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Abstract

Answer set programming is a form of declarative programming that can be used
to elegantly model various systems. When the available knowledge about these
systems is imperfect, however, the resulting programs can be inconsistent. In
such cases, it is of interest to find plausible repairs, i.e. plausible modifications
to the original program that ensure the existence of at least one answer set.
Although several approaches to this end have already been proposed, most of
them merely find a repair which is in some sense minimal. In many applications,
however, expert knowledge is available which could allow us to identify better
repairs. In particular, we consider the scenario where this expert knowledge is
formulated as rules of thumb, but no training data is available to learn how
these rules of thumb interact. The main question we address in this paper is
whether we can then still aggregate the rules of thumb in a useful way. In addi-
tion to standard aggregation techniques, we present a novel statistical approach
that assigns weights to these rules of thumb, by sampling, in a particular way,
from a pool of possible repairs. In particular, we evaluate how frequently each
given rule of thumb is violated in the sample of repairs, and use the Z-score
of this distribution to set the weight of that rule. We analyze the potential of
using expert knowledge in this way, by focusing on a specific case study: Gene
Regulatory Networks. We describe the rules of thumb that express available
expert knowledge from the biological literature and explain how they can be en-
coded while repairing inconsistencies. Finally, we experimentally compare the
proposed repair strategies using rules of thumb against the baseline strategy of
identifying minimal repairs.
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repair, Rule of thumb, Aggregation method
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T gene1 gene2 gene3

t=0 + - -
t=1 - + -
t=2 - + +

Figure 1: A time-series table which is inconsistent with a given GRN. Edges with pointed
end points denote activations. Edges with flat end points denote inhibitions. The edge 2 ⊣ 2
causes the inconsistency.

1. Introduction

Answer Set Programming (ASP) is a form of declarative programming mainly
oriented towards NP-hard problems [1]. It enables non-monotonic reasoning by
virtue of a negation-as-failure operator with a purely declarative semantics [2].
ASP programs describe search or optimisation problems as a set of rules. This
set of rules is fed to answer set solvers that find stable models (i.e. answer sets)
which correspond to the solutions of the considered problem. Answer set pro-
grams are sometimes also used to simulate systems (e.g. for solving planning
problems [3, 4]), in which case answer sets typically correspond to sequences of
states.

We are interested in the case where ASP programs have no answer sets. We
call these programs inconsistent, and we look for ways to restore their consis-
tency. For example, in a search problem, having no answer sets could mean that
the problem is over-constrained, and we may want to look at ways to relax the
problem. In applications where ASP programs simulate a system, inconsisten-
cies could mean that the rules describing the system are not in agreement with
available observations, and we may want to find a way to adapt the description
of the system. In this paper, we will focus on the latter type of ASP programs.

While different methods exist for repairing ASP programs, most of them
are based on finding some sort of minimal repair, e.g. adding or removing the
smallest number of facts to ensure that the program has at least one answer
set [5, 6, 7]. While this is a reasonable principle in the absence of any further
information, in real-world applications we often have access to some kind of
expert knowledge about the system being modelled that can be exploited to
identify the most plausible repair, which may not necessarily be minimal, as we
will see in Section 8.

To demonstrate this idea, let us consider the biological setup in Fig. 1. The
figure depicts a table containing observed time-series data about which of three
genes were active at different time points, and a draft of a Gene Regulatory
Network (GRN) which might not be correct. A GRN is a directed graph that
represents the way a group of genes affect one another. GRNs can be modelled
in different ways [8, 9, 10], with one popular model being Boolean networks [11].
Treating a GRN as a Boolean network implies that an edge from gene X to gene
Y can either represent a positive regulation, which means that X activates Y, or
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a negative regulation, which means that X inhibits Y. The data from the table
in Fig. 1 is encoded in ASP as facts of the form gene(X) to represent every
gene, and active(X,T ) or inactive(X,T ) to encode whether a gene X is active
or inactive at time step T respectively. In particular, we consider the following
facts:

gene(1). gene(2). gene(3).

active(1, 0). inactive(2, 0). inactive(3, 0).

inactive(1, 1). active(2, 1). inactive(3, 1). (1)

inactive(1, 2). active(2, 2). active(3, 2).

Similarly, the GRN in Fig. 1 is encoded in ASP as a set of facts of the form
edgeInit(X,Y, 1) or edgeInit(X,Y,−1) to indicate that there exists an edge be-
tween gene X and gene Y with a positive regulation or negative regulation
respectively:

edgeInit(1, 1,−1). edgeInit(1, 2, 1). edgeInit(2, 2,−1). edgeInit(2, 3, 1). (2)

The semantics of Boolean networks are as follows. If gene X is active at a
specific time step, and X activates gene Y, then Y becomes active in the next
time step. Similarly, if X is active and X inhibits Y, Y becomes inactive in the
next time step. These activation rules can be encoded in ASP as follows:

activates(X,Y )← edgeInit(X,Y, 1).

inhibits(X,Y )← edgeInit(X,Y,−1).

active(Y, T + 1)← activates(X,Y ), active(X,T ).

inactive(Y, T + 1)← inhibits(X,Y ), active(X,T ).

(3)

The facts in (1)-(2) and the rules in (3) represent a simplified program that
encodes GRNs in ASP. More details about activation rules, as well as the entire
ASP encoding of this setup are provided in Section 6. The GRN graph might
have missing edges and/or erroneous edges due to the complexity of network
generation methods [12, 13], and as a result it might be inconsistent with the
observed experimental data in the table. The task at hand is to repair the
network to make it consistent with the table. Note that since the network and
table are encoded as an ASP program, this problem boils down to repairing an
inconsistent ASP program. A common method of repair is to find the smallest
number of modifications to the graph that makes it consistent with the table.
Based on the GRN and table in Fig. 1, since gene 2 stays active from t = 1
to t = 2, a possible minimal repair consists in removing the edge 2 ⊣ 2. The
repaired network is shown in Fig. 2(a).

However, there is a known property about GRNs which states that the di-
ameter (i.e. the length of the longest of the shortest paths between two nodes
in the graph) of a GRN tends to be very small. Taking this information into
account, we may consider that the repaired network in Fig. 2(b) is actually more
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(a) (b)

Figure 2: Two possible repairs for the GRN from Fig. 1. (a) A minimal repair (diameter=2).
(b) A repair that minimizes the diameter of the graph (diameter=1).

plausible. Notice that this repair is not minimal (we removed the edge 2 ⊣ 2
and added the edge 3 ⊣ 1), but the diameter of this new graph (diameter=1) is
smaller than the one for the previous repair (diameter=2).

The aim of this paper is to assess the viability of using informal, expert-
provided rules of thumb for repairing inconsistent ASP programs. While we
only consider GRNs in our experiments, the proposed method is entirely generic
(see Section 4), being applicable to any setting where expert knowledge can be
formalized in ASP [14, 15, 16]. We focus in particular on the case where the
only available information to guide the repair process comes in the form of
informal rules of thumb. While it is clear that learning the weights of these
rules from training data would yield better repairs, we are interested in the
case where training data is hard to obtain. In this scenario, setting the weights
for every rule of thumb becomes a difficult task. To address this problem, we
present different techniques for aggregating the evidence that is provided by the
number of times each rule of thumb is violated in a given repair, and we show how
these techniques can be encoded in ASP. In addition to standard aggregation
techniques, such as leximin, leximax, or voting approaches, we present a novel
statistical approach that tries to learn the importance of every rule of thumb
in an unsupervised way. In particular, this method compares the total penalty
of each rule against the expected total penalty, using the Z-score, with the
expected penalty being estimated from a set of randomly sampled repairs.

This paper is an extended version of our work published in [17]. We extend
our previous work by presenting a general description of the method of repairing
inconsistencies using rules of thumb, and show how it can be applied to different
domains. We also explore and experimentally compare different approaches of
aggregating rules of thumb while repairing an ASP program (Sections 5, 8). The
paper is structured as follows. In Section 2, we present an overview of related
work. In Section 3, we provide some background on answer set programming. In
Section 4, we define rules of thumb, and give a general description of the method
of repairing inconsistencies using rules of thumb. In Section 5, we present dif-
ferent approaches for aggregating rules of thumb to identify optimal repairs for
an inconsistent ASP program. In Section 6, we introduce the considered ap-
plication domain. In particular, we show how the compatibility between Gene
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Regulatory Networks (GRNs) and time-series tables can be checked using an
ASP program. Moreover, we explain a method for repairing conflicts, which is
based on finding a minimal set of changes to the GRN that makes the resulting
answer set program consistent. In Section 7, we describe rules of thumb that
express available expert knowledge from the biological literature about GRNs,
and we show how they can be encoded in ASP. Subsequently, in Section 8, we
discuss our experimental results. Finally, we conclude in Section 9.

2. Related Work

Our work is related to many areas of research. ASP has been widely used as
a language to detect and repair inconsistencies. This is mainly due to its high
expressiveness, declarative nature and flexibility. For example, [16] uses ASP to
find semantic inconsistencies (i.e. concepts with erroneous synonymy) in medical
language systems. In [18] an application is described where ASP is used for data
integration, which deals with inconsistent and incomplete databases. ASP is also
used in [6] to retrieve consistent information from inconsistent databases using
queried repairs and exceptions.

