

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/98651/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Sims, Rebecca , ARUK Consortium, van der Lee, Sven J., Naj, Adam C., Bellenguez, Céline, Badarinarayan, Nandini , Jakobsdottir, Johanna, Kunkle, Brian W., Boland, Anne, Raybould, Rachel, Bis, Joshua C., Martin, Eden R., Grenier-Boley, Benjamin, Heilmann-Heimbach, Stefanie, Chouraki, Vincent, Kuzma, Amanda B., Sleegers, Kristel, Vronskaya, Maria, Ruiz, Agustin, Graham, Robert R., Olaso, Robert, Hoffmann, Per, Grove, Megan L., Vardarajan, Badri N., Hiltunen, Mikko, Nöthen, Markus M., White, Charles C., Hamilton-Nelson, Kara L., Epelbaum, Jacques, Maier, Wolfgang, Choi, Seung-Hoan, Beecham, Gary W., Dulary, Cécile, Herms, Stefan, Smith, Albert V., Funk, Cory C., Derbois, Céline, Forstner, Andreas J., Ahmad, Shahzad, Li, Hongdong, Bacq, Delphine, Harold, Denise, Satizabal, Claudia L., Valladares, Otto, Squassina, Alessio, Thomas, Rhodri, Brody, Jennifer A., Qu, Liming, Sánchez-Juan, Pascual, Morgan, Taniesha, Wolters, Frank J., Zhao, Yi, Sanchez Garcia, Florentino, Denning, Nicola, Fornage, Myriam, Malamon, John, Naranjo, Maria Candida Deniz, Majounie, Elisa, Mosley, Thomas H., Dombroski, Beth, Wallon, David, Lupton, Michelle K., Dupuis, Josée, Whitehead, Patrice, Fratiglioni, Laura, Medway, Christopher, Jian, Xueqiu, Mukherjee, Shubhabrata, Keller, Lina, Brown, Kristelle, Lin, Honghuang, Cantwell, Laura B., Panza, Francesco, McGuinness, Bernadette, Moreno-Grau, Sonia, Burgess, Jeremy D, Solfrizzi, Vincenzo, Proitsi, Petra, Adams, Hieab H., Allen, Mariet, Seripa, Davide, Pastor, Pau, Cupples, L. Adrienne, Price, Nathan D., Hannequin, Didier, Frank-García, Ana, Levy, Daniel, Chakrabarty, Paramita, Caffarra, Paolo, Giegling, Ina, Beiser, Alexa S., Giedraitis, Vilmantas, Hampel, Harald, Garcia, Melissa E., Wang, Xue, Lannfelt, Lars, Mecocci, Patrizia, Eiriksdottir, Gudny, Crane, Paul K., Pasquier, Florence, Boccardi, Virginia, Henández, Isabel, Barber, Robert C., Scherer, Martin, Tarraga, Lluis, Adams, Perrie M., Leber, Markus, Chen, Yuning, Albert, Marilyn S., Riedel-Heller, Steffi, Emilsson, Valur, Beekly, Duane, Braae, Anne, Schmidt, Reinhold, Blacker, Deborah, Masullo, Carlo, Schmidt, Helena, Doody, Rachelle S., Spalletta, Gianfranco, Longstreth Jr, W. T., Fairchild, Thomas J., Bossù, Paola, Lopez, Oscar L., Frosch, Matthew P., Sacchinelli, Eleonora, Ghetti, Bernardino, Yang, Qiong, Huebinger, Ryan M., Jessen, Frank, Li, Shuo, Kamboh, M. Ilyas, Morris, John, Sotolongo-Grau, Oscar, Katz, Mindy J., Corcoran, Chris, Dunstan, Melanie, Braddel, Amy, Thomas, Charlene, Meggy, Alun, Marshall, Rachel, Gerrish, Amy, Chapman, Jade, Aguilar, Miquel, Taylor, Sarah, Hill, Matt, Díez Fairén, Mònica, Hodges, Angela, Vellas, Bruno, Soininen, Hilkka, Kloszewska, Iwona, Daniilidou, Makrina, Uphill, James, Patel, Yogen, Hughes, Joseph T., Lord, enny, Turton, James, Hartmann, Annette M., Cecchetti, Roberta, Fenoglio, Chiara, Serpente, Maria, Arcaro, Marina, Caltagirone, Carlo, Donata Orfei, Maria, Ciaramella, Antonio, Pichler, Sabrina, Mayhaus, Manuel, Gu, Wei, Lleó, Alberto, Fortea, Juan, Blesa, Rafael, Barber, Imelda S., Brookes, Keeley, Cupidi, Chiara, Maletta, Raffaele Giovanni, Carrell, David, Sorbi, Sandro, Moebus, Susanne, Urbano, Maria, Pilotto, Alberto, Kornhuber, Johannes, Bosco, Paolo, Todd, Stephen, Craig, David, Johnston, Janet, Gill, Michael, Lawlor, Brian, Lynch, Aoibhinn, Fox, Nick C., Hardy, John, Albin, Roger L., Apostolova, Liana G., Arnold, Steven E, Asthana, Sanjay, Atwood, Craig S., Baldwin, Clinton T., Barnes, Lisa L., Barral, Sandra, Beach, Thomas G., Becker, James T., Bigio, Eileen H., Bird, Thomas D., Boeve, Bradley F., Bowen, James D., Boxer, dam, Burke, James R., Burns, Jeffrey M., Buxbaum, Joseph D., Cairns, Nigel J., Cao, Chuanhai, hris S., Carlsson, Cynthia M., Carney, Regina M., Carrasquillo, Minerva M., Carroll, Steven L., Carolina, Chui, Helena C., Clark, David G., Cribbs, David H., Crocco, Elizabeth A., DeCarli, **QeDan** , Malcolm, Duara, Ranjan, Evans, Denis A., Faber, Kelley M., Fallon, Kenneth B., Fardo, rlow, Martin R., Ferris, Steven, Foroud, Tatiana M., Galasko, Douglas R., Gearing, Marla, David W.,

Geschwind, Daniel H., Gilbert, John R., Graff-Radford, Neill R., Green, Robert C., Growdon, John H., Hamilton, Ronald L., Harrell, Lindy E., Honig, Lawrence S., Huentelman, Matthew J., Hulette, Christine M., Hyman, Bradley T., Jarvik, Gail P., Abner, Erin, Jin, Lee-Way, Jun, Gyungah, Karydas, Anna, Kaye, Jeffrey A., Kim, Ronald, Kowall, Neil W., Kramer, Joel H., LaFerla, Frank M., Lah, James J., Leverenz, James B., Levey, Allan I., Li, Ge, Lieberman, Andrew P., Lunetta, Kathryn L., Lyketsos, Constantine G., Marson, Daniel C., Martiniuk, Frank, Mash, Deborah C., Masliah, Eliezer, McCormick, Wayne C., McCurry, Susan M., McDavid, Andrew N., McKee, Ann C., Mesulam, Marsel, Miller, Bruce L., Miller, Carol A., Miller, Joshua W., Morris, John C., Murrell, Jill R., Myers, Amanda J., O'Bryant, Sid, Olichney, John M., Pankratz, Vernon S., Parisi, Joseph E., Paulson, Henry L., Perry, William, Peskind, Elaine, Pierce, Aimee, Poon, Wayne W., Potter, Huntington, Quinn, Joseph F., Raj, Ashok, Raskind, Murray, Reisberg, Barry, Reitz, Christiane, Ringman, John M., Roberson, Erik D., Rogaeva, Ekaterina, Rosen, Howard J., Rosenberg, Roger N., Sager, Mark A., Saykin, Andrew J., Schneider, Julie A., Schneider, Lon S., Seeley, William W., Smith, Amanda G., Sonnen, Joshua A., Spina, Salvatore, Stern, Robert A., Swerdlow, Russell H., Tanzi, Rudolph E., Thornton-Wells, Tricia A., Trojanowski, John Q., Troncoso, Juan C., Van Deerlin, Vivianna M., Van Eldik, Linda J., Vinters, Harry V., Vonsatte, Jean Paul, Weintraub, Sandra, Welsh-Bohmer, Kathleen A., Wilhelmsen, Kirk C., Williamson, Jennifer, Wingo, Thomas S., Woltjer, Randall L., Wright, Clinton B., Yu, Chang-En, Yu, Lei, Garzia, Fabienne, Golamaully, Feroze, Septier, Gislain, Engelborghs, Sebastien, Vandenberghe, Rik, De Deyn, Peter P., Fernadez, Carmen Muñoz, Benito, Yoland Aladro, Thonberg, Hakan, Forsell, Charlotte, Lilius, Lena, Kinhult-Stählbom, Anne, Kilander, Lena, Brundin, RoseMarie, Concari, Letizia, Helisalmi, Seppo, Koivisto, Anne Maria, Haapasalo, Annakaisa, Dermecourt, Vincent, Fievet, Nathalie, Hanon, Olivier, Dufouil, Carole, Brice, Alexis, Ritchie, Karen, Dubois, Bruno, Himali, Jayanadra J., Keene, C. Dirk, Tschanz, JoAnn, Fitzpatrick, Annette L., Kukull, Walter A., Norton, Maria, Aspelund, Thor, Larson, Eric B., Munger, Ron, Rotter, Jerome I., Lipton, Richard B., Bullido, María J., Hofman, Albert, Montine, Thomas J., Coto, Eliecer, Boerwinkle, Eric, Petersen, Ronald C., Alvarez, Victoria, Rivadeneira, Fernando, Reiman, Eric M., Gallo, Maura, O'Donnell, Christopher J., Reisch, Joan S., Bruni, Amalia Cecilia, Royall, Donald R., Dichgans, Martin, Sano, Mary, Galimberti, Daniela, St George-Hyslop, Peter, Scarpini, Elio, Tsuang, Debby W., Mancuso, Michelangelo, Bonuccelli, Ubaldo, Winslow, Ashley R., Daniele, Antonio, Wu, Chuang-Kuo, Peters, Oliver, Nacmias, Benedetta, Riemenschneider, Matthias, Heun, Reinhard, Brayne, Carol, Rubinsztein, David C., Bras, Jose, Guerreiro, Rita, Al-Chalabi, Ammar, Shaw, Christopher E., Collinge, John, Mann, David, Tsolaki, Magda, Clarimón, Jordi, Sussams, Rebecca, Lovestone, Simon, O'Donovan, Michael, Owen, Michael J., Behrens, Timothy W., Mead, Simon, Goate, Alison M., Uitterlinden, Andre G., Holmes, Clive, Cruchaga, Carlos, Ingelsson, Martin, Bennett, David A., Powell, John, Golde, Todd E., Graff, Caroline, Jager, Philip L De, Morgan, Kevin, Ertekin-Taner, Nilufer, Combarros, Onofre, Psaty, Bruce M., Passmore, Peter, Younkin, Steven G., Berr, Claudine, Gudnason, Vilmundur, Rujescu, Dan, Dickson, Dennis W., Dartigues, Jean-François, DeStefano, Anita L., Ortega-Cubero, Sara, Hakonarson, Hakon, Campion, Dominique, Boada, Merce, Kauwe, John Keoni, Farrer, Lindsay A., Van Broeckhoven, Christine, Ikram, M Arfan, Jones, Lesley, Haines, Jonathan L., Tzourio, Christophe, Launer, Lenore J., Escott-Price, Valentina, Mayeux, Richard, Deleuze, Jean-François, Amin, Najaf, Holmans, Peter A., Pericak-Vance, Margaret A., Amouyel, Philippe, van Duijn, Cornelia M., Ramirez, Alfredo, Wang, Li-San, Lambert, Jean-Charles, Seshadri, Sudha, Williams, Julie, Schellenberg, Gerard D., GERAD/PERADES, CHARGE, ADGC and EADI 2017. Rare coding variants in PLCG2, ABI3 and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics 49, pp. 1373-1384. 10.1038/ng.3916

Publishers page: http://dx.doi.org/10.1038/ng.3916

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

- 1 Title:
- 2 Rare coding variants in *PLCG2*, *ABI3* and *TREM2* implicate microglial-
- 3 mediated innate immunity in Alzheimer's disease.
- 4
- 5 Running:
- 6 Rare coding variation in *PLCG2*, *ABI3* and *TREM2* associate with Alzheimer's
- 7 disease.
- 8

1 Authors:

Rebecca Sims^{*1}, Sven J. van der Lee^{*~2}, Adam C. Naj^{*3}, Céline Bellenguez^{*4,5,6}, Nandini 2 Badarinarayan¹, Johanna Jakobsdottir⁷, Brian W. Kunkle⁸, Anne Boland⁹, Rachel Raybould¹, Joshua C. 3 Bis¹⁰, Eden R. Martin^{8,11}, Benjamin Grenier-Boley^{4,5,6}, Stefanie Heilmann-Heimbach^{12,13}, Vincent 4 Chouraki^{14,15}, Amanda B. Kuzma¹⁶, Kristel Sleegers^{17,18}, Maria Vronskaya¹, Agustin Ruiz¹⁹, Robert R. 5 Graham²⁰, Robert Olaso⁹, Per Hoffmann^{12,13,21}, Megan L. Grove²², Badri N. Vardarajan^{23,24,25}, Mikko 6 Hiltunen^{26,27}, Markus M. Nöthen^{12,13}, Charles C. White²⁸, Kara L. Hamilton-Nelson⁸, Jacques 7 Epelbaum²⁹, Wolfgang Maier^{30,31}, Seung-Hoan Choi^{14,32}, Gary W. Beecham^{8,11}, Cécile Dulary⁹, Stefan 8 Herms^{12,13,21}, Albert V. Smith^{7,33}, Cory C. Funk³⁴, Céline Derbois⁹, Andreas J. Forstner^{12,13}, Shahzad 9 Ahmad², Hongdong Li³⁴, Delphine Bacq⁹, Denise Harold³⁵, Claudia L. Satizabal^{14,15}, Otto Valladares¹⁶, 10 Alessio Squassina³⁶, Rhodri Thomas¹, Jennifer A. Brody¹⁰, Liming Qu¹⁶, Pascual Sanchez-Juan³⁷, 11 Taniesha Morgan¹, Frank J. Wolters², Yi Zhao¹⁶, Florentino Sanchez Garcia³⁸, Nicola Denning¹, Myriam 12 Fornage³⁹, John Malamon¹⁶, Maria Candida Deniz Naranjo³⁸, Elisa Majounie¹, Thomas H. Mosley⁴⁰, 13 Beth Dombroski¹⁶, David Wallon^{41,42}, Michelle K Lupton^{43,44}, Josée Dupuis³², Patrice Whitehead⁸, 14 Laura Fratiglioni^{45,46}, Christopher Medway⁴⁷, Xueqiu Jian³⁹, Shubhabrata Mukherjee⁴⁸, Lina Keller⁴⁶, 15 Kristelle Brown⁴⁷, Honghuang Lin¹⁶², Laura B. Cantwell¹⁶, Francesco Panza⁴⁹, Bernadette 16 McGuinness⁵⁰, Sonia Moreno-Grau¹⁹, Jeremy D. Burgess⁵¹, Vincenzo Solfrizzi⁵², Petra Proitsi⁴³, Hieab 17 H. Adams², Mariet Allen⁵¹, Davide Seripa⁵³, Pau Pastor⁵⁴, L. Adrienne Cupples^{15,32}, Nathan D Price³⁴, 18 Didier Hannequin^{42,55}, Ana Frank-García^{56,57,58}, Daniel Levy^{14,15,59}, Paramita Chakrabarty⁶⁰, Paolo 19 20 Caffarra^{61,62}, Ina Giegling⁶³, Alexa S. Beiser^{15,32}, Vimantas Giedraitis⁶⁴, Harald Hampel^{65,66,67}, Melissa E. Garcia⁶⁸, Xue Wang⁵¹, Lars Lannfelt⁶⁴, Patrizia Mecocci⁵⁴, Gudny Eiriksdottir⁷, Paul K. Crane⁴⁸, 21 Florence Pasquier^{69,70}, Virginia Boccardi⁵⁴, Isabel Henández¹⁹, Robert C. Barber⁷¹, Martin Scherer⁷², 22 Lluis Tarraga¹⁹, Perrie M. Adams⁷³, Markus Leber⁷⁴, Yuning Chen³², Marilyn S. Albert⁷⁵, Steffi Riedel-23 Heller⁷⁶, Valur Emilsson^{7,77}, Duane Beekly⁷⁸, Anne Braae⁷⁹, Reinhold Schmidt⁸⁰, Deborah Blacker^{81,82}, 24 Carlo Masullo⁸³, Helena Schmidt⁸⁴, Rachelle S. Doody⁸⁵, Gianfranco Spalletta⁸⁶, WT Longstreth, Jr^{87,88}, 25 Thomas J. Fairchild⁸⁹, Paola Bossù⁸⁶, Oscar L. Lopez^{90,91}, Matthew P. Frosch⁹², Eleonora Sacchinelli⁸⁶, 26 Bernardino Ghetti⁹³, Pascual Sánchez-Juan³⁷, Qiong Yang³², Ryan M. Huebinger⁹⁴, Frank Jessen^{30,31,74}, 27 Shuo Li³², M. Ilyas Kamboh^{95,96}, John Morris^{97,98}, Oscar Sotolongo-Grau¹⁹, Mindy J. Katz⁹⁹, Chris 28 Corcoran¹⁰⁰, Jayanadra J. Himali¹⁴, C. Dirk Keene¹⁰¹, JoAnn Tschanz¹⁰⁰, Annette L. Fitzpatrick^{88,102}, 29 Walter A. Kukull⁸⁸, Maria Norton¹⁰⁰, Thor Aspelund^{7,103}, Eric B. Larson^{48,104}, Ron Munger¹⁰⁰, Jerome I. 30 Rotter¹⁰⁵, Richard B. Lipton⁹⁹, María J Bullido^{57,58,106}, Albert Hofman², Thomas J. Montine¹⁰¹, Eliecer 31 Coto¹⁰⁷, Eric Boerwinkle^{22,108}, Ronald C. Petersen¹⁰⁹, Victoria Alvarez¹⁰⁷, Fernando Rivadeneira^{2,110,111}, 32 Eric M. Reiman^{112,113,114,115}, Maura Gallo¹¹⁶, Christopher J. O'Donnell¹⁵, Joan S. Reisch^{59,117}, Amalia 33 Cecilia Bruni¹¹⁶, Donald R. Royall¹¹⁸, Martin Dichgans^{119,120}, Mary Sano¹²¹, Daniela Galimberti¹²², Peter 34 St George-Hyslop^{123,124}, Elio Scarpini¹²², Debby W. Tsuang^{125,126}, Michelangelo Mancuso¹²⁷, Ubaldo 35 Bonuccelli¹²⁷, Ashley R. Winslow¹²⁸, Antonio Daniele¹²⁹, Chuang-Kuo Wu¹³⁰, GERAD/PERADES, 36 CHARGE, ADGC, EADI, Oliver Peters¹³¹, Benedetta Nacmias^{132,133}, Matthias Riemenschneider¹³⁴, 37 Reinhard Heun³¹, Carol Brayne¹³⁵, David C Rubinsztein¹²³, Jose Bras^{136,137}, Rita Guerreiro^{136,137}, John 38 Hardy¹³⁶, Ammar Al-Chalabi¹³⁸, Christopher E Shaw¹³⁸, John Collinge¹³⁹, David Mann¹⁴⁰, Magda 39 Tsolaki¹⁴¹, Jordi Clarimón^{58,142}, Rebecca Sussams¹⁴³, Simon Lovestone¹⁴⁴, Michael C O'Donovan¹, 40 Michael J Owen¹, Timothy W. Behrens²⁰, Simon Mead¹³⁹, Alison M. Goate^{98a}, Andre G. 41 Uitterlinden^{2,110,111}, Clive Holmes¹⁴³, Carlos Cruchaga^{97,98}, Martin Ingelsson⁶⁴, David A. Bennett¹⁴⁵, 42 John Powell⁴³, Todd E. Golde^{60,146}, Caroline Graff^{45,147}, Philip L. De Jager¹⁴⁸, Kevin Morgan⁴⁷, Nilufer 43 Ertekin-Taner^{51,109}, Onofre Combarros³⁷, Bruce M. Psaty^{10,88,104,149}, Peter Passmore⁵⁰, Steven G 44 Younkin^{51,109}, Claudine Berr^{150,151,152}, Vilmundur Gudnason^{7,33}, Dan Rujescu⁶³, Dennis W. Dickson⁵¹, 45

- 1 Jean-Francois Dartigues¹⁵³, Anita L. DeStefano^{15,32}, Sara Ortega-Cubero^{58,154}, Hakon Hakonarson¹⁵⁶,
- 2 Dominique Campion^{41,42}, Merce Boada¹⁹, John "Keoni" Kauwe¹⁵⁷, Lindsay A. Farrer¹⁴, Christine Van
- 3 Broeckhoven^{17,18}, M. Arfan Ikram^{2,158}, Lesley Jones¹, Johnathan Haines¹⁵⁹, Christophe Tzourio^{160,161},
- 4 Lenore J. Launer⁶⁸, Valentina Escott-Price¹, Richard Mayeux^{23,24,25}, Jean-François Deleuze⁹, Najaf
- 5 Amin², Peter A Holmans¹, Margaret A. Pericak-Vance^{8,11}, Philippe Amouyel^{**4,5,6,69}, Cornelia M. van
- 6 Duijn**2, Alfredo Ramirez**12,31,74, Li-San Wang**16, Jean-Charles Lambert**4,5,6, Sudha
- 7 Seshadri^{**14,15}, Julie Williams^{**~1}, Gerard D. Schellenberg^{**~16}.
- 8
- 9 1. Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric
- 10 Genetics and Genomics, Cardiff University, UK;
- 11 2. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands;
- 12 3. Department of Biostatistics and Epidemiology/Center for Clinical Epidemiology and Biostatistics,
- 13 University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
- 14 4. Inserm, U1167, RID-AGE Risk factors and molecular determinants of aging-related diseases, F-
- 15 59000 Lille, France;
- 16 5. Institut Pasteur de Lille, F-59000 Lille, France;
- 17 6. University Lille, U1167 Excellence Laboratory LabEx DISTALZ, F-59000 Lille;
- 18 7. Icelandic Heart Association, Kopavogur, Iceland;
- 19 8. The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA;
- 20 9. CEA / Institut de Génomique, Centre National de Génotypage, F-91057 Evry, France ;
- 21 10. Cardiovascular Health Research Unit, Department of Medicine, University of Washington,
 22 Seattle, WA, USA;
- 23 11. Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami,
- 24 Florida, USA;
- 25 12. Institute of Human Genetics, University of Bonn, Bonn, Germany;
- 26 13. Department of Genomics, Life & Brain Center, University of Bonn, 53127, Bonn, Germany;
- 27 14. Boston University School of Medicine, Boston, MA, USA;
- 28 15. Framingham Heart Study, Framingham, MA, USA;
- 29 16. Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School
- 30 of Medicine, Philadelphia, Pennsylvania, USA;
- 31 17. Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp,32 Belgium;
- 33 18. Institute Born-Bunge, University of Antwerp, Antwerp, Belgium;
- 34 19. Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades,
- 35 Barcelona, Spain;
- 36 20. Immunology Biomarkers Group, Genentech, South San Francisco, California, USA;
- 21. Division of Medical Genetics, University Hospital and Department of Biomedicine, University ofBasel, CH-4058, Basel, Switzerland;
- 39 22. School of Public Health, Human Genetics Center, University of Texas Health Science Center at40 Houston, Houston, TX, USA;
- 41 23. Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia
- 42 University, New York, New York, USA;
- 43 24. Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA;
- 44 25. Department of Neurology, Columbia University, New York, New York, USA;
- 45 26. Institute of Biom, University of Eastern Finland, FIN-70211, Kuopio, Finland;

- 1 27. Department of Neurology, Kuopio University Hospital, FIN-70211, Kuopio, Finland;
- 2 28.Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences,
 3 Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, MA;
- 29. UMR 894, Center for Psychiatry and Neuroscience, INSERM, Université Paris Descartes, F-75000
 Paris, France;
- 6 30. German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;
- 7 31. Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany;
- 8 32. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA;
- 9 33. Faculty of Medicine, University of Iceland, Reykjavik, Iceland;
- 10 34. Institute for Systems Biology, Seattle, WA, USA;
- 11 35. School of Biotechnology, Dublin City University, Dublin 9, Ireland;
- 36. Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences,University of Cagliari, Cagliari, Italy;
- 14 37. Neurology Service and CIBERNED, "Marqués de Valdecilla" University Hospital (University of
- 15 Cantabria and IFIMAV), Santander, Spain;
- 38. Department of Immunology, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria,Spain;
- 39. Brown Foundation Institute of Molecular Medicine, The University of Texas Health SciencesCenter at Houston, TX, USA;
- 20 40. Departments of Medicine, Geriatrics, Gerontology and Neurology, University of Mississippi
- 21 Medical Center, Jackson, MS, USA;
- 22 41. Centre hospitalier du Rouvray. 76300 Sotteville les Rouen, France;
- 23 42. Inserm U1079, Rouen University, IRIB, Normandy University, Rouen, France;
- 24 43. Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and
 25 Neuroscience, Kings College London, London, UK;
- 44. Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Herston, Queensland,Australia;
- 28 45. Department of Geriatric Medicine, Karolinska University Hospital Huddinge, S-14186 Stockholm;
- 46. Aging Reasearch Center, Department of Neurobiology, Care Sciences and Society, Karolinska
 Institutet and Stockholm University, Stockholm, Sweden;
- 47. Institute of Genetics, Queens Medical Centre, University of Nottingham, Nottingham, UK;
- 48. Department of Medicine, University of Washington, Seattle, Washington, USA;
- 33 49. Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense
- 34 Organs, University of Bari Aldo Moro, Bari, Italy;
- 50. Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, QueensUniversity, Belfast, UK;
- 37 51. Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
- 38 52. Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari,39 Italy;
- 40 53. Geriatric Unit & Gerontology Geriatrics Research Laboratory, Department of Medical Sciences,
- 41 IRCCS CasaSollievo Della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- 42 54. Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia,
- 43 Italy;
- 44 55. Department of Neurology, Rouen University Hospital, Rouen, France;

- 56. Department of Neurology, University Hospital La Paz, Universidad Autónoma de Madrid, Spain; 1
- 2 57. IdiPAZ, Instituto de Investigación, Sanitaria la Paz, Spain;
- 3 58. CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas,
- Instituto de Salud Carlos III, Madrid, Spain; 4
- 5 59. National Heart, Lung, and Blood Institute, Bethesda, MD, USA;
- 6 60. Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience,
- University of Florida, Gainesville, FL, USA; 7
- 8 61. Department of Neuroscience, University of Parma, Italy;
- 9 62. Center for Cognitive Disorders AUSL, Parma, Italy;
- 10 63. Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany;
- 64. Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden; 11
- 12 65. AXA Research Fund & UPMC Chair, Paris, France;
- 13 66. Sorbonne Universités, Université Pierre et Marie Curie, Paris, France;
- 14 67. Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle
- 15 épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Paris, France ;
- 16 68. Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, 17 USA;
- 18 69. Centre Hospitalier Universitaire de Lille, Epidemiology and Public Health Department, F-59000 19
- Lille, France;
- 20 70. Inserm UMR-S1171, CNR-Maj, F-59000 Lille, France;
- 21 71. Department of Pharmacology and Neuroscience, University of North Texas Health Science
- 22 Center, Fort Worth, Texas, USA;
- 23 72. Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, 20246 24 Hamburg, Germany;
- 25 73. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
- 26 74. Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany;
- 27 75. Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA;
- 28 76. Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103
- 29 Leipzig, Germany;
- 30 77. Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland;
- 31 78. National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA;
- 32 79. Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, UK;
- 33 80. Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Austria;
- 34 81. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA;
- 35 82. Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston,
- 36 Massachusetts, USA;
- 37 83. Department of Neurology, Catholic University of Rome, Rome, Italy;
- 38 84. Institute of Molecular Biology and Biochemistry, Medical University Graz, Austria;
- 39 85. Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, Texas, 40 USA;
- 41 86. Experimental Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical
- 42 and Behavioural Neurology, Rome, Italy;
- 43 87. Department of Neurology, University of Washington, Seattle, WA, USA;
- 44 88. Department of Epidemiology, University of Washington, Seattle, WA, USA;

- 1 89. Office of Strategy and Measurement, University of North Texas Health Science Center, Fort
- 2 Worth, Texas, USA;
- 3 90. Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA;
- 4 91. Department of Neurology, University of Pittsburgh, Pittsburgh, PA;
- 92. C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown,
 Massachusetts, USA;
- 93. Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana,USA;
- 9 94. Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
- 10 95. University of Pittsburgh, Alzheimer's Disease Research Center, Pittsburgh, Pennsylvania, USA;
- 11 96. Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- 12 97. Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA;
- 13 98. Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University
- 14 School of Medicine, St. Louis, Missouri, USA;
- 15 98a. Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
- 16 99. Department of Neurology, Albert Einstein College of Medicine, New York, New York, USA;
- 17 100. Utah State University, Logan, Utah, USA;
- 18 101. Department of Pathology, University of Washington, Seattle, Washington, USA;
- 19 102. Department of Family Medicine, University of Washington, Seattle, WA, USA;
- 20 103. Centre for Public Health, University of Iceland, Reykjavik, Iceland;
- 21 104. Group Health Research Institute, Group Health, Seattle, Washington, USA;
- 22 105. Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research
- 23 Institute at Harbor-UCLA Medical Center, Torrance, CA, USA;
- 24 106. Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain;
- 25 107. Molecular Genetics Lab-Hospital, University of Central Asturias, Oviedo, Spain, 33011 Oviedo,
 26 Spain;
- 27 108. Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA;
- 28 109. Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA;
- 110. Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, TheNetherlands;
- 31 111. Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden, The32 Netherlands;
- 33 112. Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA;
- 34 113. Arizona Alzheimer's Consortium, Phoenix, Arizona, USA;
- 35 114. Banner Alzheimer's Institute, Phoenix, Arizona, USA;
- 36 115. Department of Psychiatry, University of Arizona, Phoenix, Arizona, USA;
- 37 116. Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy;
- 117. Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas,Texas, USA;
- 40 118. Departments of Psychiatry, Medicine, Family & Community Medicine, South Texas Veterans
- 41 Health Administration Geriatric Research Education & Clinical Center (GRECC), UT Health Science
- 42 Center at San Antonio, San Antonio, Texas, USA;
- 43 119. Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich,44 Germany;
- 45 120. German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany;

- 1 121. Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA;
- 2 122. Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca'
- 3 Granda, IRCCS Ospedale Policlinico, Milan, Italy;
- 4 123. Cambridge Institute for Medical Research, University of Cambridge, UK;
- 5 124. Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto,6 Ontario, Canada;
- 7 125. VA Puget Sound Health Care System/GRECC, Seattle, Washington, USA;
- 8 126. Department of Psychiatry and Behavioral Sciences, University of Washington School of
- 9 Medicine, Seattle, Washington, USA;
- 10 127. Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa,11 Italy;
- 12 128. PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development,13 Cambridge, Massachusetts, USA;
- 14 129. Institute of Neurology, Catholic University of Sacred Hearth, Rome, Italy;
- 15 130. Departments of Neurology, Pharmacology & Neuroscience, Texas Tech University Health
- 16 Science Center, Lubbock, Texas, USA;
- 17 131. Department of Psychiatry, Charité University Medicine, Berlin, Germany;
- 18 132. NEUROFARBA (Department of Neuroscience, Psychology, Drug Research and Child Health),
- 19 University of Florence, Florence, Italy;
- 133. Centro di Ricerca, Trasferimento e Alta Formazione DENOTHE, University of Florence, Florence,Italy;
- 22 134. Department of Psychiatry and Psychotherapy, University Hospital, Saarland, Germany;
- 23 135. Institute of Public Health, University of Cambridge, Cambridge, UK;
- 24 136. Department of Molecular Neuroscience, UCL, Institute of Neurology, London, UK;
- 137. Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro,Portugal;
- 27 138. Kings College London, Institute of Psychiatry, Psychology and Neuroscience, UK;
- 139. MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology,London, UK;
- 140. Institute of Brain, Behaviour and Mental Health, Clinical and Cognitive Neuroscience Research
 Group, University of Manchester, UK;
- 32 141. 3rd Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki,33 Greece;
- 34 142. Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de
- 35 la Santa Creu i Sant Pau, Autonomous University Barcelona, Barcelona, Spain;
- 36 143. Division of Clinical Neurosciences, School of Medicine, University of Southampton,37 Southampton, UK;
- 38 144. Department of Psychiatry, University of Oxford, Oxford, UK;
- 39 145. Department of Neurology and Alzheimer's Disease Center, Rush University Medical Center,
 40 Chicago, IL, USA;
- 41 146. Florida Alzheimer's Disease Research Center, Gainesville, FL, USA;
- 42 147. Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, KIADRC, Novum
- 43 Floor 5, S14186 Stockholm, Sweden;

- 1 148. Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia
- 2 University Medical Center, New York; 149. Department of Health Services University of Washington,
- 3 Seattle, WA, USA;
- 4 150. Memory Research and Resources Center, CMRR of Montpellier, Department of Neurology,
- 5 Hospital Gui de Chauliac, Montpellier, France;
- 6 151. INSERM U1061, La Colombière Hospital, Montpellier, France;
- 7 152. Montpellier University, Montpellier, France;
- 8 153. Memory Research and Resources Center, CMRR de Bordeaux, Bordeaux, France;
- 9 154. Neurogenetics Laboratory, Division of Neurosciences, Centre for Applied Medical Research,
- 10 University of Navarra School of Medicine, Pamplona, Spain;
- 11 155. Department of Neurology, Complejo Asistencial Universitario de Palencia, Spain;
- 12 156. Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania,13 USA;
- 14 157. Departments of Biology, Neuroscience, Brigham Young University, 4143 LSB Provo, UT 84602,15 USA;
- 16 158. Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The17 Netherlands;
- 18 159. Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH,
- 19 USA;
- 20 160. University of Bordeaux, Neuroepidemiology, UMR897, Bordeaux, France;
- 21 161. INSERM, Neuroepidemiology, UMR897, Bordeaux, France.
- 22 162. Section of Computational Biomedicine, Department of Medicine, Boston University School of
- 23 Medicine, Boston, MA
- 24
- 25 * equal contribution first author
- 26 ** equal contribution senior author
- 27 ~ corresponding author
- 28
- 29
- ...
- 30
- 31
- 32
- 33
- ~ 4
- 34
- 35

1 Introduction (150 words) = 158

2	We identified rare coding variants associated with Alzheimer's disease
3	(AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174
4	samples were genotyped using a whole-exome microarray. In stage 2, we
5	tested associated variants (P<1x10 ⁻⁴) in 35,962 independent samples using <i>de</i>
6	novo genotyping and imputed genotypes. In stage 3, an additional 14,997
7	samples were used to test the most significant stage 2 associations (P <5x10 ⁻⁸)
8	using imputed genotypes. We observed 3 novel genome-wide significant
9	(GWS) AD associated non-synonymous variants; a protective variant in PLCG2
10	(rs72824905/p.P522R, <i>P</i> =5.38x10 ⁻¹⁰ , OR=0.68, MAF _{cases} =0.0059,
11	MAF _{controls} =0.0093), a risk variant in <i>ABI3</i> (rs616338/p.S209F, <i>P</i> =4.56x10 ⁻¹⁰ ,
12	OR=1.43, MAF _{cases} =0.011, MAF _{controls} =0.008), and a novel GWS variant in <i>TREM2</i>
13	(rs143332484/p.R62H, <i>P</i> =1.55x10 ⁻¹⁴ , OR=1.67, MAF _{cases} =0.0143,
14	MAF _{controls} =0.0089), a known AD susceptibility gene. These protein-coding
15	changes are in genes highly expressed in microglia and highlight an immune-
16	related protein-protein interaction network enriched for previously identified
17	AD risk genes. These genetic findings provide additional evidence that the
18	microglia-mediated innate immune response contributes directly to AD
19	development.
20	
21	
22	
23	

1 Text (1500 words) = 1624

Late-onset AD (LOAD) has a significant genetic component (h^2 =58-79%¹). 2 Nearly 30 LOAD susceptibility loci^{2–12} are known, and risk is significantly 3 polygenic¹³. However, these loci explain only a proportion of disease 4 heritability. Rare variants also contribute to disease risk^{14–17}. Recent 5 sequencing studies identified a number of genes that have rare variants 6 associated with AD^{9–11,18–24}. Our approach to rare-variant discovery is to 7 genotype a large sample with micro-arrays targeting known exome variants 8 with follow-up using genotyping and imputed genotypes in a large 9 independent sample. This is a cost-effective alternative to *de novo* 10 sequencing $^{25-29}$. 11

12 We applied a 3-stage design (Supplementary Figure 1) using subjects from the International Genomics of Alzheimer's Project (IGAP)(Table 1, 13 Supplementary Tables 1 & 2). In stage 1, 16,097 LOAD cases and 18,077 14 cognitively normal elderly controls were genotyped using the Illumina 15 HumanExome microarray. Data from multiple consortia were combined in a 16 single variant meta-analysis (Online Methods) assuming an additive model. In 17 total, 241,551 variants passed quality-control (Supplementary Table 3). Of 18 these 203,902 were polymorphic, 26,947 were common (minor allele 19 frequency (MAF)≥5%), and 176,955 were low frequency or rare (MAF<5%). We 20 analyzed common variants using a logistic regression model in each sample 21 cohort and combined data using METAL³⁰. Rare and low frequency variants 22 were analyzed using the score test and data combined with SeqMeta³¹ 23 (Supplementary Figure 2). 24

We reviewed cluster plots for variants showing association ($P < 1 \times 10^{-4}$) and identified 43 candidate variants (Supplementary Table 4) exclusive of

known risk loci (Supplementary Table 5). Stage 2 tested these for association in
14,041 LOAD cases and 21,921 controls, using *de novo* and imputation derived
genotypes (Online Methods). We carried forward single nucleotide variants
(SNVs) with GWS associations and consistent directions of effect to stage 3
where genotypes for 6,652 independent cases and 8,345 controls were
imputed using the Haplotype Reference Consortium resource^{32,33} (Online
Methods, Supplementary Table 6).

