 

 

c: Fixed Speed Control 
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The HHT based Cl measure resulted false alarm generation under the fixed speed control case 

but gave correct detection classification under optimal λ control. Numerous misclassification of 

the fault type or severity were found for both the optimal λ control and the fixed speed control 

cases. 

8.4.3 Transient Monitoring Surface generation – steady state conditions 

Figure 8.18 and Figure 8.19 show the results of the surface generation process for the steady-

state simulations. In these cases the fluid velocity for the simulations was held constant (1 ms-1) 

and the simulated turbine was set to a fixed rotational velocity to achieve a fixed λ value for the 

simulation. Simulations were undertaken at three differing λ values to create a portion of the 

monitoring surface. Specifically the values of λ used for the simulations were of 3.0, 3.6 and 4.2.  

The surface construction followed the process outlined in Section 3.6.8. The surface points were 

created for each test relating to a fixed λ value by applying the TSA process to the raw simulation 

data; the spectrum of the TSA process output was calculated and added to the surface at the 

relevant harmonic numbers and λ value. Figure 8.18 shows the effect of the TSA process on the 

generator quadrature-axis current a) displacement series and b) spectrum. In both parts of this 

figure the effect of the inclusion of data relating to a greater number of rotations in the TSA process 

is highlighted. It can be seen in Figure 8.18a that the TSA process smooth’s the data with 

increasing severity with the inclusion of a greater number of data sets. This can also be seen in the 

spectrums shown in Figure 8.18b whereby the energy in higher harmonics is reduced with an 

increase in the number of rotations included in the averaging process.  
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a) 

 

b) 

Figure 8.18: The effect of the TSA process on the observed generator quadrature axis current A) in the time domain 

and B) in the frequency domain. 

 

 

Figure 8.19 shows the surface generation process for the 3 values of λ simulated. Figure 8.19 a 

shows the results of the TSA process for each of tip-speed ratio value tested. The plots show the 

mean value observed for the full data set and the resampled data from each of the rotations within 

the dataset. The figure highlights the suitability of TSA mean as representing the underlying 

process. Figure 8.19b shows the resultant spectrums observed for the TSA process means for each 

λ value simulated. Finally, Figure 8.19c shows the constructed amplitude surface. This surface can 

then be considered to be the ‘normal’ operating condition output surface for the turbine simulated.  
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c) 
 

a) 

 

b
) 

 

 

Figure 8.19: Output monitoring surface generation process of the Optimum fixed rotational and fluid velocity 

simulations. A) Shows the TSA process, B) shows the amplitude extraction process and C) shows the output portion 

of the monitoring surface for normal operational conditions
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8.4.4 Transient Monitoring Surface generation – Set Point λ Control. 

This section presents the results of the TMS generation for simulations undertaken utilising set-

point λ control. The results here relate to a simulated fluid velocity time series with a turbulence 

intensity of 10%. The process of generating the TMS follows the same procedure outlined in 

Section 3.6.8. However in this case the mean torque or generator current component used to 

normalise the data was not fixed and fluctuated due to the turbulent fluid velocity time series 

utilised within the simulations. To develop a method for effectively normalising the quadrature-

axis current data to allow for the comparison of data recorded under differing fluid velocities and 

turbine rotational velocities the structure of the turbine rotor model was considered. Generally the 

structure of the rotor torque model utilised to construct the simulations used the following general 

form:  

 

 𝜏(𝑡) = 𝜏̅ + 𝜏̅ ∙ 𝐴    (8.1)   

 

                              

Where A, in the case of the turbine rotor model, was a Fourier series representing the fluctuating 

component of the turbine drive shaft torque. In the current model structure the fluctuating 

components are related to turbine rotor operation and more specifically to the effect of turbine 

stanchion interactions and rotor imbalance. Accordingly the fluctuating components captured in A 

are explicitly a function of the turbine rotational displacement. They are also implicitly a function 

of time due to the rotational velocity of the turbine and the effect of the varying fluid velocity and 

the relationship between the two quantities. This has been captured by the scaling of A by the mean 

torque value, 𝜏̅. In the generation and use of the model until this point, the data sets considered 

generally adhered to the condition that, 𝜏̅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This was a simplifying condition which 

resulted from consideration of steady – state turbine operation. However, in the current non steady-
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state operation �̅� = 𝑓(𝑡). Furthermore as the generator output is being considered, as discussed in 

chapter 3, the turbine drive shaft torque is estimated using the generator quadrature axis current iq. 

Considering that the generator quadrature current is being utilised and that due to the non-steady-

state turbine operation the mean current will be a function of time, equation 8.1 becomes: 

 

 𝑖𝑞(𝑡) = 𝑖�̅�(𝑡) + 𝑖�̅�(𝑡) ∙ 𝐴. (8.2) 

 

It then readily follows that the quadrature axis current observed can be normalised in the 

following manner to give an estimate of A, which as proposed relates specifically to turbine 

operational effects:  

 
𝐴 =

𝑖𝑞(𝑡) − 𝑖�̅�(𝑡)

𝑖�̅�(𝑡)
 

(8.3) 

 

This normalisation method allows for the development of the monitoring surface which relates 

to relative fluctuation amplitudes that are resultant from the turbine operational characteristics of 

interest, such as any rotor imbalance and the stantion shadowing effect. However, in utilising such 

a method, it should be considered, that the quantity 𝑖�̅�(𝑡) cannot be measured directly and therefore 

will need to be estimated by some other means.  

To estimate 𝑖�̅�(𝑡) as it was considered that the mean component of the torque developed by the 

turbine rotor is proportional to the square of the fluid velocity impacting upon the turbine rotor as 

presented in Equation (1.12). This gives: 

 𝜏̅(𝑡) ∝ 𝑈(𝑡)2 (8.4) 

 

       

 By the proportionality developed in section 3.4.2 the generator quadrature axis current will 

also be proportional to the square of the upstream fluid velocity.  
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 𝑖�̅�(𝑡) ∝ 𝑈(𝑡)2 (8.5) 

 

Furthermore, under set point λ control the fluid velocity is proportional to the turbine rotational 

velocity as can be seen in Equation (1.13). Therefore the proportionality in equation (8.5) can be 

expressed as, 

 

 𝑖�̅�(𝑡) ∝ 𝑈(𝑡)2 ∝  𝜔(𝑡)2 (8.6) 

 

It follows from the above considerations that the rotational velocity may be useful in 

normalising the observed generator q-axis current to extract A. This will also further support the 

building of a surface which is could be more robust under non-steady state conditions. Lastly, it 

was considered that the fluctuation in the two quantities are of orders of magnitude apart. Due to 

process of calculating A this would lead to incorrect distortions of the observed signal. To find the 

constant of proportionality the ratio of the mean values of the observed quantities was used, 

 𝑚𝑒𝑎𝑛(𝜔(𝑡)2)

𝑚𝑒𝑎𝑛 (𝑖�̅�(𝑡))
=  𝑐 

              

(8.7) 

 

Finally the normalisation is under taken by: 

 
𝐴 =

𝑖𝑞(𝑡) − 𝐶 ∙ 𝜔(𝑡)2

𝐶 ∙ 𝜔(𝑡)2
 

(8.8)  

    

      

 

Where  

 𝑖�̅�(𝑡)  ≈  𝐶 ∙ 𝜔(𝑡)2 (8.9) 
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 Figure 8.20 shows the effect of normalising the generator q-axis current data on the TSA 

process used to construct the output monitoring surfaces. The figure shows the deviation of the 

recorded data from the TSA characteristic with increasing numbers of rotations included in the 

TSA process. The figure shows that normalising the generator output data as described above 

results in better convergence to an underlying TSA characteristic. This was found for each of the 

λ values simulated. It can be seen that minimal convergence to an underlying TSA process was 

observed for the non-normalised simulation data. Furthermore the figure also shows greater 

deviation from the calculated TSA characteristics for the higher tip-speed ratio values.   