Several authors have focused on repairing inconsistent answer set programs.
The most common method of repair is the minimal repair method used in
[19, 20, 6, 5]. The basic idea behind this method is to find a minimal subset of
rules whose removal restores consistency to the program. In [21], a technique
of dynamic consistency checking for computing answer sets in inconsistent ASP
programs is presented. Under this method, only constraints that are deemed
relevant to partial answer sets (i.e. subsets of actual answer sets) are tested,
allowing inconsistent knowledge bases to be successfully queried. In [22, 23],
different classifications of “errors” in the ASP program are introduced. Addi-
tionally, interactive debugging tools in the form of algorithms-based methods,
query-based methods and a tagging technique are proposed. In [24], the idea
of belief revision in logic programming under the answer set semantics is pro-
posed: given logic programs P and Q, the goal is to determine a program R
that corresponds to the revision of P by Q. This allows solving inconsistencies
that may arise when adding new formulas to an existing ASP program. This
approach is again based on a form of minimal repair, as the revised program R
is the “closest” program to P that is also consistent. In [25], the notion of para-
coherent answer sets is presented to repair inconsistent ASP programs. These
answer sets are so-called semi-stable models based on a modification of ASP
programs, called epistemic transformation.

Biological networks have been previously considered as an application for
ASP by several authors. In [26], biological networks are modelled by action
languages via ASP. In [27], ASP is used to model GRNs as Boolean networks,
similarly to how we modelled GRNs in (1)-(3). The most closely related research
was presented in [28, 5, 29], where ASP is used to encode GRNs in a Boolean
setting, and to detect and repair inconsistencies found in these GRNs. The
main difference with our approach is that these existing methods only consider
the minimal repair method (which we use as a baseline method in Section 8).
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The idea of repairing inconsistencies using soft constraints or “rules of thumb”
as we do in this paper, is closely related to the motivation for using Markov
Logic in many applications. Markov Logic, presented first in [30], combines
first-order logic with probabilistic graphical models. Syntactically, a Markov
Logic Network (MLN) is a set of weighted first-order logic formulas. These
weights represent the importance of the corresponding formulas. However, the
weights are generally difficult to interpret and therefore difficult to set man-
ually. In practice, the weights are almost always learned from training data
[31, 32, 33]. In [34], Markov Logic is combined with Allen’s interval calculus
to determine the most consistent subset of an inconsistent database. However,
that method needs a database with predefined confidence scores for every fact.
In [35], MLNs are used to encode domain knowledge for resolving ambiguities
and inconsistencies in extracted information, and for merging multiple informa-
tion sources. This method relies on weight learning from training data to set
the weights of the MLN rules. In areas such as information extraction, the use
of Markov logic for repairing inconsistencies is relatively common [36, 37, 38].
This use of Markov logic is different from our method as we assume that there
is no training data available to learn confidence weights for each soft constraint.

The idea of adding weights to ASP rules has been widely studied. In [39],
weights are added to ASP rules to represent the importance of the rules. In [40,
41, 42, 43], answer set programming (ASP) and possibility theory is combined
to form possibilistic answer set programming (PASP), where weights are used to
determine the certainty levels of the ASP rules. In [44], a language is introduced
that combines ASP semantics with Markov Logic. The idea of adding soft
constraints with varying weights to restore consistency is discussed, with an
emphasis on the difficulty of setting these weights in the absence of training
data.

Finally, different approaches have been proposed for modeling preferences
in answer set programming. The research in [45, 46, 47] presents the notion of
strong and weak answer sets depending on how strongly encoded preferences
are taken into account. In the case of inconsistency, preference rules of the
form “rule A has higher priority over rule B” are used to resolve conflicts.
This method explicitly models preferences between constraints in order to relax
over-constrained optimization or search problems. This is different from our
repair approach since it requires explicit preference rules, which we don’t require.
In [48, 49], different applications of preferences using ASP are discussed. In
order to represent preferences, an extension of ordered disjunction programs is
used. These methods also require certainty scores for the facts and rules of an
inconsistent program, which is not needed for our methods.

3. Answer Set Programming

Answer Set Programming (ASP) is a declarative problem solving language
[2, 1], which requires users to describe a problem as a set of rules. An ASP rule
has the form
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h1 | . . . | hi ← a1, . . . , aj ,not bj+1, . . . ,not bk. (4)

where h1, . . . , hi, a1, . . . , aj and bj+1, . . . , bk are called atoms. Let r be an
ASP rule of the form (4). We call head(r) = {h1, . . . , hi} the head of the
rule r and body(r) = {a1, . . . , aj ,not bj+1, . . . ,not bk} the body of r. Let
body+(r) = {a1, . . . , aj} and body−(r) = {bj+1, . . . , bk}. The “|” in the head
of a rule represents a disjunction, while the “,” in the body of a rule represents
a conjunction. If body(r) = ∅, then r is called a fact. For convenience, the
symbol ← is often omitted when writing facts in ASP. If head(r) = ∅, then r is
called a constraint. Constraints act as filters on the possible answer sets. An-
swer set programs will often follow a generate-and-test methodology, in which
a set of rules is used to generate candidate solutions and constraints are then
used to filter these candidates. The keyword not represents negation-as-failure
in ASP, where not a intuitively holds whenever we cannot derive that a holds.
An answer set program Π is a set of ASP rules of the form (4). A set of atoms
X is closed under Π if for any rule r ∈ Π, head(r) ∈ X whenever body+(r) ⊆ X.
The smallest set of atoms closed under Π is denoted by Cn(Π). The reduct ΠX

of Π relative to X is defined by

ΠX = {head(r)← body+(r) | r ∈ Π and body−(r) ∩X = ∅} .

A set X of atoms is called an answer set (i.e. stable model) of Π if Cn(ΠX) = X.

Example 1. Let Π be the answer set program formed by the rules “a← not b”
and “b ← not a”. For X = {a}, ΠX = “a ← ” and Cn(ΠX) = {a}. Since
Cn(ΠX) = X = {a}, {a} is an answer set of Π. Similarly, for X = {b},
ΠX = “b← ” and Cn(ΠX) = {b}. Hence {b} is also an answer set of Π.

In practice, it is often easier to encode ASP programs using first-order rules
such as R(X1, X2, X3) ← Q(X1, X2), not S(X3). Such rules should be seen as
a compact representation of a set of ASP rules, called the groundings of the
first-order rule, which are obtained by considering all possible instantiations of
the variables by constants appearing in the program. An ASP solver (e.g. clasp
[50]) is then used to find the answer sets of the ground program. Typically,
ASP programs are specified such that there is a one-to-one mapping between
the answer sets of the program and the solutions of the problem being modelled.
In this paper, we are interested in ASP programs that have no answer sets. We
call such programs “inconsistent ASP programs”.

Example 2. Let Π be the answer set program formed by the rule “a← not a”.
For X = {∅}, ΠX = “a← ” and Cn(ΠX) = {a}. For X = {a}, ΠX = “ ” and
Cn(ΠX) = {∅}. Hence, there is no set X that satisfies the relation Cn(ΠX) =
X. Therefore, Π has no answer sets. We call Π an inconsistent ASP program.

Most ASP solvers offer extensions in the form of simple operations that can be
used in the ASP rules. These extensions include “aggregates” and “optimization
statements”. Aggregates are special predicates which behave like functions that
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evaluate to some value. For example, the solver clasp supports the aggregates
“#count”, and “#sum”, to name a few. Optimization statements extend the
basic question of whether a set of atoms is an answer set, to whether it is an
optimal answer set. For example, the solver clasp supports the optimization
statements “#minimize” and “#maximize”, which have the effect that only
answer sets that minimize or maximize some criteria are considered optimal.
Moreover, priorities in the form of integers can be associated with optimization
statements, which allows the use of multiple instances of these statements within
the same program.

4. Repairing Inconsistencies Using Rules of Thumb

In this section, we give a general description of a repair method that consists
in using rules of thumb to repair an inconsistent ASP program. Let P be an
inconsistent ASP program, FP the rules r of P such that body(r) = ∅ (i.e. the
facts of P ), RP = P \ FP and ΓP the set of all the literals in P , defined
by ΓP =

⋃

r∈P head(r) ∪ body(r). We assume that two disjoint sets of facts
F inc and F con are defined a priori, such that for any program P modeling the
considered type of problem, it holds that FP ⊆ F inc ∪ F con. The set F inc

contains the facts that may be causing an inconsistency in a given program
P . For example, in a biological application, F inc may contain facts that relate
to speculations about an underlying model while F con may contain facts that
relate to reliable experimental observations. Repairing P then consists of adding
and/or removing facts of F inc from FP to create an ASP program Pmod that is
consistent.

