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The immune system has evolved to sense invading
pathogens, control infection, and restore tissue integrity.
Despite symptomatic variability in patients, unequivocal
evidence that an individual’s immune system distinguishes
between different organisms and mounts an appropriate
response is lacking. We here used a systematic approach to
characterize responses to microbiologically well-defined
infection in a total of 83 peritoneal dialysis patients on the
day of presentation with acute peritonitis. A broad range
of cellular and soluble parameters was determined in
peritoneal effluents, covering the majority of local immune
cells, inflammatory and regulatory cytokines and chemokines
as well as tissue damage–related factors. Our analyses,
utilizing machine-learning algorithms, demonstrate that
different groups of bacteria induce qualitatively distinct local
immune fingerprints, with specific biomarker signatures
associated with Gram-negative and Gram-positive
organisms, and with culture-negative episodes of unclear
etiology. Even more, within the Gram-positive group, unique
immune biomarker combinations identified streptococcal
and non-streptococcal species including coagulase-negative
Staphylococcus spp. These findings have diagnostic and
prognostic implications by informing patient management
and treatment choice at the point of care. Thus, our data
establish the power of non-linear mathematical models to
analyze complex biomedical datasets and highlight key
pathways involved in pathogen-specific immune responses.
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T he immune system is an intricate network of special-
ized cell types and molecular structures evolved to
sense and target invading pathogens, control and clear

the infection, and repair and restore the integrity of affected
tissues and organs. The human body is constantly exposed to
a plethora of pathogenic, opportunistic, commensal, and
environmental microorganisms and has developed mecha-
nisms to discriminate between harmful and harmless colo-
nization through receptors and pathways that specifically
recognize pathogen and danger-associated molecular patterns
and unique antigenic epitopes.1–4 However, unequivocal evi-
dence that the human immune system distinguishes between
different types of organisms in a physiologic context and
mounts appropriate responses that are distinct enough to
be exploited as rapid diagnostic indicators driving appropriate
therapy is lacking.5–10

Individuals with end-stage kidney disease receiving peri-
toneal dialysis (PD) serve as well-defined exemplar of a
clinical infection requiring immediate medical intervention.
Peritonitis is a common complication of PD and remains
a major cause of early dropout, technical failure, and
mortality.11,12 In addition to its clinical relevance for
individuals with end-stage kidney failure who depend on
dialysis as life-saving renal replacement therapy, PD offers
unparalleled insights into complex local cell interactions and
molecular mechanisms that underpin the clinical severity of
infectious episodes and that are readily translatable to
improve patient management and outcomes.13–15 Impor-
tantly, peritoneal effluent can be sampled repeatedly and
noninvasively, thus providing early and continuous access to
the site of infection, even before antibiotic treatment is
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initiated. Moreover, PD-related peritonitis is caused by a wide
spectrum of bacterial species, thereby allowing the study of
acute responses to defined groups of organisms under closely
related conditions.6,15 However, although highly elevated
white cell counts with a proportion of >50% granulocytes in
the peritoneal effluent are used as indicators of peritonitis,
only little progress has been made with regard to reliable
discrimination between infection and noninfectious inflam-
mation. Culture-based diagnosis of infection is slow and
unsatisfactory, and rapid identification of disease-causing
organisms using molecular techniques with sufficient sensi-
tivity and specificity remains a challenge.11,12,16 Treatment of
peritonitis therefore continues to be largely empirical, and
early but untargeted treatment with broad-spectrum antibi-
otics and antifungals is recommended.12,17

As alternative to organism-based diagnostics, we aimed at
exploiting the human host response and used a systematic
approach based on machine learning algorithms to identify
diagnostically relevant, pathogen-specific local immune fin-
gerprints in PD patients who presented with acute peritonitis.
The introduction of “big data” technologies in biomedical
sciences to address the complexity of the molecular and
cellular mechanisms underlying disease has brought about an
increasing need for advanced statistical models, machine
learning, and pattern recognition techniques. In particular,
wrapped feature selection methods have proved highly effi-
cient for finding the best feature combination compared with
time-consuming exhaustive searches.18 Support Vector
Machines (SVMs) are data-driven methods that try to find a
separating hyperplane with the maximal “margin” for classi-
fication problems and that can also be used for regression or
density estimation.19–21 Artificial neural networks (ANNs) are
inspired by biological neural networks with data processing
from the input through a network of multiple nodes that are
connected with each other in different layers.22–24 Random
Forests (RFs) are ensemble methods constructed on multiple
decision trees for classification and regression.25–27 By
combining biomarker measurements during acute peritonitis
and feature selection approaches based on SVMs, ANNs, and
RFs, our findings demonstrate the power of advanced
mathematical models to analyze complex biomedical datasets
and highlight key pathways involved in pathogen-specific
inflammatory responses at the site of infection. The obser-
vation that different infecting bacteria induce consistent and
unique local immune responses has immediate diagnostic
implications at the point of care by directing appropriate
antibiotic treatment before conventional microbiological
culture results become available.

