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Abstract. We define heavy-tailed fractional reciprocal gamma and Fisher-Snedecor diffusions by a non-
Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by
the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in
applications. The corresponding fractional reciprocal gamma and Fisher-Snedecor diffusions are governed
by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the
steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal
gamma and Fisher-Snedecor diffusions and strong solutions of the associated Cauchy problems for the
fractional backward Kolmogorov equation.
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1 Introduction

Recent developments in fractional processes including fractional diffusions have been motivated by appli-
cations that require modeling of phenomena in heterogeneous media using fractional partial differential
equations, see Kochubey (1989), Meerschaert & Scheffler (2004), Mainardi (2010). Stochastic processes
governed by these equations are found in many applications in science, engineering and finance (see Goren-
flo & Mainardi (2003), Magdziarz (2009), Metzler & Klafter (2000, 2004), Scalas (2006), Stanislavsky
(2009)). In hydrology, the fractional time derivative models sticking and trapping of contaminant parti-
cles in a porous medium (Schumer et al. (2003)) or a river flow (Chakraborty et al. (2009)). In finance,
the fractional derivative in time models delays between trades (Scalas (2006)), and has been used to de-
velop the Black-Scholes formalism in this context (Magdziarz (2009), Stanislavsky (2009)). In statistical
physics, fractional time derivative appears in the equation for a continuous time random walk limit and
reflects random waiting times between particle jumps (Meerschaert & Scheffler (2004), Metzler & Klafter
(2000, 2004)). For recent developments in treating the space-time fractional diffusion equations we refer
to Nane & Ni (2016) and Magdziarz & Zorawik (2016). Detailed discussion of such equations is also
found in Chen et al. (2012). An application of fractional partial differential equations in the framework
of spherical random fields is studied in D’Ovidio et al. (2016). For new results on semi-Markov dynamics
and Kolmogorov’s integro-differential equations we refer to Meerschaert & Toaldo (2017) and Orsingher
et al. (2017).

Pearson diffusions is a special class of diffusion processes governed by the backward Kolmogorov
equation

∂p(x, t; y)
∂t

= µ(y)
∂p(x, t; y)

∂y
+
σ2(y)

2
∂2p(x, t; y)

∂y2
. (1.1)

1Corresponding author.
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with varying polynomial coefficients: µ(x) is polynomial of the first degree, and σ2(x) is polynomial of at
most second degree. Stationary distributions of these diffusions belong to the class of Pearson distributions
(see Pearson (1914)). The study of classical Markovian Pearson diffusions began with Kolmogorov (in
Shiryayev (1992)) and Wong (1964), and continued in Forman & Sørensen (2008), Leonenko & Šuvak
(2010b) and Avram et al. (2011, 2012, 2013a,b). Diffusion processes from this family include the famous
Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein (1930)) and the Cox-Ingersoll-Ross (CIR) process
(Cox et al. (1985)) that are widely used in applications. Other Pearson diffusions are Jacobi diffusion
with beta stationary distribution, reciprocal gamma, Fisher-Snedecor and Student diffusions, named after
their stationary distributions. The last three have heavy-tailed stationary distributions and therefore are
known as heavy-tailed Pearson diffusions.

Pearson diffusions can be defined as stochastic processes by specifying their Markovian nature, their
transition density via equation (1.1), and the distribution of the initial value. In contrast, fractional
diffusions, due to the non-Markovian nature, generally cannot be defined by the governing equations
and the initial distributions alone. Different approaches are required to define fractional diffusions as the
stochastic processes. For the three non-heavy-tailed Pearson diffusions (OU, CIR, Jacobi), their fractional
analogs were defined in Leonenko et al. (2013b), where it was also shown that these processes are governed
by the time-fractional Fokker-Planck and backward Kolmogorov equations with space-varying polynomial
coefficients. The spectral theory for the generators of the non-heavy-tailed Pearson diffusions was used to
obtain the explicit strong solutions to the corresponding fractional Cauchy problems. Cauchy problems
for time-fractional equations with fractional derivative of distributed order are considered in Mijena &
Nane (2014).