Definition 1. Repair
A repair of an inconsistent answer set program P is a pair (X,Y ) of sets of

facts that satisfies the following conditions:

• X ∩ Y = ∅

• X,Y ⊆ F inc

• Pmod = (FP \Y )∪X∪RP is an ASP program that has at least one answer
set

In order to find a repair of an inconsistent answer set program, we extend the
program with rules that guess the candidate sets X and Y . The answer sets
of this extended program will then encode the pairs (X,Y ) that correspond to
valid repairs. Consider the following example: let F inc = {f(1), f(2)}. Then,
all possible candidate sets are:

• C1 : X = {f(1)}, Y = {f(2)}

• C2 : X = {f(1)}, Y = ∅

• C3 : X = {f(2)}, Y = {f(1)}
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• C4 : X = {f(2)}, Y = ∅

• C5 : X = {f(1), f(2)}, Y = ∅

• C6 : X = ∅, Y = {f(1), f(2)}

These candidate sets can be computed in ASP as follows:

add(f (I ))← not nAdd(f (I )), f (I ).

nAdd(f (I ))← not add(f (I )), f (I ). (5)

remove(f (I ))← not nRemove(f (I )), f (I ).

nRemove(f (I ))← not remove(f (I )), f (I ).

In fact, these rules introduce all the possible combinations of either adding or not
adding every fact of F inc to FP , and either removing or not removing every fact
of F inc from FP . By updating FP correspondingly, all the possible candidate
repairs are generated. In practice, the number of candidate repairs is usually
high, and many valid repairs are found. Hence, a method to select a good
repair is needed. A common strategy, which we refer to as the minimal repair
approach, consists in finding repairs with the smallest number of modifications
to FP .

Definition 2. Minimal Repair
A minimal repair of an inconsistent answer set program P is a repair (A,B)

such that for all other repairs (X,Y ), it holds that |A|+ |B| ≤ |X|+ |Y |.

While searching for a minimal repair is a reasonable strategy in absence of any
background knowledge (supported by Occam’s razor principle), our hypothesis
is that we can find more accurate repairs by incorporating rules of thumb. While
the nature of these rules of thumb is application dependent, we will assume that
they can be encoded using ASP rules, and that these rules correspond to some
cost-inducing program that does not interfere with the initial program. This
allows us to describe the repair mechanisms based on these costs, independent
of the specific choices of the rules of thumb. In other words, a rule of thumb
is encoded as an ASP program which (i) does not derive any literals from the
initial program P , and (ii) derives a cost value encoded by an integer, which will
reflect a penalty value that the rule of thumb associates with a given repair. To
use these rules of thumb, we create a new program Q based on the inconsistent
program P and the rules of thumb, such that the answer sets of Q correspond
to the optimal repairs of P . In order to do so, we extend P based on the rules in
(5) that generate candidate repairs, and add the rules of thumb that encode a
cost value for every candidate repair. We can then use these cost values, instead
of the number of modifications to FP , as the basis for selecting repairs.

Thus, the rules of thumb added to the ASP program act as “soft con-
straints”. In fact, rules of thumb can encode different types of knowledge,
including domain-free rules, i.e. rules that can be applied to a multitude of
problems that are of similar structure (e.g. transitivity constraints in taxonomy
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Age Income Vote
Roy 20-30 high conservative
Pieter 20-30 low conservative
John N/A low N/A

Figure 3: On the left, a table that shows the age, income class and vote of three people
collected from a survey. On the right, a social network that represents friendship between
people that took part in the survey. An edge between two people means that they are friends,
otherwise, they are not.

problems), domain-specific properties (e.g. medical knowledge about cells found
in the biological literature), and even user assumptions and intuitions. The cost
values introduced by these rules can then be aggregated to define an overall
preference ordering for the set of possible repairs. In Section 5 we will discuss
several ways in which these costs can be aggregated.

Consider the following example to illustrate our approach. We have data
about individuals collected from a survey: age group, income group, and vote.
The age group is represented by intervals of 10 years (e.g. in20 represents 20-30,
in30 represents 30-40, in40 represents 40-50, etc.), the income group is repre-
sented by three levels: high, medium and low, and the vote is either “liberal” or
“conservative”. Example data from the survey is shown in Fig. 3. We also have
a social network that represents whether the individuals are friends (every node
in the network graph corresponds to one person, and an edge between person
A and person B reads “A and B are friends”). An example social network is
shown in Fig. 3. The survey contains missing and/or wrong information. The
goal is to correct wrong information, and possibly to complete missing informa-
tion. In our example, we assume that it is known that “liberal” won the total
vote. i.e. at least two out of the three persons voted “liberal”. This problem
can be encoded in ASP as follows:

person(roy).

person(pieter).

person(john).

incomeGrp(low).

incomeGrp(medium).

incomeGrp(high).

age(roy , in20 ).

age(pieter , in20 ).

vote(roy , conservative).

vote(pieter , conservative).

ageGrp(in20 ).

ageGrp(in30 ).

ageGrp(in40 ).

voteGrp(liberal).

voteGrp(conservative).

income(roy , high).

income(pieter , low).

income(john, low).

friends(pieter , john).
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votesLib(T )← T = #count{vote(X , liberal)}.

← votesLib(T ), T < 2.

It is clear that this is an inconsistent ASP program, since the facts encode
that Roy and Pieter voted “conservative”, while the program also includes the
constraint that there were at least two “liberal” votes. Let P be the program de-
scribed above. In this example, we assume that the social network is correct, and
that any inconsistencies directly result from errors in the survey data. In partic-
ular, we assume that F inc = {age(roy , in20 ), age(pieter , in20 ), age(john, in20 ),
age(roy , in30 ), age(pieter , in30 ), age(john, in30 ), age(roy , in40 ), age(pieter , i -
n40 ), age(john, in40 ), income(roy , high), income(roy ,medium), income(roy , lo-
w), income(pieter , high), income(pieter ,medium), income(pieter , low), income-
(john, high), income(john,medium), income(john, low), vote(roy , conservativ -
e), vote(roy , liberal), vote(pieter , conservative), vote(pieter , liberal), vote(john,-
conservative), vote(john, liberal)} and that F con = {friends(pieter , john)}.

In order to find all the valid repairs, we first extend the program by intro-
ducing rules that generate all the possible candidate sets X and Y , as follows:

remove(age(P ,A))← age(P ,A), not nRemove(age(P ,A)).

nRemove(age(P ,A))← age(P ,A), not remove(age(P ,A)).

remove(income(P , I ))← income(P , I ), not nRemove(income(P , I )).

nRemove(income(P , I ))← income(P , I ), not remove(income(P , I )).

remove(vote(P ,V ))← vote(P ,V ), not nRemove(vote(P ,V )).

nRemove(vote(P ,V ))← vote(P ,V ), not remove(vote(P ,V )).

add(age(P ,A))← person(P), ageGrp(A), not age(P ,A),

not nAdd(age(P ,A)).

nAdd(age(P ,A))← person(P), ageGrp(A), not age(P ,A),

not add(age(P ,A)).

add(income(P , I ))← person(P), incomeGrp(I ), not income(P , I ),

not nAdd(income(P , I )).

nAdd(income(P , I ))← person(P), incomeGrp(I ), not income(P , I ),

not add(income(P , I )).

add(vote(P ,V ))← person(P), voteGrp(V ), not vote(P ,V ),

not nAdd(vote(P ,V )).

nAdd(vote(P ,V ))← person(P), voteGrp(V ), not vote(P ,V ),

not add(vote(P ,V )).
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Then, we add rules to update FP with respect to the candidate repairs, as
follows:

age n(P ,A)← age(P ,A), not remove(age(P ,A)).

age n(P ,A)← add(age(P ,A)).

income n(P , I )← income(P , I ), not remove(income(P , I )).

income n(P , I )← add(income(P , I )).

vote n(P ,V )← vote(P ,V ), not remove(vote(P ,V )).

vote n(P ,V )← add(vote(P ,V )).

Note that the predicate vote(X , liberal) is updated to vote n(X , liberal) in the
rule “votesLib(T )← T = #count{vote(X , liberal)}”. At this point, the answer
sets of the program encode all the possible repairs of P . To solve the problem
using the minimal repair method, we first add rules that compute the cost of
adding and removing edges from FP , as follows:

costAdding(X )← X = #count{add(F )}.

costRemoving(Y )← Y = #count{remove(F )}.

cost(0 ,C )← costAdding(X ), costRemoving(Y ),C = X + Y .

Minimizing C in the predicate cost(0 ,C ) allows us to compute the minimal
repairs. In this case, since we need at least two “liberal” votes, these repairs
will consist in adding the fact vote(john, liberal), and changing at least one of
the other two votes from “conservative” to “liberal”. For example, changing
Roy’s vote from “conservative” to “liberal” corresponds to removing the fact
vote(roy , conservative) from FP , and then adding the fact vote(roy , liberal).
Hence, changing a vote has a cost of 2. Since the minimal repair does not take
into account any additional information, changing either Roy’s vote or Pieter’s
vote to “liberal” are both valid solutions. From this condition alone, we get two
possible minimal repairs that are equally valid, and it is up to the user to decide
which repair to pick.

However, adding information in the form of rules of thumb allows us to
choose who is most likely to have voted liberal. For example, let us consider the
following four rules of thumb:

1. If two people have the same age, and are in the same income class, they
are likely to have voted in the same way.

2. If two people are friends, they are likely to have voted in the same way.

3. If two people are friends, and they are in the same income class, they are
likely to be in the same age group.

4. If a person is in the “high” income class, they are more likely to vote
“conservative”.
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These rules of thumb can be encoded in the program as follows:

penalty1(X,Y )← age n(X,A), age n(Y,A), income n(X, I), income n(Y, I),

vote n(X,V 1), vote n(Y, V 2), V 1 ! = V 2.

cost(1, C)← C = #sum[penalty1(X ,Y )].

penalty2(X,Y )← friends(X,Y ), vote n(X,V 1), vote n(Y, V 2), V 1 ! = V 2.

cost(2, C)← C = #sum[penalty2(X ,Y )].

penalty3(X,Y )← friends(X,Y ), income n(X, I), income n(Y, I),

age n(X,A1), age n(Y,A2), A1 ! = A2.

cost(3, C)← C = #sum[penalty3(X ,Y )].

penalty4(X)← income n(X,high), vote n(X, liberal).

cost(4, C)← C = #sum[penalty4(X )].

