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Summary 

1. With freshwater ecosystems worldwide at significant risk from global change, there 

is an urgent need to understand the processes involved and to develop adaptive 

responses. Riparian management might offer a means of increasing resilience to 

global change in headwaters, but evidence is scarce. This thesis investigates the 

potential effects of riparian management on the storage, processing and downstream 

export of resource subsidies – dominantly as terrestrial litter – that enter streams from 

the riparian zone. 

2. In a large scale field study over four years, natural and experimental systems were 

used to test the hypothesis that riparian woodlands enhance stream ecosystem 

resilience to climatically mediated changes in flow regimes. Specific work included 

assessments of benthic organic matter stocks and export in contrasting catchments 

(broadleaf woodland, conifer plantations or sheep-grazed moorland), flow 

manipulations in mesocosms, and a large-scale field experiment simulating riparian 

broadleaved tree planting. 

3. Standing stocks of particulate organic matter (POM) were influenced by flow regime, 

and declined following larger and longer flow-events, but event frequency had no 

apparent impact. Experimental data showed also that coarse fractions of POM in 

transport were significantly elevated in the early stages of simulated floods. 

4. Despite flow effects on POM dynamics, streams bordered by broadleaves maintained 

consistently higher standing stocks of POM than conifer or moorland streams. 

Broadleaved streams also transported the highest concentrations of carbon in the 

form of high-quality FPOM. Leaf litter additions of stream channels did not 

reproduce these effects, possibly because the scale was insufficient to mimic real 

riparian woodlands. 

5. While predicted flow changes under a warmer climate might affect the storage and 

flux of organic matter, riparian broadleaves are likely to mitigate these effects in 

stream ecosystems.  This project illustrates the value of blending catchment-scale 

studies with field-based mesocosms to understanding complex global change 

processes. 
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General Introduction 

Human activity has profoundly altered exchanges of water, matter, organisms and energy 

in freshwater catchments with major consequences for water supply, biodiversity and 

environmental quality (Millennium Ecosystem Assessment 2005). Climate change and 

growing resource needs will increase pressure on freshwater ecosystems in future, but 

there is only fragmentary knowledge of the exact mechanisms through which freshwater 

ecosystems respond. Meanwhile, these ecosystems – among the Earth’s major 

biodiversity hotspots – incur species extinction rates faster than any other (Strayer and 

Dudgeon 2010). 

In a unique interface position between land and sea, freshwater ecosystems, and 

particularly headstreams, derive a critical part of their energy and matter from the riparian 

vegetation (Cummins 1974; Gregory et al. 1991; Naiman and Décamps 1997). Organic 

matter entering the freshwater ecosystem is either stored within the stream system as 

detritus or stream biota biomass, or exported via physical export and respiration (Fisher 

and Likens 1973). These energy inputs, termed ‘riparian subsidies’, play a pivotal role in 

regulating in-stream processes such as food web dynamics, secondary production and a 

range of ecosystem functions (Polis et al. 1997), which are all key processes that support 

major ecosystem services on which humans rely, such as clean water or fisheries 

(Millennium Ecosystem Assessment 2005). 

Environmental factors such as land-use and climate change interact with these transfers 

of energy by altering the supply of organic matter, as well as the capacity of stream 

ecosystems to store and process these materials (Kominoski and Rosemond, 2012; Figure 

1). In the UK, as in much of Europe, widespread changes in upland catchments have 

occurred over the 20th Century, largely due to the intensification of meat production and 

afforestation with conifer plantations (Simmons 2003; Reed et al. 2009). To add to these 

existing pressures, climate change in Northern Europe is expected to increase the 

intensity, duration and frequency of winter storms, with upland areas likely to be 

particularly hard hit (Birsan et al. 2005; Hannaford and Buys 2012). In headwater 

streams, these expected more frequent floods could potentially alter the structure and 

functioning of headwater streams, namely by depleting key basal resources (Kominoski 

and Rosemond 2012; Graça et al. 2015). These relationships are likely to be complex, 
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however, with climate interacting with channel structure and the riparian zone, making it 

difficult to identify underlying mechanisms.  

Pressures stemming from the need to respond to global changes in climate patterns and 

growing human population needs are likely to alter riparian subsidies further, but current 

understanding of the role of riparian subsidies in supporting freshwater ecosystem 

processes is insufficient to guide decision making. Riparian vegetation is increasingly 

advocated as a management tool to protect water quality or regulate water temperature 

(Broadmeadow and Nisbet 2004; Abell et al. 2007; Ormerod 2009; Palmer et al. 2009; 

Seavy et al. 2009), but large scale evidence to support riparian management to deliver 

these and other ecosystem services is scarce. 

 

Figure 1. Schematic diagram of the process of energy flow through stream ecosystems, which 

could be altered by changes in land use and climate. Riparian subsidies provide key inputs of 

energy and nutrients to stream ecosystems, and are subsequently stored, processed and exported 

downstream. 
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Aims & Hypotheses 

The main objective of this study is to understand the impact of land use and climate 

change on the fate of riparian subsidies in headwater streams. Using field-based, large-

scale approaches, this study combines natural gradients and experimental methods to test 

the central hypothesis that riparian woodlands enhance stream ecosystem resilience. 

More specifically, the following hypotheses are tested: 

 Climate change will reduce benthic organic matter resources in headwater 

streams due to increased organic matter export during high flow events 

(Chapters 2, 3 and 4) 

 Streams bordered by riparian broadleaf woodlands support greater stocks 

of organic matter resources than those bordered by conifer plantations or 

moorland (Chapters 2, 3 and 5) 

The Llyn Brianne Stream Observatory (LBSO; www.llynbrianne-lter.org) offers the ideal 

setting to test these large-scale ecological questions. 35 years of ecological data on 14 

replicated streams, with a range of land uses and water qualities typical of the UK uplands, 

provide the correlative power necessary for large scale analysis. In addition, a set of 12 

mesocosm channels alongside these streams provides unique facilities for experiments to 

support the correlative observations. 

http://www.llynbrianne-lter.org/
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CHAPTER 1: Literature review 

As a background for the work presented in this thesis, a review is presented here of: 

(1) litter dynamics in streams (input, storage and export), and the biotic and abiotic 

factors that control these dynamics in terms of quantity, quality and timing; and 

(2) the interactive effects of land use and climate on litter dynamics, and the possible 

implications for energetic processes in stream ecosystems. 

 

1.1 Litter dynamics 

1.1.1 Inputs 

Allochthonous inputs to streams occur as particulate or dissolved forms of organic matter. 

Coarse particulate organic matter (CPOM, >1mm) typically includes leaves, twigs, 

flowers and wood entering via direct litter fall or lateral pathways driven by wind or 

surface run-off (Cummins 1974). Fine particulate organic matter (FPOM, >0.5µm <1mm) 

is mainly generated from the breakdown of larger CPOM by physical and biological 

processes, though some also enters streams from adjacent terrestrial areas through 

windblow, surface runoff, bank erosion, groundwater and rainfall through the canopy 

(Cummins 1974). FPOM is also generated by flocculation of dissolved organic matter 

(DOM), which is generated from groundwater or leaching (Cummins 1974). The 

distinction by particle size relates to the types of consumers whose mode of feeding is 

adapted to the different physical states of organic matter (Cummins 1974; Cummins and 

Klug 1979). CPOM is consumed mainly by a group of invertebrates known as 

“shredders”, and FPOM is consumed by “collectors” and “filter-feeders” (Cummins 

1974). The relative abundance of different types of producer and consumer organisms is 

therefore expected to change in response to the availability and character of organic 

matter inputs (Vannote et al. 1980). 

Litter inputs play a pivotal role in the structure and function of stream ecosystems because 

they influence the quantity, quality and timing of energy and matter supply that support 

in-stream secondary production. Leaf litter is transported to streams by two major 

pathways: (1) direct deposition from overhead canopies (‘vertical input’), and (2) lateral 

movement (‘lateral input’) from the surrounding land. Many factors affect inputs, 

including the composition of riparian vegetation, slope and climate (see below). While it 
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is recognised that wood is also an important component of inputs, the direct contribution 

of wood to stream energy budgets is considered minimal because wood is highly resistant 

to breakdown (Webster and Benfield 1986). However, wood is indirectly important 

because it creates habitat for aquatic organisms and enhances leaf litter retention (Bilby 

and Likens 1980; Eggert et al. 2012). As such, wood will be considered here mainly in 

terms of its structural role in the retention and long-term storage of leaf litter (see 

Retention, storage & processing, below). 

The production and species composition of riparian vegetation affects the quantity, 

quality and timing of leaf litter entering streams (Abelho 2001). Variations in the quantity 

of litter produced and subsequently entering streams differ between vegetation types; 

forested streams tend to provide much larger inputs of litter than non-forested streams 

(Webster et al. 1990; Benfield 1997). Different riparian species also vary in the quality 

of litter they produce, which is generally defined in terms of their palatability and 

assimilation by consumers, and therefore their breakdown rates. These characteristics 

include the abundance of essential nutrient elements (C:N:P), and presence of chemical 

inhibitors (Webster and Benfield 1986). For example, deciduous species supply more 

litter inputs of higher quality than coniferous species (Hart et al. 2013). The phenology 

of riparian vegetation affects the temporal dynamics of litter inputs. For example, 

temperate deciduous trees shed leaves in large pulses during autumn, which can account 

for up to 79% of total annual leaf fall (Abelho and Graça 1996). Conversely, coniferous 

or evergreen species will shed leaves throughout the year (González 2012). 

Much of the UK uplands are characterised by open moorlands dominated by grasses 

consisting of Molinia and Juncus spp. (Simmons 2003). There have been no studies to 

date that have quantified the contribution and energetic importance of these types of 

allochthonous litter to moorland streams, however (Cariss and Dobson 1997). Moorland 

streams are considered to be more reliant on autochthonous production (Huryn et al. 

2001), with invertebrate assemblages characterised by grazer species (Dobson and Cariss 

1999). There is some evidence to suggest, however, that some grasses may provide an 

important food resource for shredders in open-canopy streams (Leberfinger et al. 2011), 

and can even limit autochthonous production where the degree of overhanging is 

sufficient (Menninger and Palmer 2007). Therefore, grass litter could provide an 

important subsidy to streams at least when in-stream primary productivity is limited 

(Huryn et al. 2001), though more research is needed. 



 

6 

 

While direct inputs can account for the majority of total inputs (Fisher and Likens 1973), 

lateral inputs (i.e. litter entering the stream from the catchment slopes via gravity, blow-

in and water run-off) can contribute relatively significant amounts, with values reaching 

as much as a third of total inputs (Webster et al. 1999; Abelho 2001) and even exceeding 

direct inputs in some cases (Kochi et al. 2010). The relative proportions of direct and 

laterally transported litter entering streams may significantly influence in-stream 

community dynamics as a consequence of input quality and timing (Cummins et al. 

1989). Laterally transported litter may be qualitatively important to consumers because 

of its higher nitrogen concentration than that of litter falling directly into the stream 

(Benson and Pearson 1993). In addition, lateral inputs may provide an important longer 

term replenishment of resources that may have been exported or consumed following 

autumn-winter pulses and high flows (Hart et al. 2013; Riedl et al. 2013).  

The amount and relative contribution of direct and lateral inputs of litter depends on slope, 

distance from the shoreline, composition of riparian vegetation, and climate (Hart et al. 

2013). Lateral contributions tend to increase with steeper slopes (Orndorff and Lang 

1981; Selva et al. 2007; Leroux and Loreau 2008; Hart et al. 2013), but decrease with 

increasing distance from the shoreline (Gasith and Hosier 1976). Other factors such as 

the density and composition of ground vegetation can influence the rate of lateral 

movement. For example, Scarsbrook et al. (2001) suggested that ground vegetation such 

as tussock grass can act as barriers that reduce lateral inputs of litter. Hart et al. (2013) 

found that slope and the composition of the overstory vegetation was more important in 

regulating lateral transport than the density of understory vegetation, however, with the 

effect of slope being more pronounced in deciduous sites than conifer. Laterally 

transported litter in surface runoff may only occur in significant amounts during high 

storm events (Maridet et al. 1995) and these effects may increase with cumulative events 

(Naiman and Décamps 1997). Data on how proportions and contributions of direct and 

lateral inputs change through time are, however, scarce (but see Hart et al. 2013). 

1.1.2 Retention, storage and processing 

The retention and subsequent breakdown of litter inputs is an important process in stream 

ecosystems both in terms of energy flow and nutrient cycling (Giller and Malmqvist 

1998). Benthic storage of organic matter provides a critical energetic and habitat resource 

for stream organisms and ultimately drives their production (Wallace et al. 1997; Wallace 

et al. 1999). The processing and conversion of retained litter into finer particles also 
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increases its availability and nutritional properties to different groups of organisms, both 

locally and further downstream (Giller and Malmqvist 1998). The relative amounts, 

quality and long-term storage of litter within a channel depend primarily on the retention 

capacity and hydrology of the stream, but also on the characteristics of the litter itself 

(Cordova et al. 2008; Hoover et al. 2010). 

In low-order streams, the abundance of channel obstructions such as boulders and large 

wood can provide effective retention structures that enhance long-term storage of benthic 

litter and shredder biomass. For example, there have been multiple demonstrations of the 

important structural role of wood in retaining litter in such streams (e.g. Speaker et al. 

1984; Dobson and Hildrew 1992; Wallace et al. 1995; Eggert et al. 2012). Current forest 

practices reduce inputs of wood to streams and hence their ability to retain litter because 

trees are felled before significant amounts of wood can enter (Dobson and Hildrew 1992; 

Wallace et al. 1995). As a result, shredder biomass has shown to be reduced in these 

streams (Dobson and Hildrew 1992; Eggert et al. 2012). Open grassland or moorland 

streams have a lower storage potential than forested streams because wood is generally 

sparse or absent (Cariss and Dobson 1997; Huryn et al. 2001). Litter retention also 

depends on the characteristics of the litter itself. For example, larger particles are more 

easily retained than smaller, more flexible types (e.g. Pretty and Dobson 2004a; Quinn et 

al. 2007). Very few studies have investigated factors affecting the retention of grass litter 

(but see Cariss and Dobson 1997), though Scarsbrook and Townsend (1994) suggested 

that tussock grass litter plays more of a role in stabilising the stream bed as opposed to 

providing refuge or food for invertebrates. 

Litter retained in streams is gradually broken down into finer particles through a 

combination of physical and biological processes (Cummins 1974). The rate at which 

different types of litter are broken down largely depends on the interactions between the 

intrinsic chemical and physical properties of litter, the organisms involved in its 

decomposition, and environmental factors such as temperature, pH, nutrient 

concentrations and hydrology (Webster and Benfield 1986). Aquatic microbes, 

particularly hyphomycete fungi, play a pivotal role in the process of litter breakdown and 

mediate energy transfer to higher trophic levels (Suberkropp and Klug 1980). These 

microbes directly decompose leaf litter by converting it into their own biomass and 

releasing FPOM (Suberkropp and Klug 1980). Microbial activity also ‘conditions’ leaf 

litter, making it more nutritious (lower C:N ratio; Suberkropp et al. 1976), and more 
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palatable and readily assimilated by shredders (Benke et al. 1988). While most of the 

energy requirements of shredders come from leaf litter itself, extracellular enzymes from 

microbes may retain activity in the animal gut and enhance digestion (Benke et al. 1988). 

However, the poor quality of leaf litter means that shredders must process relatively large 

quantities to support their growth (Giller and Malmqvist 1998). Hence, the feeding 

activity of shredders, together with microbes, can be an important source of FPOM by 

increasing the rate of conversion of coarse material into smaller particles that are more 

easily entrained and transported downstream (Cuffney et al. 1990; Cushing et al. 1993). 

The chemical properties of leaf litter influence the rate at which it is broken down. Leaves 

with high initial nitrogen and low lignin content, are broken down more rapidly than those 

with low nitrogen (Kaushik and Hynes 1971). For example, “slow” species such as oak 

leaves and conifer needles with high C:N ratios and lignin content have relatively slow 

breakdown rates, while “fast” species with a lower C:N ratio such as alder are processed 

relatively quickly (Petersen and Cummins 1974; Webster and Benfield 1986). Variation 

in the elemental composition of riparian organic matter inputs therefore may have 

important implications for stream functioning. However, other factors influence 

breakdown rates: low pH reduces litter processing rates (e.g. Dangles et al. 2004) by 

inhibiting microbial conditioning of leaf-litter, which reduces food quality and 

availability to shredder invertebrates (Larrañaga et al. 2010). Stream hydrology also 

affects breakdown by increasing physical fragmentation and downstream transport 

(Dewson et al. 2007; Cordova et al. 2008). 

1.1.3 Export 

Export of organic materials from upland streams represents the downstream flux of 

energy and matter that supports food webs in larger rivers (Vannote et al. 1980; Wipfli et 

al. 2007). Export also occurs in the form of emerging adult aquatic invertebrates, which 

support higher level organisms in adjacent terrestrial ecosystems (Nakano and Murakami 

2001). Particulate organic matter export is determined by the interaction of availability, 

hydrologic variability, and retention mechanisms (Newbold et al. 2005). Finer particles 

are more easily entrained and transported downstream, and are more closely related to 

hydrology (Webster et al. 1987; Thomas et al. 2001).  

On an annual basis, the major fraction of particulate material in transport is FPOM 

(Webster and Meyer 1997), however, the total amount and composition of exports vary 
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through time. In forested streams, for example, high availability of material coupled with 

higher discharge in autumn-winter months means that there is a greater total export of 

material by comparison with those in summer months (Eggert et al. 2012). Exports in 

autumn-winter months are dominated by CPOM, whereas in summer, exported material 

are comprised more of FPOM after material has been processed and fragmented into 

smaller particles by organisms (Webster et al. 1990; D. C. Richardson et al. 2009). 

A vast proportion of annual budgets are exported during high discharge (e.g. storm runoff) 

events (Golladay et al. 1987; Wallace et al. 1995; Johnson et al. 2006), with some studies 

reporting 97% of annual exports occurring during storms (Newbold et al. 1997). 

However, the amount that is exported during storm events depends on its availability in 

the channel and ultimately from terrestrial sources (Webster et al. 1987). For example, 

Heartsill-Scalley et al. (2012) found that following a large hurricane, subsequent storms 

did not have as large an effect on litter export, implying that resources had become 

depleted (see also Eggert et al., 2012). Timing of high discharge events could therefore 

be important in regulating organic matter export from temperate forested streams, 

particularly if they coincide with periods of peak litter inputs (Molinero and Pozo 2004; 

Sabater et al. 2008). 

While CPOM typically makes up the majority of litter inputs, it generally represents only 

a small fraction (<4%) of total export (Wallace et al. 1995; Shibata et al. 2001; Johnson 

et al. 2006; Heartsill-Scalley et al. 2012; Eggert et al. 2012), with FPOM making up the 

largest proportion of export from streams (Webster and Meyer 1997; Colón-Gaud et al. 

2008; Eggert et al. 2012). These differences have been attributed to the feeding activity 

of shredder invertebrates, which increase the rate of conversion of coarse benthic material 

into smaller particles (Cuffney et al. 1990; Cushing et al. 1993). Although filter feeder 

invertebrates can play an important role in removing FPOM from the water column 

(Voshell and Parker 1985), filter feeding activity is unlikely to regulate FPOM exports to 

downstream systems to the same extent as stream discharge, depth and POM 

concentration (Monaghan et al. 2001). 

Riparian land use affects export from streams, by regulating the availability of benthic 

material and retention structures such as wood in streams, which increases benthic storage 

and reduces export in the long-term (Webster et al. 1990; Eggert et al. 2012). This could 

have important implications for productivity both locally and further downstream. For 

example, Wipfli & Musslewhite (2004) suggested that stream and riparian productivity 



 

10 

 

was higher with increasing alder density resulting in greater total exports of materials 

downstream. There are very few reports on export from open moorland streams, but those 

reported by Cariss & Dobson (1997) were very low by comparison with wooded sites, 

attributed to low input levels as opposed to low retention. In terms of quality, Young & 

Huryn (1997) reported that the quality of exports in grassland streams may be higher due 

to higher contributions of algae relative to terrestrial contributions by comparison with 

forested sites. 

 

1.2 Effects of land use and climate 

1.2.1 Land use 

The UK uplands have a long history of land use change; during the mid-Holocene large 

areas of woodland were cleared by humans to create pasture (Simmons 2003; Holden et 

al. 2007). Years of traditional low-intensity agricultural practices have led to the 

development of the distinctive open moorland landscape that currently dominates the UK 

uplands (Holden et al. 2007). Large areas of the upland landscape are considered to be of 

high nature conservation value and are protected under national and/or international 

conservation designations (e.g. Sites of Special Scientific Interest (SSSIs), EU Habitats 

and Birds Directives; Burt et al. 2002). Changes in the way the UK uplands were managed 

over the 20th century, largely in response to socio-economic drivers, however, have led 

to widespread loss of habitat and degradation of the uplands (Haines-Young et al. 2003; 

Holden et al. 2007). These land-use changes include the intensification of sheep 

production and afforestation with coniferous plantations (Simmons 2003; Reed et al. 

2009). 

Agricultural intensification in the UK was largely ignited after the Second World War, 

when concerns for food security led to the introduction of government subsidies that 

encouraged farmers to increase the productivity of the uplands (Reed et al. 2009). This 

involved liming and fertiliser addition, land drainage, ploughing, conversion of native 

vegetation to provide improved pasture, and overgrazing (Simmons 2003). Sheep 

densities increased by up to 400% in some upland areas (Holden et al. 2007). This led to 

the degradation of upland soils in many parts of the UK due to changes in the chemical 

and physical conditions of the soils (Reed et al. 2009). As a result, there has been a general 

trend from more productive vegetation with high species diversity to large areas 
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dominated by less diverse and more aggressive species of lower agricultural value such 

as Molinia and Nardus spp. (Holden et al. 2007). Today, the reformed EU Common 

Agricultural Policy (CAP) decouples payments from production, and in response, sheep 

stocking numbers are declining rapidly across many parts of the UK uplands (Reed et al. 

2009). 

Widespread afforestation of open moorlands with coniferous plantations, mostly 

following the Second World War, to reduce reliance on imports, has also changed the 

face of uplands (Simmons 2003; Reed et al. 2009). Coniferous plantations alter the 

hydrology, water chemistry and temperature regime of upland streams (Ormerod et al. 

1989; Weatherley and Ormerod 1990). As a result, many upland streams in the UK and 

elsewhere have suffered reductions in diversity and productivity (Ormerod et al. 1993; 

Friberg et al. 1997; Friberg 1997). In undisturbed open moorland streams, autochthonous 

production provides the primary energetic base for food webs (Huryn et al. 2001), 

whereas allochthonous inputs of litter are low (Cariss and Dobson 1997). However, 

conversion to conifer plantations reduces light intensity in these streams through heavy, 

permanent shading, which limits primary production (Friberg et al. 1997) and 

subsequently reduces the number of grazing invertebrates (Dobson and Cariss 1999). 

Conifer plantations also alter the quality and availability of litter in streams (Hoover et 

al. 2011). Conifer needles are of poor nutritional quality to stream organisms (Webster 

and Benfield 1986), though they may become more palatable to invertebrate consumers 

if they are retained on the stream bed for long enough to allow significant microbial 

conditioning (Pretty and Dobson 2004b). However, conifer needles are not easily retained 

because they are relatively small and inflexible (Pretty and Dobson 2004a; Cordova et al. 

2008). Furthermore, intensive forestry practices reduce the retentiveness of conifer 

streams because trees are harvested before significant amounts of large wood can enter 

and provide effective retention structures (Dobson and Cariss 1999). 

1.2.2 Climate change 

The global hydrological cycle is expected to intensify in a warmer climate (Huntington 

2006), resulting in a greater frequency and magnitude of extreme precipitation events and 

overall increases in variability (Bates et al. 2008). While regional effects are still 

uncertain, headwaters at higher latitudes and altitudes are already showing trends towards 

increasing discharge in winter (e.g. Birsan et al. 2005; Dixon et al. 2006; Hannaford and 

Buys 2012), shifts towards earlier spring snowmelt (Kormann et al. 2015), and faster rates 



 

12 

 

of warming (Hassan et al. 2005). Given the importance of hydrological and thermal 

regimes in regulating and energetic processes in streams, climate-driven changes are 

expected to have a strong effect on the structure and functioning of stream ecosystems 

through a combination of direct effects on the survival of sensitive species and indirect 

effects on basal resources. For example, a +1°C change to some Welsh upland streams 

could reduce spring abundances of stream invertebrates by as much as 21% (Durance and 

Ormerod 2007). These changes could reduce the capacity of consumers to process and 

utilise these resources to support their production (Friberg et al. 2009; Ferreira et al. 

2010). However, understanding climate-driven changes in freshwaters is particularly 

complex because ecological processes are affected by local meteorological, hydrological 

and nutrient regimes, as well as indirect terrestrial impacts (Ball et al. 2010).  

Warmer temperatures may alter the phenology of terrestrial plants, with predicted earlier 

leaf growth in spring (Schwartz et al. 2006) and delayed leaf abscission in autumn 

(Menzel et al. 2006). This would alter the timing of litter inputs to streams, which could 

in turn reduce the production of organisms whose life-histories reflect the temporal 

availability of resources (Cummins 1974). Increases in temperatures may stimulate 

microbial activity (Bärlocher et al. 2008) but inhibit invertebrate feeding (Friberg et al. 

