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For cellular bodies involving large elastic
deformations, mesoscopic continuum models that
take into account the interplay between the geometry
and the microstructural responses of the constituents
are developed, analysed and compared with finite-
element simulations of cellular structures with
different architecture. For these models, constitutive
restrictions for the physical plausibility of the material
responses are established, and global descriptors such
as nonlinear elastic and shear moduli and Poisson’s
ratio are obtained from the material characteristics
of the constituents. Numerical results show that
these models capture well the mechanical responses
of finite-element simulations for three-dimensional
periodic structures of neo-Hookean material with
closed cells under large tension. In particular,
the mesoscopic models predict the macroscopic
stiffening of the structure when the stiffness of the
cell-core increases.

1. Introduction
Cellular solids are the subject of intensive research efforts
in biomedical applications, and many foams and sponges
designed for cushioning and re-usability can be found
in everyday life as well as in several industrial areas,
e.g. microelectronics, aerospace and pharmaceutical
processes [1–3]. The mechanics of cellular solids is
also key in explaining the property or behaviour of
fruit and legumes during storage or cooking, and are
decisive for the perceived quality of food products [4–7].
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Physical evidence suggests that the firmness of fruit decreases during preharvest ripening, which
also involves a reduction in cellular pressure, and continues to decrease during post-harvest
storage when the cell pressure further decreases [8]. Other mechanical and physiological factors,
such as changes in cell size, wall thickness and composition, also contribute to changes in the
macroscopic properties of fruit [9–13]. The relevant scale at which such phenomena occur, though
beyond the capacity of the human eye, can be followed by mechanical analysis and mathematical
models based on micro-structural evidence may be useful for the prediction of macroscopic
behaviour [14–17].

The first microstructure-based model for a cellular solid is due to Gent & Thomas [18]. For
this model, general isotropic linearly elastic open-cell foams subject to small strain deformations
were assumed, and effective Young’s elastic modulus and the Poisson’s ratio were derived from
the constitutive equations [19,20]. This model was extended to closed-cell foams containing an
ideal gas by assuming that the elastic behaviour of the cell walls was essentially the same as for
an open-cell foam of the same density, and adding contributions to the strain energy due to the
enclosed gas phase and the surrounding atmosphere [21]. For cellular structures of nonlinearly
elastic material under finite strain, a phenomenological continuum model is due to Blatz & Ko
[22]. This model reduces to the Gent–Thomas model in the small strain limit [23,24]. The ellipticity
of the Blatz–Ko model was analysed by Knowles & Sternberg [25]. In [26], it was noted that
Hill’s energy functional of hyperelasticity [27] can be used to describe the simple special case
of foams where the principal stresses are uncoupled, i.e. depend only upon the stretch ratio in the
corresponding principal direction. These approaches are based on the Ogden-type strain energy
function for incompressible materials [28] extended to the compressible case.

For open-cell solids with randomly oriented cell walls subject to large deformations,
continuum isotropic hyperelastic models at the mesoscopic level have recently been obtained
[29], provided that the cell walls are thin and subject to finite elastic stretches, and the wall joints
were small and their deformation can be neglected.

In this study, the hyperelastic models for open-cell structures derived in [29] are extended
and enhanced to account for the behaviour of cellular structures with closed cells (§2). For these
structures, hyperelastic material components are considered satisfying the Baker–Ericksen (BE)
inequalities stating that the greater principal stress occurs in the direction of the greater principal stretch,
and of the pressure-compression (PC) inequalities stating that each principal stress is a pressure
(compression) or a tension according as the corresponding principal stretch is a contraction or an elongation
(extension) [30, pp. 155–159], and similar material responses are also found for the continuum
models (§3). For these models, the nonlinear elastic and shear moduli and the Poisson’s ratio are
obtained from the material characteristics of the constituents (§4). For numerical illustration, the
mechanical performance of the mesoscopic models for structures with neo-Hookean components
(§4e) is compared with finite-element simulations of three-dimensional structures with periodic,
reproducible architecture (§5).

2. Hyperelastic models for structures with closed cells
We consider a cellular structure with closed cells subject to a triaxial stretch and denote by
(e1, e2, e3) the usual orthonormal vectors for the Cartesian coordinates in the principal directions
of the material deformation at the mesoscopic scale, and by {αi}i=1,2,3 the principal stretches,
respectively. This assumption is similar to that for open-cells structures analysed in [29]. However,
we note that, for the closed cells, the cell walls consist of both faces and edges unlike in the
open-cells case where the cell walls contained only edges.

For this structure, we assume that, in the undeformed state, adjacent cell walls meet along cell
edges of length L, and adjacent cell edges meet at spherical joints of width t, such that 0 < k =
t/L < 1. We further assume that the deformation of the spherical joints is less significant than that
of the cell walls and can be neglected (figure 1).
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Figure 1. Schematic of cell walls and joints in a cellular structure, with the orthonormal vectors (e1, e2, e3) for the structure at
the mesoscopic scale and (n1, n2, n3) for a cell wall. (Online version in colour.)