This paper extends the results from Leonenko et al. (2013b) to two of the heavy-tailed Pearson dif-
fusions. Namely, we define fractional reciprocal gamma and Fisher-Snedecor diffusions by time changing
the corresponding non-fractional heavy-tailed diffusions by the inverse of the standard stable subordina-
tor. We also discuss an alternative definition using stochastic calculus for time-changed semimartingales
developed in Kobayashi (2011). Next, we obtain the spectral representations for the transition densities
of the fractional reciprocal gamma and Fisher-Snedecor diffusions and describe the first- and second-order
properties of these processes. Finally, we use the general result of Baeumer and Meerschaert (2001) that
links the solutions of time-fractional and non-fractional Cauchy problems under the appropriate condi-
tions on the operator appearing in these problems. In general, finding strong solutions of time-fractional
differential equations is a difficult problem, especially if the coefficients are variable. We are able to ob-
tain the explicit strong solutions to the backward Kolmogorov equations using properties of the spectrum
of the generator with polynomial coefficients. Since the structure of the spectrum of the generators of
heavy-tailed Pearson diffusions is different and more complex than in the non-heavy-tailed case, different
analytical methods are used to derive the corresponding spectral representations and strong solutions.

2 Pearson diffusions

Continuous distributions with densities satisfying the famous Pearson equation

p′(x)
p(x)

=
(a1 − 2b2)x+ (a0 − b1)

b2x2 + b1x+ b0
(2.1)

are called Pearson distributions (see Pearson (1914)). The family of Pearson distributions is categorized
into six well known and widely applied parametric subfamilies: normal, gamma, beta, Fisher-Snedecor,
reciprocal gamma and Student distributions. The last three distributions are heavy-tailed (see Leonenko
& Šuvak (2010a,b) and Avram et al. (2013b)) and therefore are of special interest in stochastic modeling.
One set of models that produces these distributions uses classical Markovian diffusions driven by the
Brownian motion (Wt, t ≥ 0). In this setting, the stochastic differential equation (SDE)

dXt = µ(Xt)dt+ σ(Xt)dWt, t ≥ 0, µ(x) = a0 + a1x, σ(x) =
√

2b(x) =
√

2(b2x2 + b1x+ b0), t ≥ 0,
(2.2)

has polynomial infinitesimal parameters that are related to the polynomials in the Pearson equation (2.1):
the drift µ(x) is linear and the squared diffusion σ2(x) is at most quadratic. Because the coefficients
are polynomial, classical results (Øksendal 2000, Theorem 5.2.1) imply the existence and uniqueness
of the strong solutions of SDE (2.2), and the solutions are called Pearson diffusions. Their stationary
distributions belong to the Pearson family, and it is often convenient to re-parametrize

µ(x) = a0 + a1x = −θ(x− µ), σ2(x) = 2θk(b2x
2 + b1x+ b0), (2.3)
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where µ ∈ R is the stationary mean depending on coefficients of the Pearson equation (2.1), θ > 0 is the
scaling of time determining the speed of the mean reversion, and k is a positive constant. Note that we
need σ2(x) > 0 on the diffusion state space (l, L).

Pearson diffusions could be categorized into six subfamilies, according to the degree of the polynomial
b(x) and, in the quadratic case b(x) = b2x

2 + b1x+ b0, according to the sign of its leading coefficient b2

and the sign of its discriminant ∆:

• constant b(x) - Ornstein-Uhlenbeck (OU) process with normal stationary distribution,

• linear b(x) - Cox-Ingersol-Ross (CIR) process with gamma stationary distribution,

• quadratic b(x) with b2 < 0 - Jacobi diffusion with beta stationary distribution,

• quadratic b(x) with b2 > 0 and ∆ > 0 - Fisher-Snedecor (FS) diffusion with the Fisher-Snedecor
stationary distribution,

• quadratic b(x) with b2 > 0 and ∆ = 0 - reciprocal gamma (RG) diffusion with reciprocal gamma
stationary distribution,

• quadratic b(x) with b2 > 0 and ∆ < 0 - Student diffusion with the Student stationary distribution.

The first three types of Pearson diffusions have stationary distributions with all moments, and are
studied in detail in Leonenko et al. (2013b). In this paper we focus on analytical and probabilistic
properties of the other two subfamilies, the FS and RG diffusions that have heavy-tailed stationary
distributions. The sixth subfamily (Student diffusion) also has a heavy-tailed stationary distribution,
but its spectral properties differ from those of the FS and RG diffusions, and Student fractional diffusion
will be dealt with in a separate paper. Results concerning the spectral representation of the transition
density of Pearson diffusions and estimation of their parameters could be found in the series of papers
(Avram et al. (2011, 2012, 2013a,b), Leonenko & Šuvak (2010a,b)).

