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scheme, three local degrees of freedom (DOFs) are equidistantly defined within a
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(BGS) algorithm based on the variation-minimization principle is devised to deter-
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BGS scheme is of fourth-order accuracy and completely free of case-dependent ad
hoc parameters. The widely used benchmark tests of one- and two-dimensional
scalar and Euler hyperbolic conservation laws are solved to verify the performance
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1 Introduction

As one of high-order schemes with local reconstructions, multi-moment constrained
finite volume (MCV) method [10] has been applied in both incompressible [26,27]
and compressible flows[10]. The MCV scheme is appealing to the practical appli-
cations due to its flexibility to grid structures and the proper balance between the
accuracy and the complexity of numerical schemes. Same as other local high-order
schemes such as discontinuous Galerkin (DG) method [3,2,7], the spectral volume
(SV) method [23], the spectral difference (SD) method [20] and the constrained
interpolation profile (CIP) [28,29,25] method, MCV schemes employ more than
one local degrees of freedom (DOFs) within a local cell for a high-order spatial
reconstruction. In MCV method, the point-wise values defined at solution points
are adopted as DOFs and it’s spatial diecretization formulations are derived by
introducing the constraint conditions in terms of multi moments, including the
point value (PV), the volume-integrated average (VIA) and the derivatives of the
different orders of the physical fields.

According to well-known Godunov barrier for linear schemes, any monotonic
linear scheme can be of only first order. As a result, the high-order MCV schemes
will produce the non-physical oscillations while simulating the compressible flows,
even for those cases with the smooth initial conditions where discontinuity will
appear due to the nonlinearity of the governing equations. Several strategies have
been employed by the local high-order schemes to suppress the numerical oscilla-
tions in the vicinity of discontinuities in the existing literature. One of the popular
strategies is nonlinear limiting projection. Earlier studies such as in [3,2] for DG
method and in [10] for MCV method use the total variation bounded (TVB) lim-
iters, where the TVB criterion is needed to find the “troubled cells” by evaluating
the smoothness of the solution. For the troubled cells, where discontinuous so-
lutions are detected, the total variation diminishing (TVD) limiting procedure is
applied. As the TVD limiting has second-order accuracy at most, it tends to intro-
duce too much extra numerical dissipation and degrades the high-order accuracy
of the original schemes. The higher order limited reconstructions, such as the es-
sentially non-oscillatory (ENO) [6,17,16] and weighted essentially non-oscillatory
(WENO) [11] reconstructions, are applied in [14,15,30] for DG method and in [21]
for MCV method. The WENO limiter effectively reduces the numerical dissipation
errors around smooth region and can retain the high-order convergence. However,
the current implementations of the WENO limiting in the high-order schemes with
local reconstructions cannot make the full use of the local DOFs, and the solutions
are heavily dependent on the TVB criterion that determines the “troubled cells”
in an ad hoc fashion. This is one of the key issues to be solved for developing
numerical models for practical applications using local high-order schemes.

In this study, a new formulation for non-oscillatory three-point MCV scheme
of fourth-order accuracy is proposed. Different from Hermite interpolation polyno-
mial used in [21], where the first-order derivative at the cell center was employed
to adjust numerical properties of the scheme, two cubic Lagrangian interpolation
polynomials, which are constructed by using the DOFs in adjacent cells, are em-
ployed as candidates for spatial reconstruction. These two candidates are chosen
through a new proposed boundary gradient switching (BGS) algorithm based on
the underlying idea of the ENO method [6,17,16] to remove the non-physical os-
cillations near the discontinuity. Since two candidate polynomials give the fourth-
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order accuracy, the proposed scheme is also expected to have the same convergence
rate as verified by the numerical tests in this paper. The proposed scheme is imple-
mented without any user-specifying ad hoc parameters. Furthermore, the stencil
required by this new scheme still remains compact (within three cells), same as
our previous study in [21].

The rest part of this paper is organized as follows. In section 2, the new formu-
lation for non-oscillatory MCV scheme, called MCV3-BGS scheme, is described in
detail. The widely used benchmark tests for scalar and Euler hyperbolic conser-
vation equations in one- and two-dimensions are computed to verify the accuracy
and the ability to resolve the discontinuous solutions of the proposed scheme in
section 3. Finally, a brief conclusion is given in section 4.

2 Numerical formulations

We consider the following hyperbolic system in one dimension,

∂q

∂t
+
∂f (q)

∂x
= 0, (1)

where q is the vector of the dependent variables, and f (q) is the vector of the flux
functions.

The computational domain is divided into I non-overlapping cells, e.g. Ci =
[xi− 1

2
, xi+ 1

2
] (i = 1, 2, · · · , I). Within the computational cell Ci, the local DOFs

are defined as the point-wise values qik (k = 1, 2, · · · ,K) at solution points xik,
which are updated using the governing equations of differential-form as

∂qik
∂t

= −
(
∂f (q)

∂x

)

ik

. (2)

Using the framework of MCV method [10], the constraint conditions in terms
of different kinds of moments are adopted to derive the discretization formulation
of the right-hand side term in (2).

2.1 Three-point MCV scheme

Here we briefly describe the numerical formulation for three-point MCV (MCV3)
scheme, which is the basic framework for this study.

Within cell Ci, three local DOFs are defined as the pointwise values as qi1,
qi2 and qi3 at equidistantly arranged solution points xi1 = xi− 1

2
, xi2 = xi and

xi3 = xi+ 1
2
, where xi = (xi− 1

2
+ xi+ 1

2
)/2 is the center of cell Ci.

Two kinds of moments are adopted to provide the constraint conditions for
spatial discretization of the DOFs.

– Point Values (PV)
At the cell interface, e.g., x = xi− 1

2
PV moment is specified as

P qi− 1
2

(t) = q
(
xi− 1

2
, t
)
. (3)
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4 X. Deng et al.