2009), resulting in increased microbial rather than invertebrate processing of litter 

(Kominoski and Rosemond 2012). Meanwhile, changes and increased variability in 

precipitation patterns and associated hydrology could also alter the availability and 

processing of organic matter in streams. Reduced flows in summer could reduce both 

physical and biological breakdown (Kominoski and Rosemond 2012) and promote the 

accumulation of benthic litter (Sabater et al. 2008). In contrast, greater frequencies and 

magnitude of high flow events in winter could reduce the availability of resources by 

accelerating physical breakdown and downstream transport of organic matter (Heartsill-

Scalley et al. 2012; Eggert et al. 2012). 

 

1.3 Knowledge gaps 

Overall, the effects of expected changes in climate and land use indicate a greater 

temporal and spatial variability in the quantity and quality of food resources available to 

support the food web productivity in stream ecosystems. Questions remain, however, as 

to what effect these changes will have on the overall functioning and resilience of upland 
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streams under changing land-use and climate: What is the capacity of different consumers 

to adapt to shifts in the quantity, quality and timing of resources? How does riparian land-

use and management serve to mitigate or exacerbate some of the negative effects of 

climate change on energetic processes in streams? For example, the effects of changes in 

hydrological and thermal regimes on stream organisms and processes could be 

exacerbated in intensively managed plantation streams, where productivity is already 

limited by the low retention and poor quality of litter (Dobson and Cariss 1999). In 

contrast, while forested riparian zones may reduce flood peaks to some degree (Bradshaw 

et al. 2007), the effects of hydrological extremes on energy flows could be mitigated in 

mixed broadleaved streams, by increasing the quantity, quality and diversity of litter, and 

enhanced retention in the long-term (Entrekin et al. 2009; Eggert et al. 2012). Answering 

such questions on the effects of global changes on ecosystem structure and functioning, 

as well as the likely outcomes of management interventions to mitigate such effects, will 

require an improved understanding of the changes that are likely to occur at the base of 

the food web. 

Organic matter dynamics have been a major focus in freshwater ecology for many 

decades (Tank et al. 2010). Yet, recent attempts to model them in relation to future 

climate or riparian management scenarios are still limited by gaps in empirical evidence 

and process-based understanding (e.g. J. S. Richardson et al. 2009; Acuña and Tockner 

2010; Stenroth et al. 2014). Many factors interact to affect the input, storage and transport 

of organic matter in stream ecosystems (Sections 1.1 and 1.2). To date, most field-based 

studies on organic matter dynamics have, however, been limited to short temporal scales 

(~1 year, e.g. Abelho and Graça 1996; González and Pozo 1996; Cariss and Dobson 1997; 

Pozo et al. 1997), or small spatial scales (~ 1 study site e.g. Molinero and Pozo 2004; 

Mollá et al. 2006; Wallace et al. 2015). Long-term, field-based studies conducted over 

larger spatial scales are therefore needed to allow for stronger inference and inform land 

management decisions. Manipulative field experiments are also needed to identify causal 

relationships and gain mechanistic understanding of the impacts of land use and climatic 

changes on organic matter dynamics. For example, investigations on the effects of altered 

flow regimes on organic matter dynamics often focus on average changes (e.g. Dewson 

et al. 2007), highlighting the need for more studies on the effects extreme hydrological 

events (Dunne et al. 2004; Ledger et al. 2011; Stewart et al. 2013). 
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1.4 Conclusions 

Headwater stream ecosystems are closely connected with their surroundings through a 

range of processes, making them highly sensitive to changes in catchment land use and 

climate. Managing these ecosystems to safeguard the many services they provide is key. 

While there are growing demands for increased tree cover in upland catchments and in 

riparian zones, for example to buffer against thermal and hydrological extremes, the 

potential for such management interventions to increase stream ecosystem resilience to 

future changes by enhancing the availability of basal resources, and ultimately food web 

stability and productivity is less well understood.  Understanding what drives these 

processes is therefore crucial to enable informed management decisions in the face of 

global change. 
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CHAPTER 2: Interactive effects of riparian land cover and climate 

variability on detrital resource availability in headwater streams 

2.0 Summary 

1. Headwater streams are disproportionately vulnerable to the effects of global 

climate and land use change through altered fluxes of water, heat and organic 

matter. Changes in stream flow and thermal regimes are already occurring 

worldwide, and are likely to alter the availability of important detrital resources, 

which could have important consequences for the structure, functioning and 

stability of these ecosystems, the effects of which could extend far beyond their 

boundaries. The potential for riparian land cover to modify the effects of climate 

change on detrital resources in streams, however, is poorly understood. 

2. This study assessed the effects of stream flow and thermal regime on the standing 

stocks of two important sources of detritus contrasting in structural complexity 

and lability – coarse and fine benthic particulate organic matter (CPOM and 

FPOM, respectively) – over four years in streams differing in riparian land cover 

types in central Wales, UK. Specifically, this study tested whether variations in 

CPOM and FPOM standing stocks were driven by certain aspects of the flow 

regime (i.e. magnitude, frequency, timing, duration, variability), and whether 

these effects varied among riparian land cover types. 

3. The four-year study period captured significant seasonal and interannual 

variability in stream flow and temperature, including the wettest summer, the 

wettest winter, and the warmest autumn in Wales over the last 100 years. Standing 

stocks of CPOM and FPOM were linked with certain aspects of the flow regime, 

showing significant reductions with increased magnitude and duration of high 

flow events, with effects on FPOM being more pronounced overall. Despite these 

effects, POM availability remained consistently higher in streams with 

broadleaved riparian land cover than those with either coniferous or open-canopy 

moorland cover. 

4. This study indicates that benthic POM, an important basal food resource in 

headwater streams, could be sensitive to future intensification of the hydrological 

cycle predicted under a warmer climate. Subsequent reductions in the abundance 
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and heterogeneity of detrital resources could have important indirect ecological 

effects, for example by disrupting energy fluxes to higher trophic levels and 

reducing ecosystem stability. Riparian broadleaves, however, could play an 

important role in supporting ecosystem stability by maintaining a greater 

abundance of detrital resources than both conifer plantation and open-canopy 

moorland streams, even if regional rainfall exceeds the upper limits of future 

climate projections. 

 

2.1 Introduction 

Climate change poses one of the biggest threats to global biodiversity and ecosystem 

functioning (IPCC 2014). Among the world’s ecosystems, freshwaters are arguably the 

most vulnerable (Ormerod 2009), with many freshwater organisms being directly linked 

to thermal and hydrological regimes, having limited dispersal, and often subjected to 

additional stressors that exacerbate climatic effects (Woodward et al. 2010). 

Headwater stream ecosystems (1st to 2nd order streams) are particularly sensitive to 

climate change due to their high surface to volume ratio and subsequent rapid response 

to atmospheric temperature and precipitation (Gomi et al. 2002; Caissie 2006). 

Headwaters at higher latitudes and altitudes are already showing trends towards 

increasing discharge in winter (Birsan et al. 2005; Dixon et al. 2006; Hannaford and 

Marsh 2006; Marsh and Dixon 2012), shifts towards earlier spring snowmelt (Kormann 

et al. 2015), and faster rates of warming (Hassan et al. 2005). Evidence of concomitant 

biological responses in headwaters is also emerging (Durance and Ormerod 2007), 

however the exact causes are rarely identified (Cahill et al. 2012) and are likely to arise 

from a complex set of mechanisms that include not only the direct physiological effects 

on individual taxa, but also indirect effects on organisms, processes and functions (e.g. 

Durance and Ormerod 2010). Given the value of headwater streams as biodiversity 

hotspots (Meyer et al. 2007; Finn et al. 2011), their wide-reaching effects in terms of 

water and organic matter supply to adjacent and downstream ecosystems (Wipfli et al. 

2007; Battin et al. 2008), and their value as ‘sentinel systems’ (Perkins et al. 2010), the 

need to understand how they could respond to current and future climate change is acute. 

One of the mechanisms by which climate change could affect ecosystem functioning in 

headwaters is by altering the availability of basal food resources, for example by 
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indirectly altering the amount and composition of food resources that are retained and 

subsequently made available for biological uptake (Verdonschot and van den Hoorn 

2010; Kominoski and Rosemond 2012), or by causing phenological mismatches between 

consumers and resources (Durant et al. 2007). Like many ecosystems (Polis et al. 1997), 

headwaters are fuelled by inputs of resources from outside their boundaries, as well as by 

in situ primary production. In headwaters, these ‘resource subsidies’ are largely 

composed of terrestrial detritus, namely leaf litter from riparian vegetation, and there is 

increasing evidence that its availability could be sensitive to climate-induced changes in 

stream flow and thermal regimes. For example, expected warmer temperatures could 

affect basal resources by altering the seasonality and timing of leaf fall (Duputié et al. 

2015; Sanpera-Calbet et al. 2016) and accelerating biological processing rates (Graça et 

al. 2015).  Furthermore, a number of studies have shown that leaf litter retention decreases 

with increasing discharge (Speaker et al. 1984; Webster et al. 1987; Pretty and Dobson 

2004a; Koljonen et al. 2012) and that the majority of annual export occurs during storm 

events (Webster et al. 1987; Johnson et al. 2006; D. C. Richardson et al. 2009; Eggert et 

al. 2012). These effects, coupled with expected increases in litter breakdown under 

warmer temperatures (Graça et al. 2015), suggest that these resources may become 

depleted with projected intensification of the hydrological cycle (Acuña and Tockner 

2010; Heartsill-Scalley et al. 2012).  

Changes in resource availability are likely to have important consequences for energy 

fluxes in stream ecosystems. In many ecosystems, the abundance, composition and timing 

of basal resources are an important driver of food web structure, productivity and 

dynamics (Polis et al. 1997). In particular, detritus is considered to play an important role 

in providing a heterogeneous resource and habitat for a diverse set of organisms (Moore 

et al. 2004), often increasing food chain length and ecosystem stability and persistence 

(Rooney et al. 2006). There is a wealth of evidence that demonstrates the importance of 

detritus in subsidising recipient food webs in forested headwater streams (e.g. Fisher and 

Likens 1973; Benke et al. 1984; Wallace et al. 1999; Wallace et al. 2015), and 

increasingly so in open-canopy streams, where detrital inputs are comparatively low (e.g. 

Menninger and Palmer 2007; Leberfinger et al. 2011; Dekar et al. 2012). The significance 

of detritus in headwaters is even reflected in the diversity of traits among aquatic 

invertebrates in response to the different forms and seasonality of detritus, with some that 

‘shred’ leaf litter and other structurally complex materials, while others ‘collect’ or ‘filter’ 
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the smaller, more labile particles of organic matter (Cummins et al. 1989). With the aid 

of microbes, these organisms play a key role in transferring the energy and nutrients 

derived from detritus to higher trophic levels. Changes in the availability of this resource 

is thus likely to impact a wide range of organisms by disrupting fluxes of energy that 

extend far beyond headwater boundaries (Wipfli et al. 2007; Richardson et al. 2010; 

Scharnweber et al. 2014; Jonsson et al. 2015). 

Predicted land use changes in response to altered climate patterns and growing 

populations are likely to interact with climate impacts on basal resources in headwater 

streams. Changes in land use are already altering detritus inputs to streams and rivers 

worldwide (Kominoski and Rosemond 2012). However, different types of riparian land 

cover (e.g. grassland, deciduous woodland, conifer plantations) are likely to interact 

differently with climate fluctuations (Kominoski and Rosemond 2012). For example, 

forested streams are known to buffer streams against thermal (Broadmeadow et al. 2011; 

Garner et al. 2015) and hydrological (Robinson et al. 1991; Bradshaw et al. 2007) 

extremes, increase detritus retention through the presence of wood (Cariss and Dobson 

1997; Eggert et al. 2012), and supply greater quantities of detritus to streams by 

comparison with open-canopy, grassland streams (Benfield 1997). The effects of flow 

and temperature can also depend on other factors that vary with riparian land cover type 

such as the type of detrital material (Hoover et al. 2010) and the leaf fall phenology of 

riparian vegetation relative to the timing of high flows (Abelho and Graça 1996; Molinero 

and Pozo 2004). Investigating the role of riparian land cover in regulating detritus 

availability in streams would improve our understanding not only of the mechanisms that 

underpin ecological responses to global climate and land use change, but also the potential 

role of riparian management in mitigating these effects (Thomas et al. 2016). 

 

Aims & Hypotheses 

This study tested whether riparian land cover could modify the effects of stream flow and 

thermal variability on the availability of benthic particulate organic matter (POM), an 

important detrital resource in headwater streams. To this end, monthly variations in 

benthic standing stocks of coarse and fine particulate organic matter (CPOM and FPOM, 

hereafter) were measured over four years in four pairs of headwater streams with 

contrasting riparian land cover types in central Wales, UK. Specifically, the following 

predictions were tested: 
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(1) CPOM and FPOM standing stocks would be reduced with increased magnitude, 

duration and frequency of high flows; 

(2) the relationship between POM standing stocks and stream flow regime would vary 

with particle size (coarse, fine) and among riparian land cover types; 

(3) despite the interaction between flow regime and riparian land cover type, CPOM and 

FPOM standing stocks would be consistently greater in streams with broadleaved 

woodland cover by comparison with streams with conifer and moorland cover 

 

2.2 Methods 

2.2.1 Study sites 

The study was conducted in eight 2nd to 3rd order streams, located in the headwaters of 

the Afon Tywi, within the Llyn Brianne Stream Observatory in central Wales, UK 

(52°8’N 3°45’W; Figure 2.1; see Durance & Ormerod (2007) for full site details). 

Regional climate is maritime and temperate, mean daily stream temperatures are between  

 

 

Figure 2.1. Map showing the locations of the eight streams surveyed as part of this study within 

the Llyn Brianne Stream Observatory in central Wales, UK. Major river systems are labelled. 

Images adapted from Edwards et al. (1990) and Broadmeadow and Nisbet (2002). 
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0-16˚C and annual mean rainfall is approximately 1900 mm (Weatherley and Ormerod 

1990). The sites were chosen to encompass the natural gradients in land cover that occur 

across upland catchments in the UK, and were categorised into four pairs according to 

riparian land cover (defined here as the dominant vegetation within 10 m of the stream 

bank): Broadleaved woodland (Bl; site codes ‘G1’ and ‘G2’), conifer plantation (Co; site 

codes ‘L1’ and ‘L2’), acid moorland (AM; site codes ‘C1’ and ‘C4’) and circumneutral 

moorland (CM; site codes ‘L6’ and ‘L7’). Although acid and circumneutral moorland 

streams were similar in wider catchment land cover, riparian land cover (and therefore 

litter input (Isabelle Durance, unpublished data) is distinct as a result of historical 

reductions in livestock rates at the circumneutral moorland sites giving rise to increased 

cover of bracken with occasional mountain ash, willow and hawthorn in the riparian zones 

of these catchments. All study sites were located within ~ 10 km of each other ensuring 

that climatic conditions were similar throughout the study. 

2.2.2 Stream flow and temperature conditions  

Stream discharge (m3 s-1) was recorded at 15-minute intervals at one of the study sites, 

L1, over the duration of the study between November 2010 and September 2014 (data 

supplied by Natural Resource Wales; Station number 060S0589W) and was assumed to 

reflect flow conditions for all sites and wider hydro-climatic conditions. These 

assumptions were supported by (i) long-term observations of stream flow at several 

nearby catchments in mid-Wales that show similarities in flow regimes, despite 

differences in land cover (Conlan et al. 2007; Marc and Robinson 2007) and (ii) 

comparisons between stream flow measured at L1 and regional rainfall data (Figures 2.3 

and 2.4). 

Stream temperature was recorded using Onset Hobo water temperature recorders (Pro v2) 

at 15-minute intervals at all the sites, between November 2010 and March 2014. 

Recorders were placed in the margins of the streams and encased in drainage bricks to 

protect them from direct sunlight while allowing water throughput. Hobo loggers have a 

stated accuracy of 0.2oC, and this was confirmed by testing the loggers at 0 oC and 30 oC 

before deployment in the field. Since this study is focused on trends and all sites were 

highly correlated (all R2 >98.4% for daily temperature measures) temperature records 

from L1 were retained as representative for all sites. Since stream temperature records 

were not available between March to September 2014, stream temperature data were 

derived from the relationship between daily water temperature at L1 and daily water 



 

21 

 

temperature at the nearby site L2 using the linear relationship derived from the three 

previous years (L1 Temperature = 0.911(L2 Temperature) + 0.901; R2 = 98.7%). 

2.2.3 Benthic sampling and laboratory methods  

Five replicate samples of benthic organic matter (n=5) were collected using a randomly 

positioned Hess sampler (area 0.707 m2; mesh aperture 500µm; sampling depth 10-15 

cm) at all sites approximately every 4-8 weeks between November 2010 and September 

2014 (n=36 sampling occasions). In the first year of the study, sampling was constrained 

to one site per riparian land cover type. However, from October 2011 onwards, site 

replication was increased to two sites per land cover type. Samples were preserved on-

site in 70% industrial methylated spirit (IMS; Fisher Scientific, UK) and transported to 

the laboratory for processing. All macroinvertebrates were separated from the leaf litter 

and preserved in 70% IMS. Leaf litter was thoroughly rinsed under tap water to remove 

sediment and separated into fine (>0.5mm <2mm; FPOM) and coarse (>2mm; CPOM) 

size fractions using graduated sieves (Endecotts Ltd., UK). Both size fractions of leaf 

litter were air-dried at room temperature and weighed to the nearest 0.01 g. Ash-free dry 

mass (AFDM) of all samples was estimated by combusting a subset (n=160) of all 

samples (n=1250) at 550°C for 5 h in a muffle furnace, and applying site-specific 

conversion factors to the air-dried mass. CPOM and FPOM were expressed in g AFDM 

m-2. 

2.2.4 Statistical analysis 

To determine how different aspects of the stream flow and temperature regime affected 

POM standing stocks (Hypothesis 1), linear-mixed effects modelling was used to test the 

individual effect of each of 15 candidate flow variables and two candidate temperature 

variables (Table 2.1) on CPOM and FPOM standing stocks (while controlling for the 

effect of riparian land cover) using likelihood ratio tests with maximum likelihood 

estimation (Zuur et al. 2009). All flow variables were derived from 15-min discharge data 

recorded at L1, and included variables that characterised the magnitude, variability, 

frequency and duration of flows over the 30 days prior to each sampling occasion (after 

Clausen and Biggs 2000 and Olden and Poff 2003). Mean discharge for 0, 3, 7 and 14 

days prior to each sampling occasion were also included to investigate whether the timing 

of flow events were important in explaining variations in CPOM and FPOM. The two 

temperature variables were derived from partially modelled daily mean, minimum and  
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Table 2.1. Summary and definitions of the temperature and flow variables used to characterise 

the antecedent conditions for each sampling occasion. Each variable represents the 30-day 

antecedent temperature and flow conditions of each sampling occasion (excluding MA0d, MA3d, 

MA7d and MA14d, which represent the sampling day, 3-, 7-, and 14-day antecedent flow 

conditions of each sampling occasion, respectively). Flow categories and abbreviations after 

Clausen and Biggs (2000); abbreviations after Olden and Poff (2003). 

Category Variable (unit) Abbreviation Definition 

Average flow 

magnitude 

Mean discharge 

(m3 s-1) 

MAQ50, MA0d, 

MA-3, MA-7, 

MA-14, MA-30 

Median (Q50) discharge and 

mean discharge of the 3-/7-/14-

/30-day antecedent flow record 

Magnitude of 

low flows 

Low flow 

discharge (m3 s-1) 

MLQ95 Discharge equalled or 

exceeded in 95% (Q95) of the 

30-day antecedent flow record 

Magnitude of 

high flows 

High flow 

discharge (m3 s-1) 

MHQ5 Discharge equalled or 

exceeded in 5% (Q5) of the 30-

day antecedent flow record 

Intensity of high 

flows 

Mean high peak 

flow (m3 s-1) 

IHQ5, IHQ10, 

IHQ25 

Mean discharge during high 

flows above an upper threshold 

(thresholds = long-term Q5, 

Q10, Q25) 

Flow variability Coefficient of 

variation (%) 

MACV Standard deviation of 30-day 

antecedent flow/mean 30-day 

antecedent flow 

Frequency of 

high flows 

High flood pulse 

count (integer) 

FHQ25 Number of occurrences during 

which the magnitude of flow 

remains above an upper 

threshold (threshold = long-

term Q25) 

Duration of high 

flows 

High flow 

duration (days) 

DHQ5, DHQ10, 

DHQ25 

Number of days during which 

the magnitude of flow remains 

above an upper threshold 

(thresholds = long-term Q5, 

Q10, Q25) 

Average 

temperature 

magnitude 

Mean temperature 

(˚C) 

MAT Mean stream water temperature 

of the 30-day antecedent 

temperature record 

Temperature 

variability 

Daily temperature 

amplitude (˚C) 

MATR Mean daily stream water 

temperature range of the 30-

day antecedent temperature 

record 
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maximum stream temperature for L1 (see Section 2.2.2), and included the magnitude of 

mean daily stream temperature and mean daily stream temperature amplitude (after Dang 

et al. 2009) over the 30 days prior to each sampling occasion. 

To determine how riparian land cover affected POM standing stocks (Hypothesis 2), and 

whether the effects of stream flow and/or temperature on POM standing stocks depended 

on riparian land cover (Hypothesis 3), one of each of the candidate flow and temperature 

variables that explained the most variation in POM standing stocks were selected to 

include in a global model, which was then refined using a backwards selection procedure. 

First, the flow and temperature variables were selected based on the initial models (from 

Hypothesis 1) that gave the lowest Akaike Information Criterion (AIC). Second, the least 

parsimonious model (Fixed effects: Riparian land cover type (LC); Temperature (T); 

Flow (F); and all two- and three-way interactions) was fitted, then non-significant terms 

were sequentially removed following a backwards selection procedure, selecting the 

models with the lowest Akaike Information Criterion (AIC) in each case until only 

significant terms remained (Zuur et al. 2009). Each model also included ‘site’ within 

‘sampling occasion’ as a nested random effect to account for the possible inter-correlation 

of repeated samples within sites and within sampling occasions. The final optimal models 

were then re-fitted using restricted maximum likelihood (REML) estimation and 

validated by visual inspection of the distribution of the standardised residuals versus the 

fitted values and versus each explanatory variable, and of the distribution of the random 

effects (Zuur et al. 2009). Where necessary, response and explanatory variables were log 

or log+1 transformed prior to analysis to homogenise variances. All mixed models were 

fitted using the lme function in the nlme package (Pinheiro et al. 2013) in R (R 

Development Core Team. 2016). 

 

2.3 Results 

2.3.1 Stream flow and temperature variation 

Over the four-year study period, stream discharge at L1 ranged between 0.001 and 4.080 

m3 s-1 with an overall median of 0.120 m3 s-1 (Figure 2.2a), while stream temperature 

ranged between 0 and 18.08 ˚C with a median of 8.31˚C (Figure 2.2b). Seasonal 

anomalies in stream flow (Figure 2.3b) and temperature (Figure 2.3d) at L1 over the study 

period were similar to regional rainfall (Figure 2.3a) and air temperature (Figure 2.3c) 
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patterns, respectively, which in turn reflected historical inter-annual (Figures 2.3e, f) and 

seasonal (Figures 2.4a, b) variability. Years 1 and 3 were relatively cold and dry, while 

Years 2 and 4 were relatively warm and wet (Figures 2.3e, f). The two wet years notably 

included the warmest autumn (Year 2), the wettest summer (Year 2) and the wettest 

winter (Year 4) in Wales in the last 100 years (Figures 2.4a, b). 

 

(a) 

 

(b) 

 

Figure 2.2. (a) 15-minute water discharge (m3 s-1) and (b) mean daily stream water temperature 

(°C) recorded at study site L1 during the study period October 2010 to September 2014. Dashed 

line and shaded band, respectively, depict the overall mean and range of stream flows under which 

organic matter sampling took place. Discharge data provided by Natural Resources Wales (© 

Natural Resources Wales and database right). Temperature data provided by Isabelle Durance. 



 

25 

 

 

Figure 2.3. Climatic anomalies over the period 1910-2014 at the regional (Wales, UK) and local 

(study site L1, Llyn Brianne Stream Observatory, mid-Wales, UK) scale. Figures a-d show 

seasonal anomalies in (a) regional rainfall, (b) local stream flow, (c) regional air temperature and 

(d) local stream temperature, respectively, during the study period October 2010 to September 

2014 (corresponding to the shaded areas in (e) and (f)). Seasonal anomalies represent differences 

in average seasonal temperature, rainfall or discharge from 1996-2010 averages. Seasonal 

averages are calculated using data over a 3-month period for Autumn (A; Sep-Oct-Nov), Winter 

(W; Dec-Jan-Feb), Spring (S; Mar-Apr-May) and Summer (S; Jun-Jul-Aug). Figures e-f show 

annual (=October-September) anomalies in regional (e) rainfall and (f) air temperature during 

1910-2014. Blue and red dotted lines denote maximum and minimum values, respectively. Black 

dotted line denotes moving average (10-year).  Regional rainfall and air temperature data provided 

by © UK Meteorological Office; L1 stream flow data provided by Natural Resources Wales; L1 

stream temperature data provided by Isabelle Durance. 
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(a) 

 
(b) 

 

Figure 2.4. Seasonal anomalies in (a) rainfall and (b) air temperature in Wales (UK) over the 

period 1910-2014, highlighting maximum and minimum values (blue and red dotted lines, 

respectively) during the study period October 2010 to September 2014 (shaded area). Seasonal 

anomalies represent differences in average seasonal rainfall and temperature from 1981-2010 

averages. © UK Meteorological Office. 
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2.3.2 Effects of flow and temperature regimes on CPOM and FPOM 

standing stocks 

CPOM dominated the benthic POM pool in all sites throughout the study period, with 

values ranging between 0.02 and 428.10 g AFDM m-2 (overall mean = 15.17 g AFDM m-

2) while FPOM ranged between 0.04 and 49.89 g AFDM m-2 (overall mean = 2.85 g 

AFDM m-2) (Figure 2.5). CPOM standing stocks were more variable both within and 

between sampling occasions by comparison with FPOM (Figure 2.5). 