RESULTS
Local immune biomarkers form distinct hierarchical clusters
In order to define combinations of local biomarkers that
would constitute relevant disease-specific immune finger-
prints, we measured a broad range of cellular and soluble
biomarkers in 83 PD patients presenting with microbiologi-
cally well-defined episodes of acute peritonitis (Table 1).
180
To cover the breadth and the complexity of local inflamma-
tory and regulatory immune responses during early infection,
these biomarkers included frequencies and total numbers of
infiltrating leukocytes as well as levels of common cytokines,
chemokines, and tissue damage–associated molecules, the
majority of which were elevated during acute peritonitis
compared with baseline parameters in stable individuals
(Supplementary Table S1). Perhaps not surprisingly, due to
the redundant roles of many inflammatory mediators within
the human immune system, some of the 49 biomarkers
correlated with each other and formed 5 distinct hierarchical
clusters during acute peritonitis (Figure 1). These data sug-
gested that a signature comprising as few as 5 parameters
might already suffice to define a reliable immune fingerprint.

Feature selection methods define local fingerprints
associated with Gram-negative infections
We next divided the patients into groups according to the
type of infecting organism. We initially attempted to define
immune fingerprints that would reliably discriminate patients
presenting with Gram-negative infections against all other
cases of peritonitis (Supplementary Table S2A), based on our
earlier observation of certain differences between
Gram-negative and Gram-positive infections using logistic
regression analyses.6 To this end, recursive feature elimina-
tion was used by evaluating the model performance according
to the area under the receiver operating characteristic curve
achieved and eliminating the least important features in each
step. To reduce variability, 5 rounds of resampling methods
were applied in the outer layer of the iteration, and cross-
validation was used to avoid overfitting. These steps clearly
demonstrated that Gram-negative infections were associated
with unique different immune fingerprints. Figure 2a shows
the number of features changing during feature elimination
and the corresponding performance based on 3 different
models, using SVMs, ANNs, and RFs. Whilst all 3 models
successfully discriminated between Gram-negative infections
and all other causes of peritonitis, RF-based feature elimi-
nation showed the best average performance, with the
optimum biomarker combination comprising 8 features (area
under receiver operating characteristic curve [AUC] ¼ 0.993;
sensitivity ¼ 98.5% and specificity ¼ 92.6%). In comparison,
SVMs and ANNs were far less powerful for the recursive
elimination of pathogen-related biomarkers, reaching overall
lower degrees of sensitivity and specificity and requiring
combinations comprising 10 and 30 features, respectively
(Figure 2a).

The top 5 and 10 individual biomarkers selected by the
3 different models and the corresponding average perfor-
mance of the models based on combinations of these bio-
markers are listed in Supplementary Table S2B. Of note,
although the 3 models yielded different sets of biomarkers,
the frequencies of Vg9þ and Vd2þ T cells within peritoneal
T cells featured prominently in each. These findings appear
to concur with our previous data suggesting a key role for
Vg9/Vd2 T cells in Gram-negative infections and emphasize
Kidney International (2017) 92, 179–191



Table 1 | Characteristics of the patient cohort investigated in this study

Stable No growth Gram-positive Gram-negative

no. % no. % no. % no. %

Age, yr, mean � SEM 70.1 � 2.2 63.8 � 2.9 65.9 � 2.1 68.6 � 3.3
18–40 1 4.2 1 5.3 4 8.5 1 5.9
40–50 1 4.2 1 5.3 3 6.4 0 0
50–60 0 0 1 5.3 6 12.8 3 17.7
60–70 8 33.3 11 57.9 14 29.8 3 17.7
70–80 10 41.7 3 15.8 12 25.5 8 47.1
$80 4 16.7 2 10.5 8 17.0 2 11.8

Sex
Male 18 75 11 57.9 32 68.1 9 52.9
Female 6 25 8 42.1 15 31.9 8 47.1

Days on PD, mean � SEM 1165.1 � 186.5 638.8 � 163.5 1022.9 � 144.2 768.5 � 245.8
0–30 0 0 3 15.8 1 2.1 0 0
30–360 1 4.2 4 21.1 15 31.9 9 52.9
360–720 9 37.5 6 31.6 8 17.0 3 17.7
720–1800 8 33.3 4 21.1 16 34.0 3 17.7
1800–3600 5 20.8 2 10.5 6 12.8 1 5.9
$3600 1 4.2 0 0 1 2.1 1 5.9

Hypertension
Yes 12 50 2 10.5 14 29.8 7 41.2
No 12 50 17 89.5 33 70.2 10 58.8

Diabetes
Yes 7 29.2 6 31.6 13 27.7 7 41.2
No 17 70.8 13 68.4 34 72.3 10 58.8

Technique failure
Days 0–14 N/A 1 5.3 2 4.3 2 11.8
Days 14–30 N/A 2 10.5 3 6.5 2 11.8
Days 30–90 N/A 1 5.3 6 12.9 4 23.5

Mortality
Days 0–14 N/A 1 5.3 0 0 1 5.9
Days 14–90 N/A 1 5.3 0 0 1 5.9

N/A, not available; PD, peritoneal dialysis.
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the diagnostic potential of those cells at the point of care.15,28

Soluble biomarkers of particular interest for the prediction
of Gram-negative infections using the RF model included
local levels of tumor necrosis factor (TNF)-a, interleukin
(IL)-12p40, and vascular endothelial growth factor (VEGF).
Taken together, our findings demonstrate that RF models
showed striking performance at combinations of 5 and fewer
biomarkers, thereby making it the algorithm of choice for a
clinically viable prediction of the causative pathogen in
individuals presenting with PD-related peritonitis.