 

Figure 8.20: Deviation of the generator quadrature axis datasets form the TSA means characteristics for normalised 

and non- normalised datasets and various TSR values. 

 

 

Figure 8.21 shows the surface generation process for the 3 values of λ simulated. Figure 8.21a 

shows the results of the TSA process for each of tip-speed ratio value tested. The plots show the 

mean value observed for the full data set and the resampled data from each of the rotations within 

the dataset. The figure highlights the suitability of TSA mean as representing the underlying 
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process. Figure 8.21b shows the resultant spectrums observed for the TSA process means for each 

λ value simulated. Finally, Figure 8.21c shows the constructed amplitude surface. This surface can 

then be considered to be the ‘normal’ operating condition output surface for the turbine simulated.  

 

8.4.5 TMS generation under fault conditions – optimal λ control. 

In order to use the developed TMS as a fault detection or diagnosis method the surface 

development method described previously was utilised on the rotor imbalance simulation cases. 

The rotor imbalance simulations were undertaken for the three fault cases for a single set-point tip 

speed ratio value of 3.6 (peak power for the simulated turbine). The surfaces developed for each 

of the fault conditions were then compared with the characteristic surface developed for the normal 

operating case, Figure 8.21c.  

In order to give a numerical measurement of the discrepancies between the characteristic 

surfaces developed for the differing turbine conditions the SOSE error measurement presented in 

Section 3.6.8. Figure 8.22 shows the development of the surface error as more rotations are 

included in the surface characterisation. To compare the standard error observed during 

comparison of the developed normal operating surface with new data relating to normal operating 

conditions a second simulation relating to normal operating conditions was under taken. This data 

set was used to develop a subsequent surface to compare the sum of surface error for the optimum 

conditions with the values observed for the fault conditions.  
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c) 
 

a)  

 
b
)  

 

Figure 8.21: Output monitoring surface generation process of the Optimum for optimal TSR turbine control with 

fluid velocity of TI = 10%. A) Shows the TSA process, B) shows the amplitude extraction process and C) shows the 

output portion of the monitoring surface for normal operational conditions. 
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Figure 8.22 shows that initially, before approximately 5 rotations are included in the 

surface generation process, the sum of surface error measurement is relatively large for all 

cases. As more rotations are included in the surface generation process the sum of surface 

error measurement reduces in all cases. This indicates that the turbine is more accurately 

characterised by increasing amounts of data. As more data is included in the surface 

construction the figure shows that sum of surface error starts to converge to a given value 

for each fault condition. The two blade offset condition sum of surface error measurement 

is the lowest of the fault conditions, this followed by the 3o offset case with the largest sum 

of surface error observed for the 6o offset case.  

  

 

Figure 8.22: Development of the Sum of Surface error value observed for differing rotor conditions plotted 

against the number of rotations included in the surface generation process.  

 

8.4.6 TMS generation – fixed speed control 

Here the process of TMS training as applied to the fixed speed control datasets is 

presented. The dataset utilised here are from three differing tests undertaken with differing 

set-point rotational velocity settings and with a fluid velocity of 1 ms-1 with a turbulence 

intensity of 10 %. The rotational velocities utilised were 229 RPM, 275 RPM and 352 RPM 
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leading to datasets captured with average λ values of 3.0, 3.6 and 4.2, respectively. As with 

the set point λ control datasets relating to the 10 % fluid velocity case the process of 

generating monitoring surfaces for the fixed speed control data required an approach specific 

to the control type. Whereas in the set point λ control tests the normalising of the TMS data 

posed significant challenges the fixed speed control data set posed a challenge regarding the 

λ indexing of the surface. Specifically as the control specification for these data sets were 

set point rotational velocities the fluctuating fluid velocity resulted in fluctuating λ values, 

again by Equation (1.13). This meant that the processing methods used above could not be 

leveraged for this control case as the data sets did not relate to a single λ value. As such an 

indexing method had to be developed in order to construct the appropriate output monitoring 

surface. 

To overcome problems associated with the λ indexing a method was developed in which 

the data collected was categorised into so called, ‘λ bins’. To undertake such a categorisation 

the instantaneous value of λ was calculated for each measured sample in the data sets. The 

instantaneous λ values were calculated using the Equation (1.13) formula from the measured 

rotational velocity of the turbine as well as the simulated fluid velocity value for the given 

sample point. The calculated λ values were then categorised into discrete bins. The bin sizes 

were given by 2 x Δλ and were centred on the λ values used as the surface index. During the 

categorisation process λ bins with less than 150 samples associated with them were 

discarded.  For each bin with more than 150 samples associated with it the corresponding 

turbine position and torque generating current measurements were stored.  

The categorisation process led to the each λ bin having samples associated with it from 

various points in the overall dataset where the calculated λ value fell within the λ bin width. 

As the turbine rotational velocity was constant due to the set point control the fluid velocity 

values associated with the measurements in each bin were approximately constant. The data 
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sets for each λ bin were then compiled to provide composite rotational data sets. The datasets 

of varying numbers of rotations were then input into the TSA algorithm as above and 

processed as described. 

Figure 8.23 shows the composite samples and the resultant time synchronous average for 

the data set relating to the set point turbine velocity of 275 RPM. It can be seen that this 

process was to a degree successful in generating smaller datasets from the overall simulation 

time series which relate to specific λ values. Furthermore, the data sets were then 

successfully used to characterise the drive shaft torque fluctuations (via the proportionality 

with the measured quadrature axis current) used to develop the monitoring output surfaces.  

 
Figure 8.23: Extracted data for differing λ bin values utilised to create TSA characteristics for differing λ 

values. 

 

 

It should be noted that the outputted TSA data used to characterise the average turbine 

behaviour was clearly less representative than the two previous control cases as in some 

instances only 1 or 2 rotations could be constructed for a given λ bin. As a result the TMS 
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developed by taking the spectrum of the TSA output data, shown in Figure 8.24, was more 

erratic in nature the surfaces developed for the previously outlined control scenarios.  

 

 
Figure 8.24: Monitoring output surface created using the TSA characteristics calculated for differing lambda 

values. The surface shown is for the optimum rotor case with a set-point turbine rotational velocity value of 

320 RPM. 

 

However it can be seen in Figure 8.24 the inputted harmonic structure to the simulations 

in the developed output surface. Specifically the prominence of the 3rd and 6th harmonics 

can be easily identified over all TSR indexes. Lastly it was noted that data sets of greater 

length could be used to develop an output surface which was more representative of the 

underlying turbine characteristics.    

 

8.4.7 TMS Generation under Fault Conditions – Fixed Speed Control. 

As in the case of the optimal TSR control datasets and the associated monitoring surfaces 

the sum of surface error relative to the trained normal operating condition surface was 

considered to test the validity of using such characteristic surfaces as monitoring tools. 

Figure 8.25 shows the developed monitoring surfaces for each of the turbine conditions. 

Figure 8.25a and Figure 8.25b both show instances of the developed normal operating 
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condition surfaces. The first of these was used as the surface with which others were 

compared and the second to study the degree of error for surfaces of like conditions. Figure 

8.25c, Figure 8.25d and Figure 8.25e show the surfaces generated for the offset by 3o, the 

offset by 6o and the two blades offset case. The process of taking the sum of the absolute 

error between observed surface harmonics was conducted as outlined in Section 8.4.3.  Here 

however, due to the index scheme outlined in the last section, with the data available, only 

a single value of the sum of surface error could be calculated. Figure 8.26 and Figure 8.27 

show the calculated sum of surface errors. Figure 8.26 shows the un-weighted values of the 

sum of surfaces error, for which differing levels of error were observed for differing fault 

conditions. Figure 8.27 shows the sum of surfaces errors weighted by the number of rotations 

used in the calculation of the surface – this scheme was used to observe the effect of 

considering the degree of belief in the surface value given the number of observations used 

in creating the surface. It can be seen that the effect of this weighting is to reduce the error 

associated with the offset +6o case due to the relative few samples used to construct the 

surface for this case.   
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a) Optimum Training 

  

b) Optimum Test 

 

 

c) Offset +3o 

  

d) Offset +6o 
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e) Offset Two Blades 

Figure 8.25: Set Monitoring Surfaces generated for differing rotor conditions developed utilising the process 

outlined in Section 8.4.6.  