(a) Cell walls under finite triaxial stretch
We define the displacement in the three-dimensional Euclidean space in the usual way:

u(X) = x − X, (2.1)

where X are the Lagrangian (reference, material) and x are the Eulerian (current, spatial)
coordinates, respectively. For a straight line joining two neighbouring particles with initial
positions [X, X + δX], we assume that the particles are displaced to [x, x + δx], where by (2.1),
x = X + u(X) and x + δx = X + δX + u(X + δX), respectively. By Taylor’s theorem,

δx = δX + u(X + δX) − u(X) = δX + (δX · ∇)u(X) + O(|δX|2), (2.2)

where, using Einstein’s notation convention that repeated indices represents summation,

δX · ∇ = δXk
∂

∂Xk
.

For a cell edge subject to finite extension or compression in the direction situated along the
vector δX, if L = |δX| and l = |δx| are the initial and the current lengths of the wall in this direction,
respectively, then by (2.2),

l2 = |δx|2 ≈ |δX + (δX · ∇)u(X)|2, (2.3)

and, using the summation convention:

l2 − L2 = 2EijδXiδXj, (2.4)

where

E = (Eij)i,j=1,2,3, Eij = 1
2

(
∂ui

∂Xj
+ ∂uj

∂Xi
+ ∂uk

∂Xi

∂uk

∂Xj

)
(2.5)

is the Green–Lagrange strain tensor for the deforming edge.
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If L̄ = L + t = (1 + k)L and l̄ = l + t = l + kL are the lengths before and after the deformation,
respectively, of a cell element comprising a cell wall bounded by cell edges and two half-joints at
the end of each edge, then similarly to (2.4),

l̄2 − L̄2 = 2(1 + k)2ĒijδXiδXj, (2.6)

where the Green–Lagrange strain tensor for the deforming cell element is defined as

Ē = (Ēij)i,j=1,2,3, Ēij =

(√
2Eij + δij + kδij

)2

2(1 + k)2 − δij

2
, (2.7)

with δ = (δij)i,j=1,2,3 denoting the Kronecker delta.
For the cell wall and the cell element, the right Cauchy–Green tensors are, respectively,

C = (Cij)i,j=1,2,3, C = 2E + I (2.8)

and
C̄ = (C̄ij)i,j=1,2,3, C̄ = 2Ē + I, (2.9)

where I is the identity tensor.
Since C = diag(λ2

1, λ2
2, λ2

3) and C̄ = diag(λ̄2
1, λ̄2

2, λ̄2
3), where {λi}i=1,2,3 and {λ̄i}i=1,2,3 are the

principal stretches for the cell wall and the cell element, respectively, by (2.7)–(2.9),

λi = (1 + k)λ̄i − k, i = 1, 2, 3. (2.10)

Let (n1, n2, n3) denote the orthonormal vectors for the Cartesian coordinates in the principal
directions of the deforming cell wall, such that:

n1 = −e1 cos θ cos φ − e2 cos θ sin φ + e3 sin θ ,

n2 = e1 sin φ − e2 cos φ

and n3 = e1 sin θ cos φ + e2 sin θ sin φ + e3 cos θ .

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

Denoting by Cm = diag(α2
1, α2

2 , α2
3) the right Cauchy–Green tensor for the cellular solid at the

mesoscopic level, we can write:

λ̄2
1 = n1 · Cmn1 = α2

1 cos2 θ cos2 φ + α2
2 cos2 θ sin2 φ + α2

3 sin2 θ ,

λ̄2
2 = n2 · Cmn2 = α2

1 sin2 φ + α2
2 cos2 φ

and λ̄2
3 = n3 · Cmn3 = α2

1 sin2 θ cos2 φ + α2
2 sin2 θ sin2 φ + α2

3 cos2 θ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

We assume that the cell walls are made from a homogeneous isotropic hyperelastic material
described by a strain energy density function W(I1, I2, I3), where I1, I2, I3 are the principal
invariants of the Cauchy–Green tensor C:

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 and I3 = λ2

1λ
2
2λ

2
3. (2.13)

For the deforming cell wall, the Cauchy stress tensor takes the form

σ = 2J−1F
∂W
∂C

FT, (2.14)

where F is the deformation gradient and J = √
I3. When subject to a triaxial stretch, the non-zero

components of the stress tensor are the diagonal ones:

σi = J−1λi
∂W
∂λi

= J−1 ∂W
∂(ln λi)

, i = 1, 2, 3. (2.15)

To ensure that the minimum strain energy is attained in the reference configuration, the
relation