We identified four rare coding variants with GWS association signals 8 with LOAD ($P < 5x10^{-8}$)(Table 2, Supplementary Tables 7 & 8). The first is a 9 missense variant p.P522R (P=5.38x10⁻¹⁰, OR=0.68) in Phospholipase C Gamma 2 10 11 (*PLCG2*)(Table 2, Figure 1a, Supplementary Table 9, Supplementary Figure 3). This variant is associated with decreased risk of LOAD, showing a MAF of 12 0.0059 in cases and 0.0093 in controls. The reference allele (p.P522) is 13 conserved across several species (Supplementary Figure 4). Gene-wide analysis 14 showed nominal evidence for association at $P=1.52 \times 10^{-4}$ (Supplementary 15 Tables 10 & 11) and we found no other independent association at this gene 16 (Supplementary Figure 5). 17

The second novel association is a missense change p.S209F ($P=4.56 \times 10^{-1}$ 18 ¹⁰, OR=1.43) in *B3 domain-containing transcription factor ABI3* (*ABI3*). The 19 p.F209 variant shows consistent evidence for increasing LOAD risk across all 20 stages, with a MAF of 0.011 in cases and 0.008 in controls (Table 2, Figure 1b, 21 Supplementary Table 12, Supplementary Figure 6). The reference allele is 22 conserved across multiple species (Supplementary Figure 7). Gene-wide 23 analysis showed nominal evidence of association $(P=5.22 \times 10^{-5})$ (Supplementary 24 Tables 10 & 11). The B4GALNT2 gene, adjacent to ABI3, contained an 25

independent suggestive association (Supplementary Figure 8), but this failed to replicate in subsequent stages ($P_{\text{combined}}=1.68 \times 10^{-4}$)(Supplementary Table 7).

Following reports of suggestive association with LOAD^{34,35}, we report the 3 first evidence for GWS association at TREM2 coding variant p.R62H (P=1.55x10⁻ 4 14 , OR=1.67), with a MAF of 0.0143 in cases and 0.0089 in controls (Table 2, 5 Figure 1c, Supplementary Table 13, Supplementary Figures 9 & 10). We also 6 observed evidence for the previously reported^{9,11} *TREM2* rare variant p.R47H 7 (Table 2). These variants are not in linkage disequilibrium (Supplementary 8 Table 14) and conditional analyses confirmed that p.R62H and p.R47H are 9 independent risk variants (Supplementary Figure 11). Gene-wide analysis of 10 *TREM2* showed a GWS association (P_{SKAT} =1.42x10⁻¹⁵)(Supplementary Tables 10 11 & 11). Removal of p.R47H and p.R62H variants from the analysis diminished 12 the gene-wide association but the signal remains interesting ($P_{SKAT-O}=6.3 \times 10^{-3}$, 13 P_{Burden} =4.1x10⁻³). No single SNV was responsible for the remaining gene-wide 14 association (Supplementary Table 13, Supplementary Figure 11) suggesting 15 that there are additional *TREM2* risk variants in *TREM2*. We previously 16 reported a common variant LOAD association near TREM2, in a GWAS of 17 cerebrospinal fluid tau and P-tau³⁶. We also observed a different suggestive 18 common variant signal in another LOAD case-control study $(P=6.3 \times 10^{-7})^2$. 19

We previously identified 8 gene pathway clusters significantly enriched in AD-associated common variants³⁶. To test whether biological enrichments observed in common variants are also present in rare variants we used the rare-variant data (MAF<1%) to reanalyze these eight AD-associated pathway clusters (Online Methods, Supplementary Table 15). We used Fisher's method to combine gene-wide p-values for all genes in each cluster. After correction for multiple testing, we observed enrichment for immune response

(*P*=8.64x10⁻³), cholesterol transport (*P*=3.84x10⁻⁵), hemostasis (*P*=2.10x10⁻³),
Clathrin/AP2 adaptor complex (*P*=9.20x10⁻⁴) and protein folding (*P*=0.02). We
also performed pathway analyses on the rare variant data presented here
using all 9,816 pathways used previously. The top pathways are related to
lipoprotein particles, cholesterol efflux, B-cell differentiation and immune
response, areas of biology also enriched when common variants are
analyzed³⁷(Supplementary Table 16).

Previous analysis of normal brain co-expression networks identified 4 8 gene modules that are enriched for common variants associated with LOAD 9 risk^{2,3711}. These 4 modules are enriched for immune response genes. We 10 identified 151 genes present in 2 or more of these 4 modules and these 11 showed a strong enrichment for LOAD-associated common variants (P=4.0x10⁻ 12 ⁶)³⁶ and for rare variants described here (MAF<1%)(Supplementary Table 15, 13 $P=1.17 \times 10^{-6}$). We then used a set of high-quality protein-protein interactions³⁷ 14 to construct, from these 151 genes, an interaction network containing 56 15 genes, including PLCG2, ABI3 and TREM2 (Figure 2)(Online Methods). This 16 subset is strongly enriched for association signals from both the previous 17 common variant analysis ($P=5.0 \times 10^{-6}$, Supplementary Table 17) and this rare 18 variant gene-set analysis ($P=1.08 \times 10^{-7}$, Supplementary Table 15). The 19 remaining 95 genes only have nominally-significant enrichment for either 20 common or rare variants (Supplementary Tables 15 & 17), suggesting that the 21 56-gene (Supplementary Table 18) network is driving the enrichment. 22

TREM2, ABI3 and *PLCG2* have a common expression pattern in human
 brain cortex, with high expression in microglia cells and limited expression in
 neurons, oligodendrocytes, astrocytes and endothelial cells (Figure 2b,
 Supplementary Figure 12)³⁸. Other known LOAD loci with the same expression

pattern include *SORL1*, the *MS4A* gene cluster, and *HLA-DRB1*. *PLCG2*, *ABI3*,
and *TREM2* are up-regulated in LOAD human cortex and in two APP mouse
models. However, when corrected for levels of other microglia genes, these
changes in expression appear to be related to microgliosis (Supplementary
Tables 19 & 20).

PLCG2 (Supplementary Figure 13) encodes a transmembrane signaling 6 enzyme (PLCy2) that hydrolyses the membrane phospholipid PIP2 (1-7 phosphatidyl-1D-myo-inositol 4,5-bisphosphate) to secondary messengers IP3 8 (myo-inositol 1,4,5-trisphosphate) and DAG (diacylglycerol). IP3 is released into 9 the cytosol and acts at the endoplasmic reticulum where it binds to ligand-10 gated ion channels to increase cytoplasmic Ca²⁺. DAG remains bound to the 11 plasma membrane where it activates two major signaling molecules, protein 12 kinase C (PKC) and Ras guanyl nucleotide-releasing proteins (RasGRPs), which 13 initiate the NF-kB and mitogen-activated protein kinase (MAPK) pathways. 14 While the IP3/DAG/Ca+2 signaling pathway is active in many cells and tissues, 15 in brain, *PLCG2* is primarily expressed in microglial cells. *PLCG2* variants also 16 cause Antibody Deficiency and Immune Dysregulation (PLAID) and 17 Autoinflammation and PLAID (APLAID)³⁹. Genomic deletions (PLAID) and 18 missense mutations (APLAID) affect the cSH2 autoinhibitory regulatory region. 19 The result is a complex mix of loss and gain of function in cellular signalling³⁹. 20

Functional annotation (Supplementary Table 21) suggests *ABI3*(Supplementary Figure 14) plays a role in the innate immune response via
interferon-mediated signaling⁴⁰. *ABI3* is co-expressed with *INPP5D* (*P*=2.2x10⁻
¹⁰), a gene previously implicated in LOAD risk². ABI3 plays a significant role in
actin cytoskeleton organization through participation in the WAVE2 complex⁴¹,
a complex that regulates multiple pathways leading to T-cell activation⁴².

TREM2 encodes a transmembrane receptor present in the plasma 1 membrane of brain microglia (Supplementary Figure 15). TREM2 protein forms 2 an immune-receptor-signaling complex with DAP12. Receptor activation 3 4 results in activation of Syk and ZAP70 signaling which in turn activates PI3K activity and influences PLCy2 activity⁴³. In microglia, TREM2-DAP12 induces an 5 M2-like activation⁴⁴ and participates in recognition of membrane debris and 6 amyloid deposits resulting in microglial activation and proliferation^{45–47}. When 7 TREM2 knockout (KO) or TREM2 heterozygous KO mice are crossed with APP-8 transgenics that develop plaques, the size and number of microglia associated 9 with plaques are markedly reduced^{46,47}. *TREM2* risk variants are located within 10 exon 2, which is predicted to encode the conserved ligand binding extracellular 11 region of the protein. Any disruption in this region may attenuate or abolish 12 TREM2 signaling, resulting in the loss or decrease in TREM2 function⁴⁷. 13

The 56-gene interaction network identified here is enriched in immune 14 response genes and includes TREM2, PLCG2, ABI3, SPI1, INPP5D, CSF1R, SYK 15 and TYROBP (Figure 2). SPI1 is a central transcription factor in microglial 16 activation state that has a significant gene-wide association with AD⁵ and is in 17 the proximity of GWS signals identified by IGAP². Loss-of function mutations in 18 CSF1R cause hereditary diffuse leukoencephalopathy with spheroids, a white 19 matter disease related to microglial dysfunction⁴⁸. Activated microglial cells 20 surround plaques^{49,50}, a finding consistently observed in AD brain and AD 21 transgenic mouse models⁵¹. In AD mouse model brain, synaptic pruning 22 associates with activated microglial signalling⁵². Pharmacological targeting of 23 24 CSF1R inhibits microglial proliferation and shifts the microglial inflammatory profile to an anti-inflammatory phenotype in murine models⁵³. SYK regulates 25 A β production and tau hyperphosphorylation⁵⁴, is affected by the 26 INPP5D/CD2AP complex⁵⁵ encoded by two LOAD associated genes², and 27

mediates phosphorylation of PLCG2⁵⁶. Notably, the anti-hypertensive drug
Nilvadipine, currently in a phase III AD clinical trial, targets *SYK* as well as *TYROBP*, a hub gene in an AD-related brain expression network³⁸, that encodes
the TREM2 complex protein DAP12.

We identified three rare coding variants in *PLCG2*, *ABI3* and *TREM2* with 5 GWS associations with LOAD that are part of a common innate immune 6 response. This work provides additional evidence that the microglial response 7 in LOAD is directly part of a causal pathway leading to disease and is not simply 8 a downstream consequence of neurodegeneration^{46,47,57,58}. Our network 9 analysis supports this conclusion. In addition, PLCyG2, as an enzyme, 10 11 represents the first classically drug-able target to emerge from LOAD genetic studies. The variants described here account for a small portion of the 'missing' 12 heritability of AD'. The remaining heritability may be due to a large number of 13 common variants of small effect size. For rare variants, there may be additional 14 exonic sites with lower MAF or effect size, and/or intronic and intergenic sites. 15 Complete resolution of AD heritability will be facilitated by larger sample sizes 16 and more comprehensive sequence data. 17

- 18
- 19
- 20
- 21
- 22
- 23
- 24

1 Data Availability

Summary statistics for the 43 genetic associations identified are provided in
 Supplementary Table 6.

Stage 1 data (individual level) for the GERAD exome chip cohort can be accessed by
applying directly to Cardiff University. Stage 1 ADGC data is deposited in NIAGADS and
NIA/NIH sanctioned qualified access data repository. Stage 1 CHARGE data is accessible by
applying to dbGaP for all US cohorts, and to ERASMUS University for Rotterdam data. AGES
primary data are not available due to Icelandic laws. Stage 2 and stage 3 primary data is
available upon request.

10 A detailed description of the Mayo Clinic RNAseq data is available to all qualified 11 investigators through the Accelerating Medicines Partnership in Alzheimer's Disease (AMP-12 AD) knowledge portal that is hosted in the Synapse software platform from Sage 13 Bionetworks (Synapse IDs: syn3157182 and syn3435792 (mouse data), and syn3163039

- 14 (human data)).
- 15

16 Acknowledgements

GERAD/PERADES: We thank all individuals who participated in this study. Cardiff 17 University was supported by the Alzheimer's Society (AS; grant RF014/164) and the Medical 18 19 Research Council (MRC; grants G0801418/1, MR/K013041/1, MR/L023784/1) (Rebecca Sims 20 is an AS Research Fellow). Cardiff University was also supported by the European Joint 21 Programme for Neurodegenerative Disease (JPND, grant MR/L501517/1), Alzheimer's 22 Research UK (ARUK, grant ARUK-PG2014-1), Welsh Assembly Government (grant SGR544:CADR), a donation from the Moondance Charitable Foundation. Cambridge 23 24 University acknowledges support from the MRC. Patient recruitment for the MRC Prion 25 Unit/UCL Department of Neurodegenerative Disease collection was supported by the UCLH/UCL Biomedical Centre and NIHR Queen Square Dementia Biomedical Research Unit. 26 27 The University of Southampton acknowledges support from the AS. King's College London 28 was supported by the NIHR Biomedical Research Centre for Mental Health and Biomedical 29 Research Unit for Dementia at the South London and Maudsley NHS Foundation Trust and 30 Kings College London and the MRC. Alzheimer's Research UK (ARUK) and the Big Lottery 31 Fund provided support to Nottingham University. Ulster Garden Villages, AS, ARUK, 32 American Federation for Aging Research and NI R&D Office provided support for Queen's 33 University, Belfast. The Centro de Biologia de Molecular Severo Ochoa (CSIS-34 UAM), CIBERNED, Instituto de Investigacion Sanitaria la Paz, University Hospital La Paz and 35 the Universidad Autonoma de Madrid were supported by grants from the Ministerio de Educacion y Ciencia and the Ministerio de Sanidad y Consumo (Instituto de Salud Carlos III), 36 37 and an institutional grant of the Fundacion Ramon Areces to the CMBSO. Thanks to I. Sastre 38 and Dr A Martinez-Garcia for DNA preparation, and Drs P Gil and P Coria for their 39 recruitment efforts. Department of Neurology, University Hospital Mutua de Terrassa, 40 Terrassa, Barcelona, Spain was supported by CIBERNED, Centro de Investigacion Biomedica 41 en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid Spain 42 and acknowledges Maria A Pastor (Department of Neurology, University of Navarra Medical 43 School and Neuroimaging Laboratory, Center for Applied Medical Research, Pamplona,

1 Spain), Manuel Seijo-Martinez (Department of Neurology, Hospital do Salnes, Pontevedra, 2 Spain), Ramon Rene, Jordi Gascon and Jaume Campdelacreu (Department of Neurology, 3 Hospital de Bellvitage, Barcelona, Spain) for providing DNA samples. Hospital de la Sant Pau, 4 Universitat Autonoma de Spain acknowledges support from the Spanish Ministry of Economy and Competitiveness (grant number PI12/01311), and from Generalitat de 5 6 Catalunya (2014SGR-235). The Santa Lucia Foundation and the Fondazione Ca' Granda IRCCS 7 Ospedale Policlinico, Italy, acknowledge the Italian Ministry of Health (grant RC 8 10.11.12.13/A). The Bonn samples are part of the German Dementia Competance Network 9 (DCN) and the German Research Network on Degenerative Dementia (KNDD), which are 10 funded by the German Federal Ministry of Education and Research (grants KND: 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434; grants KNDD: 11 01GI1007A, 01GI0710, 01GI0711, 01GI0712, 01GI0713, 01GI0714, 01GI0715, 01GI0716, 12 13 01ET1006B). Markus M Nothen is a member of the German Research Foundation (DFG) 14 cluster of excellence ImmunoSensation. Funding for Saarland University was provided by the 15 German Federal Ministry of Education and Research (BMBF), grant number 01GS08125 to 16 Matthias Riemenschneider. The University of Washington was supported by grants from the National Institutes of Health (R01-NS085419 and R01-AG044546), the Alzheimer's 17 Association (NIRG-11-200110) and the American Federation for Aging Research (Carlos 18 19 Cruchaga was recipient of a New Investigator Award in Alzheimer's disease). Brigham Young 20 University was supported by the Alzheimer's Association (MNIRG-11-205368), the BYU 21 Gerontology Program and the National Institutes of Health (R01-AG11380, R01-AG021136, 22 P30- S069329-01, R01-AG042611). We also acknowledge funding from the Institute of Neurology, UCL, London who were supported in part by the ARUK via an anonymous donor, 23 24 and by a fellowship to Dr Guerreiro. Seripa, Urbano and Masullo's participation in the study 25 was completely supported by Ministerodella Salute", I.R.C.C.S. Research Program, Ricerca 26 Corrente 2015-2017, Linea n. 2 "Malattiecomplesse e terapie innovative" and by the "5 x 27 1000" voluntary contribution. AddNeuromed is supported by InnoMed, an Integrated 28 Project funded by the European Union Sixth Framework programme priority FP6-2004-29 LIFESCIHEALTH-5, Life Sciences, Genomics and Biotechnology for Health. We are grateful to 30 the Wellcome Trust for awarding a Principal Research Fellowship to Rubensztein 31 (095317/Z/11/Z). Matthias Riemenschneider was funded by the BMBF NGFN Grant 32 01GS08125. BN supported by FondazioneCassa di Risparmio di Pistoia e Pescia (grants 2014.0365, 2011.0264 and 2013.0347). Harald Hampel is supported by the AXA Research 33 34 Fund, the Fondation Universite Pierre et Marie Curie and the "Fondation pour la 35 Recherchesur Alzheimer", Paris, France. The research leading to these results has received 36 funding from the program "Investissementsd' avenir" ANR-10-IAIHU-06 (Agence Nationale 37 de la Recherche-10-IA Agence Institut Hospitalo-Universitaire-6. 38 39 **CHARGE**: Infrastructure for the CHARGE Consortium is supported in part by the 40 National Heart, Lung, and Blood Institute grant HL105756 and for the neurology working group by AG033193 and AG049505. 41 42

The AGES study has been funded by NIA contract N01-AG-12100 and HHSN271201200022C
with contributions from NEI, NIDCD and NHLBI, the NIA Intramural Research Program,
Hiartayored (the Isolandic Heart Association) and the Althingi (the Isolandic Parliament)

- 45 Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament).
- 46

- 1 Cardiovascular Health Study(CHS): This research was supported by contracts
- 2 HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080,
- 3 N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grant U01HL080295 from the
- 4 National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the
- 5 National Institute of Neurological Disorders and Stroke (NINDS). Additional support was
- 6 provided by R01AG033193, R01AG023629, R01AG15928, and R01AG20098 and
- 7 U01AG049505 from the National Institute on Aging (NIA). The provision of genotyping data
- 8 was supported in part by the National Center for Advancing Translational Sciences, CTSI
- 9 grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease
- 10 Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes
- 11 Endocrinology Research Center. A full list of principal CHS investigators and institutions can
- 12 be found at CHS-NHLBI.org. The content is solely the responsibility of the authors and does
- 13 not necessarily represent the official views of the National Institutes of Health.
- 14
- Framingham Heart Study: This work was supported by the National Heart, Lung and Blood
- 16 Institute's Framingham Heart Study (Contract No.N01-HC-25195 and No.
- 17 HHSN268201500001I). This study was also supported by grants from the National Institute
- on Aging: AG033193, U01-AG049505 and AG008122 (Seshadri). Drs. Seshadri and DeStefano
- 19 were also supported by additional grants from the National Institute on Aging
- 20 (R01AG049607), the National Institute of Neurological Disorders and Stroke (R01-
- 21 NS017950).
- 22

23 Fundacio Ace: We sincerely acknowledge the collaboration of Susana Ruiz, Maitee Rosende-24 Roca, Ana Mauleon, Liliana Vargas, Octavio Rodriguez-Gomez, Montserrat Alegret, Ana 25 Espinosa, Gemma Ortega, Marina Tarragona, Carla Abdelnour, Domingo Sanchez. We thank 26 all patients for their participation in this project. We are obliged to Trinitat Port-Carbo and 27 her family for their support of the Fundacio ACE research programs. Fundacio ACE 28 collaborates with the Centro de Investigacion Biomedica en Red sobre Enfermedades 29 Neurodegenerativas (CIBERNED, Spain), and is one of the participating centers of the 30 Dementia Genetics Spanish Consortium 430 (DEGESCO). CIBERNED is an Instituto de Salud 31 Carlos III ISCIII Project. Agustin Ruiz is supported by grant PI13/02434 (Accion Estrategica en 32 Salud. Instituto de Salud Carlos III (ISCIII). Ministerio de Economia y Competitividad, Spain), and Obra Social "La Caixa" (Barcelona, Spain). 33

34

35 ADGC: The National Institutes of Health, National Institute on Aging (NIH-NIA) 36 supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; Samples from the National Cell Repository for Alzheimer's Disease (NCRAD), which receives 37 38 government support under a cooperative agreement grant (U24 AG21886) awarded by the 39 National Institute on Aging (NIA), were used in this study. We thank contributors who 40 collected samples used in this study, as well as patients and their families, whose help and participation made this work possible; Data for this study were prepared, archived, and 41 42 distributed by the National Institute on Aging Alzheimer's Disease Data Storage Site 43 (NIAGADS) at the University of Pennsylvania (U24-AG041689-01); NACC, U01 AG016976; 44 NIA LOAD (Columbia University), U24 AG026395, R01AG041797; Banner Sun Health 45 Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 46 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01 AG048927, R01AG33193; 47 Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG028377,

AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG006781, 1 2 UO1 HG004610, UO1 HG006375; Indiana University, P30 AG10133; Johns Hopkins 3 University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; 4 Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 5 AG002219; New York University, P30 AG08051, UL1 RR029893, 5R01AG012101, 6 5R01AG022374, 5R01AG013616, 1RC2AG036502, 1R01AG035137; Northwestern University, 7 P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG30146; 8 9 TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of 10 California, Irvine, P50 AG016573; University of California, Los Angeles, P50 AG016570; 11 12 University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University 13 14 of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of 15 Pittsburgh, P50 AG005133, AG030653, AG041718, AG07562, AG02365; University of 16 Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; 17 University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; 18 University of Washington, P50 AG005136; University of Wisconsin, P50 AG033514; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 19 20 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Support was also 21 22 from the Alzheimer's Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147), the US 23 Department of Veterans Affairs Administration, Office of Research and Development, 24 Biomedical Laboratory Research Program, and BrightFocus Foundation (MP-V, A2111048). 25 P.S.G.-H. is supported by Wellcome Trust, Howard Hughes Medical Institute, and the 26 Canadian Institute of Health Research. Genotyping of the TGEN2 cohort was supported by 27 Kronos Science. The TGen series was also funded by NIA grant AG041232 to AJM and MJH, 28 The Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the 29 Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, 30 local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative 31 32 Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England 33 34 (HEFCE), Alzheimer's Research UK (ARUK), BRACE as well as North Bristol NHS Trust 35 Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding 36 via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting 37 Nederland BreinbrekendWerk, International Parkinson Fonds, InternationaleStiching Alzheimer Onderzoek), Institut de Neuropatologia, ServeiAnatomiaPatologica, Universitat de 38 Barcelona. ADNI data collection and sharing was funded by the National Institutes of Health 39 Grant U01 AG024904 and Department of Defense award number W81XWH-12-2-0012. 40 ADNI is funded by the National Institute on Aging, the National Institute of Biomedical 41 42 Imaging and Bioengineering, and through generous contributions from the following: 43 AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; 44 BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan 45 Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its 46 affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer

1 Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical 2 Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale 3 Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals 4 Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and 5 Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to 6 support ADNI clinical sites in Canada. Private sector contributions are facilitated by the 7 Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is 8 the Northern California Institute for Research and Education, and the study is coordinated 9 by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. 10 ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. We thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are 11

- 12 ex-officio ADGC members.
- 13

14 EADI: This work was supported by INSERM, the National Foundation for Alzheimer's 15 disease and related disorders, the Institut Pasteur de Lille and the Centre National de 16 Genotypage. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative 17 18 Strategies for a Transdisciplinary approach to Alzheimer's disease) including funding from 19 MEL (Metropoleeuropeenne de Lille), ERDF (European Regional Development Fund) and Conseil Regional Nord Pas de Calais. The Three-City Study was performed as part of 20 collaboration between the Institut National de la Sante et de la Recherche Medicale 21 22 (Inserm), the Victor Segalen Bordeaux II University and Sanofi-Synthelabo. The Fondation pour la Recherche Medicale funded the preparation and initiation of the study. The 3C Study 23 24 was also funded by the Caisse Nationale Maladie des Travailleurs Salaries, Direction 25 Generale de la Sante, MGEN, Institut de la Longevite, Agence Francaise de Securite Sanitaire des Produits de Sante, the Aquitaine and Bourgogne Regional Councils, Agence Nationale de 26 27 la Recherche, ANR supported the COGINUT and COVADIS projects. Fondation de France and 28 the joint French Ministry of Research/INSERM "Cohortes et collections de donnees 29 biologiques" programme. Lille Genopole received an unconditional grant from Eisai. The Three-city biological bank was developed and maintained by the laboratory for genomic 30 analysis LAG-BRC - Institut Pasteur de Lille. Belgium sample collection: Research at the 31 Antwerp site is funded in part by the Interuniversity Attraction Poles program of the Belgian 32 Science Policy Office, the Foundation for Alzheimer Research (SAO-FRA), a Methusalem 33 34 Excellence Grant of the Flemish Government, the Research Foundation Flanders (FWO), the 35 Special Research Fund of the University of Antwerp, Belgium. KB is a postdoctoral fellow of 36 the FWO. The Antwerp site authors thank the personnel of the VIB Genetic Service Facility, 37 the Biobank of the Institute Born-Bunge and the Departments of Neurology and Memory 38 Clinics at the Hospital Network Antwerp and the University Hospitals Leuven. Finish sample 39 collection: Financial support for this project was provided by the Health Research Council of the Academy of Finland, EVO grant 5772708 of Kuopio University Hospital, and the Nordic 40 Center of Excellence in Neurodegeneration. Swedish sample collection: Financially 41 42 supported in part by the Swedish Brain Power network, the Marianne and Marcus Wallenberg Foundation, the Swedish Research Council (521-2010-3134), the King Gustaf V 43 and Queen Victoria's Foundation of Freemasons, the Regional Agreement on Medical 44 45 Training and Clinical Research (ALF) between Stockholm County Council and the Karolinska 46 Institutet, the Swedish Brain Foundation and the Swedish Alzheimer Foundation". 47

1 AMP AD University of Florida/Mayo Clinic/Institutes of Systems Biology: For the human 2 brain donations, we thank all patients and their families, without whom this work would not have been possible. This work was supported by NIH/NIA AG046139-01 (TEG, NET, NP, SGY). 3 4 We thank Thomas G Beach (Banner Sun Health Institute, AZ) for sharing human tissue. 5 The Mayo Clinic Brain Bank: Data collection was supported through funding by NIA grants 6 7 P50 AG016574, R01 AG032990, U01 AG046139, R01 AG018023, U01 AG006576, U01 8 AG006786, R01 AG025711, R01 AG017216, R01 AG003949, NINDS grant R01 NS080820, 9 CurePSP Foundation, and support from Mayo Foundation.

10

11 Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona: The

Brain and Body Donation Program is supported by the National Institute of Neurological 12

13 Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson's

14 Disease and Related Disorders), the National Institute on Aging (P30 AG19610 Arizona

15 Alzheimer's Disease Core Center), the Arizona Department of Health Services (contract

16 211002, Arizona Alzheimer's Research Center), the Arizona Biomedical Research

Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson's Disease 17

Consortium) and the Michael J. Fox Foundation for Parkinson's Research. 18

19

20

21 Main Authors by Consortium and Author Contributions

22 Superscript number refers to institutional affiliation. This can be found below the main author list at 23 the beginning of this article.

24 **<u>GERAD/PERADES</u>**: Rebecca Sims¹, Nandini Badarinarayan¹, Rachel Raybould¹, Stefanie Heilmann-

25 Heimbach^{12,13}, Maria Vronskaya¹, Per Hoffmann^{12,13,21}, Markus M. Nöthen^{12,13}, Wolfgang Maier^{30,31},

Stefan Herms^{12,13,21}, Andreas J. Forstner^{12,13}, Denise Harold³⁵, Rhodri Thomas¹, Taniesha Morgan¹, 26

Nicola Denning¹, Elisa Majounie¹, Michelle K Lupton^{43,44}, Christopher Medway⁴⁷, Kristelle Brown⁴⁷, 27

Bernadette McGuinness⁵⁰, Petra Proitsi⁴³, Pau Pastor⁵⁴, Ana Frank-García^{56,57,58}, Ina Giegling⁶³, Harald 28

Hampel^{65,66,67}, Patrizia Mecocci⁵⁴, Virginia Boccardi⁵⁴, Martin Scherer⁷², Markus Leber⁷⁴, Steffi Riedel-29

30 Heller⁷⁶, Anne Braae⁷⁹, Carlo Masullo⁸³, Gianfranco Spalletta⁸⁶, Paola Bossù⁸⁶, Eleonora Sacchinelli⁸⁶,

Pascual Sánchez-Juan³⁷, Frank Jessen^{30,31,74}, John Morris^{97,98}, Chris Corcoran¹⁰⁰, JoAnn Tschanz¹⁰⁰, 31

Maria Norton¹⁰⁰, Ron Munger¹⁰⁰, María J Bullido^{57,58,106}, Eliecer Coto¹⁰⁷, Victoria Alvarez¹⁰⁷, Maura 32

Gallo¹¹⁶, Amalia Cecilia Bruni¹¹⁶, Martin Dichgans^{119,120}, Daniela Galimberti¹²², Elio Scarpini¹²², 33

Michelangelo Mancuso¹²⁷, Ubaldo Bonuccelli¹²⁷, Antonio Daniele¹²⁹, GERAD/PERADES, Oliver 34

Peters¹³¹, Benedetta Nacmias^{132,133}, Matthias Riemenschneider¹³⁴, Reinhard Heun³¹, Carol Brayne¹³⁵, 35

David C Rubinsztein¹²³, Jose Bras^{136,137}, Rita Guerreiro^{136,137}, John Hardy¹³⁶, Ammar Al-Chalabi¹³⁸, 36

Christopher E Shaw¹³⁸, John Collinge¹³⁹, David Mann¹⁴⁰, Magda Tsolaki¹⁴¹, Jordi Clarimón^{58,142}, 37

Rebecca Sussams¹⁴³, Simon Lovestone¹⁴⁴, Michael C O'Donovan¹, Michael J Owen¹, Simon Mead¹³⁹, 38

Clive Holmes¹⁴³, John Powell⁴³, Kevin Morgan⁴⁷, Peter Passmore⁵⁰, Dan Rujescu⁶³, Sara Ortega-39

Cubero^{58,154}, John "Keoni" Kauwe¹⁵⁷, Lesley Jones¹, Valentina Escott-Price¹, Peter A Holmans¹, Alfredo 40