 

 

 

Figure 8.26: Non-weighted sum of surface error values for each of the rotor cases simulated. 

 

 

Figure 8.27: Calculated sum of surface error values weighted by the number of rotations used to generate the 

monitoring surface. 
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 Discussion 

9.1 Introduction 
The research presented in this thesis had the main aim of adding to the understanding and 

application of TST CM. One objective of the research was to produce more realistic 

scenarios under which to test the monitoring approaches highlighted. In this way the thesis 

develops both simulation and testing approaches after each phase of research. This has 

involved the consideration of the design and application of algorithms to enable TST rotor 

fault detection and classification. Accordingly the discussion of the work undertaken is 

presented in a sequential manner considering the impacts of the main features presented in 

each chapter. This includes considerations of how the solutions generated can impact on the 

wider research community.  

9.2 Methodology 
Chapter 3 presents an overview of processes utilised in the testing and development of 

methods and approaches to rotor faults detection and diagnosis. The experimental 

methodology was based on the combination of CFD modelling, scale turbine testing and 

drive train simulation to help appraise the applicability of the outlined methods for rotor 

fault detection and diagnosis. Following this the chapter presents specific elements of the 

techniques and approaches researched for rotor fault detection purposes. The techniques and 

considerations presented were developed based on the research available at that time. 

Physical considerations of the turbine setup and how these impact on the ability of the 

generator signals to be used in rotor fault detection were made. Many of the pre-processing 

and feature extraction approaches utilised throughout the research were presented. The 

function of the work in Chapter 3 was to present the overall methodology adopted in 

conducting the research in this thesis. The chapter thus presents many of the mathematical 
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formulations of processes utilised throughout the body of research conducted. These 

processes are then developed and applied in various formats throughout the simulation and 

testing phases outlined in Section 3.2. 

Chapter 3 also presents the data output from CFD models created by members of the 

CMERG research group to represent the effects of rotor defects. In doing so the chapter 

presents the non-dimensional performance curves and details of the rotor being studied 

throughout the research. 

The work shows that CFD data can be used to develop preliminary CM approaches; in 

this case a rotor imbalance measure was developed via consideration of the torque spectra 

observed under differing rotor conditions. The chapter presented two rotor imbalance 

measures which could be calculated via extraction of the A1ω and A3ω harmonic amplitudes. 

It was shown using the CFD results that the imbalance measure could well be an effective 

rotor fault indicator 

The chapter informs the wider research community by presenting a methodology that 

could be utilised by other researchers in developing TST CM strategies. The outlining of the 

simulation and experimental procedures utilised throughout the research provides an 

illustrative example of utilising CFD modelling, flume testing and bench top testing to 

develop condition monitoring approaches. This approach can be adopted by other 

researchers and developed for use in research relating to many TST CM problems. It was 

also shown that CFD modelling can serve as a useful tool in developing condition 

monitoring systems. Whilst a specific instance was shown here further approaches based on 

models of higher complexity and with the inclusion of differing sub-assemblies and flow 

conditions could well serve as a useful starting point in generating condition monitoring 

approaches.  
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9.3 Initial Steady State Simulations.  
Chapter 4 demonstrates the use of observed spectra of the torsional time-series along with 

the non-dimensional curves for a given turbine rotor the CFD data was used to create a 

parametric rotor model. The model was then used to create more general and stochastic 

torque time series which could be used to test the applicability of the proposed CM 

techniques as applied to more general and less steady state time series.  

The use of STFT and EMD signal processing methods was outlined for use in the 

harmonic amplitude extraction. The algorithms for creating rotor imbalance measures using 

the two differing signal processing techniques were presented. The results of applying the 

rotor imbalance measure to the generated torsional time series provided an indicator as to 

how useful the rotor imbalance measure may be when utilised on more realistic turbine rotor 

torque measurements. This work was a pre-cursor to the use of generator signal monitoring 

as the generator signals were effectively utilised to estimate the drive shaft torque observed.  

In terms of the body of research conducted the work presented in Chapter 4 impacted on 

the subsequent research in two main ways. Firstly, the monitoring approaches developed 

were applied to the data generated in the two subsequent experimental campaigns. Secondly 

the rotor simulation process presented was utilised and developed for drive train test rig 

simulations. The form of the model outlined was altered slightly but the approach was 

developed by considering the strengths and weakness of the approach as applied to the initial 

steady state simulations.  

The process of utilising a set of steady state CFD results to parameterise a turbine rotor 

model was also considered to impact on the wider research field. The ability to parameterise 

the model utilising simplified results and then using the parametric model to generate more 

realistic results could serve as a useful tool for many TST researchers. 
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In terms of condition monitoring output from the work presented in the initial steady state 

simulations chapter, it was found that the rotor imbalance measure as developed via the CFD 

results showed potential as a condition monitoring feature. This was especially true of the 

rotor imbalance measure calculated via the STFT process. The use of EMD was less 

successful but also gave rise to the development of utilising the HHT to overcome some of 

the limitation of using EMD procedure. Furthermore by considering some of the reasons 

behind the weakness of the EMD base rotor imbalance measure the chapter serves to guide 

further research into the use of EMD for TST condition monitoring purposes. 

9.4 Flume based Turbine Development 
Chapter 5 presented an overview of the development process undertaken to create a fully 

integrated model scale test turbine. The work covered many aspects of the implementation 

of a condition monitoring system for TSTs, albeit on a lab testing scale. The software for 

the flume-scale turbine was developed and integrated using three differing platforms. The 

central test control software was developed using NI LabVIEW 2013 and implemented using 

a PXI running the NI real-time operating system. The turbine nose cone measurement system 

was developed for control, data acquisition, storage and communication. As part of this work 

a PLC program was developed for turbine control and generator data acquisition.  The 

software required for the integration of the three nodes or elements of the test setup was also 

undertaken. Communication between the nodes was implemented via both serial and 

Modbus TCP/IP protocols. Furthermore the measurement system was also developed to 

allow for synchronised sampling from each of the differing elements as well as the inclusion 

of the lower sample rate measurements sent via the Modbus TCP/IP link between the central 

control unit, the PXI, and the motor drives.  

The process of creating an embedded nose cone measurement system with on-board 

storage was critical to the work undertaken in developing the lab-scale turbine. The circuitry 

for data capture, signal processing and storage were all developed by the author and 
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implemented via a designed PCB. The on-board storage was seen as an effective method of 

capturing measurement in an environment hampered by electric noise. Specifically the on 

board storage negated the need to send measurements back to the central control system 

since the path of the data cabling by necessity would have to have been through the centre 

of the turbine generator. Understandably this would result in unusable measurements and 

the local storage successfully allowed data capture from the turbine nose cone without 

significant distortion of the captured signals.   

 The effectiveness of adopting a nodal condition monitoring structure was addressed 

within Chapter 5. The chapter discussed the application aspects of a nodal system approach 

highlighting the use of a central processing unit to co-ordinate the system’s actions. The 

design of this system was considered as an application of the nodal architecture approach, 

albeit on a smaller scale than for general turbine deployment. Whilst no condition 

monitoring actions were conducted many of the supporting requirements were enabled and 

much of the data captured during the flume testing campaigns was intended to facilitate 

condition monitoring research.  