∂W
∂C

= 0, (2.16)

which corresponds to the unstressed state, must hold if λ1 = λ2 = λ3 = 1.
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Defining the following principal invariants of the stretch tensor for the cell element:

ī1 = λ̄1 + λ̄2 + λ̄3, ī2 = λ̄1λ̄2 + λ̄2λ̄3 + λ̄3λ̄1 and ī3 = λ̄1λ̄2λ̄3, (2.17)

we obtain:

I1 = [(1 + k)ī1 − 3k]2 − 2[(1 + k)2 ī2 − 2k(1 + k)ī1 + 3k2],

I2 = [(1 + k)2 ī2 − 2k(1 + k)ī1 + 3k2]2

− 2[(1 + k)ī1 − 3k][(1 + k)3 ī3 − k(1 + k)2 ī2 + k2(1 + k)ī1 − k3]

and I3 = [(1 + k)3 ī3 − k(1 + k)2 ī2 + k2(1 + k)ī1 − k3]2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.18)

Then the strain energy function describing the cell wall material can be written equivalently in
terms of the invariants (2.17) as W(I1, I2, I3) = W̄(ī1, ī2, ī3). We denote the principal invariants of
the stretch tensor for the cellular solid at the mesoscopic level by:

i1 = α1 + α2 + α3, i2 = α1α2 + α2α3 + α3α1 and i3 = α1α2α3. (2.19)

Employing (2.12), we note that the principal invariants of the stretch tensor for the cell element
are related to the principal invariants of the stretch tensor for the cellular solid by

ī1 = i1, ī2 = i2 and ī3 = i3. (2.20)

Therefore,

W̄(ī1, ī2, ī3) = W̄(i1, i2, i3) (2.21)

with no explicit dependence on the angles (θ , φ).
Then the strain energy per unit volume of the cellular solid at the mesoscopic level (designated

by a subscript or superscript m) can be derived by taking the mean value of the cell wall energy
W over the unit sphere, i.e.

W (m) = NV
2
π

∫π/2

0

∫π/2

0
W̄(i1, i2, i3) sin θ dθ dφ (2.22)

= NV
2

W̄(i1, i2, i3), (2.23)

where N is the number of walls in a unit volume of cellular material and V is the volume of a
cell wall.

The strain energy function (2.23) describes the behaviour of the deforming cellular solid at the
mesoscopic scale, provided that the cells are empty and without internal pressure, and the cell
walls are subject to finite triaxial stretch, without bending or buckling.

For the deforming cellular solid, the Cauchy stress tensor takes the form

σ (m) = 2J−1
m Fm

∂W (m)

∂Cm
FT

m, (2.24)

where Fm is the deformation gradient and Jm = i3. By (2.19) and (2.23), the principal components
of the stress tensor (2.24) are

σ
(m)
i = J−1

m αi
∂W (m)

∂αi
= J−1

m
∂W (m)

∂(ln αi)
, i = 1, 2, 3. (2.25)

The minimum strain energy given by the relation

∂W (m)

∂Cm
= 0

corresponds to the unstressed state, and by (2.25) and (2.16) it is attained if α1 = α2 = α3 = 1, i.e.
when the cellular body is undeformed.
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(b) The volume fraction
To investigate the effect of the volume ratio between the elastic solid and the cellular material, we
assume that n cell edges, each of undeformed length L and volume V, are meeting at a common
joint of surface area

nA = 4π

(
t
2

)2
= πk2L2,

where

k = t
L

=
√

nA
πL2 .

Taking a representative volume of the cellular material at the mesoscopic scale in the undeformed
state as a sphere of radius R = (L + t)/2 = (1 + k)L/2 centred at a joint, the volume of this sphere
is equal to

V̄m = 4πR3

3
= πL3(1 + k)3

6
. (2.26)

The volume of solid material contained in this sphere is

V̄ = nAL(1 + k)
2k

+ 4π (t/2)3

3
= πkL3(1 + k)

2
+ πk3L3

6
= πL3[3k(1 + k) + k3]

6
. (2.27)

By (2.26) and (2.27), the volume ratio is equal to

ρm = V̄

V̄m
= 1 − 1

(1 + k)3 (2.28)

and increases as the parameter k ∈ (0, 1) increases.
It follows that the corresponding volume fraction occupied by the cell interior is equal to 1 −

ρm.
Without loss of generality, setting the unit sphere of cellular material at the mesoscopic scale

as V̄m = 1, by (2.26), it follows that

πL3

2
= 3

(1 + k)3 ,

which implies that the volume fraction of cell wall material in this sphere is equal to

NV = nAL
2

= πkL3(1 + k)
2

= 3k
(1 + k)2 . (2.29)

Alternatively, setting the representative volume of the cellular body at the mesoscopic scale, in
the undeformed state, as nm spheres of radius R = (L + t)/2 = (1 + k)L/2, such that each sphere is
centred at a joint, this volume is equal to nmV̄m, where V̄m is given by (2.26), and contains nmV̄
volume of solid material, with V̄ defined by (2.27). Then the corresponding volume ratio

ρm = (nmV̄)

(nmV̄m)
= V̄

V̄m
= 1 − 1

(1 + k)3

is the same as that given by (2.28).
In this case, taking the unit sphere of cellular material at the mesoscopic scale as nmV̄m = 1

implies

πL3

2
= 3

nm(1 + k)3 ,

hence the associated volume fraction of cell wall material is equal to (2.29), i.e. depends only on
the parameter k.