CPOM was significantly negatively associated with a number of the candidate flow 

variables, mostly those describing high flows (Table 2.2). Of the candidate flow variables 

considered, flow variability best explained variations in CPOM, as indicated by the 

steepest regression slope and the greatest reduction in model AIC values, with increased 

flow variability being significantly associated with reductions in CPOM. CPOM was also 

significantly reduced with increased flow maxima and with increased magnitude and 

duration of high flows. Variations in CPOM, however, were not significantly associated 

with the frequency of high flow events. CPOM was not significantly associated with 

magnitude of low or median flows, flow minima, or with mean discharge on the day of 

sampling. CPOM was weakly associated with mean discharge over longer (7-30 day) time 

scales, but was significantly associated with mean discharge over the 3 days prior to 

sampling. CPOM standing stocks were not significantly associated with the magnitude of 

mean daily temperatures or mean daily temperature amplitudes. Mean daily temperature 

did not significantly reduce model fit (ΔAIC <2), and was therefore used in subsequent 

analyses along with flow variability to test for possible interactions with riparian land 

cover. 

FPOM was significantly negatively associated with most of the candidate flow variables 

that described high flows, with these effects being more pronounced overall by 

comparison with effects on CPOM, as indicated by the steeper regression slopes in all 

cases (Table 2.2). While CPOM was more closely associated with flow variability, 

variations in FPOM were best explained by the magnitude of high flows, with greater 

magnitudes of high flows being significantly associated with reductions in FPOM 

standing stocks. Similar effects were also observed with increased duration of high flows, 

flow maxima and with increased mean flows on the day of sampling and at longer (3- to 

30-day) time scales. FPOM standing stocks were also reduced with increased flow 

variability and with increased magnitude of low and median flows, though these effects  



 

28 

 

 

Figure 2.5. Temporal variation of benthic particulate organic matter (POM; expressed in grams 

ash-free dry mass m-2 ± 1 S.E.) in the eight study sites during the study period (November 2010 

to September 2014). Black circles = coarse benthic particulate organic matter (CPOM); open 

circles = fine benthic particulate organic matter (FPOM). Site codes and corresponding land cover 

types: G1 and G2 = broadleaved woodland; L1 and L2 = conifer plantation, C1 and C4 = acid 

moorland; L6 and L7 = circumneutral moorland. Note difference in axis-scale for broadleaf sites. 
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were weak. FPOM standing stocks were not significantly associated with the frequency 

of high flow events or with flow minima. FPOM standing stocks were not significantly 

associated with the magnitude of mean daily temperatures or mean daily temperature 

amplitudes. Mean daily temperature did not significantly reduce model fit (ΔAIC <1), 

and was used in subsequent analyses along with high flow magnitude to test for possible 

interactions with riparian land cover. 

 

Table 2.2. Change in AIC values following addition of each candidate flow and temperature 

variable to the basic mixed effects model. Variables showing a significant relationship (P<0.05) 

with POM standing stocks and resulting in a significant improvement of model fit (∆ AIC < -2) 

are highlighted in bold. 

Variable CPOM  FPOM 

 Slope SE ∆AIC L P  Slope SE ∆AIC L P 

MA-0 -0.18 0.11 -0.3 2.35 0.1252  -0.36 0.14 -4.5 6.51 0.0107 

MA-3 -0.25 0.08 -6.0 8.02 0.0046  -0.28 0.11 -4.0 5.98 0.0145 

MA-7 -0.19 0.09 -2.2 4.22 0.0399  -0.30 0.11 -4.5 6.55 0.0105 

MA-14 -0.21 0.09 -2.5 4.49 0.0341  -0.34 0.11 -5.8 7.82 0.0052 

MA-30 -0.26 0.13 -2.1 4.08 0.0434  -0.47 0.15 -6.7 8.70 0.0032 

MHMAX -0.25 0.07 -9.4 11.43 0.0007  -0.28 0.09 -6.2 8.22 0.0041 

MLMIN 0.10 0.10 1.0 0.96 0.3272  -0.01 0.12 2.0 0.02 0.8984 

MAQ50 -0.10 0.14 1.5 0.53 0.4662  -0.35 0.17 -2.2 4.21 0.0402 

MLQ95 -0.06 0.15 1.9 0.14 0.7126  -0.40 0.18 -2.5 4.52 0.0336 

MHQ5 -0.30 0.10 -6.8 8.79 0.0030  -0.41 0.12 -8.6 10.64 0.0011 

FHQ25 -0.13 0.12 0.8 1.18 0.2779  -0.16 0.16 1.0 1.01 0.3145 

DHQ25 -0.16 0.07 -2.7 4.66 0.0309  -0.23 0.09 -3.9 5.95 0.0147 

DHQ10 -0.20 0.07 -4.6 6.60 0.0102  -0.29 0.09 -7.0 9.02 0.0027 

DHQ5 -0.27 0.09 -6.2 8.21 0.0042  -0.39 0.11 -9.0 11.00 0.0009 

MACV -0.49 0.13 -10.4 12.38 0.0004  -0.38 0.18 -2.0 4.03 0.0447 

TMEAN 0.01 0.03 1.9 0.11 0.7395  0.04 0.03 0.5 1.52 0.2173 

TRANGE 0.04 0.14 1.9 0.07 0.7962  0.18 0.17 0.9 1.08 0.2982 
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2.3.3 Effects of riparian land cover on CPOM and FPOM standing stocks 

The model selection procedure showed that variations in CPOM and FPOM standing 

stocks were mostly explained by differences in riparian land cover (Figures 2.6a and c, 

respectively) and flow regime (Figures 2.6b and d, respectively). Both CPOM and FPOM 

standing stocks were consistently greater in broadleaf sites, lower in circumneutral 

moorland sites, and intermediate in acid moorland and conifer sites. In concordance with  

 

 

Figure 2.6. Estimated slopes and 95% confidence intervals for the optimal mixed effects models 

for log-transformed coarse (a, b) and fine (c, d) particulate organic matter (CPOM and FPOM, 

respectively) standing stock data versus riparian land cover and an explanatory flow variable (CV 

= monthly coefficient of variation of stream discharge at study site L1; Q5 = monthly stream 

discharge exceeded 5% of the time at study site L1). 
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the initial analyses (Table 2.2), CPOM and FPOM standing stocks were significantly 

reduced with increased flow variability and high flow magnitude, respectively. The effect 

of flow on CPOM and FPOM did not vary with riparian land cover type (CPOM: L = 

2.59, df = 3, p = 0.46; FPOM: L = 6.73, df = 3, p = 0.08) or temperature (CPOM: L = 

0.55, df = 1, p = 0.46; FPOM: L = 2.73, df = 1, p = 0.10). Temperature had no significant 

effect on CPOM (L = 0.30, df = 1, p = 0.58) or FPOM (L = 0.28, df = 1, p = 0.60), and 

this relationship did not vary with riparian land cover type (CPOM: L = 7.92, df = 3, p = 

0.05; FPOM: L = 0.98, df = 3, p = 0.80). 

 

2.4 Discussion 

2.4.1 Summary 

Over the four-year period of this study, stream flow and temperature were highly variable 

within and between years, reflecting long-term intra- and inter-annual variability. Both 

CPOM and FPOM standing stocks were negatively associated with a number of different 

aspects of the flow regime, mostly those describing the magnitude and duration of high 

flows, whereas the frequency of high flows had no significant effect on either CPOM or 

FPOM. FPOM, however, appeared to show stronger associations with most of the flow 

variables considered here by comparison with CPOM. Overall, CPOM was most strongly 

correlated with flow variability, whereas FPOM was most strongly correlated with high 

flow magnitude, with increases in these variables being associated with significant 

reductions in CPOM and FPOM standing stocks, respectively. Neither CPOM nor FPOM 

were significantly associated with stream temperature regimes. While the effects of flow 

and temperature on CPOM and FPOM were consistent across all riparian land cover 

types, streams with broadleaf riparian land cover supported consistently greater standing 

stocks of benthic POM than those with either moorland or coniferous riparian land cover. 

2.4.2 Caveats 

Before exploring the potential explanations for the results observed in this study, some 

caveats must be considered. The flow variables used to assess relationships with POM 

standing stocks were derived from stream discharge data from only one of the study sites, 

L1, which was used as a proxy for all sites since data were unavailable for the remaining 

sites. L1 land cover is dominantly composed of conifers (52%) of mixed aged stands and 

is the largest of the eight catchments used in this study. Differences in flow regime among 
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catchments mediated by land cover and catchment area and topography could exist, 

however, for example through differences in evapotranspiration and runoff rates. Existing 

long-term data from the nearby Plynlimon catchments (Robinson and Dupeyrat 2005; 

Marc and Robinson 2007) has shown that, while differences may exist in the flow regime 

between conifer forest and unforested moorland catchments, these differences are not 

consistent through time, and the contrasting effects that forestry practices of felling 

(increase) and re-growth (decrease) have on baseflow and peak flow make the overall 

effects of forestry on stream flow regimes difficult to predict (but see Chappell and Tych 

2012). Nisbet (2005) suggested, however, that the current ‘patchwork management’ used 

on catchment conifer plantations means that differences may be minimal. Among wooded 

catchments, broadleaved catchments may be less variable than conifer catchments due to 

relatively higher evapotranspiration rates in broadleaves (Rust et al. 2014). This could 

partially explain why broadleaf catchments supported greater POM standing stocks than 

other land cover types, however it was not possible to test this directly. 

2.4.3 Effects of stream flow and thermal regimes on CPOM and FPOM 

standing stocks 

The data presented in this study show that stream discharge measured at the local scale 

reflected regional rainfall patterns over the four-year study period (Figure 2.3). To place 

the study in a historical climatic context, the four-year period reflected long-term intra- 

and inter-annual climatic variability and was characterised by two relatively warm and 

wet years, and two relatively cold and dry years (Figure 2.3). Notably, this study also 

captured the warmest autumn, the wettest summer and the wettest winter in the region in 

the last 100 years (Figure 2.4). Current climate change projections for the UK predict 

warmer, wetter winters, along with warmer, drier summers (Murphy et al. 2009). 

Specifically in Wales, by the 2080s, mean winter rainfall may change by -4% to +17%, 

while mean summer rainfall is estimated to change by -23% to +14% (Murphy et al. 

2009). These projections are likely to translate into major changes in stream flow regimes, 

with increased winter discharges, reduced summer flows, increases in flood frequency 

and magnitude, and increases in overall variability (e.g. Arnell 2011; Prudhomme et al. 

2012). During the course of this study, winter and summer rainfall exceeded even ‘worst-

case’ projections in some cases. By encompassing a range of climatic conditions, it was 

possible to assess the implications of potential future climatic changes for POM 

availability in different types of headwater streams.  
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Numerous experimental field studies have shown that as stream discharge increases, 

POM transport increases (Webster et al. 1987; Thomas et al. 2001) and its retention on 

the stream bed decreases (Speaker et al. 1984; Webster et al. 1987; Pretty and Dobson 

2004a; Koljonen et al. 2012) since particles are more likely to be kept in suspension at 

higher flow rates. The consequences for benthic stocks of POM over longer, annual 

timescales, however, have remained unclear. For example, Mollá et al. (2006) found a 

positive relationship between stream discharge and benthic POM standing stocks, likely 

because as discharge increases, so does the wetted perimeter and therefore the 

incorporation of leaf litter deposited on the stream banks or riparian zone increases. 

Meanwhile, some studies have found no strong relationship with stream flow at all (e.g. 

Wanner et al. 2002). This study found that both CPOM and FPOM standing stocks were 

significantly correlated with certain aspects of the antecedent (30-day) flow conditions. 

Specifically, CPOM and FPOM standing stocks were significantly reduced with 

increased magnitude and duration of high flows, with effects on FPOM being more 

pronounced by comparison with CPOM. Stronger effects on FPOM are likely due to 

smaller particles being more likely to be re-suspended and transported downstream than 

larger particles with increased flow rates (Speaker et al. 1984). Contrary to predictions, 

however, neither CPOM nor FPOM were significantly reduced with increased frequency 

of high flow events. In addition, increased temperature did not appear to reduce CPOM 

or FPOM stocks, as might be expected as a result of increased breakdown of POM at 

warmer temperatures (Graça et al. 2015) and subsequent increases in FPOM generation 

and transport. These results indicate that single, high intensity rainfall events, as well as 

persistent (multi-day) events, can deplete CPOM and, to an even greater extent, FPOM 

standing stocks in headwater streams. Meanwhile, the frequency of events alone does not 

appear to explain reductions in CPOM or FPOM standing stocks. Furthermore, the effects 

of higher flows appear to exceed any effects of temperature on POM dynamics in these 

streams (Acuña and Tockner 2010; Graça et al. 2015). 

2.4.4 Effects of riparian land cover  

The negative relationships that were observed between high flows and standing stocks of 

CPOM and FPOM were consistent across broadleaf, conifer, and both acid and 

circumneutral moorland streams. This result could be expected for fine particles of OM, 

since the physical size and structure of the particles are more similar across land cover 

types and would therefore be expected to have similar suspension/deposition dynamics in 
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response to changes in flow conditions. The consistent effects of flow on different types 

of CPOM, however, were unexpected for several reasons. Firstly, the overall quantity of 

leaf litter (i.e. CPOM) inputs is often higher in broadleaf streams by comparison with 

conifer or grassland streams (Isabelle Durance, unpublished data; Campbell et al. 1992; 

Delong and Brusven 1994). This suggests that more leaf litter would be available to 

replenish CPOM stocks following high flow events in broadleaved streams, and thus the 

effects of high flows on CPOM stocks in these streams would be comparably weaker. 

Secondly, previous studies have shown that the in-stream retention of these inputs 

depends on the structure of the leaf litter itself, with some types of leaf litter being more 

easily retained on the stream bed than others. For example, large, deciduous leaves are 

often more easily retained than smaller, less flexible types such as conifer needles (Pretty 

and Dobson 2004a; Quinn et al. 2007; Cordova et al. 2008; Hoover et al. 2010). 

Coniferous streams would therefore be expected to show greater reductions in CPOM 

standing stocks in response to high flows by comparison with broadleaved streams. 

Thirdly, although few studies have investigated the retention of grass litter in non-

forested, open-canopy streams, moorland streams would be expected to retain less CPOM 

than broadleaved or coniferous streams during increased flows due to the absence of 

woody material, which provide efficient retention structures in streams (e.g. Bilby and 

Likens 1980; Cariss and Dobson 1997; Molinero and Pozo 2004; Eggert et al. 2012). 

Although the amount of wood in the benthic samples were not measured directly, field 

observations indicated a higher abundance of woody material stored in the broadleaf sites 

by comparison with other land use types. That CPOM standing stocks did not show land 

cover-specific responses to high flows in this study could therefore have resulted from 

the aforementioned differences in flow regimes that may have existed among the different 

land cover types, the effects of which, however, were overlooked in this study. 

Although the results presented here suggest that – regardless of riparian land cover type 

– POM availability in headwater streams are sensitive to increased magnitude and 

duration of high flows, they showed that streams with broadleaved riparian land cover 

supported consistently greater standing stocks of both CPOM and FPOM than conifer and 

moorland streams. These differences are consistent with those observed previously (e.g. 

Cariss and Dobson 1997) and likely reflect the influence of different riparian vegetation 

types on the overall quantity of leaf litter supplies to these streams (Isabelle Durance, 

unpublished data). Broadleaved streams typically receive greater inputs of CPOM in the 
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form of leaf litter by comparison with conifer and moorland streams (Hart et al. 2013; 

Isabelle Durance, unpublished data). Furthermore, the higher abundance of CPOM could 

also support a greater abundance of leaf-shredding detritivores (Wallace et al. 1997), 

which in turn generate larger quantities of FPOM (Richardson 1991; Eggert et al. 2012). 

By contrast, inputs of conifer needles and grasses to these streams are comparably low 

(Isabelle Durance, unpublished data) and, coupled with acidic conditions (at least in the 

conifer and acid moorland sites), are likely broken down into FPOM at lower rates by 

comparison with leaf litter in broadleaved streams (Webster and Benfield 1986). This 

suggests that riparian land cover plays a significant role in regulating POM availability 

in streams despite significant intra- and inter-annual climatic variability. 

1.4.1 Conclusions 

Headwater streams are vulnerable to a range of environmental pressures, including 

climate change, through changes in temperature and precipitation patterns (Birsan et al. 

2005; Orr et al. 2008; Hannaford and Buys 2012; Hannaford 2015) and land use and land 

cover change (Reed et al. 2009). This study indicates that benthic POM, an important 

basal food resource in headwater streams, could be sensitive to increases in the magnitude 

and duration of high flow events predicted under future climate change. Climate-induced 

reductions in the abundance and heterogeneity (via greater reductions in FPOM relative 

to CPOM) of benthic POM could have important indirect ecological effects, for example 

by disrupting energy fluxes to higher trophic levels and reducing ecosystem stability 

(Moore et al. 2004; Rooney et al. 2006).  This study showed, however, that riparian 

broadleaves could play an important role in mitigating these effects by maintaining a 

greater abundance of detrital resources than both conifer plantation and open-canopy 

moorland streams, even when rainfall exceeds ‘worst-case’ projections.   
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CHAPTER 3: Tracing the effects of riparian land cover and climate on 

the quantity, quality and origin of suspended particulate organic matter 

in headwater streams 

3.0 Summary 

1. Headwater streams are arguably the most intimately connected with the landscape, 

and, as such, play a particularly important role in the processing and transport of 

organic matter within river systems. Forecasted increases in high and/or low flows in 

Northwest Europe, as wetter winters and drier summers are predicted to become more 

common, have the potential to alter the amount, composition and timing of suspended 

organic matter (seston) in streams. 

2. This study aims to determine how riparian land cover and hydro-climatic variability 

could alter the amount, quality and origin of stream seston in headwater streams. 

Specifically, it tests whether i) concentrations and composition of seston differ among 

riparian land cover types, and ii) during higher flows, seston concentrations increase 

to reflect higher terrestrial inputs from the wetted perimeter. 

3. To this end, monthly variations in fine and coarse fractions of suspended particulate 

organic matter (POM) were measured and isotopically analysed over four years in 

four headwater streams that differed in riparian land cover type (broadleaf woodland, 

conifer forest, acid moorland, circumneutral moorland) in Wales, UK.  

4. This study showed that, contrary to expectations, concentrations of CPOM and FPOM 

in streams were remarkably similar across the different riparian land cover types, with 

only the coarse fractions of POM concentrations being marginally higher in the 

broadleaf site.  It also revealed that increased discharge was linked to a decrease in 

FPOM, and to a lesser degree CPOM, consistent with an increased total export. While 

isotopic analyses were inconclusive, the elemental Carbon:Nitrogen (C:N) ratio of 

FPOM suggested a proportionately greater export of C from broadleaf catchments by 

comparison with those draining conifer or moorland. 

5. This work suggests that higher sampling frequencies over larger temporal and spatial 

scales are needed for stronger inference of the effects of riparian land cover and 

stream discharge on POM concentrations. 
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3.1 Introduction 

Freshwater ecosystems are highly connected with their surroundings through exchanges 

of energy and matter. Annually, freshwaters are estimated to receive 2.9 Pg of organic 

carbon from the terrestrial environment, of which ~50% is biologically processed and 

transformed into CO2, ~20% is buried in sediments and ~30% is transported to the sea 

(Tranvik et al. 2009). Indeed, inputs of organic matter originating from terrestrial primary 

production can greatly exceed those that are produced within freshwaters themselves 

(Fisher and Likens 1973). Consequently, by storing, transforming, and transporting vast 

quantities of terrestrially-derived organic matter, freshwaters are often considered to play 

vital roles, not only as important linkages between land and sea, but also as major 

contributors to the global carbon cycle (Cole et al. 2007; Battin et al. 2008; Tranvik et al. 

2009). 

Within freshwater systems, headwater streams are arguably the most intimately 

connected with the landscape, forming dense networks and often making up the majority 

of total river length (Leopold et al. 1964). As such, headwaters play a particularly 

important role in the processing and transport of organic matter within river systems. 

While some of this organic matter is produced within the stream itself (e.g. aquatic plants, 

algae, microbes), the majority is generally considered to be of terrestrial origin (Vannote 

et al. 1980), primarily through inputs of leaf litter from riparian vegetation, as well as 

other forms such as woody debris, soil, and dissolved organic carbon (Cummins 1974). 

These sources of organic matter provide the energetic basis of stream food webs, and, 

when transported downstream, provide an important subsidy for food webs in lower 

reaches of the river network (Gomi et al. 2002; Wipfli et al. 2007). 

Many studies have demonstrated the strong influence that variations in the quantity and 

quality of terrestrial organic matter inputs can have on the structure, function and 

productivity of stream communities (Polis et al. 1997; Richardson et al. 2010). For 

example, reduced inputs of leaf litter can lead to reductions in aquatic invertebrate 

production (Wallace et al. 1997; Wallace et al. 1999; England and Rosemond 2004), 

whilst a change in composition can alter the quality of leaf litter entering streams (Hart et 

al. 2013), and subsequently the rate at which these resources are broken down and 

assimilated into animal biomass (Hladyz et al. 2009; Cothran et al. 2014). These effects 

occur not only locally within streams, but can also propagate downstream via the export 

of organic material, which subsidises food webs in larger rivers (Wipfli et al. 2007), and 
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into the terrestrial environment in the form of emerging adult aquatic insects 

(Scharnweber et al. 2014; Stenroth et al. 2015). Changes in the supply of terrestrial 

organic matter to headwater streams could therefore have far-reaching consequences by 

altering fluxes of energy and matter from the organismal level through to the landscape 

level (Gomi et al. 2002; Richardson et al. 2010; Marcarelli et al. 2011). 

Inputs of terrestrial organic matter to streams vary according to catchment vegetation 

cover and through time. For example, the extent and species composition of terrestrial 

vegetation cover directly influences the amount, quality and phenology of leaf litter inputs 

to streams (Abelho 2001). Simultaneously, terrestrial vegetation alters the availability of 

light and nutrients to streams, with consequences for aquatic primary production (Hill et 

al. 1995; Sweeney et al. 2004; Menninger and Palmer 2007), thereby enhancing the 

potential effects of land use on stream communities (England and Rosemond 2004; 

Kiffney et al. 2004). Increasingly, human modifications to the landscape through land 

management practices such as plantation forestry and agricultural food production are 

changing the vegetative cover of catchments worldwide (Millennium Ecosystem 

Assessment 2005). Among many other stressors linked with land use change, these 

changes are having marked effects on the amount and composition of organic matter 

resources that headwaters receive and export (e.g. Lu et al. 2014; Valiela et al. 2014; 

Imberger et al. 2014). 

Temporal variations in terrestrial organic matter inputs to streams include seasonal 

variations in leaf litter inputs (e.g. autumnal leaf fall) and the influence of climatic 

variation over different timescales. For example, rainfall events increase lateral transport 

of terrestrial organic matter to streams via surface runoff and through the incorporation 

of bankside material as stream flow and wetted perimeter increases (Maridet et al. 1995; 

Naiman and Décamps 1997; Hart et al. 2013). Climate predictions suggest that high 

and/or low flows may become more frequent in Northwest Europe as wetter winters and 

drier summers are predicted to become more common, particularly in upland regions 

(Dixon et al. 2006; Hannaford and Marsh 2008; Biggs and Atkinson 2011; Hannaford 

and Buys 2012), with corresponding implications for organic matter dynamics in 

headwater streams (Tank et al. 2010; Kominoski and Rosemond 2012). Climatic 

variations, whether natural or anthropogenic, therefore have the potential to alter the 

amount, composition and timing of organic matter in streams. 
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Over recent decades, stable isotopes and elemental stoichiometry have been increasingly 

used in freshwater ecological studies as tools to trace energetic linkages across terrestrial-

aquatic boundaries, and the factors that could modify them (Finlay 2001; Grey 2006; 

Layman et al. 2012). These include the effects of catchment land use modifications (Bunn 

et al. 1999; Valiela et al. 2014; Imberger et al. 2014) and hydrology (Atkinson et al. 2009; 

Frost et al. 2009; Hladyz et al. 2012). The stable carbon isotope (δ13C) signature of bulk 

organic matter in streams, which is often a mixture of amorphous material, can give an 

indication of the relative importance of terrestrial and aquatic sources of organic carbon 

contributing to streams, where source signatures are isotopically distinct (Doucett et al. 