 The ability to create working condition monitoring platforms may be considered to 

have been demonstrated through the successful deployment of the scale turbine testing 

system.  This provided an example of a fully developed nodal architecture instance, albeit 

on a small scale. In terms of the impact on the research conducted as part of this thesis the 

development of the lab-scale turbine and the results captured by the completed system 

allowed of further testing of condition monitoring algorithms and developments to the 

parametric rotor model presented in Chapter 4. The turbine as piece of research apparatus 

has also helped to facilitate the research of other colleagues within CMERG and has also be 

used of collaborative research between institutions. 

The wider impact of the outlined scale turbine development was considered to be the 

formation of some good practices in implementing scale turbine setups. The process of on 
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board data capture and storage was, as mentioned, considered to be a highlight of the scale 

turbine implementations and the process was thought to inform the research community in 

its implementation. Other successful aspects of the scale turbine development were 

considered to be the adoption of the nodal structure in the development process and the 

synchronisation of various measurement sources. Furthermore the application developed 

was considered to aid in further research conducted within CMERG as the application serves 

as a baseline application which could well be developed to reflect the needs of further 

research projects. This was considered to be the case the system developed adhered to the 

nodal architecture approach advocated resulting in modular code which can be updated and 

maintain with relative efficiency. 

9.5 Flume Based Rotor Fault testing 
Chapter 6 presents the results of the rotor fault flume based testing. Tests were undertaken 

at various turbine operating points and for differing rotor conditions; the use of offsetting 

turbine blades was considered to be an effective and economical method for simulating rotor 

damage. The chapter presents the non-dimensional characterisation of turbine performance 

under differing rotor conditions. It was found that greater discrepancies between the 

observed non-dimensional values for power and torque were observed at higher tip speed 

ratios. Also the level of discrepancy between the expected and observed non-dimensional 

values increased with increasing fault severity.  

The TSA process outlined in Chapter 3 was used to characterise rotor torque transients 

for differing rotor conditions at a various λ-values. It was found that the TSA process was 

successful in characterising the observed rotor transients for the steady state flume testing. 

This was presented in a novel diagram, Figure 6.11, highlighting the calculated TSA 

characteristics along with the observed raw data across differing portions of the non-

dimensional power curve observed for the given rotor. This was considered to add to the 
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research knowledge by providing a repeatable method for characterising rotor transient 

torques for differing turbine operating conditions.  

Spectral analysis of the rotor torque transients in raw data form and of the TSA outputs 

showed that the TSA output could be analysed in the frequency domain to provide adequate 

characterisations of the lower frequency content of the rotor torque transients. Comparison 

of the TSA developed spectra and the spectra observed for the CFD data presented in 

Chapter 4 showed similar characteristics. The amplitude spectra were shown to be in good 

agreement in structure but exhibited difference in the scaling of amplitudes. This similarity 

in spectra structure confirmed that CFD data could be utilised to construct condition 

monitoring processes but further validation and testing is required.  

A number of condition monitoring approaches were also applied to the captured 

experimental data. Promising results were observed for non-dimensional performance 

monitoring in spite of only taking a point measurement of the upstream fluid velocity. The 

application of the rotor imbalance measure calculated both via the STFT and the HHT were 

effective in highlighting differing rotor conditions. Smoothing of the rotor imbalance criteria 

was applied in both instances and improved the clarity of the results. In the extreme the mean 

value of the imbalance criteria calculated over the entirety of the captured dataset gave the 

clearest results. Fusion of the rotor imbalance measure and the non-dimensional 

performance curve monitoring results provided further clarity in fault detection and 

identification. The process of fitting a two-dimensional normal distribution showed that 

classification of the rotor fault condition based on the two measures was feasible with further 

research.  

The chapter provided a number of results and the details of processes which could be of 

value to the TST research community. The process of the characterising rotor torque 

transients over a range of λ-values provided a non-dimensional transient characterisation of 

the observed rotor torque. This could well be a useful method of making comparisons of the 
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transient nature of the rotor torque observed for differing rotor configurations. As mentioned 

it was also shown that utilising CFD data for condition monitoring hypothesis generation 

could well be a useful tool for condition monitoring researchers. The results were also 

considered to show the effectiveness of the rotor imbalance measure for rotor anomaly 

detection. This could well provide a novel and fruitful area for further research. Lastly the 

fusion of two fault indicator metrics was shown to increase fault clarity of fault diagnosis 

and this too should prompt further research into fault indicator fusion.   

9.6 Drive Train Simulation Development  
The research extending the parametric TST rotor model to facilitate non-steady state 

drive train simulations was presented in Chapter 7. This included developing a Matlab script 

to create more representative plug flow fluid velocity time series. The script developed was 

based on the work of (Val et al, 2015) and was created to output fluid velocity time series 

which exhibited Von Karman spectral properties and the variance levels in line with 

turbulence intensities required. The process in itself was not novel but was required to 

consider the impact of the more representative fluid velocity spectral properties on the 

application of the condition monitoring procedures.   

The chapter also presents the development of the parametric rotor torque model structure 

which was developed in the form of a single 8-term Fourier series plus a DC offset value. 

This model was appraised via the input of the model parameters, turbine position, rotation 

velocity, fluid velocity and related non-dimensional torque coefficient. The development 

allowed the inputting of model parameters for a variety of tip-speed-ratio values thus 

allowing non-steady-state simulations. By the very nature of testing of monitoring 

approaches under non-steady state conditions this development also allowed the original 

assertion of the applicability of utilising the generator quadrature axis current as a measure 

of the developed turbine torque to be studied.  In developing the model structure it was also 

shown that for the rotor under consideration the relative amplitudes of the rotor torque 
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spectra for a given rotor condition and tip-speed-ratio were in close proximity for differing 

fluid and rotation velocity values.  

In regard to the development of the turbine model, modifications were made to allow for 

implementation of the rotor model in hardware-in-the-loop simulations. These modifications 

included developing turbine control approaches for speed and tip speed ratio control. The 

developments also meant the adaption of the original Matlab script developed for real-time 

implementation undertaken via the NI Compact RIO platform. The real time calculation of 

the model required the development of drive control processes and parameter look-up in real 

time.  

In terms of the impact of this work on the research community it was considered that the 

approach developed could be utilised for a variety of differing fault scenarios. The surfaces 

used for parameter lookup may be extended to included transients introduced by differing 

drive train sub-assemblies. In this way the approach can be utilised in a number of ways 

including the simulation of bearing and gearbox fault conditions. The developed simulation 

can also be extended to incorporate a number of differing rotor fault conditions to further 

supplement the research presented. As such the system developed was considered to form 

the first instance of an integrated fault simulation test bench which could be utilised for 

testing and development of a number of differing TST condition monitoring approaches.  

This work also highlights the strength in the overall strategy of allowing differing 

experimental and simulation campaigns to impact upon each other. The model structure was 

developed utilising CFD data and then refined using acquired flume experimentation data. 

This process allowed for significant time savings when compared to generating such 

information via flume testing or CFD modelling alone. Creating the parametric surfaces was 

based on intuition or from full scale deployment data. With a minimal amount of further 

development the simulation process can be utilised for turbine control research. In such 
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research the test rig setup and simulation process can be utilised to understand the differing 

trade-offs between various control strategies.    

9.7 Drive Train simulation results  
Chapter 8 outlined the differing turbine control scenarios, rotor conditions and fluid 

velocity characteristics simulated via the drive train test rig setup. Based on the results of 

preliminary testing the required changes to the simulation setup were presented. These took 

into account the regeneration characteristics of the PMSMs utilised to create the simulations 

as well as the real-time data feedback rate from the drive set and the impact this had on the 

simulations. The changes made required the simulation of a larger diameter turbine with the 

integrated motor in the test rig simulating the transient torque structures output from a 

‘virtual gearbox’ with a gear ratio of N = 10. The inclusion of such changes was seen as a 

successful approach to implementing condition monitoring research using the drive train test 

rig. 