The same results are obtained if the unit volume is cubical in shape with the cuboid walls
aligning with the cube edges and the cubical joints placed at the cube corners (see §5).
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3. Material responses
In order that the behaviour of a hyperelastic material is physically realistic, there are some
requirements taking the form of constraints on the constitutive equations, which are universally
accepted.

For the cellular material with empty cells, by (2.20)–(2.21) and (2.23), the strain energy function
W (c)(α1, α2, α3) at the mesoscopic scale is independent of the orientation of the cell walls, and
is a scalar multiple of the strain energy function for the cell element W̄(λ̄1, λ̄2, λ̄3). Hence, any
constitutive constraints on the material responses at the mesoscopic are equivalent to similar
constraints on the cell element.

Similarly, for the cellular material where the cells are filled with a hyperelastic material, since
the strain energy function W (f)(α1, α2, α3) given by (4.3) is a linear combination of the strain energy
function for the cell element W̄(α1, α2, α3) and the cell core W̃(α1, α2, α3), and is independent of the
orientation of cells, any material constraints at the mesoscopic scale can be expressed equivalently
as a linear combination of the corresponding constraints on the cell element and the cell core,
respectively. Therefore, any constitutive constraints on the material responses at the mesoscopic
scale can be expressed equivalently as a linear combination of the corresponding constraints on
the cell element and the cell core, respectively.

In view of the above observations, here, we analyse in detail the case of empty cells, and
indicate that the case of filled cells can be treated by analogy.

(a) Baker–Ericksen inequalities
For a hyperelastic body subject to uniaxial tensile loading, the corresponding deformation is a
simple extension in the direction of the tensile force, whereby the ratio between the tensile strain
and the strain in the orthogonal direction is greater than one, if and only if the Baker–Ericksen
(BE) inequalities stating that the greater principal stress occurs in the direction of the greater principal
stretch hold [31,32].

For the cell wall material, the BE inequalities take the form [30, p. 158]

(σi − σj)(λi − λj) > 0 if λi �= λj, i, j = 1, 2, 3, (3.1)

where {λi}i=1,2,3 and {σi}i=1,2,3 are the principal stretches and the principal stresses, respectively.
For the cellular solid with empty cells, the principal Cauchy stress components take the

following form in terms of the principal Cauchy stress components for the cell wall:

σ
(m)
i = (1 + k)

NV
2

λ1λ2λ3

α1α2α3

αi

λi
σi. (3.2)

Hence, uniaxial tensile loading σ
(m)
3 = N(m) > 0 = σ

(m)
1 = σ

(m)
2 for the cellular body implies

uniaxial tensile loading for the cell wall, σ3 = N > 0 = σ1 = σ2. Assuming that the BE inequalities
hold for the cell wall material, this implies that there is simple extension in the direction of the
tensile force, i.e. λ3 > λ1 = λ2.

Taking αi = (λi + k)/(1 + k), i = 1, 2, 3, for the cellular solid gives α3 > α1 = α2, i.e. uniaxial
tensile loading produces simple extension. Hence, the BE inequalities also hold for the cellular
solid, i.e.

(σ (m)
i − σ

(m)
j )(αi − αj) > 0 if αi �= αj, i, j = 1, 2, 3. (3.3)

(b) Pressure-compression inequalities
Another set of plausible constitutive constraints are the pressure-compression (PC) inequalities
stating that each principal stress is a pressure (compression) or a tension according as the corresponding
principal stretch is a contraction or an elongation (extension) [30, p. 155]. In practice, either or both of
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the mean versions of the PC conditions, which are physically more realistic, are acceptable,

σ1(λ1 − 1) + σ2(λ2 − 1) + σ3(λ3 − 1) > 0 (3.4)

and

σ1

(
1 − 1

λ1

)
+ σ2

(
1 − 1

λ2

)
+ σ3

(
1 − 1

λ3

)
> 0, (3.5)

if not all λi, i = 1, 2, 3, are equal to 1.
Assuming that the inequalities (3.4)–(3.5) are satisfied for the cell wall material, and adding

(3.4)–(3.5) multiplied by k gives

0 < σ1(λ1 − 1) + σ2(λ2 − 1) + σ3(λ3 − 1)

+ k
[
σ1

(
1 − 1

λ1

)
+ σ2

(
1 − 1

λ2

)
+ σ3

(
1 − 1

λ3

)]

=
(

1 + k
λ1

)
σ1(λ1 − 1) +

(
1 + k

λ2

)
σ2(λ2 − 1) +

(
1 + k

λ3

)
σ3(λ3 − 1).