Internal validation of individual biomarkers constituting
Gram-negative immune fingerprints
We next sought to validate the findings from the feature
elimination process by assessing the distribution and perfor-
mance of the top 5 biomarkers that had been selected by the
RF model. Using skewness as a measure of symmetry and
kurtosis as a measure of peakedness, all 5 biomarkers showed
very low positive skewness and only limited or even negative
kurtosis in patients presenting with Gram-negative infections
(Figure 2b). In contrast, these 5 biomarkers had generally
higher skewness and considerable positive kurtosis in patients
with other episodes of peritonitis, especially in the case of
Vd2þ T-cell frequencies and levels of IL-12p40 and VEGF.
Among the top 5 biomarkers, the local frequencies of Vg9þ
Kidney International (2017) 92, 179–191
and Vd2þ T cells and the levels of TNF-a on their own
already showed relatively good sensitivities and specificities to
identify Gram-negative infections with AUCs $0.75 for each
biomarker, much more so than levels of IL-12p40 and VEGF
(Figure 2c), but far lower than the full signature that reached
an AUC of 0.99 (Supplementary Table S2B). This conclusion
was supported by classic analyses using the Mann-Whitney
U test showing that levels of Vg9þ and Vd2þ T cells and
TNF-a, but not of IL-12p40 and VEGF, were markedly
different between patients with Gram-negative infections and
patients with other episodes of peritonitis (Figure 2d). These
results confirmed the importance of the biomarkers selected
by recursive feature elimination, especially of local levels of
Vg9þ and Vd2þ T cells and of TNF-a, in identifying Gram-
negative organisms. However, our analyses also identified
shortcomings of conventional statistical methods that were
especially apparent when visualizing the individual readings
across all patients in the form of a heat map, where the overall
differences between Gram-negative and other episodes of
peritonitis were not very pronounced (Figure 2e). Overall, the
performances of the individual biomarkers lagged behind
their combined performance in an RF model, demonstrating
the importance of defining complex signatures comprising
distinct biomarkers and of assessing their relationships in
nonlinear models.
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Figure 1 | Correlation analysis of local biomarkers in a total of 83 peritoneal dialysis patients on the day of presentation with acute
peritonitis. Ellipses depict the correlation coefficients for each pair of biomarkers in the corresponding cell of the matrix, with the direction
of the dip and the color of the shading representing positive and negative correlations, respectively. Only pairs with significant correlations
(P < 0.05) are shown. Analyses were performed using the corrplot R and Hmisc R packages. GM-CSF, granulocyte macrophage colony-
stimulating factor; HNE, human neutrophil elastase; IFN-g, interferon-g; IL, interleukin; MMP, matrix metalloproteinase; sIL-6R, soluble IL-6
receptor; TGF-b, transforming growth factor-b; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth factor.
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Patients with culture-negative episodes of peritonitis show
distinct local immune fingerprints associated with milder
inflammation

Although microbiological culture remains the method of
choice for diagnosis of infection, a considerable proportion of
samples does not yield any culture results, thereby not
allowing a reliable designation of the underlying cause of the
inflammatory episode, which may or may not be infectious.29

Patients with culture-negative episodes often show less severe
inflammation and have better clinical outcomes, suggesting
that local biomarkers might aid in the diagnosis, treatment,
and prognosis of such episodes. Here, RF models selected
biomarker signatures that reliably distinguished samples with
no growth from cases with confirmed bacterial infection
(Figure 3a, Supplementary Tables S3A and S3B). The top
5 biomarkers all showed great potential in identifying
culture-negative episodes that were characterized by relatively
low total cell counts, an increased proportion of CD14þ

monocytes/macrophages in the cellular infiltrate, and lower
levels of IL-1b, matrix metalloproteinase (MMP)-8 and the
chemokine CCL4 compared with confirmed infections
182
(Figure 3b–e, Supplementary Table S3B). Despite the het-
erogeneity of this patient group, in which the failure to grow
organisms might be due to inappropriate sampling, poor
handling and culture techniques, low organism numbers,
ongoing treatment with antibiotics for unrelated infections,
or nonmicrobial disease such as sterile inflammation or viral
infection, our findings indicate that culture-negative episodes
are immunologically distinct from confirmed cases of bac-
terial peritonitis and are characterized by a less severe in-
flammatory response.

Different types of Gram-positive bacteria induce distinct
immune responses that allow discrimination between
organism subgroups
We next sought to define immune fingerprints in PD patients
with confirmed infections caused by Gram-positive bacteria
(Supplementary Table S4A). Here, feature elimination models
were able to discriminate between Gram-positive infections
and other episodes, yet required combinations of $30
biomarkers for optimal performance and failed to reach
satisfactory AUCs (Supplementary Figure S1). The best
Kidney International (2017) 92, 179–191



Figure 2 | Identification of local immune fingerprints associated with peritonitis caused by Gram-negative bacteria. (a) Performance of
recursive feature elimination models based on Random Forest (RF), Support Vector Machines (SVM), and artificial neural networks (ANN) for the
prediction of Gram-negative infections (N ¼ 17) against all other episodes of peritonitis (N ¼ 66), shown as area under the receiver operating
characteristic curve (AUC) depending on the number of biomarkers. Red symbols depict the maximum AUC achieved for each model.
(b) Kurtosis and skewness of the top 5 biomarkers selected by RF-based feature elimination. (c) Receiver operating characteristic analysis
showing specificity and sensitivity of the top 5 biomarkers. (d) Tukey plots of the top 5 biomarkers in patients with confirmed Gram-negative
infections and with all other episodes of peritonitis, as assessed by Mann-Whitney tests (**P < 0.01). (e) Heat map showing the top 5 biomarkers
across all patients presenting with acute peritonitis. IL, interleukin; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth factor.
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5 biomarkers together only reached an AUC of 0.711 in the
RF model, and none of the individual markers on their
own—IL-17A, IL-12p40, interferon-g, IL-1b, and total cell
count—exceeded an AUC of 0.72 or stayed well below that
value (Supplementary Table S4B).