1996; Finlay and Kendall 2007). Data for stable nitrogen isotopes (δ15N) of organic matter 

resources, on the other hand, are lacking (Peipoch et al. 2012), but may provide a useful 

baseline for understanding the variability that is often observed in the δ15N signatures of 

consumers, thereby improving the interpretation of δ15N dynamics to determine energy 

pathways in food web studies (Peipoch et al. 2012). Meanwhile, the elemental 

composition (e.g. ratios of essential elements such as C:N) of resources, in addition to 

providing information on the nutritional quality of resources for consumers (Sterner and 

Elser 2002; Cross et al. 2005), can also provide a useful indicator of their origin, since 

terrestrial sources generally have higher C:N ratios relative to aquatic sources (Rostad et 

al. 1997; Kendall et al. 2001; Cross et al. 2005).  

Investigating the factors that influence the quantity, quality and dynamics of key basal 

resources could help improve understanding of the energetic processes that underpin the 

responses of individual organisms, food webs and whole ecosystems to changes in 

catchment land use and climate (Richardson et al. 2010; Marcarelli et al. 2011; 

Kominoski and Rosemond 2012). Furthermore, such investigations could also increase 

understanding of the role that riparian restoration could play in supporting stream 

communities and functions, for example through efforts to enhance the availability and 

diversity of basal resources available to support stream communities (Thomas et al. 2016; 

Chapter 5). Few studies, however, have extended over timescales sufficient to 

characterise temporal variations in the origin, quality and fate of organic matter in streams 

across a range of land cover types. Such studies have the potential to allow not only 

stronger inference of the effects of riparian land cover on organic matter resources in 

streams, but could also allow an assessment of the potential impacts of hydro-climatic 
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change and associated shifts in flow regimes on the fate of organic matter in streams (see 

Frost et al. 2009; Atkinson et al. 2009; Hladyz et al. 2012). 

 

Aims & Hypotheses 

This study aims to determine how riparian land cover and hydro-climatic variability could 

alter the amount, quality and origin of stream seston in headwater streams. Monthly 

variations in fine and coarse fractions of suspended particulate organic matter (suspended 

FPOM and CPOM, respectively) were measured over four years in four headwater 

streams that differed in riparian land cover type (broadleaf woodland, conifer forest, acid 

moorland, and circumneutral moorland) in central Wales, UK. These land cover types 

were chosen to represent the broad contrasts in riparian characteristics that dominate 

many headwater streams in the UK uplands (UK National Ecosystem Assessment 2011). 

Stable C and N isotopic signatures and elemental composition of the seston were 

measured and an attempt made to identify the origin (terrestrial or aquatic). The following 

predictions were tested: 

(1) Concentrations of suspended CPOM and FPOM differ among riparian land cover 

types, being greatest in broadleaf streams by comparison with conifer and 

moorland streams. 

(2) The isotopic and elemental compositions of suspended CPOM and FPOM differ 

between riparian land cover types, reflecting differences in the composition and 

dominance of different sources of organic matter. 

(3) During higher flows, suspended CPOM and FPOM concentrations will increase, 

and isotopic and elemental compositions will more closely resemble terrestrial 

sources of organic matter.   

 

3.2 Methods 

3.2.1 Study sites 

The study was conducted in four 2nd to 3rd order streams, selected from a wider pool of 

eight streams surveyed in another study (Chapter 2), located within the Llyn Brianne 

experimental catchments in central Wales, UK (Figure 2.1). Each of the four sites 
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represented a distinct riparian land cover type (defined here as the dominant vegetation 

within 10 m of the stream bank) typical of the UK uplands: Broadleaved woodland (Br; 

site code ‘G1’), conifer plantation (Co; site code ‘L1’), acid moorland (AM; site code 

‘C4’) and circumneutral moorland (CM; site code ‘L6’). All four streams were within ~ 

10 km of each other ensuring that climatic conditions were similar throughout the study. 

3.2.2 Stream flow and temperature measurements 

Mean daily stream discharge and temperature values were calculated for each sampling 

date using 15-minute data derived from one of the study sites (site code L1; details 

provided in Chapter 2), and were used in subsequent data analyses to represent flow and 

temperature conditions (Sections 3.2.5 and 3.2.6, below). The stream flow and 

temperature data derived from L1 were assumed to reflect both local and regional climatic 

conditions, based on nearby long-term observations and comparisons with regional 

rainfall and temperature data (Chapter 2; Figure 2.3). 

3.2.3 Seston sample collection and processing  

Three replicate samples of suspended particulate matter were collected from each site 

every 4-8 weeks between November 2010 and September 2014 (n=36 sampling 

occasions). Fine and coarse suspended particulate matter were sampled by filtering 

known volumes (range=10-600 L, mean=142.6 L) of stream water through a stacked pair 

of 10µm (fine) and 1mm (coarse) mesh filters. Care was taken not to re-suspend benthic 

particles during sample collection. All samples were stored at ~4°C upon collection, 

returned to the laboratory, and frozen within 24 h of collection to minimise changes in 

composition due to microbial activity (Wallace et al. 2006). Ash-free dry mass (AFDM) 

of all suspended FPOM samples was estimated by combusting a subset (n=92) of all 

samples (n=417) at 550°C for 5h in a muffle furnace, and applying site-specific 

conversion factors to the freeze-dried mass. AFDM of suspended CPOM samples was 

estimated using conversion factors derived from combusted benthic CPOM samples 

(Chapter 2).  Suspended FPOM and CPOM concentrations (mg L-1) were then calculated 

by dividing the estimated total AFDM of each sample by the number of litres of stream 

water filtered. There was negligible variation between the three replicates at each time 

point, and so they were pooled, allowing simpler models to be fitted during the data 

analysis (Section 3.2.5, below). 
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3.2.4 Stable isotope and elemental analysis of seston and potential sources 

Stable isotope and elemental analysis of C and N of suspended POM and potential sources 

was used to assess whether the origin (using δ13C and δ15N signatures) and quality (using 

C:N ratios) of suspended POM varied between different land cover types and through 

time. Suspended POM samples were freeze-dried at -20 °C for 48-72 h and weighed to 

the nearest 0.0001g on an analytical balance, before being ground, homogenised and sub-

sampled (3 mg ±0.3 mg) for analysis of elemental (C, N) and stable isotopic (δ13C, δ15N) 

composition on a mass spectrometer (University of California Davis Stable Isotope 

Facility). To allow the origin of seston to be determined, stable isotopic data of potential 

sources of organic matter collected from each of the sites during 2007-2011 were used (n 

= 8 sampling occasions; Isabelle Durance, unpublished data).  The sampling occasions 

spanned different seasons and years in order to encompass possible temporal isotopic 

variation inherent within sources (Finlay and Kendall 2007). The potential sources 

included leaf litter, epilithon and bryophytes. Leaf litter included pooled samples of 

abscised leaves from visually abundant riparian vegetation (including birch (Betula), oak 

(Quercus), bracken (Pteridium), conifer (Sitka), and moor grass (Molinia)), and was 

collected by hand from the riparian zone (within 10 m of the stream bank) of each site. 

Epilithon and bryophytes were sampled by scraping them from rocks within the stream 

reach. Upon collection, samples were returned to the laboratory, frozen, then processed 

and analysed for elemental and isotopic composition as for seston samples (Section 3.2.3, 

above). 

3.2.5 Data analysis 

To assess whether the isotopic and elemental composition of organic matter sources were 

distinct, differences in δ13C, δ15N and C:N ratios between organic matter sources were 

tested using a general linear model (GLM), with source (bryophyte, epilithon, terrestrial 

leaf litter) and site as the main effects. Where significant effects were detected, 

differences among factor levels were assessed using Tukey’s HSD post-hoc pairwise 

comparisons. 

A generalized least-square (GLS) model was used to test the effects of site, stream 

temperature (as a proxy for season) and stream flow, and all 2- and 3-way interactions on 

suspended FPOM and CPOM concentrations, isotopic signatures and C:N ratios. GLS 

combines the simple interpretation of a conventional linear model with the ability to 
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handle non-independence in the data through the use of correlation models for the 

residuals, making it ideally suited to time series data (Pinheiro and Bates 2000). With 

only four streams, the data set was sub-optimal for mixed effects models (Gelman and 

Hill 2007). The optimal residual correlation structure for each response variable was 

found by fitting the global model (i.e. containing site, temperature, flow, and all two- and 

three-way interactions) with different auto-regressive moving average (ARMA) 

correlation structures, and selecting the one that minimised the Akaike Information 

Criterion (AIC) and did not have significant residual autocorrelation (Pinheiro and Bates 

2000). The significance of the main effects were then assessed following a backwards 

selection procedure (see Zuur et al. (2009) for full details): starting with the global model, 

non-significant terms were removed sequentially using likelihood ratio tests with 

maximum likelihood estimation, selecting the models with the lowest AIC in each case, 

until only significant terms remained. The final optimal models were then refitted using 

restricted maximum likelihood (REML) estimation and were validated by visual 

inspection of the residuals (Zuur et al. 2009). Where necessary, response and explanatory 

variables were log-transformed prior to analysis to homogenise variances. GLS models 

were fitted using the gls function in the nlme package (Pinheiro et al. 2016) in R. 

3.2.6 MixSIAR mixing models 

A Bayesian mixing model was used to estimate the proportional contribution of the three 

potential organic matter sources to stream seston, and whether these contributions varied 

with stream discharge (Hypothesis 3). R’s MixSIAR package (Stock and Semmens 2013) 

was used because it allows for the analysis of explanatory variables (‘stream discharge’ 

and ‘site’ in this instance; (Semmens et al. 2009), which can include a continuous variable 

(Francis et al. 2011), whilst accounting for uncertainty in source isotope signatures, 

uncertainty in discrimination factors, and concentration dependence (Stock and Semmens 

2013). To account for N isotopic enrichment caused by microbial consumers associated 

with FPOM (Finlay and Kendall 2007), a discrimination factor of 1.76 ‰ ± 1.56 SD was 

estimated for δ15N based on the raw data by calculating the mean difference between 

FPOM values and organic matter sources. For CPOM, a discrimination factor of -0.42 ‰ 

± 1.97 SD was similarly calculated. More precise estimates of δ15N enrichment associated 

with the presence of microbes was not possible here due to the lack of published 

estimates. Direct measures of microbial fractionation of δ15N and microbial biomass 

associated with seston were also beyond the scope of this study. There is little 
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fractionation of δ13C expected between organic matter sources and microbes (Hullar et 

al. 1996), therefore there was no discrimination factor applied to δ13C values. 

Preliminary checks of the data prior to model fitting showed that the isotopic signatures 

of some CPOM samples (21 out of 353) fell outside the mixing polygons of organic matter 

sources, even after correcting for fractionation effects (Appendix A, Figure A.1). CPOM 

was therefore not analysed further since the data violated one of the major assumptions 

of the mixing model (Stock and Semmens 2013). Fewer FPOM values fell outside the 

mixing polygons (12 out of 391) following fractionation correction (Appendix A, Figure 

A.2), and to a lesser extent (<0.5 ‰ for both δ13C and δ15N). MixSIAR mixing models 

were subsequently fitted to the FPOM data using a Markov Chain Monte Carlo (MCMC) 

procedure to simulate plausible values of the contribution of each source to the FPOM 

mixture based on a Dirichlet prior distribution. In order to test whether the contributions 

of different sources to FPOM varied with stream discharge, the mixing model was fitted 

with variables for discharge and site as a random effect, along with a residual error term 

to account for generic, normally distributed variability in FPOM isotope signatures 

beyond that explained by the mixing model (Parnell et al. 2010). The MCMC procedure 

was then run at incremental chain lengths (up to 1,000,000 iterations), run-ins (up to 

100,000 of the first iterations discarded) and thins (up to 250 cycles) to determine whether 

mixing models had successfully converged (see Stock and Semmens (2013) for full 

details). Since model diagnostics indicated that mixing models did not successfully 

converge, it was not, however, possible to utilise and interpret the model estimates of 

source contributions to FPOM with confidence (Stock and Semmens 2013). 

 

3.3 Results 

3.3.1 Stream flow and temperature conditions  during the study period 

Over the four-year study period, stream discharge at L1 ranged between 0.001 and 4.080 

m3 s-1 with an overall median of 0.120 m3 s-1 (Figure 2.2a), while stream temperature 

ranged between 0 and 18.08 ˚C with a median of 8.31˚C (Figure 2.2b). The first and third 

year of the study were relatively cold and dry, while Years 2 and 4 were relatively warm 

and wet (Figure 2.3). The two wet years notably included the warmest autumn (Year 2), 

the wettest summer (Year 2) and the wettest winter (Year 4) in Wales in the last 100 years 

(Figure 2.4). 
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3.3.2 Riparian land cover effects on seston concentration  

Overall, CPOM concentrations were similar to those of FPOM (Figure 3.1), with CPOM 

values ranging between 0.00008 and 10.79 mg AFDM L-1 (overall mean = 0.31 ± 0.07 

mg AFDM L-1), while FPOM ranged between 0.00074 and 17.18 mg AFDM L-1 (overall 

mean = 0.46 ± 0.07 mg AFDM L-1). Although CPOM concentrations appeared greater in  

 

 

 

Figure 3.1. Temporal variation of suspended particulate organic matter concentrations, δ13C 

values, δ15N values and C:N ratios during the study period (± 1 S.E.). Black circles = suspended 

CPOM; white circles = suspended FPOM. Site abbreviations: Br = Broadleaf; Co = Conifer; AM 

= Acid Moorland; CM = Circumneutral Moorland. 
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the broadleaf site by comparison with all other sites (Figure 3.1), the overall site effect 

was weak (Table 3.1) and only approached significance between the broadleaf and 

circumneutral moorland site (Tukey’s HSD, p=0.062; p>0.1 in all other cases). FPOM 

showed a similar pattern (Figure 3.1), though there was no significant difference in FPOM 

concentrations among sites (Table 3.1). 

 

 

Table 3.1. Summaries of the best models for each response, showing change in AIC values and 

P-values following removal of terms from the model using likelihood-ratio tests. Where 

interactions were found to be significant, associated main effects were retained in the model but 

were not assessed for significance and are not displayed here. 

Response Parameters in final model ∆AIC df P-value 

 

 

 

 

 

CPOM 

Concentration 
 Discharge x Temperature 

 Site 

-3.1 

-2.2 

3 

3 

0.023 

0.043 

C:N ratio  Temperature x Site -5.1 3 0.011 

δ13C  Site -18.0 3 <0.001 

δ15N  Site -110.1 3 <0.001 

 

 

 

 

 

FPOM 

Concentration 
 Discharge 

 Temperature 

-6.2 

-5.6 

1 

1 

0.004 

0.006 

C:N ratio 
 Temperature 

 Site 

-20.5 

-13.1 

1 

3 

<0.001 

<0.001 

δ13C  Site -4.0 3 0.018 

δ15N 
 Temperature 

 Site 

-2.4 

-21.3 

1 

3 

0.035 

<0.001 

 

  



 

47 

 

3.3.3 Riparian land cover effects on seston composition  

C:N ratios of CPOM were higher than those of FPOM (Figures 3.1 and 3.2), with CPOM 

C:N ranging between 7.6 and 63.6 (overall mean = 29.3 ± 0.52), while FPOM C:N ranged 

between 8.7 and 21.6 (overall mean = 15.1 ± 0.13). CPOM also showed greater temporal 

variability in C:N values by comparison with FPOM (Figures 3.1 and 3.2), and while 

CPOM C:N ratios were lower on average in the circumneutral site, the site effect appeared 

to vary depending on temperature (Table 3.1; see Section 3.3.4, below). FPOM C:N ratios 

varied significantly between sites (Table 3.1), being higher in the broadleaf site by 

comparison with all other sites (Tukey’s HSD, p<0.05 in all cases), and intermediate in 

the acid moorland and conifer site (Tukey’s HSD, p=0.891). FPOM C:N was lower in the 

circumneutral site than the conifer site (Tukey’s HSD, p=0.021), but not significantly so 

than the acid  moorland site (Tukey’s HSD, p=0.124). 

CPOM was generally less enriched with 13C than FPOM (Figures 3.1, 3.2 and 3.3), with 

CPOM values ranging between -32.7 and -25.33 ‰ (overall mean = -29.3 ± 0.05 ‰), 

while FPOM ranged between -29.7 and -25.2 ‰ (overall mean = 28.6 ± 0.03 ‰). δ13C 

values showed little within-site variation, but showed some between-site variation, for 

both CPOM and FPOM (Table 3.1). CPOM δ13C in the acid moorland site was 

significantly higher than the broadleaf, conifer and circumneutral moorland sites 

(Tukey’s HSD, p<0.01 in all cases), which did not differ significantly from each other 

(Tukey’s HSD, p>0.05 in all cases). FPOM δ13C values did not show the same site 

differences as CPOM, with values being higher in the conifer site than the circumneutral 

moorland site (Tukey’s HSD, p=0.022), while no other site differences were significant 

(Tukey’s HSD, p>0.05 in all cases). 

CPOM δ15N values ranged between -4.7 and 7.3 ‰ (overall mean = -0.3 ± 0.10 ‰), while 

FPOM ranged between -1.6 and 6.8 ‰ (overall mean = 1.9 ± 0.08 ‰). Although CPOM 

and FPOM did not differ overall in terms of 15N enrichment, CPOM was consistently less 

enriched with 15N than FPOM within each site (Figures 3.1 & 3.3). CPOM δ15N values 

varied significantly among sites (Table 3.1), being highest in the acid moorland site 

(Tukey’s HSD, p<0.001 in all cases), lowest in the broadleaf site (Tukey’s HSD, p<0.001 

in all cases), and intermediate in the conifer and circumneutral moorland sites (conifer vs. 

moorland; Tukey’s HSD, p=0.299). FPOM δ15N values were significantly lower in the 

broadleaf site by comparison with all other sites (Tukey’s HSD, p<0.001 in all cases), 

which did not differ significantly from each other (Tukey’s HSD, p>0.05 in all cases). 
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Figure 3.2. C:N versus δ13C 

values of suspended CPOM 

(black circles) and FPOM 

(white circles) samples 

measured in each of the study 

sites (top panels) and across all 

sites (bottom panel) during 

2010-2014. Boxes depict mean 

values (± 1 S.D.) of potential 

organic matter sources (solid 

line = terrestrial leaf litter; 

dashed line = bryophytes; 

dotted line = epilithon). 
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Figure 3.3. δ15N versus δ13C 

values of suspended CPOM 

(black circles) and FPOM 

(white circles) samples 

measured in each of the study 

sites (top panels) and across all 

sites (bottom panel) during 

2010-2014. Boxes depict mean 

values (± 1 S.D.) of potential 

organic matter sources (solid 

line = terrestrial leaf litter; 

dashed line = bryophytes; 

dotted line = epilithon). 
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3.3.4 Effects of stream discharge and temperature on seston concentration  

CPOM concentrations decreased with increasing stream discharge across all sites, 

however this relationship was weaker during warmer periods by comparison with colder 

periods (Table 3.1). FPOM concentrations also decreased with increasing stream 

discharge in all sites (Figure 3.4a). The slope coefficient of the relationship between 

discharge plotted against concentration graph (0.24) is consistent with an increased total 

export (increased concentration more than compensating for increased discharge), rather 

than a simple dilution effect (i.e. same total export of POM). This relationship did not 

vary with temperature (Table 3.1). FPOM concentrations were significantly lower during 

warmer periods across all sites (Table 3.1; Figure 3.4b). 

3.3.5 Effects of stream discharge and temperature on seston composition  

There was no significant effect of stream discharge on the C:N ratios, δ13C or δ15N values 

of CPOM or FPOM (Table 3.1). C:N ratios of FPOM were significantly lower during 

warmer periods across all sites (Table 3.1; Figure 3.5b), but for CPOM this effect was 

only apparent in the circumneutral moorland site (Table 3.1; Figure 3.5a). Although  

 

(a) (b)  

 
Figure 3.4. Estimated slopes and 95% confidence bands from the generalised least squares (GLS) 

models for log-transformed fine suspended particulate organic matter concentration at the four 

study sites within Llyn Brianne versus (a) stream discharge (Q) and (b) temperature data. 
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FPOM appeared to become more enriched with 13C and 15N during warmer periods 

(Figures 3.6a and b, respectively), these effects were weak (Table 3.1). δ13C and δ15N 

values of CPOM did not vary with temperature (Table 3.1). 

(a)  (b)  

Figure 3.5. Estimated slopes and 95% confidence bands from the generalised least squares (GLS) 

models for C:N ratios of (a) coarse and (b) fine suspended particulate organic matter versus stream 

temperature data. 

 

(a) (b)  

Figure 3.6. Estimated slopes and 95% confidence bands from the generalised least squares (GLS) 

models for δ13C (a) and δ15N (b) signatures of fine suspended particulate organic matter data 

versus stream temperature. 
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3.3.6 Isotopic and elemental composition of organic matter  sources 

Organic matter sources were significantly different in terms of their isotopic C (δ13C; 

F2,90=223.34, p<0.001) and N (δ15N; F2,90=55.96, p<0.001) signatures, as well as their 

elemental composition (C:N ratio; F2,80=223.34, p<0.001) (Figures 3.2 and 3.3). Pairwise 

comparisons showed, however, that not all sources were compositionally distinct and that 

these differences were not always reflected by the origin (i.e. terrestrial or aquatic) of the 

organic matter sources. Epilithon was more enriched with 13C than both bryophytes and 

terrestrial leaf litter (Tukey’s HSD; p<0.001 in both cases), whereas bryophytes and leaf 

litter did not differ significantly from each other (Tukey’s HSD; p=0.375). Leaf litter was 

less enriched with 15N by comparison with both bryophytes and epilithon (Tukey’s HSD; 

p<0.001 in both cases), which had similar δ15N signatures (Tukey’s HSD; p=0.651). C:N 

ratios were highest in leaf litter, lowest in epilithon and intermediate in bryophytes 

(Tukey’s HSD; p<0.001 in all cases). 

3.3.7 Proportional contributions of organic matter sources to FPOM  

Model diagnostics indicated that the mixing model for FPOM did not successfully 

converge. Therefore, the model estimates of the proportional contributions of each source 

to FPOM were considered unreliable and, as such, are not presented. 

 

3.4 Discussion 

3.4.1 Summary 

This study showed that, contrary to expectations, concentrations of CPOM and FPOM in 

streams were remarkably similar across the different riparian land cover types, with only 

the coarse fractions of POM concentrations being marginally higher in the broadleaf site. 

Meanwhile, there were clear differences in the isotopic and elemental compositions of 

CPOM and FPOM among different riparian land cover types. Discharge had a negative 

relationship with CPOM and FPOM concentrations, with the strength of this relationship 

being seasonally dependent for CPOM. In particular, the decrease in FPOM concentration 

with increased discharge was consistent with an increased total export. The compositions 

of CPOM and FPOM varied seasonally, but did not with discharge. In the absence of clear 

isotopic distinction between potential sources of organic matter, however, it was not 
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possible to ascertain with confidence what factors were driving the patterns observed in 

seston composition. 

3.4.2 Riparian land cover effects on the amount of CPOM and FPOM 

The similarities in POM concentrations among contrasting riparian land cover types 

observed in this study were unexpected: while other studies have reported markedly 

higher amounts of POM in broadleaf streams (e.g. Piccolo and Wipfli 2002), this study 

found CPOM to be only marginally higher, while FPOM concentrations were similar 

across all riparian land cover types. Higher retention of organic matter in broadleaf 

streams, for example due to the presence of woody debris (Cariss and Dobson 1997; 

Eggert et al. 2012), could explain why the amount of POM in transport was similar to the 

conifer and moorland streams, despite much greater inputs (Hart et al. 2013; Isabelle 

Durance, unpublished data) and benthic availability of POM (Chapter 2) in these streams. 

It remains possible, however, that the expected differences among riparian land cover 

types may have not been detectable within the range of flow conditions sampled (Figure 

2.1), since the majority of POM transport occurs during storm events (Golladay et al. 

1987; Wallace et al. 1995; Johnson et al. 2006), and sample collection was not practicable 

under such conditions. Meanwhile, under non-storm flow conditions, the feeding activity 

of benthic invertebrates may have played an important role in regulating the amount of 

POM in transport (D. C. Richardson et al. 2009). Indeed, others have demonstrated the 

influence that invertebrate filter feeding can have on FPOM concentrations by removing 

large portions of suspended particles from the water column (Voshell and Parker 1985; 

Monaghan et al. 2001). Further work involving a budget approach to link POM exports 

with direct measures of inputs, retention and breakdown of organic matter among 

different riparian land cover types could help elucidate the mechanisms underlying the 

observed similarities in POM concentrations observed here. 

3.4.3 Riparian land cover effects on the quality of CPOM and FPOM 

C:N ratios provide meaningful measures of the potential nutritional value (i.e. quality) of 

different food sources for consumers (Sterner and Elser 2002; Moore et al. 2004). In this 

study, there were clear differences in C:N ratios among the coarse and fine fractions of 

POM, with FPOM C:N ratios being consistently lower than CPOM C:N, irrespective of 

riparian land cover type. In addition, riparian land cover and seasonal variations in 

temperature appeared to affect the two size fractions differently. In combination, the 
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patterns observed among riparian land cover types and, more generally, among size 

fractions of POM, have important ecological implications. 