For simplicity, we choose the penalty cost for every violation of a rule of thumb
to be equal to 1. The simplest way to aggregate these penalty costs is to add
the individual costs together with the cost of adding and removing facts from
FP using the following rule:

totalCost(T )← T = #sum[cost(X ,C ) = C ].

Then, the repair that has the lowest total cost is considered the best repair. In
this case, there is only one best repair and it satisfies all the rules of thumb.
This repair has a total cost equal to 4. We get the best repair by remov-
ing the fact vote(pieter , conservative), and adding the facts vote(pieter , liberal),
vote(john, liberal), and age(john, in20 ). Note that encoding additional knowl-
edge using rules of thumb also allows us to fill out the missing age of John,
which a minimal repair method does not provide.

5. Aggregating Rules of Thumb

While it is clear that carefully modelled additional knowledge should lead to
better results, we are in particular interested in the case where only a straight-
forward encoding of rules of thumb is available. In the following, we describe
several ways to aggregate the penalty costs corresponding to different rules of
thumb and show how they can be implemented. Note that all repair methods
take into consideration the penalties introduced by the rules of thumb as well
as the penalty introduced by the repair operations (i.e. cost of adding and re-
moving facts from FP ). The effectiveness of these repair methods for the case
of GRNs is studied in Section 8.

5.1. Uniform Weights Approach

This is the simplest approach for using the rules of thumb without having
access to training data. The idea is to choose the weights such that each rule of
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thumb has approximately the same impact on the choice of repair. To accom-
plish this, in each candidate solution (i.e., each candidate repair), we identify
violations of each rule of thumb and increase the associated penalty cost by 1
for every violation. Then, we normalize the resulting penalty for each rule of
thumb, such that the expected total cost associated with each rule of thumb is
the same. The way in which this normalization factor is computed is problem-
specific. In Section 8 we will explain how this can be done for the case of GRNs.
Finally, the total cost of a repair is calculated by adding all the penalties to-
gether, along with the penalty associated with the repair operations, and the
repair with the lowest total cost is considered the best repair. With this ap-
proach, even if there is a rule of thumb that can possibly be violated much more
frequently than another one, both will have the same impact on the total cost
of a repair.

Example 3. Suppose we want to create a map that displays the current tem-
peratures of 100 cities in a specific region. In order to do so, we write a program
that extracts a list of 100 temperature measurements for the corresponding cities
from different weather websites. The goal is then to update the measurements
that are likely wrong with more plausible values. Suppose we also have two rules
of thumb R1 and R2. R1 encodes that the temperature difference between cities
in one region cannot be too large (i.e. all the measurements should belong to
a certain temperature range). R2 checks whether every measurement was ex-
tracted from a trusted source. Naturally, the penalty from R1 is either 0 if all
the measurements belong to the same temperature range, or 1 otherwise. On
the other hand, the penalty from R2 is increased by 1 every time we find a mea-
surement that was extracted from an untrusted source. In this case, since R2

can potentially be violated 100 more times than R1, we set the normalization
factor of R1 to 100, and the normalization factor of R2 to 1. We keep the
normalization factor of the penalty introduced by the repair operation (i.e. re-
placing a measurement by another) equal to 1, since we can perform at most
100 replacements.

Now suppose we have two repairs A and B. In repair A, the penalty from
R1 is equal to 1, and the penalty from R2 is equal to 15. In repair B, the
penalties introduced by R1 and R2 are 0 and 35 respectively. Additionally, repair
A and repair B both required 10 repair operations. Hence, we consider two
vectors A=[1,15,10] and B=[0,35,10]. Note that the first two elements of each
vector correspond to the penalties introduced by the rules of thumb, and the
third element corresponds to the penalty introduced by the repair operations.
We then apply the normalization factors on the penalties to calculate the total
costs of every repair. For repair A, the total cost is totalCostA = (1 × 100 ) +
(15 × 1 ) + (10 × 1 ) = 115 and for repair B, the total cost is totalCostB =
(0 × 100 ) + (35 × 1 ) + (10 × 1 ) = 45 . Since 45 < 115 , we prefer repair B
over repair A using this method.
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5.2. Violations Improvements Method

In contrast to the previous method, this method does not define a total or-
dering between repairs. In particular, here we consider a voting based approach,
where a repair A is preferred over a repair B if for the majority of the rules of
thumb there are more violations in B than in A.

Example 4. Suppose we have two repairs A and B, and three rules of thumb
R1, R2 and R3. In repair A, the penalty from R1 is 30, the penalty from R2

is 20, and the penalty from R3 is 10. In repair B, the penalties introduced by
the three rules of thumb are 25, 15 and 40 respectively. Both repairs required
8 repair operations each. Hence, we consider two vectors A=[30,20,10,8] and
B=[25,15,40,8]. For every rule of thumb, we check whether repair B improved on
repair A based on the number of rule violations. For R1, repair B improved on
repair A because 25 < 30 . For R2, repair B also improved on repair A because
15 < 20 . For R3, repair B did not improve on repair A because 40 > 10 . The
number of repair operations needed for both repairs is the same. Therefore,
repair B is preferred over repair A using this method.

To find an optimal repair, we start by generating a random repair. Then,
we use a second ASP program to find a repair that improves on the first repair,
if such a better repair exists. This is done by generating a new repair, then
comparing it with the old repair as described above, using simple rules that
compare penalties and count the number of improvements. This process is
continued, where each time we specifically look for repairs that improve on all
the previously generated repairs, until no further improvements can be found.
As the preference ordering in this case is not transitive, this is important to
avoid Condorcet’s paradox (i.e. a situation in which collective preferences can
be cyclic), as illustrated in the following example.

Example 5. Assume we have a repair A, and two rules of thumb R1 and R2.
The penalty from R1 is 20 and the penalty from R2 is 20, and the repair A
requires 25 repair operations. We then consider the vector A=[20,20,25]. We
may then generate a new repair B that requires 40 repair operations, and with
the penalties from R1 and R2 equal to 10 and 10 respectively. The vector is then
B=[10,10,40], and B improves on A. After that, if we require an improvement
from the previous repair only, we may generate the repair C that requires 30
repair operations, and with the penalties from R1 and R2 equal to 30 and 5
respectively C=[30,5,30].

In Example 5, B improves on A, C improves on B, and A improves on C. For this
reason, we impose the condition that a newly generated repair must improve on
all the previously generated ones.

5.3. Leximin and Leximax Ordering

The idea of this aggregation method is based on the leximin and leximax
orderings [51]. Let u be a vector of integers. We denote by u∗ the vector

15



defined by u∗

i = uγ(i) with γ a permutation of the components of u such that
uγ(1) ≤ uγ(2) ≤ ... ≤ uγ(n). The leximin ordering between two vectors u and v
is then defined by u > v iff ∃k ≤ n such that u∗

k > v∗k and ∀i < k, u∗

i = v∗i . In
other words, the leximin ordering looks to minimize the smallest value of every
vector. If the smallest value of both vectors is identical, the second smallest is
considered; if the second smallest value is also identical, the third smallest value
is considered, etc. Similarly, the leximax ordering between two vectors u and v
is defined by u > v iff ∃k ≤ n such that u∗

k > v∗k and ∀i > k, u∗

i = v∗i . In other
words, the leximax ordering looks to minimize the largest value of every vector.

Example 6. Consider two vectors A = [5, 1, 4, 8] and B = [4, 6, 1, 7]. We first
sort the values in the vectors increasingly as Ainc=[1,4,5,8] and Binc=[1,4,6,7].
When using the leximin ordering, we will prefer A over B, as Ainc has a lower
value than Binc in the first component where they differ (i.e. 5 < 6). On the
other hand, when using leximax, we sort the values in the vectors decreasingly
as Adec=[8,5,4,1] and Bdec=[7,6,4,1]. Then, B will be preferred over A, as the
highest values in B and A are respectively 7 and 8.

To implement the leximin ordering in ASP, we use #minimize statements
with priorities, which are supported by the ASP solver clasp. We now illustrate
this construction for the penalties from Example 6, for the case of leximin.

a | b.

cost(1, 5)← a.

cost(2, 1)← a.

cost(3, 4)← a.

cost(4, 8)← a.

cost(1, 4)← b.

cost(2, 6)← b.

cost(3, 1)← b.

cost(4, 7)← b.

rank(1, 1) | rank(1, 2) | rank(1, 3) | rank(1, 4).

rank(2, 1) | rank(2, 2) | rank(2, 3) | rank(2, 4).

rank(3, 1) | rank(3, 2) | rank(3, 3) | rank(3, 4).

rank(4, 1) | rank(4, 2) | rank(4, 3) | rank(4, 4). (6)

← rank(I, J), rank(I,K), J ! = K.