For a Markov process (Xt, t ≥ 0) with absolutely continuous transition probability distribution, let
p(x, t; y, s) = d

dxP (Xt ≤ x|Xs = y) be the corresponding transition density. In this paper we consider
only time-homogeneous diffusions for which p(x, t; y, s) = p(x, t−s; y, 0) for t > s and we write p(x, t; y) =
d

dxP (Xt ≤ x|X0 = y). With µ(x) and σ(x) given by (2.3), the transition densities satisfy the following
partial differential equations (PDEs) with the point-source initial conditions.

Forward Kolmogorov or Fokker-Planck equation:

∂p(x, t; y)
∂t

= − ∂

∂x
(µ(x)p(x, t; y)) +

1
2
∂2

∂x2

(
σ2(x)p(x, t; y)

)
.

In this PDE, the current state y is constant, and the equation describes the "forward evolution" of the
diffusion. The second-order differential operator in this equation is the Fokker-Planck operator

Lg(x) = − ∂

∂x
(µ(x)g(x)) +

1
2
∂2

∂x2

(
σ2(x)g(x)

)
.

Backward Kolmogorov equation:

∂p(x, t; y)
∂t

= µ(y)
∂p(x, t; y)

∂y
+
σ2(y)

2
∂2p(x, t; y)

∂y2
.

In this PDE, the future state x is constant, and the equation describes the "backward evolution" of the
diffusion. The second-order differential operator in this equation is the infinitesimal generator of the
diffusion

Gg(y) =
(
µ(y)

∂

∂y
+
σ2(y)

2
∂2

∂y2

)
g(y). (2.4)

According to McKean (1956), generator G is closed, generally unbounded, negative semidefinite, self-
adjoint operator densely defined on the space L2 ((l, L),m) of square integrable functions with the weight
m equal to the diffusion speed density:

m(x) =
2

σ2(x) s(x)
,
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where

s(x) = exp



−2

x∫
µ(y)
σ2(x)

dy





is the diffusion scale density (see Borodin & Salminen (1996) and Karlin & Taylor (1981)). The domain
of the generator is the following space of functions:

{f ∈ L2 ((l, L),m) ∩ C2 ((l, L)) : Gf ∈ L2 ((l, L),m) and f satisfies boundary conditions at l and L}.
(2.5)

For the FS and RG diffusions with the state space (0,∞), the boundary conditions are (see McKean
(1956)):

lim
y→0

g′(y)
s(y)

= lim
y→∞

g′(y)
s(y)

= 0.

3 Fractional Cauchy problems

Consider the fractional Cauchy problem involving the generator (2.4):

∂αq(y, t)
∂tα

= Gq(y, t), q(y, 0) = g(y), (3.1)

where
∂α

∂tα
is the Caputo fractional derivative of order 0 < α < 1. It is defined as

dαf(x)
dxα

=
1

Γ(1 − α)

∞∫

0

d

dx
f(x− y)y−α dy,

or equivalently for absolutely continuous functions as

dαf(x)
dxα

=
1

Γ(1 − α)

x∫

0

(x− y)−αf ′(y) dy.

For more details on fractional derivatives see (Meerschaert & Sikorskii 2011, Chapter 2).
The ordinary (non-fractional) Cauchy problem for the generator is

∂q(y, t)
∂t

= Gq(y, t), q(y, 0) = g(y). (3.2)

As described in Leonenko et al. (2013b), separation of variables approach could be used to find heuristic
solutions to (3.1) and (3.2) in the form q(y, t) = T (t)ϕ(y), where functions T and ϕ may depend on x
and α. Then for (3.1) we have

1
T (t)

dαT (t)
dtα

=
Gϕ(y)
ϕ(y)

,

assuming that T and ϕ do not vanish. The last equation obviously holds if and only if both sides are
equal to a constant denoted −λ (so that λ > 0), leading to two equations:

dαT (t)
dtα

= −λT (t) (3.3)

and
Gϕ = −λϕ. (3.4)

In the case of non-fractional Cauchy problem (3.2), (3.4) is the same, while (3.3) is replaced by

dT (t)
dt

= −λT (t). (3.5)

Equations (3.3) and (3.5) have well-known strong solutions, Eα(−λt) and exp{−λt}, respectively, where

Eα(−λtα) =
∞∑

j=0

(−λtα)j

Γ(1 + αj)
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is the Mittag-Leffler function (see, for example, Simon (2014)).
Regarding the space part, both fractional and non-fractional Cauchy problems lead to the Sturm-

Liouville problem for the negative generator (−G). Therefore, spectral properties of the generator of
the corresponding diffusions are linked to the problem of finding strong solutions of the corresponding
Cauchy problems.