– Volume-Integrated Average (VIA)
Over the cell Ci, VIA moment is specified as

V qi (t) =
1

∆x

ˆ x
i+ 1

2

x
i− 1

2

q (x, t) dx. (4)

The multi-moment constraint conditions are related with the local DOFs as




P qi− 1
2

= Qi

(
xi− 1

2

)
= qi1,

P qi+ 1
2

= Qi

(
xi− 1

2

)
= qi3,

V qi =

ˆ x
i+ 1

2

x
i− 1

2

Qi (x) dx =
1

6
(qi1 + 4qi2 + qi3) ,

(5)

where Qi (x) is a Lagrangian interpolation polynomial for physical field q (x)
within cell Ci, having the form of

Qi (x) =
3∑

k=1

qikφik (x) , (6)

with Lagrangian basis function φik(x) written as

φik (x) =
3∏

l=1,l 6=k

x− xil
xik − xil

. (7)

The different moments are updated by different formulations in our multi-
moment schemes.

– PV moment is updated by differential-form governing equations as

∂P qi− 1
2

∂t
≈ −f̂xi− 1

2
. (8)

The derivative of flux function in (8) is evaluated by solving a derivative Rie-
mann problem as

f̂xi− 1
2

= dRiemann
(
f̂
−
xi− 1

2
, f̂

+

xi− 1
2

)
, (9)

where 



f̂
−
xi− 1

2
= Ai− 1

2

(
∂Qi−1(x)

∂x

)
i− 1

2

,

f̂
+

xi− 1
2

= Ai− 1
2

(
∂Qi(x)
∂x

)
i− 1

2

,
(10)

with Ai− 1
2

being the Jacobian matrix at cell interface x = xi− 1
2
.

– VIA moment is updated by a flux-form formulation assuring the conservation
of the proposed scheme as

∂V qi
∂t
≈ − 1

∆xi

(
f̂ i+ 1

2
− f̂ i− 1

2

)
, (11)

where∆xi = xi+ 1
2
−xi− 1

2
and the numerical flux at cell interfaces are computed

directly from the DOFs readily available there as the computational variables,
i.e. f̂ i− 1

2
= f (qi1) and f̂ i+ 1

2
= f (qi3).
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A Non-oscillatory MCV scheme with Boundary Gradient Switching 5

Using the constraint relation (5), the spatial discretization of DOFs within cell
Ci are then determined from (8) and (11) as





∂qi1

∂t = −f̂xi− 1
2
,

∂qi2

∂t = − 3
2∆xi

(
f̂ i+ 1

2
− f̂ i− 1

2

)
+ 1

4

(
f̂xi− 1

2
+ f̂xi+ 1

2

)
,

∂qi3

∂t = −f̂xi+ 1
2
.

(12)

With spatial discretization given in (12), the semi-discrete equations are then
solved using the explicit Runge-Kutta method [17,19]. It is noted that as the values
at the cell interfaces are shared by the two neighboring cells, either the first or the
third equation needs to be solved with the second equation in (12).

The MCV scheme can be straightforwardly extended to multi-dimensions for
structured grids. The one-dimensional formulation given above can be applied in
multi-dimensional problems by sweeping the different directions respectively. The
numerical procedure is described in detail in [10].

2.2 A MCV scheme with TVD limiter

A three-point MCV scheme with TVD slope limiter was introduced in [21], which
is also adopted in this study as an auxiliary spatial reconstruction profile in the
present numerical formulation for a new high-order non-oscillatory MCV scheme.

Based on the basic idea proposed in [25], an additional constraint condition, i.e.
the slope at the cell center, is introduced when building the spatial reconstruction
of the dependent variable. Within cell Ci, a cubic polynomial QTVD

i (x) is built
using following conditions as





QTVD
i (xi1) = qi1,

QTVD
i (xi2) = qi2,

QTVD
i (xi3) = qi3,

QTVD
xi (xi2) = di,

(13)

where qi1, qi2 and qi3 are the known local DOFs and di is a parameter which can
be used to adjust the numerical properties of the resulted scheme. By “TV D”, we
mean that the slope di is approximated by a TVD slope limiter as shown next.

The condition on the slope at the cell center plays a key role in the resulting
scheme, which can be obtained by different algorithms to design the schemes with
desired numerical properties [25,1].

To avoid the non-physical oscillations around the discontinuities, a minmod
TVD slope limiter can be adopted as

di = minmod (dl,dc,dr) , (14)

where

dl = 2.0
qi2 − qi−1,2

∆x
, dr = 2.0

qi+1,2 − qi,2
∆x

,

dc =
−4

3qi1 + 1
6qi−1,2 + 4

3qi3 − 1
6qi+1,2

∆x
,

(15)
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𝒒𝒊−𝟏,𝟐 𝒒𝒊𝟏 𝒒𝒊𝟐 𝒒𝒊𝟑 𝒒𝒊+𝟏,𝟐

𝐂𝐞𝐥𝐥 𝐢−𝟏 𝐂𝐞𝐥𝐥𝐢 𝐂𝐞𝐥𝐥 𝐢+𝟏

𝑺𝟒𝑳

𝑺𝟒𝑹

Fig. 1 Stencils for spatial reconstruction.

and

minmod (a, b, c) =

{
s×min(|a|, |b|, |c|) if s = sign(a) = sign(b) = sign(c),
0 otherwise.

(16)

With spatial reconstruction QTVD
i (x) for the physical fields, the resulting

scheme is non-oscillatory but at most of second-order accuracy even in the smooth
areas. It should be notified that by replacing Qi−1 (x) and Qi (x) with QTVD

i−1 (x)

and QTVD
i (x) in (10) the derivatives of the flux and thus the numerical solution

will change, while the evolution equations to update the DOFs remain the same
in form as (12). Hereafter, we denote the corresponding scheme as MCV3-TVD
scheme. The numerical formulations of MCV3-TVD is completely same as MCV3
scheme shown above, except that the polynomial QTVD

i (x) is used in (10) instead
of Lagrangian polynomial Qi (x) through (6).

Different from the limiting procedure adopting in the original MCV scheme
[10], DOFs defined at the cell interface are always shared by the two neighboring
cells in the current study. As a result, the computation becomes more efficient
regarding to both memory requirement and CPU cost as discussed in [12].

2.3 A non-oscillatory MCV scheme with boundary gradient switching

In this subsection, we further develop a non-oscillatory scheme using the MCV
framework, which doesn’t lose the original accuracy in smooth areas.