← rank(I, J), rank(E, J), I ! = E.

← rank(I, J), rank(I + 1, L), cost(J,N),

cost(L,M), N > M.

costRank1 (C)← rank(1, I), cost(I, C).

costRank2 (C)← rank(2, I), cost(I, C).
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costRank3 (C)← rank(3, I), cost(I, C).

costRank4 (C)← rank(4, I), cost(I, C).

#minimize[costRank1 (C) = C @ 4].

#minimize[costRank2 (C) = C @ 3].

#minimize[costRank3 (C) = C @ 2].

#minimize[costRank4 (C) = C @ 1].

The literal “rank(I,J)” defines an ordering for every rule of thumb and reads:
the index I is given to rule of thumb J. The rules of thumb are ordered from
least violated to most violated using the three constraints. The optimization
statement “#minimize[costRank1(C)=C @ 4]” reads: minimize the cost of the
rule of thumb with rank 1 (i.e. the least violated rule of thumb) and give this
operation the highest priority (priority=4). In general, the four #minimize
statements encode the fact that we want to minimize the number of violations,
with the highest priority given to the least violated rule of thumb and the lowest
priority given to the most violated rule of thumb.

The ASP code for leximax ordering is very similar, with the only difference
that the sign “>” has been replaced by “<” in the rule:

← rank(I, J), rank(I + 1, L), cost(J,N), cost(L,M), N < M.

5.4. Z-score Approach

The idea of this method is to look at the total penalty for each rule of
thumb and compare this against the expected total penalty value, using the
Z-score. This expected penalty is estimated based on a large number of repairs.
In particular, given a sample S of repairs (how these repairs are sampled is
discussed in the next paragraph), we generate for each repair s in S a vector

x(s) = [x
(s)
1 , x

(s)
2 , . . . , x

(s)
m ] that contains the number of times x

(s)
j each rule of

thumb j (j ∈ {1, . . . ,m}) is violated. Then, we calculate the average number of
times µj each rule of thumb was violated across all the repairs in the sample,
as well as the standard deviation σj for the number of violations of every rule
of thumb. Based on these averages and standard deviations, we then construct
an answer set program for generating preferred repairs as follows. For each
repair r, we count the number of violations of every rule of thumb x(r) =

[x
(r)
1 , x

(r)
2 , . . . , x

(r)
m ] and use it to calculate the corresponding Z-score of every

rule of thumb. The total cost of the repair r is then defined as the sum of these
Z-scores:

m
∑

j=1

Zscore
(

x
(r)
j

)

=

m
∑

j=1

x
(r)
j − µj

σj

(7)

Comparing a repair with another then boils down to which repair has the small-
est cost, i.e. smallest sum of Z-scores.

We consider four setups which differ in how we sample repairs for estimating
the mean and variance. Variant A: we start with completely random repairs.
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These repairs have only one condition to satisfy, which is to remove the inconsis-
tency in the ASP program. Variant B: we only consider minimal repairs in the
sample. We generate these repairs using the minimal repair method discussed
in Section 6. The assumption underlying this second setup is that minimal re-
pairs will typically be more similar to the correct repairs than arbitrary repairs,
and therefore the characteristics of minimal repairs might be more informative.
Variant C: this variant consists of starting with a sample of repairs that are
close to being minimal, e.g. repairs involving at most three times the number
of operations in the minimal repairs. This represents a trade-off between the
first two variants, acknowledging that while minimal repairs, on average, would
be more plausible than arbitrary repairs, the correct repair is often not actually
among the set of minimal repairs. Variant D: we consider repairs of any cost,
but do not sample these repairs uniformly as in the first setup. In particular,
since there are many more repairs with a high cost than repairs with a low cost,
the sample in the first setup will be dominated by high-cost repairs. In this
fourth setup, we therefore sample repairs such that the probability of selecting
a repair with a given cost is uniform. In particular, we create groups of repairs
of the same cost, ranging from a group of repairs with minimal cost to a group
of repairs with maximal cost, and sample an equal number of repairs from each
group.

6. Case Study: Gene Regulatory Networks

While some general principles can be derived, we argue that the best way to
repair an inconsistent ASP program usually depends on domain-specific knowl-
edge. In this paper we illustrate this for biological networks, an established
application domain of ASP [28, 27]. In this section, we briefly recall what
GRNs are, and present a setup where inconsistencies arise. We show how to
encode this setup in ASP, and recall the minimal repair method, a popular,
straightforward method to resolve the inconsistencies.

A Gene Regulatory Network (GRN) is a network that represents the inter-
actions between a group of cell genes. The nodes of a GRN are genes, whereas
the edges of the network encode interactions between the genes. Two types
of possible interactions between a pair of genes are usually considered: a gene
either activates another gene or inhibits another gene. The intended meaning
is that if gene A activates gene B, and A is active at time step t, then B be-
comes active at time step t + 1. Likewise, if gene A inhibits gene B, and A is
active at time step t, then B becomes inactive at time step t + 1. In the case
where a gene is activated and inhibited simultaneously, different activation rules
may be applied to determine the subsequent state [52]. Different kinds of ex-
perimental observations can be used to automatically construct GRNs, such as
using a sparse Gaussian Markov Random Field, which relates network topology
with the covariance observed in the gene measurements [12], and the concept of
specificity-determining residues [13].

We consider a setup that consists of the following. We have an automatically
generated GRN describing cell interactions. Since it has been automatically
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constructed, it is likely to be imperfect, in the sense that we may later obtain
observations that are inconsistent with the behaviour predicted by the network.
In particular, we have a time-series table that lists the state of the genes in
this GRN at consecutive time steps. At every time step, a given gene can
either be active or inactive. This table represents experimental observations,
and is generally used to answer a wide range of biological questions about the
corresponding genes [53]. The table we have at our disposal represents data from
new experiments that was not available during the GRN generation process.
Our problem then boils down to repairing the GRN, if necessary, such that it
becomes consistent with the data from the time-series table, i.e. such that the
GRN can correctly predict the evolution of the states in the table.

6.1. Encoding GRNs in ASP

We recall how a GRN and corresponding time-series table can be encoded in
ASP, as presented in [28, 54, 52, 27]. This includes the observed time-series table
data, as well as the GRN graph that might be inconsistent with the table. For
every gene X, we introduce the fact gene(X). For every edge from gene X to gene
Y, we introduce the fact edgeInit(X,Y, 1) if X activates Y, or edgeInit(X,Y,−1)
if X inhibits Y. To encode the time-series table, we include facts of the form
active(X,T ) and inactive(X,T ) which indicate that gene X is active at time T
and that gene X is inactive at time T respectively. We also represent every time
step with the fact time(T ) with 0 ≤ T ≤ tfinal, with tfinal representing the final
time step observed.

Then, to check for consistency between the graph and the table, three types
of rules are needed. First, we need activation and inhibition rules for the graph,
which determine whether a gene is activated or inhibited (or neither) at each
time step. We use the following activation rule as described in [52]: if a gene is
positively regulated by at least one other gene, and it is not negatively regulated
by any other gene, then it is activated. A similar rule is used to determine when
a gene is inhibited, as shown in the following:

receivesAct(Y, T )← activates(X,Y ), active(X,T ).

receivesInh(Y, T )← inhibits(X,Y ), active(X,T ).

activated(Y, T )← receivesAct(Y, T − 1), not receivesInh(Y, T − 1).

inhibited(Y, T )← receivesInh(Y, T − 1), not receivesAct(Y, T − 1).

(8)

Second, we need rules to determine the state of every gene at every time step
based on the aforementioned activation and inhibition interactions given by the
GRN graph, and on the gene states at the previous time step given by the table:

inactive(Y, T )← active(Y, T − 1), inhibited(Y, T ).

active(Y, T )← active(Y, T − 1), not inhibited(Y, T ).

active(Y, T )← inactive(Y, T − 1), activated(Y, T ).

inactive(Y, T )← inactive(Y, T − 1), not activated(Y, T ).

(9)
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Third, we add the following rule to check whether the states of the genes gen-
erated by the activation and inhibition rules of the graph correspond with the
states of the genes in the time-series table

← active(Y, T ), inactive(Y, T ). (10)

It is clear that the resulting ASP program is consistent if and only if the GRN
graph is compatible with the time-series table. Otherwise, the program is in-
consistent.

6.2. Repairing GRNs Using Minimal Repair

Several methods have already been developed that use ASP to repair incon-
sistencies found in GRNs [5, 28, 54]. These methods usually consist in finding
some kind of minimal repair. In the following, we will discuss in more detail
how a minimal repair method can be encoded in ASP, i.e. we want to construct
an ASP program whose answer sets are the minimal repairs of the inconsistent
program. We are interested in a setting where we want to restore consistency
by adding, removing or changing facts (while leaving other rules unchanged).
Note that we can focus on modifying facts without loss of generality. Indeed,
if we want to make the rule α ← β optional, we can always write this rule as
α ← β, x and add x as a fact. Then, removing the fact x essentially means
removing the rule α← β.