Of note, there is considerable heterogeneity in the Gram-
positive organisms causing PD-related peritonitis,
comprising streptococci, staphylococci, coryneforms, and
other bacteria that cause clinically distinct diseases with
different outcomes and require different antibiotics.12 We
therefore attempted to define the pathogen-specific immune
responses to subtypes of Gram-positive organisms. These
analyses demonstrated that in the Gram-positive group,
streptococcal infections caused by Streptococcus and
Enterococcus species were associated with markedly distinct
immune responses compared with all other cases of
Kidney International (2017) 92, 179–191
peritonitis (Figure 4a, Supplementary Table S5A). The most
promising biomarker combination consisted of the local
levels of IL-1b, TNF-b, and IL-15 together with the enzy-
matic activity of MMPs in the PD effluent, as measured by
specific cleavage of a fluorogenic MMP substrate and by
gelatin zymography on gel electrophoretic separation
(Figure 4b). Individually, IL-1b, TNF-b, and zymography
showed differences between streptococcal infections and all
other patients, yet only an RF-based model revealed their
full diagnostic potential with an AUC of 0.969 (Figure 4c–e,
Supplementary Table S5B).

Similar to the definition of Streptococcus/Enterococcus-
specific immune fingerprints, nonstreptococcal Gram-positive
infections caused by Staphylococcus aureus, coagulase-negative
Staphylococcus spp. (CNS) and Corynebacterium spp. were
associated with biomarker signatures that distinguished them
183



Figure 3 | Local immune fingerprints in culture-negative episodes of peritonitis. (a) Performance of Random Forest (RF), Support Vector
Machine (SVM), and artificial neural network (ANN)–based feature elimination models for the prediction of culture-negative episodes (no
growth, N ¼ 19) against microbiologically confirmed infections (other, N ¼ 64), shown as area under the curve (AUC) depending on the number
of biomarkers. Red symbols depict the maximum AUC for each model. (b) Kurtosis and skewness of the top 5 biomarkers selected by RF-based
feature elimination. (c) Receiver operating characteristic analysis showing specificity and sensitivity of the top 5 biomarkers. (d) Tukey plots of
the top 5 biomarkers in patients with culture-negative peritonitis and with infectious (other) episodes of peritonitis, as assessed by Mann-
Whitney tests (***P < 0.001). (e) Heat map showing the top 5 biomarkers across all patients presenting with acute peritonitis. IL, interleukin;
MMP, matrix metalloproteinase.
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from all other episodes of peritonitis (Supplementary Figure S2,
Supplementary Table S6A). Yet, despite a statistically significant
difference between such nonstreptococcal Gram-positive
infections and other episodes, especially for local levels of
IL-17A, interferon-g, and IL-15, RF-based algorithms were not
as powerful in this case as for the above predictions of
Gram-negative or streptococcal infections, most likely due to
the remaining heterogeneity of the organisms in that patient
group (Supplementary Table S6B).

Given that CNS species such as Staphylococcus epidermidis
are the major cause of peritonitis in PD patients and are also
clinically associated with a relatively benign outcome,30 we
finally determined immune fingerprints that would specif-
ically define CNS infections. Despite having only marginal or
no statistical significance as individual biomarkers on con-
ventional tests, the combination of IL-15, IL-16, and soluble
184
IL-6 receptor (sIL-6R) levels, total cell count, and MMP
substrate turnover showed excellent performance in the RF
model, with an AUC of 0.961 (Figure 5, Supplementary
Tables S7AþB), demonstrating that CNS infections are suf-
ficiently immunologically distinct to allow a pathogen-specific
diagnosis in PD patients.

Local biomarkers on the day of presentation correlate with
subsequent clinical outcomes over the following 90 days
The nature of the causative pathogen and the underlying
inflammatory response profoundly affect clinical outcomes of
peritonitis in PD patients,6,15 indicating a need for prognostic
biomarkers in early disease. When applying recursive feature
elimination methods to our dataset, certain models accurately
predicted the risk of downstream complications, defined as
technique failure over the following 90 days, including
Kidney International (2017) 92, 179–191