For non-heavy-tailed diffusions considered in Leonenko et al. (2013b), the spectrum of (−G) is purely
discrete, consisting of infinitely many simple eigenvalues (λn, n ∈ N). Corresponding eigenfunctions are
classical systems of orthogonal polynomials: Hermite polynomials for OU process, Laguerre polynomials
for CIR process and Jacobi polynomials for Jacobi diffusion. According to the spectral classification of
Linetsky (2007), these non-heavy-tailed Pearson diffusions belong to the spectral category I. The summary
of their spectral properties is found in Leonenko et al. (2013b).

Generators of heavy-tailed Pearson diffusions have more complicated structure of the spectrum. The
spectrum of the operator (−G) in case of RG and FS diffusions consists of two disjoint parts - the discrete
part and the absolutely continuous part of multiplicity one, see Leonenko & Šuvak (2010a) and Avram
et al. (2013b). These two diffusions belong to the spectral category II in the Linetsky’s classification (see
Linetsky (2007)).

In case of the Student diffusion the spectrum of the generator (−G) consists of the discrete part and
the absolutely continuous part of multiplicity two, see Leonenko & Šuvak (2010b). This diffusion belongs
to the Linetsky’s spectral category III.

As mentioned in the Introduction, governing fractional equations alone may not always define stochas-
tic processes. Therefore, we define fractional counterparts of Pearson diffusions via a non-Markovian time-
change in Pearson diffusions of spectral category II . Furthermore, we derive the explicit expressions for
their transition densities and discuss the first- and second-order properties of these fractional processes.
Finally, we revisit the fractional Cauchy problems and obtain strong solutions for the corresponding
fractional backward Kolmogorov equations.

4 Fractional Pearson diffusions of spectral category II and their

properties

4.1 Fractional Pearson diffusions of spectral category II

Let X = (X(t), t ≥ 0) be the Pearson diffusion solving (2.2). Introduce (Dt, t ≥ 0), the standard stable
subordinator with index 0 < α < 1, independent of the process X. Dt is a homogeneous Lèvy process
with the Laplace transform

E[e−sDt ] = exp{−tsα}
for 0 < α < 1. Its inverse process

Et = inf{x > 0 : Dx > t}.
is non-Markovian, non-decreasing, and for every t random variable Et has a density, which will be denoted
by ft(·). The Laplace transform of this density is (see e.g., Piryatinska et al. (2005))

E[e−sEt ] =
∫ ∞

0

e−sxft(x)dx = Eα(−stα). (4.1)

The density of Et is related to the density of the standard stable subordinator D as follows. With gα

denoting the density of D1

ft(u) =
t

α
u−1−1/αgα(tu−1/α),

see (Meerschaert & Sikorskii 2011, p. 111). Define the fractional Pearson diffusion (Xα(t), t ≥ 0) via
time-change of the Pearson diffusion

Xα(t) = X(Et), t ≥ 0. (4.2)

The process Xα(t) is non-Markovian. We define its transition density pα(x, t; y) as

P (Xα(t) ∈ B|Xα(0) = y) =
∫

B

pα(x, t; y)dx (4.3)

for any Borel subset B of (l, L).
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4.2 Fractional Pearson diffusions as solutions of the SDEs

The fractional Pearson diffusions defined via a time-change of the ordinary (non-fractional) Pearson
diffusions satisfy the special types of SDEs considered in Kobayashi (2011). Let {Ft, t ≥ 0} be the natural
filtration associated with the Brownian motion from equation (2.2). Since Et has almost surely continuous
sample paths, for any t > 0 [Et−, Et] contains only one point, and the Brownian motion and the solution
of SDE (2.2) X(t) are in synchronization with the time change Et as defined in Kobayashi (2011). This
synchronization is key to the stochastic calculus for the semimartingale B(Et) with respect to filtration
{FEt

, t ≥ 0}. See also Magdziarz & Schilling (2015) for the discussion on martingale properties of B(Et)
and other processes obtained as time-changes of the Brownian motion using inverse subordinators.