Ramirez^{12,31,74}, Julie Williams¹. 41

42 Study design or conception: Rebecca Sims, Valentina Escott-Price, Michael C O'Donovan, Michael J

43 Owen, Peter A. Holmans, Julie Williams

- 1 Sample contribution: Markus M. Nöthen, Wolfgang Maier, Stefan Herms, Andreas J. Forstner, Julie
- 2 Williams, Alfredo Ramirez, Michelle K Lupton, Christopher Medway, Kristelle Brown, Bernadette
- 3 McGuinness, Petra Proitsi, Pau Pastor, Ana Frank-García, Ina Giegling, Harald Hampel, Patrizia
- 4 Mecocci, Virginia Boccardi, Martin Scherer, Markus Leber, Steffi Riedel-Heller, Anne Braae, Carlo
- 5 Masullo, Gianfranco Spalletta, Paola Bossù, Eleonora Sacchinelli, Pascual Sánchez-Juan, Frank Jessen,
- 6 John Morris, Chris Corcoran, JoAnn Tschanz, Maria Norton, Ron Munger, María J Bullido, Eliecer
- 7 Coto, Victoria Alvarez, Maura Gallo, Amalia Cecilia Bruni, Martin Dichgans, Daniela Galimberti, Elio
- 8 Scarpini, Michelangelo Mancuso, Ubaldo Bonuccelli, Antonio Daniele, Oliver Peters, Benedetta
- 9 Nacmias, Matthias Riemenschneider, Reinhard Heun, Carol Brayne, David C Rubinsztein, Ammar Al-
- Chalabi, Christopher E Shaw, John Collinge, David Mann, Magda Tsolaki, Jordi Clarimón, Rebecca
 Sussams, Simon Lovestone, Simon Mead, Clive Holmes, John Powell, Kevin Morgan, Peter Passmore,
- 11 Sussains, Simon Lovestone, Simon Meau, Cive Holmes, John Powell, Revin Morgan, Peter Passinore
- 12 Dan Rujescu, Sara Ortega-Cubero, John "Keoni" Kauwe,
- 13 Data generation: Rebecca Sims, Rachel Raybould, Stefanie Heilmann-Heimbach, Per Hoffmann,
- 14 Rhodri Thomas, Taniesha Morgan, Nicola Denning, Alfredo Ramirez, Julie Williams, Jose Bras, Rita
- 15 Guerreiro, John Hardy
- 16 Analysis: Rebecca Sims, Nandini Badarinarayan, Maria Vronskaya, Denise Harold, Elisa Majounie,
- 17 Peter A. Holmans
- 18 Manuscript preparation: Rebecca Sims, Lesley Jones, Peter A. Holmans, Julie Williams
- 19 Study supervision/management: Rebecca Sims, Alfredo Ramirez, Julie Williams
- 20
- 21 ADGC: Adam C. Naj³, Brian W. Kunkle⁸, Eden R. Martin^{8,11}, Amanda B. Kuzma¹⁶, Robert R. Graham²⁰,
- 22 Badri N. Vardarajan^{23,24,25}, Kara L. Hamilton-Nelson⁸, Gary W. Beecham^{8,11}, Cory C. Funk³⁴, Hongdong
- 23 Li³⁴, Otto Valladares¹⁶, Liming Qu¹⁶, Yi Zhao¹⁶, John Malamon¹⁶, Beth Dombroski¹⁶, Patrice
- 24 Whitehead⁸, Shubhabrata Mukherjee⁴⁸, Laura B. Cantwell¹⁶, Jeremy D. Burgess⁵¹, Mariet Allen⁵¹,
- 25 Nathan D Price³⁴, Paramita Chakrabarty⁶⁰, Xue Wang⁵¹, Paul K. Crane⁴⁸, Robert C. Barber⁷¹, Perrie M.
- Adams⁷³, Marilyn S. Albert⁷⁵, Duane Beekly⁷⁸, Deborah Blacker^{81,82}, Rachelle S. Doody⁸⁵, Thomas J.
- 27 Fairchild⁸⁹, Matthew P. Frosch⁹², Bernardino Ghetti⁹³, Ryan M. Huebinger⁹⁴, M. Ilyas Kamboh^{95,96},
- 28 Mindy J. Katz⁹⁹, C. Dirk Keene¹⁰¹, Walter A. Kukull⁸⁸, Eric B. Larson^{48,104}, Richard B. Lipton⁹⁹, Thomas J.
- 29 Montine¹⁰¹, Ronald C. Petersen¹⁰⁹, Eric M. Reiman^{112,113,114,115}, Joan S. Reisch^{59,117}, Donald R. Royall¹¹⁸,
- 30 Mary Sano¹²¹, Peter St George-Hyslop^{123,124}, Debby W. Tsuang^{125,126}, Ashley R. Winslow¹²⁸, Chuang-
- 31 Kuo Wu¹³⁰, ADGC, Timothy W. Behrens²⁰, Alison M. Goate^{98a}, Carlos Cruchaga^{97,98}, Todd E. Gold^{60,146},
- 32 Nilufer Ertekin-Taner^{51,109}, Steven G Younkin^{51,109}, Dennis W. Dickson⁵¹, Hakon Hakonarson¹⁵⁶, Lindsay
- 33 A. Farrer¹⁴, Johnathan Haines¹⁵⁹, Richard Mayeux^{23,24,25}, Margaret A. Pericak-Vance^{8,11}, Li-San Wang¹⁶,
- 34 Gerard D. Schellenberg¹⁶.
- 35 Study design or conception: Lindsay A. Farrer, Johnathan Haines, Richard Mayeux
- 36 Margaret A. Pericak-Vance, Li-San Wang, Gerard D. Schellenberg
- 37 Sample contribution: Ashley R. Winslow, Shubhabrata Mukherjee, Paul K. Crane, Robert C. Barber,
- 38 Perrie M. Adams, Marilyn S. Albert, Deborah Blacker, Rachelle S. Doody, Thomas J. Fairchild,
- 39 Matthew P. Frosch, Bernardino Ghetti, Ryan M. Huebinger, M. Ilyas Kamboh, Mindy J. Katz, C. Dirk
- 40 Keene, Eric B. Larson, Richard B. Lipton, Thomas J. Montine, Ronald C. Petersen, Eric M. Reiman,
- 41 Joan S. Reisch, Donald R. Royall, Mary Sano, Peter St George-Hyslop, Debby W. Tsuang, Chuang-Kuo
- 42 Wu, Alison M. Goate, Carlos Cruchaga, Steven G Younkin, Dennis W. Dickson, Walter A. Kukull,
- 43 Nilufer Ertekin-Taner

- 1 Data generation: Otto Valladares, Liming Qu, Yi Zhao, John Malamon, Cory C. Funk, Hongdong Li,
- 2 Jeremy D. Burgess, Mariet Allen, Nathan D Price, Paramita Chakrabarty, Xue Wang, Todd E. Golde,
- 3 Hakon Hakonarson, Timothy W. Behrens, Beth Dombroski, Walter A. Kukull, Nilufer Ertekin-Taner
- Analysis: Adam C. Naj, Brian W. Kunkle, Eden R. Martin, Amanda Partch, Robert R. Graham, Badri N.
 Vardarajan, Kara L. Hamilton-Nelson, Gary W. Beecham
- 6 Manuscript preparation: Adam C. Naj, Gerard D. Schellenberg
- 7 Study supervision/management: Gerard D. Schellenberg, Laura B. Cantwell, Duane Beekly, Patrice8 Whitehead
- 9
- 10 **CHARGE:** Sven J. van der Lee², Johanna Jakobsdottir⁷, Joshua C. Bis¹⁰, Vincent Chouraki^{14,15}, Agustin
- 11 Ruiz¹⁹, Megan L. Grove²², Charles C. White²⁸, Seung-Hoan Choi^{14,32}, Albert V. Smith^{7,33}, Shahzad
- 12 Ahmad², Claudia L. Satizabal^{14,15}, Jennifer A. Brody¹⁰, Frank J. Wolters², Myriam Fornage³⁹, Thomas H.
- 13 Mosley⁴⁰, Josée Dupuis³², Xueqiu Jian³⁹, Honghuang Lin¹⁶², Sonia Moreno-Grau¹⁹, Hieab H. Adams², L.
- 14 Adrienne Cupples^{15,32}, Daniel Levy^{14,15,59}, Alexa S. Beiser^{15,32}, Melissa E. Garcia⁶⁸, Gudny Eiriksdottir⁷,
- 15 Isabel Henández¹⁹, Lluis Tarraga¹⁹, Yuning Chen³², Valur Emilsson^{7,77}, Reinhold Schmidt⁸⁰, Helena
- 16 Schmidt⁸⁴, WT Longstreth Jr^{87,88}, Oscar L. Lopez^{90,91}, Qiong Yang³², Shuo Li³², Oscar Sotolongo-Grau¹⁹,
- 17 Jayanadra J. Himali¹⁴, Annette L. Fitzpatrick^{88,102}, Thor Aspelund^{7,103}, Jerome I. Rotter¹⁰⁵, Albert
- 18 Hofman², Eric Boerwinkle^{22,108}, Fernando Rivadeneira^{2,110,111}, Christopher J. O'Donnell¹⁵, CHARGE,
- 19 Andre G. Uitterlinden^{2,110,111}, David A. Bennett¹⁴⁵, Philip L. De Jager¹⁴⁸, Bruce M. Psaty^{10,88,104,149},
- 20 Vilmundur Gudnason^{7,33}, Anita L. DeStefano^{15,32}, Merce Boada¹⁹, M. Arfan Ikram^{2,158}, Lenore J.
- Launer⁶⁸, Najaf Amin², Cornelia M. van Duijn², Sudha Seshadri^{14,15}.
- Study design or conception: S. J. van der Lee, Joshua C. Bis, Philip L. De Jager, Vilmundur Gudnason,
 Anita L. DeStefano, Lenore J. Launer, Najaf Amin, Cornelia M. van Duijn, Sudha Seshadri.
- 24 Sample contribution: Joshua C. Bis, Agustin Ruiz, Megan L. Grove, Claudia L. Satizabal, Frank J.
- 25 Wolters, Thomas H. Mosley, Alexa S. Beiser, Melissa E. Garcia, Gudny Eiriksdottir, Reinhold Schmidt,
- 26 Helena Schmidt, WT Longstreth, Jr, Oscar L. Lopez, Jayanadra J. Himali, Annette L. Fitzpatrick, Albert
- 27 Hofman, David A. Bennett, Philip L. De Jager, Bruce M. Psaty, Vilmundur Gudnason, Merce Boada, M.
- 28 Arfan Ikram, Lenore J. Launer.
- 29 Data generation: Sven J. van der Lee, Agustin Ruiz, Fernando Rivadeneira, Andre G., Uitterlinden,
- 30 Joshua C. Bis, Megan L. Grove, Helena Schmidt, Johanna Jakobsdottir, Albert V. Smith, Jennifer A.
- 31 Brody, Myriam Fornage, Xueqiu Jian, Honghuang Lin, L. Adrienne Cupples, Daniel Levy, Qiong Yang,
- 32 Thor Aspelund, Eric Boerwinkle, Christopher J. O'Donnell, Merce Boada, Shahzad Ahmad, Sonia
- 33 Moreno-Grau, Hieab H. Adams, Isabel Henández, Lluis Tarraga, Oscar Sotolongo-Grau, Najaf Amin
- Analysis: Sven J. van der Lee, Agustin Ruiz, Joshua C. Bis, Megan L. Grove, Helena Schmidt, Johanna
- 35 Jakobsdottir, Albert V. Smith, Sonia Moreno-Grau, Najaf Amin, Vincent Chouraki, Charles C. White,
- 36 Seung-Hoan Choi, Josée Dupuis, Yuning Chen, Shuo Li, Anita L. DeStefano
- 37 Manuscript preparation: Sven J. van der Lee, Agustin Ruiz, Joshua C. Bis, Johanna Jakobsdottir,
- 38 Vincent Chouraki, Charles C. White, Cornelia M. van Duijn,,Sudha Seshadri
- 39 Study supervision/management: Cornelia M. van Duijn, Sudha Seshadri, M. Arfan Ikram
- 40

- 1 **EADI:** Céline Bellenguez^{4,5,6}, Anne Boland⁹, Benjamin Grenier-Boley^{4,5,6}, Kristel Sleegers^{17,18}, Robert
- 2 Olaso⁹, Mikko Hiltunen^{26,27}, Jacques Epelbaum²⁹, Cécile Dulary⁹, Céline Derbois⁹, Delphine Bacq⁹,
- 3 Alessio Squassina³⁶, Pascual Sanchez-Juan³⁷, Florentino Sanchez Garcia³⁸, Maria Candida Deniz
- 4 Naranjo³⁸, David Wallon^{41,42}, Laura Fratiglioni^{45,46}, Lina Keller⁴⁶, Francesco Panza⁴⁹, Vincenzo
- 5 Solfrizzi⁵², Davide Seripa⁵³, Didier Hannequin^{42,55}, Paolo Caffarra^{61,62}, Vimantas Giedraitis⁶⁴, Lars
- 6 Lannfelt⁶⁴, Florence Pasquier^{69,70}, EADI, Martin Ingelsson⁶⁴, Caroline Graff^{45,147}, Onofre Cambarros³⁷,
- 7 Claudine Berr^{150,151,152}, Jean-Francois Dartigues¹⁵³, Dominique Campion^{41,42}, Christine Van
- 8 Broeckhoven^{17,18}, Christophe Tzourio^{160,161}, Jean-François Deleuze⁹, Philippe Amouyel^{4,5,6,69}, Jean-
- 9 Charles Lambert^{4,5,6}.
- 10 Study design or conception: Phillippe Amouyel, Jean-Charles Lambert
- 11 Sample contribution: Jacques Epelbaum, David Wallon, Didier Hannequin, Florence Pasquier,
- 12 Claudine Berr, Jean-Francois Dartigues, Dominique campion, Christophe Tzourio, Phillippe Amouyel,
- 13 Jean-Charles Lambert, Vincent Dermecourt, Nathalie Fievet, Olivier Hanon, Carole Dufouil, Alexis
- 14 Brice, Karen Ritchie, Bruno Dubois, Kristel Sleegers, Mikko Hiltunen, Maria Del Zompo, Ignacio
- 15 Mateo, Florentino Sanchez Garcia, Maria Candida Deniz Naranjo, Laura Fratiglioni, Lina Keller,
- 16 Francesco Panza, Paolo Caffarra, Lars Lannfelt, Martin Ingelsson, Caroline Graff, Onofre Cambarros,
- 17 Christine Van Broeckhoven, Sebastien Engelborghs, Rik Vandenberghe, Peter P. De Deyn, Alession
- 18 Squassina, Pascual Sanchez-Juan, Carmen, Munoz Fernadez, Yoland Aladro Benito, Hakan Thonberg,
- 19 Charlotte Forsell, Lena Lilius, Anne Kinhult-stählbom, Vilmantas Giedraitis, Lena Kilander, RoseMarie
- 20 Brundin, Letizia Concari, Seppo Helisalmi, Anne Maria Koivisto, Annakaisa Haapasalo, Vincenzo
- 21 Solfrizzi, Vincenza Frisardi
- 22 Data generation: Anne Boland, Robert Aloso, Cécile Dulary, Céline Derbois, Delphine Bacq, Jean-
- 23 François Deleuze, Fabienne Garzia, Feroze Golamaully, Gislain Septier
- 24 Analysis: Céline Bellenguez, Benjamin Grenier-Boley, Phillippe Amouyel, Jean-Charles Lambert
- 25 Manuscript preparation: Céline Bellenguez, Jean-Charles Lambert
- 26 Study supervision/management: Phillippe Amouyel, Jean-Charles Lambert
- 27

1 <u>Competing Financial Interests Statement</u>

2 Robert R. Graham and Timothy W. Behrens are full-time employees of Genentech Inc. Deborah 3 Blacker is a consultant for Biogen Inc. Ronald C. Petersen is a consultant for Roche Inc., Merck Inc., 4 Genentech Inc., Biogen Inc., and Eli Lilly. Ashley R. Winslow is a former employee and stockholder of 5 Pfizer, Inc., and a current employee of the Perelman School of Medicine at the University of 6 Pennsylvania Orphan Disease Center in partnership with the Loulou. Alison M. Goate is a member of 7 the scientific advisory board for Denali Therapeutics. Nilufer Ertekin-Taner is a consultant for Cytox. 8 John Hardy holds a collaborative grant with Cytox cofunded by Department of Business (Biz). Frank 9 Jessen acts as a consultant for Novartis, Eli Lilly, Nutricia, MSD, Roche and Piramal. Neither Dr. 10 Morris nor his family owns stock or has equity interest (outside of mutual funds or other externally 11 directed accounts) in any pharmaceutical or biotechnology company. Dr. Morris is currently participating in clinical trials of antidementia drugs from Eli Lilly and Company, Biogen, and Janssen. 12 13 Dr. Morris serves as a consultant for Lilly USA. He receives research support from Eli Lilly/Avid 14 Radiopharmaceuticals and is funded by NIH grants # P50AG005681; P01AG003991; P01AG026276 15 and UF01AG032438.

16

17 <u>References</u>

18 1. Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch.

- 19 *Gen. Psychiatry* **63,** 168–174 (2006).
- 20 2. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility
- 21 loci for Alzheimer's disease. *Nat. Genet.* **45**, 1452–1458 (2013).
- 3. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM
- associated with Alzheimer's disease. *Nat. Genet.* **41**, 1088–1093 (2009).
- 4. Lambert, J.-C. et al. Genome-wide association study identifies variants at CLU and CR1
- associated with Alzheimer's disease. *Nat. Genet.* **41**, 1094–1099 (2009).
- 26 5. Escott-Price, V. et al. Gene-wide analysis detects two new susceptibility genes for
- 27 Alzheimer's disease. *PloS One* **9**, e94661 (2014).

1	6.	Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and
2		CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).
3	7.	Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are
4		associated with late-onset Alzheimer's disease. Nat. Genet. 43, 436–441 (2011).
5	8.	Ruiz, A. et al. TOWARD FINE MAPPING AND FUNCTIONAL CHARACTERIZATION OF
6		GENOME-WIDE ASSOCIATION STUDY-IDENTIFIED LOCUS RS74615166 (TRIP4) FOR
7		ALZHEIMER'S DISEASE. Alzheimers Dement. J. Alzheimers Assoc. 10, P257–P258 (2014).
8	9.	Jonsson, T. et al. Variant of TREM2 Associated with the Risk of Alzheimer's Disease. N.
9		Engl. J. Med. 368, 107–116 (2013).
10	10.	Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related
11		cognitive decline. <i>Nature</i> 488, 96–99 (2012).
12	11.	Guerreiro, R. et al. TREM2 Variants in Alzheimer's Disease. N. Engl. J. Med. 368, 117–127
13		(2013).
14	12.	Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer
15		disease. <i>JAMA</i> 303, 1832–1840 (2010).
16	13.	Escott-Price, V. et al. Common polygenic variation enhances risk prediction for
17		Alzheimer's disease. Brain J. Neurol. 138, 3673–3684 (2015).
18	14.	Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to
19		common diseases. <i>Nat. Genet.</i> 40, 695–701 (2008).
20	15.	Pritchard, J. K. Are rare variants responsible for susceptibility to complex diseases? Am.
21		J. Hum. Genet. 69, 124–137 (2001).
22	16.	Schork, N. J., Murray, S. S., Frazer, K. A. & Topol, E. J. Common vs. rare allele hypotheses
23		for complex diseases. Curr. Opin. Genet. Dev. 19, 212–219 (2009).

1	17.	Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat.
2		Genet. 47, 589–597 (2015).
3	18.	Vardarajan, B. N. et al. Coding mutations in SORL1 and Alzheimer disease. Ann. Neurol.
4		77, 215–227 (2015).
5	19.	Vardarajan, B. N. et al. Rare coding mutations identified by sequencing of Alzheimer
6		disease genome-wide association studies loci. Ann. Neurol. 78, 487–498 (2015).
7	20.	Steinberg, S. et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease.
8		Nat. Genet. 47, 445–447 (2015).
9	21.	Logue, M. W. et al. Two rare AKAP9 variants are associated with Alzheimer's disease in
10		African Americans. Alzheimers Dement. J. Alzheimers Assoc. 10, 609–618.e11 (2014).
11	22.	Jun, G. et al. PLXNA4 is associated with Alzheimer disease and modulates tau
12		phosphorylation. Ann. Neurol. 76, 379–392 (2014).
13	23.	Hunkapiller, J. et al. A rare coding variant alters UNC5C function and predisposes to
14		Alzheimer's disease. Alzheimers Dement. J. Alzheimers Assoc. 9, P853 (2013).
15	24.	Wetzel-Smith, M. K. et al. A rare mutation in UNC5C predisposes to late-onset
16		Alzheimer's disease and increases neuronal cell death. Nat. Med. 20, 1452–1457 (2014).
17	25.	Richards, A. L. et al. Exome arrays capture polygenic rare variant contributions to
18		schizophrenia. Hum. Mol. Genet. (2016). doi:10.1093/hmg/ddv620
19	26.	Wessel, J. et al. Low-frequency and rare exome chip variants associate with fasting
20		glucose and type 2 diabetes susceptibility. Nat. Commun. 6, 5897 (2015).
21	27.	Igartua, C. et al. Ethnic-specific associations of rare and low-frequency DNA sequence
22		variants with asthma. Nat. Commun. 6, 5965 (2015).
23	28.	Tachmazidou, I. et al. A rare functional cardioprotective APOC3 variant has risen in
24		frequency in distinct population isolates. Nat. Commun. 4, 2872 (2013).

1	29.	Huyghe, J. R. et al. Exome array analysis identifies new loci and low-frequency variants
2		influencing insulin processing and secretion. Nat. Genet. 45, 197–201 (2013).
3	30.	Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of
4		genomewide association scans. <i>Bioinformatics</i> 26, 2190–2191 (2010).
5	31.	R Development Core Team. R: A language and environment for statistical computing. (R
6		Foundation for Statistical Computing).
7	32.	Das, S. et al. Imputation server: next generation genotype imputation service. Nat.
8		Genet.
9	33.	McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation.
10		<i>bioRxiv</i> 35170 (2015). doi:10.1101/035170
11	34.	Jin, S. C. et al. Coding variants in TREM2 increase risk for Alzheimer's disease. Hum. Mol.
12		Genet. 23, 5838–5846 (2014).
13	35.	Lu, Y., Liu, W. & Wang, X. TREM2 variants and risk of Alzheimer's disease: a meta-
14		analysis. Neurol. Sci. 36, 1881–1888 (2015).
15	36.	Cruchaga, C. et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for
16		Alzheimer's disease. Neuron 78, 256–268 (2013).
17	37.	International Genomics of Alzheimer's Disease Consortium (IGAP). Convergent genetic
18		and expression data implicate immunity in Alzheimer's disease. Alzheimers Dement. J.
19		Alzheimers Assoc. 11, 658–671 (2015).
20	38.	Zhang, Y. et al. Purification and Characterization of Progenitor and Mature Human
21		Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 89,
22		37–53 (2016).
23	39.	Milner, J. D. PLAID: a Syndrome of Complex Patterns of Disease and Unique Phenotypes.
24		J. Clin. Immunol. 35, 527–530 (2015).

1	40. Fairfax, B. P. et al. Innate Immune Activity Conditions the Effect of Regulatory Variants
2	upon Monocyte Gene Expression. Science 343, 1246949 (2014).
3	41. Sekino, S. et al. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the
4	Abi-1-based WAVE2 complex. Cell Commun. Signal. CCS 13, (2015).
5	42. Nolz, J. C. et al. The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and
6	CRAC-Mediated Calcium Entry during T Cell Activation. Curr. Biol. CB 16, 24–34 (2006).
7	43. Xing, J., Titus, A. R. & Humphrey, M. B. The TREM2-DAP12 signaling pathway in Nasu-
8	Hakola disease: a molecular genetics perspective. <i>Res. Rep. Biochem.</i> 5, 89–100 (2015).
9	44. Neumann, H. & Takahashi, K. Essential role of the microglial triggering receptor
10	expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J.
11	Neuroimmunol. 184, 92–99 (2007).
12	45. Painter, M. M. et al. TREM2 in CNS homeostasis and neurodegenerative disease. Mol.
13	Neurodegener. 10, 43 (2015).
14	46. Ulrich, J. D. et al. In vivo measurement of apolipoprotein E from the brain interstitial
15	fluid using microdialysis. Mol. Neurodegener. 8, 13 (2013).
16	47. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's
17	disease model. <i>Cell</i> 160, 1061–1071 (2015).
18	48. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene
19	cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205
20	(2012).
21	49. Perlmutter, L. S., Barron, E. & Chui, H. C. Morphologic association between microglia and
22	senile plaque amyloid in Alzheimer's disease. <i>Neurosci. Lett.</i> 119, 32–36 (1990).

1	50. Wisniewski, H. M., Wegiel, J., Wang, K. C. & Lach, B. Ultrastructural studies of the cells
2	forming amyloid in the cortical vessel wall in Alzheimer's disease. Acta Neuropathol.
3	(Berl.) 84, 117–127 (1992).
4	51. Schwab, C., Klegeris, A. & McGeer, P. L. Inflammation in transgenic mouse models of
5	neurodegenerative disorders. Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1802, 889–
6	902 (2010).
7	52. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer
8	mouse models. Science aad8373 (2016). doi:10.1126/science.aad8373
9	53. Olmos-Alonso, A. et al. Pharmacological targeting of CSF1R inhibits microglial
10	proliferation and prevents the progression of Alzheimer's-like pathology. Brain awv379
11	(2016). doi:10.1093/brain/awv379
12	54. Paris, D. <i>et al.</i> The Spleen Tyrosine Kinase (syk) Regulates Alzheimer's A β Production and
13	Tau Hyperphosphorylation. J. Biol. Chem. jbc.M114.608091 (2014).
14	doi:10.1074/jbc.M114.608091
15	55. Bao, M. et al. CD2AP/SHIP1 complex positively regulates plasmacytoid dendritic cell
16	receptor signaling by inhibiting the E3 ubiquitin ligase Cbl. J. Immunol. Baltim. Md 1950
17	189, 786–792 (2012).
18	56. Kurosaki, T. & Tsukada, S. BLNK: Connecting Syk and Btk to Calcium Signals. Immunity
19	12, 1–5 (2000).
20	57. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of
21	amyloid plaques. J. Exp. Med. 213, 667–675 (2016).
22	58. Yuan, P. et al. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier
23	Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy.
24	Neuron 90, 724–739 (2016).

1 Figure Legends

Figure 1. Association plots of PLCG2, ABI3, and TREM2. (a) Regional plot of 2 identified association at the *PLCG2* locus. Top hit rs72824905 indicated in 3 purple. Data presented for rs72824905 includes stage 1, stage 2 and stage 3 4 (N=84,905). (b) Regional plot of identified association at the ABI3 locus. Top hit 5 rs616338 indicated in purple. Data presented for rs616338 includes stage 1, 6 stage 2 and stage 3 (N=84,493). (c) Regional plot of identified association at the 7 TREM2 locus. Top hit rs75932628 indicated in purple. Data presented for 8 rs75932628 and rs143332484 includes stage 1, stage 2 and stage 3 (N=80,733 9 and 53,042, respectively). SNVs with missing LD information are shown in grey. 10

11

Figure 2. Protein-protein interaction network (using high-confidence human 12 interactions from the STRING database) of 56 genes enriched for both common 13 and rare variants associated with AD risk. Colours of edges refer to the type of 14 evidence linking the corresponding proteins: red=gene fusion, dark blue = co-15 occurrence, black = co-expression, magenta = experiments, cyan=databases, 16 light green = text mining, mauve = homology. TREM2, PLCG2 and ABI3 17 highlighted by red circles, SYK, CSF1R and TYROBP highlighted by blue circles, 18 and INPP5D, SPI1 and CD33 identified as common variant risk loci^{2,5–7}, 19 highlighted by black circles. 20

Table 1. Summary of the consortium data sets used for stages 1, 2 and stage 3. Data are from the Genetic and

- 2 Environmental Risk for Alzheimer's Disease (GERAD)/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's
- 3 Disease (PERADES) Consortium, the Alzheimer's Disease Genetic Consortium (ADGC), the Cohorts for Heart and Aging
- 4 Research in Genomic Epidemiology (CHARGE) and the European Alzheimer's disease Initiative (EADI)(Supplement 1).

	Consortium	N Controls	N Cases	N Total
Stage 1	GERAD/PERADES	2974	6000	8974
	ADGC	7002	8706	15708
	CHARGE	8101	1391	9492
Total		18077	16097	34174
Stage 2	GERAD/PERADES genotype	5049	4049	9098
	CHARGE-genotype	1839	1434	3273
	CHARGE-in silico	3246	722	3968
	EADI-genotype	11787	7836	19623
Total		21921	14041	35962
Stage 3	ADGC-in silico	8345	6652	14997
Stage 1 + 2 + 3				
Total		48402	37022	85133
Table 2. Summary of stage 1, 2, 3 and combined meta-analysis results for SNVs
at P<5x10⁻⁸. Data includes p-values, odds ratios (OR), minor allele frequency
(MAF) in cases and controls and number of subjects included in each analytical
stage. For OR 95% confidence intervals see Supplementary Table 7.

SNV	rs75932628	rs143332484	rs72824905	rs616338
Chr	6	6	16	17
Position	41129252	41129207	81942028	47297297
Protein	R47H	R62H	P522R	S209F
Variation	T D F1 (2)	T D F1 40		4.512
Gene	TREIVI2	TREIVIZ	PLCG2	ABI3
Effect Allele		 	G	<u> </u>
	1	Stage 1		
Р	3.02E-12	3.48E-09	1.19E-05	2.16E-05
OR	2.46	1.58	0.65	1.42
MAF Cases	0.003	0.015	0.006	0.013
MAF Controls	0.001	0.010	0.011	0.010
Ν	30018	33786	33786	33786
	-	Stage 2		
Р	4.38E-08	3.66E-07	1.35E-04	8.37E-05
OR	2.37	3.97	0.70	1.41
MAF Cases	0.004	0.014	0.006	0.010
MAF Controls	0.002	0.006	0.008	0.008
Ν	35831	3968	35831	35831
		Stage 3		
Р	1.23E-06	2.45E-03	2.48E-02	1.75E-02
OR	2.58	1.55	0.69	1.58
MAF Cases	0.006	0.012	0.006	0.010
MAF Controls	0.003	0.008	0.007	0.008
N	14884	15288	15288	14876
	Stage1, 2	and 3 Meta-An	alysis	
P	5.38E-24	1.55E-14	5.38E-10	4.56E-10
OR	2.46	1.67	0.68	1.43
MAF Cases	0.004	0.014	0.006	0.011
MAF Controls	0.002	0.009	0.009	0.008
Ν	80733	53042	84905	84493

5 Note: Concordance for alternate allele carrier genotypes between imputed versus called

6 SNPs in Stage 3 was 75.2% for rs75932628, 91.1% for rs143332484, 95.7% for rs72824905,

7 and 81.9% for rs616338 (Online Methods and Supplementary Table 6).

1 Online Methods

2 Genotyping and Quality Control

3 <u>Stage 1</u>

4 GERAD/PERADES: Genotyping was performed at Life and Brain, Bonn, Germany, with the Illumina HumanExome BeadChip v1.0 (N=247,870 variants) or v1.1 (N=242,901 variants). 5 Illumina's GenTrain version 2.0 clustering algorithm in GenomeStudio or zCall¹ was used for 6 7 genotype calling. Quality control (QC) filters were implemented for sample call rate 8 excluding samples with >1% missingness, excess autosomal heterozygosity excluding outliers based on <1% and >1% minor allele frequency (MAF) separately, gender 9 10 discordance, relatedness excluding one of each pair related with IBD ≥ 0.125 (the level 11 expected for first cousins), and population outliers (i.e. non European ancestry). Variants 12 were filtered based on call rate excluding variants with >1% missingness, genotype cluster separation excluding variants with a separation score < 0.4 and Hardy-Weinberg equilibrium 13 14 (HWE) excluding variants with $P_{HWE} < 1 \times 10^{-4}$. Ten principal components (PCs) were extracted 15 using EIGENSTRAT, including the first three PCs as covariates had the maximum impact on the genomic control inflation factor, λ^2 . After QC 6,000 LOAD cases and 2,974 elderly 16 controls (version 1.0; 4,093 LOAD cases and 1,599 controls, version 1.1; 1,907 LOAD cases 17 and 1,375 controls) remained. The version 1.0 array had 244,412 variants available for 18 19 analysis and 239,814 remained for the version 1.1 array.

20 CHARGE: All four CHARGE cohorts were genotyped for the Illumina HumanExome BeadChip v1.0. To increase the quality of the rare variant genotype calls, the genotypes for 21 all four studies were jointly called with 62,266 samples from 11 studies at the University of 22 Texas HSC at Houston³. Quality control (QC) procedures for the genotype data were 23 performed both centrally at UT Houston and at each study. The central QC procedures have 24 been described previously³. Minimum QC included: 1) Concordance checking with GWAS 25 data and removal of problematic samples, 2) Removal of individuals with low genotype 26 completion rate (<90%), 3) Removal of variants with low genotype call rate (<95%), 4) 27 Removal of individuals with sex-mismatches, 5) Removal of one individual from duplicate 28 29 pairs, 6) Removal of first-degree relatives based on genetically calculated relatedness (IBS > 0.45), with cases retained over controls, 7) Removal of variants not called in over 5% of the 30 individuals and those that deviated significantly form the expected Hardy-Weinberg 31 Equilibrium proportions ($P < 1x10^{-6}$). 32

ADGC: Genotyping was performed in subsets at four centers: NorthShore, Miami, WashU, and CHOP ("CHOP" and "ADC7" datasets) on the Illumina HumanExome BeadChip v1.0. One variant rs75932628 (p.R47H) in *TREM2* clustered poorly across all ADGC cohorts, and was therefore re-genotyped using a Taqman assay. Data on all samples underwent standard quality control procedures applied to genome-wide association studies (GWAS), including excluding variants with call rates <95%, and then filtering samples with call rate <95%. Variants with MAF>0.01 were evaluated for departure from HWE and any variants for

- 1 P_{HWE} <10⁻⁶ were excluded. Population substructure within each of the five subsets
- 2 (NorthShore, Miami, WashU, CHOP, and ADC7) was examined using PC analysis in
- 3 EIGENSTRAT⁴, and population outliers (>6 SD) were excluded from further analyses; the first
- 4 three PCs were adjusted for as covariates in association testing. Prior to analysis we
- 5 harmonized the alternate and reference alleles over all datasets. See Supplementary Table 3
- 6 for an overview of cohort genotype calling and quality control procedures. All sample
- 7 genotyping and quality control was performed blind to participant's disease status.
- 8

9 <u>Stage 2</u>

10 Twenty-two variants successfully designed for replication genotyping on the Agena 11 Bioscience MassARRAY® platform. Genotyping was performed at Life and Brain, Bonn, 12 Germany, and the Centre National de Génotypage (CNG), Paris, France. Twenty-one variants 13 were successfully genotyped, with one variant (rs147163004 in *ASTN2*) failing visual cluster 14 plot inspection. An additional nine variants were successfully genotyped using the Agena 15 Bioscience MassARRAY® platform or Thermo FisherTaqMan® assay at the CNG, Paris, France 16 in a subset of the replication samples N=16,850 (7,755 cases, 9,095 controls).

17GERAD/PERADES and ACE QC: Filters were implemented for sample call rate,18excluding samples with >10% missingness, and excess autosomal heterozygosity via visual19inspection. Variants were filtered based on call rate excluding variants with >10%20missingness and HWE excluding variants with $P_{HWE} < 1 \times 10^{-5}$ in either cases or controls.

IGAP and EADI QC: Variants were genotyped in 3 different panels and QC was
 performed in each panel separately. Samples with more than 3 missing genotypes were
 excluded, as were males heterozygous for X-Chromosome variants present within the
 genotyped panels. Variants were excluded based on missingness >5%, HWE (in cases and
 controls separately) <1x10⁻⁵, and differential missingness between cases and controls <1x10⁻
 ⁵, for each Country cohort. All variants passed quality control. PCs were determined using
 previously described methods¹⁹.

28

29 <u>Stage 3</u>

Replication was performed using genotypes from 23 ADGC datasets as described 30 31 above. Genotyping arrays used have been described in detail before for most datasets, except for the CHAP, NBB, TARCC, and WHICAP datasets. CHAP and WHICAP datasets were 32 genotyped on the Illumina OmniExpress-24 array, while NBB was genotyped on the Illumina 33 1M platform. TARCC first wave subjects were genotyped using the Affymetrix 6.0 microarray 34 35 chip, while subjects in the second wave (172 cases and 74 controls) were genotyped using 36 the Illumina HumanOmniExpress-24 beadchip. Second wave TARCC subjects (TARCC2) were 37 genotyped together with 84 cases and 115 controls from second wave samples ascertained

at the University of Miami and Vanderbilt University. All samples used in stage 3 were
 imputed to the HRC haplotype reference panel^{5,6}, which includes 64,976 haplotypes with

- 3 39,235,157 SNPs that allows imputation down to an unprecedented MAF=0.00008.
- 4 Prior to imputation, all genotype data underwent QC procedures that have been described extensively elsewhere^{7,8}. Imputation was performed on the Michigan Imputation 5 Server (https://imputationserver.sph.umich.edu/) running MiniMac3^{9,10}.Genotypes from 6 7 genome-wide, high-density SNP genotyping arrays for 16,175 AD cases and 17,176 8 cognitive-normal individuals were imputed. Across all samples 39,235,157 SNPs were 9 imputed, with the actual number of SNPs imputed for each individual varying based on the regional density of array genotypes available. As a subset of these samples had also been 10 11 genotyped as part of stage 1, we examined the imputation quality for critical variants by comparing imputed genotypes to those directly genotyped by the exome array; overall 12 concordance was >99%, while concordance among alternate allele genotypes 13 (heterozygotes and alternate allele homozygotes) was >88.5% on average (N=13,000 14 samples). Concordance between Stage 3 imputed genotypes and exome chip genotypes for 15
- 16 replicated SNPs is reported in Supplementary Table 6.
- 17

18 <u>Analysis</u>

19 <u>Stage 1</u>

We tested association with LOAD using logistic regression modelling for common 20 21 and low frequency variants (MAF>1%) and implementing maximum likelihood estimation using the score test and 'seqMeta' package for rare variation (MAF<1%). Analyses were 22 23 conducted globally in the GERAD/PERADES consortium, and for each contributing centre in 24 the CHARGE and ADGC consortia under two models (1) an 'unadjusted' model, which 25 included minimal adjustment for possible population stratification, using Country of origin and the first three principal components from PCA, and (2) an 'adjusted' model, which 26 included covariates for age, and sex, as well as Country of origin and the first three principal 27 components. Age was defined as the age at onset of clinical symptoms for cases, and the 28 age at last interview for cognitively normal controls. 29

30 Meta-analysis for common and low frequency variants were undertaken in METAL 31 using a fixed-effects inverse variance-weighted meta-analysis. Rare variants were meta-32 analysed in the SeqMeta R package. In the SeqMeta pipeline, cohort-level analyses 33 generated score statistics through the function 'prepScores()' which were captured in *. 34 Rdata objects. These *. Rdata objects contain the necessary information to meta-analyse 35 SKAT analyses: the individual SNP scores, MAF, and a covariance matrix for each unit of aggregation. Using the 'singlesnpMeta()' and 'skatOmeta()' functions of SeqMeta, the *. 36 37 Rdata objects for individual studies were meta-analysed. The seqMeta coefficients and standard errors can be interpreted as a 'one-step' approximation to the maximum likelihood 38

1 estimates. Monomorphic variants in individual studies were not excluded as they contribute

to the minor allele frequency information. Three independent analysts confirmed the meta-analysis results.