Taking αi = (λi + k)/(1 + k), i = 1, 2, 3, for the cellular solid, by (3.2), it follows that

σ
(m)
1 (α1 − 1) + σ

(m)
2 (α2 − 1) + σ

(m)
3 (α3 − 1) > 0. (3.6)

In this case also, (3.5) can be rewritten as(
1 + k

λ1

)
σ1

(
1 − 1 + k

λ1 + k

)
+
(

1 + k
λ2

)
σ2

(
1 − 1 + k

λ1 + k

)
+
(

1 + k
λ2

)
σ3

(
1 − 1 + k

λ3 + k

)
> 0,

which is equivalent to

σ
(m)
1

(
1 − 1

α1

)
+ σ

(m)
2

(
1 − 1

α2

)
+ σ

(m)
3

(
1 − 1

α3

)
> 0. (3.7)

Hence, by (3.6)–(3.7), the PC inequalities hold for the cellular solid.

4. Cells filled with a hyperelastic core
When the cells are filled with a hyperelastic material, the contact forces acting between the cell
core and the cell walls through the wall surface must also be taken into account at the mesoscopic
level. Assuming that the cell core described by the strain energy function W̃(i1, i2, i3), with the
principal invariants of the stretch tensor for the cellular solid are given by (2.19), occupies the
unit volume fraction 1 − ρm, with ρm given by (2.28), and is in active contact with the cell walls
across the wall surface Γc, with outer unit normal N, the elastic energy stored by the cellular body
with filled cells (designated by a superscript f) under the triaxial stretch deformation is obtained
as follows:

W (f) =W (m) +
∫
Γc

∂W̃
∂Fm

N dA (4.1)

= NV
2

W̄(i1, i2, i3) + (1 − ρm)
2
π

∫π/2

0

∫π/2

0
W̃(i1, i2, i3) sin θ dθ dφ (4.2)

= NV
2

W̄(i1, i2, i3) + 1 − ρm

2
W̃(i1, i2, i3), (4.3)

where Fm is the deformation gradient. The above formulation is based on the assumption that,
in each cell, the core is a continuous material body occupying a compact domain of the three-
dimensional Euclidean space, such that the interior of the body is an open, bounded, connected
set, and a unit normal vector exists almost everywhere on its boundary [33,34].

Note that, in the particular case when, for the closed cells, NV is given by (2.29) and the cell
core is made from the same material as the cell walls, i.e. W̃(i1, i2, i3) = W̄(i1, i2, i3), the strain
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energy (4.3) takes the form

W (f) = 3k
2(1 + k)2 W̄(i1, i2, i3) + 1

2(1 + k)3 W̄(i1, i2, i3) (4.4)

= 3k2

2(1 + k)3 W̄(i1, i2, i3) + 1 + 3k
2(1 + k)3 W̄(i1, i2, i3). (4.5)

Recalling that, for the mesoscopic model of open-cell structures in [29], NV= 3k2/(1 + k)3 and
1 − ρm = (1 + 3k)/(1 + k)3, we can also interpret the first term in (4.5) as the mesoscopic energy
for the open-cell structure and the second term as the energy of the material filling the space
between the walls of the open cells.

(a) Shear modulus
To compute the nonlinear shear modulus for the cellular solid with empty cells, we consider the
simple shear deformation:

x1 = X1, x2 = X2 and x3 = γ X1 + X3, (4.6)

where γ > 0 is constant. Then, the corresponding principal stretches satisfy:

α2
1 = 1 + γ 2 − γ

√
γ 2 + 4

2
= α−2, α2

2 = 1 and α2
3 = 1 + γ 2 + γ

√
γ 2 + 4

2
= α2.

Noting that

α = γ +
√

γ 2 + 4
2

and α−1 = −γ −
√

γ 2 + 4
2

,

we obtain the principal Cauchy stress components from (2.25). Then the nonlinear shear modulus
[30, p. 175] for the cellular solid at the mesoscopic scale is defined as

μ(m) = σ
(m)
3 − σ

(m)
1

α2 − α−2 . (4.7)

In the limit of small shear strain, the shear modulus takes the form

μ
(m)
0 = lim

γ→0
μ(m) = (1 + k)2 NV

2
μ0, (4.8)

where μ0 is the shear modulus for the cell wall material.
Similarly, for the cellular material with filled cells, since the strain energy function given by

(4.3) is a linear combination of the strain energy function for the cell element and the cell core, the
corresponding shear modulus at the mesoscopic scale is a linear combination of the corresponding
parameters on the cell element and the cell core, respectively, i.e.