Following the work in [13], the cubic interpolation polynomial of dependent
variable can be obtained by adopting the DOFs in left and right cells directly,
instead of using the slope at cell center as an additional condition. As shown in
Fig. 1, two stencils can be used for the reconstruction in cell Ci, i.e. S4L including
the pointwise values at xi−1, xi− 1

2
, xi and xi+ 1

2
and S4R including the pointwise

values at xi− 1
2
, xi, xi+ 1

2
and xi+1.
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A Non-oscillatory MCV scheme with Boundary Gradient Switching 7

Using stencil S4L, a cubic polynomial Q4L
i in cell Ci is built with the conditions

as 



Q4L
i (xi−1)=qi−1,2,

Q4L
i

(
xi− 1

2

)
=qi1,

Q4L
i (xi)=qi2,

Q4L
i

(
xi+ 1

2

)
=qi3.

(17)

Similarly, another cubic polynomial Q4R
i is obtained by using stencil S4R as





Q4R
i

(
xi− 1

2

)
=qi1,

Q4R
i (xi)=qi2,

Q4R
i

(
xi+ 1

2

)
=qi3,

Q4R
i (xi+1)=qi+1,2.

(18)

Analogous to the MCV3-TVD scheme, substituting the spatial reconstruction
Qi (x) in subsection 2.1 with Q4L

i or Q4R
i , and using the evolution equations (12)

to update the DOFs, we get other two new schemes of fourth-order accuracy. We
denote the scheme using Q4L

i (x) for reconstruction as MCV3-4L and one with
Q4R
i (x) as MCV3-4R, hereafter. However, without any limiting both MCV3-4L

and MCV3-4R schemes will generate spurious numerical oscillations around the
discontinuities, which even leads to the blow-up of computations when solving
problems with shock waves.

In this study, we propose a boundary gradient switching (BGS) algorithm
considering the variation-minimization principle, which adopts the basic idea in
ENO method [6] and is used to choose the smoother spatial reconstruction profile
between Q4L

i and Q4R
i in comparison with QTVD

i . This scheme is referred to
as MCV3-BGS scheme, which effectively suppresses non-physical oscillations in
numerical solutions while realizing high-order accuracy in smooth region. The
numerical formulation given in (10) is then recast into





f̂
−
xi− 1

2
= Ai− 1

2
BGS

[(
∂Qi−1(x)

∂x

)
i− 1

2

]
,

f̂
+

xi− 1
2

= Ai− 1
2
BGS

[(
∂Qi(x)
∂x

)
i− 1

2

]
,

(19)

with BGS

[(
∂Qi(x)
∂x

)
i− 1

2

]
being calculated by

BGS

[(
∂Qi (x)

∂x

)

i− 1
2

]
=





dmin (d1,d2) if sign (d1) = sign (d2) = sign (d3) ,
d1 only if sign (d1) = sign (d3) ,
d2 only if sign (d2) = sign (d3) ,
absmin (d1,d2) otherwise,

(20)
where 




d1 =
(
∂Q4L

i (x)

∂x

)
i− 1

2

,

d2 =
(
∂Q4R

i (x)

∂x

)
i− 1

2

,

d3 =
(
∂QTV D

i (x)

∂x

)
i− 1

2

,

(21)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 X. Deng et al.

and dmin is the variation diminishing function, absmin is the absolute minimum
function defined by

dmin (d1,d2) =

{
d1 if |d1 − d3| <|d2 − d3|,
d2 otherwise,

(22)

absmin (d1,d2) =

{
d1 if |d1| <|d2|,
d2 otherwise.

(23)

With this BGS algorithm, the smoother approximation of derivative of flux
function is adopted during computations to remove the non-physical oscillations as
shown in the benchmark tests in the next section. Meanwhile, the BGS processing
doesn’t degrade the accuracy of the proposed scheme since both MCV3-4L and
MCV3-4R schemes are fourth-order accurate.

3 Tests and results

In this section, we verify the proposed MCV3-BGS scheme by simulating the
widely-used benchmark tests of one- and two-dimensional hyperbolic conservation
laws. The SSP Runge-Kutta method (SSPRK(5,4)) [19] is adopted in this study
for time marching and the maximal allowable CFL number for computational
stability is about 0.6.

3.1 One-dimensional linear advection equation

The one-dimensional advection equation with a constant speed is simulated. The
governing equation is specified by q = φ and f (q) = φ in (1) where φ is the
advected field.

3.1.1 Advection of one-dimensional sine wave

This test is carried out on gradually refined grids to evaluate the convergence rate
of the proposed scheme. The initial smooth distribution is given by

φ (x, 0) = sin (πx) , x ∈ [−1, 1] . (24)

The l1 and l∞ errors are defined as

l1 =
I∑

i=1

|φei − φni |
I

, and l∞ = max1≤i≤I |φei − φni |, (25)

where φe and φn stand for exact and numerical solutions respectively.
We ran the computation for one period (at t = 2.0) and summarize the numer-

ical errors and the convergence rates for MCV3-4L, MCV3-4R and MCV-BGS in
Table 1. Compared with MCV3-4L and MCV3-4R schemes, the BGS algorithm
does not make significant differences in convergence rate regarding to l1 error for
this test with smooth solution. MCV3-BGS scheme achieves the 4th-order accu-
racy regarding to l1 error as expected. Error l∞ of MCV3-BGS scheme shows a
little slower convergence rate.
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Table 1 Numerical errors and convergence rates of the 1D advection equation for sinusoidal
profile distribution

Grids l1 error l1 order l∞ error l∞ order

MCV3-4L

20 1.0441e-04 – 1.6298e-04 –
40 6.5192e-06 4.00 1.0261e-05 3.99
80 4.0899e-07 3.99 6.4196e-07 4.00
160 2.5576e-08 4.00 4.0291e-08 3.99
320 1.5990e-09 4.00 2.6706e-09 3.92

MCV3-4R

20 2.0007e-04 – 3.1091e-03 –
40 1.3362e-05 3.90 2.0974e-04 3.89
80 8.5350e-07 3.97 1.3405e-06 3.97
160 5.3712e-08 3.99 8.4555e-08 3.99
320 3.3652e-09 4.00 5.4692e-09 3.95

MCV3-BGS

20 1.7824e-04 – 5.5121e-04 –
40 1.6697e-05 3.42 6.8212e-05 3.01
80 1.1200e-06 3.80 6.0404e-06 3.50
160 7.8740e-08 3.93 6.1734e-07 3.29
320 4.9661e-09 3.99 5.2868e-08 3.55

3.1.2 Advection of one-dimensional square wave

In this test, the propagation of a square wave is simulated to check the ability of
the proposed scheme to capture discontinuous solutions. The initial profile is

φ (x, 0) =

{
1 if|x| ≤ 0.4,
0 otherwise.