In the GERAD/PERADES consortium 1,740 participants (888 LOAD cases and 852 controls) did not have age information available and were excluded from the adjusted analyses. Therefore, 16,160 cases and 17,967 controls were included in the unadjusted analyses and 15,272 cases and 17,115 controls were included in the adjusted analyses. The primary analysis utilized the unadjusted model given the larger sample size this provided. See Supplementary Figure 2 for QQ plots of unadjusted and adjusted analyses.

10

11 <u>Stage 2</u>

12 We tested association with LOAD using the score test and 'seqMeta' package. 13 Analyses were conducted under the two models described above, in the analysis groups 14 indicated in Supplementary Table 2. Analyses were undertaken globally in the 15 GERAD/PERADES cohort and by Country in the IGAP cohorts, with the EADI1 cohort only including French participants and the ACE cohort including only Spanish participants. 16 17 Following the format of the IGAP mega meta-analysis⁷, four PCs were included for the EADI1 18 dataset, and one in the Italian and Swedish IGAP clusters. Meta-analysis was undertaken in 19 the SeqMeta R package.

20

21 <u>Stage 3</u>

Association analyses performed followed Stage 1 and Stage 2 analytical procedures described below, and only variants in *ABI3*, *PLCG2* and *TREM2* were examined. For genebased testing, 10 variants in *ABI3*, 35 in *PLCG2*, and 13 in *TREM2* were examined.

25

26 Pathway/Gene-set Enrichment Analysis

27 The eight biological pathway clusters previously identified as enriched for 28 association in the IGAP dataset¹¹ were tested for enrichment in this rare variation study (Supplementary Table 15) in order to test whether the biological enrichments observed in 29 30 common variants also apply to rare variants. Genes were defined without surrounding genomic sequence, as this yielded the most significant excess of enriched pathways in the 31 common variation dataset¹¹. Gene-wide SKAT-O P-values for the variants of interest were 32 combined using the Fisher's combined probability test. Given the low degree of LD¹² 33 between rare variants our primary analyses did not control for LD between pathway genes. 34 35 However, as a secondary analysis, the APOE region was removed, and for each pair of 36 pathway genes within 1Mb of each other, the gene with the more significant SKAT-O P-

value was removed. This highly conservative procedure removes any potential bias in the 1

- 2 enrichment test both from LD between the genes, and also from dropping less significant 3 genes from the analysis.
- We also performed pathway analyses on the rare variant data presented here using 4 all 9,816 pathways used previously. The top pathways are related to lipoprotein particles, 5 cholesterol efflux, B-cell differentiation and immune response, and closely parallel the 6
- 7 common variant results (Supplementary Table 16).
- 8

9 **Protein interaction Analysis**

Previous analysis of normal brain co-expression networks identified 4 gene modules 10 11 that were enriched for common variants associated with AD risk in the IGAP GWAS. Each of these 4 modules was also found to be enriched for immune-related genes. The 151 genes 12 present in 2 or more of these 4 modules were particularly strongly enriched for IGAP GWAS 13 association⁴¹. This set of 151 co-expressed genes thus contains genes of relevance to AD 14 aetiology. To identify these genes, and clarify biological relationships between them for 15 future study, protein interaction analysis was performed. First, a list of high-confidence 16 17 (confidence score >0.7) human protein-protein interactions was downloaded from the latest 18 version (v10) of the STRING database (<u>http://string-db.org</u>). Then, protein interaction networks were generated as follows: 19 1. Choose a gene to start the network (the "seed" gene) 20

- 2. For each remaining gene in the set of 151 genes, add it to the network if its 21 corresponding protein shows a high-confidence protein interaction with a 22 23 protein corresponding to any gene already in the network. 24
 - 3. Repeat step 2 until no more genes can be added
 - 4. Note the number of genes in the network
 - 5. Repeat, choosing each of the 151 genes in turn as the seed gene.
- 26 27

25

The largest protein interaction network resulting from this procedure resulted in a 28 29 network of 56 genes connected by high-confidence protein interactions. To test whether 30 this network was larger than expected by chance, given the total number of protein-protein 31 interactions for each gene, random sets of 151 genes were generated, with each gene 32 chosen to have the same total number of protein-protein interactions as the corresponding 33 gene in the actual data. Protein networks were generated for each gene as described above, and the size of the largest such network compared to the observed 56-gene network. 1000 34 35 random gene sets were generated, and none of them yielded a protein interaction network as large as 56 genes. Note that the procedure for generating the protein interaction 36

rare-variant association for each gene. Thus the strength of genetic association in the set of
 56 network genes can be tested relative to that in the original set of 151 genes without bias.

3

4 Gene-set enrichment analysis of the protein network

5 The set of 56 network genes was tested for association enrichment in the IGAP 6 GWAS using ALIGATOR¹³, as was done in the original pathway analysis, using a range of p-7 value thresholds for defining significant SNPs (and thus the genes containing those SNPs). 8 The same analysis was also performed on the 95 genes in the module overlap but not the 9 protein interaction network (Supplementary Table 17). It can be seen that the 56 network 10 genes account for most of the enrichment signal observed in the set of 151 module overlap 11 genes.

12 The set of 56 network genes, the set of 151 module overlap genes, and the set of 95 13 genes in the module overlap but not the network were tested for enrichment of association signal in variants with MAF<1% using the gene set enrichment method described above in 14 section 11. Both the set of 151 genes ($P=1.17 \times 10^{-6}$) and the subset of 56 genes ($P=1.08 \times 10^{-6}$) 15 ⁷) show highly significant enrichment for association in the rare variants with MAF<1%. It 16 17 can be seen that the 56 network genes account for most of the enrichment signal observed 18 in the set of 151 module overlap genes (Supplementary Table 17). Again, the subset of 56 19 genes accounts for most of the enrichment signal observed in the set of 151 genes, as the 20 remaining 95 genes have only nominally-significant enrichment (P=0.043). Both the set of 151 genes ($P=5.15 \times 10^{-5}$) and the subset of 56 genes ($P=2.98 \times 10^{-7}$) show significant 21 22 enrichment under a conservative analysis excluding the APOE region and correcting for possible LD between the genes (Supplementary Table 17). Thus, the rare variants show 23 24 convincing replication of the biological signal observed in the common variant GWAS, and furthermore, the protein network analysis has refined this signal to a set of 56 interacting 25 26 genes. Given that TREM2 has a highly significant gene-wide p-value (P=1.01x10⁻¹³) among 27 variants with MAF<1%, enrichment analyses were run omitting it. Both the set of 151 genes 28 $(P=2.78 \times 10^{-3})$ and the subset of 56 genes (P=0.010) (Supplementary Table 18) still showed 29 significant enrichment of signal, suggesting that the contribution of rare variants to disease 30 susceptibility in these networks is not restricted to TREM2. Biological follow-up of genetic 31 results is labour-intensive and expensive. It is therefore important to concentrate such work 32 on the genes that are most important to AD susceptibility. Thus, the rationale for reducing 33 the gene set is that it defines a network of genes that are not only related through coexpression and protein interaction, but also show enrichment for genetic association signal. 34 These genes are therefore strong candidates for future biological study. 35

- 36
- 37
- 38

1 Gene Expression

2 We examined mRNA expression of the novel genes PLCG2 and ABI3 in 3 neuropathologically characterized brain post-mortem tissue (508 persons): they are expressed at low levels in the dorsolateral prefrontal cortex of subjects from two studies of 4 aging with prospective autopsy (ranked 12,965th out of 13,484 expressed genes)¹⁴. 5 However, ABI3 and PLCG2 were more highly expressed in purified microglia/macrophage 6 7 from the cortex of 11 subjects from these cohorts (1740th and 2600th respectively out of 8 the 11,500 expressed genes)(unpublished data). These findings are consistent with the high 9 levels of expression of both PLCG2 and ABI3 in peripheral monocytes, spleen, and whole blood reported by the ROADmap project and in microglia as reported by Zhang et al¹⁵. From 10 the same brain tissue, we examined methylation (n=714)¹⁶ and H3K9ac acetylation (n=676) 11 data and found differential methylation at four CpG sites and lower acetylation at two 12 H3K9ac sites adjacent to PLCG2 and ABI3 in relation to increased global neuritic plaque and 13 tangle burden (FDR < 0.05). Similarly, high TREM2 expression has been shown to correlate 14 with increasing neuritic plaque burden¹⁷. 15

16

AMP-AD Gene Expression Data: RNA sequencing was used to measure gene 17 18 expression levels in the temporal cortex of 80 subjects with pathologically confirmed AD and 76 controls without any neurodegenerative pathologies obtained from the Mayo Clinic Brain 19 20 Bank and the Banner Sun Health Institute. The human RNA sequencing data is deposited in the Accelerating Medicines Partnership-AD (AMP-AD) knowledge portal housed in Synapse 21 22 (https://www.synapse.org/#!Synapse:syn2580853/wiki/66722). After QC, our postmortem human cohort has 80 subjects with pathologically confirmed AD and 76 controls without any 23 24 neurodegenerative pathologies. Assuming two samples of 100 per group, two-sample t-test, same standard deviation, we will have 80% power to detect effect sizes of 0.40, 0.49 and 25 26 0.59 at p<0.05, 0.01 and 0.001, respectively, where effect size is the difference in means between two groups divided by the within-group standard deviation. The human RNA 27 28 sequencing data overview, QC and analytic methods are available at the following Synapse pages, respectively: syn3163039, syn6126114, syn6090802. Multivariable linear regression 29 30 was used to test for association of gene expression levels with AD diagnosis (Dx) using two different models: In the Simple model, we adjust for age at death, sex, RNA integrity 31 32 number (RIN), tissue source, and RNAseq flowcell. In the Comprehensive model, we adjust for all these covariates, and brain cell type markers for five cell-specific genes (CD68 33 34 (microglia), CD34 (endothelial), OLIG2 (oligodendroglia), GFAP (astrocyte), ENO2 (neuron)) to account for cell number changes that occur with AD neuropathology. TREM2, PLCG2 and 35 36 ABI3 are significantly higher in AD temporal cortex prior to correcting for cell types (Simple model), but this significance is abolished after adjusting for cell-specific gene counts 37 (Comprehensive model). This suggests that these elevations are likely a consequence of 38 changes in cell types that occur with AD, most likely microgliosis given that TREM2, PLCG2 39

1 2	ano 12)	d <i>ABI3</i> are microglia-enriched genes ¹⁵ (Supplementary Table 19, Supplementary Figure .
3 4 5 6	<u>Me</u>	thods only References
7	1.	Goldstein, J. I. et al. zCall: a rare variant caller for array-based genotyping: genetics and
8		population analysis. Bioinforma. Oxf. Engl. 28, 2543–2545 (2012).
9	2.	Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997–1004 (1999).
10	3.	Grove, M. L. et al. Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE
11		Consortium. <i>PLoS ONE</i> 8, e68095 (2013).
12	4.	Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190
13		(2006).
14	5.	Das, S. et al. Imputation server: next generation genotype imputation service. Nat. Genet.
15	6.	McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. bioRxiv
16		35170 (2015). doi:10.1101/035170
17	7.	Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
18		Alzheimer's disease. <i>Nat. Genet.</i> 45, 1452–1458 (2013).
19	8.	Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated
20		with late-onset Alzheimer's disease. Nat. Genet. 43, 436–441 (2011).
21	9.	Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate
22		genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44,
23		955–959 (2012).
24	10.	Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation.
25		Bioinforma. Oxf. Engl. 31, 782–784 (2015).
26	11.	International Genomics of Alzheimer's Disease Consortium (IGAP). Convergent genetic and
27		expression data implicate immunity in Alzheimer's disease. Alzheimers Dement. J. Alzheimers
28		<i>Assoc.</i> 11, 658–671 (2015).

1	12. Talluri, R. & Shete, S. A linkage disequilibrium-based approach to selecting disease-associat	ed
2	rare variants. <i>PloS One</i> 8, e69226 (2013).	

13. Holmans, P. et al. Gene ontology analysis of GWA study data sets provides insights into the

biology of bipolar disorder. Am. J. Hum. Genet. 85, 13–24 (2009).

- 14. Lim, A. S. P. et al. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA
- expression in the human dorsolateral prefrontal cortex. PLoS Genet. 10, e1004792 (2014).
- 15. Zhang, Y. et al. Purification and Characterization of Progenitor and Mature Human Astrocytes
- Reveals Transcriptional and Functional Differences with Mouse. *Neuron* 89, 37–53 (2016).
- 16. De Jager, P. L. et al. Alzheimer's disease: early alterations in brain DNA methylation at ANK1,
- BIN1, RHBDF2 and other loci. *Nat. Neurosci.* **17**, 1156–1163 (2014).
- 17. Chan, G. et al. CD33 modulates TREM2: convergence of Alzheimer loci. Nat. Neurosci. 18, 1556-

- 1558 (2015).

- 1 Supplementary Authors by Consortia
- 2
- 3 GERAD Supplementary Authors and Affiliations:
- 4 Melanie Dunstan¹, Amy Braddel¹, Charlene Thomas¹, Alun Meggy¹, Rachel Marshall¹, Christian
- 5 Bannister¹, Amy Gerrish¹, Jade Chapman¹, Miquel Aguilar², Sarah Taylor¹, Matt Hill¹, Mònica Díez
- 6 Fairén^{2,4}, Angela Hodges⁵, Bruno Vellas⁶, Hilkka Soininen⁷, Iwona Kloszewska⁸, Makrina Daniilidou⁹,
- 7 James Uphill¹⁰, Yogen Patel¹¹, Joseph T Hughes¹¹ Jenny Lord¹², James Turton¹², Annette M
- 8 Hartmann¹³, Roberta Cecchetti¹⁴, Chiara Fenoglio¹⁵, Maria Serpente¹⁵, Marina Arcaro¹⁵, Carlo
- 9 Caltagirone¹⁶, Maria Donata Orfei¹⁶, Antonio Ciaramella¹⁶, Sabrina Pichler¹⁷, Manuel Mayhaus¹⁷, Wei
- 10 Gu¹⁷, Alberto Lleó¹⁸, Juan Fortea¹⁸, Rafael Blesa¹⁸, Imelda S. Barber¹⁹, Keeley Brookes¹⁹, Chiara
- 11 Cupidi²⁰, Raffaele Giovanni Maletta²⁰, David Carrell²¹, Sandro Sorbi^{22,23}, Susanne Moebus²⁴, Tim
- 12 Becker²⁵, Britta Schürmann²⁶, Julian Becker²⁷, Maria Urbano²⁸, Alberto Pilotto²⁹ Johannes
- 13 Kornhuber³⁰, Paolo Bosco³¹, Stephen Todd³², David Craig³², Janet Johnston³², Michael Gill³³, Brian
- 14 Lawlor³³, Aoibhinn Lynch³³, Nick C Fox³⁴, ARUK Consortium.
- 15 1. Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric
- 16 Genetics and Genomics, Cardiff University, UK;
- 17 2. Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain;
- 18 3. Memory Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa,
- 19 Barcelona, Spain;
- 20 4. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED,
- 21 Instituto de Salud Carlos III, Madrid, Spain;
- 22 5. Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, Kings
- 23 College London, London UK;
- 24 6. INSERM U 558, University of Toulouse, Toulouse, France;
- 25 7. Department of Neurology, Kuopio University Hospital, Kuopio, Finland;
- 26 8. Medical University of Lodz, Lodz, Poland;
- 27 9. Department of Health Sciences, Psychiatry for the Elderly, University of Leicester, United
- 28 Kingdom;
- 10. Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, London,UK;
- 31 11. Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and
- 32 Neuroscience, Kings College London, London UK;
- 33 12. Institute of Genetics, Queens Medical Centre, University of Nottingham, Nottingham, UK;
- 34 13. Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany;
- 14. Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia,Italy;
- 37 15. Dept. of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda,
- 38 IRCCS Ospedale Policlinico, Milan, Italy;
- 39 16. Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical and
- 40 Behavioral Neurology, Rome, Italy;
- 41 17. Dept. Of Psychiatry and Psychotherapy, University Hospital, Saarland, Germany;
- 42 18. Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la
- 43 Santa Creu i Sant Pau, Autonomous University Barcelona, Barcelona, Spain;
- 44 19. Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, UK;
- 45 20. Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy;

- 1 21. Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine,
- 2 Seattle, Washington, USA;
- 3 22. NEUROFARBA (Department of Neuroscience, Psychology, Drug Research and Child Health),
- 4 University of Florence, Florence, Italy;
- 5 23. Centro di Ricerca, Trasferimento e Alta Formazione DENOTHE, University of Florence; IRCCS
- 6 "Don Carlo Gnocchi"Florence, Italy;
- 7 24. Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen,
- 8 University Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany;
- 9 25. Institute for Community Medicine, Ernst Moritz Arndt University Greifswald, 17475 Greifswald,
 10 Germany;
- 11 26. Institute of Human Genetics, University of Bonn, Bonn, Germany;
- 12 27. Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany;
- 13 28. Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences,
- 14 IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy;
- 15 29. Gerontology and Geriatrics Research Laboratory, IRCCS Casa Sollievo della Sofferenza, San
- 16 Giovanni Rotondo, Italy;
- 17 30. Department of Psychiatry and Pscycotherapy, University of Erlangen-Nuremberg, Germany;
- 18 31. Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Associazione Oasi Maria Santissima Srl,
- 19 Troina, Italy;
- 20 32. Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queens
- 21 University, Belfast, UK;
- 33. Mercers Institute for Research on Aging, St. James Hospital and Trinity College, Dublin, Ireland;
- 24 ADGC Supplementary Authors and Affiliations:
- 25
- 26 Roger L. Albin^{1,2,3}, Liana G. Apostolova⁴, Steven E. Arnold⁵, Sanjay Asthana⁶⁻⁸, Craig S. Atwood⁶⁻⁸,
- 27 Clinton T. Baldwin⁹, Lisa L. Barnes¹⁰⁻¹², Sandra Barral¹³⁻¹⁵, Thomas G. Beach¹⁶, James T. Becker¹⁷,
- 28 Eileen H. Bigio^{18,19}, Thomas D. Bird^{20,21}, Bradley F. Boeve²², James D. Bowen²³, Adam Boxer²⁴, James
- R. Burke²⁵, Jeffrey M. Burns²⁷, Joseph D. Buxbaum^{26,28,29}, Nigel J. Cairns³⁰, Chuanhai Cao³¹, Chris S.
- 30 Carlson³², Cynthia M. Carlsson^{7,8}, Regina M. Carney³³, Minerva M. Carrasquillo³⁴, Steven L. Carroll³⁶,
- 31 Carolina Ceballos Diaz³⁷, Helena C. Chui⁴⁰, David G. Clark^{41,43}, David H. Cribbs⁴⁴, Elizabeth A. Crocco³³,
- 32 Charles DeCarli⁴⁵, Malcolm Dick⁴⁶, Ranjan Duara⁴⁷, Denis A. Evans⁴⁸, Kelley M. Faber⁴⁹, Kenneth B.
- 33 Fallon⁵⁰, David W. Fardo⁵¹, Martin R. Farlow⁵², Steven Ferris⁵³, Tatiana M. Foroud⁴⁹, Douglas R.
- 34 Galasko⁵⁴, Marla Gearing^{55,56}, Daniel H. Geschwind⁵⁷, John R. Gilbert^{58,59}, Neill R. Graff-Radford^{34,35},
- Robert C. Green³⁸, John H. Growdon³⁹, Ronald L. Hamilton⁴², Lindy E. Harrell⁶⁰, Lawrence S. Honig¹³,
- 36 Matthew J. Huentelman⁶¹, Christine M. Hulette⁶², Bradley T. Hyman39, Gail P. Jarvik^{63,64}, Erin Abner⁶⁵,
- Lee-Way Jin⁶⁶, Gyungah Jun^{9,67,68}, Anna Karydas²⁴, Jeffrey A. Kaye^{69,70}, Ronald Kim⁷¹, Neil W.
- Kowall^{72,73}, Joel H. Kramer⁷⁴, Frank M. LaFerla⁷⁵, James J. Lah⁷⁶, James B. Leverenz⁷⁷, Allan I. Levey⁷⁶,
- 39 Ge Li^{20,78}, Andrew P. Lieberman⁷⁹, Kathryn L. Lunetta⁶⁷, Constantine G. Lyketsos⁸⁰, Daniel C. Marson⁶⁰,
- 40 Frank Martiniuk⁸¹, Deborah C. Mash⁸², Eliezer Masliah^{54,83}, Wayne C. McCormick⁸⁴, Susan M.
- 41 McCurry⁸⁵, Andrew N. McDavid³², Ann C. McKee^{72,73}, Marsel Mesulam^{19,86}, Bruce L. Miller²⁴, Carol A.
- 42 Miller⁸⁷, Joshua W. Miller⁶⁶, John C. Morris^{30,88}, Jill R. Murrell^{49,89}, Amanda J. Myers³³, Sid O'Bryant⁹⁰,
- 43 John M. Olichney⁴⁵, Vernon S. Pankratz⁹¹, Joseph E. Parisi⁹², Henry L. Paulson^{1,3}, William Perry⁵⁸,
- 44 Elaine Peskind⁷⁸, Aimee Pierce⁴⁴, Wayne W. Poon⁴⁶, Huntington Potter⁹³, Joseph F. Quinn^{69,70}, Ashok
- 45 Raj³¹, Murray Raskind⁷⁸, Barry Reisberg^{53,94}, Christiane Reitz^{14,15,95}, John M. Ringman⁹⁶, Erik D.

- 1 Roberson⁶⁰, Ekaterina Rogaeva⁹⁷, Howard J. Rosen²⁴, Roger N. Rosenberg⁹⁸, Mark A. Sager⁷, Andrew
- 2 J. Saykin^{49,99}, Julie A. Schneider^{10,12,100}, Lon S. Schneider^{40,101}, William W. Seeley²⁴, Amanda G. Smith³¹,
- 3 Joshua A. Sonnen¹⁰², Salvatore Spina⁸⁹, Robert A. Stern⁷², Russell H. Swerdlow²⁷, Rudolph E. Tanzi³⁹,
- 4 Tricia A. Thornton-Wells¹⁰³, John Q. Trojanowski¹⁰⁴, Juan C. Troncoso¹⁰⁵, Vivianna M. Van Deerlin¹⁰⁴,
- 5 Linda J. Van Eldik¹⁰⁶, Harry V. Vinters^{96,107}, Jean Paul Vonsattel¹⁰⁸, Sandra Weintraub^{19,109}, Kathleen A.
- 6 Welsh-Bohmer^{25,110}, Kirk C. Wilhelmsen¹¹¹, Jennifer Williamson¹³, Thomas S. Wingo⁷⁶, Randall L.
- 7 Woltjer¹¹², Clinton B. Wright¹¹³, Chang-En Yu⁸⁴, Lei Yu^{10,12}
- 8 1. Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA;
- 9 2. Geriatric Research, Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System
- 10 (VAAAHS), Ann Arbor, Michigan, USA;
- 11 3. Michigan Alzheimer Disease Center, Ann Arbor, Michigan, USA;
- 12 4. Department of Neurology, Radiology, Medical and Molecular Genetics, and Indiana Alzheimer's
- 13 Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA;
- 14 5. Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia,
- 15 Pennsylvania, USA;
- 16 6. Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin, Madison,
- 17 Wisconsin, USA;
- 18 7. Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA;
- 19 8. Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin, USA;
- 20 9. Department of Medicine (Genetics Program), Boston University, Boston, Massachusetts, USA;
- 21 10. Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA;
- 22 11. Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA;
- 23 12. Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA;
- 24 13. Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia
- 25 University, New York, New York, USA;
- 26 14. Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA;
- 27 15. Department of Neurology, Columbia University, New York, New York, USA;
- 16. Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Phoenix, Arizona,USA;
- 30 17. Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh School of
- 31 Medicine, Pittsburgh, Pennsylvania, USA;
- 32 18. Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago,
- 33 Illinois, USA;
- 34 19. Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of
- 35 Medicine, Chicago, Illinois, USA;
- 36 20. VA Puget Sound Health Care System/GRECC, Seattle, Washington, USA;
- 21. Department of Neurology, University of Washington, Seattle, Washington, USA;
- 38 22. Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA;
- 39 23. Swedish Medical Center, Seattle, Washington, USA;
- 40 24. Department of Neurology, University of California San Francisco, San Francisco, California, USA;
- 41 25. Department of Medicine, Duke University, Durham, North Carolina, USA;
- 42 26. Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New43 York, USA;
- 44 27. University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas
- 45 City, Kansas, USA;
- 46 28. Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA;
- 47 29. Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA;
- 48 30. Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA;
- 49 31. USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA;
- 50 32. Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;

- 1 33. Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of
- 2 Miami, Miami, Florida, USA;
- 3 34. Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
- 4 35. Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA;
- 5 36. Department of Pathology and Laboratory Medicine, Medical University of South Carolina,
- 6 Charleston, South Carolina, USA;
- 7 37. Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience,
- 8 University of Florida, Gainesville, FL, USA;
- 9 38. Division of Genetics, Department of Medicine and Partners Center for Personalized Genetic
- 10 Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- 11 39. Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston,
- 12 Massachusetts, USA;
- 13 40. Department of Neurology, University of Southern California, Los Angeles, California, USA;
- 14 41. Department of Neurology, Medical University of South Carolina, Charleston, SC, USA;
- 42. Department of Pathology (Neuropathology), University of Pittsburgh, Pittsburgh, Pennsylvania,USA;
- 17 43. Department of Neurology, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA;
- 18 44. Department of Neurology, University of California Irvine, Irvine, California, USA;
- 19 45. Department of Neurology, University of California Davis, Sacramento, California, USA;
- 20 46. Institute for Memory Impairments and Neurological Disorders, University of California Irvine,
- 21 Irvine, California, USA;
- 47. Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami
 Beach, Florida, USA;
- 48. Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical
 Center, Chicago, Illinois, USA;
- 49. Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA;
- 27 50. Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
- 28 51. Sanders-Brown Center on Aging, Department of Biostatistics, University of Kentucky, Lexington,
- 29 Kentucky, USA;
- 30 52. Department of Neurology, Indiana University, Indianapolis, Indiana, USA;
- 31 53. Department of Psychiatry, New York University, New York, New York, USA;
- 32 54. Department of Neurosciences, University of California San Diego, La Jolla, California, USA;
- 33 55. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA;
- 34 56. Emory Alzheimer's Disease Center, Emory University, Atlanta, Georgia, USA;
- 35 57. Neurogenetics Program, University of California Los Angeles, Los Angeles, California, USA;
- 36 58. The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA;
- 37 59. Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami,
- 38 Florida, USA;
- 39 60. Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
- 40 61. Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA;
- 41 62. Department of Pathology, Duke University, Durham, North Carolina, USA;
- 42 63. Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
- 43 64. Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington,
 44 USA;
- 45 65. Sanders-Brown Center on Aging, College of Public Health, Department of Epidemiology,
- 46 University of Kentucky, Lexington, Kentucky, USA;
- 47 66. Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento,
- 48 California, USA;
- 49 67. Department of Biostatistics, Boston University, Boston, Massachusetts, USA;
- 50 68. Department of Ophthalmology, Boston University, Boston, Massachusetts, USA;
- 51 69. Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA;

- 1 70. Department of Neurology, Portland Veterans Affairs Medical Center, Portland, Oregon, USA;
- 2 71. Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine,
- 3 California, USA;
- 4 72. Department of Neurology, Boston University, Boston, Massachusetts, USA;
- 5 73. Department of Pathology, Boston University, Boston, Massachusetts, USA;
- 6 74. Department of Neuropsychology, University of California San Francisco, San Francisco, California,
- 7 USA;
- 8 75. Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA;
- 9 76. Department of Neurology, Emory University, Atlanta, Georgia, USA;
- 10 77. Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, USA;
- 11 78. Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine,
- 12 Seattle, Washington, USA;
- 13 79. Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA;
- 14 80. Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA;
- 15 81. Department of Medicine Pulmonary, New York University, New York, New York, USA;
- 16 82. Department of Neurology, University of Miami, Miami, Florida, USA;
- 17 83. Department of Pathology, University of California San Diego, La Jolla, California, USA;
- 18 84. Department of Medicine, University of Washington, Seattle, Washington, USA;
- 19 85. School of Nursing Northwest Research Group on Aging, University of Washington, Seattle,
- 20 Washington, USA;
- 21 86. Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago,
- 22 Illinois, USA;
- 23 87. Department of Pathology, University of Southern California, Los Angeles, California, USA;
- 24 88. Department of Neurology, Washington University, St. Louis, Missouri, USA;
- 89. Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana,USA;
- 90. Internal Medicine, Division of Geriatrics, University of North Texas Health Science Center, Fort
 Worth, Texas, USA;
- 29 91. Department of Internal Medicine, University of New Mexico Health Sciences Center,
- 30 Albuquerque, New Mexico, USA;
- 31 92. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA;
- 32 93. Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA;
- 33 94. Alzheimer's Disease Center, New York University, New York, New York, USA;
- 34 95. Department of Epidemiology, Columbia University, New York, New York, USA;
- 35 96. Department of Neurology, University of California Los Angeles, Los Angeles, California, USA;
- 97. Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario,
 Canada;
- 38 98. Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA;
- 39 99. Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA;
- 40 100. Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, Illinois,
 41 USA;
- 42 101. Department of Psychiatry, University of Southern California, Los Angeles, California, USA;
- 43 102. Department of Pathology, University of Washington, Seattle, Washington, USA;
- 44 103. Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts,
 45 USA;
- 46 104. Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School
- 47 of Medicine, Philadelphia, Pennsylvania, USA;
- 48 105. Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA;
- 49 106. Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of
- 50 Kentucky, Lexington, Kentucky, USA;

- 1 107. Department of Pathology & Laboratory Medicine, University of California Los Angeles, Los
- 2 Angeles, California, USA;
- 3 108. Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Pathology, Columbia
- 4 University, New York, New York, USA;
- 5 109. Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago,
- 6 Illinois, USA;
- 7 110. Department of Psychiatry & Behavioral Sciences, Duke University, Durham, North Carolina,
 8 USA;
- 9 111. Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, North Carolina,
 10 USA;
- 11 112. Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA;
- 12 113. Evelyn F. McKnight Brain Institute, Department of Neurology, Miller School of Medicine,
- 13 University of Miami, Miami, Florida, USA;
- 14
- 15 EADI Supplementary Authors and Affiliations:
- 16
- 17 Fabienne Garzia¹, Feroze Golamaully¹, Gislain Septier¹, Sebastien Engelborghs^{2,3}, Rik
- 18 Vandenberghe^{3,4}, Peter P. De Deyn^{2,3}, Pascual Sanchez-Juan⁵, Carmen Munoz Fernadez⁶, Yoland
- 19 Aladro Benito⁶, Hakan Thonberg^{7,8}, Charlotte Forsell^{7,8}, Lena Lilius^{7,8}, Anne Kinhult-stählbom^{7,8}, Lena
- 20 Kilander⁹, RoseMarie Brundin⁹, Letizia Concari^{10,11}, Seppo Helisalmi^{12,13}, Anne Maria Koivisto^{12,13},
- 21 Annakaisa Haapasalo^{12,13}, Vincent Dermecourt¹⁴, Nathalie Fievet^{15,16,17}, Olivier Hanon¹⁸, Carole
- 22 Dufouil¹⁹, Alexis Brice^{20,21}, Karen Ritchie²², Bruno Dubois^{23,24,25,26}.
- 23 1. CEA / Institut de génomique, Centre National de Génotypage, F-91057 Evry France ;
- 24 2. Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; 4. Department of Neurology and
- 25 Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium;
- 26 3. Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium;
- 4. Laboratory for Cognitive Neurology, Department of Neurology, University of Leuven, Leuven,Belgium;
- 29 5. Neurology Service and CIBERNED, "Marqués de Valdecilla" University Hospital (University of
- 30 Cantabria and IFIMAV), Santander, Spain;
- 31 6. Department of Immunology, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain;
- 32 7. Dept Geriatric Medicine, Genetics Unit, Karolinska University Hospital Huddinge, S-14186
- 33 Stockholm, Sweden;
- 34 8. Karolinska Institutet, Dept Neurobiology, Care Sciences and Society, KIADRC, Novum floor 5,
- 35 S14186 Stockholm, Sweden;
- 36 9. Dept. of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden;
- 37 10. Department of Neuroscience-University of Parma-Italy;
- 38 11. Center for Cognitive Disorders AUSL-Parma, Italy;
- 12. Institute of Clinical Medicine Neurology, University of Eastern Finland, FIN-70211, Kuopio,
 Finland;
- 41 13. Department of Neurology, Kuopio University Hospital, FIN-70211 Kuopio, Finland;
- 42 14. CHU Lille, Memory Center of Lille (Centre Mémoire de Ressources et de Recherche), France;
- 43 15. Inserm, U1167, RID-AGE Risk factors and molecular determinants of aging-related diseases, F-
- 44 59000 Lille, France
- 45 16. Institut Pasteur de Lille, F-59000 Lille, France; Univ. Lille F-59000 Lille, France;
- 46 16. University Paris Descartes, EA 4468, AP-HP, Hôpital Broca, Geriatrics Department, Paris, France;
- 47 17. Univ. Lille Excellence laboratory Labex DISTALZ, F-59000Lille, France;
- 48 18. University Paris Descartes, EA 4468, AP-HP, Hôpital Broca, Geriatrics Department, Paris, France.
- 49 19. University of Bordeaux, Neuroepidemiology, UMR897, Bordeaux, France; INSERM,
- 50 Neuroepidemiology, UMR897, Bordeaux, France;

- 1 20. Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut
- 2 du Cerveau et de la Moelle épinière, F-75013, Paris, France;
- 3 21. APHP, Department of genetics, Pitié-Salpêtrière Hospital, 75013, Paris, France;
- 4 22. INSERM U1061, La Colombière Hospital, Montpellier, France;
- 5 23. Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital
- 6 de la Pitié-Salpêtrière, AP-HP, Paris, France;
- 7 24. Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la
- 8 Moelle Epinière (ICM), Paris, France;
- 9 25. INSERM, CNRS, UMR-S975, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France;
- 10 26. Sorbonne Universités, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, AP-HP,
- 11 Paris, France;
- 12

Rare coding variants in *PLCG2*, *ABI3* and *TREM2* implicate microglial-mediated innate immunity in Alzheimer's disease

1.	Sample Cohorts2
2.	Quality Control and Analyses10
3.	Single Variant Findings11
4.	Gene-wide Findings12
5.	Gene Expression12
6.	Functional Annotation13
7.	References15
8.	Supplementary Table Legends23

1. Sample Cohorts

GERAD/PERADES:

Stage 1: Cases and controls were recruited by the Medical Research Council (MRC) Genetic Resource for LOAD (Cardiff University; Institute of Psychiatry, London; University of Cambridge); the Alzheimer's Research UK (ARUK) Collaboration (University of Nottingham; University of Manchester; University of Southampton; University of Bristol; Queen's University Belfast); MRC PRION Unit, University College London, UK; University of Oxford, UK; Washington University, St Louis, United States; Competence Network of Dementia (CND) and Department of Psychiatry, University of Bonn, Germany; University of Halle, Germany; University Hospital, Saarland, Germany; University Medical Centre, Hamburg, Germany; University Dulsburg-Essen, Germany; Universidad Autônoma de Madrid, Spain; Universidad Autônoma de Barcelona, Spain; University of Cantabria and IDIVAL, Santander, Spain; University of Navarra, Pamplona, Spain; Santa Lucia Foundation, Rome, Italy; Aristotle University, Thessaloniki, Greece; CIBERNED, Madrid, Spain; CSIC-UAM, Madrid, Spain; Hospital Universitario Central Asturias, Oviedo, Spain.