Lower C:N ratios in smaller particles of POM have frequently been observed elsewhere 

(e.g. Krusche et al. 2002; Atkinson et al. 2009; Akamatsu et al. 2011), and are often 

attributed to the relatively higher surface to volume ratio of smaller particles that allows 

greater microbial colonisation, which actively incorporate N from the water column 

(Findlay et al. 2002; Cross et al. 2005). Though direct measurement of microbial biomass 

was beyond the scope of this study, the consistent 15N enrichment of FPOM relative to 

CPOM could provide some indirect evidence for greater microbial influence associated 

with FPOM particles (see Section 3.4.6, below). In combination, these results suggest that 

fine particles of organic matter provide a relatively high quality, nutrient-rich resource 

for consumers such as filter-feeding invertebrates in headwater streams (Wallace and 

Merritt 1980). 

CPOM quality was highly variable through time and showed no clear differences among 

riparian land cover types. Only during warmer periods did CPOM C:N ratios in 

circumneutral moorland streams become significantly lower than the other riparian land 

cover types. By contrast, FPOM quality showed consistent patterns in space and time, 

with C:N ratios being higher in the broadleaf stream by comparison with the conifer and 

moorland streams, and showing general trends towards lower C:N ratios during warmer 

periods across all riparian land cover types. Given the uncertainties with respect to the 

likely origins of POM in this study (see Section 3.4.6, below), explaining the causal 

mechanisms for spatial and temporal variations in the C:N ratios of POM are challenging. 

Nevertheless, given that FPOM exhibited higher C:N ratios in broadleaf streams than in 

streams draining conifer or moorland catchments, and that FPOM often represents the 

majority of the downstream flux of organic matter (Webster and Meyer 1997; Colón-

Gaud et al. 2008; Eggert et al. 2012), these results indicate that broadleaf streams deliver 

proportionately larger quantities of organic C to downstream reaches than do conifer or 

moorland streams. Meanwhile, the reductions in the C:N ratios of FPOM during warmer 

periods suggests that FPOM may become increasingly important in supporting stream 

food web productivity during warmer periods of the annual cycle, by providing a nutrient-

rich resource when organisms are most metabolically active (Gillooly et al. 2001; Sterner 

and Elser 2002). 
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3.4.4 Hydro-climatic effects on the amount of CPOM and FPOM 

Many studies have investigated the relationship between stream discharge and suspended 

POM concentrations under both natural and experimental conditions, showing that 

numerous factors can influence the strength and direction of this relationship. These 

factors include the availability of POM on the stream bed, POM particle size, channel 

retentiveness, and the timing of sampling with respect to the hydrograph, season or 

antecedent flow conditions (e.g. (Wallace et al. 1982; Webster et al. 1987; Golladay et 

al. 1987; Thomas et al. 2001; Pretty and Dobson 2004a; Mollá et al. 2006; Cordova et al. 

2008; D. C. Richardson et al. 2009). In particular, the timing of sampling with respect to 

the stream hydrograph can have a strong influence on POM concentrations, since POM 

concentrations generally show a hysteretic relationship with stream discharge during 

storms (i.e. being higher on the rising limb than on the falling limb; Webster et al. 1987). 

In this study, the sampling regime meant that storm flow conditions were 

underrepresented, since sampling was often conducted at or near baseflow, or after peak 

flows had subsided (Figure 2.1). Therefore, the higher flow rates encountered in this study 

mostly reflected the falling limb of the hydrograph. As such, the lower FPOM 

concentrations observed at higher flow rates in this study could reflect a reduction in the 

amount of organic matter available for transport on the stream bed following high flow 

events (Chapter 2), since fine deposits of organic matter particles would be rapidly re-

suspended and transported downstream on the rising limb (Webster et al. 1987). On this 

basis, the lower CPOM concentrations observed at high flows during cold, winter periods 

could also suggest a depletion of benthic CPOM following high flow events. Meanwhile, 

in warmer, summer periods, the effect of discharge on CPOM concentrations appeared to 

be weaker, suggesting that benthic CPOM was not depleted to the same extent following 

high flow events during these periods. It is possible that the high flows encountered during 

summer were less intense than those during winter, and did not exceed the threshold 

needed to re-suspend large particles of CPOM (Speaker et al. 1984). 

3.4.5 Hydro-climatic effects on the composition of CPOM and FPOM 

In this study, stream flow did not appear to explain any variation in the isotopic or 

elemental compositions of CPOM or FPOM. This contrasts with other studies conducted 

in larger rivers (Krusche et al. 2002; Atkinson et al. 2009; Frost et al. 2009), which 

suggested that during high flows, the C:N ratios and δ13C of POM increased because the 
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hydrological connectivity between rivers and their floodplains was strengthened, 

resulting in increased incorporation of C-rich particles from terrestrial sources into the 

suspended organic matter pool. It is possible that the aforementioned inability to sample 

POM during storm flow conditions meant that any isotopic shifts that may have occurred 

during such events (i.e. resulting from increased incorporation of terrestrial organic 

matter in storm runoff) were not detected. Furthermore, detecting any shifts in POM 

compositions in relation to stream discharge may have been limited by the large temporal 

variability observed in the isotopic and elemental composition of organic matter sources 

potentially contributing to POM (see Section 3.4.6, below). 

3.4.6 Tracing origins of CPOM and FPOM using δ13C, δ15N and C:N ratios 

Although the amount of CPOM and FPOM was similar among riparian land cover types, 

there were clear differences in their isotopic and elemental composition. A robust 

assessment of whether these differences were driven by the effects of riparian land cover 

on the origin of CPOM and FPOM was limited, however, due to (i) the large variability 

in δ13C and δ15N signatures observed within and between individual sources of organic 

matter, (ii) the indications that additional, unmeasured sources were contributing to the 

seston mixtures, and (iii) the subsequent inability to reliably estimate the relative 

contributions of the different sources to CPOM and FPOM using Bayesian mixing models 

(Section 3.2.5). These uncertainties also rendered difficulties in assessing whether, and to 

what extent, the contributions of different sources to CPOM and FPOM vary through 

time. These challenges are discussed in the following text, and, with the limitations borne 

in mind, some ecologically significant conclusions as to the origins of CPOM and FPOM 

are then drawn based on a qualitative assessment of some of the observed patterns in the 

data. 

3.4.6.1 Challenges in using stable C and N isotopes 

In this study, the isotopic signatures of individual sources varied considerably over the 

three-year period within which they were sampled (Figures 3.2 and 3.3). In particular, the 

δ13C signatures of aquatic sources showed high variability relative to terrestrial sources, 

and although epilithon was consistently more enriched with δ13C than other sources, the 

wide ranging δ13C signatures of bryophytes and their subsequent overlap with leaf litter 

signatures prevented an overall separation between ‘terrestrial’ and ‘aquatic’ sources. 

Similar patterns in aquatic sources have been observed elsewhere (Finlay and Kendall 
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2007; Peipoch et al. 2012; Imberger et al. 2014), and can be driven by temporal variability 

in stream water DIC signatures and CO2 availability (Finlay and Kendall 2007; Ishikawa 

et al. 2012). Given the large variability in isotopic signatures within individual sources, 

it is difficult to determine what mechanisms might have underpinned the observed 

differences in the isotopic signatures of CPOM and FPOM among riparian land cover 

types. 

An additional complicating factor is the possibility that other, unmeasured sources may 

have contributed to the CPOM and FPOM mixtures in unknown, varying proportions 

(Peipoch et al. 2012). While the dual isotope plots (Figure 3.3) suggest that a reasonable 

proportion of the data could be explained by a mixture of the three measured sources 

(bryophytes, epilithon and leaf litter), the large number of δ15N values deviating from 

source signatures suggest the likelihood that additional sources were contributing to the 

POM mixtures. δ15N values of both size fractions of POM were highly variable and often 

enriched relative to sources, particularly in FPOM. δ15N enrichment of POM has 

frequently been attributed to the influence of microbial colonisers, for example due to 

their active incorporation of dissolved inorganic nitrogen (DIN) from stream water, which 

tends to have a higher δ15N signature than that of terrestrial sources (Macko and Estep 

1984; Caraco et al. 1998; Finlay and Kendall 2007; Peipoch et al. 2012). There appear to 

be wide ranging estimates of the proportions of microbial biomass associated with POM 

in aquatic systems reported in the literature, ranging from ~1% to >60% (e.g. Gessner 

1997; Schumann et al. 2001; Findlay et al. 2002; Hamilton et al. 2004; Tremblay and 

Benner 2009), suggesting that the influence of microbes on the isotopic composition of 

POM may indeed be significant, and warrants further investigation (France 2011; Peipoch 

et al. 2012). 

Recent advances in the statistical tools available for analysing isotopic data now allow 

investigators to account for uncertainties within the data (e.g. Parnell et al. 2010; Stock 

and Semmens 2013). In the present study, the uncertainties associated with the multiple 

sources of variation contributing to the isotopic composition of sources and POM 

mixtures (outlined above), however, highlight the challenges in attempting to assess how 

the origin and fate of organic matter in streams could vary through time. Further work 

incorporating measures of the temporal variation in source signatures and microbial 

biomass associated with basal resources, coupled with continuing developments in 
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statistical methods (e.g. Hossler and Bauer 2012) could provide a valuable basis for 

understanding drivers of variation in aquatic food webs. 

3.4.6.2 Using C:N ratios to assess the effects of riparian land cover and hydro-climatic 

variability on the origins of CPOM and FPOM in headwater streams 

Higher C:N ratios are often attributed to greater terrestrial contributions, while lower C:N 

ratios are assumed to indicate greater contribution from aquatic sources (e.g. Atkinson et 

al. 2009; Frost et al. 2009). Indeed, the C:N ratios of leaf litter were significantly higher 

than aquatic sources across all sites in this study: a pattern that has been consistently 

observed worldwide (Rostad et al. 1997; Finlay and Kendall 2007). These differences 

could explain some of the variation among riparian land cover types in the elemental 

composition of FPOM, with the broadleaf site possibly contributing greater proportions 

of high C:N terrestrial organic matter to FPOM due to greater leaf litter inputs by 

comparison with the conifer and moorland sites (Isabelle Durance, unpublished data). 

The differences in C:N ratios among sources could also explain the observed seasonal 

variations in CPOM and FPOM C:N ratios, with increased aquatic primary productivity 

in summer months possibly contributing more biomass to the organic matter pool, and 

thus giving rise to lower C:N ratios of suspended POM during warmer periods (Young 

and Huryn 1997). In the absence of supporting isotopic information, however, the likely 

origins of suspended POM cannot be inferred based on C:N ratios alone.  

3.4.6.3 Likely origins of POM in headwater streams 

Despite the challenges in determining the origins of suspended POM in this study, the 

data showed that CPOM and FPOM δ13C values rarely fell within the range of epilithon, 

suggesting that epilithon was not a major contributor of organic matter to CPOM and 

FPOM in these streams, regardless of riparian land cover type. In the case of the broadleaf 

and conifer sites, this result is not surprising, given that the low light availability in these 

densely shaded streams would be expected to limit benthic algal production (Hill et al. 

1995), and thus its contribution to the organic matter pool. In moorland streams, however, 

this result contrasts with the expectation that these open-canopy streams would have 

relatively greater contribution of organic matter from benthic algae (Hill et al. 1995). An 

alternative explanation is that epilithic production may be low in these high-gradient, 

turbulent systems, even where light is not limiting, and thus contributes little to the 

suspended organic matter pool. 
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The relative contributions of leaf litter and bryophytes to CPOM and FPOM in relation 

to riparian land cover type remains in question. Other studies have demonstrated that 

POM in forested streams has greater proportions of terrestrially-derived organic matter 

(such as leaf litter) than in open-canopy streams (e.g. Lu et al. 2014). In addition, Valiela 

et al. (2014) demonstrated that reductions in forest cover in tropical streams resulted in 

reduced terrestrial contributions of organic matter to stream POM. These examples 

suggest that forested streams, with greater inputs of leaf litter, contribute relatively more 

terrestrially-derived organic matter than aquatic sources to stream POM. In the absence 

of isotopic distinction between leaf litter and bryophytes, however, the potential 

importance of bryophytes in contributing to stream organic matter cannot be appraised. 

Indeed, previous work has shown that bryophytes are important contributors to aquatic 

primary production in many headwater streams (Ormerod et al. 1987), and while they 

may be considered a less nutritious food resource for stream invertebrates than other 

sources (Suren and Winterbourn 1991), it remains possible that bryophyte-derived 

organic matter – in addition to terrestrially-derived organic matter – could support stream 

food webs via detrital pathways, by forming part of the suspended POM load. 

3.4.7 Conclusions 

In this study, determining the likely origins of CPOM and FPOM were complicated by 

the temporal variability of δ13C and δ15N signatures inherent within organic matter 

sources, coupled with the potential for additional, unmeasured sources contributing to the 

POM mixtures in unknown quantities. This limited the ability to assess whether the 

patterns observed in POM compositions were driven by variations in the relative 

contributions of terrestrial and aquatic sources of organic matter to the POM pool. 

However, there was evidence for the likely influence of microbes on the composition and 

quality of POM, particularly in the smaller size fraction. Consequently, further work is 

needed in order to assess the importance of processes operating at different scales that 

may drive variations in the quality and fate of organic matter resources in streams. The 

pivotal role of microbes in mediating energy fluxes from basal resources to higher trophic 

levels has long been recognised in aquatic ecosystems (Cummins 1974). Quantifying the 

influence of microbes on organic matter resources in terms of biomass and isotopic 

fractionation could therefore provide an important link in the interpretation of stable 

isotopes in aquatic food webs studies (Peipoch et al. 2012). 
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Despite these limitations, the results presented here demonstrated remarkable similarities 

in the amount of CPOM and FPOM transported by streams that differed in riparian 

vegetation composition. Meanwhile, the elemental C:N ratio of FPOM was higher in the 

broadleaf stream, suggesting a proportionately greater export of C from broadleaf 

catchments by comparison with those draining conifer or moorland, at least under the 

range of flow conditions encountered. However, higher sampling frequencies over larger 

temporal and spatial scales are needed for stronger inference of the effects of riparian land 

cover and stream discharge on POM concentrations (Cuffney and Wallace 1988; Colón-

Gaud et al. 2008; Wheatcroft et al. 2010). In turn, this would allow stronger predictions 

of the likely consequences of climate-driven shifts in stream flow regimes on organic 

matter dynamics (Acuña and Tockner 2010), and potential interactions with riparian land 

cover types. 
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CHAPTER 4: Effects of simulated high flow events on particulate 

organic matter transport and storage in stream mesocosms 

 

4.0 Summary 

1. Climate change in Northern Europe is expected to result in an increase in the 

frequency of winter storms, particularly in upland areas. In headwater streams, 

more frequent floods are likely to increase downstream transport and decrease 

retention of particulate organic matter (POM), thus potentially altering the 

structure and functioning of headwater streams by depleting key basal resources. 

The relationship is, however, likely to be complex, with climate interacting with 

channel structure and the riparian zone, and most work to date has been 

correlative, making it difficult to identify the underlying mechanisms.  

2. This study investigates the effects of winter flood frequency on the transport and 

storage of POM by experimentally manipulating the flow regime of stream 

mesocosms in three headwater catchments within the Llyn Brianne Stream 

Observatory in mid-Wales, UK. Flood events were simulated by increasing the 

base flow rate for 48-hours at low frequency (~monthly) and high frequency 

(~weekly) intervals over 3 months during winter 2014-15. Daily Coarse POM 

export (µg AFDM s-1) was measured during the experimental period, while 

standing stocks of Coarse and Fine POM were measured before, during and after 

the experimental period to assess the net effects of flood frequency on the benthic 

availability of particulate organic matter. 

3. During the flood simulations, discharge levels were approximately doubled, 

resulting in a significant increase in the amount of CPOM exported from the 

experimental channels. Most CPOM export occurred during the early stages (0-

24 h) of floods, and remained elevated above base flow levels during late flood 

(24-48 h), despite being lower than the initial peak. This reduction in CPOM 

export during late flood was only detectable in the high flood frequency treatment. 

Despite clear increases in CPOM export in response to the flood events, neither 

the amount of CPOM exported nor the amount of CPOM and FPOM stored on the 
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stream bed, showed evidence of depletion with successive flood events, regardless 

of the frequency of their occurrence. 

4. These results suggest that POM stocks may not be depleted following successive 

flood events at the frequency and magnitude at which they were experimentally 

applied in this study. The magnitude and nature of flood events that occur in real 

ecosystems involve certain aspects that were unattainable in these mesocosms, 

such as greater magnitudes of flow and interactions with adjacent riparian zones. 

Consequently, further work is needed to characterise the effects of rainfall-runoff 

events on CPOM entrainment from the stream bed and the riparian zone, and to 

assess whether certain thresholds in flow rates exist above which depletion of 

organic matter resources in headwaters occur

 

4.1 Introduction 

Future climate projections predict an intensification of the global hydrological cycle 

(Huntington 2006), resulting in more frequent floods and droughts in many of the world’s 

rivers and streams (Milly et al. 2005; Bates et al. 2008). These shifts are likely to have 

strong implications for the structure and functioning of aquatic ecosystems (Kominoski 

and Rosemond 2012; Death et al. 2015), since the flow regime affects habitat suitability, 

food availability, water quality, species composition and productivity (Poff et al. 1997). 

Given the multitude of goods and services that streams and rivers provide (Millennium 

Ecosystem Assessment 2005), there is an urgent need to understand the ecological effects 

of altered flow regimes in order to predict how these ecosystems will respond to future 

climate change. 

Whilst the effects of an intensified global hydrological cycle on regional rainfall patterns 

and stream flow regimes are uncertain, there is already evidence that headwaters at higher 

latitudes and altitudes are showing ‘early warning signs’ of hydro-climatic change, with 

trends towards increased frequency, magnitude and persistence of winter high flows being 

observed over recent decades (e.g. Birsan et al. 2005; Dixon et al. 2006; Hannaford and 

Marsh 2006; Hannaford and Marsh 2008; Biggs and Atkinson 2011; Hannaford and Buys 

2012; Marsh and Dixon 2012; Hannaford 2015). This reflects the dynamic nature of 

headwater streams, where rainfall patterns are rapidly manifest (Gomi et al. 2002). In 

turn, this highlights not only the sensitivity of headwaters to hydro-climatic variability, 
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but also their value as ‘sentinel systems’ and the subsequent need to investigate their 

responses to climate change (Perkins et al. 2010). 

Headwater streams form a large proportion of river networks (Leopold et al. 1964) and 

play a key role in the storage, processing and downstream transport of particulate organic 

matter (POM), a key basal resource for aquatic food webs along the entire river continuum 

(Vannote et al. 1980; Gomi et al. 2002; Wipfli et al. 2007). A large proportion of POM 

enters streams as large particles such as leaf litter and woody debris from the 

neighbouring riparian zones, as well as aquatic plant fragments and dead organisms, often 

referred to collectively as coarse particulate organic matter (CPOM; Cummins 1974). The 

retention of CPOM on the stream bed is crucial for its colonisation and processing by 

aquatic microbes and invertebrates, which play a pivotal role in mediating energy transfer 

from CPOM to the rest of the aquatic food web (Cummins 1974). For example, the 

feeding activity of these organisms transforms CPOM into biomass, or into nutrient-rich 

fine particulate organic matter (FPOM), which is then amenable to downstream transport 

and consumption by filter-feeding invertebrates.  

Numerous studies have demonstrated that POM retention decreases as stream discharge 

increases, reflecting a greater ability to entrain particles (e.g. Webster et al. 1987; Pretty 

and Dobson 2004a; Dewson et al. 2007; Hoover et al. 2010; Koljonen et al. 2012). 

Indeed, during high flow events, large amounts of POM are transported downstream, and 

a number of investigations have demonstrated that the majority of annual CPOM and 

FPOM exports occur during these events (e.g. Webster et al. 1987; Wallace et al. 1991; 

Wallace et al. 1995; Johnson et al. 2006; Richardson et al. 2009; Eggert et al. 2012). 

Despite the inherent challenges in sampling extreme events, investigating how altered 

flow regimes could influence the dynamics and availability of these resources in 

headwater streams could therefore provide important insights into the ‘bottom-up’ 

processes that may underpin ecological responses to climatic change (Kominoski and 

Rosemond 2012). 

It has been suggested that more frequent flood events may deplete POM resources in 

headwaters due to frequent scouring of the channel bed and adjacent riparian zones 

(Kominoski and Rosemond 2012; Riedl et al. 2013; Graça et al. 2015). Indeed, long-term 

observations have indicated that headwater streams export less POM following multiple 

storm events (Wallace et al. 1995; Eggert et al. 2012; Heartsill-Scalley et al. 2012). 

However, many factors interact to influence how much POM is transported downstream 
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and how much remains for biological uptake following flood events in streams. These 

include the seasonal timing of flood events, antecedent flow conditions, particle size, 

channel substrate, as well as the influence of riparian vegetation on POM availability (e.g. 

via inputs of leaf litter) and channel hydromorphology (e.g. Wallace et al. 1991; Gurnell 

et al. 2002; Molinero and Pozo 2004; Pretty and Dobson 2004a; Ylla et al. 2010; Eggert 

et al. 2012; Koljonen et al. 2012; see also Chapter 2). Given the multitude of factors that 

affect organic matter storage and transport, our ability to predict the likely effects of 

changes in stream flow regimes on the availability of POM resources to benthic organisms 

is still limited (Hoover et al. 2006; J. S. Richardson et al. 2009; Acuña and Tockner 2010; 

Tank et al. 2010). 

Identifying causal mechanisms for the effects of climate change on ecosystem structure 

and functioning are often challenging based on long-term observations alone (Dunne et 

al. 2004; Cahill et al. 2012; see Chapters 2 and 3). Experimental mesocosms, on the other 

hand, offer a strong compromise for addressing such questions by allowing investigators 

to manipulate and isolate factors of interest, whilst constraining confounds that may be 

inherent in long-term field observations (Ledger et al. 2009; Stewart et al. 2013). To date, 

few mesocosm studies have explicitly addressed whether a greater frequency of flood 

events could deplete organic matter resources in the longer term (but see Webster et al. 

1987). Moreover, most experiments investigating the effects of altered flow regimes on 

organic matter dynamics have focussed on average changes (e.g. Dewson et al. 2007). As 

climatic conditions are expected to become increasingly variable, there is, however, also 

a need to assess the role of environmental variability in addition to the effects of general 

trends, since extreme events and disturbances could have stronger or longer-lasting 

impacts on ecosystems than average changes (Dunne et al. 2004). 

 

Aims & Hypotheses 

Using an experimental approach, this study aims to assess the effects of increased flood 

frequency on the transport and storage of particulate organic matter (POM) in headwater 

streams. To this end, flow regimes were manipulated in outdoor stream mesocosms 

throughout the winter season in order to test the following predictions: 

1. Downstream export of coarse POM increases during flood events 
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2. The amount of coarse POM exported during flood events decreases with 

successive flood events 

3. Standing stocks of coarse and fine POM become depleted when floods are more 

frequent 

 

4.2 Methods 

4.2.1 Study sites 

The experiment was conducted in three sets of outdoor experimental stream mesocoms, 

each located at each of three sites within the Llyn Brianne Stream Observatory in central 

Wales, UK (52°08’N 3°45’W; Figure 4.1). One site (L3) is situated in conifer forest of 

Sitka spruce (Picea sitchensis (Bong.) Carr.) with Lodgepole pine (Pinus contorta 

Dougl.) and is episodically acidic (minimum pH 4.9–5.6). The other two sites (L6 and 

L7) are circumneutral and are situated in open sheep grazed moorland with occasional 

bracken, mountain ash, willow and hawthorn in the riparian zones (pH > 6.9). 

 

 

Figure 4.1. Map showing the locations of the three sites where the experimental mesocosms are 

situated, within the Llyn Brianne Stream Observatory in central Wales, UK. Major river systems 

are labelled. Images adapted from Edwards et al. (1990) and Broadmeadow and Nisbet (2002). 
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At each site, three identical flow-through mesocosm channels were situated directly 

adjacent to the stream (Appendix B, Figures B.1-3). Each mesocosm channel consisted 

of a cascading series of 20, 1 m long stainless steel troughs, each one 0.2 m wide by 0.2 

m deep (4 m2 total area). Troughs were filled with a 10-15cm layer of loose cobble stone 

substrate similar to the adjacent stream, and extracted from the Afon Tywi catchment. 

Each mesocosm channel was connected to a header tank that was fed directly with water 

and suspended particles from the adjacent stream via an inlet pipe, which was fitted with 

a coarse filter (3 cm2 aperture) at the opening to minimise blockages caused by large 

debris. Stream water from the headwater tank flowed into each channel via individual 

inlet pipes fitted with adjustable control gates. These control gates allowed the aperture 

of the pipes, and hence the amount of water flowing into the channels, to be regulated 

manually. Water flowed through the channels by gravity, mimicking step-pool-riffle 

sequences, and drained into individual tanks at the bottom before draining back into the 

stream via an outflow pipe. 

4.2.2 Experimental design 

All mesocosms were established in April 2014 and, directly following other experiments 

in early September 2014, were manually disturbed and flushed at maximum flows (~ 10 

L s-1) for 24-h to ensure homogeneity between channels, then left flowing at baseflow 

levels of ~ 2.5 L s-1 until the experiment began. Monthly sampling of benthic CPOM and 

FPOM occurred on two occasions before (late-September, November), three occasions 

during (December, early-January, late-January) and two occasions after (March, April) 

the experimental manipulation period. From 16th November 2014 to 31st January 2015, 

the frequency of flood events in the mesocosms was manipulated. Each set of three 

mesocosms (i.e. each site) consisted of the same series of treatments: one ‘reference’ 

treatment (no flood events), one ‘low flood frequency’ treatment (one flood event per 24-

day interval = 3 events in total) and one high flood frequency treatment (one flood event 

per 6-day interval = 12 events in total). Each flood event was simulated by increasing the 

opening of the control gates to the channel and allowing discharge to increase from 

baseflow levels to on average twice the baseflow level for ~ 48 hours, then returning them 

to baseflow levels, equal with pre-flood and reference levels.  