Our program for finding minimal repairs is based on the one proposed in
[5], with the main differences being the cause of inconsistency and hence the
consistency check, as well as the repair operations proposed. As possible repair
operations in our case study, we consider either adding or removing an edge
between two genes. Thus, there are four possibilities for every pair of nodes: add
a new activation edge, add a new inhibition edge, remove an existing edge or do
nothing. We encode the first three options using the literals addActEdge(U, V ),
addInhEdge(U, V ) and removeEdge(U, V, S) respectively in the following rules:

edge(U, V )← edgeInit(U, V, S).

addActEdge(U, V )← gene(U), gene(V ), not edge(U, V ),

not addInhEdge(U, V ), not nAddActEdge(U, V ).

nAddActEdge(U, V )← gene(U), gene(V ),not edge(U, V ),

not addInhEdge(U, V ), not addActEdge(U, V ).

addInhEdge(U, V )← gene(U), gene(V ), not edge(U, V ),

not addActEdge(U, V ), not nAddInhEdge(U, V ).

nAddInhEdge(U, V )← gene(U), gene(V ), not edge(U, V ),

not addActEdge(U, V ), not addInhEdge(U, V ).

removeEdge(U, V, S)← edgeInit(U, V, S), not nRemoveEdge(U, V, S).

nRemoveEdge(U, V, S)← edgeInit(U, V, S), not removeEdge(U, V, S).

(11)
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These rules ensure that the new literals representing the possible repair opera-
tions are optional, and introduce the constraint that at most one of these literals
can be made true for a given pair of edges. Then, to take the generated repair
into account, we consider the following rules:

activates(U, V )← edgeInit(U, V, 1), not removeEdge(U, V, 1).

activates(U, V )← addActEdge(U, V ).

inhibits(U, V )← edgeInit(U, V,−1), not removeEdge(U, V,−1).

inhibits(U, V )← addInhEdge(U, V ).

(12)

The ASP program consisting of the rules (8)-(12) has one answer set for each
possible repair of the original GRN, i.e. each modification that will make it
consistent with the table. To restrict the answer sets to those that correspond
to minimal repairs only, we first define the cost of a repair, using the following
rules:

addEdge(U, V, 1)← addActEdge(U, V ).

addEdge(U, V,−1)← addInhEdge(U, V ).

costAdding(X)← X = #count{addEdge(U, V, S)}.

costRemoving(Y )← Y = #count{removeEdge(U, V, S)}.

repairCost(Z)← costAdding(X), costRemoving(Y ), Z = X + Y.

#minimize[repairCost(Z) = Z].

(13)

These rules contain aggregates and optimization statements supported by the
ASP solver clasp, which behave like built-in functions in the solver. For example,
in (13), the aggregate #count intuitively counts the number of instances of
the literals addEdge and removeEdge that are true, and stores the results in
variables X and Y respectively. The optimization statement #minimize acts as
a function that finds the answer sets with the lowest value held by the variable Z
in the literal repairCost(Z). This restricts the answer sets to those that represent
the repairs with the lowest cost.

7. Rules of Thumb for Repairing GRNs

The flexibility of ASP allows us to encode different kinds of properties as
rules of thumb. In particular, combining negation-as-failure with the aggregates
provided by most ASP solvers creates a powerful framework for the user to
express background knowledge about the considered domain. In the following,
we will show how we can encode rules of thumb about GRNs which are found
in the biological literature.

7.1. Rule 1: Last Time Step as Fixed State

In [55], it is stated that every gene network converges to a final stable state.
We can use this biological knowledge by checking whether the GRN we are
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trying to repair indeed converges to the stable state indicated by the final time
step in the table. To implement this, we consider an additional time step tfinal+1

after the last time step mentioned in the table. This rule of thumb is satisfied
if and only if the state of the network remains constant in this last time step.
We can easily check whether this is the case using rules similar to (8)-(10). If
the repair is still correct, i.e. if the graph is still consistent with the table after
the addition of the time step tfinal+1, then the time step tfinal is indeed a fixed
state.

7.2. Rule 2: Degree of a Gene

In [8], Kauffman found that a genetic network will behave chaotically unless
there is a restriction on the number of regulatory inputs and outputs per node.
This can be encoded as a rule of thumb by putting bounds on the degree of each
node.

First, we need to find the degree of every node in the GRN graph, given by
k = kin+kout with kin being the number of incoming edges and kout the number
of outgoing edges of the node. We then need to verify whether these degrees fall
within a certain range. We explain how we choose this range in Section 8. We
then use the predicate kBadGene to encode the number of genes whose degree
falls outside the range limits. The penalty introduced by this rule of thumb is
increased for every “bad gene” found.
The following ASP rules are used to count this number of bad genes:

edgeAfterRepair(U, V )← activates(U, V ).

edgeAfterRepair(U, V )← inhibits(U, V ).

kOut(C,X)← X = #count{edgeAfterRepair(C,D)}, gene(C).

kIn(C,X)← X = #count{edgeAfterRepair(D,C)}, gene(C).

kDegree(C,Z)← kIn(C,X), kOut(C, Y ), Z = X + Y.

kBadGene(C)← kDegree(C,Z), Z < kmin.

kBadGene(C)← kDegree(C,Z), Z > kmax.

kBadGenes(X)← X = #count{kBadGene(C)}.

cost(2, C)← kBadGenes(C).

(14)

7.3. Rule 3: Total Number of Edges

Another rule of thumb can be derived from the fact that various biological
properties in a gene network depend on the number of non-zero interactions
between the nodes of this network, as is discussed in [56]. This leads us to im-
pose the constraint that similar gene networks would more likely have a similar
number of total interactions.

To encode this rule of thumb, we count the total number of interactions
between the genes of the GRN, and check whether this number falls within a
certain range that is derived from similar GRNs (see Section 8). This rule of
thumb is satisfied if and only if the number of interactions is inside the range.
The ASP rules to encode this rule of thumb are similar to (14).
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7.4. Rule 4: Likely Interactions Based on Gene State

In [56], it is observed that nodes tend to be positively regulated by nodes
that are active at earlier states of a cell cycle and negatively regulated by nodes
that are active later in the process. To take this observation into account, we
divide the genes into likely activators and likely inhibitors based on whether
they are active during the first half or the second half of the time-series table
respectively. Note that the same gene can be both a likely activator and a likely
inhibitor. We then check the outgoing edges of every gene, and increase the cost
of the repair every time a likely activator, which is not also a likely inhibitor,
inhibits another gene, or a likely inhibitor, which is not also a likely activator,
activates another gene. The penalty is increased for every “bad edge” that is
found.

We use the following ASP rules to compute the corresponding penalty:

likelyAct(C)← active(C, T ), T <= thalf .

likelyInh(C)← active(C, T ), T > thalf .

badEdge(C,D)← likelyAct(C), inhibits(C,D), not likelyInh(C), C ! = D.

badEdge(C,D)← likelyInh(C), activates(C,D), not likelyAct(C), C ! = D.

badEdges(X)← X = #count{badEdge(C,D)}.

cost(4, C)← badEdges(C). (15)

7.5. Rule 5: Network Diameter

In [57], it is stated that the diameter (i.e. the length of the shortest path
between the two nodes that are furthest apart in the network) of GRN graphs
tends to be very small. To encode this knowledge, we first need to make sure
that every gene of the network is reachable, using the following rules:

link(X,Y )← edgeAfterRepair(X,Y ), X ! = Y.

link(Y,X)← edgeAfterRepair(X,Y ), Y ! = X.

reachable(X)← link(1, X).

reachable(Y )← reachable(X), link(X,Y ).

← gene(X), not reachable(X).

(16)

Then, we find the shortest distance between every pair of genes by finding all
the possible paths between them, and minimizing the number of path links. The
longest of these shortest distances is the diameter of the network1.

dist(X,Y, 1)← link(X,Y ), X ! = Y.

dist(X,Y, 2)← link(X,A), link(A, Y ), X ! = Y.

dist(X,Y, 3)← link(X,A), link(A,B), link(B, Y ), X ! = Y.

. . . (17)

smallestDist(X,Y,D)← D = #min[dist(X,Y,C) = C], dist(X,Y, Z).

diameter(D)← D = #max [smallestDist(X,Y,C) = C].
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The penalty associated with this rule of thumb depends on whether the diameter
that was found falls within a certain range limit (see Section 8).

7.6. Rule 6: Dominant Motifs

A motif is a small pattern with usually three or four nodes that is found
repeatedly in a network graph. In [58], the idea of dominant motifs in GRNs is
discussed. Inspired by this observation, we will consider a rule of thumb that
is based on how many dominant motifs are shared between a given repaired
GRN and the GRNs of similar cell cycles. This allows us to encode that similar
networks are likely to share the same dominant motifs.

To implement this rule of thumb, we first use an external program described
in [59] to find the dominant motifs of popular GRNs in the literature. The GRN
that we are repairing is not used during this step. We then encode these motifs
in our ASP program and try to maximize the number of times they appear in
the repaired network. The penalty introduced by this rule should be smaller
when more dominant motifs are found. Therefore, we start with a penalty which
is equal to a maximum penalty value, and then count the number of dominant
motifs in the repaired network. For every instance of a dominant motif that we
find, we decrease the penalty of this rule of thumb by 1.

7.7. Rule 7: Size of Basin of Attractors

In [60], it is stated that the size of the basin of attractors (i.e. the number
of stable states to which most initial states of the network converge) in a GRN
is a vital quantity in terms of understanding network behaviour and may relate
to other network properties such as stability. This allows us to check whether
the state of the repaired network with the largest basin size indeed corresponds
to the final stable state in the time-series table.