Stage 2: Cases and controls were recruited by the MRC Genetic Resource for LOAD; MRC PRION Unit, University College London, UK; Santa Lucia Foundation, Rome, Italy; CIBERNED, Madrid, Spain; CSIC-UAM, Madrid, Spain; Hospital Universitario Central Asturias, Oviedo, Spain; ARUK collaboration; Kings College London, London, UK; University of Perugia, Perugia, Italy; Catholic University of Rome, Rome, Italy; Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy; Memory clinic and Research Center, Institut Català de Neurociències Aplicades, Barcelona, Spain; University of Milan, Milan, Italy; University of Bonn, Bonn, Germany; Queens University, Belfast, Northern Ireland; University of Duisburg-Essen, Germany; Klinikum der Universität München, Munich, Germany and German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany; University of Bristol, Bristol, UK; Cardiff University, Cardiff, UK; University of Southampton, Southampton UK; University of Nottingham, Nottingham, UK; Mayo Clinic, Jacksonville, Florida, USA.

All late-onset Alzheimer's disease (LOAD) cases were aged over 60 and met criteria for either probable (NINCDS-ADRDA, DSM-IV) or definite (CERAD) AD. All elderly controls were screened for dementia using the Mini Mental State Examination (MMSE) or ADAS-cog, were determined to be free from dementia at neuropathological examination or had a Braak score of 2.5 or lower. Control samples were chosen to match case samples for age, gender, ethnicity and Country of origin. Informed consent was obtained for all research participants, and the relevant independent ethical committees approved study protocols.

CHARGE:

Stage 1:

Age Gene/Environment Susceptibility – Reykjavik study (AGES): The AGES study has been described previously¹. The study was initiated in 2002 to examine genetic susceptibility and gene/environment interactions related to disease and disability in old age. The AGES study is comprised of 5764 individuals drawn from the Reykjavik Study, a population-based cohort comprised of individuals born between 1907 and 1935 and followed since 1967 by the Icelandic Heart Association. 3219 individuals chosen randomly among 5307 AGES individuals with 'mid-life' data available from the Reykjavik Study were genotyped on a genome-wide association (GWA) array. 2983 were further genotyped for the EC. Age was coded in years where the age of cases was the age at the visit where LOAD was first diagnosed and the age of controls was the age at the last visit individual was still free of LOAD pathology.

Diagnosis of LOAD in AGES – The Folstein MMSE and the Digit Symbol Substitution Test (DSST) were administered to all participants and persons who scored below a predetermined threshold on these tests (≤23 on the MMSE or ≤17 on the DSST) were administered a second, diagnostic test battery. Based on performance on the Trails B and the Rey Auditory Verbal Learning test (RAVLT), a subset of these individuals with a RAVLT score ≤ 18 or Trails B score ≥ 8 (ratio of time taken for Trails B/Trails A corrected for the number correct) went on to a third step, which included a neurological examination and a structured informant interview about medical history and social, cognitive, and daily functioning. MRI was acquired as a part of the core study protocol. A panel that included a geriatrician, neurologist, neuropsychologist, and neuroradiologist reached a consensus diagnosis of dementia based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) guidelines². There were 319 cases of dementia diagnosed in the first 5764 AGES participants and of these 123 also had genotyping and brain MRI. International diagnostic guidelines, including the National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer Disease and Related Disorders Association (NINCDS- ADRDA) criteria for probable and possible Alzheimer Disease and the Alzheimer's Disease Diagnosis and Treatment Center's (ADDTC) State of California criteria for probable and possible vascular dementia (VaD) with or without AD, were followed. The AGES study identified 3 subtypes: possible/probable AD without VaD (included in analysis), mixed AD (cases that met criteria for both AD and VaD, included in analysis), and, possible/probable VaD or other dementia without AD (excluded from analysis). 3316 individuals participated in the follow-up visit (AGES-2) and were examined using the same protocol as used during the AGES-1 visit for diagnosis of dementia and AD. Controls were those still free of dementia and mild cognitive impairment at last assessment. Study approval – The AGES study was approved by the Icelandic National Bioethics Committee (VSN 00-063), and by the National Institute on Aging Intramural Institutional Review Board. Informed consent was obtained from all participants.

Cardiovascular Health Study (CHS): The CHS is a population-based cohort study of risk factors for coronary heart disease and stroke in adults ≥65 years conducted across four field centers³. The original predominantly Caucasian cohort of 5201 persons was recruited in 1989-1990 from random samples of the Medicare eligibility lists; subsequently, an additional predominantly African-American cohort of 687 persons was enrolled for a total sample of 5888. Blood samples were drawn on all participants at their baseline examination; DNA was extracted from blood from participants who donated DNA samples for storage and provided informed consent for participation in DNA studies (~95% of all CHS participants). Although CHS is a population-based sample we empirically estimated cryptic relatedness based on genotypes of a LD-pruned set of common EC variants. For this we used PLINK v1.07⁴ (http://pngu.mgh.harvard.edu/purcell/plink/). We identified clusters of individuals with 'PI_HAT' > 0.15 or 'Z0' < 0.4 ('PI_HAT' is the empirical estimate of twice the kinship coefficient and Z0 is the empirical estimate of the probability of sharing zero alleles identical by decent). Among these clusters, we kept only one individual for analysis, giving preference to cases over controls. Covariates in the models were age in years, sex, and field center. Age was the age at LOAD diagnosis for cases or the age at last follow-up evaluation for controls.

Diagnosis of LOAD in CHS – The AD sample for CHS included all prevalent cases identified in 1992 and incident events identified between 1992 and December 2006. Briefly, persons were examined annually from enrolment to 1999, and the examination included a 30 minutes screening cognitive battery⁵. In 1992-94 and again, in 1997-99, participants were invited to undergo brain MRI and detailed cognitive and neurological assessment as part of the CHS Cognition Study⁵. Persons with prevalent dementia were identified, and all others were followed until 1999 for the development of incident dementia and AD. Since then, CHS participants at the Maryland and Pennsylvania centers have remained under ongoing dementia surveillance⁶. Beginning in 1988/89, all participants completed the Modified Mini-Mental State Examination (3MSE) and the DSST at their annual visits, and the Benton Visual Retention Test (BVRT) from 1994 to 1998. The Telephone Interview for Cognitive Status (TICS) was used when participants did not come to the clinic. Further information on cognition was obtained from proxies using the Informant Questionnaire for Cognitive Decline in the Elderly (IQCODE), and the dementia questionnaire (DQ). Symptoms of depression were measured with the modified version of the Center for Epidemiology Studies Depression Scale (CES-D). In 1991-94, 3608 participants had an MRI of the brain and this was repeated in 1997-98. The CHS staff also obtained information from participants and next-of-kin regarding vision and hearing, the circumstances of the illness, history of dementia, functional status, pharmaceutical drug use, and alcohol consumption. Data on instrumental activities of daily living (IADL), and activities of daily living (ADL) were also collected. Persons suspected to have cognitive impairment based on the screening tests listed above underwent a neuropsychological and a neurological evaluation. The neuropsychological battery included the following tests: the American version of the National Reading test (AMNART), Raven's Coloured Progressive Matrices, California Verbal Learning Test (CVLT), a modified Rey-Osterreith figure, the Boston Naming test, the Verbal fluency test, the Block design test, the Trails A and B tests, the Baddeley & Papagno Divided Attention Task, the Stroop, Digit Span and Grooved Pegboard Tests. The results of the neuropsychological battery were classified as normal or abnormal (>1.5 standard deviations below individuals of comparable age and education) based on normative data collected from a sample of 250 unimpaired subjects. The neurological exam included a brief mental status examination, as well as a complete examination of other systems. The examiner also completed the Unified Parkinson's Disease Rating Scale (UPDRS) and the Hachinski Ischemic Scale. After completing the neurological exam, the neurologist classified the participant as normal, having mild cognitive impairment (MCI), or dementia. International diagnostic guidelines, including the NINCDS-ADRDA criteria for probable and possible AD and the ADDTC's State of California criteria for probable and possible vascular dementia (VaD) with or without AD, were followed. CHS identified 3 subtypes: possible/probable AD without VaD (categorized as pure AD, included in analysis) and mixed AD (for cases that met criteria for

both AD and VaD, included in analysis), and, possible/probable VaD without AD (excluded from current study).

Framingham Heart Study (FHS): The FHS is a three generational prospective cohort that has been described in detail previously^{7–9}. Individuals were initially recruited in 1948 in Framingham, MA, USA to evaluate cardiovascular disease risk factors. The secondgeneration cohort (5,124 offspring of the original cohort) was recruited between 1971 and 1975. The third-generation cohort (4095 grandchildren of the original cohort) was collected between 2002 and 2005. 6946 European-American individuals were genotyped using the EC. Participants ≤ 60 years at the time of blood draw for DNA extraction were excluded prior to analysis. Because the statistical tests used did not account for family structure, we excluded related participants. Using genome-wide identity-by-descent, we first identified 7 pairs of related cases, and excluded the younger of the two in each pair, or the one with the most missing data. We then excluded 151 controls who were related to cases, and finally, we excluded 439 controls related to other controls, applying the same age/missing data rule as for related cases. Covariates used were age in years and sex, where age was the age at LOAD diagnosis for cases or the age at last follow-up evaluation for controls. Diagnosis of LOAD in FHS – FHS participants were screened at each biennial examination for possible cognitive decline through a number of mechanisms, including measures of the Folstein Mini-Mental Status Examination (MMSE)¹⁰, referral by FHS staff and physicians at regular clinic exams, by self, family or primary care physician, referral following health updates or ancillary studies by other FHS working groups, and referral from neuropsychological testing included in dedicated project. Participants "flagged" as being at risk for developing dementia underwent complete neuropsychological evaluation. If the neuropsychological testing or neurological evaluation suggested a decline in cognitive function, and other sources of data could not clarify if the person had MCI or AD, we administered a structured family interview. We then determined whether each person fulfilled criteria for a diagnosis of dementia, the probable date of onset, and type of dementia at a consensus review conducted by a panel comprising at least one behavioural neurologist and one neuropsychologist. Participants with dementia met criteria outlined in the Fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria², and were required to have symptoms for at least 6 months. Participants with AD met NINCDS-ADRDA criteria for definite, probable, or possible AD¹¹.

Rotterdam study (RS): The RS is an ongoing prospective population-based cohort study, focused on chronic disabling conditions of the elderly¹². The study comprises an outbred ethnically homogenous population of Dutch Caucasian origin. The rationale of the study has been described in detail elsewhere¹². In summary, 7983 men and women aged 55 years or older, living in Ommoord, a suburb of Rotterdam, the Netherlands, were invited to participate. 3163 individuals were genotyped for the EC. This cohort was extended with 3,011 participants who had become 55 years of age or had moved into the district since the start of the study (RS II).

In the RS there are some small families due to inclusion of parents as well as children living both in Ommoord. From pairs of subjects with empirical IBD>0.4 one was excluded, with a preference of keeping cases. In the stage 2 *in-silico* replication, related

subjects were also excluded, with a preference to keep cases over controls. Age was coded in years for age of onset for cases and age at censoring or age at last screening for controls. Diagnosis of LOAD in RS – In the RS participants were screened for prevalent dementia at baseline using a three-stage process described in detail elsewhere¹³. Those free of dementia remained under surveillance for incident dementia, a determination made using records linkage and assessment at three subsequent re-examinations. We included all prevalent cases and all incident events up to January 1st 2014. Screening was done with the Folstein Mini-Mental Status Examination (MMSE)¹⁰ and the Geriatric Mental Schedule (GMS)¹⁴organic level for all persons. Screen-positives (MMSE < 26 or GMS organic level> 0) underwent the CAMDEX¹⁵. Persons who were suspected of having dementia underwent more extensive neuropsychological testing. When available, imaging data were used. In addition, all participants have been continuously monitored for major events (including dementia) through automated linkage of the study database with digitized medical records from general practitioners, the Regional Institute for Outpatient Mental Health Care and the municipality. In addition physician files from nursing homes and general practitioner records of participants who moved out of the Ommoord district were reviewed twice a year. For suspected dementia events, additional information (including neuroimaging) was obtained from hospital records and research physicians discussed available information with a neurologist experienced in dementia diagnosis and research to verify all diagnoses. Dementia was diagnosed in accordance with internationally accepted criteria for dementia (Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition, DSM-III-R¹⁶), and AD using the NINCDS-ADRDA criteria for possible, probable and definite AD¹¹. The National Institute of Neurological Disorders and Stroke-Association Internationale pour la Rechercheetl' Enseignement en Neurosciences (NINDSAIREN) criteria were used to diagnose vascular dementia. The final diagnosis was determined by a panel of a neurologist, neurophysiologist, and research physician and the diagnoses of AD and VaD were not mutually exclusive.

Study Approval – The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC and by the Ministry of Health, Welfare and Sport of the Netherlands implementing the Wet Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam Study). All participants provided written informed consent to participate in the study and to obtain information from their treating physicians. Data can be obtained upon request. Requests should be directed towards the management team of the Rotterdam Study (secretariat.epi@erasmusmc.nl), which has a protocol for approving data requests. Because of restrictions based on privacy regulations and informed consent of the participants, data cannot be made freely available in a public repository.

Stage 2:

HRC imputed data in the Rotterdam Study: The Rotterdam Study I and Rotterdam Study II were imputed to the Haplotype Reference Consortium reference (HRC) panel^{17,18}. Imputation was performed on the web-service provided by the Michigan Imputation server (date of pipeline 17-12-2015). Previously described genotype QC was performed prior to imputations¹⁹. In short genotypes were pre-phased with SHAPEIT2²⁰ and imputed using Minimac3. Imputed genotypes with low imputation quality (Rsq<0.5) were excluded. Subjects included in the stage 1 analysis were excluded from the stage 2 analysis. In the

Rotterdam Study II only controls with an age > 75 were included to decrease the case to control ratio.

Genotyped Data: An additional 3,273 case-control samples were obtained for replication from centers in Austria (1 center) and Spain (1 center). Clinical diagnoses of probable AD were all established according to the DSM-III-R and NINCDS-ADRDA criteria. Controls were defined as subjects without DMS-III-R dementia criteria and with integrity of their cognitive functions (MMS>25).

ADGC:

Stage 1: Cases and controls were taken from multiple ADGC datasets^{21,22} and partitioned into five subsets for genotyping and subsequent analyses. The five subsets included:(1) 7,091 individuals selected from multiple ADGC datasets were genotyped at the Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York (NorthShore); (2) 2,024 individuals from the ADGC "UMVUMSSM" dataset were genotyped at the John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida (Miami); (3) 1,374 individuals from the ADGC "WashU" dataset were genotyped at Washington University, St. Louis, Missouri (WashU); (4) 6,082 individuals from multiple Alzheimer's Disease Center (ADC) genotyping waves were genotyped at the Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (CHOP); and (5) all 1,528 subjects in the seventh wave of ADC samples were genotyped at CHOP (ADC7). Per individual source studies, all subjects were recruited under protocols approved by the appropriate Institutional Review Boards. Cases living at time of recruitment were adjudicated as possible or probable AD prior to analyses according to NINCDS/ADRDA criteria¹¹ whereas affection status of all deceased cases was confirmed through autopsy. Samples with age-at-onset or age-at-exam less than 60 years, missing covariates, or controls with MMSE<26 were censored.

Stage 3:

HRC-Imputed ADGC GWAS datasets: Stage 3 replication included genotype probabilities from imputation to the Haplotype Reference Consortium (HRC) reference panels^{17,18} on all ADGC samples not genotyped on the exome chip and from datasets with more than 50 samples remaining after excluding exome chip-genotyped samples. These included samples from the Adult Changes in Thought (ACT)/Electronic Medical Records and Genetics (eMERGE) study; the National Institute on Aging (NIA) Alzheimer Disease Centers (ADCs) (waves 1-3 and 6); the Alzheimer Disease Neuroimaging Initiative (ADNI) Study; the Multi-Site Collaborative Study for Genotype-Phenotype Associations in Alzheimer's Disease (GenADA) Study; the University of Miami/Vanderbilt University/Mt. Sinai School of Medicine (UM/VU/MSSM); the Multi-Institutional Research in Alzheimer's Genetic Epidemiology (MIRAGE) Study; Oregon Health and Science University (OHSU); the NCRAD/NIA-LOAD Study; the Translational Genomics Research Institute series 2 (TGEN2) dataset; the Mayo Clinic Jacksonville; the Rush University Religious Orders Study/Memory and Aging Project (ROSMAP) and Chicago Health and Aging Project (CHAP); the University of Pittsburgh (UP); Washington University (WU) in St. Louis; the Texas Alzheimer's Research and Care Consortium (TARCC); the Netherlands Brain Bank (NBB); and the Washington Heights-Inwood Columbia Aging Project (WHICAP). Detailed descriptions of the

ascertainment and evaluation of subjects in the ACT/eMERGE, ADC waves, ADNI, GenADA, UM/VU/MSSM, MIRAGE, OHSU, NCRAD/NIA-LOAD, TGEN2, Mayo, ROSMAP, UP, and WU cohorts have been provided elsewhere^{21,22}; brief descriptions included here note any differences between data used in this study and data used in previous studies by the ADGC and IGAP study, including short summaries of the CHAP, TARCC, NBB, and WHICAP datasets. Analyses were restricted to individuals of European ancestry due to the insufficient number of non-European samples available for imputation in HRC. All subjects were recruited under protocols approved by the appropriate Institutional Review Boards.

Chicago Health and Aging Project (CHAP): CHAP is an on-going community based study of individuals from a geographically defined community of 3 neighbourhoods in Chicago, Illinois (Morgan Park, Washington Heights, and Beverly), with 6,158 participants in the first phase of the study (78.7% overall; 80.5% of the blacks, 74.6% of the whites)²³. Data were collected in cycles of approximately 3 years; each consisting of an in-home interview of all participants and clinical evaluation of a random, stratified sample. The baseline cycle measured disease prevalence and provided risk factor data prior to incident disease onset. A cohort of 3,838 persons free of AD was identified; 729 persons were sampled for baseline clinical evaluation. Persons in the disease-free cohort had either good cognitive function at baseline, or if cognitive function was intermediate or poor, were free from AD at the baseline clinical evaluation. This disease-free cohort was evaluated for incident disease after an average of 4.1 years. Sampling for incident clinical evaluation was based on age, sex, race, and change in cognitive function (i.e., stable or improved, small decline, or large decline). The sample set available in the ADGC for genetic analyses included 32 AD cases and 197 persons free of AD at time of last assessment (all subjects were age 65 years or older at last assessment).

Netherlands Brain Bank (NBB): The NBB is a department of the Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences. The NBB is a non-profit organization that collects human brain tissue from donors with a variety of neurological and psychiatric disorders and brain tissue from non-diseased donors, as well as anonymized summaries of donors' medical records to be made available for neuroscience research²⁴. The sample set available in the ADGC for genetic analyses included 215 pathologically-confirmed AD cases and 85 subjects free of Alzheimer's pathology at autopsy. All cases were age 65 years or older at time of diagnosis, and all controls were age 65 years or older at time of death.

Texas Alzheimer's Research and Care Consortium (TARCC): The TARCC is a collaborative Alzheimer's research effort directed and funded by the Texas Council on Alzheimer's Disease and Related Disorders (the Council), as part of the Darrell K Royal Texas Alzheimer's Initiative. Composed of Baylor College of Medicine (BCM), Texas Tech University Health Sciences Center (TTUHSC), University of North Texas Health Science Center (UNTHSC), the UT Southwestern Medical Center at Dallas (UTSW), University of Texas Health Science Center at San Antonio (UTHSCSA), Texas A&M Health Science Center (TAMHSC), and the University of Texas at Austin (UTA), this consortium was created to establish a comprehensive research cohort of well characterized subjects to address better diagnosis, treatment, and ultimately prevention of AD²⁵. The resulting prospective cohort, the Texas Harris Alzheimer's Research Study, contains clinical, neuropsychiatric, genetic, and blood biomarker data on more than 3,000 participants diagnosed with Alzheimer's disease (AD), mild cognitive impairment (MCI), and cognitively normal individuals. Longitudinal data/sample collection and follow-up on participants occurs on an annual basis. Two waves of case-control data from TARCC were examined as part of genetic analyses in the ADGC. Data from the TARCC included 323 cases and 181 controls in the first wave, with 84 cases and 115 controls in the second wave. All TARCC subjects were greater than 65 years of age at disease onset (cases) or at last disease-free exam (non-cases).

The Washington Heights- Hamilton Heights-Inwood Columbia Aging Project (WHICAP): WHICAP is a community-based longitudinal study of aging and dementia among elderly, urban-dwelling residents^{26,27}. Beginning enrolment in 1989, WHICAP has followed more than 5,900 residents over 65 years of age, including white, African American, and Hispanic participants. Detailed clinical assessments were performed at approximately 24month intervals over the 7 years of the initial study. All interviews were conducted in either English or Spanish. The choice of language was decided by the subject in order to ensure the best performance, and the majority of assessments were performed in the subject's home, which included medical, neurological, and neuropsychological evaluations. Results of the neurological, psychiatric and neuropsychological assessments were reviewed in a consensus conference comprised of neurologists, psychiatrists, and neuropsychologists. Based on this review all participants were assigned to one of three categories: dementia, cognitive impairment or normal cognitive function. The sample set available in the ADGC for genetic analyses included 73 AD cases and 570 subjects with normal cognitive function.

EADI:

Stage 2:The 2,012 AD cases were ascertained by neurologists from Bordeaux, Dijon, Lille, Montpellier, Paris, Rouen, and were identified as of European ancestry. Clinical diagnosis of probable AD was established according to the DSM-III-R and NINCDS-ADRDA criteria^{21,28}. The 6,502 Controls were selected from the 3C Study²⁹. This cohort is a population-based, prospective (10-years follow-up) study of the relationship between vascular factors and dementia. It has been carried out in three French cities: Bordeaux (southwest France), Montpellier (southeast France) and Dijon (central eastern France).

An additional 11,109 case-control samples were obtained for replication from centers in Belgium (1 center), Finland (1 center), Italy (8 centers), Spain (5 centers), Sweden (2 centers) and Canada (1 center). Clinical diagnoses of probable AD were all established according to the DSM-III-R and NINCDS-ADRDA criteria. Controls were defined as subjects without DMS-III-R dementia criteria and with integrity of their cognitive functions (MMS>25).

For full sample characteristics in stage 1 and stages 2+3 see Supplementary Tables 1 and 2 respectively. For details of the study design see Supplementary Figure 1.

2. Quality Control and Analyses

APOE Conditional Analyses

As expected significant evidence for association with LOAD was identified at the *APOE* locus with twenty-two variants. An intronic proxy for the rs429358 variant determining the *APOE* ϵ 4 genotype (rs769449, OR=2.88, P<1x10⁻⁵⁰⁰, r^2 with rs429358=0.82), and the exonic variant *APOE* ϵ 2 genotypes (rs7412, OR=0.43, P=2.7x10⁻¹⁰⁵) showed the strongest associations. Performing two conditional meta-analyses, adjusting for independently determined *APOE* genotypes in all cohorts, one adjusting for *APOE* ϵ 4 (coded 0,1,2) a second adjusting for *APOE* ϵ 2 (coded 0,1,2), diminished all association signals identified with all the genetic variants within the *APOE* region, therefore these 22 variants were not considered further. The lead variant rs769449 reduced from P<1x10⁻⁵⁰⁰ to P=1.1x10⁻⁵, when adjusting for *APOE* ϵ 4, and rs7412 from P=2.7x10⁻¹⁰⁵ to P=0.07, when adjusting for *APOE* ϵ 2.

Additional Quality Control

Two hundred seven variants showed suggestive evidence for association ($P \le 0.0001$) in any of the four meta-analyses of the discovery dataset. One hundred and eighty-five variants, independent of *APOE* ε 4 and ε 2, were carried forward for additional quality control that involved a review of all study specific genotype cluster plots. Where variant genotype clusters could be improved, these were manually re-clustered. Variants whose genotype clusters were deemed too poor for accurate genotype calling were excluded from reanalysis. Re-called variants were re-analysed as previously detailed. After re-analysis twenty variants that no longer showed nominally significant association (P>0.05) were excluded. We also excluded seventy-one variants that had a minor allele count (MAC) of less than 4, or those variants that were observed to be polymorphic in only one analysis cohort, after recalling. Of the remaining variants 50 were common (MAF≥0.05), and the observed associations were near known genome-wide significant loci (Supplementary Table 5). Fortythree rare variants located outside of the *APOE* region were eligible for replication and considered for additional genotyping and *in silico* replication (Supplementary Table 4).

Previously Described Risk Loci

We observed association at common coding variants for a number of AD risk loci previously identified (Supplementary Table 5). Variants in *APOE*, *CLU* and *CR1* showed genome-wide significant association (*P*<5x10⁻⁸) in the unadjusted analysis, while common variants near *BIN1*, *MS4A6A*, *CD33*, *HLA*-region, *ABCA7* and *INPP5D* showed suggestive association (*P*<5x10⁻⁴). Previously described genes with evidence for association with AD (*TREML2*, *UNC5C*, *TTC3*, *PLXNA4*, *PLD3*, *MTHFR*, *CYP2D6*, *ADAM10*, *ZNF628*, *AKAP9*, *CD33*, *TRIP4*, *MAPT*, *SQSTM1*, *ATP5H/KCTD2*) or familial AD genes (*APP*, *PSEN1*, *PSEN2*) are shown in Supplementary Table 5.

Gene-wide Analysis

Variants were allocated to genes according the RefSeq database. Variants were assigned to genes if they were located within the genomic sequence lying between the start of the first and the end of the last exon of any transcript corresponding to that gene, as

defined by NCBI. Gene-wide analyses were examined using the unified method implemented in SKAT-O, where the optimal linear combination of the burden and SKAT tests is implemented³⁶. As in the single variant analyses, association with disease was tested for in each cohort set including the study specific covariates under both the adjusted and unadjusted models. Analyses were performed including 'ALL' variants, variants with a MAF <5% and variants with a MAF<1%. Tests were restricted to individual genes with two or more polymorphic variants. Study specific results were combined in a meta-analysis using the *seqMeta* package. Variants within genes showing statistically significant evidence for association (P<2.5x10⁻⁶) underwent additional cluster plot inspection and poorly performing variants were removed from the analysis.

Power Calculations

If the allele frequencies in cases is 0.003 and in controls is 0.001, then the power to detect this rare variant with 5000 cases and 2500 controls at 5% significance level is 70%. If the number of controls is 18000, then the power is increased up to 98% at α =0.05 and 28% at α =1e-6 (to account for 30,000 genes). This power calculations are performed using function power.fisher.test() in R statistical software.

Linkage Disequilibrium Calculations

Linkage disequilibrium (LD) calculations were performed using PLINK v1.9⁴ and the GERAD v1.0 dataset. High D' values and low r^2 values were identified for all the LD pairs tested (Supplementary Table 14). This discrepancy in LD measures is to be expected when analysing rare variants. The D' calculation estimates co-presence of the minor allele at one SNV compared to a reference allele at another SNV, while r^2 is a measure of the correlation between the presence or absence of a particular allele at the first SNV and the presence or absence of a particular allele at the second SNV and is therefore affected by allele frequency. For bi-allelic markers, the most commonly used measures for LD is $r^{2 \ 37}$, which indicates independence of the tested SNV associations.

3. Single Variant Findings

Outside of the APOE region, and excluding the known common risk loci, four SNVs reached genome-wide significant evidence for association ($P < 5 \times 10^{-8}$), under both the unadjusted and adjusted analysis models. See Supplementary Tables 7 and 8 respectively.

A forest plot of the association identified at rs72824905 in *PLCG2* is given in Supplementary Figure 3. We identified a second independent (r^2 =1.5x10⁻⁵) suggestive signal with strong effect within *PLCG2* at synonymous SNV rs200506549 ($P_{discovery}$ =5.8x10-4, OR=2.0, MAF=0.0017). However, exploration in the Stage 3 sample (*N*=12,616) did not replicate this association (*P*=0.76, OR=0.89, MAF=0.0016). All stage 1 associations tested at the *PLCG2* gene are shown in Supplementary Table 9.

A forest plot of the association identified at rs616338 in *ABI3* is given in Supplementary Figure 6. All stage 1 associations tested at the *ABI3* gene are shown in Supplementary Table 12. A forest plot of the association identified at rs143332484 and rs75932628 in *TREM2* are given in Supplementary Figures 9 and 10 respectively. All stage 1 associations tested at the *TREM2* gene are shown in Supplementary Table 13. It should be noted that the 61% (9.6% GERAD/PERADES, 100% ADGC, 81.8% CHARGE and 33.7% EADI) of the samples utilized in this study overlaps with that of the Guerreiro *et al.*³⁸, and that RS stage1 plus RS1 stage 3 samples overlap with Jonsson et al.³⁹, in which R47H robustly associated with AD status.

An additional 3 SNVs show suggestive evidence for association ($P_{combined} < 1 \times 10^{-6}$) with consistent direction of effect across stages (Supplementary Tables 7 and 8).

Conditional Analyses

Conditional analyses were undertaken at the *PLCG2*, *ABI3* and *TREM2* loci using the GCTA tool⁴⁰(using the default parameters)and the stage1 unadjusted summary statistics as input. Data from the GERAD v1.0 dataset was used to calculate the background LD. The GERAD v1.0 dataset was utilised to establish LD ($N_{GERADv1.0}$ =5692). We did not identify significant or suggestive association (*P*<1x10⁻⁵) independent of the genome-wide significant (GWS) hits. When conditioning on rs72824905 in *PLCG2*, the top hit is rs200506549,*P*=6.52x10⁻⁴ (Supplementary Figure 5). When conditioning on rs616338 in *ABI3*, the top hit is rs141826857 in *B4GALNT2*, *P*=1.89x10⁻⁵ (Supplementary Figure 8), this association did not replicate in the stage 2 analysis (*P*_{stage2}= 9.89x10⁻¹, *P*_{combined}= 1.68x10⁻⁴). When conditioning on rs75932628 in *TREM2*, rs143332484 remains significantly associated with disease at (*P*=3.38x10⁻⁹) (Supplementary Figure 11a), the opposite is observed, with rs75932628 showing significant association with disease when conditioning on rs143332484 and rs75932628 in *TREM2*, the top hit is rs143539514, *P*=1.51x10⁻³, OR=1.84, MAF=0.0039 (Supplementary Figure 11c).

4. Gene-wide Findings

Outside of the APOE region (defined as 1MB around the APOE locus), in both the MAF<5% and MAF<1% unadjusted analyses, only the *TREM2* gene showed statistically significant evidence for association, with MAF<5% $P_{\text{gene-wide}}$ =1.42x10⁻¹⁵ and MAF<1% $P_{\text{gene-wide}}$ =1.01x10⁻¹³(Supplementary Table 10). Removal of the p.R47H and p.R62H variants from the analyses diminishes the gene-wide association (*P*>2.5x10⁻⁶). However, the SKAT-O test remains suggestive with *P*=6.3x10⁻³, and if a burden test was applied *P*=4.1x10⁻³, suggesting that more rare damaging variants increasing risk on AD may be present in *TREM2*. In the adjusted analysis a novel association with the *CBLN3* gene is identified with 2 SNVs at this locus (Supplementary Table 11). Both variants in this gene are extremely rare and this finding requires further replication.

5. Gene Expression

RNA sequencing was also used to measure gene expression levels in brains from CRND8 transgenic mouse model at 3, 6 and 12 months of age (n=12, 12 and 14,

respectively); PS1APP model at age 12 months (n=11) and wild type (WT) mice at 3, 6 and 12 months of age (n=12, 12 and 10, respectively). Based on our preliminary data which showed expression changes >2-fold in innate immunity genes between Tg vs. Non-Tg mice, based on conservative estimate of variance and group sizes of 10, we have an 80% power in the RNAseq studies to detect effect sizes of 1.8, 2.2 and 2.8 at an α <0.05, 0.01 and 0.001. All mice were housed in SPF conditions in the same facility, fed standard mouse chow, and euthanized by CO^2 asphyxiation. Brains were dissected to remove the cerebellum and midbrain, and the "forebrains" were processed for RNA extraction and sequencing in a manner analogous to that described for the human brain samples. Transgenic animals and their non-transgenic littermates underwent RNAseq in the same batch, which included animals from both sexes and and all age groups assessed. Samples were sequenced as triplicates per lane and randomized across the flowcells by age and transgene (+ vs. -). RNAseq processing including alignment and quality control was done on all mouse samples in an automated fashion. The mouse RNA sequencing data overview and analytic methods are available at Synapse pages syn3157182 and syn3435792, respectively. Multivariable linear regression was used to test for association of gene expression levels with transgenic state (Dx). In all analyses, adjustments were made only for sex and RNA integrity number (RIN), given limited sample size. Mean normalized gene read counts and standard deviations (sd) for the transgenic (Tg) and WT groups are shown (Supplementary Table 20). The RNAseq data used in the analyses have been normalized using Conditional Quantile Normalization (CQN) via the Bioconductor package cqn; accounting for sequencing depth, gene length, and GC content. CQN approximates log2(RPKM) except at the extremes of the expression distribution. The gene expression data shown herein have mean CQN>-1. Levels of all 3 genes increase with age but to a greater extent for Tg mice for Trem2 and Abi3. All 3 genes are significantly higher in CRND8 brains at 12 months. Trem2 and Abi3 are also significantly higher in CRND8 mice at 6 months and PS1APP mice at 12 months.

6. Functional Annotation

To investigate the functional effect of index SNVs rs72824905 and rs616338, the surrounding sequence was analysed to identify potential cis-effects. Variants in LD (r^2 >0.7) with the index SNVs were identified using HaploReg v4.1⁴⁸ using the European population from 1000 Genomes Phase 1⁴⁹ for LD calculation. Additionally, the Common Gene Haplotype Alleles feature in the University of California, Santa Cruz (UCSC) genome browser⁵⁰ (https://genome.ucsc.edu), generated from imputation of the 1000 Genomes Phase 1 data, was used to identify variants on the same haplotype background as the index SNVs. This approach identified 8 additional variants that may be tagged by the index SNVs (Supplementary Table 21). In-silico functional analysis of the variants was conducted using Annovar⁵¹ and the following databases: RefSeq⁵² release 69 was used to annotate variants to genes. Transcription factor binding sites computed with the Transfac Matrix Database v0.7 (http://www.gene-regulation.com/pub/databases.html) were sourced from the UCSC genome annotation tracks⁵³ for the Feb 2009 assembly of the human genome (http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/). The snoRNA and miRNA track, based on the miRBase and snoRNABase release^{54–58}, as well as the TargetScanS^{59–} ⁶¹microRNAs binding site track, were sourced from the above UCSC assembly and used to identify variants overlapping microRNAs or their regulatory sites. Variants previously identified by published GWAS and collected in the Catalog of Published Genome-Wide

Association Studies at the National Human Genome Research Institute (NHGRI, accessed March 2015)⁶² were flagged using data from the corresponding UCSC track. Variants were also annotated using the dbNSFP v30a database^{63,64}that compiles predictions and conservation scores from 20 sources, the CLINVAR database of variants with clinical significance⁶⁵, and functional prediction tools GWAVA⁶⁶ release 70, CADD⁶⁷ v1.0 and DANN⁶⁸.Finally, variants were investigated for their effect on gene expression using eQTL data from BRAINEAC⁶⁹, HaploReg v4.1 and those reported by Knight and co-workers⁷⁰.