4.2.3 Flow and temperature measurements 

Water depth and temperature in the mesocosms was measured every 10 minutes 

throughout the experiment using HOBO U20L-04 water level data loggers that were pre-
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calibrated before deployment (Onset Computer Corporation, Bourne, Massachusetts, 

USA). Water depths were converted into discharge (L s-1) using a depth-discharge curve 

that was estimated based on volumetric measurements averaged across all channels 

(Marian Pye & Ifan Jâms, unpublished data). 

4.2.4 Benthic standing stocks of CPOM and FPOM 

Three replicate samples of benthic particulate organic matter (POM) were collected using 

a randomly-positioned medium Hess sampler (area 0.0165 m2; 500 µm mesh aperture; 

sampling depth 10 cm) from each mesocosm channel on all seven sampling occasions, 

ensuring that no 1 m segment of each cascade was sampled more than once over the 

duration of the experiment (to minimise disturbance/destructive sampling). Samples were 

immediately preserved in 70% industrial methylated spirit (IMS; Fisher Scientific, UK) 

on-site. In the laboratory, samples were rinsed in tap water over a 500 µm sieve, and all 

macroinvertebrates were separated from the debris. The remaining POM was then 

separated into fine (>500 µm <1 mm; benthic FPOM) and coarse (>1 mm; benthic 

CPOM) size fractions using graduated sieves (Endecotts Ltd., UK). Both size fractions of 

POM were air-dried at room temperature and weighed to the nearest 0.01 g. Ash-free dry 

mass (AFDM) of all samples was estimated by combustion at 550 °C for 5 h in a muffle 

furnace. 

4.2.5 Suspended particulate organic matter  

Daily export of suspended coarse particulate organic matter (suspended CPOM, > 1mm) 

was measured by fitting 1 mm mesh filters at the outlet of each channel. Approximately 

every 24 h, the contents of each filter was emptied into plastic bags and frozen until 

subsequent processing. On several occasions, water flow into the mesocosms was 

unintentionally cut off due to rainfall events occurring within the study catchments and 

subsequent debris flows within the streams blocking the inlet pipes. All channels were 

inspected on a daily basis, and any debris on the inlet pipe filters removed. Daily CPOM 

samples were omitted when blockages occurred. 

 In the laboratory, frozen samples were thawed, air-dried and weighed to the nearest 0.01 

g. Ash-free dry mass (AFDM) of all samples was estimated by combusting a subset 

(n=247) of all (n=631) samples at 550 °C for 5 h in a muffle furnace and applying 

conversion factors to the air-dried mass. CPOM export (µg AFDM s-1) was calculated by 

dividing the AFDM of each daily CPOM sample by the time elapsed in seconds (s). 
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4.2.6 Data analysis 

4.2.6.1 Effects of simulated floods on CPOM export 

To assess the overall effect of simulated floods on CPOM transport, daily CPOM export 

(µg AFDM s-1) was modelled using the lme function within the nlme package in R 

(Pinheiro et al. 2016), with ‘Flow’, ‘Treatment’, ‘Flow x Treatment’ interaction, and 

‘Site’ as fixed effects. ‘Flow’ was a three-level factor accounting for different stages of 

the flow regime: Base flow (non-flood levels), Early flood (0-24 h of simulated flood) 

and Late flood (24-48 h of simulated flood). ‘Treatment’ represented the different flood 

frequency treatments: Low flood frequency (~monthly), High flood frequency (~weekly) 

and Reference (no manipulation) channels. ‘Channel identity’ was included as a random 

term to account for non-independence of samples from the same channel and an auto-

regressive moving average (ARMA) residual correlation structure included to account for 

the remaining auto-correlation among samples up to a few days apart. CPOM data was 

log-transformed prior to analysis to homogenise variances. Where significant effects were 

detected, differences among factor levels were assessed using Tukey’s HSD post-hoc 

pairwise comparisons. 

4.2.6.2 Effects of repeated flooding on CPOM export 

To test whether repeated flooding decreased the magnitude of suspended CPOM export 

during floods, suspended CPOM data were selected from the day prior to each flood, and 

during Early and Late flood for each flood event (Low frequency and High frequency 

channels only). Two responses were calculated, representing (i) the change in CPOM 

export during Early flood relative to pre-flood levels (ΔE-B) and (ii) the change in CPOM 

export during Early flood relative to Late flood (ΔE-L), using the formulae: 

(i) ΔE-B = YE – YB  

(ii) ΔE-L = YE – YL  

where: Y = CPOM export (µg AFDM s-1); B = CPOM export on the day preceding each 

flood event; E = CPOM export during Early flood; L = CPOM export during Late flood. 

The changes in ΔE-B and ΔE-L over the duration of the experiment were modelled in 

relation to: ‘Time’ since the start of the experiment (in days), ‘Treatment’ (Low 

frequency, High frequency), ‘Time x Treatment’ interaction, and ‘Site’ on ΔE-B and ΔE-L. 

A general linear model was used, with the residuals checked to ensure no residual 

autocorrelation.  
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4.2.6.3 Effects of flood frequency on standing stocks of CPOM and FPOM 

To test the net effect of simulated floods on the availability of benthic CPOM and FPOM 

within the channel, standing stocks (g AFDM m-2) of CPOM and FPOM were modelled 

using a mixed-effects model containing ‘Time period’ (Before, During, After), 

‘Treatment’, ‘Time period x Treatment’ interaction, and ‘Site’ as fixed effects. ‘Flow’ 

accounted for different stages of the flow regime: Base flow (non-flood levels), Early 

flood (0-24 h of simulated flood) and Late flood (24-48 h of simulated flood). Less 

autocorrelation was evident in the monthly benthic data compared to the daily suspended 

CPOM data, and so a random effect for channel was not required. ‘Sampling occasion’ 

was included as a random term to account for longer-term temporal variation in the data 

that was observed across all the channels (e.g. seasonal variation). The residuals from the 

model were checked to ensure no remaining spatial or temporal autocorrelation. Benthic 

CPOM and FPOM data were log-transformed prior to analysis to homogenise variances. 

Where significant effects were detected, differences among factor levels were assessed 

using Tukey’s HSD post-hoc pairwise comparisons. 

 

4.3 Results 

4.3.1 Experimental conditions and flood simulations 

During flood simulations, estimated water discharge was approximately doubled in all 

the treatment channels, increasing on average from 2.6 L s-1 at baseflow (± 0.8 S.D.) to 

5.7 L s-1 (± 1.7 S.D.; Figure 4.2). Meanwhile, water discharge in the reference channels 

remained at a mean of 2.8 L s-1 (± 0.7 S.D.) throughout the experiment. 

4.3.2 Effects of simulated floods on CPOM export  

Each flood event exported on average 22.1 g AFDM ( 3.2 S.E.) of CPOM relative to 

baseflow exports, equating to a loss of almost 6 g AFDM m-2 from each channel per event. 

The increase in CPOM export during simulated flood events was significant in both the 

low and high frequency treatments (Figures 4.2 and 4.3; flow:treatment interaction: 

F=96.03, df=4, p<0.001), showing a significant peak during early floods (i.e. 0-24 h of 

the simulated flood event) by comparison with base flows (Tukey’s HSD; low frequency: 

p<0.001; high frequency: p<0.001), and when compared with concurrent flows in 

reference channels (Tukey’s HSD; low frequency p=0.011; high frequency: p=0.006). 
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(a)

  

Figure 4.2. 10-minute discharge (L s-1; grey line) and daily CPOM export (µg ash-free dry mass 

s-1; black line) recorded in each experimental channel at sites L3 (a), L6 (b) and L7 (c) during the 

experimental flow manipulations (17-Nov-2014 – 31-Jan-2015). 
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(b)

 

Figure 4.2. (continued) 
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(c)

 

Figure 4.2. (continued) 
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During late flood (i.e. 24-48h), CPOM export was significantly lower than the initial peak 

within high frequency channels (Tukey’s HSD; p=0.003), whereas in low frequency 

channels, there was no detectable difference between early and late flood (Tukey’s HSD; 

p=0.510). CPOM export remained higher during late flood than during base flow 

(Tukey’s HSD; low frequency: p<0.001; high frequency: p<0.001) and reference levels 

(Tukey’s HSD; low frequency: p=0.028; high frequency: p=0.015) in both low and high 

frequency channels. 

CPOM export during base flow was relatively constant throughout the experiment 

(Figures 4.2 and 4.3), and did not differ between the low frequency, high frequency or 

reference channels (Tukey’s HSD; p>0.99 in all cases). CPOM export within reference 

channels also remained constant throughout the experiment (Tukey’s HSD; p>0.99 in all 

cases; Figures 4.2 and 4.3). 

Overall, CPOM export showed some differences between sites (F=9.832,4, p=0.029), 

being significantly higher in L7 (circumneutral moorland) than in L6 (circumneutral 

moorland; Tukey’s HSD, p=0.034), but not L3 (conifer forest; Tukey’s HSD, p=0.051). 

Meanwhile, CPOM exports in L3 and L6 were similar (Tukey’s HSD, p=0.880). 

 

 

Figure 4.3. Predicted mean values (with 95% confidence intervals) of log-transformed CPOM 

export data (µg s-1) in control, low frequency and high frequency treatment channels, during base 

flow (Base), early floods (Early; 0-24 h) and late floods (Late; 24-48 h). 
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4.3.3 Effects of flood frequency on CPOM export  

There was no evidence of CPOM depletion over time, regardless of the frequency of 

events (Figure 4.4; Table 4.1). In fact, the peak in CPOM export during early flood 

relative to base flow (ΔE-B) increased significantly over time across both treatments 

(Figure 4.4a). The initial peak in CPOM export relative to late flood (ΔE-L) showed no 

significant trend over time, however, in neither treatment (Figure 4.4b). ΔE-B differed 

significantly between sites, being greater in L7 by comparison with L6 (Tukey’s HSD, 

p=0.002), and L3 being intermediate between L7 (p=0.315) and L6 (p=0.085). ΔE-L did 

not differ significantly between sites (p>0.05 in all cases). 

 
Figure 4.4. Estimated slopes and 95% confidence bands from the general linear models, showing 

trends over time (in days) in the relative changes in CPOM export between Early flood and (a) 

pre-flood levels (ΔE-B) and (b) Late flood (ΔE-L) for the low- and high-frequency flood treatments. 
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Table 4.1. Summary table of general linear model results for the effects of ‘Time’ (event number 

1-12), ‘Treatment’ (low flood frequency, high flood frequency and reference treatments), ‘Time 

x Treatment’ interaction, and ‘Site’ (L3 – conifer forest, L6 and L7 – circumneutral moorland) on 

the relative changes in CPOM export between Early flood and (i) pre-flood Base flow levels (ΔE-

B) and (ii) Late flood (ΔE-L). P-values <0.05 are highlighted in bold, along with significant 

pairwise differences (Tukey’s post-hoc comparisons, p < 0.05). 

 
Time Treatment 

Time x 

Treatment Site Pairwise differences 

F1,38 P F1,38 P F1,38 P F2,38 P  

ΔE-B 7.84 0.008 1.22 0.276 0.01 0.923 6.69 0.003 Site: L7 > L6 

ΔE-L 1.51 0.228 1.45 0.237 0.02 0.881 2.30 0.116 - 

 

4.3.4 Effects of flood frequency on standing stocks of CPOM and FPOM  

Despite significant increases in CPOM export in response to simulated flood events, 

standing stocks of CPOM and FPOM did not decrease in response to either the low or 

high frequency flood treatments (Table 4.2; Figure 4.5). Although the effect of time was 

not significant, CPOM and FPOM standing stocks appeared to increase from before to 

after the treatment period in all channels (Figure 4.5). There were no overall differences 

between control, low frequency or high frequency flood treatments, however, and the 

time:treatment interaction was not significant (Table 4.3). CPOM standing stocks differed 

significantly between sites, being greater in L3 than in L6 (Tukey’s HSD, p<0.001), while 

L7 was intermediate between L3 (p=0.372) and L6 (p=0.064). FPOM was greater in LI3 

than in both LI6 and LI7 (p<0.001 in both cases), which did not differ from each other 

(p=0.932). 

 

Table 4.2. Summary of the mixed effects models for benthic CPOM and FPOM, showing F and 

P-values as estimated by the Kenward-Roger approach for the effects of ‘Time’ (before, during, 

and after the flow manipulation period), ‘Treatment’ (low flood frequency, high flood frequency 

and reference treatments), ‘Time x Treatment’ interaction, and Site (L3 – conifer forest, L6 and 

L7 – circumneutral moorland). P-values <0.05 are highlighted in bold, along with significant 

pairwise differences (Tukey’s post-hoc comparisons, p < 0.05). 

 
Time Treatment 

Time x 
Treatment 

Site Pairwise differences 

F2,4 P F2,171 P F4,171 P F2,171 P  

Benthic 
CPOM 

2.74 0.178 0.85 0.428 0.58 0.674 6.60 0.002 Site: L3 > L6, L7 

Benthic 
FPOM 

3.35 0.140 0.45 0.637 0.68 0.607 33.91 <0.001 Site: L3 > L6 
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Figure 4.5. Temporal variation of (a) coarse and (b) fine benthic particulate organic matter 

(expressed in grams ash free dry mass m-2 ± 1 S.E.) recorded in all flumes during the study period.  

Arrows denote the period during which experimental manipulations of flow regimes took place. 

White circles = Reference treatment; grey circles = Low flood frequency treatment; black circles 

= High flood frequency treatment. Note difference in axis-scale between coarse and fine fractions. 
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4.4 Discussion 

4.4.1 Summary 

The experimental flow manipulations conducted in this study resulted in an approximate 

doubling of discharge levels within the stream mesocosms during the simulated 48-hour 

floods. This caused an increase of >2000% in the amount of CPOM exported from the 

channels relative to baseflow levels, particularly during the early stages (0-24 h) of floods. 

By late flood (24-48h), CPOM export remained higher than baseflow levels, but were 

lower than the initial peak. This reduction in CPOM export during late flood was, 

however, only significant under the high flood frequency treatment. Despite significant 

increases in CPOM export during flood events, there was no evidence of CPOM depletion 

over the course of the experiment, regardless of flood frequency. This was supported by 

the lack of a decreasing trend in the magnitude of CPOM flood peaks over time. 

Furthermore, benthic standing stocks of POM did not show any evidence of depletion 

over time, or of any long-lasting (i.e. post-experiment) effects. 

4.4.2 Caveats 

This experiment was the first to be conducted over the winter season within these 

mesocosms, and involved some challenges in executing consistent experimental 

conditions during the study period. Despite daily monitoring efforts to minimise the 

influence of natural flood events on the experimental conditions within the mesocosms 

(i.e. through the use of mesh filters on the inlet pipes and daily inspections), the large 

amounts of debris transported by the adjacent streams during such events blocked the 

filters in the inlet pipes, resulting in the loss of water supply to the channels on several 

occasions (Figure 4.2).  This meant that some samples of suspended CPOM had to be 

omitted from the analysis, thereby reducing statistical power. In addition, import of 

organic matter during natural flood events and subsequent deposition within the channels 

may have dampened any effects of the flow manipulations themselves on total standing 

stocks of CPOM and FPOM within the channels. These limitations must therefore be 

borne in mind when interpreting the results. 

While experiments in outdoor mesocosms have the benefits of isolating certain factors of 

interest, they may still be lacking the realism of real ecosystems (Ledger et al. 2009). 

Indeed, flood events in headwater catchments involve aspects that were unattainable in 

these mesocosms. For example, flood events can involve 30-fold increases in flow rates 
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from baseflow levels (Figure S4.4), which contrasts with the levels achieved in the 

mesocosms in this study (Figure 4.2). Furthermore, as stream discharge increases, so too 

does the wetted channel width and thus the likelihood of incorporating POM deposits 

from the stream bank or riparian zone into the suspended load (Mollá et al. 2006; Riedl 

et al. 2013). Consequently, the flow rates achieved in this study may not have induced 

the same magnitude of effects as those that occur in real streams in terms of water 

velocities, turbulence, connectivity with riparian zones and, therefore, the amount of 

organic matter in transport. This study is therefore likely to underestimate the effects of 

real flood events and, as such, caution must be taken in extrapolating these results to real 

ecosystems. Nevertheless, some clear patterns emerged in response to the manipulations 

that have important ecological implications. 

4.4.3 Overall effects of flood events on CPOM transport  

The effects of the flow manipulations on CPOM export in this study support previous 

observations that high flow events greatly increase downstream transport of CPOM (e.g. 

Webster et al. 1987; Johnson et al. 2006; D. C. Richardson et al. 2009; Eggert et al. 2012). 

The fact that the majority of export occurred during the early stages of the flood, coupled 

with lower export during late flood, could reflect the hysteretic relationship often 

observed between discharge and particle concentrations during flood events, with 

concentrations being higher on the rising limb than at corresponding flows on the falling 

limb (e.g. Bilby and Likens 1979; Golladay et al. 1987; Webster et al. 1987; Riedl et al. 

2013). This pattern occurs because much of the transportable material that is trapped or 

settled on the stream bed under baseflow conditions is rapidly re-suspended as flow rates 

increase (Bilby and Likens 1979). That CPOM export remained higher than base flow 

levels during late flood, despite dropping below the initial pulse, also shows that more 

CPOM transport occurs at higher flows, when higher velocities increase the ability of 

stream water to keep particles in transport, thereby reducing retention (e.g. Jones, and 

Smock 1991; Webster et al. 1999; Dewson et al. 2007). 

4.4.4 Effects of flood frequency on CPOM transport and storage  

Despite clear effects of the simulated floods on CPOM transport, the prediction that the 

magnitude of CPOM exports would decrease over successive flood events, particularly 

where floods were more frequent, was not supported. Many studies have, however, 

suggested that the amount of POM transported during high flow events is strongly 

influenced by the availability of benthic POM on the stream bed (Webster et al. 1987). In 
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this study, there was no apparent reduction in the amount of benthic CPOM in the ‘high’ 

or ‘low’ flood frequency treatments by comparison with concurrent stocks in the 

‘reference’ channels during the manipulation period, or compared with stocks before the 

manipulation period began. Unsurprisingly, therefore, there were also no changes in 

benthic CPOM after the manipulation period, which would have otherwise indicated 

possible legacy effects, or recovery of stocks, if a reduction in benthic CPOM had 

occurred during the flooding treatments. The same results were also observed for benthic 

FPOM, which showed no evidence of reductions following the simulated flood events. In 

the case of FPOM, this result was surprising, since smaller particles are often more easily 

entrained than larger particles due to their lower deposition velocities, and are therefore 

more likely to be kept in transport during high flows (Speaker et al. 1984; Thomas et al. 

2001). Proportionally very low export levels as well as spatial variability within each 

channel are probably the most likely explanations. Indeed, the total amounts of CPOM or 

FPOM that were entrained and exported from the channels following successive flood 

events may not have been sufficient to cause an overall mean reduction in the amount of 

benthic POM that remained on the channel beds. For example, on average, CPOM exports 

during individual 48-h flood events equated to a loss of approximately 14% of the benthic 

CPOM pool, though variability within channels, as well as through time, was high (Figure 

4.4). This could have been exacerbated when flood events within the adjacent streams 

naturally replenished POM in reference and experimental channels alike. This suggests 

that even the total amount of CPOM exported from the channels following multiple flood 

events may have had undetectable effects on benthic CPOM above the background 

variability in standing stocks within the mesocosms.  These weak effect sizes are further 

supported by long-term observations of benthic POM at several locations within this 

study region (see Chapter 2), which found no significant relationship between benthic 

CPOM or FPOM standing stocks and the frequency of antecedent (30-day) flood events. 

Meanwhile, benthic CPOM and FPOM were significantly reduced as the magnitude and 

duration of antecedent flood events increased. In combination with the present study, 

these findings suggest that there may be thresholds in flow rates above which depletion 

of benthic POM, and consequently, POM exports, occur, requiring further investigation. 
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4.4.5 Conclusions 

Overall, this study demonstrates that CPOM export is elevated at higher flow rates, but 

shows no evidence of depletion of POM stocks following successive flood events, at least 

at the frequency and magnitude at which they occurred in this experiment. Existing 

evidence suggests that organic matter stocks in headwaters become depleted in response 

to more frequent, high-intensity or persistent flood events (Sabater et al. 2008; Eggert et 

al. 2012; Chapter 2). Clearly, further experimental work is needed to determine whether 

certain thresholds in flow rates exist above which depletion of organic matter resources 

in headwaters occur. Indeed, recent attempts to model CPOM dynamics and exports in 

headwater streams have highlighted the paucity of information with respect to the rate of 

CPOM re-entrainment in relation to increasing discharge (Hoover et al. 2006; J. S. 

Richardson et al. 2009; Acuña and Tockner 2010; Stenroth et al. 2014). Consequently, 

experimental work to characterise this relationship for different flow regimes and CPOM 

types, including entrainment from adjacent riparian zones, would allow better predictions 

of the effects of altered flow regimes on the fate of organic matter in river networks, as 

well as a better quantification of carbon exports from headwaters (Bunte et al. 2016). 
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CHAPTER 5. Effects of simulated riparian restoration on the 

abundance and composition of detrital resources in headwater streams 

5.0 Summary 

1. Riparian restoration through the planting of riparian broadleaved trees is often 

advocated as an adaptive management strategy to buffer against changes in 

climate and catchment land use on the structure and functioning of stream 

ecosystems. Few studies, however, have attempted to assess the potential for 

riparian tree planting to restore terrestrial-aquatic linkages in headwater streams 

by enhancing the abundance and diversity of basal resources available to stream 

organisms through leaf litter subsidies. 

2. Using a Before-After-Control-Impact (BACI) field experiment with spatial 

replication, this study aimed to assess the effects of simulated riparian 

restoration on the amount and composition of detrital resources in headwater 

streams. Riparian land cover change to broadleaf woodland was simulated by 

subsidising eight headwater streams with leaf litter resources at volumes typical 

of broadleaf woodland streams. Standing stocks of benthic particulate organic 

matter (BOM) were measured, along with the concentration and isotopic (δ13C, 

δ15N) and elemental (C:N ratio) composition of suspended particulate organic 

matter (SOM) in control and impact reaches before and after the litter addition. 

3. Despite maintaining leaf litter in the impact reaches at levels that exceeded those 

in a reference broadleaf stream over a period of six months, there was no 

increase in the amount of BOM or SOM detected at the reach scale. In addition, 

there were no shifts in the isotopic or elemental composition of suspended 

particulate organic matter that would indicate an increased contribution of 

organic matter from terrestrially-derived leaf litter in response to the litter 

addition. Instead, observed differences in organic matter among reaches and 

experimental time periods seemed to reflect background spatial and temporal 

variability as opposed to any effects attributable to the litter addition per se. 

4. The overall non-response to the manipulation could mean that the extent of the 

manipulation was insufficient to bring about a detectable response, particularly 

given the high levels of background noise within these highly dynamics system, 

within the time frame of this experiment. Longer-term assessments are needed, 

coupled with more extensive manipulation, in order to determine the viability of 
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riparian restoration as an adaptive strategy for mediating the impacts of climate 

change and wider catchment land use change and restoring ecosystem functions 

in headwater streams. 

 

5.1 Introduction 

Global changes in land use and climate have fundamentally altered the structure and 

functioning of many ecosystems worldwide (Millennium Ecosystem Assessment 2005). 

As climate change is expected to become increasingly apparent (Bates et al. 2008), along 

with the need to increase global food production to sustain a growing human population 

(Godfray et al. 2010), there is increasing pressure on ecosystems to continue to deliver 

goods and services. Consequently, there is an urgent need for the sustainable management 

and adaptive restoration of ecosystems in order to ensure resilience to multiple stressors 

linked to climate change and human activity. 

Freshwater ecosystems are among the world’s most vulnerable to changes in climate and 

land use, but are also among the most valued for the goods and services that they provide 

(Dudgeon et al. 2006; Ormerod 2009; Vörösmarty et al. 2010). Headwater streams are 

particularly vulnerable due to their high connectivity with their surrounding environment. 

For example, due to their small size, the hydrological and thermal regimes of headwater 

streams closely track variations in rainfall and air temperature (Gomi et al. 2002; Caissie 

2006), meaning that changes in climate are rapidly manifest both physically and 

biologically (Durance and Ormerod 2007; Perkins et al. 2010). In addition, headwaters 

rely heavily upon the neighbouring riparian zones for inputs of organic matter (e.g. leaf 

litter from terrestrial vegetation) as a supply of energy to support the food web (Wallace 

et al. 1999). This means that changes in catchment land use, such as reductions in forest 

cover or conversions to plantation forestry and pasture, can disrupt the flow of energy and 

matter to headwater ecosystems. This simultaneously creates challenges for managing 

headwaters, but also presents opportunities for management interventions in the riparian 

zone.  