This final rule of thumb is not implemented in ASP, but is instead used as
an additional filtering step after the ASP program has been used to find good
repairs. To apply this rule, we need to find the final state corresponding to every
possible initial state of a network, using a standalone program described in [61].
We then need to make sure that the most frequently occurring final state of
the network indeed corresponds to its state at the final time step tfinal given by
the time-series table. We apply this method for every repaired network (i.e. for
every answer set that we get from our ASP program), and filter out the ones
that do not satisfy this property. Note that we do not implement this rule of
thumb in ASP due to the requirement of using an external program to find all
possible final states of a network. However, this final rule of thumb still allows
us to apply a filter on the computed answer sets, thus improving the repair
process.

1The rules that calculate the distance between a pair of nodes could be encoded in a more
elegant version, namely using the rule dist(X,Y,D)← dist(X,A,L), link(A, Y ), D = L+ 1.
However, this version is too slow when performing experiments, so a more straightforward
encoding is used.
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8. Experimental Results

To compare the effectiveness of the proposed aggregation methods, consider
the following biological scenario: a draft of a GRN that represents the rela-
tions between some genes was generated, but the GRN graph is not consistent
with experimental observations. These observations consist of a time-series ta-
ble that describes the state of the studied genes at different time steps of the
corresponding cell cycle. In our experiments, we use the following 5 GRNs (see
Table 2): Arabidopsis [62], Budding Yeast [63], C. Elegans [64], Fission Yeast
[65], and Mammalian Cell Cycle [66]. We also have 5 time-series tables that
are consistent with these GRNs. It is important to note that Boolean networks
constitute a simple model to represent GRNs. However, this model is valuable
towards obtaining information about the network topology, and is more precise
that previously thought [62]. Note that typically there are many Boolean net-
works that are compatible with a given time series table. In fact, we verified
that there are millions of Boolean networks that are compatible with the time
series data that we use in our experiments.

To recreate the biological scenario that was previously described, we corrupt
every GRN by adding and removing edges. Our methods then aim to repair the
corrupted GRNs. Every time we corrupt a network, we remove R randomly cho-
sen edges, and subsequently add N randomly chosen edges (choosing between ac-
tivation and inhibition edges with equal probability). We set N and R as percent-
ages of the initial number of edges for each network that we are corrupting. For
our experiments, we consider 10 corruption setups by varying the percentages
N and R in the following way: N=1%/R=5%, N=6%/R=3%, N=8%/R=6%,
N=15%/R=35%, N=30%/R=30%, N=50%/R=25%, N=30%/R=70%, N=40%
/R=60%, N=60%/R=40%, and N=80%/R=20%. The values of N and R for
every GRN in every corruption setup are shown in Table 1. These setups vary
from light corruptions (setup 1-3) to heavier corruptions (setup 4-10). Note
that, in a real biological setting, both light and heavy corruption may be ex-
pected. “Indeed, inferring gene networks from experimental observations is a
daunting task” [67]. The methods used to predict gene interactions based on
data from time-series tables give varying results with very different predicted
networks (e.g. DREAM challenges2). In particular, in the DREAM4 challenge,
the applicants were asked to infer gene interactions based on given time-series
data. The leaderboards of this challenge3 show that the top scoring methods
predicted gene networks with edge counts varying from 10 edges to 54 edges,
with the best scoring network having an edge count of 18. Therefore, generated
networks may vary significantly in the number of edges from the actual network
that they are trying to predict.

Every time we select a network to corrupt and repair, we learn the relevant
parameters of the rules of thumb from the other four, uncorrupted networks.

2http://dreamchallenges.org/
3https://www.synapse.org/#!Synapse:syn2825304/wiki/71132
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GRN
Number
of Edges

Corruption Setup ID
1 2 3 4 5 6 7 8 9 10

Arabidopsis 22
N = 1
R = 2

N = 2
R = 1

N = 2
R = 2

N = 4
R = 8

N = 7
R = 7

N = 11
R = 6

N = 7
R = 16

N = 9
R = 14

N = 14
R = 9

N = 18
R = 5

Budding Yeast 34
N = 1
R = 2

N = 3
R = 2

N = 3
R = 3

N = 6
R = 12

N = 11
R = 11

N = 17
R = 9

N = 11
R = 24

N = 14
R = 21

N = 21
R = 14

N = 28
R = 7

C. Elegans 21
N = 1
R = 2

N = 2
R = 1

N = 2
R = 2

N = 4
R = 8

N = 7
R = 7

N = 11
R = 6

N = 7
R = 15

N = 9
R = 13

N = 13
R = 9

N = 17
R = 5

Fission Yeast 25
N = 1
R = 2

N = 2
R = 1

N = 2
R = 2

N = 4
R = 9

N = 8
R = 8

N = 13
R = 7

N = 8
R = 18

N = 10
R = 16

N = 16
R = 10

N = 20
R = 6

Mammalian 39
N = 1
R = 2

N = 3
R = 2

N = 4
R = 3

N = 6
R = 14

N = 12
R = 12

N = 20
R = 10

N = 12
R = 28

N = 16
R = 24

N = 24
R = 16

N = 32
R = 8

Table 1: N and R values for every GRN in every corruption setup.

GRN
Number
of Nodes

Number
of Edges

Edges-Nodes
Ratio

Average
Degree

Diameter

Arabidopsis 10 22 2.2 4.4 4
Budding Yeast 11 34 3.1 6.2 3
C. Elegans 8 21 2.6 5.3 3
Fission Yeast 9 25 2.8 5.6 3
Mammalian 10 39 3.9 7.8 3

Table 2: Characteristics of the GRN graphs.

For Rule 2, we learn the degrees kmin and kmax from the other four networks by
setting kmin as the smallest average degree value of the other four networks and
kmax as the largest average degree value. The range [diametermin, diametermax]
in Rule 5 is learned similarly, where diametermin is the smallest diameter value
of the other four networks, and diametermax is the largest diameter value. For
Rule 3, the range of the total number of edges is calculated as follows. We learn
from the other four networks the ratio of number of edges per node, and we keep
the minimum (ratiomin) and maximum (ratiomax) values that we find. Then, we
determine what the expected number of edges should be for the test network
by multiplying these two ratios with the number of nodes. Table 2 contains
all the relevant characteristics of every GRN that are needed to calculate the
aforementioned parameters.

When repairing using the uniform weights approach, we set the maximum
penalty for each rule of thumb to be equal to the total number of initial edges
of the GRN that we are trying to repair. We chose this number because it
represents the largest possible penalty that a rule of thumb can introduce if we
increase the cost by one for every violation (Rule 4 in particular). Based on
this value, we introduce a normalization factor F for every rule of thumb. Let
“EdgesNum” and “GenesNum” be respectively the number of edges and the
number of genes in the GRN that we are trying to repair. In Rule 1 (last time
step as fixed state), the rule can be violated at most once (the last time step is
either a fixed state or not a fixed state). Therefore, the penalty of this rule is
either equal to 0 in the case where it is satisfied, or otherwise equal to 1. The
normalization factor for this rule is then F = EdgesNum. In Rule 2 (degree of
a gene), every gene in the network can possibly be considered as a “bad gene”
hence violating this rule and increasing its penalty cost by 1. Then, to normalize
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Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7
Normalization
Factor (F)

EdgesNum GenesNum
EdgesNum 1 1 EdgesNum EdgesNum N/A4

Table 3: The normalization factor (F) for every rule of thumb used by the uniform weights
approach.

the total penalty, we multiply it by the ratio EdgesNum/GenesNum. This gives
us F = EdgesNum/GenesNum. In this way, we make sure that the maximum
penalty is equal to EdgesNum (if all the genes of the network are “bad genes”,
the maximum penalty is penaltymax = (GenesNum)× (EdgesNum/GenesNum)
= EdgesNum). We follow the same reasoning for all the other rules of thumb in
our case study. The normalization factors for every rule of thumb used by the
uniform weights approach can be found in Table 3.

To evaluate our results, we use the F1 score and Jaccard index which we
calculate as follows. Let A be the set of edges of the original network and B
the set of edges of the repaired network. We write |A| and |B| for the number
of edges of the original and repaired network respectively. The F1 score is
given by F1 = 2 × (precision × recall) / (precision + recall), with precision =
|A ∩ B| / |B| and recall = |A ∩ B| / |A|. The Jaccard index is given by
J(A,B) = |A ∩ B| / |A ∪ B|. We use the F1 score because it is a standard
measure of accuracy that considers both precision and recall, and the Jaccard
index because it is a standard measure of similarity between sets. We run every
experiment (i.e. every corruption setup on every network) 10 times and report
the average F1 score and Jaccard Index of the best repair that was found.
In the case where multiple repairs with the same minimum cost were found,
we select the first repair that we get from the solver as best repair. To run
our experiments, we used the ASP grounder gringo and the ASP solver clasp
running on a 2.7 GHz Intel Core i5 CPU with 8 GB of RAM. Despite the large
search space, all the aggregation methods have fast run times, varying between
a few seconds to at most 5 minutes, depending on the corruption setup. Our
experiment setups and results can be found at: http://www.cwi.ugent.be/

RepairInconsistentASP.html.
The results of our experiments are shown in Fig. 4-Fig. 8. Every figure cor-

responds to one of the 5 GRNs, and represents the F1 score and Jaccard index
for every corruption setup. Every graph shows the results for 9 different re-
pair methods: the minimal repair method (Min), the uniform weights approach
(Uni), the Violations Improvements method (Viol), leximin ordering (Lmin),
leximax ordering (Lmax), and variants A-D of the Z-score approach (Z-A, Z-B,
Z-C, Z-D). The average F1 score and Jaccard index of the corrupted network
(Corr) is also shown. The average graphs for F1 score and Jaccard index for all
the GRNs are shown in Fig. 9 and Fig. 10 respectively.