(26)

Numerical experiment was carried out on the uniform grid with 200 cells. The
numerical results using MCV3-4L and MCV3-4R are depicted in Fig. 2. The non-
physical oscillations are obviously found in both results. Considering the ability of
dealing with the discontinuity, MCV3-4R scheme performs better than MCV3-4L
scheme though it gives smaller absolute errors for a smooth profile in the above
case. It is noted that this observation is only for the case with a positive advection
velocity. For a negative advection velocity, the spatial discretization is constructed
using new stencils, which are symmetrical to those used here with respect to the
cell boundary in line with the upwinding spirit.

The numerical result by MCV3-BGS scheme is shown in Fig. 3. The BGS
algorithm always tends to choose the smoother spatial reconstruction between
MCV3-4L and MCV3-4R schemes and the non-physical oscillations are effectively
removed. Meanwhile, the numerical diffusion is controlled to a minimized extent, as
the jumps are well resolved by MCV3-BGS scheme with a more compact thickness
in comparison with other existing schemes.

3.1.3 Advection of one-dimensional complex wave

To examine the performance of the proposed scheme in solving profiles of different
smoothness, we further simulated the propagation of a complex wave [11], which
includes both discontinuous and smooth solutions. The initial distribution of the
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Fig. 2 Numerical results of 1D advection of a square wave by MCV3-4L scheme (left panel)
and MCV3-4R (right panel) with 200 cells after one period.

3.1.2 Advection of one-dimensional square wave

In this test, the propagation of a square wave is simulated to check the ability of
the proposed scheme to capture discontinuous solutions. The initial profile is

� (x, 0) =

⇢
1 if|x|  0.4
0 otherwise

. (26)

Numerical experiment was carried out on the uniform grid with 200 cells. The
numerical results using MCV3-4L and MCV3-4R are depicted in Fig. 2. The non-
physical oscillations are obviously found in both results. Considering the ability of
dealing with the discontinuity, MCV3-4R scheme performs better than MCV3-4L
scheme though it gives smaller absolute errors for a smooth profile in the above
case.

The numerical result by MCV3-BGS scheme is shown in Fig. 3. The BGS
algorithm always tends to choose the smoother spatial reconstruction between
MCV3-4L and MCV3-4R schemes and the non-physical oscillations are e↵ectively
removed. Meanwhile, the numerical di↵usion is controlled to a minimized extent, as
the jumps are well resolved by MCV3-BGS scheme with a more compact thickness
in comparison with other existing schemes.

3.1.3 Advection of one-dimensional complex wave

To examine the performance of the proposed scheme in solving profiles of di↵erent
smoothness, we further simulated the propagation of a complex wave [8], which
includes both discontinuous and smooth solutions. The initial distribution of the

Fig. 2 Numerical results of 1D advection of a square wave by MCV3-4L scheme (left panel)
and MCV3-4R (right panel) with 200 cells after one period.
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Fig. 3 Numerical result of 1D advection of a square wave by MCV3-BGS scheme with 200
cells after one period.

advected field is

φ (x, 0) =





1
6 [G (x, β, z − δ) +G (x, β, z + δ) + 4G (x, β, z)] if |x+ 0.7| ≤ 0.1,
1 if |x+ 0.3| ≤ 0.1,

1− |10 (x− 0.1) | if |x− 0.1| ≤ 0.1,

1
6 [F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a))] if |x− 0.5| ≤ 0.1,

0 otherwise,

,

(27)
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Fig. 4 Numerical results of 1D advection of complex wave with 200 cells after one period.

where functions F and G are defined as

G (x, β, z) = exp
[
−β (x− z)2

]
, F (x, α, a) =

√
max

[
1− α2 (x− a)2 , 0

]
, (28)

and the coefficients are

a = 0.5, z = 0.7, δ = 0.005, α = 10.0, β = log2

(
36δ2

)
. (29)

The numerical result after one period of computation on a 200-cell mesh is
plotted in Fig.4. It shows that the discontinuities are sharply represented without
visible oscillations, while the smooth extremes are well preserved due to the high-
order accuracy of the proposed scheme.

3.2 One-dimensional inviscid Burgers’ equation

The one-dimensional inviscid Burgers’ equation is obtained by specifying q = u

and f (q) = u2

2 in (1). The shock will develop even from a smooth initial condition
with this non-linear equation.

For the inviscid Burgers’ equation, the derivative Riemann problem is com-
puted by a pure upwind scheme at the cell boundary xi− 1

2
and (9) is written as

[10]

f̂xi− 1
2

=
1

2

[
f̂−
xi− 1

2

+ f̂+
xi− 1

2

− sign
(
αi− 1

2

)(
f̂−
xi− 1

2

+ f̂+
xi− 1

2

)]
, (30)
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Table 2 Numerical errors and convergence rates of the 1D inviscid Burgers’ equation

Grid l1 error l1 order l∞ error l∞ order
40 6.7402e-05 - 1.5536e-03 -
80 5.3180e-06 3.66 1.8428e-04 3.08
160 3.8335e-07 3.79 1.8069e-05 3.35
320 2.5456e-08 3.91 1.6796e-06 3.43
640 1.7071e-09 3.88 1.5114e-07 3.47

where αi+ 1
2

= 1
2

(
V ui−1 + V ui

)
and V ui is the VIA moment for u in cell Ci.