μ
(f)
0 = (1 + k)2 NV

2
μ0 + 1 − ρm

2
μ̃0, (4.9)

where μ0 and μ̃0 are the shear moduli for the cell wall and the cell core, respectively.
When NV is given by (2.29), the shear modulus (4.9) takes the form

μ
(f)
0 = 3k

2
μ0 + μ̃0

2(1 + k)3 . (4.10)

(b) Elastic modulus
For the closed-cell material with empty cells, if uniaxial loading causes a simple tension or
compression in the direction of the tensile force with α1 = α2 < α3, such that σ

(m)
1 = σ

(m)
2 = 0 and

σ
(m)
3 = N(m), then the nonlinear elastic modulus is defined as the slope of curve representing the
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axial stress versus the associated logarithmic strain, i.e.

E(m) = ∂N(m)

∂(ln α3)
. (4.11)

In the linear elastic limit, the Young’s modulus for the cellular material with empty cells is
equal to

E(m)
0 = lim

α3→1
E(m) = (1 + k)2 NV

2
E0, (4.12)

where E0 is the Young’s modulus for the cell-wall material.
For the closed-cell material with filled cells, by analogous calculations, the Young’s modulus

at the mesoscopic scale is a linear combination of the corresponding parameters for the cell wall
and the cell core, respectively, i.e.

E(f)
0 = (1 + k)2 NV

2
E0 + 1 − ρm

2
Ẽ0, (4.13)

where E0 and Ẽ0 are the Young’s moduli for the cell wall and the cell core, respectively.
When NV is defined by (2.29), the Young’s modulus (4.13) takes the form

E(f)
0 = 3k

2
E0 + Ẽ0

2(1 + k)3 . (4.14)

(c) Poisson’s ratio
For an elastic material, if uniaxial loading causes a simple tension or compression in the direction
of the tensile force, then the nonlinear Poisson’s ratio can be computed as the negative quotient
of the logarithmic strain in an orthogonal direction to that of the logarithmic strain in the third
direction [23]. For the cell wall and the cellular body with closed cells, respectively, this Poisson’s
function is

ν = − ln λ1

ln λ3
, ν(m) = − ln α1

ln α3
. (4.15)

Then, in the linear elastic limit λ3 → 1, the resulting Poisson’s ratio is

ν
(m)
0 = lim

α3→1

1 − α1

α3 − 1
= lim

λ3→1

1 − λ−ν
3

λ3 − 1
= ν0, (4.16)

where ν0 is the Poisson’s ratio for the cell wall material.
When the cells are filled with an elastic core that is softer than the cell walls, the Poisson’s ratio

at the mesoscopic scale is equal to

ν
(f)
0 = k

1 + k
ν0 + 1

1 + k
ν̃0, (4.17)

where ν0 and ν̃0 are the Poisson’s ratios for the cell wall and the cell core, respectively.

(d) The cell-size effect
In order to capture the independent influence of the cells number on the elastic behaviour of a
cellular body under large deformations characteristic to some cellular structures, namely that,
for structures made from the same volume of hyperelastic material, the stiffness increases as the
number of cells increases while the ratio between the thickness and the length of the walls remains
fixed [7,29,35,36], we replace the strain energy function (4.3) with

W (cf) = ηW (f), (4.18)

where η > 0 is chosen so that, for structures containing the same volume of cell wall material and
having similar cell geometries, if the number of walls in a unit volume of cellular material N and
the volume of a cell wall V remain unchanged, then η increases as the number of cells increases.
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For the hyperelastic material described by (4.18), the nonlinear shear and elastic moduli take
the form, respectively,

μ(cf) = ημ(f) (4.19)

and
E(cf) = ηE(f). (4.20)

In practice, for structures under tension in the third direction, the weight η can be chosen so
that the effective elastic modulus for the continuum model is equal to

Eeff = lim
α3→1

Ēeff, (4.21)

where Ēeff is the slope of the effective Cauchy stress vs. the effective logarithmic strain curve for
the closed-cell structure. Recall that the effective value of a symmetric tensor s [37,38] is defined
as

seff =
√

3
2 [(s − 1

3 tr(s)I) : (s − 1
3 tr(s)I)]

=
√

s2
11 + s2

22 + s2
33 − s11s22 − s22s33 − s33s11 + 3(s2

12 + s2
13 + s2

23). (4.22)

Then

η = 2Eeff

(1 + k)2NVE0 + (1 − ρm)Ẽ0
. (4.23)

(e) Mesoscopic model for closed-cells of neo-Hookean material
We now specialise our model to the case where the cell wall and the cell core materials are
described by the compressible neo-Hookean models

W(I1, I2, I3) = μ

2
(I1 − 3 − ln I3) + λ

2
(ln I1/2

3 )2, (4.24)

and

W̃(I1, I2, I3) = μ̃

2
(I1 − 3 − ln I3) + λ̃

2
(ln I1/2

3 )2, (4.25)

where μ > 0, λ > 0 and μ̃ >, λ̃ > 0 are constant parameters, such that μ > μ̃, i.e. the walls are stiffer
than the core.