The results of the fluid velocity time-series generation process outlined in Chapter 7 are 

also presented. The results highlight the suitability of the mean, variance and spectral 

characteristics of the fluid velocity time-series generated via the Monte Carlo inverse Fourier 

transform simulation method. The time series generated were considered to allow for more 

realistic appraisal of the application of the outlined monitoring techniques as well as realistic 

application of newly developed techniques based on the surface development process 

outlined in Chapter 7. An overview of the results generated under a number of  turbine 

control settings for the optimal rotor setup were also presented to give the reader an overview 

of the datasets created utilising the simulation approach. The datasets developed, after some 

cleaning, were particularly suitable for CM analysis due to synchronised data capture from 

each of the two drives for each of the quantities measured. Furthermore the output of the 

real-time model calculations were also synchronised with those measured for the PMSMs. 
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Calculating the torque spectra at various points in the simulation process also confirmed the 

correct simulation of torsional transients via the hardware-in-the-loop simulation setup.  

In Chapter 8 the results of using the STFT amplitude extraction method were presented 

as histograms of the observed values of the rotor imbalance criteria for each of the turbine 

control cases. It was observed that, as already shown in Chapter 4, the imbalance criteria 

produced positive results for both detection and diagnosis of the fault cases considered for 

the steady state simulations. The considerations outlined above relating to the degree of 

success of the approach and the mechanisms behind the observed results were considered to 

apply to this application of the imbalance criterion to the steady state simulations and as 

such and for brevity are not discussed any further. Of greater significance are the results of 

the imbalance criteria observed for the non-steady state simulation cases.  

The histogram of rotor imbalance criteria observed for the optimal λ control non-steady 

state case, Figure 8.13b, shows a marked reduction in the effectiveness of the method for 

minor fault detection under the given control scheme and fluid velocity characteristics. 

Whilst the offset +6o can readily be detected utilising the rotor imbalance criteria the 

distributions of the monitoring criteria for the optimum and remain fault cases exhibit 

prohibitively large degrees of overlap. In consideration of the relatively un-successful 

application of the rotor imbalance criteria to the optimal λ control non-steady state 

simulations two main aspects of the process were considered. Firstly it was though that the 

process of extracting the amplitudes from the spectrums generated for these simulation cases 

posed difficulties. Whereas in the steady state simulations the fluctuation of the turbine 

rotational velocity was minimal in the case of optimal λ control far greater fluctuations 

occurred. The fluctuation in turbine rotational velocity meant that frequencies which were 

harmonics of the rotational velocity were varying far more significantly than in the steady 

state case.  
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In terms of extraction of the amplitudes relating to the rotational harmonics of interest a 

more involved and less well defined method was required. In this case the rotational velocity 

time series for each case was used. For each time sample of the observed spectrograms the 

greatest amplitude observed over a range of frequencies centred at the harmonic of interest 

was extracted and stored to generate either the A1 or A3 time series. This method is prone to 

inaccuracies as were other methods considered. Inaccuracies arose from the incorrect 

identification of the amplitude to be extracted, due to the averaging of the spectrum over 

periods when the turbine velocity is fluctuating (windowing) and choosing the correct 

rotational frequency value for the spectrogram time step.  

The second perceived shortcoming of the rotor imbalance measure was the non-existence 

of the required steady-state conditions for reasonable approximation of the turbine drive 

shaft torque via the generator quadrature axis current. This was known to be the case prior 

to the application of the process to the simulation data. The goal was to consider how 

effective detection and diagnostic processes dependent on the steady-state assertion were 

under non-steady state conditions. Lastly, it was also considered that the spectral 

characteristic of the simulated turbulent characteristics impacted on the low frequency 

amplitudes of interest as was considered to be the case in the flume testing setup, albeit to a 

lesser degree.  

The application STFT based rotor imbalance criteria to the fixed speed turbine control 

simulations exhibited similar results to those of the optimal λ control. The results were 

similar in that the imbalance criteria was successful in identification of the +6o offset rotor 

fault case but a prohibitively high degree of overlap between the distributions of the rotor 

imbalance criteria for each of the other rotor fault cases was observed. Whereas the problems 

arose in the optimal λ case due to the fluctuating rotational velocity of the turbine these 

problems were considered to not embody the causes of the reduced effectiveness of the rotor 

imbalance measurement for the fixed speed control case. In the fixed speed control case the 
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reduced effectiveness of the process was attributed to the impact of the spectral 

characteristics of simulated fluid velocity time series on the observed quadrature axis 

spectrograms. Specifically the low frequency content of the simulated fluid velocity time 

series strongly impacted on the ability to extract the features in A1 that are solely resultant 

from the effects of rotor imbalance.  The low frequency fluctuation in the simulated turbulent 

fluid velocity time series impacts on the ability to extract the imbalance features in A1 in 

two ways. From the standard set of equations presented in Chapter 1 it can be seen that the 

torque developed via the turbine rotor is proportional to the square of the fluid velocity at 

the turbine rotor. Furthermore, due to the constant rotational velocity of the turbine the 

changes in fluid velocity result in fluctuating tips speed ratios which in turn impact on the 

torsional constant in Equation (1.11).  

Similar results in both cases were found for the HHT case. However in general the ability 

to detected and diagnose turbine rotor anomalies was reduced when using the HHT process 

for feature extraction. 

The chapter then goes on to describe the results of the novel TMS condition monitoring 

approach based on the surface generation process outlined in Chapter 7. The creation of the 

surfaces for the steady-state test scenarios was straightforward but further normalisation and 

indexing schemes required for application of the process to non-steady state turbine 

operating scenarios were outlined and developed with some degree of success. In terms of 

the optimal λ control scenarios the TMS generation process was undertaken via a novel 

normalisation process as applied to the measured generator quadrature axis current. The 

normalisation process made use of the proportionality between the observed drive shaft 

torque and the square of the rotor velocity as imposed by the optimal TSR control strategy. 

In this way data segments feed into the TSA process required to create the monitoring 

surfaces could be normalised to compare the TSA outputs for a given λ value at differing 
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fluid velocities and turbine rotational velocities. This was considered to be a strong aspect 

of the monitoring surface technique as applied to the optimal λ control scheme data sets.   

Developing the TMS generation process to a condition monitoring procedure was 

undertaken by considering the distortion of the monitoring surfaces under anomalous rotor 

condition relative to the generated surface for optimal rotor conditions. This was achieved 

by considering the SOSE between the surfaces generated under anomalous conditions and 

optimal conditions. It was found that varying fault conditions gave varying sum of surface 

error values. Also it was found that as greater numbers of rotations were utilised in 

constructing the surfaces for each differing condition the sum of surface error relative to the 

normal operating surface seemed to converge to a given value. This was considered to help 

provide stability and avoid false alarms when generating detection and diagnostic reasoning 

based on the approach. The relative success and stability of the method in spite of fluctuating 

fluid velocities and rotational velocities was seen as a significant result. This result indicates 

that the method utilised was sound when faced with non-steady state turbine operation and 

optimal TSR turbine control. Another aspect of the process that was seen as an asset was 

that the method didn’t rely on fluid velocity measurements in order to construct the 

normalised monitoring surfaces. This was considered to allow for the application of the 

method to a variety of optimal TSR turbine control schemes, such as hill climb and optimal 

torque turbine control.  