The BGS algorithm is performed in terms of the flux function in simulating
the Burgers’ equation. The spatial reconstructions (13) for MCV3-TVD, (17) for
MCV3-4L and (18) for MCV3-4R are implemented in terms of flux function rather
than the dependent variable. The derivatives of flux functions in (19) is computed
by

f̂
−
xi− 1

2
= BGS

[(
∂F i−1 (x)

∂x

)

i− 1
2

]
and f̂

+

xi− 1
2

= BGS

[(
∂F i (x)

∂x

)

i− 1
2

]
, (31)

where F represents the polynomial for flux function and the operator BGS is
specified as in (20) by replacing Q with F .

3.2.1 Accuracy test of 1D inviscid Burgers’ equation

To test the convergence rate of the proposed scheme for a non-linear equation,
we solve inviscid Burgers’ equation with initial condition u (x, 0) = 0.5 + sin (πx).
The exact solution profile will remain smooth until t = 1.0/π before producing a
moving shock and a rarefaction wave. The computation is evolved to t = 0.5/π to
calculate the l1 and l∞ errors which have been summered in Table 2. We can see
that the proposed MCV3-BGS scheme converges nearly with a 4th-order accuracy
regarding to l1 order for this nonlinear test.

3.2.2 Shock capturing test of 1D inviscid Burgers’ equation

We solve the above equation with a smooth initial condition as

u (x, 0) = 0.5 + 0.4 cos (2πx) . (32)

The time step is set as ∆t = 0.2∆x in this test. The result calculated on a
uniform grid with 100 cells at t = 1 is given in Fig. 5.

Shock can be observed in the numerical result. With the BGS algorithm, the
shock wave is well resolved (within two cells) without visible non-physical oscil-
lation. The numerical result verified the performance of the proposed scheme in
solving the non-linear problem.

3.3 One-dimensional Euler equations

The one-dimensional Euler equations are specified as

q = [ρ, ρu,E]T , f (q) =
[
ρu, ρu2 + p, u (E + p)

]T
, (33)
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Fig. 5 Numerical results of Burgers’ equation at t=1 with 100 cells.

where ρ is the density, u the velocity, p the pressure and E the total energy. The
equation of state of ideal gas is E = p

γ−1 + 1
2ρu

2 with γ = 1.4.

The Jacobian matrix A is calculated following [9] as

Ai− 1
2

=
1

2
(Āi− 1

2
+ Ãi− 1

2
), (34)

where Āi− 1
2

is the Roe-averaged Jacobian matrix computed from the VIA mo-

ments of dependent variables in cells Ci−1 and Ci and Ãi− 1
2

is obtained directly

from the point values of the physical variables at the cell interface.
For Euler equations, the BGS operation is applied to the characteristic vari-

ables and the solution procedure can be referred to [21]. Following the studies in
[8], the time step in the test cases for one-dimensional Euler equations is simply
set to be ∆t = 0.1∆x unless a special statement is made.

3.3.1 Accuracy test for 1D Euler equations

We compute the propagation of smooth density perturbation [14] to check the
convergence rate of the proposed scheme. The constant pressure and velocity are
specified as p0 = 1.0 and u0 = 1.0 initially. A smooth distribution of density
field is given as ρ0 = 1.0 + 0.2 sin(πx). The computational domain is x ∈ [0, 2]
with periodic boundary condition. The l1 and l∞ errors and accuracy orders are
measured at t = 2.0 shown in Table 3. Similar orders are obtained as those for 1D
advection equation and Burgers’ equation.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 X. Deng et al.

Table 3 Numerical errors and convergence rates of 1D Euler system

Grid l1 error l1 order l∞ error l∞ order
20 3.4584e-05 - 5.3566e-05 -
40 2.9814e-06 3.54 6.3772e-06 3.07
80 2.0704e-07 3.85 5.4503e-07 3.55
160 1.3621e-08 3.93 5.0466e-08 3.43
320 8.7315e-10 3.96 4.1708e-09 3.60
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Fig. 6 Numerical result for density field of Sod’s problem at t = 0.25 with 200 cells.

3.3.2 Sod’s problem

For this problem, the initial distribution is specified as [18]

(ρ0, u0, p0) =

{
(1, 0, 1) if 0 ≤ x ≤ 0.5,
(0.125, 0, 0.1) otherwise.

(35)

The computation is carried out with 200 uniform cells and the model is inte-
grated up to t = 0.25. The numerical result is presented in Fig. 6. The current
method shows better results in comparison with most existing methods.

3.3.3 Lax’s problem

As one of benchmark test for shock tube problem, Lax problem is used to check
the ability of the numerical schemes to capture relatively strong shock [17]. The
initial profile is

(ρ0, u0, p0) =

{
(0.445, 0.698, 3.528) if 0 ≤ x ≤ 0.5,
(0.5, 0, 0.571) otherwise.

(36)
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Fig. 7 Numerical result for density field of Lax’s problem at t = 0.16 with 200 cells.

With the same number of cells as in the previous case, the numerical results
at t = 0.16 are shown in Fig. 7. We can see that MCV3-BGS scheme can effec-
tively suppress the oscillations near the shock and accurately resolve both contact
discontinuity and expansion wave due to the less numerical diffusion.

3.3.4 Shock-turbulence interaction

As in [16], interactions between a shock wave and wavy perturbations are simulated
with the following initial condition

(ρ0, u0, p0) =

{
(3.857148, 2.629369, 10.333333) if 0 ≤ x ≤ 1,
(1 + 0.2 sin (5x− 5) , 0, 1) otherwise.

(37)

In this case, the shock moves towards the right and then interacts with a wave
chain in density. Both shock and complex smooth structures exist in the solution.
So, the numerical scheme is required to be not only capable of capturing the
shock but also accurate enough to resolve the complex flow in smooth region with
minimized numerical dissipation. The numerical results of MCV3-BGS with 200
mesh cells at t = 1.8 are shown in Fig. 8. The reference solution plotted by the
solid line is computed by the classical fifth-order WENO scheme [11] with 2000
mesh cells.It can be seen from the numerical results that the present scheme can
reproduce the shocks without spurious oscillations and accurately capture density
perturbations.
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Fig. 8 Numerical result for density field of shock-turbulence interaction at t = 1.8 with 200
cells.