PLCG2

PLCG2 encodes phospholipase Cy2 (PLCy2), an enzyme responsible for ligandmediated signalling in cells of the hematopoietic system, and plays a key role in the regulation of immune responses. The p.P522R variant identified within *PLCG2* resides in a region of the protein highly conserved across human, chimp, rhesus monkey, mouse, rat, rabbit, horse, dog and elephant (Supplementary Figures 4 and 13). Functional annotation suggests that the protective variant, which encodes for an arginine residue, affects chromatin structure and potentially protein folding. As well as associating with autoimmune diseases PLAID and APLAID⁷¹, *PLCG2* has been shown to associate with inflammatory conditions such as Inflammatory bowel disease⁷².

ABI3

The function of ABI3 (previously known as NESH) is far from understood. Early studies indicated that overexpression of *ABI3* led to a reduction in cell motility and reduced metastasis in an in vivo cancer model attributed to an apparent interaction with p21 activated kinase⁷³. Whilst this study did not demonstrate an impact on cell proliferation, subsequent study of both ABI3 and ABI3BP (ABI3 binding protein), reported an impact of its expression on proliferation as well as in vivo cancer cell growth⁷⁴. These tumour suppressing roles for ABI3 are interesting in the context of observed low expression of *ABI3* in cancer cells⁷⁵. Given the association we have made between ABI3 polymorphisms with the development of Alzheimer's disease, the key contribution of ABI3 to the aetiology of the disease and whether it is attributable to alterations in cell growth and adhesion/migration or otherwise unknown functions remains completely unknown. The risk variant p.S209F, which encodes a phenylalanine residue is predicted to be deleterious⁶⁷, the variant lies in a region of the protein highly conserved across human, chimp, rhesus monkey, mouse, rat, rabbit, dog and elephant (Supplementary Figure 7), which is thought to have a role in altering chromatin structure (Supplementary Figure 14).

TREM2

TREM2 is a Type I transmembrane receptor protein expressed on myeloid cells^{76,77}, in the brain, primary TREM2 expression is on microglia. TREM2 acts to control regulation of phagocytosis and suppression of inflammatory reactivity signalling pathways^{78–80}. *TREM2* has shown genetic association with multiple dementias^{81–85}, including AD^{38,39}, and has also shown differential expression in A β plaque-associated versus A β plaque-free tissue from transgenic mice⁸⁶. Both p.R47H and p.R62H are located in a Ig-like V-type domain (Supplementary Figure 15), suggesting that these variants affect ligand binding/signal transduction of TREM2.

7. References

- Harris, T. B. *et al.* Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. *Am. J. Epidemiol.* 165, 1076–1087 (2007).
- American Psychiatric Association. *Diagnostic and statistical manual of mental disorders*.
 (2000).
- Fried, L. P. *et al.* The Cardiovascular Health Study: design and rationale. *Ann. Epidemiol.* 1, 263–276 (1991).
- Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).
- Fitzpatrick, A. L. *et al.* Incidence and prevalence of dementia in the Cardiovascular Health Study. *J. Am. Geriatr. Soc.* 52, 195–204 (2004).
- Lopez, O. L. *et al.* Evaluation of dementia in the cardiovascular health cognition study. *Neuroepidemiology* 22, 1–12 (2003).
- Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. & Stokes, J. Factors of risk in the development of coronary heart disease--six year follow-up experience. The Framingham Study. Ann. Intern. Med. 55, 33–50 (1961).
- Feinleib, M., Kannel, W. B., Garrison, R. J., McNamara, P. M. & Castelli, W. P. The framingham offspring study. Design and preliminary data. *Prev. Med.* 4, 518–525 (1975).
- Splansky, G. L. *et al.* The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. *Am. J. Epidemiol.* 165, 1328–1335 (2007).
- Folstein, M. F., Folstein, S. E. & McHugh, P. R. 'Mini-mental state'. A practical method for grading the cognitive state of patients for the clinician. *J. Psychiatr. Res.* 12, 189–198 (1975).

- McKhann, G. *et al.* Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology* **34**, 939–944 (1984).
- Hofman, A. *et al.* The Rotterdam Study: 2016 objectives and design update. *Eur. J. Epidemiol.* **30**, 661–708 (2015).
- 13. de Bruijn, R. F. A. G. *et al.* The potential for prevention of dementia across two decades: the prospective, population-based Rotterdam Study. *BMC Med.* **13**, 132 (2015).
- 14. Hooijer, C. & van Tilburg, W. [The Geriatric Mental Status Schedule, the GMS: psychiatric tool in psychogeriatrics]. *Tijdschr. Gerontol. Geriatr.* **19**, 103–111 (1988).
- Roth, M. *et al.* CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. *Br. J. Psychiatry J. Ment. Sci.* 149, 698–709 (1986).
- Association, A. P. *Diagnostic and Statistical Manual of Mental Disorders: DSM-III-R*. (American Psychiatric In, 1987).
- 17. Das, S. *et al.* Next generation genotype imputation service and methods. *Nat. Genet.* (*In Press*)
- McCarthy, S. *et al.* A reference panel of 64,976 haplotypes for genotype imputation.
 bioRxiv 035170 (2015). doi:10.1101/035170
- van Leeuwen, E. M. *et al.* Population-specific genotype imputations using minimac or IMPUTE2. *Nat. Protoc.* **10**, 1285–1296 (2015).
- 20. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. *Nat. Methods* **9**, 179–181 (2012).
- 21. Lambert, J. C. *et al.* Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. *Nat. Genet.* **45**, 1452–1458 (2013).
- 22. Naj, A. C. *et al.* Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. *Nat. Genet.* **43**, 436–441 (2011).

- 23. Bienias, J. L., Beckett, L. A., Bennett, D. A., Wilson, R. S. & Evans, D. A. Design of the Chicago Health and Aging Project (CHAP). *J. Alzheimers Dis. JAD* **5**, 349–355 (2003).
- 24. Ravid, R. & Swaab, D. F. The Netherlands brain bank--a clinico-pathological link in aging and dementia research. *J. Neural Transm. Suppl.* **39**, 143–153 (1993).
- 25. Waring, S. *et al.* The Texas Alzheimer's Research Consortium longitudinal research cohort: Study design and baseline characteristics. *Tex. Pub Health J* 9–13 (2008).
- 26. Tang, M. X. *et al.* Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. *Neurology* **56**, 49–56 (2001).
- Mayeux, R., Small, S. A., Tang, M., Tycko, B. & Stern, Y. Memory performance in healthy elderly without Alzheimer's disease: effects of time and apolipoprotein-E. *Neurobiol. Aging* 22, 683–689 (2001).
- 28. Lambert, J.-C. *et al.* Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. *Nat. Genet.* **41**, 1094–1099 (2009).
- 29. Vascular Factors and Risk of Dementia: Design of the Three-City Study and Baseline Characteristics of the Study Population. *Neuroepidemiology* **22**, 316–325 (2003).
- 30. Goldstein, J. I. *et al.* zCall: a rare variant caller for array-based genotyping: genetics and population analysis. *Bioinforma. Oxf. Engl.* **28**, 2543–2545 (2012).
- Devlin, B. & Roeder, K. Genomic control for association studies. *Biometrics* 55, 997– 1004 (1999).
- Grove, M. L. *et al.* Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium. *PLoS ONE* 8, e68095 (2013).
- Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. *PLoS Genet.* 2, e190 (2006).
- Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. *Nat. Genet.* 44, 955–959 (2012).

- Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation.
 Bioinforma. Oxf. Engl. 31, 782–784 (2015).
- Lee, S. *et al.* Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies. *Am. J. Hum. Genet.* **91**, 224–237 (2012).
- Hill, W. G. & Robertson, A. Linkage disequilibrium in finite populations. *TAG Theor. Appl. Genet. Theor. Angew. Genet.* 38, 226–231 (1968).
- 38. Guerreiro, R. *et al.* TREM2 Variants in Alzheimer's Disease. *N. Engl. J. Med.* **368**, 117–127 (2013).
- Jonsson, T. *et al.* Variant of TREM2 Associated with the Risk of Alzheimer's Disease. *N. Engl. J. Med.* 368, 107–116 (2013).
- 40. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. *Am. J. Hum. Genet.* **88**, 76–82 (2011).
- 41. International Genomics of Alzheimer's Disease Consortium (IGAP). Convergent genetic and expression data implicate immunity in Alzheimer's disease. *Alzheimers Dement. J. Alzheimers Assoc.* **11**, 658–671 (2015).
- 42. Talluri, R. & Shete, S. A linkage disequilibrium-based approach to selecting diseaseassociated rare variants. *PloS One* **8**, e69226 (2013).
- 43. Holmans, P. *et al.* Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. *Am. J. Hum. Genet.* **85**, 13–24 (2009).
- 44. Lim, A. S. P. *et al.* 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. *PLoS Genet.* **10**, e1004792 (2014).
- Zhang, Y. *et al.* Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. *Neuron* 89, 37–53 (2016).

- 46. De Jager, P. L. *et al.* Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. *Nat. Neurosci.* **17**, 1156–1163 (2014).
- 47. Chan, G. *et al.* CD33 modulates TREM2: convergence of Alzheimer loci. *Nat. Neurosci.*18, 1556–1558 (2015).
- Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic Acids Res.* 40, D930–934 (2012).
- 49. 1000 Genomes Project Consortium *et al.* An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56–65 (2012).
- Kent, W. J. *et al.* The Human Genome Browser at UCSC. *Genome Res.* **12**, 996–1006 (2002).
- 51. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* **38**, e164 (2010).
- Pruitt, K. D. *et al.* RefSeq: an update on mammalian reference sequences. *Nucleic Acids Res.* 42, D756–763 (2014).
- Rosenbloom, K. R. *et al.* The UCSC Genome Browser database: 2015 update. *Nucleic Acids Res.* 43, D670–681 (2015).
- 54. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–111 (2004).
- Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. *Nucleic Acids Res.* 34, D140–144 (2006).
- Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. *Nucleic Acids Res.* 36, D154–158 (2008).
- Lestrade, L. & Weber, M. J. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. *Nucleic Acids Res.* 34, D158–162 (2006).
- Weber, M. J. New human and mouse microRNA genes found by homology search. *FEBS J.* 272, 59–73 (2005).
- Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. *Cell* 120, 15–20 (2005).
- 60. Grimson, A. *et al.* MicroRNA targeting specificity in mammals: determinants beyond seed pairing. *Mol. Cell* **27**, 91–105 (2007).
- 61. Friedman, R. C., Farh, K. K.-H., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. *Genome Res.* **19**, 92–105 (2009).
- Hindorff, L. A. *et al.* Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 9362–9367 (2009).
- Liu, X., Jian, X. & Boerwinkle, E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. *Hum. Mutat.* 32, 894–899 (2011).
- Liu, X., Wu, C., Li, C. & Boerwinkle, E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Non-synonymous and Splice Site SNVs. *Hum. Mutat.* (2015). doi:10.1002/humu.22932
- 65. Landrum, M. J. *et al.* ClinVar: public archive of interpretations of clinically relevant variants. *Nucleic Acids Res.* **44**, D862–868 (2016).
- Ritchie, G. R. S., Dunham, I., Zeggini, E. & Flicek, P. Functional annotation of noncoding sequence variants. *Nat. Methods* **11**, 294–296 (2014).
- 67. Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of human genetic variants. *Nat. Genet.* **46**, 310–315 (2014).

- Quang, D., Chen, Y. & Xie, X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. *Bioinformatics* btu703 (2014). doi:10.1093/bioinformatics/btu703
- 69. Ramasamy, A. *et al.* Genetic variability in the regulation of gene expression in ten regions of the human brain. *Nat. Neurosci.* **17**, 1418–1428 (2014).
- 70. Fairfax, B. P. *et al.* Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression. *Science* **343**, 1246949 (2014).
- 71. Milner, J. D. PLAID: a Syndrome of Complex Patterns of Disease and Unique Phenotypes. J. Clin. Immunol. **35**, 527–530 (2015).
- T2. Lange, K. M. de *et al.* Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. *bioRxiv* 058255 (2016).
 doi:10.1101/058255
- 73. Ichigotani, Y., Yokozaki, S., Fukuda, Y., Hamaguchi, M. & Matsuda, S. Forced expression of NESH suppresses motility and metastatic dissemination of malignant cells. *Cancer Res.* **62**, 2215–2219 (2002).
- 74. Latini, F. R. M. *et al.* ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence. *BMC Cancer* **11**, 11 (2011).
- 75. Kanduri, M. *et al.* Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. *Blood* **115**, 296–305 (2010).
- Bouchon, A., Dietrich, J. & Colonna, M. Cutting Edge: Inflammatory Responses Can Be Triggered by TREM-1, a Novel Receptor Expressed on Neutrophils and Monocytes. J. Immunol. 164, 4991–4995 (2000).
- 77. Bouchon, A., Hernández-Munain, C., Cella, M. & Colonna, M. A Dap12-Mediated
 Pathway Regulates Expression of Cc Chemokine Receptor 7 and Maturation of Human
 Dendritic Cells. J. Exp. Med. 194, 1111–1122 (2001).

- Turnbull, I. R. *et al.* Cutting Edge: TREM-2 Attenuates Macrophage Activation. *J. Immunol.* **177**, 3520–3524 (2006).
- 79. Takahashi, K., Prinz, M., Stagi, M., Chechneva, O. & Neumann, H. TREM2-Transduced Myeloid Precursors Mediate Nervous Tissue Debris Clearance and Facilitate Recovery in an Animal Model of Multiple Sclerosis. *PLoS Med.* **4**, (2007).
- Neumann, H. & Takahashi, K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis.
 J. Neuroimmunol. 184, 92–99 (2007).
- Paloneva, J. *et al.* DAP12/TREM2 Deficiency Results in Impaired Osteoclast
 Differentiation and Osteoporotic Features. *J. Exp. Med.* 198, 669–675 (2003).
- Klünemann, H. H. *et al.* The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. *Neurology* 64, 1502–1507 (2005).
- 83. Soragna, D. *et al.* An Italian family affected by Nasu-Hakola disease with a novel genetic mutation in the TREM2 gene. *J. Neurol. Neurosurg. Psychiatry* **74**, 825–826 (2003).
- Numasawa, Y. *et al.* Nasu–Hakola disease with a splicing mutation of TREM2 in a Japanese family. *Eur. J. Neurol.* 18, 1179–1183 (2011).
- Chouery, E. *et al.* Mutations in TREM2 lead to pure early-onset dementia without bone cysts. *Hum. Mutat.* 29, E194–E204 (2008).
- Frank, S. *et al.* TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. *Glia* 56, 1438–1447 (2008).
- 87. Huyghe, J. R. *et al.* Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. *Nat. Genet.* **45**, 197–201 (2013).
- Peloso, G. M. *et al.* Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. *Am. J. Hum. Genet.* 94, 223–232 (2014).

8. Supplementary Table Legends

Supplementary Table 1.Full description of the different stage 1 samples from the GERAD/PERADES, ADGC and CHARGE consortia.

Supplementary Table 2. Full description of the different stage 2 and stage 3 samples/datasets from the GERAD/PERADES, ADGC, CHARGE and EADI consortia.

Supplementary Table 3. Details of stage 1 calling software(s) and quality control metrics applied across the ADGC, CHARGE and GERAD/PERADES cohorts.

Supplementary Table 4. Table of 43 variants eligible to be taken forward from stage 1, meeting $P < 1 \times 10^{-4}$ before re-clustering and P < 0.05 after re-clustering. The OR for a number of SNVs are extremely high due to a combination of the 'one-step' approximation of the effect estimate from the score-test and the rarity of the minor allele.

Supplementary Table 5. Observed associations at previously identified GWS AD risk loci. Variants in *APOE, CLU* and *CR1* showed genome-wide significant association (*P*<5x10⁻⁸) in the unadjusted analysis, while common variants near *BIN1, MS4A6A, CD33, HLA*-region, *ABCA7* and *INPP5D* showed suggestive association (*P*<5x10⁻⁴). Also, rare and common variation in previously described risk loci (*TREML2, UNC5C, TTC3, PLXNA4, PLD3, MTHFR, CYP2D6, ADAM10, ZNF628, AKAP9, CD33, TRIP4, MAPT, SQSTM1, ATP5H/KCTD2, APP, PSEN1, PSEN2*). Excluding *CD33* common variant rs3865444, no significant evidence for association with LOAD was identified. The OR for a number of SNVs are extremely high due to a combination of the 'one-step' approximation of the effect estimate from seqMeta and the rarity of the minor allele.

Supplementary Table 6. Concordance of alternate allele carrier genotypes for all replicated SNPs among samples with both exome chip genotyping and with GWAS imputed to HRC. For comparison, imputed genotypes were assigned if probability of a given genotype exceeded 0.9. Where percent concordance is absent, SNPs were imputed with high probability as monomorphic across all samples examined.

Supplementary Table 7. Results of unadjusted analysis of the SNVs identified as eligible for replication in stage 1. Results show p-value, odds ratio, minor allele frequency and number of individuals for each stage of the study, as well as the final combined analysis. The OR for a number of SNVs are extremely high due to a combination of the 'one-step' approximation of the effect estimate from the seqMetaand the rarity of the minor allele.

Supplementary Table 8. Results of adjusted analysis of the SNVs identified as eligible for replication in stage 1. Results show p-value, odds ratio, minor allele frequency and number of individuals for each stage of the study, as well as the final combined analysis. The OR for a number of SNVs are extremely high due to a combination of the 'one-step' approximation of the effect estimate from the seqMetaand the rarity of the minor allele.

Supplementary Table 9. Unadjusted association with single nucleotide variation within the *PLCG2* gene on chromosome 16.

Supplementary Table 10. Results of unadjusted SKAT-O gene-wide analysis of the SNVs in stage 1. Results show number of SNVs included in analysis at MAF \leq 0.01 and MAF \leq 0.05 and their respective p-values for all SNVs with $P < 1 \times 10^{-5}$ at either MAF threshold. Table also shows gene-wide analysis of *PLCG2* ($P > 1 \times 10^{-5}$).

Supplementary Table 11. Results of adjusted SKAT-O gene-wide analysis of the SNVs in stage 1. Results show number of SNVs included in analysis at MAF \leq 0.01 and MAF \leq 0.05 and their respective p-values for all SNVs with $P < 1 \times 10^{-5}$ at either MAF threshold. Table also shows gene-wide analysis of *PLCG2* and *ABI3* ($P > 1 \times 10^{-5}$).

Supplementary Table 12. Unadjusted association with single nucleotide variation within the *ABI3* gene on chromosome 17.

Supplementary Table 13. Unadjusted association with single nucleotide variation within the *TREM2* gene on chromosome 6.

Supplementary Table 14. Linkage disequilibrium calculations generated for the observed SNV associations at the *PLCG2* and *TREM2* loci.

Supplementary Table 15. Enrichment for the IGAP pathway clusters based on combining gene-wide p-values from variants with MAF<0.01 with Fisher's method. The clusters representing the immune response, cholesterol transport, hemostasis, Clathrin/AP2 adaptor complex and protein folding, survive Bonferroni for 8 tests (p<0.00625). A conservative analysis removing the *APOE* region and the more significant of any pair of genes less than 1Mb apart (to remove potential bias resulting from LD between genes) is also shown.

Supplementary Table 16. Significant pathways (FDR<0.01) from an analysis of the rare variant data (MAF<1%) on all 9,816 pathways originally analysed in the IGAP GWAS.

Supplementary Table 17. ALIGATOR enrichment analysis of the 151 genes in the overlap of immune-related gene expression modules in the IGAP GWAS, stratifying by membership of the protein interaction network. A range of p-value cutoffs were used to define significant SNPs (and the genes containing them). "Top 5%" refers to the top 5% of genes being counted as significant (corresponding to SNP *P*<8.32x10⁻⁴) and was the primary analysis in the original pathway analysis of the IGAP data.

Supplementary Table 18. List of the 56 genes in the protein-protein interaction network, with gene based p-values in the IGAP common variant GWAS and in the present rare variant study (unadjusted model).

Supplementary Table 19 Differential expression of genes (DEG) in human temporal cortex. Mean normalized gene read counts and standard deviations (sd) for the AD and control (con) groups are shown. Effect of AD diagnosis (Dx.Beta, Dx.SE=standard error), significance of AD diagnosis either uncorrected, or corrected using FDR-based q values are shown. All 3 genes are significantly higher in AD temporal cortex prior to correcting for cell types (Simple model), but this significance is abolished after adjusting for cell-specific gene counts (Comprehensive model). This suggests that these elevations are likely a consequence of changes in cell types that occur with AD, most likely microgliosis given that *TREM2*, *PLCG2* and *ABI3* are microglia-enriched genes.

Supplementary Table 20. Differential expression of genes (DEG) in brains from CRND8 transgenic mouse model at 3, 6 and 12 months of age (n=12, 12 and 14, respectively); PS1APP model at age 12 months (n=11) and wild type (WT) mice at 3, 6 and 12 months of age (n=12, 12 and 10, respectively). Mean normalized gene read counts and standard deviations (sd) for the transgenic (Tg) and WT groups are shown. Effect of transgenic state (Dx.Beta, Dx.SE=standard error), significance of Tg state either uncorrected, or corrected using FDR-based q values are shown. Levels of all 3 genes increase with age but to a greater extent for Tg mice for Trem2 and Abi3. All 3 genes are significantly higher in CRND8 brains at 12 months. Trem2 and Abi3 are also significantly higher in CRND8 mice at 6 months and PS1APP mice at 12 months.

Supplementary Table 21. Functional annotation of the *PLCG2* and *ABI3* GWS SNVs and variants in LD (r^2 >0.7). Associated SNVs are highlighted in blue. Interesting findings are highlighted in red. Interpretation of data is via the handbook of the relevant database.

ABI3

Position on chr17 (Mb)

PLCG2 $\| \|$ 1 || || | **Plotted SNPs** - 100 r^2 10 rs72824905 0.8 80 Recombination rate (cM/Mb) 8 0.6 0.4

60

40

20

-log₁₀(p-value)

6

4

2

0.2

					Controls				Cases			
Country	Centre	Consortium	Array	N	% Females	Age	Deviation +/-	Ν	% Females	Age at Onset	Deviation +/-	TOTAL
Germany	Bonn	GERAD	v1.0	537	62.01	83.81	3.12	770	67.32	72.84	8.64	1307
Germany	Homborg	GERAD	v1.0	70	58.57	81.91	8.94	849	58.04	72.79	10.48	919
Germany	Munich	GERAD	v1.0	145	66.9	68.46	3.54	261	67.43	70.11	8.68	406
Iceland	AGES	CHARGE	v1.0	2374	59.00	78.90	5.00	143	59.40	82.50	4.90	2517
Italy	Rome	GERAD	v1.1	135	57.78	65.99	6.96	163	62.58	75.43	7.14	298
Netherlands	RS	CHARGE	v1.0	2416	50.79	78.22	7.71	463	68.90	83.30	6.59	2879
Spain	Barcelona	GERAD	v1.1	-	-	-	-	414	70.29	76.86	5.5	414
Spain	Madrid	GERAD	v1.1	296	62.96	72.98	14.52	219	63.93	70.04	13.79	515
Spain	Navarra	GERAD	v1.1	374	59.89	66.74	11.33	428	60.28	70.15	8.8	802
Spain	Oviedo	GERAD	v1.1	104	51.92	70.4	6.62	74	66.22	76.59	6.5	178
Spain	Santander	GERAD	v1.1	246	67.89	80.57	9.33	318	65.41	73.75	7.06	564
UK	Belfast	GERAD	v1.0	226	68.12	75.04	7.92	517	66.67	76.88	7.4	743
UK	MRC	GERAD	v1.0	475	63.37	76.82	6.37	832	71.63	75.82	6.62	1307
UK	Nottingham	GERAD	v1.0	109	40.37	-	-	173	59.87	-	-	282
UK	Prion	GERAD	v1.0	-	-	-	-	555	53.47	63.79	12.45	555
UK	Southampton	GERAD	v1.0	37	59.46	74.14	6.7	136	64.71	80	8	173
USA	ADC7	ADGC	v1.0	872	62.84	73.48	8.03	542	52.03	77.68	7.56	1414
USA	BYU	GERAD	v1.1	151	64.24	88.05	3.93	150	62	84.48	6.01	301
USA	СНОР	ADGC	v1.0	2556	56.69	80.99	6.69	2943	64.32	73.77	8.74	5499
USA	FHS	CHARGE	v1.0	1298	57.00	79.90	8.60	228	68.00	85.00	6.90	1526
USA	CHS	CHARGE	v1.0	2013	56.33	81.18	5.15	557	61.58	82.10	5.32	2570
USA	Miami	ADGC	v1.0	991	60.54	73.49	7.92	885	62.94	72.56	7.09	1876
USA	NorthShore	ADGC	v1.0	2223	63.07	77.04	9.39	3782	52.27	72.28	9.37	6005
USA	Washington	GERAD	v1.1	69	63.63	-	-	141	58.33	74.16	7.39	210
USA	WashU	ADGC	v1.0	360	61.67	74.57	8.68	554	58.3	79.78	9.71	914
			TOTAL	18077				16097				34174

						C	ontrols				Cases		
Country	Centre	Туре	Analysis Dataset	Consortium	N	% Females	Age	Deviation +/-	N	% Females	*Age at Onset	Deviation +/-	TOTAL
France	EADI1	Genotyped	EADI_France	EADI	6502	60.71	79	6.93	2012	65.27	72.69	9.71	8514
Italy	Lamezia Terme	Genotyped	GERAD/PERADES	GERAD/PERADES	47	80.85	65.02	11.26	98	66.67	72.93	6.08	145
Italy	Milan (Sacred Heart)	Genotyped	GERAD/PERADES	GERAD/PERADES	85	65.88	68.06	10.91	81	70.37	76.93	7.08	166
Italy	Milan (University)	Genotyped	GERAD/PERADES	GERAD/PERADES	-	-	-	-	150	73.33	77.33	5.51	150
Italy	Perugia	Genotyped	GERAD/PERADES	GERAD/PERADES	298	63.3	77.96	8.28	531	70.06	79	7.12	829
Italy	Pisa	Genotyped	GERAD/PERADES	GERAD/PERADES	89	22.47	50.16	13.14	73	54.79	68.12	4.99	162
Italy	Rome (Sacred Heart)	Genotyped	GERAD/PERADES	GERAD/PERADES	-	-	-	-	291	68.04	75.6	10.54	291
Italy	Rome (Santa Lucia)	Genotyped	GERAD/PERADES	GERAD/PERADES	38	71.05	66.29	6.52	45	62.23	77.27	5.22	83
Spain	Navarra	Genotyped	GERAD/PERADES	GERAD/PERADES	33	51.52	69.18	11.77	92	56.52	71.84	9.23	125
Spain	Oviedo	Genotyped	GERAD/PERADES	GERAD/PERADES	96	47.92	73.07	5.44	96	73.96	77.6	6.55	192
Spain	Santander	Genotyped	GERAD/PERADES	GERAD/PERADES	-	-	-	-	15	72.73	77.5	8.48	15
UK	Cardiff	Genotyped	GERAD/PERADES	GERAD/PERADES	338	58.6	81.77	9.41	462	58.9	80.68	9.29	800
UK	London (IOP)	Genotyped	GERAD/PERADES	GERAD/PERADES	154	50.33	78.73	10.74	296	51.9	79.6	10.21	450
UK	Southampton	Genotyped	GERAD/PERADES	GERAD/PERADES	61	70.49	69.84	9.42	98	44.5	73.81	9.99	159
Austria	Graz	Genotyped	IGAP_Aus_Ger	CHARGE	-	-	-	-	210	60.95	72.47	8.07	210
Germany	Munich	Genotyped	IGAP_Aus_Ger	GERAD/PERADES	530	37.74	66.58	3.43	285	67.37	70.67	8.69	815
Germany	Bonn	Genotyped	IGAP_Aus_Ger	GERAD/PERADES	489	67.69	79.56	3.22	7	57.14	70	3.94	496
Germany	Essen	Genotyped	IGAP_Aus_Ger	GERAD/PERADES	243	60.49	76.21	5.95	132	66.67	75.98	7.00	375
Spain	ACE	Genotyped	ACE	CHARGE	1839	67.70	54.70	12.12	1224	70.60	79.11	5.96	3063
Belgium	Antwerp	Genotyped	IGAP_Bel	EADI	626	59.27	65.4	14.31	857	66.28	75.48	8.5	1483
Canada	Toronto	Genotyped	IGAP_Can	EADI	100	69	74.39	6.48	125	68	74.89	6.82	225
Finland	Kuopio	Genotyped	IGAP_Finland	EADI	503	59.84	68.95	6.31	340	69.41	71.31	7.22	843
Italy	Cagliari	Genotyped	IGAP_Italy	EADI	109	55.05	65.76	7.83	130	73.08	74.93	6.51	239
Italy	Florence	Genotyped	IGAP_Italy	EADI	77	54.55	64.04	13.08	440	60	67.07	8.53	517
Italy	Milan	Genotyped	IGAP_Italy	EADI	161	61.49	69.76	11.06	305	67.54	73.47	7.39	466
Italy	Perugia2	Genotyped	IGAP_Italy	EADI	79	51.9	74.44	6.25	124	73.39	78.85	6.76	203
Italy	Pisa	Genotyped	IGAP_Italy	EADI	7	71.43	63.29	17.18	21	76.19	72.52	9.15	28
Italy	Rome	Genotyped	IGAP_Italy	EADI	35	65.71	68.43	6.69	332	70.78	73	7.58	367
Italy	San Giovanni Rotonda	Genotyped	IGAP_Italy	EADI	63	31.75	76.6	7.02	113	64.6	79.03	6.80	176
Italy	Troina	Genotyped	IGAP_Italy	EADI	154	61.04	71.95	8.25	156	61.54	71.47	8.31	310
Spain	Barcelona	Genotyped	IGAP_Spa	EADI	1016	54.23	66.97	10.31	1173	67.95	75.03	8.65	2189
Spain	Las Palmas	Genotyped	IGAP_Spa	EADI	290	36.55	70.01	5.84	244	68.03	75.84	6.94	534
Spain	Madrid	Genotyped	IGAP_Spa	EADI	153	61.44	67.73	14.44	91	60.44	68.43	9.90	244
Spain	Oviedo	Genotyped	IGAP_Spa	EADI	165	66.06	73.12	8.04	239	63.18	78.08	6.78	404
Spain	Santander	Genotyped	IGAP_Spa	EADI	251	68.53	80.55	7.44	344	63.95	73.67	7.05	595
Sweden	Stockholm	Genotyped	IGAP_Swe	EADI	1271	62.79	69.8	8.86	513	61.4	87	5.56	1784
Sweden	Uppsala	Genotyped	IGAP_Swe	EADI	225	61.33	74.64	6.10	277	62.82	76.49	8.01	502
Greece	Thessaloniki	Genotyped	IGAP_Gre	GERAD/PERADES	227	33.48	49.24	16.48	256	63.28	69.24	8.02	483
UK	Belfast	Genotyped	IGAP_UK	GERAD/PERADES	186	69.89	74.12	9.04	177	68.36	72.66	6.73	363
UK	Bristol	Genotyped	IGAP_UK	GERAD/PERADES	7	42.86	78.57	8.44	11	54.55	71.86	8.73	18
UK	Caerphilly	Genotyped	IGAP_UK	GERAD/PERADES	451	0	71.98	3.92	29	0	74.34	4.13	480
UK	Southampton2	Genotyped	IGAP_UK	GERAD/PERADES	70	55.71	73.94	8	95	67.37	78.61	7.50	165
UK	Notthingham2	Genotyped	IGAP_UK	GERAD/PERADES	267	49.81	76.76	6.76	157	50.32	72.88	8.76	424
USA	Jacksonville	Genotyped	IGAP_USA	GERAD/PERADES	1340	54.03	79.31	6.82	572	61.89	83.46	7.56	1912
Netherlands	RS1	Imputed	RS1	CHARGE	2304	63.28	82.37	7.06	589	76.74	83.74	6.43	2893
Netherlands	RS2	Imputed	RS2	CHARGE	942	54.99	81.37	5.87	133	59.40	82.75	6.75	1075
		•		STAGE 2 TOTAI	21921				14041				35962
USA	ACT	Imputed	ACT	ADGC	549	58.83	81.19	5.76	132	57.58	81.77	6.31	681
USA	ADC1	Imputed	ADC1	ADGC	90	59.18	76.8	8.8	213	65.42	71.9	8.8	303
			-		1				1 .				1

				REPLICATION TOTAL	30266				20693				50959
				STAGE 3 TOTAL	8345	60.38	76.19	6.99	6652	61.46	74.84	6.69	14997
USA	WHICAP	Imputed	WHICAP	ADGC	367	60.76	81.86	6.94	45	80	83.58	7.87	412
USA	WASHU2	Imputed	WASHU2	ADGC	71	50.7	71.38	6.2	38	57.89	73.39	7.34	109
USA	TARC1	Imputed	TARC1	ADGC	181	65.19	73.87	8.18	323	61.61	74.01	7.13	504
USA	ROSMAP2	Imputed	ROSMAP2	ADGC	217	76.04	80.8	7.2	59	77.97	81.95	6.91	276
USA	NBB	Imputed	NBB	ADGC	48	56.25	81.52	9.41	80	71.25	74.48	7.51	128
USA	MTV	Imputed	MTV	ADGC	188	61.7	71.35	7.74	251	56.97	74.57	7.7	439
USA	CHAP	Imputed	CHAP	ADGC	144	52.78	81.8	6.58	27	62.96	84.81	7.65	171
USA	ADC6	Imputed	ADC6	ADGC	290	66.55	73.56	9.03	134	55.22	73.31	7.75	424
USA	WASHU	Imputed	WASHU	ADGC	64	57.81	76.94	8.27	115	55.65	74.01	7.76	179
USA	UPITT	Imputed	UPITT	ADGC	828	63.41	75.48	6.03	1160	63.02	72.91	6.41	1988
USA	UMVUMSSM_B	Imputed	UMVUMSSM_B	ADGC	93	61.29	79.62	10.56	262	71.37	78.77	8.89	355
USA	TGEN2	Imputed	TGEN2	ADGC	365	48.49	79.97	8.67	617	66.61	73.49	6.76	982
USA	ROSMAP	Imputed	ROSMAP	ADGC	747	72.29	82.09	7.11	288	70.49	85.59	6.24	1035
USA	OHSU	Imputed	OHSU	ADGC	153	54.9	83.86	7.59	132	62.12	85.89	5.74	285
USA	MIRAGE	Imputed	MIRAGE	ADGC	727	58.46	72.03	7.18	71	67.61	72.27	6.89	798
USA	MAYO	Imputed	MAYO	ADGC	1046	51.15	72.91	4.36	658	57.45	73.57	4.83	1704
USA	LOAD	Imputed	LOAD	ADGC	1121	61.64	72.67	8.3	931	63.48	73.59	6.67	2052
USA	GSK	Imputed	GSK	ADGC	712	63.9	74.2	7.02	652	56.9	74.58	6.17	1364
USA	ADNI	Imputed	ADNI	ADGC	173	40.46	78.6	5.46	268	42.16	75.3	7.15	441
USA	ADC3	Imputed	ADC3	ADGC	129	66.67	78.03	10.24	146	56.16	71.91	7.55	275