Figure 4 | Local immune fingerprints in streptococcal (Strep) infections. (a) Performance of Random Forest (RF), Support Vector Machine
(SVM), and artificial neural network (ANN)–based feature elimination models for the prediction of infections caused by streptococcal species
(Streptococcus spp. and Enterococcus spp., N ¼ 16) against all other episodes of peritonitis (N ¼ 67), shown as area under the curve (AUC)
depending on the number of biomarkers. One episode of peritonitis classified as streptococcal infection was a coinfection caused by
Enterococcus sp. with light growth of coagulase-negative Staphylococcus spp. Red symbols depict the maximum AUC for each model. (b)
Kurtosis and skewness of the top 5 biomarkers selected by RF-based feature elimination. (c) Receiver operating characteristic analysis showing
specificity and sensitivity of the top 5 biomarkers. (d) Tukey plots of the top 5 biomarkers in patients with confirmed streptococcal infections
and with all other episodes of peritonitis, as assessed by Mann-Whitney tests (*P < 0.05; **P < 0.01). (e) Heat map showing the top 5 biomarkers
across all patients presenting with acute peritonitis. IL, interleukin; MMP, matrix metalloproteinase; TNF-b, tumor necrosis factor-b.
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catheter removal, transfer to hemodialysis, and death
(Figure 6). Patients experiencing technique failure after an
episode of acute peritonitis had marginally higher levels of
calprotectin, MMP-8, sIL-6R, and transforming growth fac-
tor-b in their dialysis effluent as well as lower CD4þ : CD8þ

T-cell ratios compared with uncomplicated cases. Although
not being significantly different on their own, the combina-
tion of these 5 parameters in RF models yielded an AUC of
0.911 with excellent sensitivity (Supplementary Tables S8A
and S8B), implying that the development of prognostic
tests is feasible.

Taken together, our findings show that combinations of
local biomarkers readily identify clinically meaningful
Kidney International (2017) 92, 179–191
subgroups of peritonitis patients, depending on the culture
results and subsequent clinical outcomes (Figure 7). With
microbiologically distinct infections also displaying immu-
nologically distinct immune responses, most individual pa-
rameters constituting meaningful fingerprints were only
associated with single patient groups. However, certain bio-
markers featured more prominently in these mathematical
models than others, suggesting that they are particularly
important factors in acute peritonitis, such as IL-1b and
IL-15, each of which contributed to 3 different biomarker
signatures, and the total cell count that was included in 4
different signatures and is thus likely to be of the utmost
relevance in the diagnosis of PD patients.
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Figure 5 | Local immune fingerprints in coagulase-negative Staphylococcus (CNS) infections. (a) Performance of Random Forest (RF),
Support Vector Machine (SVM), and artificial neural network (ANN)–based feature elimination models for the prediction of infections caused by
CNS (Staphylococcus epidermidis and related species; N ¼ 21) against all other episodes of peritonitis (N ¼ 62), shown as area under the curve
(AUC) depending on the number of biomarkers. Red symbols depict the maximum AUC for each model. (b) Kurtosis and skewness of the top 5
biomarkers selected by RF-based feature elimination. (c) Receiver operating characteristic analysis showing specificity and sensitivity of the top
5 biomarkers. (d) Tukey plots of the top 5 biomarkers in patients with confirmed CNS infections and with all other episodes of peritonitis, as
assessed by Mann-Whitney tests (*P < 0.05). (e) Heat map showing the top 5 biomarkers across all patients presenting with acute peritonitis.
IL, interleukin; MMP, matrix metalloproteinase; sIL-6R, soluble IL-6 receptor.
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DISCUSSION

This study demonstrates that different groups of bacteria
induce qualitatively distinct local immune responses in
infected patients. Specific biomarker signatures were associ-
ated with acute infections by Gram-negative and Gram-
positive organisms, respectively, and with culture-negative
episodes of peritonitis of unclear etiology. Taking advantage
of the unique access to local inflammatory responses that is
possible in PD patients via the peritoneal catheter and drained
dialysate, we were also able for the first time to characterize
pathogen-specific local immune responses to defined genera
of organisms such as streptococcal species and coagulase-
negative staphylococci. These findings demonstrate the
feasibility of developing rapid pathogen-specific diagnostics
186
that exploit the exquisite responsiveness and specificity of the
human immune system for different types of organisms. Such
rapid methods might have greater utility than microbiological
and molecular methods that aim at directly detecting such
organisms but that are too slow, subject to confounding
contaminants and often lack sufficient sensitivity to inform
early patient management and target antibiotic therapy on the
day of presentation with acute disease.31

Our study also demonstrates the power of using nonlinear
approaches for mining complex biomedical datasets where
conventional statistical methods fail to yield satisfactory re-
sults and where individual biomarkers on their own are un-
likely to reach sufficient sensitivity and specificity to change
clinical practice. Notably, the nature of the signatures
Kidney International (2017) 92, 179–191



Figure 6 | Local immune fingerprints associated with poor clinical outcomes. (a) Performance of Random Forest (RF), Support Vector
Machine (SVM), and artificial neural network (ANN)–based feature elimination models for the prediction of technique failure over the next
90 days (catheter removal, transfer to hemodialysis, or peritonitis-related death; N ¼ 23) against all other episodes of peritonitis (N ¼ 60), shown
as area under the curve (AUC) depending on the number of biomarkers. Red symbols depict the maximum AUC for each model. (b) Kurtosis and
skewness of the top 5 biomarkers selected by RF-based feature elimination. (c) Receiver operating characteristic analysis showing specificity and
sensitivity of the top 5 biomarkers. (d) Tukey plots of the top 5 biomarkers in patients with subsequent technique failure and all other patients,
as assessed by Mann-Whitney tests. (e) Heat map showing the top 5 biomarkers across all patients presenting with acute peritonitis. MMP,
matrix metalloproteinase; sIL-6R, soluble IL-6 receptor; TGF-b, transforming growth factor-b.
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identified in this study varied according to the mathematical
model applied. By directly comparing 3 different approaches
and assessing their performance when predicting microbio-
logical and clinical endpoints in PD patients, we identified
RFs as the most suitable models in this study and patient
cohort, yielding superior performances and at fewer
biomarkers than SVMs and ANNs, in accordance with
investigations in other fields of research.32–34