Specialized to fractional Pearson diffusions, according to the duality Theorem (Kobayashi 2011, The-
orem 4.2, part (1)), when the process X(t) satisfies SDE (2.2) with the initial condition X(0) = X0, the
time-changed process Xα(t) = X(Et) satisfies the SDE

dXα(t) = µ(Xα(t))dEt + σ(Xα(t))dBEt
(4.4)

with the initial condition Xα(0) = X0.
Further, when µ and σ2 are polynomials of the first and second degree, respectively, as specified

in (2.2), (Kobayashi 2011, Lemma 4.1) ensures the existence and uniqueness of the strong solution of
(4.4), giving another possible definition of the fractional Pearson diffusions as solutions of this SDE. The
solution can be represented in the following integral form:

Xα(t) = X(Et) =

Et∫

0

(a0 + a1X(s)) ds+

Et∫

0

√
2(b0 + b1X(s) + b2(X(s))2)dB(s).

The integrals in this representation are the Lebesgue and the Itô integrals under the continuous time-
change t 7→ Et, in light of the change-of-variable formula from (Kobayashi 2011, Theorem 3.1). This
representation could be useful for simulating paths of fractional Pearson diffusions. The discrete schemes
for the underlying densities and their error bounds can be found in Kelbert et al. (2016). For similar
approaches to obtaining solutions of such SDEs we refer to Scalas & Viles (2014).

4.3 Spectral representation of the transition density of the fractional recip-

rocal gamma diffusion

We begin this subsection by listing the necessary facts about the non-fractional reciprocal gamma diffu-
sion, then use these facts to derive a representation for the transition density of the fractional reciprocal
gamma diffusion.

The reciprocal gamma diffusion satisfies the SDE

dXt = −θ
(
Xt − γ

β − 1

)
dt+

√
2θ

β − 1
X2

t dWt, t ≥ 0,

with θ > 0 and invariant density

rg(x) =
γβ

Γ(β)
x−β−1e− γ

x I〈0,∞〉(x) (4.5)

with parameters β > 1 and γ > 0, where the latter requirement ensures the existence of the stationary
mean γ/(β − 1).

If β > 2 the variance of the invariant distribution exists, and the autocorrelation function of the RG
diffusion is

ρ(t) = Corr(Xs+t, Xs) = e−θt, t ≥ 0, s ≥ 0. (4.6)

The generator is

G f(x) =
θ

β − 1
xβ+1e

γ
x
d

dx

(
x−β+1e− γ

x f ′(x)
)

=

=
θ

β − 1
x2f ′′(x) − θ

(
x− γ

β − 1

)
f ′(x), x > 0.
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In this case operator (−G) has the finite discrete spectrum σd(− G) ⊂ [0,Λ), and the purely absolutely
continuous spectrum σac(− G) of multiplicity one in (Λ,∞), where

Λ =
θβ2

4(β − 1)
, β > 1,

is the cutoff between the two parts of the spectrum.
The discrete part of the spectrum consists of the eigenvalues

λn =
θ

β − 1
n(β − n), n ∈

{
0, 1, . . . ,

⌊
β

2

⌋}
, β > 1. (4.7)

The corresponding eigenfunctions are Bessel polynomials given by the Rodrigues formula

B̃n(x) = xβ+1e
γ
x
dn

dxn
(x2n−(β+1)e− γ

x ), n ∈
{

0, 1, . . . ,
⌊
β

2

⌋}
, β > 1.

The normalized Bessel polynomials are

Bn(x) = Kn B̃n(x), (4.8)

where

Kn =
(−1)n

γn

√
(β − 2n)Γ(β)

Γ(n+ 1)Γ(β − n+ 1)
=

(−1)n

γn

√√√√ Γ(β)
n!Γ(β − 2n)

(
n−1∏

k=0

(β − n− k)

)−1

is the normalizing constant.
Since the absolutely continuous part of the spectrum is of the form (Λ,∞), its elements could be

parametrized as

λ = Λ +
θk2

β − 1
=

θ

β − 1

(
β2

4
+ k2

)
, β > 1, k ∈ R.