*Initial/Age-at-onset provided for samples where known

	ADGC	CHARGE	GERAD
Calling Software	GenomeStudio followed by manual clustering ³⁴	GenomeStudio followed by manual clustering ³⁴	Genomestudio and z Call ¹
Exclude markers	>2% missing rate	>5% missing rate	>2% missing rate
HWE check	P<1x10 ⁻⁶	P<1x10 ⁻⁶	P<1x10 ⁻⁶
Exclude subjects with missing rate	>2%	>5% at overall calling and within individual studies	>2%
Control for relatedness	IBS > 0.125	IBS > 0.45	IBS > 0.125

Gene	ID	Chr	position	Allele 1	P	OR	MAF	N
TREM2	rs75932628	6	41129252	Т	3.02E-12	2.46	0.0049	30018
ATP5C1	rs139967528	10	7841811	G	5.89E-10	6.12	0.0007	33811
TREM2	rs143332484	6	41129207	Т	3.48E-09	1.58	0.0123	33786
AHNAK	rs11828907	11	62288978	С	1.47E-07	4.60	0.0008	33811
TECTA	rs148619105	11	121016724	А	3.42E-07	0.55	0.0058	33786
BSG	rs201850688	19	572671	G	4.80E-07	2.14	0.0034	30302
ATM	rs56009889	11	108196896	Т	2.81E-06	0.33	0.0011	33786
TRAF3IP2	rs139767840	6	111896863	С	7.66E-06	2.03	0.0029	33786
SNX1	rs1802376	15	64428559	А	1.09E-05	1.30	0.0205	33786
PLCG2	rs72824905	16	81942028	G	1.19E-05	0.65	0.0089	33786
B4GALNT2	rs141826857	17	47246239	А	1.78E-05	0.31	0.0010	33786
NLRC3	rs115489359	16	3613019	Т	2.09E-05	3.22	0.0010	33786
ABI3	rs616338	17	47297297	Т	2.16E-05	1.42	0.0113	33786
ASTN2	rs147163004	9	119413853	Т	3.42E-05	13847.97	0.0001	33786
PLEKHG4	rs80024062	16	67320811	Т	3.87E-05	0.53	0.0028	33786
C2orf69	rs200098289	2	200789858	G	4.52E-05	0.10	0.0002	33786
BTNL2	rs28362679	6	32363893	А	5.05E-05	1.31	0.0173	32322
NRAP	rs11575797	10	115350366	А	5.48E-05	0.16	0.0003	33786
KBTBD6	rs139419169	13	41706233	Т	5.98E-05	3.07	0.0009	33786
FAIM3	rs41304091	1	207078467	А	6.10E-05	1.37	0.0127	33786
OASL	rs201720090	12	121469316	А	6.64E-05	0.08	0.0002	33786
LAMC1	rs150421474	1	183105709	А	8.74E-05	0.33	0.0009	33786
NUDT18	rs60087873	8	21965846	С	9.15E-05	8.96	0.0002	31216
HGFAC	rs114303452	4	3449915	G	1.11E-04	1.34	0.0132	31216
TTN	rs55725279	2	179393898	А	1.22E-04	0.35	0.0009	33786
CD2AP	rs138727736	6	47563608	G	1.31E-04	0.60	0.0052	28281
DEFA6	rs45479905	8	6783479	Т	1.31E-04	2.21	0.0016	33786
IFT140	rs138674110	16	1616256	Т	1.75E-04	52.30	0.0001	33786
THSD4	rs201879533	15	72039251	Т	2.27E-04	0.27	0.0011	15896
LAPTM4B	rs141075645	8	98828352	Т	2.37E-04	0.14	0.0002	33786
RHBDF1	rs78541046	16	113027	А	3.38E-04	0.28	0.0011	15896
ISM2	rs149849326	14	77944624	С	3.47E-04	1.25	0.0189	33786
STOX1	rs201329017	10	70646130	А	4.03E-04	2.52	0.0012	30504
AMT	rs144971200	3	49455386	С	7.08E-04	0.43	0.0011	33786
MUC17	rs73712043	7	100680521	А	8.79E-04	1.29	0.0140	31188
SEC14L6	rs118116676	22	30934885	Т	1.15E-03	0.81	0.0192	33786
PLVAP	rs34920409	19	17476933	Т	1.18E-03	1.28	0.0141	33786
CHST6	rs139042144	16	75512546	Т	1.35E-03	0.21	0.0003	33786
KIAA1324L	rs138544248	7	86554948	А	1.39E-03	425.96	0.0001	33811
SCG2	rs201824633	2	224463369	Т	1.78E-03	5.83	0.0002	33786
BST1	rs141013660	4	15713513	А	4.29E-03	14.73	0.0001	33786
KIAA0415	rs201862383	7	4823883	Т	1.11E-02	0.52	0.0010	33786
UTRN	rs146738862	6	144747588	G	2.52E-02	0.17	0.0001	33811

Genome wide significant							
Gene	ID	chr	BP	Р	OR	MAF	Ν
APOE	rs769449	19	45410002	0.00E+00	2.88	0.188	33786
APOE	rs7412	19	45412079	2.69E-105	0.43	0.059	31216
CR1	rs6656401	1	207692049	7.32E-11	1.17	0.195	23380
CLU	rs1532278	8	27466315	5.76E-10	0.89	0.376	33786
CR1	rs2296160	1	207795320	6.42E-10	1.21	0.191	14406
CLU	rs11136000	8	27464519	7.18E-10	0.90	0.383	33786
CR1	rs6701713	1	207786289	7.36E-10	1.14	0.200	33786
CR1	rs3818361	1	207784968	7.65E-10	1.14	0.200	33786
CLU	rs2279590	8	27456253	2.31E-08	0.91	0.395	33786
Suggestive							
BIN1	rs1060743	2	127826533	5.18E-08	1.11	0.31	33786
MS4A6A	rs7232	11	59940599	5.95E-07	0.91	0.37	33786
CD33	rs3865444	19	51727962	1.73E-06	0.91	0.31	33786
BIN1	rs755639	2	127860149	6.99E-06	0.92	0.40	33786
HLA-DQA1	rs1048023	6	32609150	1.59E-05	0.89	0.16	23380
ABCA7	rs3764650	19	1046520	2.87E-05	1.13	0.10	31216
INPP5D	rs1135173	2	234054873	3.81E-05	1.07	0.48	33786
Previously described r	isk loci						
CD33	rs3865444	19	51727962	1.73E-06	0.91	0.31	33786
CD33	rs35112940	19	51738917	5.42E-04	0.93	0.20	33786
SQSTM1	rs55793208	5	179260099	8.62E-04	1.23	0.02	29040
UNC5C	rs148691835	4	96140171	7.13E-03	0.12	0.00	33786
ΑΚΑΡ9	rs200034525	7	91630628	9.53E-03	0.15	0.00	33786
APP	rs2830088	21	27514740	9.90E-03	0.96	0.44	33786
ΜΑΡΤ	rs63750096	17	44073923	1.01E-02	1.93	0.00	33786
PLD3	rs145999145	19	40877595	3.45E-02	0.65	0.00	11352
TRIP4	rs74019250	15	64706312	4.10E-02	27.92	0.00	33786
PLXNA4	rs190791576	7	131913187	5.38E-02	0.11	0.00	33786
MTHFR	rs17367504	1	11862778	6.39E-02	1.05	0.16	33786
TTC3	rs138008526	21	38567985	6.57E-02	1.28	0.00	33786
PSEN2	rs61757781	1	227075813	7.90E-02	1.94	0.00	33786
ZNF628	rs147110934	19	55993436	8.80E-02	1.11	0.02	33786
KCTD2	rs11077773	17	73060073	9.13E-02	0.94	0.09	28281
CYP2D6	rs1135822	22	42525182	1.12E-01	0.25	0.00	20098
ATP5H	rs147284668	17	73038319	1.12E-01	0.53	0.00	33786
ADAM10	rs61751103	15	58957371	1.14E-01	0.74	0.00	33786
PSEN1	rs362373	14	73673178	3.31E-01	1.06	0.02	33786
TREML2	NA	NA	NA	NA	NA	NA	NA

SNP	Chromosome	Basepair position	Concordance (%)	Alternate Allele Carriers (Heterozygotes/Alternate Homozygotes) (n)	Subjects/Alleles (n)
rs189301790	16	81819671	86.67	27	11245/22490
rs147349332	16	81819704		0	11246/22492
rs61755444	16	81891928	100	9	11246/22492
rs199760975	16	81916888	66.67	10	11245/22490
rs45443101	16	81922781	88.7	871	11244/22488
rs17537869	16	81922813	98.22	1616	11246/22492
rs199636472	16	81925132	100	30	11246/22492
rs200506549	16	81927314	90	43	11246/22492
rs201654184	16	81929499	66.67	15	11245/22490
rs187956469	16	81939089	87.36	93	11244/22488
rs72824905	16	81942028	95.74	179	11243/22486
rs75472618	16	81942175	95.35	158	11245/22490
rs147396004	16	81944250	79.17	26	11244/22488
rs150833842	16	81946278	96.49	61	11246/22492
rs143195637	16	81953128		2	9782/19564
rs187454354	16	81953195	100	5	11246/22492
rs117077093	16	81957175	72.73	12	11245/22490
rs115583707	16	81960783		0	11246/22492
rs114618894	16	81962190		1	11245/22490
rs200677528	16	81965151	100	13	11243/22486
rs139462941	16	81968131	75	3	11246/22492
rs114262189	16	81971435	100	2	11246/22492
rs2233369	17	47293906	98.67	1139	11245/22490
rs201757928	17	47294000		4	11230/22460
rs142527437	17	47295162	87.5	39	11246/22492

rs137924898	17	47295165	100	3	11246/22492
rs616338	17	47297297	81.9	240	11246/22492
rs200867869	17	47297547	92	23	11246/22492
rs150100821	17	47299919	84.13	92	11246/22492
rs190840748	16	81916932		3	11246/22492
rs74032923	16	81954829		2	11242/22484
rs138355759	6	41126619	87.5	13	11246/22492
rs2234256	6	41126655	100	26	11246/22492
rs2234255	6	41127543	81.82	10	11246/22492
rs79011726	6	41127561	83.33	6	11244/22488
rs145080901	6	41129078	0	2	11246/22492
rs142232675	6	41129133	96.15	38	11246/22492
rs143332484	6	41129207	91.09	269	11244/22488
rs75932628	6	41129252	75.21	114	10825/21650
rs1800054	11	108098576	89.2	276	11242/22484
rs148590073	11	108106435	100	4	11245/22490
rs2234997	11	108106443	100	53	11239/22478
rs3218707	11	108114727	77.27	21	11241/22482
rs79075295	11	108114749		0	11245/22490
rs28904919	11	108117787	90.91	31	11244/22488
rs202160435	11	108117799	100	2	11246/22492
rs56128736	11	108119823	90.48	73	11239/22478
rs2235000	11	108121733	85.71	8	11246/22492
rs2227924	11	108122592	100	6	11246/22492
rs2235006	11	108122700	75	20	11239/22478
rs2227922	11	108123551	90.67	83	11245/22490
rs147934285	11	108124738		1	11246/22492
rs4986761	11	108124761	88.16	267	11243/22486

rs34231402	11	108128246	100	14	11235/22470
rs641252	11	108128319		0	11244/22488
rs3218695	11	108129778	100	4	11246/22492
rs1800056	11	108138003	92.79	313	11241/22482
rs61734354	11	108138039	100	1	11246/22492
rs139552233	11	108141988	100	15	11243/22486
rs146531614	11	108142070	92.86	16	11243/22486
rs3092857	11	108143299	80	6	11238/22476
rs1800057	11	108143456	95.99	583	11244/22488
rs2229020	11	108150316	100	2	11246/22492
rs149711770	11	108155132	100	23	11246/22492
rs3092856	11	108159732	85.71	12	11242/22484
rs1800058	11	108160350	98.44	395	11243/22486
rs201666889	11	108160416	50	9	11245/22490
rs145667735	11	108160467		0	11234/22468
rs138327406	11	108160480	32.69	20	10820/21640
rs34640941	11	108160516	75	20	11246/22492
rs140856217	11	108164137	66.67	19	11236/22472
rs55870064	11	108168053		0	11244/22488
rs1800059	11	108170506	80.77	48	11246/22492
rs1801516	11	108175462	99.54	3235	11246/22492
rs1801673	11	108175463	86.73	135	9573/19146
rs147187700	11	108180945		3	11245/22490
rs11212587	11	108186610	88	43	11240/22480
rs145847315	11	108186631	50	1	11245/22490
rs1800060	11	108188136	100	38	11245/22490
rs56815840	11	108190770		0	11244/22488
rs56009889	11	108196896	100	47	11246/22492

rs148432863	11	108198384	100	1	11245/22490
rs4988111	11	108198391	100	1	11246/22492
rs55801750	11	108201023	87.5	12	9758/19516
rs56399857	11	108201108	50	1	11242/22484
rs201958469	11	108216611	100	4	11246/22492
rs201199629	11	108236150		1	11246/22492

							STAG	GE1					STAGE2					COMBINE	D STAGES 1+	2				STAG	iE3				C	OMBINED	STAGES 1+2	2+3	
Gene	ID	Chr	position	Allele 1	Р	OR	L95%CI	U95%CI	MAF	N	P C	R L95%0	I U95%CI	MAF	N	Р	OR	L95%CI	U95%CI	MAF	N	Р	OR	L95%CI	U95%CI	MAF	Ν	Р	OR	L95%CI	U95%CI	MAF	N
TREM2	rs75932628	6	41129252	Т	3.02E-12	2.46	1.91	3.17	0.0049	30018 4	.38E-08 2.	37 1.74	3.22	0.00267	35831	7.56E-19	2.42	1.99	2.95	0.0037	65849 1	1.23E-06	2.58	1.76	3.79	0.005 1	4884	5.38E-24	2.46	2.06	2.92	0.00396	80733
TREM2	rs143332484	6	41129207	т	3.48E-09	1.58	1.36	1.84	0.0123	33786 3	.66E-07 3.	97 2.33	6.75	0.01397	3968	1.43E-12	1.70	1.47	1.97	0.0125	37754 2	2.45E-03	1.55	1.17	2.07	0.010 1	5288	1.55E-14	1.67	1.46	1.90	0.01179	53042
PLCG2	rs72824905	16	81942028	G	1.19E-05	0.65	0.54	0.79	0.0089	33786 1	.35E-04 0.	70 0.58	0.84	0.00800	35831	7.09E-09	0.68	0.59	0.77	0.0084	69617 2	2.48E-02	0.69	0.50	0.95	0.006 1	5288	5.38E-10	0.68	0.60	0.77	0.00804	84905
ATP5C1	rs139967528	10	7841811	G	5.89E-10	6.12	3.45	10.86	0.0007	33811	NA N	A NA	NA	NA	NA	6.18E-01	2.13	0.11	41.34	0.0000	68084	NA	NA	NA	NA	NA	NA	5.89E-10	6.12	3.45	10.86	0.00038	65674
ABI3	rs616338	17	47297297	т	2.16E-05	1.42	1.21	1.67	0.0113	33786 8	.37E-05 1.	41 1.19	1.67	0.009290266	35831	7.08E-09	1.42	1.26	1.59	0.01027637	69617 1	1.75E-02	1.58	1.08	2.31	0.009 1	4876	4.56E-10	1.43	1.28	1.60	0.009991017	7 84493
TECTA	rs148619105	11	121016724	A	3.42E-07	0.55	0.43	0.69	0.0058	33786 9	.00E-02 0.	31 0.08	1.20	0.00027	16690	1.09E-07	0.54	0.43	0.68	0.0040	50476	NA	NA	NA	NA	NA	NA	1.09E-07	0.54	0.43	0.68	0.00397	50476
AHNAK	rs11828907	11	62288978	с	1.47E-07	4.60	2.60	8.13	0.0008	33811 7	.09E-01 0.	32 0.00	128.77	0.00001	35831	6.34E-01	1.41	0.34	5.79	0.0001	72052	NA	NA	NA	NA	NA	NA	2.02E-07	4.49	2.55	7.92	0.00037	69946
BSG	rs201850688	19	572671	G	4.80E-07	2.14	1.59	2.88	0.0034	30302 9	.63E-01 0.	99 0.57	1.71	0.00167	16690	1.02E-05	1.80	1.39	2.34	0.0028	46992	NA	NA	NA	NA	NA	NA	8.98E-06	1.80	1.39	2.34	0.00274	47296
PLEKHG4	rs80024062	16	67320811	т	3.87E-05	0.53	0.40	0.72	0.0028	33786 9	.70E-02 0.	69 0.45	1.07	0.00135	35831	1.49E-05	0.58	0.45	0.74	0.0021	69617	NA	NA	NA	NA	NA	NA	1.70E-05	0.58	0.46	0.75	0.00207	69921
OASL	rs201720090	12	121469316	A	6.64E-05	0.08	0.02	0.28	0.0002	33786 1	.54E-01 0.	18 0.02	1.90	0.00009	16759	2.73E-05	0.10	0.03	0.29	0.0001	50545	NA	NA	NA	NA	NA	NA	2.73E-05	0.10	0.03	0.29	0.00015	50545
ASTN2	rs147163004	9	119413853	т	3.42E-05	13847.97	152.20	1259962.23	0.0001	33786	NA N	A NA	NA	NA	NA	3.42E-05	13847.97	152.20	1259962.23	0.0001	33786	NA	NA	NA	NA	NA	NA	3.42E-05 1	13847.97	152.20	1259962.23	0.00006	33786
C2orf69	rs200098289	2	200789858	G	4.52E-05	0.10	0.03	0.30	0.0002	33786	NA N	A NA	NA	NA	NA	4.52E-05	0.10	0.03	0.30	0.0001	65649	NA	NA	NA	NA	NA	NA	4.52E-05	0.10	0.03	0.30	0.00010	65649
LAPTM4B	rs141075645	8	98828352	т	2.37E-04	0.14	0.05	0.39	0.0002	33786 7	.86E-02 0.	16 0.02	1.23	0.00012	16750	4.65E-05	0.14	0.06	0.36	0.0002	50536	NA	NA	NA	NA	NA	NA	4.65E-05	0.14	0.06	0.36	0.00020	50536
ATM	rs56009889	11	108196896	т	2.81E-06	0.33	0.21	0.52	0.0011	33786 9	.19E-02 0.	31 0.08	1.21	0.00016	31863	6.44E-07	0.33	0.21	0.51	0.0007	65649	NA	NA	NA	NA	NA	NA	6.44E-07	0.33	0.21	0.51	0.0007	65649
KBTBD6	rs139419169	13	41706233	т	5.98E-05	3.07	1.77	5.30	0.0009	33786	NA N	A NA	NA	NA	NA	5.98E-05	3.07	1.77	5.30	0.0009	33786	NA	NA	NA	NA	NA	NA	5.98E-05	3.07	1.77	5.30	0.00089	33786
SNX1	rs1802376	15	64428559	А	1.09E-05	1.30	1.16	1.47	0.0205	33786 1	.17E-01 1.	09 0.98	1.21	0.02386	35831	4.43E-05	1.18	1.09	1.27	0.0222	69617	NA	NA	NA	NA	NA	NA	7.18E-05	1.17	1.08	1.27	0.02224	69921
B4GALNT2	rs141826857	17	47246239	Α	1.78F-05	0.31	0.18	0.53	0.0010	33786	89F-01 0	99 0.38	2.61	0.00030	31863	1.68F-04	0.41	0.26	0.65	0.0006	65649	NA	NA	NA	NA	NA	NA	1.68F-04	0.41	0.26	0.65	0.00064	65953
IFT140	rs138674110	16	1616256	т	1.75E-04	52.30	6.62	413.04	0.0001	33786	NA N	A NA	NA	NA	NA	1.75E-04	52.30	6.62	413.04	0.0001	33786	NA	NA	NA	NA	NA	NA	1.75E-04	52.30	6.62	413.04	0.00007	33786
THSD4	rs201879533	15	72039251	T	2.27E-04	0.27	0.13	0.54	0.0011	15896	NA N	A NA	NA	NA	NA	2.27F-04	0.27	0.13	0.54	0.0011	15896	NA	NA	NA	NA	NA	NA	2.27F-04	0.27	0.13	0.54	0.00107	15896
TRAF3IP2	rs139767840	6	111896863	c	7.66F-06	2.03	1.49	2.78	0.0029	33786 4	17F-01 1.	13 0.84	1.53	0.00290	35831	2.23E-04	1.50	1.21	1.86	0.0029	69617	NA	NA	NA	NA	NA	NA	2.66F-04	1.49	1.20	1.85	0.00293	69921
NIRC3	rs115489359	16	3613019	т	2.09E-05	3 22	1.88	5 51	0.0010	33786 2	59E-01 0	46 0.12	1.55	0.00014	31863	4 08F-04	2.46	1 4 9	4.06	0.00025	65649	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	3 22F-04	2.49	1.51	4.08	0.00057	65953
RHRDF1	rs78541046	16	113027	Δ	3 38F-04	0.28	0.14	0.56	0.0010	15896	NA N	Δ ΝΔ	ΝΔ	NA	NA	3 38F-04	0.28	0.14	0.56	0.0000	15896	NΔ	NΔ	NΔ	NΔ	NΔ	NA	3 41F-04	0.28	0.14	0.56	0.00105	16200
DEEAG	rs/5/79905	8	6783479	- F	1 31E-04	2 21	1.47	3 31	0.0011	33786 2	18F-01 1	27 0.85	1 01	0.00141	35831	4 23E-04	1.68	1 26	2 24	0.0011	69617	NA	NA	NA	NA	NA	NA	1 02E-04	1.68	1 26	2 24	0.00100	60021
ANAT	rc144071200		10/05475	ċ	7.095.04	0.42	0.26	0.70	0.0010	22706		A NA	1.51 NA	0.00141	NA	7 095 04	0.42	0.26	0.70	0.0011	22796	NA	NA	NA	NA	NA	NA	7.005.04	0.42	0.26	0.70	0.00107	24000
STOV1	rc201220017	10	70646120	~	1.08L-04	2 5 2	1 51	4.21	0.0011	20504 5	205 01 0	47 0.04	4.02	0.00092	2069	2 01E 04	2 24	1.42	2.95	0.0011	24472	NA	NA	NA	NA	NA	NA	9 70E 04	2 24	1.42	2 96	0.00107	24050
NUDT19	13201323017	0	21065946	ĉ	4.03L-04	2.32	2.00	26.00	0.0012	21216 2	00E 01 1	47 0.04 64 0.66	4.55	0.00082	21962	0.910-04	2.34	1.42	5.85	0.0011	62070	NA	NA	NA	NA	NA	NA	0.751-04	2.34	1.42	5.00	0.00112	62070
NRAD	rs11575797	10	115350366	~	5.13L-05	0.50	2.55	20.50	0.0002	33786 7	02F-01 0	04 0.00 86 0.20	2.56	0.00031	31863	9.31L-04	0.32	0.16	0.57	0.0003	65649	NA	NA	NA	NA	NA	NA	9.31L-04	0.32	0.16	0.57	0.00027	65053
CD2AD	rc120727726		47562609	â	1 215 04	0.10	0.46	0.40	0.0005	20201 2	ADE 01 0.	00 0.25	1.00	0.00601	25021	0.055.04	0.52	0.10	0.05	0.0057	64112	NA	NA	NA	NA	NA	NA	0 555 04	0.52	0.10	0.05	0.00566	64416
DIVAD	13138727730	10	47303008	т П	1 195 02	1 29	1 10	1.40	0.0032	20201 2	205 01 1	07 057	2.02	0.00001	2060	1 24E 02	1 27	1 10	1.47	0.0037	27754	NA	NA	NA	NA	NA	NA	1 095 02	1.27	1 10	1.47	0.00300	20050
PLVAP	1554920409	19	100680521		1.16E-03	1.20	1.10	1.49	0.0141	33/00 0	115 01 1	07 0.57	2.05	0.01280	3908	1.34E-03	1.27	1.10	1.47	0.0140	37754	NA NA	NA	NA	NA	NA	NA	1.06E-03	1.27	1.10	1.47	0.01396	36036
SCC2	15/3/12045	, ,	224462260	<u>_</u>	1 705 02	1.29	1.11	17.62	0.0140	22706	NA N	00 0.04	1.75	0.01495	3908	1.146-03	1.2/	1.10	17.60	0.0141	33130	NA	NA	NIA NIA	NA	N/A	NA	1.146-03	1.2/ E 02	1.10	17.62	0.01405	33400
SCG2	15201824033	1	224403309		1.700-03	5.83	1.93	17.03	0.0002	22706	NA N	00 0.51	1 CO	NA 0.00084	NA 25021	1.700-03	5.63	1.93	17.03	0.0002	55/80	INA NA	INA NA	NA	INA NA	NA	NA	1./0E-03	5.63	1.93	17.03	0.00019	33/80
LAIVICI	15150421474	1 1	103105709	A	0.74E-05	0.33	0.19	0.58	0.0009	22706	.24E-01 0.	10 0.51	1.50	0.00084	2000	2.110-03	0.54	0.30	0.80	0.0009	27754	INA NA	INA NA	NA	INA NA	NA	NA	2.002-03	0.53	0.30	0.80	0.00087	29921
JCM42	151181100/0	14	30934885		1.15E-U3	1.25	0.71	0.92	0.0192	22706	.93E-U1 1.	10 0.69	1.73	0.01/34	3968	2.40E-U3	0.83	1.05	1.27	0.0190	57754	NA	NA	NA	NA	NA	NA	2.4/E-U3	0.83	1.05	1.27	0.01910	38058
151/12	rs149849326	14	//944624		3.4/E-04	1.25	1.11	1.41	0.0189	33786 6	.//E-01 1.	03 0.89	1.20	0.01949	20658	2.29E-03	1.16	1.05	1.2/	0.0191	54444	NA	NA	NA	NA	NA	NA	2.51E-03	1.16	1.05	1.27	0.01912	54/48
IIN	rs55/25279	2	119393898	A	1.22E-04	0.35	0.21	0.60	0.0009	33786 9	./5E-U1 0.	99 0.51	1.91	0.00060	35831	2.58E-03	0.53	0.35	0.80	8000.0	69617	NA	NA	NA	NA	NA	NA	2.58E-03	0.53	0.35	0.80	0.00075	69921
BST1	rs141013660	4	15/13513	A	4.29E-03	14.73	2.33	93.35	0.0001	33/86	NA N	A NA	NA	NA	NA	4.29E-03	14.73	2.33	93.35	0.0001	33/86	NA	NA	NA	NA	NÁ	NA	4.29E-03	14.73	2.34	93.99	0.0001	33786
HGFAC	rs114303452	4	3449915	G	1.11E-04	1.34	1.16	1.56	0.0132	31216 6	.36E-01 1.	0.90	1.18	0.01382	35831	3.04E-03	1.16	1.05	1.29	0.0135	67047	NA	NA	NA	NA	NA	NA	4.40E-03	1.16	1.05	1.28	0.01353	67351
BTNL2	rs28362679	6	32363893	A	5.05E-05	1.31	1.15	1.49	0.0173	32322 9	.25E-01 0.	99 0.87	1.14	0.02858	16690	4.17E-03	1.15	1.04	1.26	0.0211	49012	NA	NA	NA	NA	NA	NA	4.47E-03	1.14	1.04	1.26	0.02114	49316
KIAA0415	rs201862383	7	4823883	т	1.11E-02	0.52	0.31	0.86	0.0010	33786	NA N	A NA	NA	NA	NA	1.11E-02	0.52	0.31	0.86	0.0010	33786	NA	NA	NA	NA	NA	NA	1.11E-02	0.52	0.31	0.84	0.0010	33786
FAIM3	rs41304091	1	207078467	A	6.10E-05	1.37	1.18	1.60	0.0127	33786 3	.16E-01 0.	92 0.78	1.08	0.01026	35831	2.39E-02	1.14	1.02	1.28	0.0114	69617	NA	NA	NA	NA	NA	NA	2.20E-02	1.14	1.02	1.28	0.01143	69921
UTRN	rs146738862	6	144747588	G	2.52E-02	0.17	0.03	0.80	0.0001	33811	NA N	A NA	NA	NA	NA	2.52E-02	0.17	0.03	0.80	0.0001	33811	NA	NA	NA	NA	NA	NA	2.52E-02	0.17	0.03	0.80	0.00012	33811
KIAA1324L	rs138544248	7	86554948	A	1.39E-03	425.96	10.41	17430.94	0.0001	33811 5	.17E-01 0.	24 0.00	17.75	0.00002	31863	4.60E-02	17.46	1.05	289.70	0.0000	65674	NA	NA	NA	NA	NA	NA	4.60E-02	17.46	1.05	289.70	0.00004	65674
		16	75512546	т	1 35E-03	0.21	0.08	0.54	0.0003	33786 1	85E-01 2	31 0.67	7 98	0.00030	20605	8 72F-02	0.51	0.24	1 10	0.0003	5/301	NA	NΔ	NΔ	NΔ	NΔ	NΔ	8 01F-02	0.52	0.24	1 11	0.00030	54695