Gram-negative bacteria, streptococci, and CNS are the
major types of bacteria causing peritonitis in individuals
receiving PD.11 Strikingly, clinical outcomes of infections
by those organisms differ, implying differences in their
pathogenicity, their susceptibility to antibiotics, and/or the
pathophysiology of the host responses they trigger.12,15 Our
findings demonstrate that in addition to their microbiological
Kidney International (2017) 92, 179–191
differences, Gram-negative bacteria, streptococci, and CNS
elicit fundamentally distinct immune responses, which is not
only of relevance for the development of novel diagnostics but
potentially also highlights key factors and cell types involved
in sensing and fighting such infections. In this context, Vg9/
Vd2 T cells and TNF-a appear to be particularly relevant in
Gram-negative infections, IL-1b and MMPs in streptococcal
infections, and IL-16 and sIL-6R in CNS infections. IL-15
featured in prediction models for streptococcal, non-
streptococcal, and CNS infection, indicating that this cytokine
may play a role in all Gram-positive infections. In addition,
the fact that IL-17A and interferon-g featured prominently in
nonstreptococcal Gram-positive infections (which included
CNS), but not in CNS infections themselves, may argue for a
particular role of both cytokines in response to Gram-positive
187



Figure 7 | Summary of disease-specific immune fingerprints in patients presenting with acute peritonitis. Shown are the top 5
biomarkers associated with the type of causative organism as indicated or with the risk of technique failure over the next 90 days. IFN-g,
interferon-g; IL, interleukin; MMP, matrix metalloproteinase; sIL-6R, soluble IL-6 receptor; TGF-b, transforming growth factor-b; TNF-a, tumor
necrosis factor-a; VEGF, vascular endothelial growth factor.
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bacteria other than streptococci and CNS (i.e., in infections
by Staphylococcus aureus and/or coryneform bacteria). The
organism-specific contributions of these soluble mediators
during acute disease, the cell types that produce them, and the
targets that respond to them can now be addressed in
appropriate cellular assays, suitable animal models that mimic
the situation in patients as closely as possible, and well-
defined cohorts with bacterial peritonitis and other in-
fections with access to the site of inflammation. This will
ultimately further our understanding of antimicrobial im-
mune responses and how to exploit such knowledge diag-
nostically and therapeutically. The roles of calprotectin,
MMP-8, sIL-6R, and transforming growth factor-b as well
as the balance between CD4þ and CD8þ T cells may deserve
special attention with regard to their involvement in regu-
lating pathologic processes in the peritoneal cavity, and their
contribution to predicting clinical outcomes.

Taken together, we successfully applied different machine
learning models to complex biomedical datasets and identi-
fied key pathways involved in pathogen-specific immune
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responses at the site of infection. It is apparent that the nature
of the signatures identified depends on both biological and
analytical parameters. However, our current findings
demonstrate that such methodologies have immediate diag-
nostic and prognostic implications at the point of care, by
informing patient management and the choice of treatment
before traditional culture results become available. Being
based on a relatively small population in a single hospital, the
biomarkers identified in this study and the corresponding
algorithms now await external validation in larger patient
cohorts at multiple sites35 in order to demonstrate the
applicability of the chosen approach to other centers where
the spectrum of the infecting organisms and the previous
infection history as well as patient demographics and health
care settings may vary. Validated biomarker combinations can
then be incorporated into appropriate diagnostic tests to be
used in central laboratories or at the point of care and into
new patient management and treatment guidelines based
on such test results. The final choice of biomarkers to be
taken forward will depend on the desired performance
Kidney International (2017) 92, 179–191
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requirements, with soluble proteins being equally suitable for
automated immunodiagnostic analyzers and bedside or
home tests, whilst assessments of immune cell subsets such as
Vg9/Vd2 T cells would require standardized flow cytometric
protocols. In the meantime, our study reaffirms the impor-
tance of correctly interpreting simple parameters such as the
total cell count (contributing to 4 different immune finger-
prints) and the differential leukocyte count (reflected in the
proportion of CD14þ cells among total cells), which already
convey vital information about the nature of the causative
pathogen.

MATERIALS AND METHODS
Patient samples
This study was approved by the South East Wales Local Ethics
Committee (04WSE04/27) and registered on the UK Clinical
Research Network Study Portfolio under reference number
#11838 “Patient Immune Responses to Infection in PD.” All
individuals provided written informed consent. The local cohort
comprised 83 adults PD patients admitted between 2008 and 2016
to the University Hospital of Wales, Cardiff, on day 1 of acute
peritonitis. Twenty-four age- and sex-matched stable PD patients
with no infection in the previous 3 months were included as
controls. Subjects positive for HIV or hepatitis C virus were
excluded.