The spectral representation of the transition density of the RG diffusion consists of two parts:

p1(x;x0, t) = pd(x;x0, t) + pc(x;x0, t). (4.9)

The discrete part of the spectral representation is

pd(x;x0, t) = rg(x)
⌊ β

2 ⌋∑

n=0

e−λnt Bn(x0)Bn(x),

where rg(·) is the invariant density (4.5), eigenvalues λn are given by (4.7) and normalized Bessel poly-
nomials are given by (4.8). The continuous part of the spectral representation is given in terms of the
elements λ of the absolutely continuous part of the spectrum of the operator (−G)

pc(x;x0, t) = rg(x)
1

4π

∞∫

θβ2

4(β−1)

e−λt b(λ)ψ(x,−λ)ψ(x0,−λ) dλ,

where

b(λ) =
γ−β−1

k(λ)

∣∣∣∣∣∣

Γ
1
2 (β) Γ

(
− β

2 + ik(λ)
)

Γ (2ik(λ))

∣∣∣∣∣∣

2

, k(λ) = −i
√
β2

4
− λ(β − 1)

θ
. (4.10)

The function

ψ(x,−λ) = γ
β+1

2 2F0

(
−β

2
+ ik(λ),−β

2
− ik(λ); ; −x

γ

)
(4.11)

is the solution of the Sturm-Liouville equation Gf(x) = −λf(x), λ > 0, where 2F0 is the special case
of the generalized hypergeometric function pFq with p = 2 and q = 0, see Slater (1966) or Olver et al.
(2010).

More details on the RG diffusion and this representation of the transition density are found in Leo-
nenko & Šuvak (2010a). We now proceed with the statement of our result on the spectral representation
of the transition density of the fractional RG diffusion.
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Theorem 4.1. The transition density of the fractional RG diffusion is given by

pα(x, t;x0) =
⌊ β

2 ⌋∑

n=0

rg(x)Bn(x)Bn(x0) Eα(−λnt
α) +

rg(x)
4π

∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(x0,−λ) dλ,

(4.12)
where Bessel polynomials Bn are given by equation (4.8), the solution of the Sturm-Liouville equation ψ
is given by (4.11) with b(λ) given by (4.10).

Proof. Since the Pearson diffusion X(t) is independent of the time change Et, using (4.9) and (4.1)
together with the Fubini argument, we have

P (Xα(t) ∈ B|Xα(0) = x0) =
∫ ∞

0

P (X1(τ) ∈ B|X1(0) = x0) ft(τ) dτ

=
∫ ∞

0

∫

B

p1(x, τ ;x0) ft(τ) dx dτ

=
∫

B

∫ ∞

0

(pd(x, τ ;x0) + pc(x, τ ;x0)) ft(τ) dτ dx (4.13)

=
∫

B




∞∫

0

⌊ β
2 ⌋∑

n=0

rg(x)Bn(x0)Bn(x) e−λnτ ft(τ) dτ +
rg(x)

4π

∫ ∞

0

∞∫

θβ2

4(β−1)

e−λτ ft(τ) b(λ)ψ(x,−λ)ψ(x0,−λ) dλ dτ


 dx

=
∫

B




⌊ β
2 ⌋∑

n=0

rg(x)Bn(x)Bn(x0) Eα(−λnt
α) +

rg(x)
4π

∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(x0,−λ) dλ


 dx.

(4.14)
The change of the order of integration in (4.13) is justified by the Fubini-Tonelli Theorem (Rudin

1987, Theorem 8.8 (a)) since functions p1 and ft are non-negative. In contrast, change of the order of
integration in (4.14) cannot be justified by the Fubini-Tonelli Theorem since the integrand

g(λ, τ) = e−λτ ft(τ) b(λ)ψ(x,−λ)ψ(x0,−λ)

is not necessarily non-negative. To justify this step using the Fubini Theorem (Rudin 1987, Theorem 8.8
(b-c)), below we show that

∞∫

θβ2

4(β−1)

∞∫

0

|g(λ, τ)| dτ dλ < ∞. (4.15)

Let
h(λ) = Eα(−λtα) b(λ)ψ(x,−λ)ψ(x0,−λ).

Since

∞∫

θβ2

4(β−1)

∞∫

0

|g(λ, τ)|dτdλ =

∞∫

θβ2

4(β−1)

∞∫

0

e−λτft(τ)| b(λ)ψ(x,−λ)ψ(x0,−λ)| dτ dλ

=

∞∫

θβ2

4(β−1)

Eα(−λtα)|b(λ)ψ(x,−λ)ψ(x0,−λ)| dλ

=

∞∫

θβ2

4(β−1)

|h(λ)| dλ ,
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we need to show that
∞∫

θβ2

4(β−1)

|h(λ)| dλ < ∞.