For the cell wall and the cell core, the principal Cauchy stress components are, respectively,

σi = 1
λ1λ2λ3

[μ(λ2
i − 1) + λ ln(λ1λ2λ3)], i = 1, 2, 3, (4.26)

and

σ̃i = 1
λ1λ2λ3

[μ̃(λ2
i − 1) + λ̃ ln(λ1λ2λ3)], i = 1, 2, 3, (4.27)

In this case, the corresponding BE inequalities (3.1) are equivalent to μ > 0 and μ̃ > 0.
In this case, the strain energy function at the mesoscopic scale (4.18) is

W (cf)(i1, i2, i3) =W (c)(i1, i2, i3) + η
1 − ρm

2

[
μ̃

2
(i21 − 2i2 − 3 − ln i23) + λ̃

2
(ln i3)2

]

= η
NV

2
μ

2
[(1 + k)2(i21 − 2i2) − 2k(1 + k)i1 − 3(1 − k2)]

− η(1 + k)
NV

2
μ ln[(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3]

+ η
NV

2
λ

2
{ln[(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3]}2

+ η
1 − ρm

2

[
μ̃

2
(i21 − 2i2 − 3 − ln i23) + λ̃

2
(ln i3)2

]
. (4.28)
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The corresponding principal Cauchy stress components are

σ
(cf)
i = η(1 + k)

NV
2

μ
αi

α1α2α3

[
αi(1 + k) − k − 1

αi(1 + k) − k

]

+ η(1 + k)
NV

2
λ

αi

α1α2α3

ln[(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3]
αi(1 + k) − k

+ η
1 − ρm

2
1

α1α2α3
[μ̃(α2

i − 1) + λ̃ ln i3], i = 1, 2, 3. (4.29)

In the small strain limit, the shear modulus is equal to

μ
(cf)
0 = η(1 + k)2 NV

2
μ + η

1 − ρm

2
μ̃, (4.30)

the corresponding Young’s modulus takes the form

E(cf)
0 = η(1 + k)2 NV

2
E + η

1 − ρm

2
Ẽ, (4.31)

where

E = μ
2μ + 3λ

μ + λ
, Ẽ = μ̃

2μ̃ + 3λ̃

μ̃ + λ̃
, (4.32)

and the Poisson’s ratio is

ν
(cf)
0 = k

1 + k
λ

2(λ + μ)
+ 1

1 + k
λ̃

2(λ̃ + μ̃)
= k

1 + k
ν + 1

1 + k
ν̃. (4.33)

For the cellular solid with empty cells, the strain energy function is W (c)(i1, i2, i3) and the
corresponding parameters are obtained by setting ρm = 1 in the derivation of the parameters for
the case with filled cells.

5. Numerical examples
In this section, the mechanical performance of the continuum hyperelastic models is compared
numerically to that of finite-element simulations of three-dimensional periodic closed-cell
structures under large tension. The finite-element models were created in SolidWorks and
imported into the Finite Elements for Biomechanics (FEBio) software [39], where a mesh
refinement study was performed. The undeformed structures created in SolidWorks are shown
as figures 4 and 5 in the Appendix.

Every structure is deformed by imposing the following boundary conditions: the lower
external horizontal face is fixed in the Y/second/vertical-direction and free to slide in the
X/first/horizontal-direction and in the Z/third/out-of-plane-direction; the upper external
horizontal face is under prescribed tension in the Y-direction and is free to slide in the X and
Z-directions; the remaining external and internal cell faces deform freely.

For each structure, the cell walls form a continuous piece of solid material (see appendix),
described by the compressible neo-Hookean model (4.24) with μ = E/[2(1 + ν)] and λ = νE/[(1 +
ν)(1 − 2ν)], where E = 0.1 MPa and ν = 0.49. When the cells are filled, the cell core is characterized
by the neo-Hookean model (4.25) with μ̃ = Ẽ/[2(1 + ν̃)] and λ̃ = ν̃Ẽ/[(1 + ν̃)(1 − 2ν̃)], where, (I)
Ẽ = 0.01 MPa and ν̃ = 0.49 for structure 1 and model 1, i.e. the cell core is 10 times softer than the
cell walls; (II) Ẽ = 0.005 MPa and ν̃ = 0.49 for structure 2 and model 2, i.e. the cell core is 20 times
softer than the cell walls; and (III) Ẽ = 0.001 MPa and ν̃ = 0.49 for structure 3 and model 3, i.e. the
cell core is 100 times softer than the cell walls.