Clinical diagnosis of acute peritonitis was based on the pres-
ence of abdominal pain and cloudy peritoneal effluent with >100
white blood cells per cubic millimeter. According to the microbi-
ological analysis of the effluent from preinoculated blood culture
bottles by the routine Microbiology Laboratory, Public Health
Wales, peritonitis episodes were defined as culture-negative
(N ¼ 19, after incubation of up to 5 days) or as confirmed bac-
terial infections by Gram-positive (N ¼ 47) and Gram-negative
organisms (N ¼ 17) (Table 1). Cases of fungal infection and
mixed or unclear culture results were excluded from the study.
Clinical outcomes were recorded by following patients for 90 days
after presenting with peritonitis. Technique failure was defined as
catheter removal, transfer to hemodialysis or death within 90 days,
and occurred in 21.1% of culture-negative episodes, 23.4% of
Gram-positive infections, and 47.1% of Gram-negative infections
(Table 1). Samples from $8-hour dwells with volumes of 1 to 2.5 L
were collected for biomarker measurements and processed as previ-
ously described.6,13–15

Cellular biomarkers
Cells from cloudy peritoneal effluents were acquired on an 8-color
FACSCanto II (BD Biosciences, San Diego, CA) and analyzed with
FlowJo 10.1 (TreeStar, Ashland, OR), using monoclonal antibodies
against CD3 (SK7), CD4 (RPA-T4), CD8 (RPA-T8), CD15 (HI98
or HIM1), and TCR-Vd2 from BD Biosciences; anti-TCR-Vg9
(Immu360) from Beckman Coulter (Brea, CA); and anti-CD14
(61D3) from eBioscience (San Diego, CA); together with appro-
priate isotype controls. Leukocyte populations were gated based on
their appearance in side scatter and forward scatter area/height and
exclusion of live/dead staining (Fixable Aqua; Invitrogen, Carls-
bad, CA). Biomarkers determined were the total cell counts; the
percentages of CD3þ T cells, CD14þ monocytes/macrophages, and
CD15þ neutrophils among total cells; the frequencies of CD4þ,
CD8þ, Vg9þ, and Vd2þ cells within the CD3þ T cell gate; and the
ratios of CD4þ to CD8þ T cells.
Kidney International (2017) 92, 179–191
Soluble biomarkers
Cell-free peritoneal effluents were analyzed on a SECTOR Imager
6000 (Meso Scale Discovery, Rockville, MD) using the V-PLEX
Human Cytokine 30-Plex Kit to measure levels of IL-1a, IL-1b,
IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-13,
IL-15, IL-16, IL-17A, interferon-g, TNF-a, TNF-b, granulocyte
macrophage colony-stimulating factor, and VEGF as well as the
chemokines CCL2, CCL3, CCL4, CCL11, CCL13, CCL17, CCL22,
CCL26, CXCL8, and CXCL10; ultrasensitive single-plex assays for
sIL-6R and IL-18 (Meso Scale Discovery); and a customer-made
single-plex assay for IL-22 using capture (MAB7822) and bio-
tinylated detection antibodies (BAM7821) and recombinant
human IL-22 from R&D Systems. Conventional enzyme-linked
immunosorbent assay kits were used to measure transforming
growth factor-b, total MMP-8, total MMP-9, and surfactant
protein D (R&D Systems); calprotectin (Hycult Biotech, Inc.,
Plymouth Meeting, PA); and CCL2 (BD Biosciences). Human
neutrophil elastase was measured using a B.I.T.S. enzyme-linked
immunosorbent assay kit (Mologic, Bedford, UK). Active
human neutrophil elastase was measured using the fluorogenic
substrate MeOSuc-Ala-Ala-Pro-Val-AMC (Bachem, Bubendorf,
Switzerland); active MMP was measured using the fluorogenic
substrate Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 (Enzo Life
Sciences, Farmingdale, NY) and by zymography using precast
Novex gelatin zymogram gels (Invitrogen) scanned on a Bio-Rad
GS800 densitometer (Bio-Rad Laboratories, Berkeley, CA) and
analyzed using ImageJ software. Total protein was measured using
the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Wal-
tham, MA). Measurements that were below or above the detection
limit were replaced by the lowest and highest detectable values for
each biomarker, respectively.

Data preprocessing
All analyses were performed using R software version 3.2.5
(R Foundation, Vienna, Austria). Before applying machine learning
models, missing data imputation was applied to fit gaps due to
missing or failed measurements by adopting Multivariate Imputation
by Chained Equations,36 which impute an incomplete feature by
generating synthetic values taking into account their relationship
with other biomarkers, using RF models (Supplementary Table S9).
Data were then standardized to a mean of 0 and a variance of 1 to
reduce the effect of large feature range variation. After preprocessing,
the samples in the minority groups were unsampled so that minority
and majority groups had equal frequencies.

Feature elimination
The caret package in R37 was adopted for the implementation of
recursive feature elimination methods using 3 different machine
learning models: SVMs with radial basis function kernel in the
kernlab R package,38 RFs with Breiman’s algorithm in the
randomForest R package,25 and single-hidden-layer ANNs in the
nnet R package.39 To reduce variability, resampling methods were
applied in the outer layer of the iteration, and cross-validation was
used in the model fitting and parameter tuning to avoid overfitting.
During parameter tuning, the search regions for hyperparameters
in different classification models were set as follows: the penalty
factor C that controls the tradeoff between learning errors and the
complexity term and the radial basis function kernel parameter s
both ranged from 2�5 to 25 with steps of 2; the number of trees in
RFs were selected from [100, 300, 500, 1000, 3000], and the size of
ANNs ranged from 2 to 210 hidden nodes with steps of 2 and a
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weight decay from 10�4 to 10�10 with steps of 10. The number of
repeats for resampling was set as 5 and for cross-validation and
model selection as 10.