According to Slater (1960) or Buchholz (1969)

2F0

(
−β

2
+ ik(λ),−β

2
− ik(λ); ; −x

γ

)
=
(γ
x

)− β+1
2

e
γ

2x W β+1
2 , ik(λ)

(γ
x

)
,

where W is given by

W β+1
2 , ik(λ)

(γ
x

)
=

π

sin (2iπk(λ))




M β+1
2 , −ik(λ)

(
γ
x

)

Γ
(

− β
2 + ik(λ)

) −
M β+1

2 , ik(λ)

(
γ
x

)

Γ
(

− β
2 − ik(λ)

)


 (4.16)

and M is the Whittaker function.
From (Buchholz 1969, p. 94, Equation (1))

M β+1
2 , ik(λ)

(γ
x

)
=

(
γ
x

) 1
2 +ik(λ)

Γ (1 + 2ik(λ))

(
1 +O(|2ik(λ)|−1)

)
, λ → ∞. (4.17)

Using (4.16) together with

Γ (2ik(λ)) Γ (1 − 2ik(λ)) =
π

sin (2iπk(λ))
we obtain

∣∣∣W β+1
2 , ik(λ)

(γ
x

)∣∣∣ ≤ |Γ (2ik(λ)) Γ (1 − 2ik(λ))|




∣∣∣M β+1
2 , −ik(λ)

(
γ
x

)∣∣∣
∣∣∣Γ
(

− β
2 + ik(λ)

)∣∣∣
+

∣∣∣M β+1
2 , ik(λ)

(
γ
x

)∣∣∣
∣∣∣Γ
(

− β
2 − ik(λ)

)∣∣∣


 .

Now, (4.17) implies

∣∣∣W β+1
2 , ik(λ)

(γ
x

)∣∣∣ ≤
(γ
x

) 1
2


 1

|Γ (1 + 2ik(λ))|
∣∣∣Γ
(

− β
2 + ik(λ)

)∣∣∣
+

1

|Γ (1 − 2ik(λ))|
∣∣∣Γ
(

− β
2 − ik(λ)

)∣∣∣




× |Γ (2ik(λ)) Γ (1 − 2ik(λ))|
(

1 +O(|2ik(λ)|−1)
)
, λ → ∞.

It follows that

|h(λ)| ≤
(
γ2

xx0

)− β
2

e
γ
2

(
1
x

+ 1
x0

)

 1

|Γ (1 + 2ik(λ))|
∣∣∣Γ
(

− β
2 + ik(λ)

)∣∣∣
+

1

|Γ (1 − 2ik(λ))|
∣∣∣Γ
(

− β
2 − ik(λ)

)∣∣∣




2

× Eα(−λtα)
1

|k(λ)|

∣∣∣∣∣∣

Γ
1
2 (β) Γ

(
− β

2 + ik(λ)
)

Γ (2ik(λ))

∣∣∣∣∣∣

2

|Γ (2ik(λ)) Γ (1 − 2ik(λ))|2
(

1 +O(|2ik(λ)|−1)
)
, λ → ∞.

Since
Γ(x+ iy) ∼

√
2π · |y|x− 1

2 · e−π
|y|
2 , |y| → ∞, (4.18)

from (Simon 2014, Equation (6.8)) for 0 < α < 1 we have

1
1 + Γ(1 − α)λ tα

≤ Eα(−λtα) ≤ 1
1 + Γ(1 + α)−1 λ tα

. (4.19)

It follows that

|h(λ)| ≤
(
γ2

xx0

)− β
2

e
γ
2

(
1
x

+ 1
x0

)
1

1 + Γ (1 + α)−1
λtα

Γ(β)
|k(λ)|

(
1 +O(|2ik(λ)|−1)

)
, λ → ∞

and therefore
|h(λ)| = O(λ− 3

2 ) as λ → ∞.