The TMS construction for the fixed speed turbine control case required a more involved 

indexing approach as a result of the fluctuations in λ values brought about by the simulated 

turbulent fluid velocity time series used for the simulations. This more involved approach 

involved segmenting the simulation into so called, λ–bins. The data within each bin was then 

used to create the TSA output for the given λ value with the results of the TSA process used 

to create the monitoring surface. This approach is novel and represents as a successful 

contribution to the TST condition monitoring research field.  
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The process showed a degree of success; however, due to the nature of the method only 

a point estimate of the sum of surface error was output for each dataset. Whilst differing 

levels of SOSE for differing rotor conditions were observed further validation tests are 

required to make any definite claims as to the effectiveness of the method. Whilst no real 

validation of the effectiveness of the method was able to be given the application of the 

process gave rise to some important considerations. The categorisation into λ-bins required 

knowledge of the fluid velocity and rotational velocity of the turbine for each data point 

categorised. As mentioned the process of acquiring fluid velocity measurements for each 

data point maybe difficult to obtain. Furthermore, the use of a point estimate of the fluid 

velocity to characterise the nature of the fluid field passing the turbine rotor could also lead 

to inaccuracies in the process. This was seen to be a drawback in using the developed method 

but more research will need to be conducted to fully quantify the effects of fluid velocity 

measurements on the surface generation process.  

The research presented in Chapter 8 highlights a number of promising condition 

monitoring approaches. The results reported show varying degrees of successful 

implementation but was seen as providing a starting point for more in-depth research. 

Developments and further testing of both the imbalance criteria and the ‘monitoring surface’ 

development process can be undertaken based on the research presented to more fully realise 

the application of such techniques. The successful simulation of 1-dimensional fluid velocity 

values which yielded results with the desired mean, variance and spectral characteristics as 

part of the overall simulation process was also considered to be of interest to TST condition 

monitoring research as a whole. Again the results provide support for the methodology 

adopted in generating condition monitoring knowledge based on the application of 

information from three supporting sources. Specifically the effectiveness of the proposed 

algorithms has been successfully appraised in more realistic scenarios generated via a 

combination of the insights draw from each stage of simulation and experimentation. 
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 Conclusions  

10.1 Conclusions 

 

The following conclusions and contributions to the field were generated by the research 

presented: 

 An approach to the testing and development of CM processes applied to rotor 

imbalance monitoring of TSTs was created and detailed. Specifically, the research 

presented a process of utilising data from CFD simulations, parametric model 

simulations, flume testing and drive train testing to both test and develop the proposed 

CM processes. A similar approach can be followed by other researchers in the 

community based on the details presented. 

 A parametric modelling procedure was created to simulate expected drive train torque 

transient characteristics. The process was developed to be flexible and was 

successfully parameterised using CFD data calculated for a single operating condition 

and flume data measured over a range of operating conditions.  

 The parametric model was created to allow for flexibility in inputted fluid velocity 

time series. Uses of a naïve approach and a more representative approach to fluid 

velocity simulation coupled to the parametric model were demonstrated.  

 The parametric modelling process was successfully adapted for real-time hardware in 

the loop simulations. This process was central to testing CM approaches under more 

realistic TST operating scenarios. The process was also a convenient method for 

creating representative drive train simulations from CFD data and experimental data 

which otherwise would be difficult to incorporate in real-time simulations. This also 
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holds for the output of BEMT modelling exercises and can service a useful process 

for a variety of researchers due to the convenience in model parameterisation and real-

time implementation.  

 The measurement, data acquisition and control systems for a scale model turbine were 

developed as part of the research activities undertaken by this researcher. The 

development included the successful implementation of both central and turbine nose 

cone level data capture. The development process can be used by the research 

community to aid in future turbine development activities. 

 A number of CM processes were developed and tested based on turbine generator 

signal monitoring. Three classes of CM processes were developed based on generator 

signal measurement, namely: Cp monitoring, rotor imbalance criterion monitoring and 

transient characteristic surface monitoring. In the case of the rotor imbalance criteria 

algorithms the effectiveness of such approaches was appraised using naïve Bayes 

classifiers.  

 The Cp monitoring approach was applied to data captured during flume based 

experiments under a number of operating λ. The results of the Cp monitoring approach 

were promising and were also successfully incorporated into an ensemble rotor 

imbalance indicator when coupled with the rotor imbalance measure presented.   

 A rotor imbalance measure was developed using legacy CFD data. The process 

considered the ratio of 1st to 3rd harmonic amplitudes of the rotational velocity of the 

turbine. The imbalance measures presented were successfully calculated using a 

number of amplitude extraction processes, namely STFT, EMD and HHT. 

Furthermore the process of applying the measurement to drive shaft torque data and 

generator quadrature axis current measurements was demonstrated.  
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 The rotor imbalance measure was successfully applied to data from a variety of 

sources. The processes were initially applied to steady-state turbine simulation data; 

the results of this application gave input into the development of the imbalance 

measure criterion approaches. The developed approaches were then tested using data 

from a flume testing campaign. Lastly the imbalance measures were applied to non-

steady state turbine simulations including two differing turbine control 

implementations. 

 The imbalance measures showed a high degree of success when applied to near steady 

state TST operation data. The process of the imbalance measure was less successful 

when applied to the non-steady state data sets.  

 A set of approaches to turbine transient characterisation, based on the development of 

TMSs, were applied to the non-steady state data. The approaches were data intensive 

and gave promising but non-conclusive results. Further testing these processes is 

required to understand if the normalisation and characteristic surface generation 

process are effective. 

 An ensemble rotor imbalance condition indicator was developed via the combination 

of the Cp monitoring and imbalance criterion monitoring data. The indicator applied 

to the flume testing data and gave promising results. Further work should be conducted 

to test the differing approaches to ensemble condition indictors. Furthermore work 

looking into the performance of such indicators under non-steady state turbine 

operation should be undertaken. 

10.2 Further work.  

The research presented outlines a novel approach to efficient and flexible simulation of 

TST rotor torque and presents some CM approaches based on both flume scale testing and 

CFD simulations. As with any research presenting novel approaches a variety of pathways 
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for continuing the research and developing its applicability exist. Further work is 

recommended in the following areas:  

 Development and testing of spectrogram based extraction of the monitoring 

criterion C. The presented shows what could be considered the first non-trivial 

approach to calculating a monitoring criterion C. As was seen in Chapter 8 the 

monitoring criterion C performed poorly under non-steady state conditions - 

development of each process in the calculation of the condition monitoring 

criteria C could improve this performance.  

 Testing of developed monitoring criteria, C, at differing turbine scales. The 

monitoring criterion C was applied to 1/20th scale test data and to 1/5th scale drive 

train simulations under specific control strategies. In order to gauge the 

applicability of this approach across the TST industry the approach would have 

be proven at differing turbine scales – ideally the scales should be dictated by the 

rotor sizes currently or foreseen as being used within the industry.  

 The condition monitoring criteria, C, could also be tested under more dynamic 

flow conditions including profiled flows, flows of higher turbulence intensities 

than 10% with differing integral length scales and flows subjected to waves.  

 The use of the TMS will should be tested further at the conditions outlined within 

the thesis gain further insight into their application. The TMS surfaces if proved 

to be useful can then be subjected to all the above considerations. Lastly, the 

discretisation of the harmonic index of the TMS surface could be increased 

subject to great volumes of data. Likewise the range of harmonics captured by the 

surfaces could be increased. This would allow for the study of the usefulness of 

the TMS to detect other drive train faults.  
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 In all cases more realistic rotor faults could be simulated and used to test the CM 

approaches against.  

 The parametric model developed can be extended to include higher frequencies 

allowing the simulation of further drive train faults if correctly parameterised.  

 Lastly, the parametric model approach should be developed for more dynamic sea 

conditions. This may require the inclusion of more sinusoids in the model or 

possibly frequency or amplitude modulation terms. This work could be of great 

importance and may allow turbine developers to simulate device behaviour under 

numerous sea conditions for both development and CM generation approaches.  
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A. Appendix: Naïve Bayes 

Classification Results. 