Riparian restoration, through the planting of broadleaf trees alongside river margins, is 

often advocated as an adaptive management strategy to mitigate the effects of land use 

and climate change on stream ecosystems (e.g. Abell et al. 2007; Ormerod 2009; Palmer 

et al. 2009; Seavy et al. 2009). Such efforts may also help to restore some of the natural 
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functions of river ecosystems, particularly in regions where wooded landscapes are 

thought to have dominated prior to extensive deforestation of native trees for agriculture 

(Svenning 2002; Lake et al. 2007; Kaplan et al. 2009). Indeed, there is increasing 

evidence as to the likely benefits of riparian restoration. For example, studies have shown 

that riparian trees have the potential to buffer against hydrological (Bradshaw et al. 2007) 

and thermal (Broadmeadow et al. 2011; Garner et al. 2015) extremes, reduce sediment 

and nutrient inputs (Broadmeadow and Nisbet 2004; Sweeney et al. 2004), increase 

aquatic and terrestrial biodiversity (Naiman et al. 1993; Suurkuukka et al. 2014), and 

increase in-stream habitat diversity through inputs of woody debris (Naiman and 

Décamps 1997; Gurnell et al. 2002).  

Less well understood is the potential for riparian tree planting to restore terrestrial-aquatic 

energetic linkages via inputs of leaf litter. Numerous studies have highlighted the 

important role that riparian trees play in supplying sources of energy and matter to stream 

ecosystems in the form of leaf litter. For example, Wallace et al. (1999) demonstrated 

how benthic standing stocks of organic matter were drastically reduced following 

experimental exclusion of litter inputs in a temperate forested stream. The role of riparian 

trees in enhancing benthic organic matter stocks has also been supported by comparative 

studies (e.g. Jones, 1997; Thomas et al. 2015; Chapter 2). In addition, stable C and N 

isotopes (δ13C, δ15N), and elemental ratios (e.g. C:N) have been used increasingly to trace 

the potential importance of riparian litter in subsidising in-stream organic matter stocks 

and secondary production (e.g. Leberfinger et al. 2011; Dekar et al. 2012; Imberger et al. 

2014; Junker and Cross 2014; Chapter 3). These detrital subsidies increase the diversity 

of basal resources available to consumer organisms, and are considered important in 

increasing food web stability (Moore et al. 2004; Rooney et al. 2006). Furthermore, leaf 

litter subsidies can increase productivity at multiple trophic levels both locally and 

downstream (Wallace et al. 1997; Wipfli et al. 2007), and contribute to neighbouring 

terrestrial food webs via aquatic insect emergence (Scharnweber et al. 2014; Stenroth et 

al. 2015). Clearly, the effects of enhancing the abundance and diversity of basal resource 

in streams via riparian tree planting have the potential to be far-reaching. 

It has been suggested that planting trees in riparian buffer strips may reinstate these 

subsidies, bringing ecological benefits such as greater productivity (Thomas et al. 2016), 

restoring ecological processes (Kominoski and Rosemond 2012), and increasing the 

availability and diversity of basal resources (Koljonen et al. 2012; Kupilas et al. 2016), 
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but few attempts have been made to test this prediction (but see Dobson et al. 1995; 

Thomas et al. 2016). Appraising the effects of riparian restoration, in particular planting 

riparian trees, is challenging because the trees could take several years to mature, 

requiring monitoring beyond the temporal and financial scale of most projects. 

Furthermore, river ecosystems are highly complex, dynamic, and closely connected to 

their surroundings, and persistent changes in catchment land use and climate are altering 

the context in which they must respond to restoration efforts. In combination, these factors 

present significant challenges in predicting their likely responses to restoration with 

confidence. Yet, policy decisions require a high level of certainty before management 

interventions are implemented. Recent correlative studies have provided valuable insight 

into the potential response of stream ecosystems to riparian restoration in headwater 

streams (Thomas et al. 2015; 2016). Complementary approaches are, however, needed to 

enhance our understanding and enable informed management decisions (Fukami and 

Wardle 2005; Stevenson and Sabater 2010). 

Experimental manipulations of natural systems have the benefits of constraining potential 

confounds and allowing stronger inferences about cause and effect, whilst allowing 

relatively short-term assessments to be made (Dobson et al. 1995; McGarigal and 

Cushman 2002). Experimental approaches have been used previously to test whether 

restoring channel complexity – for example via the addition of wood or boulders – could 

enhance channel retentiveness, and subsequently the overall quantity of basal resources 

that are made available to stream organisms (e.g. Muotka and Laasonen 2002; Lepori et 

al. 2005; Flores et al. 2011; Eggert et al. 2012). Attempts to restore both the abundance 

and composition of basal resources via direct inputs of leaf litter have, however, only 

been made once before (Dobson et al. 1995). 

 

Aims & Hypotheses 

This study aimed to assess the effects of riparian restoration on the amount and 

composition of detrital resources in headwater streams. Using a Before-After-Control-

Impact (BACI) field experiment with spatial replication, riparian land cover change to 

broadleaf woodland was simulated by subsidising eight headwater streams with leaf litter 

resources at volumes typical of broadleaf woodland streams. Specifically, the following 

predictions were tested: 
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(1) Simulated riparian restoration would increase stocks of benthic and suspended 

particulate organic matter in streams. 

(2) Simulated riparian restoration would alter the isotopic signature (i.e. increase 

δ13C and decrease δ15N values) and elemental composition (i.e. increase C:N 

ratio) of suspended particulate organic matter, consistent with greater 

contributions of organic matter from terrestrial sources. 

 

 

5.2 Methods 

5.2.1 Experimental design & study sites  

A six-month Before-After-Control-Impact (BACI) experiment was used to assess the 

short-term response of eight upland streams to simulated riparian restoration. We looked 

for changes in stocks of benthic and suspended organic matter before and after simulation, 

which aimed to enhance the input and retention of broadleaved litter within the streams. 

Two study reaches, ~ 50 m long, were established on each stream, comprising a control 

reach (no experimental manipulation) ~ 20-50 m upstream of an impact reach (where 

riparian restoration would be simulated).  

The eight study sites comprised 2nd to 3rd order streams in the Cambrian Mountains in 

central Wales, UK (Figure 5.1). These streams are situated in the headwaters of the Rivers 

Tywi, Severn and the Wye, and have been monitored routinely as part of ongoing long-

term research at the Llyn Brianne Stream Observatory (52°08’N 3°45’W; 

www.llynbrianne-lter.org) and the Plynlimon research catchments (52°28’N 3°45’W; 

www.ceh.ac.uk). The study sites were selected to encompass the typical variation in land 

management and acid-base status observed across upland catchments. In these regions, 

land is managed primarily for commercial forestry and sheep-grazing, and acid-base 

status ranges from naturally circumneutral to episodically or chronically acidic waters. 

Stream discharge (m3 s-1) was recorded at 15-minute intervals at a study site located 

within the Llyn Brianne Stream Observatory (site code: L1), over the duration of the study 

(data supplied by Natural Resource Wales; Station number 060S0589W) and was 

assumed to reflect flow conditions for all the study sites and wider hydro-climatic 

conditions (see Chapter 2, Section 2.2.2). 

http://www.llynbrianne-lter.org/
http://www.ceh.ac.uk/
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Figure 5.1. Map showing the locations of the eight experimental sites used in this study within 

the Plynlimon research catchments and the Llyn Brianne Stream Observatory in central Wales, 

UK. Images adapted from Edwards et al. (1990), Broadmeadow and Nisbet (2002) and Marc and 

Robinson (2007). 

 

5.2.2 Simulating riparian restoration 

During late Autumn 2012, abscised leaves were collected from broadleaved woodlands 

at Llyn Brianne and stored outdoors in large refuse sacks until required. Ten ~1 kg 

subsamples of the litter mixtures were inspected for identification of species composition, 

and comprised primarily oak (Quercus sp.; 91.1% ± 6.4% SD of the total mass), along 

with small amounts of birch (Betula pubescens Ehrh.; 7.8% ± 6.3% SD) and alder (Alnus 

glutinosa L.; 1.1% ± 1.2% SD). 

Simulated riparian restoration began in early January 2013. This aimed to mimic the 

typical volumes and patchiness of organic matter stocks that occur in woodland streams 



 

87 

 

(Smock 1990; Wallace et al. 1995; Ferreira et al. 2013) through inputs of loose leaf litter 

and localised retention of leaf packs on boulders, wood jams and in pools. We added ‘leaf 

packs’ to the river bed at volumes of 0.35 kg dry mass of litter per m2 of stream bed, in 

the form of filled mesh bags (50 x 30 cm; 1 cm aperture; ~ 0.8 kg dry mass litter per bag) 

secured in place with steel poles and boulders. The volume for the leaf packs was 

established based on autumn standing stocks collected in a broadleaf stream of similar 

hydro-morphological characteristics within the study region during three consecutive 

years (Isabelle Durance, unpublished data). We also created ‘wood jams’ by securing ten 

retention nets (40 x 40 cm; 5 cm aperture) aligned perpendicular to the river flow 

throughout each of the ‘Impact’ reaches (Dobson and Hildrew 1992; Dobson et al. 1995). 

We then added large quantities of loose leaf litter to the upper end of each reach at 

volumes of 3 kg dry mass of litter per m length of stream bank. The volumes of leaf litter 

added here were established based on a combination of published estimates of total annual 

litter inputs to temperate streams draining wooded catchments and estimates made from 

data collected in a broadleaf stream within the study region (Isabelle Durance, 

unpublished data). 

Following litter addition, we estimated leaf litter standing stocks (in g dry mass m-2) in 

the impact reaches on each sampling occasion by counting all ‘leaf packs’ and dividing 

the estimated total mass (~ 4 kg dry mass per pack) by the reach area. On two occasions 

after the litter addition (1 and 4 weeks into the experiment), we added ‘leaf packs’ to each 

stream to replace those that were lost following large storm-flow events. Typical leaf litter 

standing stocks for reference broadleaf streams were also estimated using litter data 

collected on corresponding months during 2011-2014 from a representative broadleaf 

stream within the study region (Isabelle Durance, unpublished data). These 

measurements were made by hand collecting loose litter from 5 x 1 m2 transects along a 

10 m reach and converting to mean g dry mass m-2. 

5.2.3 Benthic and suspended POM sampling and laboratory processing  

We measured stocks of benthic and suspended organic matter (BOM and SOM, 

respectively) in December 2012 (SOM only) and January 2013 (BOM and SOM) before 

litter addition, and approximately monthly for four months after litter addition (February, 

March, April and May 2013). Coarse and fine BOM (Coarse = >1 mm; Fine = > 350 µm 

and ≤1 mm) was sampled on each occasion using a randomly positioned Surber sampler 
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(n = 6 replicates per reach; area 0.1 m2; mesh aperture 330 µm; sampling depth 10-15 cm) 

and was preserved on-site in 70% industrial methylated spirit (IMS; Fisher Scientific, 

UK). In the laboratory, all macroinvertebrates were separated from debris and preserved 

in 70% IMS. The remaining material was then thoroughly rinsed under tap water to 

remove sediment and separated into coarse (>1 mm) and fine (> 350 µm and ≤1 mm) size 

fractions using graduated sieves (Endecotts Ltd., UK), then air-dried and weighed to the 

nearest 0.0001 g. Coarse and fine SOM (Coarse = suspended particles >1 mm; Fine = 

suspended particles >10 µm and <1 mm) were sampled at the lower end of each reach on 

each occasion (n = 3 replicates per reach). Fine SOM was sampled by filtering 100 L of 

stream water through a stacked pair of 10 µm and 1 mm mesh filters. Coarse particulate 

matter concentrations were estimated separately (due to lower concentrations of coarse 

particles in suspension) by diverting larger volumes of stream water (range = 240-10,000 

L; mean = 1805.7 L) through a PVC pipe fitted with a 1 mm mesh filter and a flow meter 

(Wallace et al. 2006). Upon collection, all SOM samples were refrigerated at ~4 °C, 

returned to the laboratory and frozen within 24 h. Freeze-dried SOM samples were 

ground, homogenised and subsampled (3 mg ±0.3 mg) for analysis of elemental (C, N) 

and stable isotopic (δ13C, δ15N) composition on a mass spectrometer (University of 

California Davis Stable Isotope Facility). Frozen SOM samples were freeze-dried at -20 

°C for 48-72 h and then weighed to the nearest 0.0001 g.  All BOM and SOM samples 

were corrected for inorganic content by combusting a subset (~1/3) of samples from each 

site at 550 °C for 5 h, and applying an ash-free conversion factor. 

5.2.4 Data analysis 

To assess the impact of the simulated riparian restoration on BOM and SOM stocks, each 

response variable was modelled using a linear mixed-effects model using the lmer 

function within the lme4 package in R (Bates et al. 2015), with ‘Time’ (Before, After), 

‘Reach’ (Control, Impact) and their interaction (‘Time x Reach’) as fixed terms. ‘Month’ 

and ‘Site’ were included as random terms, which accounted for unexplained temporal 

variation likely to affect all locations (e.g. seasonal variation or antecedent flow 

condition) and the non-independence of samples collected from the same site. All models 

were fitted using restricted maximum likelihood (REML) validated by visual inspection 

of the distribution of the standardised residuals versus the fitted values and of the 

distribution of the random effects (Zuur et al. 2009). The p-values of the fixed effects 

were estimated using conditional F-tests based on Kenward–Roger approximation for 
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degrees of freedom (Kenward and Roger 1997), using the R package pbkrtest (Halekoh 

and Højsgaard 2014). The predictive power of the model parameters (i.e. marginal R2; the 

proportion of variance explained by the fixed factors alone, and conditional R2; the 

proportion of variance explained by both the fixed and random factors) were estimated 

using the r.squared.GLMM function in the R package MuMin (Nakagawa and Schielzeth 

2013; Bartón 2015). 

 

5.3 Results 

5.3.1 Stream flow conditions during the study  

During the study period, representative stream discharge records showed that stream flow 

conditions were highly variable during the study period, ranging between 0.069 and 3.230 

m3 s-1 with an overall median of 0.142 m3 s-1 (Figure 5.2). Two storm flow events at 

approximately 1 and 4 weeks into the experiment following litter addition caused 

numerous leaf packs to be dislodged and transported from the impact reaches, which were 

subsequently re-stocked with freshly filled leaf packs. On the first occasion, between 7 

and 60% of all leaf packs were lost from all but one of the impact reaches. On the second, 

only one site was affected, losing 40% of all leaf packs.  

 

 
Figure 5.2. Example 15-minute stream discharge (m3 s-1) recorded at the Llyn Brianne Stream 

Observatory (study site L1) during the study period (December 2012 – June 2013). Shaded band 

depicts the range of stream flows under which organic matter sampling took place. Contains 

Natural Resources Wales information © Natural Resources Wales and database right. 
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5.3.2 Benthic particulate organic matter  

Aside from losses owing to high flow events, the presence of leaf packs and retention nets 

ensured that standing stocks of broadleaved litter was much more abundant in the impact 

reaches than in a nearby reference broadleaf site from January to May (Figure 5.3). 

However, the leaf addition had no significant effect upon coarse or fine BOM at the reach 

scale, as demonstrated by the non-significant time x reach interactions (Table 5.1; Figure 

5.4; Appendix C; Figures C.1-2). Overall, there were no significant differences observed 

in coarse or fine BOM between impact and control reaches, or between time periods. 

 

Figure 5.3. Mean (± 1 S.E.) standing stocks of leaf litter across all impact reaches (black triangles) 

after riparian restoration simulation (January-May 2013) relative to those observed in a nearby 

reference broadleaf site (open triangles) during corresponding months in 2011-2014. 

 

5.3.3 Suspended particulate organic matter  

The concentration and composition of coarse and fine SOM were unaffected by the litter 

addition, as shown by the non-significant time x reach interactions across all suspended 

POM responses (Table 5.1; Figure 5.5, Appendix C; Figures C.3-10). Instead, observed 

differences among reaches and time periods appeared to reflect background spatial and 

temporal variability as opposed to any effect attributable to the litter addition per se. 
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Suspended CPOM concentrations did not differ between reaches, or between time periods 

(Figure 5.5a), but δ13C signatures were higher in the impact reaches than the control 

reaches throughout the experiment (both before and after litter addition; Figure 5.5e). The 

C:N ratios (Figure 5.5c) and δ15N signatures (Figure 5.5g) of suspended CPOM, however, 

showed no differences between reaches or time periods. Suspended FPOM concentrations 

were significantly higher in the impact reaches than the control reaches throughout the 

study, and were marginally lower after litter addition in both reaches (Figure 5.5b). 

Meanwhile, suspended FPOM compositions (C:N ratios, δ13C, and δ15N; Figures 5.5d, f, 

and h, respectively) showed no differences between reaches or time periods. 

 

Table 5.1. Summary of mixed effects models for benthic and suspended particulate organic 

matter, showing F (degrees of freedom in subscript) and P-values, as estimated by the Kenward-

Roger approach for the effects of ‘Time’ (before and after litter addition), ‘Reach’ (control and 

experimental) and ‘Time x Reach’ interaction. R2
M = Marginal R2

 (proportion of variance 

explained by fixed effects only); R2
C = Conditional R2

 (proportion of variance explained by fixed 

+ random effects). P-values <0.05 are highlighted in bold. 

 Model parameters Variance 

explained Response Time Reach Time x Reach 

 F P F P F P R2
M R2

C 

Benthic organic matter 

Coarse BOM 0.371,3 0.586 0.691,440 0.406 0.141,440 0.71 0.01 0.42 

Fine BOM 0.081,3 0.79 2.391,345 0.123 1.321,345 0.252 0.01 0.54 

Suspended organic matter (Coarse) 

Concentration 3.531,4 0.132 0.041,239 0.839 1.271,239 0.261 0.02 0.31 

C:N ratio 0.311,4 0.607 1.251,227 0.265 2.391,226 0.124 0.02 0.39 

δ13C 4.861,4 0.090 4.321,228 0.039 0.401,227 0.526 0.06 0.34 

δ15N 0.341,4 0.589 0.001,220 0.978 0.051,220 0.821 0.00 0.26 

Suspended organic matter (Fine) 

Concentration 7.211,4 0.055 6.151,232 0.014 0.011,231 0.929 0.11 0.61 

C:N ratio 1.091,4 0.353 0.021,227 0.900 1.191,227 0.277 0.06 0.83 

δ13C 0.821,4 0.415 0.011,223 0.916 0.091,223 0.765 0.03 0.85 

δ15N 0.331,4 0.597 0.121,215 0.726 0.381,215 0.536 0.01 0.67 
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(a)           (b) 

       

Figure 5.4. Predicted mean values (with 95% confidence intervals) of log-transformed (a) coarse 

and (b) fine benthic standing stocks of particulate organic matter (CPOM and FPOM, 

respectively) in impact and control stream reaches, before and after simulated riparian restoration. 

 

5.4 Discussion 

5.4.1 Summary 

Despite maintaining leaf litter stocks in experimental reaches over a period of six months 

at levels that exceeded those observed in a nearby reference broadleaf site, there were no 

detectable increases in the amount of benthic or suspended particulate organic matter in 

response to the manipulation. Furthermore, there were no shifts in the elemental or 

isotopic composition of suspended particulate organic matter that would indicate an 

increased contribution of organic matter from terrestrially-derived leaf litter following the 

litter addition. Overall, observed differences among reaches and time periods seemed to 

reflect background spatial and temporal variability as opposed to any effects attributable 

to the litter addition per se, as indicated by the relatively large proportion of the variation 

accounted for by the random effects. 

5.4.2 Effects of simulated riparian restoration on benthic and suspended 

organic matter 

This study aimed to simulate riparian restoration by enhancing the input and retention of 

leaf litter to reaches of historically deforested streams. In doing so, average leaf litter 

standing stocks were elevated to levels that exceeded those observed in a nearby reference 

broadleaf stream (Figure 5.3), and were within the range of those observed in woodland 

streams elsewhere in the world (1 to 1300 g AFDM m-2; Jones, 1997; Abelho 2001).  
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(a)           (b) 

       

(c)           (d) 

           

(e)           (f) 

     

(g)           (h) 

      

Figure 5.5. Predicted mean values (with 95% confidence intervals) of (a-b) concentrations, (c-d) 

C:N ratios, (e-f) δ13C values, and (g-h) δ15N values of suspended coarse and fine particulate 

organic matter (CPOM and FPOM, respectively) in impact and control stream reaches, before and 

after simulated riparian restoration.  
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Despite this clear manipulation, a concomitant increase in benthic standing stocks of 

CBOM was not detected at the reach scale. This discrepancy, coupled with visual 

observations of leaf litter cover within the impact reaches during the study period, 

suggests that the added leaf litter may have remained in highly localised patches of 

naturally formed and/or artificial leaf packs throughout the study period. Furthermore, 

any loose litter that was distributed among the impact reaches following litter addition 

may have been transported downstream during high flows (Hoover et al. 2010; see 

Chapter 4). In a study on short-term leaf retention in small streams, Hoover et al. (2010) 

demonstrated that leaves tend to be trapped in exposed locations within the stream reach, 

making them susceptible to transport as discharge increases and are therefore less stable 

in space and time than smaller particles. The resultant patchiness of leaf litter within the 

impact reaches in the present study could therefore mean that any overall, reach-scale 

increase in CBOM was unlikely to be detected based on small-scale estimates (i.e. using 

replicate Surber samples), despite the presence of ‘foreign’ leaf litter in some benthic 

samples (personal observation). 

Given that there was no apparent increase in CBOM following litter addition, the 

concurrent lack of increase in FBOM was to be expected. This could be because the 

generation of fine fragments from the added leaf litter may have been curtailed in the first 

half of the experiment due to limited biological activity in colder winter temperatures 

(Cuffney et al. 1990; Gillooly et al. 2001), coupled with the recalcitrant nature of the 

added leaf litter, resulting in relatively slow litter breakdown rates (Webster and Benfield 

1986). While an immediate increase in fine particles of BOM may not have been expected 

following litter addition, a delayed increase was predicted by the end of the experimental 

period. By this time, artificial leaf packs had been retained within the channels for 

approximately five months, which, in theory, would have allowed microbial colonisation 

of leaf litter to occur, allowing increased palatability and fragmentation by invertebrates 

(Kaushik and Hynes 1971; Benke et al. 1988), and a subsequent increase in the generation 

of fine organic matter particles (Cuffney et al. 1990). There was, however, no apparent 

increase in FBOM by the end of the experiment (Appendix C; Figure C.2). This suggests 

that any fine organic matter particles that may have been generated either occurred in 

quantities too low to be detected, and/or were more readily transported downstream than 

they were to be retained on the stream bed (Speaker et al. 1984; Thomas et al. 2001). 
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If CBOM and any associated FBOM were indeed transported downstream rather than 

being retained within the impact reaches, then an increase in SOM concentrations 

following litter addition could have provided some support for this scenario. A 

concomitant shift in isotopic and elemental compositions of SOM towards more 

terrestrial signals could also have supported this scenario. In the absence of such 

responses, however, and since the SOM sampling frequency provided only ‘snapshots’ 

within the full range of flow conditions (Figure 5.2), it was not possible to directly 

determine whether the downstream transport of CBOM and FBOM could explain the lack 

of increase in BOM in the impact reaches following litter addition. The loss of numerous 

artificial leaf packs following two high flow events does, however, suggest that under 

high flow conditions the streams would be capable of re-suspending BOM from their beds 

and exporting it downstream. Furthermore, other studies have demonstrated that the vast 

majority of organic matter export occurs during high flow events (e.g. Eggert et al. 2012; 

Chapter 4). It is also possible that any changes in SOM concentrations, at least in the fine 

fraction, could have been too small to be detected above the high levels of background 

temporal and spatial variability among sampling occasions and stream reaches 

independent of the leaf additions (Appendix C; Figure C.4). 

In general, inputs of organic matter from terrestrial sources are expected to increase the 

C:N ratios and δ13C values of SOM (Finlay and Kendall 2007). Recent data collected 

from headwater streams near to the current study suggest that any shifts in SOM 

composition may be subtle and difficult to detect (Chapter 3). For example, the isotopic 

and elemental compositions of leaf litter from broadleaved woodland streams were not 

markedly different from other sources of organic matter in conifer or moorland sites 

(Chapter 3, Figures 3.2 and 3.3; Appendix C, Figure C.11). Unsurprisingly, therefore, 

CSOM in a broadleaved woodland stream was intermediate between the conifer and 

moorland streams in terms of C:N ratios and δ13C signatures (Chapter 3, Figure 3.2). This, 

coupled with the high temporal variability observed in CSOM δ15N signatures (Appendix 

C, Figure C.7), suggests that an increased ‘broadleaf signal’ may not have been detectable 

in CSOM following litter addition in this experiment. Although the previous study 

showed that FSOM had higher mean C:N ratio in the broadleaf stream (17.6 ± 0.2 S.E.) 

by comparison with the conifer and moorland streams (14.3 ± 0.1; Figure 3.2), these 

values were within the range of those observed within the control reaches of the study 

sites in the present study (9.5 – 19.5; Appendix C, Figure C.11). Furthermore, the likely 
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slow breakdown rates of leaf litter mentioned previously suggests that overall a ‘broadleaf 

signal’ within FSOM would have been too small to detect following litter addition within 

the time frame of this experiment. 

5.4.3 Challenges in simulating and experimentally manipulating natural 

systems 

Some significant challenges are inherent in attempting to simulate experimentally real 

conditions in natural systems. In the case of simulating riparian restoration of headwater 

streams, this includes the difficulty in mimicking the high level of connectivity that exists 

between streams and their terrestrial surroundings in terms of organic matter input, and 

in working in systems that have a high level of ‘background noise’. 