					1		ST	AGE1			1		ST	AGE2			1		COMBINE	STAGES 1+2			1		STA	GE3			1		COMBINED	STAGES 1+2+3		
Gene	ID	Chr	position	Allele 1	Р	OR	L95%CI	U95%CI	MAF	N	P	OR	L95%CI	U95%CI	MAF	N	Р	OR	L95%CI	U95%CI	MAF	N	P	OR	L95%CI	U95%CI	MAF	N	P	OR	L95%CI	U95%CI	MAF	N
TREM2	rs75932628	6	41129252	т	3.95E-08	2.21	1.66	2.93	0.00511	28278	1.96E-08	2.56	1.84	3.55	0.00267	35374	4.97E-15	2.35	1.90	2.91	0.00376	63652	1.31E-06	2.65	1.79	3.94	0.005	14593	4.05E-20	2.42	2.00	2.92	0.00401	78245
TREM2	rs143332484	6	41129207	т	8.30E-07	1.52	1.28	1.79	0.01237	32046	7.27E-07	3.83	2.25	6.52	0.01397	3968	6.53E-10	1.64	1.40	1.93	0.01255	36014	3.75E-03	1.55	1.15	2.09	0.010	14997	9.42E-12	1.62	1.41	1.87	0.01179	51011
ATP5C1	rs139967528	10	7841811	G	1.58E-09	6.20	3.43	11.21	0.00074	32071	NA	NA	NA	NA	NA	NA	1.58E-09	6.20	3.43	11.21	0.00038	63477	NA	NA	NA	NA	NA	NA	1.58E-09	6.20	3.43	11.21	0.00038	63477
PLCG2	rs72824905	16	81942028	G	1.52E-04	0.68	0.55	0.83	0.00893	32046	1.09E-04	0.68	0.56	0.83	0.00801	35374	6.15E-08	0.68	0.59	0.78	0.00845	67420	3.19E-02	0.69	0.50	0.97	0.006	14997	5.80E-09	0.68	0.60	0.77	0.00806	82417
ABI3	rs616338	17	47297297	т	1.98E-04	1.40	1.17	1.67	0.01141	32046	5.29E-04	1.41	1.16	1.71	0.00851	35374	3.66E-07	1.40	1.23	1.60	0.00989	67420	1.81E-02	1.60	1.08	2.38	0.009	14585	4.86E-09	1.43	1.27	1.62	0.010004	82005
AHNAK	rs11828907	11	62288978	С	8.37E-07	4.39	2.44	7.90	0.00078	32071	7.41E-01	0.33	0.00	234.15	0.00002	35374	1.07E-06	4.30	2.39	7.72	0.00038	67445	NA	NA	NA	NA	NA	NA	1.07E-06	4.30	2.39	7.72	0.00038	67748
HBDF1	rs78541046	16	113027	А	1.63E-06	0.16	0.08	0.34	0.00106	14156	NA	NA	NA	NA	NA	NA	1.63E-06	0.16	0.08	0.34	0.00106	14156	NA	NA	NA	NA	NA	NA	1.64E-06	0.16	0.08	0.34	0.00104	14459
THSD4	rs201879533	15	72039251	т	4.40E-06	0.18	0.08	0.37	0.00113	14156	NA	NA	NA	NA	NA	NA	4.40E-06	0.18	0.08	0.37	0.00113	14156	NA	NA	NA	NA	NA	NA	4.40E-06	0.18	0.08	0.37	0.00113	14156
JTRN	rs146738862	6	144747588	G	1.66E-05	0.00	0.00	0.00	0.00002	32071	NA	NA	NA	NA	NA	NA	1.66E-05	0.00	0.00	0.00	0.00002	32071	NA	NA	NA	NA	NA	NA	1.66E-05	0.00	0.00	0.00	0.00002	32071
T140	rs138674110	16	1616256	т	1.73E-05	142.43	14.83	1367.60	0.00008	32046	NA	NA	NA	NA	NA	NA	1.73E-05	142.43	14.83	1367.60	0.00008	32046	NA	NA	NA	NA	NA	NA	1.73E-05	142.43	14.83	1367.60	0.00008	32046
BSG	rs201850688	19	572671	G	1.07E-06	2.19	1.60	3.00	0.00347	28562	8.18E-01	0.94	0.53	1.65	0.00167	16690	3.23E-05	1.79	1.36	2.36	0.00280	45252	NA	NA	NA	NA	NA	NA	2.98E-05	1.80	1.37	2.37	0.00279	45555
PTM4B	rs141075645	8	98828352	т	9.89E-05	0.12	0.04	0.35	0.00025	32046	1.55E-01	0.21	0.02	1.81	0.00012	16750	3.82E-05	0.13	0.05	0.35	0.00021	48796	NA	NA	NA	NA	NA	NA	3.82E-05	0.13	0.05	0.35	0.00021	48796
SCG2	rs201824633	2	224463369	т	3.95E-05	12.94	3.82	43.84	0.00019	32046	NA	NA	NA	NA	NA	NA	3.95E-05	12.94	3.82	43.84	0.00019	32046	NA	NA	NA	NA	NA	NA	3.95E-05	12.94	3.82	43.84	0.00019	32046
KHG4	rs80024062	16	67320811	т	4.08E-04	0.57	0.42	0.78	0.00293	32046	4.59E-02	0.63	0.40	0.99	0.00137	35374	5.30E-05	0.59	0.46	0.76	0.00211	67420	NA	NA	NA	NA	NA	NA	4.94E-05	0.59	0.46	0.76	0.00213	67723
STN2	rs147163004	9	119413853	т	5.03E-05	9683.92	114.56	818612.09	0.00006	32046	NA	NA	NA	NA	NA	NA	5.03E-05	9683.92	114.56	818612.09	0.00006	32046	NA	NA	NA	NA	NA	NA	5.03E-05	9683.92	114.56	818612.09	0.00006	32046
ILRC3	rs115489359	16	3613019	т	4.04E-05	3.17	1.83	5.49	0.00101	32046	9.84E-01	0.98	0.13	7.12	0.00013	31406	7.80E-05	2.91	1.71	4.95	0.00057	63452	NA	NA	NA	NA	NA	NA	6.21E-05	2.93	1.73	4.96	0.00058	63755
orf69	rs200098289	2	200789858	G	6.33E-05	0.10	0.03	0.31	0.00020	32046	NA	NA	NA	NA	NA	NA	6.33E-05	0.10	0.03	0.31	0.00010	63452	NA	NA	NA	NA	NA	NA	6.33E-05	0.10	0.03	0.31	0.00010	63452
MT	rs144971200	3	49455386	с	6.60E-05	0.34	0.20	0.58	0.00103	32046	NA	NA	NA	NA	NA	NA	6.60E-05	0.34	0.20	0.58	0.00103	32046	NA	NA	NA	NA	NA	NA	6.61E-05	0.34	0.20	0.58	0.00102	32349
ST1	rs141013660	4	15713513	А	6.80E-05	99.59	10.35	958.21	0.00014	32046	NA	NA	NA	NA	NA	NA	6.80E-05	99.59	10.35	958.21	0.00014	32046	NA	NA	NA	NA	NA	NA	6.61E-05	100.32	10.43	965.14	0.00014	32349
VAP	rs34920409	19	17476933	т	1.27E-04	1.37	1.17	1.61	0.01424	32046	8.02E-01	1.09	0.57	2.07	0.01280	3968	1.58E-04	1.35	1.16	1.58	0.01408	36014	NA	NA	NA	NA	NA	NA	1.25E-04	1.36	1.16	1.59	0.01406	36317
TM	rs56009889	11	108196896	т	1 13E-05	0.34	0.21	0.55	0.00120	32046	2 13E-01	0.38	0.09	1 73	0.00016	31406	5.08E-06	0.34	0.21	0.54	0.00069	63452	NA	NA	NA	NA	NA	NA	5.08E-06	0.34	0.21	0.54	0.00069	63452
DASI	rs201720090	12	121469316	Å	1.05E-03	0.12	0.03	0.43	0.00017	32046	5.63E-02	0.08	0.01	1.07	0.00009	16759	1 54E-04	0.11	0.04	0.35	0.00014	48805	NA	NA	NA	NA	NA	NA	1 54F-04	0.11	0.04	0.35	0.00014	48805
10017	rs73712043	7	100680521	A	1 16E-04	1 39	1 17	1.63	0.01405	29448	6 93E-01	1 11	0.67	1.84	0.01495	3968	1 52E-04	1 36	1.16	1.59	0.01416	33416	NA	NA	NA	NA	NA	NA	1 59E-04	1 35	1 16	1.58	0.01409	33719
C1416	rs118116676	22	30934885	т	8.05E-05	0.76	0.66	0.87	0.01943	32046	7 13E-01	1.09	0.69	1.73	0.01734	3968	2 39E-04	0.78	0.69	0.89	0.01920	36014	NA	NA	NA	NA	NA	NA	2 04F-04	0.78	0.69	0.89	0.01925	36317
FEAG	rc45479905	8	6783479	T	5.40E-05	2.46	1.59	3.80	0.00161	32046	2.67E-01	1 30	0.87	2.05	0.00138	35374	2 24E-04	1.81	1 37	2.49	0.00149	67420	NA	NA	NA	NA	NA	NA	2 15E-04	1.87	1 32	2.49	0.00149	67723
ALNT2	rc141826857	17	47246239		5 88E-05	0.37	0.18	0.56	0.00100	32046	9 105-01	0.94	0.32	2.05	0.00130	31406	2.046-04	0.40	0.24	0.66	0.00045	63452	NA	NA	NA	NA	NA	NA	2.150.04	0.40	0.24	0.66	0.00064	63755
OX1	rs201329017	10	70646130	Â	9.88E-05	3.04	1 74	5 33	0.00118	29190	4.66E-01	0.42	0.04	4.74	0.00023	3968	3.06E-04	2 73	158	4 70	0.00114	33158	NA	NA	NA	NA	NA	NA	2.99E-04	2 73	1.58	4 71	0.00004	33461
СТА	rc148619105	11	121016724		8 64E-04	0.66	0.51	0.84	0.00568	32046	9.79F-07	0.31	0.08	1.22	0.00027	16690	3 50E-04	0.64	0.50	0.87	0.00383	48736	NA	NA	NA	NA	NA	NA	3 50E-04	0.64	0.50	0.82	0.00383	48736
E3ID2	rc130767840	6	111896863	ĉ	8 935-05	1.95	1.40	2 73	0.00300	32046	3 215-01	1 17	0.86	1.60	0.00221	35374	6 74E-04	1.49	1 18	1.87	0.00295	67420	NA	NA	NA	NA	NA	NA	7 345-04	1.48	1.18	1.86	0.00303	67723
347	rc1/08/0376	14	77944674	c	2 14E-05	1.33	1.40	1.57	0.01876	32046	8 78F-01	1.01	0.87	1.00	0.002.51	20658	7.955-04	1 10	1.10	1.31	0.01904	52704	NA	NA	NA	NA	NA	NA	8.00E-04	1.40	1.10	1.00	0.00250	53007
NY1	rs1802376	15	64428559	<u>د</u>	5 23E-04	1.55	1.10	1.02	0.02039	32046	1 345-01	1.00	0.07	1.10	0.07373	35374	6.53E-04	1.15	1.07	1.31	0.02214	67420	NA	NA	NA	NA	NA	NA	1.075-03	1.15	1.05	1.51	0.07218	67723
AAC1	(150421474	1.5	182105700	2	3.235.05	0.28	0.15	0.50	0.00003	22046	7 375 01	0.00	0.57	1.62	0.00095	25274	1 165 02	0.50	0.22	0.76	0.00099	67420	NA	NA	NA	NA	NA	NA	1 125 02	0.50	0.22	0.76	0.00088	67723
DTDDC	15130421474	12	41706322	÷	1.175.02	3 71	1.49	4.04	0.00092	32040	1.272-01	0.50	0.30	1.03	0.00083	33374	1.102-03	2.30	1.49	4.04	0.00088	22046	NA	NA	NA	NA	NA	NA NA	1.135-03	3.71	1.49	4.04	0.00088	22046
TTAL	x55775370		17020202		7.325.05	0.22	0.18	4.54	0.00007	22040	7.045.01	0.01	0.47	1 70	0.00061	25274	1 225 02	0.40	1.40	54	0.00037	67430		NA	NA	NA	NA NA	NA NA	1 215 02	0.40	0.22	4.54	0.00077	67772
AA041E	1533725279	2	1/2393898	- A	2 155 02	0.32	0.18	0.50	0.00095	32046	7.54E-U1	0.91	0.47	1.79	0.00001	33374	2 155 02	0.49	0.32	0.76	0.00100	22046	NA	NA	NA	NA	NA	NA	1.312-03	0.49	0.32	0.76	0.00077	27240
20415	15201002383	2	4023883		2.13E-03	0.44	0.20	0.74	0.00100	32046	2015.04	1%A	0.74	INA A AA	0.00001	194	2.150-03	0.44	0.26	0.74	0.00100	52040	NA NA	N/A	NA	NA NA	NA.	NA NA	1.700-03	0.43	0.25	0.73	0.00100	52349
SEAC	15138/2//30	0	4/563608	G	1.20E-03	0.03	0.4/	0.83	0.01222	20541	2.91E-01	1.07	0.07	1.11	0.00601	353/4	4.72E-03	0.78	1.05	0.92	0.01267	64950	NA	N/A N/A	NA	NA	INA NA	NA	4.52E-03	0.//	1.04	0.92	0.01363	65157
JFAL DAD	15114303452	4	3443312		1.095-03	1.31	1.11	1.54	0.00030	29470	4.046-01	1.07	0.92	1.24	0.01385	35374	4./10-03	1.1/	1.05	1.31	0.01302	04850	N/A	N/A	N/A	N/A	INA	INA	0.400-03	1.10	1.04	1.30	0.01363	00105
IKAP	rs115/5797	10	115350366	A	1.18E-03	0.18	0.07	0.51	0.00028	32046	/./4E-01	U.85	0.27	2.65	0.00022	31406	9.11E-03	0.36	0.17	U.78	0.00025	63452	NA	NA	NA	NA	NA	NA	9.11E-03	0.36	0.17	0.78	0.00025	63755
10118	120008/8/3	6	21965846	C	7.75E-04	8.63	2.46	30.30	0.00022	29476	8.43E-01	1.12	0.38	3.29	0.00030	51406	1.91E-02	2.67	1.1/	0.05	0.00026	00882	NA	NA	NA	n/A	NA	NA	1.91E-02	2.0/	1.1/	0.05	0.00026	00882
A1324L	rs138544248	7	86554948	A	7.10E-05	6924.36	88.26	543217.36	0.00006	32071	5.05E-01	U.24	0.00	16.56	0.00002	31406	2.17E-02	35.39	1.68	/43.26	0.00004	ь3477	NA	NA	NA	NA	NA	NA	2.17E-02	35.39	1.68	/43.26	0.00004	63477
HSIG	rs139042144	16	/5512546	т	6.10E-05	0.12	0.04	U.33	0.00031	32046	2.23E-01	2.14	0.63	7.31	0.00030	20605	2.48E-02	U.40	0.18	U.89	0.00031	52651	NA NA	NA	NA	NA	NA	NA	2.52E-02	U.40	U.18	U.89	0.00031	52954
STNL2	rs28362679	6	32363893	A	4.50E-03	1.23	1.07	1.41	0.01733	30582	9.02E-01	1.01	0.87	1.16	0.02858	16690	3.43E-02	1.11	1.01	1.23	0.02130	47272	NA	NA	NA	NA	NA	NA	3.76E-02	1.11	1.01	1.23	0.02129	47575
FAIM3	rs41304091	1	207078467	A	2.27E-04	1.37	1.16	1.62	0.01276	32046	2.87E-01	0.91	0.76	1.08	0.01029	35374	5.40E-02	1.13	1.00	1.27	0.01147	67420	NA	NA	NA	NA	NA	NA	5.13E-02	1.13	1.00	1.27	0.01146	67723

ID	Position	Amino Acid Change	P	OR	MAF	N
rs72824905	81942028	P522R	1.19E-05	0.65	0.00887	33786
rs200506549	81927314	T329T	5.78E-04	2.02	0.00176	33786
rs200137340	81934332	S437G	2.56E-02	0.23	0.00015	33786
rs45443101	81922781	H257L	3.01E-02	0.91	0.03830	33786
rs114618894	81962190	L848F	3.07E-02	0.16	0.00009	33786
rs74032923	81954829	D754D	8.35E-02	0.31	0.00016	33786
rs189301790	81819671	T26M	1.26E-01	0.64	0.00089	33786
rs199636472	81925132	A308V	1.50E-01	0.70	0.00105	33786
rs147349332	81819704	T37N	2.38E-01	0.09	0.00001	33786
rs115583707	81960783	Q838Q	2.48E-01	3.05	0.00007	33786
rs186829827	81960772	L835I	3.01E-01	0.12	0.00001	33786
rs117077093	81957175	N798S	3.58E-01	0.72	0.00056	33786
rs61755444	81891928	A133V	4.08E-01	0.68	0.00049	33786
rs370547009	81990400	R1224H	4.68E-01	0.30	0.00003	33786
rs114262189	81971435	S1042T	4.71E-01	1.62	0.00016	33786
rs200325678	81944136	R582Q	5.32E-01	4.02	0.00001	33786
rs199972098	81819605	T4M	5.41E-01	2.67	0.00003	33786
rs187454354	81953195	E721K	5.46E-01	0.69	0.00018	33786
rs199760975	81916888	P236L	5.75E-01	1.24	0.00050	33786
rs17537869	81922813	R268W	5.82E-01	0.98	0.06922	33786
rs75472618	81942175	N571S	5.87E-01	0.95	0.00804	33786
rs200677528	81965151	E877D	6.44E-01	1.26	0.00027	33786
rs201654184	81929499	Q387P	6.91E-01	0.84	0.00045	24294
rs150833842	81946278	I671V	7.27E-01	0.94	0.00259	33786
rs139462941	81968131	N946S	7.85E-01	1.22	0.00012	33786
rs190840748	81916932	I251V	7.99E-01	0.81	0.00010	33786
rs147396004	81944250	T620M	8.78E-01	0.96	0.00111	33786
rs143195637	81953128	D698D	8.90E-01	0.88	0.00009	32322
rs187956469	81939089	Y482H	9.72E-01	1.00	0.00469	33786
rs201294738	81904539	S216L	NA	NA	NA	33786
rs200824224	81927376	R350H	NA	NA	NA	33786
rs200919414	81934365	R448W	NA	NA	NA	32872
rs190001915	81954827	D754H	NA	NA	NA	33786
rs202108152	81990411	R1228W	NA	NA	NA	33786
rs201803492	81957094	Q771R	NA	NA	NA	33786

	MAF	≤0.01	MAF	≤0.05
Gene	N SNPs	Р	N SNPs	Р
TREM2	12	1.01E-13	13	1.42E-15
APOE	3	2.64E-07	3	2.64E-07
BSG	9	2.25E-06	10	4.72E-06
BCAM	28	3.56E-06	32	4.69E-04
SLC16A14	4	6.14E-06	6	8.35E-04
PVR	11	9.40E-06	13	1.03E-05
ZNF775	2	1.02E-05	2	1.02E-05
ATP5C1	2	3.08E-05	2	3.08E-05
PSD2	21	5.70E-05	21	5.70E-05
TNFRSF10C	5	6.73E-05	6	6.69E-02
KBTBD6	3	9.18E-05	3	9.18E-05
BCL3	6	9.27E-05	6	9.27E-05
PLCG2	28	4.34E-04	29	1.52E-04
EXOC3L2	5	2.82E-01	6	3.77E-07
ABI3	7	6.35E-01	8	5.22E-05
SNX1	4	7.95E-01	5	2.32E-05

	MAF	≤0.01	MAF≤0.05		
Gene	N SNPs	Р	N SNPs	Р	
TREM2	12	1.70E-07	13	6.15E-08	
SLC16A14	4	1.30E-06	6	2.64E-04	
APOE	3	2.37E-06	3	2.37E-06	
BSG	9	7.38E-06	10	2.00E-05	
CBLN3	2	7.59E-06	2	7.59E-06	
PSD2	21	1.06E-05	21	1.06E-05	
SIRT5	11	2.62E-05	12	1.02E-03	
TNFRSF10C	5	3.07E-05	6	3.65E-02	
DHCR7	17	3.49E-05	17	3.49E-05	
WDR74	9	3.67E-05	9	3.67E-05	
TINAGL1	6	5.38E-05	7	8.22E-05	
SCG2	6	6.73E-05	7	4.57E-01	
BCAM	28	7.48E-05	32	2.14E-03	
PLCG2	27	2.15E-03	28	1.68E-03	
MUC17	89	3.77E-03	93	3.72E-05	
PLVAP	8	9.54E-03	9	4.36E-05	
ISM2	20	2.48E-01	23	3.91E-05	
ABI3	7	6.23E-01	8	4.77E-04	

ID	Position	Amino Acid Change	Р	OR	MAF	N
rs616338	47297297	S209F	2.16E-05	1.42	0.01132	33786
rs142527437	47295162	Q116R	9.60E-02	1.46	0.00138	33786
rs137924898	47295165	R117Q	2.55E-01	2.64	0.00009	33786
rs200867869	47297547	G221S	3.41E-01	0.75	0.00070	33786
rs201757928	47294000	M75I	7.72E-01	0.87	0.00031	33786
rs2233369	47293906	R44Q	8.03E-01	0.99	0.05285	33786
rs201030368	47299992	R339H	8.51E-01	0.76	0.00003	33786
rs150100821	47299919	T315A	9.37E-01	1.01	0.00398	33786
rs146244763	47299454	D268D	9.60E-01	1.05	0.00009	33786
rs145120343	47299501	D284V	NA	NA	NA	33786

ID	Position	Amino Acid Change	Р	OR	MAF	N
rs75932628	41129252	R47H	5.16E-12	2.56	0.00492	23380
rs143332484	41129207	R62H	3.48E-09	1.58	0.01233	33786
rs2234255	41127543	H157Y	4.63E-02	2.16	0.00044	33786
rs2234256	41126655	L211P	7.44E-02	1.45	0.00160	33786
rs150277350	41126713	A192T	1.67E-01	4.57	0.00006	33786
rs142232675	41129133	D87N	1.87E-01	1.32	0.00163	33786
rs145080901	41129078	A105V	2.14E-01	2.40	0.00016	33786
rs2234252	41129309	A28V	3.05E-01	2.56	0.00007	33786
rs139607688	41127619	D131D	3.91E-01	5.69	0.00001	33786
rs149622783	41127605	R136Q	4.60E-01	1.66	0.00016	33786
rs79011726	41127561	E151K	6.33E-01	0.79	0.00037	33786
rs200392967	41129275	D39E	8.41E-01	0.87	0.00016	30504
rs138355759	41126619	T223I	9.64E-01	1.02	0.00052	33786

PLCG2 rs72824905 rs200506549 1 1.5x10 ⁻⁵ TREM2 rs75932628 rs143332484 1 4.9x10 ⁻⁵	Gene	Variant 1	Variant 2	D'	r²
TREM2 rs75932628 rs143332484 1 4.9x10 ⁻⁵	PLCG2	rs72824905	rs200506549	1	1.5x10 ⁻⁵
	TREM2	rs75932628	rs143332484	1	4.9x10 ⁻⁵

	All gene-wide			APOE region removed and LD correction applied			
Pathway	Р	N.Genes	P.Min (gene-wide)	Р	N.Genes	P.Min (gene-wide)	
Immune response	1.08E-04	831	2.25E-06	8.28E-01	551	4.27E-04	
Endocytosis	4.38E-02	203	1.44E-03	1.11E-01	187	1.44E-03	
Cholesterol transport	4.80E-06	56	2.64E-07	5.80E-03	46	3.20E-03	
Hematopoietic cell lineage	1.85E-02	79	3.56E-03	6.63E-02	62	1.09E-02	
Protein ubiquitination	2.10E-02	288	3.65E-03	3.65E-01	250	3.65E-03	
Hemostasis	2.62E-04	420	2.25E-06	1.94E-01	334	4.27E-04	
Clathrin/AP2 adaptor complex	1.15E-04	425	2.64E-07	4.83E-01	341	5.86E-04	
Protein folding	2.53E-03	162	4.24E-04	6.96E-03	156	4.24E-04	
151 genes in expression module overlap	1.17E-06	149	1.01E-13	5.15E-05	130	1.01E-13	
56 genes in protein-protein interaction network	1.08E-07	55	1.01E-13	2.98E-07	48	1.01E-13	
95 genes not in protein-protein interaction network	4.26E-02	94	3.54E-03	1.51E-01	86	1.19E-02	

Pathway	#genes	P	FDR	Description
GO: 34384	6	4.01E-07	0.004	high-density lipoprotein particle clearance
GO: 34380	5	1.40E-06	0.004	high-density lipoprotein particle assembly
GO: 32488	4	2.06E-06	0.004	Cdc42 protein signal transduction
GO: 70326	3	2.60E-06	0.004	very-low-density lipoprotein particle receptor binding
GO: 32803	4	3.08E-06	0.004	regulation of low-density lipoprotein particle receptor catabolic process
GO: 98644	4	3.08E-06	0.004	regulation of receptor catabolic process
GO: 60228	5	3.19E-06	0.004	phosphatidylcholine-sterol O-acyltransferase activator activity
GO: 34447	3	5.02E-06	0.005	very-low-density lipoprotein particle clearance
GO: 16042	193	5.12E-06	0.005	lipid catabolic process
GO: 34382	6	5.90E-06	0.005	chylomicron remnant clearance
GO: 71830	6	5.90E-06	0.005	triglyceride-rich lipoprotein particle clearance
GO: 34363	4	6.19E-06	0.005	intermediate-density lipoprotein particle
GO: 71813	31	7.47E-06	0.005	lipoprotein particle binding
GO: 71814	31	7.47E-06	0.005	protein-lipid complex binding
GO: 33344	21	8.50E-06	0.005	cholesterol efflux
GO: 2313	5	8.54E-06	0.005	mature B cell differentiation involved in immune response
GO: 45540	10	8.86E-06	0.005	regulation of cholesterol biosynthetic process
GO: 33700	10	9.38E-06	0.005	phospholipid efflux
GO: 2335	6	9.66E-06	0.005	mature B cell differentiation
GO: 7243	360	1.27E-05	0.006	intracellular protein kinase cascade
GO: 15918	42	1.52E-05	0.007	sterol transport
GO: 42159	5	1.54E-05	0.007	lipoprotein catabolic process
GO: 14012	5	1.58E-05	0.007	peripheral nervous system axon regeneration
GO: 15248	14	1.86E-05	0.007	sterol transporter activity
GO: 42271	4	1.90E-05	0.007	susceptibility to natural killer cell mediated cytotoxicity
GO: 30301	41	2.01E-05	0.008	cholesterol transport
GO: 31965	139	2.27E-05	0.008	nuclear membrane
GO: 6200	330	2.40E-05	0.008	ATP catabolic process
GO: 16127	10	2.42E-05	0.008	sterol catabolic process
GO: 6707	10	2.42E-05	0.008	cholesterol catabolic process
GO: 34381	20	2.67E-05	0.008	plasma lipoprotein particle clearance
GO: 50865	278	2.76E-05	0.008	regulation of cell activation
GO: 45541	3	2.78E-05	0.008	negative regulation of cholesterol biosynthetic process
GO: 90206	3	2.78E-05	0.008	negative regulation of cholesterol metabolic process
GO: 16887	327	2.88E-05	0.008	ATPase activity
GO: 48156	4	3.08E-05	0.008	tau protein binding
GO: 10875	9	3.33E-05	0.009	positive regulation of cholesterol efflux

GO: 10544	6	3.54E-05	0.009	negative regulation of platelet activation
GO: 55008	33	3.66E-05	0.009	cardiac muscle tissue morphogenesis
GO: 10873	7	3.81E-05	0.009	positive regulation of cholesterol esterification
GO: 46982	231	4.12E-05	0.009	protein heterodimerization activity
GO: 2858	6	4.27E-05	0.009	regulation of natural killer cell mediated cytotoxicity directed against tumor cell target
GO: 2860	6	4.27E-05	0.009	positive regulation of natural killer cell mediated cytotoxicity directed against tumor cell target
GO: 2857	6	4.27E-05	0.009	positive regulation of natural killer cell mediated immune response to tumor cell
GO: 2855	6	4.27E-05	0.009	regulation of natural killer cell mediated immune response to tumor cell

Gene set	#genes	Top 5%	P<1x10 ⁻³	P<1x10 ⁻⁴	P<1x10 ⁻⁵	P<1x10 ⁻⁶
Module overlap	151	4.0×10^{-6}	1.0x10 ⁻⁶	1.0x10 ⁻⁵	5.0x10 ⁻⁶	7.5x10 ⁻⁵
Genes in protein network	56	5.0x10 ⁻⁶	3.1x10 ⁻⁵	1.41x10 ⁻⁴	1.3x10 ⁻⁵	6.1x10 ⁻⁴
Genes outside protein network	95	0.032	0.0097	0.035	0.089	0.027

	Cono	Chr	Start (ba)	Find (hin)	Best P	Gene-wide P	SKAT-O <i>Р</i>	SKAT-O P
EINTREZ	Gene	Chi	Start (bp)	End (bp)	(IGAP)	(IGAP)	(MAF<0.05)	(MAF<0.01)
945	CD33	19	51728335	51743274	6.49E-08	1.95E-06	5.17E-01	4.75E-01
23526	HMHA1	19	1067174	1086627	2.37E-07	3.30E-04	6.49E-01	6.49E-01
51225	ABI3	17	47287589	47300587	9.22E-07	2.28E-03	5.22E-05	6.35E-01
6688	SPI1	11	47376409	47400127	1.99E-06	1.34E-06	1.14E-01	1.14E-01
3635	INPP5D	2	233925036	234116549	6.62E-06	3.33E-03	1.41E-01	1.41E-01
5265	SERPINA1	14	94843084	94857029	9.64E-05	8.47E-03	5.19E-01	4.92E-01
57121	LPAR5	12	6728001	6745297	1.54E-04	1.01E-01	6.58E-02	6.58E-02
112616	CMTM7	3	32433163	32496333	1.65E-04	6.75E-02	1.90E-01	2.48E-01
5336	PLCG2	16	81812930	81991899	1.69E-04	1.91E-01	1.52E-04	4.34E-04
397	ARHGDIB	12	15094950	15114562	5.69E-04	5.70E-02	6.96E-01	6.96E-01
3684	ITGAM	16	31271288	31344213	6.71E-04	5.71E-03	2.96E-01	2.96E-01
53829	P2RY13	3	151044096	151047337	7.02E-04	5.93E-02	8.44E-01	8.44E-01
5330	PLCB2	15	40580098	40600174	1.17E-03	1.11E-02	7.89E-02	7.89E-02
83478	ARHGAP24	4	86396284	86923823	1.70E-03	4.15E-01	8.34E-02	7.21E-02
54209	TREM2	6	41126246	41130922	1.82E-03	2.58E-03	1.42E-15	1.01E-13
1794	DOCK2	5	169064251	169510386	4.82E-03	3.10E-01	6.97E-01	6.97E-01
29760	BLNK	10	97951455	98031333	4.88E-03	2.20E-01	2.35E-01	2.35E-01
3059	HCLS1	3	121350246	121379791	5.08E-03	8.05E-01	7.45E-01	7.45E-01
6001	RGS10	10	121259339	121302222	6.11E-03	2.72E-01	2.16E-01	2.16E-01
9450	LY86	6	6588934	6655216	6.35E-03	7.13E-01	1.01E-01	1.01E-01
89846	FGD3	9	95709601	95798518	7.40E-03	5.85E-01	5.92E-04	9.35E-02
2207	FCER1G	1	161185087	161189038	7.68E-03	2.33E-02	4.70E-01	4.70E-01
10161	LPAR6	13	48985182	49018840	7.81E-03	1.56E-01	1.74E-02	5.77E-03
6850	SYK	9	93564012	93660842	8.19E-03	1.64E-01	4.02E-01	4.02E-01
54518	APBB1IP	10	26727266	26856732	9.33E-03	6.61E-01	7.52E-01	7.52E-01
23643	LY96	8	74903564	74941307	1.07E-02	2.02E-01	1.96E-01	8.71E-02

64407	RGS18	1	192127592	192154945	1.17E-02	5.05E-01	9.39E-01	9.39E-01
140	ADORA3	1	112025970	112106597	1.19E-02	4.82E-01	6.31E-01	5.57E-01
10320	IKZF1	7	50344378	50472798	1.28E-02	1.45E-01	1.69E-01	1.69E-01
1535 (СҮВА	16	88709697	88717457	1.29E-02	1.03E-01	1.57E-01	1.57E-01
1436	CSF1R	5	149432854	149492935	1.33E-02	1.76E-01	5.56E-01	2.58E-01
929	CD14	5	140011313	140013286	1.37E-02	1.72E-02	6.99E-01	6.99E-01
4689	NCF4	22	37257030	37274059	1.50E-02	1.57E-01	3.75E-01	3.75E-01
3055	НСК	20	30639991	30689657	1.99E-02	7.12E-01	4.92E-01	3.56E-01
85477 3	SCIN	7	12610203	12693228	2.24E-02	6.14E-01	6.42E-01	4.06E-01
2212	FCGR2A	1	161475205	161489360	2.28E-02	3.08E-01	1.24E-01	1.24E-01
5777	PTPN6	12	7055740	7070479	2.41E-02	6.39E-02	3.50E-01	3.50E-01
3071	NCKAP1L	12	54891495	54936899	2.61E-02	6.73E-01	3.61E-01	3.61E-01
257106	ARHGAP30	1	161016732	161039760	3.95E-02	2.52E-01	9.26E-01	9.12E-01
1524 (CX3CR1	3	39304985	39323226	4.69E-02	5.39E-01	1.09E-01	3.38E-01
718	С3	19	6677846	6720662	4.79E-02	9.33E-01	4.74E-01	4.74E-01
920	CD4	12	6898638	6929976	4.89E-02	3.46E-01	1.00E-01	3.82E-01
64170	CARD9	9	139258408	139268133	5.15E-02	3.13E-01	5.05E-01	4.78E-01
942	CD86	3	121774209	121839988	6.81E-02	6.75E-01	1.50E-01	1.50E-01
7305	TYROBP	19	36395303	36399211	8.18E-02	3.48E-01	1.28E-01	1.28E-01
3394	IRF8	16	85932774	85956211	1.54E-01	6.79E-01	8.83E-02	8.83E-02
51291 (GMIP	19	19740285	19754455	1.67E-01	9.15E-01	2.04E-02	1.83E-01
5880	RAC2	22	37621310	37640305	1.72E-01	7.32E-01	5.71E-01	5.71E-01
4069	LYZ	12	69742134	69748013	1.92E-01	7.27E-01	6.61E-01	6.61E-01
1675	CFD	19	859665	863610	2.22E-01	6.75E-01	8.33E-01	8.33E-01
10287	RGS19	20	62704535	62711324	2.53E-01	6.61E-01	6.59E-01	6.59E-01
567	B2M	15	45003685	45010357	2.82E-01	6.08E-01	N/A	N/A
719	C3AR1	12	8210919	8218955	3.26E-01	8.05E-01	1.97E-01	5.49E-01
58191	CXCL16	17	4636828	4643223	4.47E-01	8.21E-01	6.89E-01	6.89E-01

				_			
10870 HCST	19	36393382	36395173	6.25E-01	7.20E-01	1.25E-01	4.60E-01
1050 CEBPA	19	33790840	33793430	6.65E-01	8.78E-01	2.65E-01	2.65E-01

GenelD	GeneName	Chr	Start	Stop	TCX.AD.mean	TCX.AD.sd	TCX.con.mean	TCX.con.sd	Model	EffectDirection	Dx.Beta	Dx.SE	Dx.pValue	Dx.qValue
ENSG0000095970	TREM2	chr6	41126244	41130924	5.68	0.80	5.55	1.04	Simple	UpInAD	0.65	0.23	4.62E-03	1.20E-02
									Comprehensive	DownInAD	-0.01	0.13	9.45E-01	9.78E-01
ENSG00000197943	PLCG2	chr16	81772702	81991899	1.61	0.57	1.66	0.73	Simple	UpInAD	0.43	0.14	2.84E-03	8.08E-03
									Comprehensive	DownInAD	-0.12	0.10	2.06E-01	4.70E-01
ENSG00000108798	ABI3	chr17	47287589	47300587	3.41	0.57	3.36	0.88	Simple	UpInAD	0.58	0.18	1.37E-03	4.47E-03
									Comprehensive	UpInAD	0.05	0.10	6.42E-01	8.27E-01
Gene ID	GeneName	Model	Age	Tg-N	Tg-mean	Tg-sd	WT-N	WT-mean	WT-sd	DxBeta	DxSE	DxpValue	DxqValue	
-------------------	----------	-------------------	-----------	------	---------	-------	------	---------	-------	--------	------	----------	----------	
	Trem2	control_vs_crnd8	3 months	12	2.97	0.29	12	2.77	0.19	0.21	0.10	5.33E-02	2.70E-01	
ENSMUSG0000023992		control_vs_crnd8	6 months	12	3.95	0.27	12	2.63	0.16	1.17	0.15	2.46E-07	1.66E-03	
		control_vs_crnd8	12 months	14	4.97	0.43	10	3.12	0.17	1.82	0.13	8.86E-12	2.40E-08	
		control_vs_ps1app	12 months	11	4.62	0.44	10	3.12	0.17	1.42	0.16	1.32E-07	1.03E-04	
ENSMUSG0000034330	Plcg2	control_vs_crnd8	3 months	12	1.83	0.17	12	1.63	0.14	0.19	0.06	8.89E-03	1.30E-01	
		control_vs_crnd8	6 months	12	1.81	0.21	12	1.76	0.13	0.12	0.12	3.34E-01	7.54E-01	
		control_vs_crnd8	12 months	14	2.18	0.16	10	1.92	0.16	0.27	0.07	4.97E-04	1.63E-02	
		control_vs_ps1app	12 months	11	2.11	0.15	10	1.92	0.16	0.25	0.07	2.11E-03	5.67E-02	
ENSMUSG0000018381	Abi3	control_vs_crnd8	3 months	12	1.34	0.22	12	1.14	0.15	0.19	0.08	3.44E-02	2.24E-01	
		control_vs_crnd8	6 months	12	1.53	0.17	12	1.01	0.21	0.62	0.14	1.75E-04	4.43E-02	
		control_vs_crnd8	12 months	14	2.00	0.23	10	1.23	0.22	0.76	0.09	4.76E-08	1.18E-05	
		control_vs_ps1app	12 months	11	1.78	0.26	10	1.23	0.22	0.51	0.12	4.65E-04	2.62E-02	

ID rs	4586425	rs1143686	rs55711872	rs1143688	rs1143689	rs72824905	rs72824919	rs2158512	rs9896800	rs616338
Gene	PLCG2	PLCG2	PLCG2	PLCG2	PLCG2	PLCG2	PLCG2	ABI3	ABI3	ABI3
Chr	16	16	16	16	16	16	16	17	17	17
Position 8:	1819768	81888151	81924904	81929487	81941318	81942027	81957403	47290252	47293328	47297296
Ref Allele	С	А	С	С	С	С	А	А	С	А
Functiion	syn	nonsyn	intron	nonsyn	nonsyn	nonsyn	intron	intron	intron	nonsyn
Protein Pos	p.A58A	p.L99R		p.D383V	p.A499V	p.P522A				p.F209V
TFBS_Con	889				756	830				803
SIFT_Score		0.007		0.506	0.002	0.474				0.283
SIFT_Pred		D		т	D	т				Т
Polyphen2_HDIV	/Sscore	0.303		0.988	0.842	0				0.007
Polyphen2_HDIV	/_Pred	В		D	Р	В				В
Polyphen2_HVA	R_Score	0.141		0.773	0.165	0				0.012
Polyphen2_HVA	R_Pred	В		Р	В	В				В
LRT_Score	_	0		0	0	0.427				0.271
LRT_Pred		D		D	D	Ν				Ν
MutationTaster_	Score	0.998		1	1	1				1
MutationTaster_	Pred	D		D	D	Ν				Ν
MutationAssesso	or_Score	1.7		0	1.1	0.895				0
MutationAssesso	or_Pred	L		Ν	L	L				Ν
FATHMM_Score		-0.12		-0.04	-0.17	-0.13				3.04
FATHMM_Pred		т		т	т	т				Т
PROVEAN_Score		-3.69		1.18	-0.68	-1.47				0.44
PROVEAN_Pred		D		Ν	Ν	Ν				Ν
VEST3_Score		0.803		0.656	0.318	0.175				0.218
CADD_Raw		3.429		3.237	4.337	-0.764				1.203
CADD_Phred		23		22.8	24	0.052				11.76
DANN_Score		0.993		0.9	0.997	0.642				0.731
fathmm-MKL_co	ding_score	0.927		0.9	0.969	0.177				0.069
fathmm-MKL_co	ding_pred	D		D	D	N				Ν
		-0.682		-0.864	-0.702	-1.052				-0.95
MetaSVM pred		т		Т	Т	т				Т

MetaLR_score	e	0.226		0.176	0.17	0.114				0.012			
MetaLR_pred	l	Т		Т	Т	Т				т			
integrated_fit	tCons_score	0.672		0.672	0.706	0.672				0.731			
integrated_co	onfidence_val	0		0	0	0				0			
GERP++_RS		5.78		4.95	5.22	0.724				3.59			
phyloP7way_	vertebrate	0.991		1.062	0.871	-0.064				0.673			
phyloP20way	_mammalian	1.061		1.199	0.935	0.852				1.061			
phastCons7w	ay_vertebrate	0.862		0.998	0.675	0.06				0.922			
phastCons20v	way_mammal	0.46		0.612	0.055	0.005				0.926			
SiPhy_29way	_logOdds	15.081		14.913	18.788	3.03				10.362			
GWAVA_regi	on_score		0.38										
GWAVA_tss_	score		0.42										
GWAVA_unm	natched_score		182										
RegDB score	2b	7	7	3a	5	5	6	5	6	4			
RegDB info	Structure, Protei	in_Binding	Chromatin_S	structure, Pro	omatin_Struct	omatin_Struct	Motifs	Chromatin_St	Motifs	Structure, Protein_Binding			
DANN(WG)		0.993	0.49	0.9	0.997	0.642	0.363	0.48	0.356	0.731			
CADD(WG)	2.256214,13.5 0.629522,1.21. .216413,9.93 ? .910481,15.7 0.526720,1.60).619262,1.24).140501,3.31).723494,0.89).265375,2.727												
BRAINEAC(p<	:1.10E-4)		PLCG2					PRAC-1; ZNF652					