3.3.5 Two interacting blast waves

We also computed two interacting blast waves suggested in [24]. Multiple interac-
tions of strong shocks and rarefaction waves are included in this test problem.The
initial distribution has uniform density of ρ = 1 and velocity of zero. The difference
exists in the distribution of pressure as

p0 =





1000 if 0 ≤ x ≤ 0.1,
0.01 if 0.1 < x ≤ 0.9,
100 otherwise.

(38)

Reflective boundary conditions are imposed at the two ends of computational
domain. Two blast waves are generated by the initial jumps and interact each other
violently. Strong shocks, contact discontinuities and expansion fans are generated
and cause further interactions. The number of the mesh cells of 400 is used in this
test. Here we set ∆t = 0.02∆x due to strong shock.

We depict the numerical solution of density at t = 0.038 in Fig. 9, where the
reference solution is computed by the classical fifth-order WENO scheme [11] with
2000 mesh cells.

Again, the numerical results of MCV3-BGS scheme are among the best ever
reported in the literature.
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Fig. 9 Numerical result for density field of two interacting blast waves at t = 0.038 with 400
cells.

3.4 Two-dimensional linear advection equation

The two-dimensional hyperbolic system is written in Cartesian grid as

∂q

∂t
+
∂e (q)

∂x
+
∂f (q)

∂y
= 0, (39)

where q is the vector of dependent variables, e (q) and f (q) the vectors of flux
functions in x- and y-directions, respectively.

The two-dimensional linear advection equation is specified by q = φ, e (q) = uφ
and f (q) = vφ in (39) where (u, v) is the velocity vector.

3.4.1 Advection of two-dimensional sine wave

The convergence rate of the proposed scheme are checked in this two-dimensional
advection case by running a smooth sine wave on gradually refined grids. The
initial condition is given in computational domain [−1, 1]× [−1, 1] as

φ (x, y, 0) = sin [π (x+ y)] . (40)

The uniform velocity is set as (u, v) = (1, 1). The normalized error l1 at t = 2
are shown in Table 4.

The numerical results verify the expected convergence rate of 4th-order re-
garding to l1 error of the proposed MCV-BGS scheme in two-dimensional case as
well.
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Table 4 Numerical errors and convergence rates of the 2D advection equation

Grid l1 error l1 order l∞ error l∞ order
10 3.9644e-03 - 9.4769e-03 -
20 4.6692e-04 3.08 1.2102e-03 2.97
40 3.6717e-05 3.67 1.1372e-04 3.41
80 2.6815e-06 3.78 1.0026e-05 3.50
160 1.7166e-07 3.97 8.6287e-07 3.54

A Non-oscillatory MCV scheme with Boundary Gradient Switching 17

Table 2 Numerical errors and convergence rates of the 2D advection equation

Grid l1 error l1 order
10 3.9644e-03 -
20 4.6692e-04 3.08
40 3.6717e-05 3.67
80 2.6815e-06 3.78
160 1.7166e-07 3.97
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Fig. 10 Numerical result of 2D rotation of complex wave after one period with 100 ⇥ 100
cells. shown are initial profile (left panel) and numerical result (right panel).

3.4.2 Rotation of two-dimensional complex wave

We extend the one-dimensional Jiang and Shu’s problem [8] to two-dimensional
case with a rotational velocity field defined by (u, v) = (�2⇡x, 2⇡y). The compu-
tational domain is [�1, 1] ⇥ [�1, 1]. The initial distribution is defined by

u(x, y, 0) =

8
>>>><
>>>>:

1
6 [G(r1 + �, �) + G(r1 � �, �) + 4G(r1, �)] if r1  0.2
1 if |x| 0.2,�0.7  y  �0.3
1 � 5r2 if r2  0.2
1
6 [F (r3 + �, ↵) + F (r3 � �, ↵) + 4F (r3, ↵)] if |r3| 0.2
0 otherwise

, (41)

where

r1 =
q

(x + 0.6)2 + y2, r2 =
q

(x � 0.6)2 + y2, r3 =
q

x2 + (y � 0.6)2, (42)

G (r, �) = exp
�
��r2

�
, F (r, ↵) =

p
max (1 � ↵2r2, 0) and the coe�cients are set

to be � = 0.01, ↵ = 5 and � = log2

�
36�2

�
.

The model runs up to t = 1 (after one period) with 100⇥100 uniform cells.The
initial profile and numerical result are shown in Fig. 10. There are no visible os-
cillation around the discontinuities and all structures including the smooth ex-
tremes are adequately resolved compared with the initial condition. Furthermore,
we didn’t find the noticeable deformation of the distribution of the advected field
in this two-dimensional case.

Fig. 10 Numerical result of 2D rotation of complex wave after one period with 100 × 100
cells. shown are initial profile (left panel) and numerical result (right panel).

3.4.2 Rotation of two-dimensional complex wave

We extend the one-dimensional Jiang and Shu’s problem [11] to two-dimensional
case with a rotational velocity field defined by (u, v) = (−2πx, 2πy). The compu-
tational domain is [−1, 1]× [−1, 1]. The initial distribution is defined by

u(x, y, 0) =





1
6 [G(r1 + δ, β) +G(r1 − δ, β) + 4G(r1, β)] if r1 ≤ 0.2,
1 if |x|≤ 0.2,−0.7 ≤ y ≤ −0.3,
1− 5r2 if r2 ≤ 0.2,
1
6 [F (r3 + δ, α) + F (r3 − δ, α) + 4F (r3, α)] if |r3|≤ 0.2,
0 otherwise,

(41)

where

r1 =
√

(x+ 0.6)2 + y2, r2 =
√

(x− 0.6)2 + y2, r3 =
√
x2 + (y − 0.6)2, (42)

G (r, β) = exp
(
−βr2

)
, F (r, α) =

√
max (1− α2r2, 0) and the coefficients are set

to be δ = 0.01, α = 5 and β = log2
(
36δ2

)
.