Under non-experimental reference conditions, it is likely that additional processes would 

result in higher standing stocks of BOM, which may only be observed under well-

established conditions. For example, any downstream losses of BOM would have been 

replenished by the continual supply of organic matter from the adjacent riparian zone via 

lateral transport. Indeed, lateral inputs form a substantial proportion of total annual litter 

supplies to streams, and extend well beyond periods of peak leaf fall (Benfield 1997; 

Kochi et al. 2010; Hart et al. 2013). In addition, inputs from upstream or from the re-

surfacing of buried OM (Cornut et al. 2012; see also Chapters 2 and 4) are also likely to 

replenish downstream losses of organic matter within a given reach under natural 

conditions. Furthermore, despite attempts to mimic ‘wood jams’ (see Section 5.2.2, 

above), it is unlikely that they achieved the same channel complexity and subsequent OM 

retentiveness that is often observed in the presence of in-stream wood (e.g. Gurnell et al. 

2002; Pretty and Dobson 2004a; Flores et al. 2011; Eggert et al. 2012; Koljonen et al. 

2012). While higher standing stocks of organic matter have been observed in broadleaf 

streams by comparison with conifer and moorland streams (Chapter 2), others have 

demonstrated that the effects of increased broadleaved tree cover on organic matter stocks 

may only become apparent once catchment cover is extensive (Thomas et al. 2016). 

Nevertheless, these examples demonstrate the strong influence of riparian and wider 

catchment land cover on in-stream organic matter stocks. As such, the scale of this 

simulation experiment may have been insufficient for any differences in organic matter 

stocks to parallel those that are generally observed between treeless and established 

woodland streams. 
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The high level of ‘background noise’ that is inherent within these complex systems may 

have meant that any marginal responses to the BACI treatment were undetectable. Indeed, 

any significant differences that were observed in this experiment reflected background 

spatial and temporal variability, as opposed to any effects of the litter addition per se. In 

modelling the effects of the BACI treatment, for example, random factors in the model 

that accounted for spatial (i.e. ‘site’) and temporal (i.e. ‘month’) variability explained a 

large amount of the variation in the data (Table 4.1). Even after accounting for this 

variability, some responses differed between reaches before the litter addition had 

occurred, or showed general increasing or decreasing trends from before to after the litter 

addition. Indeed, BOM and SOM show high levels of intra- and inter-annual variability 

in headwater streams, both in terms of quantity and composition (see Chapters 2 and 3). 

While the BACI design would have accounted for this ‘background noise’ (Underwood 

1994), this highlights the heterogeneous nature of these systems, and the subsequent need 

for a strong signal if a response is to be detected. In the terms of predicting the likely 

response of stream ecosystems to restoration efforts, or indeed increasing the likelihood 

of restoration success, the overall extent of restoration could be an important factor 

dictating the outcomes and must be considered (Palmer et al. 2010). For example, the 

length of restored reach may need to extend over several kilometres and monitoring may 

need to span longer timescales for ecological responses to restoration to become apparent 

(Hering et al. 2015; Kail et al. 2015). 

5.4.4 Conclusions 

This study highlights the challenges in making short-term, experimental assessments of 

the potential response of headwater streams – highly dynamic natural systems – to 

riparian restoration. Overall, there was no signal of litter addition detected, despite one of 

the largest scale leaf addition experiments ever carried out. This non-response to the 

manipulation, however, does not necessarily mean that riparian restoration would not 

affect organic matter stocks in headwater streams under non-experimental conditions. 

Indeed, several studies have demonstrated the potential for riparian broadleaved trees to 

enhance organic matter stocks in headwater streams. It remains possible that any 

responses were too small to detect above the high levels of background noise, that such 

responses may require longer time scales to become apparent, or that the extent of the 

manipulation was insufficient to bring about a detectable response within the time frame 

of this experiment. Further work is needed in order to determine the viability of riparian 
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restoration as an adaptive strategy for mediating the impacts of climate change and wider 

catchment land use change on headwater stream ecosystems and restoring ecosystem 

functions. This could include increasing the extent of restoration through larger-scale 

experiments, spanning longer timescales (i.e. incorporating seasonal and annual 

variability) and reach lengths, and mimicking more closely the annual supply of litter 

inputs (sensu Dobson et al. 1995; Bañuelos et al. 2004). This may allow greater stocks of 

organic matter to be distributed, retained and biologically processed within experimental 

reaches, and may therefore allow for stronger inference. 
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CHAPTER 6: General Discussion 

6.1 Context and purpose of the project 

Climate change is having widespread impacts on ecosystem service sustainability, while 

human activity continues to degrade the very ecosystems that support these services 

(Millennium Ecosystem Assessment 2005; UK National Ecosystem Assessment 2011; 

Runting et al. 2017). With a growing human population, pressure on ecosystems to 

deliver goods and services to sustain societal needs is likely to intensify (Godfray et al. 

2010), so that decision makers now urgently require the evidence-based, high-certainty 

solutions to respond to these global challenges. While there is a significant body of 

ecosystem science and ecology to answer some of these needs, predictable, quantifiable 

and large-scale evidence is still scarce or uncertain. Uncertainties stem not least from gaps 

in knowledge, for example on the quantitative links between biodiversity and ecosystem 

services, but also from methodological challenges that are inherent in addressing global 

change questions (Durance et al. 2016). As a consequence, robust management solutions 

for securing ecosystem resilience and service sustainability are often difficult to identify 

(Runting et al. 2017). 

This is the context from which this study arises, building around a model – freshwater 

ecosystems – that has proven to be particularly suited to understand the processes that 

underpin ecosystem function and ultimately the level of services that ecosystems can 

provide. To start with, the study has been able to build on a long standing body of 

freshwater research (Chapter 1) that has been at the forefront of large-scale ecosystem 

science, with famous experiments at Hubbard Brook (e.g. Fisher and Likens 1973) only 

one of the many examples where links between catchment management, biodiversity and 

ecosystem function were quantitatively evidenced. Perhaps just as importantly, the central 

position of these diverse ecosystems at the interface between land and sea, confers them 

with a key role in the transfer of energy that fuels everything from microbes to fish and 

birds across the globe. This study, which explores how organic carbon sources captured 

from bankside vegetation, are stored, processed and released, contributes to this body of 

research on energy transfers, and its findings detailed below offers some key evidence for 

decision makers. 
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6.2 Synthesis and lessons learnt 

6.2.1 On the response of freshwater ecosystems to climate change  

A warmer world is likely to intensify the global hydrological cycle (Huntington 2006), 

resulting in more frequent floods and droughts (Milly et al. 2005; Bates et al. 2008), with 

small, headwater streams being particularly responsive because of their geo-morphology. 

Already, marked changes in stream flow regimes are being observed at higher latitudes 

and altitudes, including increases in the magnitude, frequency and duration of high flow 

events (e.g. Birsan et al. 2005; Biggs and Atkinson 2011; Hannaford and Buys 2012), 

highlighting the need to gather evidence for understanding and predicting the ecological 

responses of these ‘early-warning systems’ to climate change (Perkins et al. 2010). 

The results presented in Chapters 2, 3 and 4 suggest that expected increases in the 

magnitude and duration of flood events under future climate change will re-distribute 

organic matter resources downstream within river networks, thereby reducing the 

quantity of detrital resources retained within headwater streams, but also potentially the 

quality of downstream carbon sources. Whether an increase in the frequency of flood 

events will deplete benthic standing stocks or exports of organic matter remains in 

question. Experimental evidence using outdoor mesocosms (Chapter 4) gave some 

mechanistic insight into CPOM dynamics during flood events, confirming that more 

CPOM is transported at higher flow rates, and that the majority of transport occurs during 

early stages of flood events. Similar, if not stronger, effects are expected for FPOM 

(Chapter 2), with this resource being smaller in size and therefore more susceptible to 

transport in high flows. Despite these observations, an increased frequency of flood 

events – whether simulated (Chapter 4) or natural (Chapter 2) – did not result in an overall 

reduction in benthic standing stocks of CPOM or FPOM, or a declining trend in the 

amount of CPOM exported downstream. In combination, these results suggest that 

thresholds in flood intensity exist above which the balance between transport and 

retention is compromised; imports from upstream and adjacent riparian zones are instead 

rapidly exported downstream, and depletion of organic matter stocks occurs. It is likely 

that such thresholds were, however, unattainable under experimental conditions, and 

infrequently encountered under natural conditions. Nevertheless, this study provides 

empirical support for previous suggestions that climate-induced shifts in precipitation 
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patterns will decrease organic matter retention in headwater streams (Kominoski and 

Rosemond 2012). 

A reduction in the amount of basal resources retained within headwater streams, 

particularly structurally complex resources that particulate organic matter represents, 

could have far-reaching ecological and societal implications. Fewer resources at the base 

of the stream food web will ultimately reduce the amount of energy and matter available 

to be biologically processed and transferred to higher trophic levels (Wallace et al. 1997), 

and therefore limit overall food web productivity in the upper reaches of river networks. 

These effects will not simply be local to headwater reaches, but could extend beyond their 

aquatic boundaries and downstream: Streams, like many ecosystems, are open and 

permeable, and reciprocate subsidies to the adjacent terrestrial ecosystem in the form of 

emerging adult aquatic insects, which, in turn, provide important prey items for river birds 

(Polis et al. 2004; Marczak et al. 2007). Furthermore, while studies that investigate 

quantitatively the energetic contribution of headstreams to downstream rivers, estuaries 

and coasts are scarce, it is generally surmised that upstream contributions of organic 

matter are critical to the functioning of downstream ecosystems, including fish production 

(Wipfli et al. 2007). Consequently, findings from this work relating to the change in 

quantity and quality of upstream subsidies to lower reaches following climatic changes, 

are likely to have profound consequences on food webs downstream, potentially altering 

the sustainability of important services such as fisheries or shellfish provision. In fact, 

this work could even suggest that management choices for the uplands could be central 

to coastal economies and marine conservation. 

6.2.2 On the management of river ecosystems to ensure resilience and 

continued service delivery in the face of global change  

Given the potential scale at which altered processes in headwaters could impact on 

important societal issues, this study highlights the importance of adopting large-scale 

perspectives in management actions and conservation policies. One of the most widely 

advocated management strategies for mitigating the effects of human activity and climate 

change on freshwaters is riparian tree planting (e.g. Abell et al. 2007; Ormerod 2009; 

Palmer et al. 2009; Seavy et al. 2009), with increasing benefit evidence: Riparian trees 

can buffer against thermal and hydrological extremes, and regulate excess nutrients and 

sedimentation, and increase habitat complexity and regional biodiversity (e.g. Naiman et 
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al. 1993; Gurnell et al. 2002; Sweeney et al. 2004; Bradshaw et al. 2007; Garner et al. 

2015). 

As important, but scarcely explicitly investigated, is the potential role of riparian 

vegetation in restoring and protecting fundamental ecosystem functions – namely organic 

matter processes – that underpin the resilience and productivity of food webs (Naiman et 

al. 2012; Elosegi and Pozo 2016).  Chapters 2 and 3 demonstrated, however, that not all 

riparian vegetation is equal in this respect: Riparian broadleaves clearly most benefit 

streams both locally and downstream in terms of energetic resilience, by storing 

consistently higher levels of food resources in the form of benthic particulate organic 

matter, and transporting more carbon downstream in the form of suspended particulate 

organic matter than streams bordered by conifer plantations or moorland vegetation, even 

when climatic conditions exceed worst-case projections. Chapter 5 used a complementary 

approach to assess whether a similar riparian broadleaf effect could be triggered: Using 

reach-scale experimental manipulation, this experiment was one of the largest-scale 

attempts made to simulate riparian broadleaved tree planting in conifer and moorland 

catchments (cf. Dobson et al. 1995), and yet did not illicit the same response in terms of 

organic matter stocks. Though the mechanisms for these differences were not explicitly 

tested, a wealth of experimental evidence exists in the literature to suggest that streams 

bordered by mature broadleaved tree species not only supply more leaf litter to streams 

(Abelho 2001), but also have a greater retention capacity than their coniferous or 

moorland counterparts. This is due to the characteristics of the litter itself (e.g. Pretty and 

Dobson 2004a; Quinn et al. 2007; Cordova et al. 2008; Hoover et al. 2010) and the 

presence of large woody retention structures in the form of fallen branches and mature 

trees (e.g. Muotka and Laasonen 2002; Lepori et al. 2005; Flores et al. 2011; Eggert et 

al. 2012). Together these properties promote retention, longer-term storage, and thus a 

constant, heterogeneous supply of food resources to sustain a diverse array of stream 

organisms (Petersen and Cummins 1974; Webster and Benfield 1986; Moore et al. 2004; 

Rooney et al. 2006). 

The disparity between these two approaches could serve to highlight the scale of 

experimentation, and indeed restoration efforts, needed to successfully re-establish 

complex stream-riparian linkages in deforested catchments. Indeed, the establishment of 

retentive headwater systems – capable of storing abundant organic matter along the entire 

river continuum – would involve large-scale efforts, resources and decades of tree growth 
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(Eggert et al. 2012). Moreover, planting trees in the riparian zone alone may not be 

sufficient: recent studies suggest that catchments with more extensive tree cover are 

capable of not only storing more organic matter (Thomas et al. 2016), but also moderating 

flood severity (Bradshaw et al. 2007; Marc and Robinson 2007; Chappell and Tych 2012; 

Rust et al. 2014). To effectively mitigate climatic effects on river ecosystem functions 

and services, therefore, widespread action must be implemented in policy and practice to 

protect and restore tree cover in headwater catchments. Firstly, headwater streams can no 

longer be neglected in major water policies, such as the European Water Framework 

Directive (Lassaletta et al. 2010; Biggs et al. 2016). Second, adaptive management 

actions should explicitly consider the fundamental importance of organic matter 

processes in supporting ecosystem function and resilience, and their sensitivity to future 

climate. These actions could include: (1) increasing organic matter supplies to river 

networks by enhancing broadleaved tree cover in headwater catchments via catchment-

wide tree planting; (2) increasing the retentiveness of headwaters by introducing organic 

matter retention structures, such as log jams and boulders, to stream reaches; (3) allowing 

the development of mature woodlands along river margins to establish complex and 

sustainable stream-riparian linkages, and; (4) protecting existing natural woodlands in 

headwater catchments from deforestation to maintain complex ecological properties. 

 

6.3 Future directions 

To answer the most urgent stakeholder questions entails developing our capacity to 

understand and predict the likely ecological consequences of management interventions 

and climate change, in real life, large-scale settings. To aid in the development of this 

understanding, this study applied two complementary scientific approaches used in 

ecological global change research: observations and experimental manipulation in the 

field. In doing so, this study illustrated some of the major challenges that freshwater 

ecologists face in conducting experiments at sufficient scale to be able to predict 

ecological responses to real complex changes with more certainty, above the high levels 

of variability that exist in these natural systems. 

The use of natural abundance stable isotopes in Chapters 3 and 5 to detect land use signals 

highlighted just how variable these natural systems can be. In these studies, isotopic 

signatures of both suspended POM and its potential sources exhibited large temporal 
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variability, with strong indications that additional unmeasured sources – namely microbes 

– were contributing to suspended POM in unknown proportions. Indeed, multiple sources 

of variability operate at different scales to affect the isotopic signatures of basal resources 

in freshwaters in ways that are still poorly characterised (Peipoch et al. 2012). This 

unexplained variability highlights the current limitations of these tools for quantifying the 

role of headwaters in subsidising downstream systems under future land use and climate 

scenarios. Nevertheless, by providing much-needed empirical data on isotopic variability 

in basal resources, this study makes an important step towards better determination of 

energy pathways in food web studies (Peipoch et al. 2012). At the same time, this work 

highlighted avenues for future research, such as estimating microbial biomass associated 

with different organic matter pools, and the degree to which they cause isotopic 

enrichment. 

Observational, correlative field studies such as those reported in Chapters 2 and 3 are 

important to grasp the extent of natural variability, thereby allowing realistic predictions 

to be made. For example, these studies captured substantial interannual climatic 

variability, which provided a natural climate change gradient against which responses 

could be tested (Dunne et al. 2004). Such studies are resource intensive, however, with 

sampling often being restricted to snapshots in time and/or space (e.g. Cariss and Dobson 

1997; Molinero and Pozo 2004; Mollá et al. 2006; Wallace et al. 2015). To avoid context-

dependence and subsequent difficulties in generalising results, therefore, future 

observational studies of organic matter dynamics should incorporate high-frequency 

automated sampling techniques in the field. Such tools would improve mechanistic 

understanding of organic matter-discharge dynamics under realistic settings, for example 

during real flood events. In addition, by allowing greater temporal and spatial replication 

of field data, stronger predictions could be made of organic matter dynamics throughout 

entire river networks under future climate (Acuña and Tockner 2010), and catchment 

management scenarios.  

By comparison with observational studies, conducting experimental manipulations in the 

field, such as the riparian land use (Chapter 5) and climate (Chapter 4) manipulations, 

have the benefits of constraining potential confounds and allowing stronger inferences 

about cause and effect (McGarigal and Cushman 2002). They also allow questions to be 

answered in a relatively short period of time (Dobson et al. 1995). On the other hand, 

creating realistic treatments in the field at sufficient scale is logistically and practically 
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challenging. Experimental treatments are therefore often implemented in a short space of 

time, constraining them to representing short-term responses (McGarigal and Cushman 

2002; Dunne et al. 2004). Indeed, the overall non-response to the large-scale litter 

addition (Chapter 5) suggests that this experiment may have been limited in its scope, 

possibly in terms of duration or realism, for assessing the viability of riparian restoration 

as an adaptive management strategy. Future experimental approaches for determining the 

potential longer-term role of riparian broadleaved planting for supporting river ecosystem 

services could therefore be improved by incorporating multiple stages and scales of 

restoration in the form of differing litter supplies and retention structures. Realism could 

also be improved by spanning longer timescales and reach lengths, and mimicking more 

closely the temporal dynamics of leaf litter inputs (sensu Dobson et al. 1995; Bañuelos et 

al. 2004). 

Mesocosm studies offer a strong compromise to overcome field-based challenges, and 

are being increasingly used in global change ecological research (Stewart et al. 2013). By 

potentially allowing more replication and control than observational studies and field 

experiments, as well as more realism than microcosm studies (Ledger et al. 2009), 

mesocosm experiments have the advantage of allowing researchers to gain a more 

detailed, mechanistic understanding of complex abiotic-biotic interactions in semi-natural 

settings. By manipulating flow regimes in outdoor mesocosms (Chapter 4), for example, 

it was possible to characterise CPOM dynamics during flood events within a three-month 

period. Future mesocosm experiments could explore inputs, exports, transport and 

retention of a range of other resource types, such as different leaf litter species, dissolved 

organic carbon (DOC) and benthic biofilm, under different flow regimes. Biotic 

responses to manipulated resources could also be measured to better understand the 

ecological implications of altered basal resources under different scenarios. In turn, such 

information could be used to develop comprehensive organic matter budgets, and advance 

understanding of upstream-downstream linkages within riverine landscapes (Webster 

2007; Tank et al. 2010). Such studies would also allow better parameterisation of 

mechanistic models, which are often limited by gaps in process-based understanding (e.g. 

Acuña and Tockner 2010; Stenroth et al. 2014), but are useful tools for predicting future 

responses and informing management decisions. It is important to note, however, that 

mesocosms still lack the true extent of complexity and variability that exists in natural 

systems, such as riparian linkages and flood intensities (Chapter 4). In fulfilling the needs 
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of stakeholders, experimental manipulation in both natural and semi-natural systems can, 

however, strongly complement other approaches, such as large-scale comparative 

assessments, long-term monitoring of restoration projects, and modelling future 

scenarios. When combined, these approaches are central to advancing knowledge and 

finding real solutions to global change problems, and should be fully integrated into the 

freshwater ecologist’s toolbox. 

 

6.4 Conclusions 

The findings of this study suggest that climate-driven changes in flow regimes will reduce 

organic matter retention in headwater streams, but that riparian broadleaves could be 

effective in mitigating these effects. Consequently, this study reinforces the notion that a 

broad ecosystem approach to climate change adaptation must be adopted and 

implemented. Specifically, headwaters must be explicitly considered in water policies, 

and actions must be taken to protect existing natural woodlands and support large-scale 

restoration in headwater catchments. This study also highlights the value of combining 

large-scale observational and experimental field studies to answering global change 

questions. Gaps in knowledge remain, however, and continued long-term monitoring is 

needed, along with large-scale field experimentation and mesocosm studies. These 

approaches will greatly improve our capacity to predict landscape-scale responses to 

future climate change and inform management actions. 
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APPENDIX A 

 

                         

Figure A.1. MixSIAR isospace plot, showing δ15N versus δ13C values of suspended (a) coarse and (b) fine particulate organic matter samples measured at the four 

study sites (C4 = acid moorland; G1 = broadleaved woodland; L1 = conifer forest; L6 = circumneutral moorland), and potential sources (bryophyte, epilithon and 

terrestrial leaf litter) adjusted for N enrichment (Section 3.2.6). Error bars indicate ± 1 S.D., which is the combined source and discrimination S.D. 
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APPENDIX B 

 

Figure B.1. Site L3, looking upstream, with mesocosms situated on right-hand bank. Photo: 

Stephanie Ridge. 

 

Figure B.2. Site L6, looking downstream, with mesocosms situated on right-hand bank. Photo: 

Marian Pye. 
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Figure B.3. Site L7, looking upstream, with mesocosms situated on left-hand bank. Photo: Marian 

Pye. 

 

 
 
Figure B.4. Example stream discharge (m3 s-1) at a study site within the Llyn Brianne Stream 

Observatory over the period when experimental manipulations took place (Nov 2014 – Jan 2015). 
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APPENDIX C 

 

Figure C.1. Mean (± 1 S.E.) standing stocks of coarse benthic organic matter in the control 

reaches (white circles) and impact reaches (black circles) of each study site for 8 weeks before 

(B1–B2: Dec–Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian 

restoration. Arrows indicate the timing of litter addition. 

Litter addition Litter addition 



 

140 

 

 

Figure C.2. Mean (± 1 S.E.) standing stocks of fine benthic organic matter in the control reaches 

(white circles) and impact reaches (black circles) of each study site for 8 weeks before (B1–B2: 

Dec–Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian restoration. 

Arrows indicate the timing of litter addition. 

Litter addition Litter addition 
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Figure C.3. Mean (± 1 S.E.) concentrations of coarse suspended organic matter in the control 

reaches (white circles) and impact reaches (black circles) of each study site for 8 weeks before 

(B1–B2: Dec–Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian 

restoration. Arrows indicate the timing of litter addition. 

Litter addition Litter addition 
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Figure C.4. Mean (± 1 S.E.) concentrations of fine suspended organic matter in the control 

reaches (white circles) and impact reaches (black circles) of each study site for 8 weeks before 

(B1–B2: Dec–Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian 

restoration. Arrows indicate the timing of litter addition. 

Litter addition Litter addition 
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Figure C.5. Mean (± 1 S.E.) δ13C of coarse suspended organic matter in the control reaches (white 

circles) and impact reaches (black circles) of each study site for 8 weeks before (B1–B2: Dec–

Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian restoration. Arrows 

indicate the timing of litter addition. 

Litter addition Litter addition 
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Figure C.6. Mean (± 1 S.E.) δ13C of fine suspended organic matter in the control reaches (white 

circles) and impact reaches (black circles) of each study site for 8 weeks before (B1–B2: Dec–

Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian restoration. Arrows 

indicate the timing of litter addition. 

Litter addition Litter addition 
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Figure C.7. Mean (± 1 S.E.) δ15N of coarse suspended organic matter in the control reaches (white 

circles) and impact reaches (black circles) of each study site for 8 weeks before (B1–B2: Dec–

Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian restoration. Arrows 

indicate the timing of litter addition. 

Litter addition Litter addition 
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Figure C.8. Mean (± 1 S.E.) δ15N of fine suspended organic matter in the control reaches (white 

circles) and impact reaches (black circles) of each study site for 8 weeks before (B1–B2: Dec–

Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian restoration. Arrows 

indicate the timing of litter addition. 

Litter addition Litter addition 
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Figure C.9. Mean (± 1 S.E.) C:N ratio of coarse suspended organic matter in the control reaches 

(white circles) and impact reaches (black circles) of each study site for 8 weeks before (B1–B2: 

Dec–Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian restoration. 

Arrows indicate the timing of litter addition. 
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Figure C.10. Mean (± 1 S.E.) C:N ratio of fine suspended organic matter in the control reaches 

(white circles) and impact reaches (black circles) of each study site for 8 weeks before (B1–B2: 

Dec–Jan 2012-13) and 20 weeks after (A1–A5: Feb–May 2013) simulated riparian restoration. 

Arrows indicate the timing of litter addition. 
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Figure C.11. Bi-plots of δ15N versus δ13C (upper panels) and C:N versus δ13C (lower panels) 

values of coarse and fine suspended particulate organic matter (CSOM and FSOM, respectively) 

in all control reaches (black circles) and impact reaches (green circles) throughout the study 

period. Boxes depict mean values ± 1 S.D. of organic matter sources (solid line = leaf litter; 

dashed line = bryophytes; dotted line = epilithon) sampled from broadleaved streams (green 

boxes) and conifer/moorland streams (black boxes) within the Llyn Brianne Stream Observatory 

during 2007-2011. 
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