 

A1. Initial Steady State Simulations  

 

Table A.1: Naïve Bayes classifier results for rotor fault detection for the STFT C imbalance criteria, TI = 

0.5%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 1 0 

Offset 0.5o  0 1 

Offset 3o  0 1 

Offset 6o  0 1 

 

 

Table A.2: Naïve Bayes classifier results for rotor fault diagnosis for the STFT C imbalance criteria, TI = 

0.5%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 1 0 0 0 

Offset 0.5o  0 1 0 0 

Offset 3o  0 0 0.86 0.14 

Offset 6o  0 0 0.20 0.80 

 

 

Table A.3:  Naïve Bayes classifier results for rotor fault detection for the STFT C imbalance criteria, TI = 

1%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.92 0.08 

Offset 0.5o  0.05 0.95 

Offset 3o  0 1 

Offset 6o  0 1 
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Table A.4:  Naïve Bayes classifier results for rotor fault diagnosis for the STFT C imbalance criteria, TI = 

1%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.93 0.07 0 0 

Offset 0.5o  0.05 0.95 0 0 

Offset 3o  0 0 0.58 0.42 

Offset 6o  0 0.01 0.20 0.79 

 

Table A.5:  Naïve Bayes classifier results for rotor fault detection for the STFT C imbalance criteria, TI = 

2%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.76 0.24 

Offset 0.5o  0.35 0.65 

Offset 3o  0 1 

Offset 6o  0 1 

 

Table A.6:  Naïve Bayes classifier results for rotor fault diagnosis for the STFT C imbalance criteria, TI = 

2%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.84 0.15 0 0.01 

Offset 0.5o  0.43 0.42 0.05 0.10 

Offset 3o  0.01 0.08 0.66 0.25 

Offset 6o  0 0.20 0.44 0.36 

 

 

Table A.7: Naïve Bayes classifier results for rotor fault detection for the STFT Cl imbalance criteria, TI = 

0.5%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 1 0 

Offset 0.5o  0.02 0.98 

Offset 3o  0 1 

Offset 6o  0 1 
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Table A.8:  Naïve Bayes classifier results for rotor fault diagnosis for the STFT Cl imbalance criteria, TI = 

0.5% 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 1 0 0 0 

Offset 0.5o  0.04 0.96 0 0 

Offset 3o  0 0 0.88 0.12 

Offset 6o  0 0 0.21 0.79 

 

Table A.9: Naïve Bayes classifier results for rotor fault detection for the STFT Cl imbalance criteria, TI = 

1%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.93 0.07 

Offset 0.5o  0.05 0.95 

Offset 3o  0 1 

Offset 6o  0 1 

 

Table A.10: Naïve Bayes classifier results for rotor fault diagnosis for the STFT Cl imbalance criteria, TI = 

1% 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.92 0.08 0 0 

Offset 0.5o  0.04 0.96 0 0 

Offset 3o  0 0 0.60 0.40 

Offset 6o  0 0.03 0.23 0.74 

 

 

Table A.11: Naïve Bayes classifier results for rotor fault detection for the STFT Cl imbalance criteria, TI = 

2%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.63 0.37 

Offset 0.5o  0.23 0.77 

Offset 3o  0.00 1.00 

Offset 6o  0.00 1.00 
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Table A.12: Naïve Bayes classifier results for rotor fault diagnosis for the STFT Cl imbalance criteria, TI = 

2% 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.62 0.37 0.00 0.02 

Offset 0.5o  0.22 0.60 0.07 0.11 

Offset 3o  0.00 0.06 0.71 0.23 

Offset 6o  0.00 0.14 0.51 0.34 

 

 

 

Table A.13: Naïve Bayes classifier results for rotor fault detection for the EMD C imbalance criteria, TI = 

0.5%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.46 0.54 

Offset 0.5o  0.19 0.81 

Offset 3o  0.03 0.97 

Offset 6o  0.00 1.00 

 

 

Table A.14: Naïve Bayes classifier results for rotor fault diagnosis for the EMD C imbalance criteria, TI = 

0.5%. 

Condition (Class) 
 
Condition (Data) 

No Fault Offset 0.5o Offset 3o Offset 6o 

No Fault 0.97 0.00 0.01 0.01 

Offset 0.5o 0.95 0.00 0.01 0.03 

Offset 3o 0.76 0.00 0.07 0.17 

Offset 6o 0.86 0.00 0.04 0.09 
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Table A.15: Naïve Bayes classifier results for rotor fault detection for the EMD C imbalance criteria, TI = 

1%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.15 0.85 

Offset 0.5o  0.07 0.93 

Offset 3o  0.02 0.98 

Offset 6o  0.03 0.97 

 

 

Table A.16: Naïve Bayes classifier results for rotor fault diagnosis for the EMD C imbalance criteria, TI = 

1%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.90 0.00 0.02 0.08 

Offset 0.5o  0.88 0.00 0.02 0.10 

Offset 3o  0.57 0.00 0.09 0.34 

Offset 6o  0.79 0.00 0.04 0.17 

 

Table A.17: Naïve Bayes classifier results for rotor fault detection for the EMD C imbalance criteria, TI = 

2%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.15 0.85 

Offset 0.5o  0.23 0.77 

Offset 3o  0.03 0.97 

Offset 6o  0.06 0.94 

 

Table A.18: Naïve Bayes classifier results for rotor fault detection for the EMD C imbalance criteria, TI = 

2%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.01 0.90 0.02 0.07 

Offset 0.5o  0.00 0.93 0.01 0.05 

Offset 3o  0.02 0.72 0.05 0.21 

Offset 6o  0.02 0.79 0.04 0.15 
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Table A.19: Naïve Bayes classifier results for rotor fault detection for the EMD Cl imbalance criteria, TI = 

0.5%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.45 0.55 

Offset 0.5o  0.19 0.81 

Offset 3o  0.03 0.97 

Offset 6o  0.00 1.00 

 

Table A.20: Naïve Bayes classifier results for rotor fault diagnosis for the EMD Cl imbalance criteria, TI = 

0.5%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.65 0.14 0.06 0.15 

Offset 0.5o  0.44 0.17 0.15 0.25 

Offset 3o  0.09 0.18 0.47 0.26 

Offset 6o  0.05 0.23 0.36 0.36 

 

Table A.21: Naïve Bayes classifier results for rotor fault detection for the EMD Cl imbalance criteria, TI = 

1%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.14 0.86 

Offset 0.5o  0.07 0.93 

Offset 3o  0.02 0.98 

Offset 6o  0.03 0.97 

 

 

Table A.22: Naïve Bayes classifier results for rotor fault diagnosis for the EMD Cl imbalance criteria, TI = 

1%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.29 0.18 0.20 0.33 

Offset 0.5o  0.15 0.13 0.28 0.43 

Offset 3o  0.05 0.02 0.70 0.23 

Offset 6o  0.07 0.09 0.44 0.40 
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Table A.23: Naïve Bayes classifier results for rotor fault detection for the EMD Cl  imbalance criteria, TI = 

2%. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.14 0.86 

Offset 0.5o  0.21 0.79 

Offset 3o  0.02 0.98 

Offset 6o  0.05 0.95 

 

Table A.24: Naïve Bayes classifier results for rotor fault detection for the EMD Cl imbalance criteria, TI = 

2%. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 0.5o  Offset 3o  Offset 6o  

No Fault 0.41 0.22 0.24 0.13 

Offset 0.5o  0.53 0.18 0.21 0.09 

Offset 3o  0.11 0.12 0.38 0.39 

Offset 6o  0.26 0.13 0.31 0.30 

 

 

 

 

 

A2. Flume Testing 

 

Table A.25: Naïve Bayes classifier results for rotor fault detection for the STFT based Cl imbalance criteria. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.10 0.90 

Offset 3o  0.03 0.97 

Offset 6o  0.00 1.00 

Offset Two Blades 0.10 0.90 
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Table A.26: Naïve Bayes classifier results for rotor fault diagnosis for the STFT based Cl imbalance criteria. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.60 0.18 0.00 0.22 

Offset 3o 0.27 0.66 0.00 0.07 

Offset 6o 0.00 0.03 0.97 0.00 

Offset Two Blades 0.34 0.20 0.00 0.47 

 

Table A.27: Naïve Bayes classifier results for rotor fault detection for the STFT based Cl imbalance criteria 

after smoothing. 