The model runs up to t = 1 (after one period) with 100×100 uniform cells.The
initial profile and numerical result are shown in Fig. 10. There are no visible os-
cillation around the discontinuities and all structures including the smooth ex-
tremes are adequately resolved compared with the initial condition. Furthermore,
we didn’t find the noticeable deformation of the distribution of the advected field
in this two-dimensional case.
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Table 5 Numerical errors and convergence rates of 2D Euler system

Grid l1 error l1 order l∞ error l∞ order
10 7.8337e-04 - 1.7825e-03 -
20 9.3258e-05 3.07 2.2563e-04 2.98
40 7.4606e-06 3.22 1.9792e-05 3.51
80 5.4062e-07 3.79 1.6773e-06 3.56
160 3.5283e-08 3.94 1.4336e-07 3.55

3.5 Two-dimensional Euler equations

In (39), two-dimensional Euler equations have the form of





q = [ρ, ρu, ρv,E]T ,

e (q) =
[
ρu, ρu2 + p, ρuv, u (E + p)

]T
,

f (q) =
[
ρv, ρuv, ρv2 + p, v (E + p)

]T
,

(43)

where u and v are velocity components in x- and y-directions. Due to the regularity
of the mesh, we can implement the one-dimensional formulation to each directions
directly. The expressions of Jacobian matrices A = (∂e/∂q) for x direction and
B = (∂f/∂q) for y direction can be found in text books, e.g. [5]. In practice, A are
calculated along the line segments as the equation (34) in which Jacobian matrix
A are an arithmetic average between Ā and Ã, where Ā is the Roe-averaged
Jacobian matrix computed from the VIA values of two neighboring cells along line
segments while Ã is obtained directly from the point values. The same applies to
matrix B.

3.5.1 Accuracy test for 2D Euler equations

The propagation of the density perturbation in 2D case is specified with ρ0 = 1.0+
0.2 sin [π (x+ y)], (u0, v0) = (0.7, 0.3) and p0 = 1.0. The computational domain
is [−1, 1] × [−1, 1] with periodic boundary condition. The l1 and l∞ errors and
accuracy orders are measured at t = 2.0 shown in Table 5. The expected accuracy
orders of the proposed scheme are achieved for solving 2D Euler equations.

3.5.2 Two-dimensional explosion

An axi-symmetric two dimensional explosion problem as described in [22] is simu-
lated. As the initial condition, a region inside a circle of radius R = 0.4 is set with
high pressure and density as

(ρ0, u0, v0, p0) =

{
(1.0, 0.0, 0.0, 1.0) if r ≤ R,
(0.125, 0.0, 0.0, 0.1) otherwise,

(44)

where r =
√
x2 + y2 is distance to the center of the computational domain.

As time goes on, the fluid inside the circle will spread out and form a moving
shock, a contact discontinuity and a rarefaction wave of cylindrical symmetry. The
MCV-BGS model runs up to t = 0.25 on a grid with 200× 200 uniform cells.The
bird’s-eye view of pressure distribution and the cut-off profile along radial direction
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Fig. 11 Numerical result for pressure field of 2D explosion at t = 0.25 with 200 ⇥ 200 cells.
Shown are bird’s view of pressure distribution (left panel) and cut-o↵ profile along radial
direction (right panel).

3.5 Two-dimensional Euler equations

In (39), two-dimensional Euler equations have the form of

8
><
>:

q = [⇢, ⇢u, ⇢v, E]T

e (q) =
⇥
⇢u, ⇢u2 + p, ⇢uv, u (E + p)

⇤T

f (q) =
⇥
⇢v, ⇢uv, ⇢v2 + p, v (E + p)

⇤T
, (43)

where u and v are velocity components in x- and y-directions.

3.5.1 Two-dimensional explosion

An axi-symmetric two dimensional explosion problem as described in [19] is simu-
lated. As the initial condition, a region inside a circle of radius R = 0.4 is set with
high pressure and density as

(⇢0, u0, v0, p0) =

⇢
(1.0, 0.0, 0.0, 1.0) if r  R
(0.125, 0.0, 0.0, 0.1) otherwise

, (44)

where r =
p

x2 + y2 is distance to the center of the computational domain.
As time goes on, the fluid inside the circle will spread out and form a moving

shock, a contact discontinuity and a rarefaction wave of cylindrical symmetry. The
MCV-BGS model runs up to t = 0.25 on a grid with 200 ⇥ 200 uniform cells.The
bird’s eye view of pressure distribution and the cut-o↵ profile along radial direction
are shown in Fig. 11. The corresponding numerical results of density are presented
in Fig. 12.

It is observed from our numerical results that the MCV3-BGS scheme can
accurately resolve the shock wave, contact discontinuity and rarefaction fan with
adequate resolution. The symmetry of numerical solutions remain perfect, which
demonstrates the less grid-dependency and high geometrical fidelity of the pro-
posed scheme.

Fig. 11 Numerical result for pressure field of 2D explosion at t = 0.25 with 200 × 200 cells.
Shown are bird’s-eye view of pressure distribution (left panel) and cut-off profile along radial
direction (right panel).A Non-oscillatory MCV scheme with Boundary Gradient Switching 19
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Fig. 12 Same as Fig. 11, but for density field.

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

Fig. 13 Numerical result of density field of the double Mach reflection at t = 0.2 with 120⇥384
cells.

3.5.2 Double Mach reflection

A propagating planar shock, at Ma = 10 in hypersonic regime, reflected by 30�

ramp is simulated in this case. It is well known that it is di�cult for a numerical
scheme to well resolve the very strong discontinuities and the rich small-scale
structures developing with time at the same time [21]. The computational domain
is [0, 4] ⇥ [0, 1]. A right-moving Mach 10 shock is imposed with 60� angle relative
to x-axis. At the right boundary of the computational domain, the boundary
condition is given by setting all gradients to be zero.

Two grid with di↵erent resolution are adopted to calculate this test. The con-
tour plots of the numerical results of the density field at t = 0.2 are illustrated in
Fig. 13 on coarse grid and Fig. 14 on fine one. The enlarged view of the vortex
structures and instability along the slip lines are shown in Fig. 15. Both the strong
discontinuities and the vortex structures are well resolved in the current results
by MCV3-BGS scheme, which shows the well-controlled numerical dissipation in
MCV3-BGS scheme.