4Rule 7 is used as a final filtering step and is not implemented in ASP. Therefore, a
normalization factor is not applicable.
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GRN
Minimal Repair

Method
Uniform Weights

Method
Variant C of

Z-score Approach
Variant D of

Z-score Approach
Arabidopsis 16 22 28 25
Budding Yeast 27 32 33 31
C. Elegans 14 23 25 27
Fission Yeast 19 24 29 26
Mammalian 35 42 48 44

Table 4: Average number of repair operations applied to a GRN at all corruption setups by
the minimal repair method and the 3 best proposed aggregation methods (rounded to the
nearest integer).

Based on these graphs, we can conclude that the Z-score approach is the
best method to aggregate the rules of thumb in the absence of training data. In
particular, variant C of this approach, in which the sampled repairs are close to
being minimal (Section 5.4) outperforms all the other aggregation methods, as
well as the minimal repair approach. In fact, we notice a consistent improvement
in both metrics when repairing the GRNs using this method, compared to all the
other methods. Additionally, this method shows the most significant increase
in F1 score and Jaccard index between the corrupted and repaired GRNs. We
notice from the graphs that most standard aggregation methods i.e. the leximin
and leximax ordering methods, and the violation improvements method perform
poorly compared to the minimal repair method for some GRNs, while showing
better results for other GRNs. These varying results render these methods
unreliable, and a key reason for this is presumably the lack of suitable weights.
The Z-score approach addresses this issue by learning weights from unsupervised
data (viz. the repairs that we generate automatically). Furthermore, the way
these repairs have been automatically generated gives us interesting insight into
the expected costs of the best repairs. The fact that variant C of the Z-score
approach is the best performing method shows us that the best repairs have a
total cost that is relatively close to the minimal repair cost.

Additionally, there are two methods that also outperform the minimal repair
approach: the uniform weights method (Section 5.1) and variant D of the Z-score
approach (Section 5.4). In the absence of training data, setting uniform weights
to all the rules of thumb works remarkably well. This confirms the conclusions
in [68], which state that when predicting a numerical criterion, equal-weighting
models tend to outperform average random models. It is important to note
that these methods are not simply selecting the most promising among the
minimal repairs (instead of a random minimal repair), but that the optimal
repairs they find are indeed not minimal. Table 4 shows the average number
of repair operations applied to a corrupted GRN by the aforementioned best
repair methods. It is clear that all three approaches make more changes to
a network than the minimal repair method does, confirming that while using
minimal repairs is convenient, more optimal repairs are not necessarily minimal.

Finally, we considered one extra setup where a generated network happens
to be consistent with the time-series table, but different than the original net-
work. For this setup, instead of taking the original, ground-truth network and
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Initial Min Uni Viol Lmin Lmax Z-A Z-B Z-C Z-D
Arabidopsis 0.32 0.32 0.34 0.31 0.32 0.30 0.36 0.31 0.36 0.35
Budding Yeast 0.83 0.83 0.87 0.84 0.82 0.83 0.84 0.81 0.91 0.87
C. Elegans 0.55 0.55 0.59 0.53 0.52 0.50 0.53 0.51 0.61 0.62
Fission Yeast 0.56 0.56 0.57 0.48 0.50 0.48 0.42 0.42 0.61 0.58
Mammalian 0.35 0.35 0.38 0.35 0.35 0.32 0.33 0.30 0.40 0.36

Table 5: F1 score of every repair method on every GRN for the setup where a generated GRN
happens to be consistent with the time-series table, but different than the original ground-
truth network.

Initial Min Uni Viol Lmin Lmax Z-A Z-B Z-C Z-D
Arabidopsis 0.22 0.22 0.24 0.20 0.22 0.19 0.26 0.21 0.27 0.24
Budding Yeast 0.75 0.75 0.77 0.75 0.73 0.74 0.76 0.73 0.82 0.77
C. Elegans 0.38 0.38 0.42 0.35 0.33 0.31 0.36 0.34 0.45 0.46
Fission Yeast 0.39 0.39 0.40 0.32 0.33 0.32 0.27 0.26 0.45 0.42
Mammalian 0.24 0.24 0.27 0.24 0.24 0.20 0.21 0.19 0.30 0.26

Table 6: Jaccard index of every repair method on every GRN for the setup where a generated
GRN happens to be consistent with the time-series table, but different than the original
ground-truth network.

corrupting it by removing and adding edges, we randomly generate a new net-
work from scratch that is consistent with the given time-series table. Then, we
apply our repair methods to it to reduce the violations of the rules of thumb.
Similar to our previous setups, we run this experiment 10 times, and report
the average F1 score and Jaccard index of the best repair that was found. The
F1 scores of the corrupted network and of the resulting best repairs for every
repair method are shown in Table 5, and their corresponding Jaccard indices are
shown in Table 6. Note that in this setup, the minimal repair method simply
returns the randomly generated network, since there are no repair operations
to be made. The results of this experiment confirm our previous findings that
the uniform weights approach, variant C of the Z-score approach and variant D
of the Z-score approach improve on both the F1 score and the Jaccard index in
comparison with the minimal repair method.

9. Conclusion

Answer set programming (ASP) is steadily gaining traction as a declarative
programming language for modeling and simulating systems. As with all knowl-
edge representation formalisms, correctly capturing domain knowledge into ASP
programs is a challenging task. Errors in the encoding can result in ASP pro-
grams that have no answer sets. A common technique to restore the consistency
of such inconsistent ASP programs is the minimal repair method. Supported
by Occam’s razor principle, this technique adds or removes the smallest num-
ber of facts to ensure that the program has at least one answer set. While
searching for a minimal repair is certainly reasonable in absence of any back-
ground knowledge, in this paper we showed that more accurate repairs can be
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Figure 4: F1 score and Jaccard index of Arabidopsis network.
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Figure 5: F1 score and Jaccard index of Budding Yeast network.
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Figure 6: F1 score and Jaccard index of C. Elegans network.
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Figure 7: F1 score and Jaccard index of Fission Yeast network.
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Figure 8: F1 score and Jaccard index of Mammalian network.
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Figure 9: Average graph for F1 score.
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Figure 10: Average graph for Jaccard index.
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found by incorporating a small number of domain specific rules of thumb, or
soft constraints, on what desired repairs should look like.

The technique we proposed in this paper makes very modest assumptions
about the available domain knowledge. Instead of relying on carefully modelled
expert knowledge, our approach only requires a straightforward encoding of
ideas from the domain literature. In addition – unlike for instance existing
approaches based on Markov logic – our technique does not require manual
tuning of the importance weights of the rules of thumb, nor learning such weights
from training data. To aggregate the impact of different rules of thumb in
choosing the best repair, we have proposed the use of 5 techniques: (1) a uniform
weights approach in which all rules have the same impact on the total cost of a
repair; (2) a violations improvements method that favors repair A over repair B
if A outperforms B for the majority of the rules of thumb; (3) a leximin ordering
approach that favors repair A over repair B if A does really well on satisfying
one of the rules of thumb, i.e. better than B does on any of the rules of thumb;
(4) a leximax ordering approach that favors repair A over repair B if B does
really poorly on satisfying one of the rules of thumb, i.e. worse than A does on
any of the rules of thumb; (5) a Z-score approach that compares the number of
violations against an expected number.

To validate our approach, we have applied it in a case study for simulating
the behavior of Gene Regulatory Networks (GRNs). We corrupted known GRNs
in various ways and then attempted to restore them with our methods, using 7
rules of thumb from the biological literature. We have found that the variant
of the Z-score approach that uses automatically generated repairs that are close
to being minimal outperforms all the other repair methods in terms of F1 score
and Jaccard index, including the minimal repair approach. Our results have
also confirmed that these methods are not simply selecting the most promising
among the minimal repairs, but the optimal repairs that they produce are indeed
not minimal. In fact, our best method shows that the most plausible repairs
are close to being minimal.

In future work, it would be interesting to see whether the Z-score approach
can be improved by using more advanced methods for outlier detection. For
instance, one-class Support Vector Machines (SVMs) could be trained from
randomly sampled repairs, using feature vectors that contain the number of
violations of each repair, which in principle would allow us to take into account
how different rules of thumb interact.
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dling for answer set programming, Annals of Mathematics and Artificial
Intelligence 47 (2006) pp. 139–181.

36



[42] J. C. Nieves, M. Osorio, U. Cortés, Semantics for possibilistic disjunctive
programs, in: Logic Programming and Nonmonotonic Reasoning, Springer,
2007, pp. 315–320.
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