Condition (Class) 
 

Condition (Data) 

No Fault Fault 

No Fault 0.77 0.23 

Offset 3o 0.09 0.91 

Offset 6o 0.00 1.00 

Offset Two Blades 0.40 0.60 

 

Table A.28: Naïve Bayes classifier results for rotor fault diagnosis for the STFT based Cl imbalance criteria 

after smoothing. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.85 0.03 0.01 0.12 

Offset 3o 0.22 0.77 0.01 0.00 

Offset 6o 0.00 0.00 1.00 0.00 

Offset Two Blades 0.35 0.00 0.01 0.64 

 

 

Table A.29: Naïve Bayes classifier results for rotor fault detection for the HHT based Cl imbalance criteria. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.12 0.88 

Offset 3o 0.02 0.98 

Offset 6o 0.00 1.00 

Offset Two Blades 0.12 0.88 

 



269 

 

Table A.30: Naïve Bayes classifier results for rotor fault diagnosis for the HHT based Cl imbalance criteria. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.41 0.12 0.03 0.44 

Offset 3o 0.77 0.11 0.02 0.10 

Offset 6o 0.03 0.46 0.51 0.00 

Offset Two Blades 0.39 0.05 0.00 0.56 

 

Table A.31: Naïve Bayes classifier results for rotor fault detection for the HHT based Cl imbalance criteria 

after smoothing. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Offset 
Two 
Blades 

No Fault 0.38 0.62 

Offset 3o 0.14 0.86 

Offset 6o 0.00 1.00 

Offset Two Blades 0.35 0.65 

 

 

Table 10.32: Naïve Bayes classifier results for rotor fault diagnosis for the HHT based Cl imbalance criteria 

after Smoothing. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.70 0.18 0.00 0.12 

Offset 3o 0.42 0.58 0.00 0.00 

Offset 6o 0.00 0.24 0.76 0.00 

Offset Two Blades 0.53 0.09 0.00 0.38 

 

 

Table A.33: Naïve Bayes classifier results for rotor fault diagnosis using ensemble of STFT based Cl 

imbalance criteria and Cp error. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.02 0.98 

Offset 3o 0.00 1.00 

Offset 6o 0.00 1.00 

Offset Two Blades 0.00 1.00 



270 

 

Table A.34: Naïve Bayes classifier results for rotor fault diagnosis using ensemble of STFT based Cl 

imbalance criteria and Cp error. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.78 0.22 0.00 0.00 

Offset 3o 0.01 0.99 0.00 0.00 

Offset 6o 0.00 0.00 1.00 0.00 

Offset Two Blades 0.00 0.00 0.00 1.00 

 

 

Table A.35: Naïve Bayes classifier results for rotor fault detection using ensemble of STFT based Cl 

imbalance criteria after smoothing and Cp error. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.05 0.95 

Offset 3o 0.00 1.00 

Offset 6o 0.00 1.00 

Offset Two Blades 0.00 1.00 

 

Table A.36: Naïve Bayes classifier results for rotor fault diagnosis using ensemble of STFT based Cl 

imbalance criteria after smooth and Cp error. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.96 0.04 0.00 0.00 

Offset 3o 0.01 0.99 0.00 0.00 

Offset 6o 0.00 0.00 1.00 0.00 

Offset Two Blades 0.00 0.00 0.00 1.00 

 

 

Table A.37: Naïve Bayes classifier results for rotor fault detection using ensemble of HHT based Cl 

imbalance criteria and Cp error. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.82 0.18 

Offset 3o 0.30 0.70 

Offset 6o 0.00 1.00 

Offset Two Blades 0.00 1.00 
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Table 10.38: Naïve Bayes classifier results for rotor fault diagnosis using ensemble of HHT based Cl 

imbalance criteria and Cp error. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.98 0.02 0.00 0.00 

Offset 3o 0.10 0.90 0.00 0.00 

Offset 6o 0.00 0.00 1.00 0.00 

Offset Two Blades 0.00 0.00 0.00 1.00 
 

 

Table A.39: Naïve Bayes classifier results for rotor fault detection using ensemble of HHT based Cl 

imbalance criteria after smoothing and Cp error. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.86 0.14 

Offset 3o 0.21 0.79 

Offset 6o 0.00 1.00 

Offset Two Blades 0.00 1.00 

 

 

Table A.40: Naïve Bayes classifier results for rotor fault diagnosis using ensemble of HHT based Cl 

imbalance criteria after smoothing and Cp error. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.98 0.02 0.00 0.00 

Offset 3o 0.02 0.98 0.00 0.00 

Offset 6o 0.00 0.00 1.00 0.00 

Offset Two Blades 0.00 0.00 0.00 1.00 
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A3. Drive Train Simulations.  

 

Table A.41: Naïve Bayes classifier results for rotor fault detection for the STFT based Cl imbalance criteria 

for the optimal λ control. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.45 0.55 

Offset 3o 0.00 1.00 

Offset 6o 0.00 1.00 

Offset Two Blades 0.60 0.40 

 

 

 

 

Table A.42: Naïve Bayes classifier results for rotor fault diagnosis for the STFT based Cl imbalance criteria 

for the optimal λ control. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.46 0.29 0.00 0.25 

Offset 3o 0.00 0.87 0.03 0.11 

Offset 6o 0.00 0.00 1.00 0.00 

Offset Two Blades 0.67 0.02 0.00 0.31 

 

 

 

Table A.43: Naïve Bayes classifier results for rotor fault detection for the STFT based Cl imbalance criteria 

for the fixed speed control. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.13 0.88 

Offset 3o 0.00 1.00 

Offset 6o 0.00 1.00 

Offset Two Blades 0.10 0.90 
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Table A.44: Naïve Bayes classifier results for rotor fault diagnosis for the STFT based Cl imbalance criteria 

for the fixed speed control. 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.14 0.19 0.00 0.67 

Offset 3o 0.00 0.63 0.00 0.37 

Offset 6o 0.00 0.00 1.00 0.00 

Offset Two Blades 0.10 0.25 0.00 0.65 

 

 

 

Table 10.45: Naïve Bayes classifier results for rotor fault detection for the HHT based Cl imbalance criteria 

for the optimal λ control. 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.79 0.21 

Offset 3o 0.15 0.85 

Offset 6o 0.00 1.00 

Offset Two Blades 0.01 0.99 

 

 

 

 

Table A.46: Naïve Bayes classifier results for rotor fault diagnosis for the HHT based Cl imbalance criteria 

for the optimal λ control 

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.88 0.12 0.00 0.00 

Offset 3o 0.23 0.29 0.00 0.48 

Offset 6o 0.00 0.07 0.24 0.69 

Offset Two Blades 0.02 0.17 0.10 0.71 
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Table A.47: Naïve Bayes classifier results for rotor fault detection for the HHT based Cl imbalance criteria 

for the fixed speed control 

Condition (Class) 
 

Condition (Data) 

No 
Fault 

Fault 

No Fault 0.00 1.00 

Offset 3o 0.00 1.00 

Offset 6o 0.00 1.00 

Offset Two Blades 0.00 1.00 

 

 

Table 10.48: Naïve Bayes classifier results for rotor fault diagnosis for the HHT based Cl imbalance criteria 

for the fixed speed control.  

Condition (Class) 
 

Condition (Data) 

No Fault Offset 3o Offset 6o 
Offset Two 
Blades 

No Fault 0.00 0.07 0.49 0.45 

Offset 3o 0.00 0.23 0.10 0.67 

Offset 6o 0.00 0.34 0.24 0.43 

Offset Two Blades 0.01 0.52 0.10 0.36 

 

 

 

 