Fig. 12 Same as Fig. 11, but for density field.

are shown in Fig. 11. The corresponding numerical results of density are presented
in Fig. 12.

It is observed from our numerical results that the MCV3-BGS scheme can
accurately resolve the shock wave, contact discontinuity and rarefaction fan with
adequate resolution. The symmetry of numerical solutions remain perfect, which
demonstrates the less grid-dependency and high geometrical fidelity of the pro-
posed scheme.

3.5.3 Double Mach reflection

A propagating planar shock, at Ma = 10 in hypersonic regime, reflected by 30◦

ramp is simulated in this case. It is well known that it is difficult for a numerical
scheme to well resolve the very strong discontinuities and the rich small-scale
structures developing with time at the same time [24]. The computational domain
is [0, 4]× [0, 1]. A right-moving Mach 10 shock is imposed with 60◦ angle relative
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Fig. 13 Numerical result for density field of the double Mach reflection at t = 0.2 with
384 × 120 cells.

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

Fig. 14 Same as Fig. 13, but with 800 × 250 cells.

to x-axis. At the right boundary of the computational domain, the boundary
condition is given by setting all gradients to be zero.

Two grid with different resolution are adopted to calculate this test. The con-
tour plots of the numerical results of the density field at t = 0.2 are illustrated in
Fig. 13 on coarse grid and Fig. 14 on fine one. The enlarged view of the vortex
structures and instability along the slip lines are shown in Fig. 15. Both the strong
discontinuities and the vortex structures are well resolved in the current results
by MCV3-BGS scheme, which shows the well-controlled numerical dissipation in
MCV3-BGS scheme.

3.6 A Mach 3 wind tunnel with a step

Simulation of Mach 3 wind tunnel with a step is one of the popular benchmark
tests for verification of high-resolution schemes [24]. In this case, the computational
domain is [0, 3]×[0, 1] and a step with height of 0.2 is located at x = 0.6. The inflow
and outflow conditions are prescribed along the left and right boundaries and the
rest are imposed with the reflective condition. The numerical tests are conducted
with different spatial resolutions. As shown in Figs.16 and 17, the density field at
t = 4.0 are depicted for the numerical results on grids of 480 × 160 and 960 ×
320 respectively. It is observed that the shock waves and strong discontinuities
are adequately resolved without the visible numerical oscillations. Meanwhile, the
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Fig. 14 Same as Fig. 13, but with 250 ⇥ 800 cells.
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Fig. 15 Enlarged view of vortex structures and instability along the slip lines of double Mach
reflection at t = 0.2 with 120 ⇥ 384 cells (left panel) and 250 ⇥ 800 cells (right panel).

4 Conclusion

In this study, we have proposed a new formulation for 3-point MCV scheme. Two
fourth-order schemes, i.e. MCV3-4L and MCV3-4R, are derived by employing the
additional DOFs defined at the center of left and right neighboring cells. A new
BGS algorithm, underlying the ENO concept, has been proposed to design a non-
oscillatory multi-moment scheme without degrading the fourth-order accuracy.
The basic idea of the BGS algorithm is to choose a spatial reconstruction between
MCV3-4L and MCV3-4R schemes, which minimizes the di↵erence in the deriva-
tives of flux functions between the high-order profile and the reconstruction with a
slope limiter. This algorithm is easy to implement and free of and case-dependent
ad hoc parameter. Thus, it is very proposing for practical applications.

Compared to other existing methods, the present scheme has at least following
advantages.

1. Without any limiting process using either slope limiters or flux limiters, the
proposed scheme doesn’t su↵er from loss of accuracy since a high-order recon-
struction, either MCV3-4L or MCV3-4R is e↵ectively adopted.

Fig. 15 Enlarged view of vortex structures and instability along the slip lines of double Mach
reflection at t = 0.2 with 384 × 120 cells (left panel) and 800 × 250 cells (right panel).

numerical dissipation is also suppressed so that the vortical structures of acoustic
waves are sufficiently captured. The proposed method can resolve the vortical
structures better with fewer mesh cells in comparison with the original WENO
scheme and its new variants reported in [4].

Fig. 16 Density contours for the Mach 3 wind tunnel with a step at t = 4 with 480 × 160
cells. Contour lines vary from 0.1 to 6.4 with an interval of 0.21.

4 Conclusion

In this study, we have proposed a new formulation for 3-point MCV scheme. Two
fourth-order schemes, i.e. MCV3-4L and MCV3-4R, are derived by employing the
additional DOFs defined at the center of left and right neighboring cells. A new
BGS algorithm, underlying the ENO concept, has been proposed to design a non-
oscillatory multi-moment scheme without degrading the fourth-order accuracy.
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Fig. 17 Same as Fig.16, but with 960 × 320 cells.

The basic idea of the BGS algorithm is to choose a spatial reconstruction between
MCV3-4L and MCV3-4R schemes, which minimizes the difference in the deriva-
tives of flux functions between the high-order profile and the reconstruction with a
slope limiter. This algorithm is easy to implement and free of and case-dependent
ad hoc parameter. Thus, it is very proposing for practical applications.

Compared to other existing methods, the present scheme has at least following
advantages.

1. Without any limiting process using either slope limiters or flux limiters, the
proposed scheme doesn’t suffer from loss of accuracy since a high-order recon-
struction, either MCV3-4L or MCV3-4R is effectively adopted.

2. MCV3-BGS scheme does not need the priori detector, such as the TVB cri-
terion, to peak up the ”troubled cells”. With effective oscillation-suppressing
mechanism and well-controlled numerical dissipation, MCV3-BGS scheme re-
solves both smooth and discontinuous solutions.

3. Using the sub-grid DOFs, the spatial stencil used by MCV3-BGS is limited
within three neighboring cells, which is very compact and suited for the grids
with complex structures.

The performance of the proposed scheme is verified by the widely used bench-
mark tests for both scalar and Euler equations. The numerical results reveal that
MCV3-BGS scheme is a high-fidelity scheme with local high order reconstruction
that resolves both smooth and non-smooth solutions with appealing accuracy the
robustness.
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