Basic statistical analyses
Correlations between all 49 biomarkers were determined using the
corrplot R package,40 based on correlation calculations using the
Hmisc R package.41 Means, SEs, skewness, and kurtosis were
determined with plotrix R42 and e1071 R packages.43 Mann-Whitney
tests (2-sample Wilcoxon tests) were applied to assess the relation-
ship between two patient groups. Heat maps were visualized using
the gplots R package.44
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SUPPLEMENTARY MATERIAL
Figure S1. Local immune fingerprints in Gram-positive infections.
(A) Performance of Random Forest (RF), Support Vector Machine
(SVM), and artificial neural network (ANN)–based feature elimination
models for the prediction of Gram-positive infections (N ¼ 47)
against all other episodes of peritonitis (N ¼ 36), shown as area
under the curve (AUC) depending on the number of biomarkers. Red
symbols depict the maximum AUC for each model. (B) Kurtosis and
skewness of the top 5 biomarkers selected by RF-based feature
elimination. (C) Receiver operating characteristic analysis showing
specificity and sensitivity of the top 5 biomarkers. (D) Tukey plots
of the top 5 biomarkers in patients with confirmed Gram-positive
infections and with all other episodes of peritonitis, as assessed by
Mann-Whitney tests (*P < 0.05; **P < 0.01; ***P < 0.001). (E) Heat
map showing the top 5 biomarkers across all patients presenting
with acute peritonitis. IFN-g, interferon-g; IL, interleukin.
Figure S2. Local immune fingerprints in nonstreptococcal Gram-
positive infections. (A) Performance of Random Forest (RF), Support
Vector Machine (SVM), and artificial neural network (ANN)–based
feature elimination models, for the prediction of infections caused
by nonstreptococcal Gram-positive species (Staphylococcus aureus,
coagulase-negative Staphylococcus spp., Corynebacterium spp.;
N ¼ 31) against all other episodes of peritonitis (N ¼ 62), shown as
area under the curve (AUC) depending on the number of biomarkers.
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One episode of peritonitis classified as nonstreptococcal (Non-strep)
infection was a coinfection caused by Corynebacterium sp. and
coagulase-negative Staphylococcus sp. Red symbols depict the
maximum AUC for each model. (B) Kurtosis and skewness of the top
5 biomarkers selected by RF-based feature elimination. (C) Receiver
operating characteristic analysis showing specificity and sensitivity of
the top 5 biomarkers. (D) Tukey plots of the top 5 biomarkers in
patients with confirmed nonstreptococcal Gram-positive infections
and with all other episodes of peritonitis, as assessed by Mann-
Whitney tests (*P < 0.05; **P < 0.01; ***P < 0.001). (E) Heat map
showing the top 5 biomarkers across all patients presenting with
acute peritonitis.
Table S1. Local biomarkers in stable PD patients and in patients
presenting with acute peritonitis.
Table S2A. Local biomarkers in patients presenting with acute
peritonitis caused by Gram-negative organisms or with other
episodes.
Table S2B. Performance of local biomarkers in predicting Gram-
negative infections in PD patients against all other episodes of
peritonitis.
Table S3A. Local biomarkers in patients presenting with culture-
negative peritonitis or with other episodes.
Table S3B. Performance of local biomarkers in predicting culture-
negative episodes in PD patients against all other microbiologically
confirmed infections.
Table S4A. Local biomarkers in patients presenting with acute
peritonitis caused by Gram-positive organisms or with other episodes.
Table S4B. Performance of local biomarkers in predicting Gram-
positive infections in PD patients against all other episodes of
peritonitis.
Table S5A. Local biomarkers in patients presenting with acute
peritonitis caused by streptococcal species (Streptococcus spp. and
Enterococcus spp.) or with other episodes.
Table S5B. Performance of local biomarkers in predicting infections
caused by streptococcal species (Streptococcus spp. and Enterococcus
spp.) against all other episodes of peritonitis.
Table S6A. Local biomarkers in patients presenting with acute
peritonitis caused by nonstreptococcal Gram-positive species
(Staphylococcus aureus, coagulase-negative Staphylococcus spp.,
Corynebacterium spp.) or with other episodes.
Table S6B. Performance of local biomarkers in predicting infections
caused by nonstreptococcal Gram-positive species (Staphylococcus
aureus, coagulase-negative Staphylococcus spp., Corynebacterium spp.)
against all other episodes of peritonitis.
Table S7A. Local biomarkers in patients presenting with acute
peritonitis caused by coagulase-negative staphylococci or with other
episodes.
Table S7B. Performance of local biomarkers in predicting infections
caused by coagulase-negative staphylococci against all other
episodes of peritonitis.
Table S8A. Local biomarkers in patients technique failure over the
next 90 days or with other episodes.
Table S8B. Performance of local biomarkers in predicting technique
failure over the next 90 days against all other episodes of peritonitis.
Table S9. Proportion of missing values.
Supplementary material is linked to the online version of the paper at
www.kidney-international.org.
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