The corresponding effective modulus Eeff is computed as the slope of the mean effective
Cauchy stress (normalized by E = 0.1 MPa) vs. the mean effective logarithmic strain curve, and
is shown up to 20% vertical tension, together with the effective modulus for the associated
continuum model. The mean value was calculated as the sum of the values on all the finite
elements divided by the number of elements.
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Figure 2. A comparison between model (continuous line) and simulation (dashed line) of the effective elastic modulus. The
cell-core is 10 times softer than the cell walls for structure 1, 20 times softer than the cell walls for structure 2, and 100 times
softer than the walls for structure 3. The closed cubical cells and their inclusions are shown at 20% (right) tension in the vertical
direction (colour bar showing the displacement in the same direction). (Online version in colour.)
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Figure 3. A comparison between model (continuous line) and simulation (dashed line) of the effective elastic modulus. The
cell-core is 10 times softer than the cell walls for structure 1, 20 times softer than the cell walls for structure 2, and 100 times
softer than the walls for structure 3. The closed hexagonal prismatic cells and their inclusions are shown at 20% (right) tension
in the vertical direction (colour bar showing the displacement in the same direction) is shown. (Online version in colour.)

(a) Closed cubical cells
If the unit volume is cubical in shape, then six cell edges, each of undeformed length L, are
meeting at a common joint of surface area 6t2 = 6k2L2, where k = t/L. Taking a representative
volume of the cellular material scale in the undeformed state as a cube of side L + t = L(1 + k), the
volume of this cube is V̄m = (L + t)3 = L3(1 + k)3, while the volume of solid material contained in
this cube is V̄ = L3[3k(1 + k) + k3]. Hence the volume ratio is

V̄

V̄m
= 1 − 1

(1 + k)3

and is equal to (2.28). Setting V̄m = 1, the volume fraction of cell wall material in this cube is

NV = 6t2L(1 + k)
2k

= 3k
(1 + k)2 ,

and is equal to (2.29).
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(b) Closed hexagonal prismatic cells
When the unit volume is an hexagonal prism, five edges, each of undeformed length L, are
meeting at a common joint of surface area 5t2 = 5k2L2, where k = t/L. In this case, the volume
fraction of cell wall material is is equal to two-thirds of the volume fraction (2.29), i.e.

NV = 5t2L(1 + k)
2k

= 5k
2(1 + k)2 .

For the numerical examples involving three-dimensional periodic structures with cubical and
hexagonal prismatic cells, respectively, the numerical results plotted in figures 2 and 3 show that,
if the deformation of the cell walls is close to the triaxial stretch assumed theoretically, then the
continuum models offer a good approximation for those structures. These models also correctly
predict the macroscopic stiffening of the structure as the stiffness of the cell core increases.

6. Conclusion
Bridging the microstructural responses of individual cells with the apparent macrostructural
behaviour is a challenging modelling task in materials science, as far as soft cellular structures
with components exhibiting material nonlinear elasticity are concerned. To date, there is no
established continuum model for this type of structures, even though, in principle, this should
stand on the shoulders of the existing nonlinear elasticity theory. Here, we strived to make our
models analytically tractable, and in addition, demonstrate their numerical performance through
suitable comparisons with finite-element models of cellular structures under similar loading
conditions.

Theoretically, we devised a class of mesoscale hyperelastic models applicable to closed cellular
structures with randomly oriented, isotropic hyperelastic cell walls, whereby the elastic behaviour
at the cell level is reflected at the continuum mesoscale level. To validate our theoretical results,
computationally, for the finite-element models, the structural geometry and the cell-wall material
need to be specified, and we chose periodic cellular structures of neo-Hookean material for
exemplification. When tested computationally, our continuum models show both the expected
qualitative behaviour predicted theoretically and very good numerical agreement with the finite-
element models of various cellular structures under similar loads. In particular, our models
capture the macroscopic stiffening of a structure when the stiffness of the cell core increases.

The hyperelastic models that we developed are suitable for incorporation in an adaptive multi-
scale approach for the finite-element analysis of cellular bodies, whereby a cellular structure is
first represented as a continuum hyperelastic material, then the areas where the stress field is in
equilibrium with the load distribution and reaches critical values are re-modelled at the cellular
level to capture the local mechanical effects.
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Appendix A. Structural geometries for computer simulations
In this appendix, we show the undeformed closed-cell structures created in SolidWorks which
have been analysed in §5 (figures 4 and 5).
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(a) (b) (c)

Figure 4. Closed-cell structure with 5 × 5 × 5 cubical cells, showing the undeformed structure (a), the distribution of cells
(b) and a plane cross section parallel to some of the cell walls (c). (Online version in colour.)

(a) (b) (c)

Figure 5. Closed-cell structure with hexagonal prismatic cells, showing the undeformed structure (a), and plane cross sections
parallel to some of the cell walls (b) and (c). (Online version in colour.)
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