Finally, according to (Olver et al. 2010, p. 335), since λ 7→ ψ(x, λ) is an entire function for a fixed
x, λ 7→ |h(λ)| is also an entire function. This verifies (4.15) and completes the proof of the spectral
representation of the transition density of the fractional RG diffusion.
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4.4 Spectral representation of the fractional Fisher-Snedecor diffusion

The Fisher-Snedecor diffusion satisfies the SDE

dXt = −θ
(
Xt − β

β − 2

)
dt+

√
4θ

γ(β − 2)
Xt(γXt + β) dWt, t ≥ 0,

with θ > 0 and invariant density

fs(x) =
β

β
2

B
(

γ
2 ,

β
2

) (γx)
γ
2 −1

(γx+ β)
γ
2 + β

2

γ I〈0,∞〉(x) (4.20)

with parameters β > 2 and γ > 0, where the latter requirement ensures the existence of the stationary
mean β/(β−2). If β > 4 the variance of the invariant distribution exists and the autocorrelation function
of the FS diffusion is given by (4.6).

The generator is

G f(x) =
2θ

γ(β − 2)
x1− γ

2 (γx+ β)
γ
2 + β

2
d

dx

(
x

γ
2 (γx+ β)1− γ

2 − β
2 f ′(x)

)
=

=
2θ

γ(β − 2)
x(γx+ β)f ′′(x) − θ

(
x− β

β − 2

)
f ′(x), x > 0.

The structure of the spectrum of (−G) is the same as in the case of the RG diffusion, but with the cutoff

Λ =
θβ2

4(β − 1)
, β > 2.

The discrete part of the spectrum consists of the eigenvalues

λn =
θ

β − 2
n(β − 2n), n ∈

{
0, 1, . . . ,

⌊
β

4

⌋}
, β > 2. (4.21)

The corresponding eigenfunctions are FS polynomials given by the Rodrigues formula

F̃n(x) = x1− γ
2 (γx+ β)

γ
2 + β

2
dn

dxn

{
2n x

γ
2 +n−1 (γx+ β)n− γ

2 − β
2

}
, n ∈

{
0, 1, . . . ,

⌊
β

4

⌋}
, β > 2.

The normalized FS polynomials are
Fn(x) = Kn F̃n(x), (4.22)

where

Kn = (−1)n

√√√√√ B( γ
2 ,

β
2 )

n!(−1)n(2β)2nB
(

γ
2 + n, β

2 − 2n
)

Γ
(
n− β

2

)

Γ
(

2n− β
2

) =

= (−1)n

√√√√√
B( γ

2 ,
β
2 )

n!(2β)2nB
(

γ
2 + n, β

2 − 2n
)
[

n∏

k=1

(
β

2
+ k − 2n

)]−1

.

is the normalizing constant.
Since the absolutely continuous part of the spectrum is of the form (Λ,∞), its elements could be

parametrized as

λ = Λ +
2θk2

β − 2
=

2θ
β − 2

(
β2

16
+ k2

)
, β > 2, k > 0.

The spectral representation of the transition density of the FS diffusion with parameters γ > 2 (ensuring
the ergodicity), γ /∈ {2(m+ 1), m ∈ N}, and β > 2 consists of two parts

p1(x;x0, t) = pd(x;x0, t) + pc(x;x0, t). (4.23)

The discrete part of the spectral representation is

pd(x;x0, t) = fs(x)
⌊ β

4 ⌋∑

n=0

e−λnt Fn(x0)Fn(x),
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where fs(·) is the invariant density (4.20), eigenvalues λn are given by (4.21) and the normalized FS
polynomials are given by (4.22). The continuous part of the spectral representation is given in terms of
the elements λ of the absolutely continuous part of the spectrum of the operator (−G):

pc(x;x0, t) = fs(x)
1
π

∞∫

θβ2

8(β−2)

e−λt a(λ) f1(x0,−λ)f1(x,−λ) dλ,

where

k(λ) = −i
√
β2

16
− λ(β − 2)

2θ
, a(λ) = k(λ)

∣∣∣∣∣∣

B
1
2

(
γ
2 ,

β
2

)
Γ
(

− β
4 + ik(λ)

)
Γ
(

γ
2 + β

4 + ik(λ)
)

Γ
(

γ
2

)
Γ (1 + 2ik(λ))

∣∣∣∣∣∣

2

. (4.24)

Function f1 is a solution of the Sturm-Liouville equation Gf(x) = −λf(x), λ > 0, and is given by

f1(x) = f1(x, s) = 2F1

(
−β

4
+

√
β2

16
+
s(β − 2)

2θ
,−β

4
−
√
β2

16
+
s(β − 2)

2θ
;
γ

2
; −γ

β
x

)
, (4.25)

where 2F1 is the Gauss hypergeometric function, a special case of generalized hypergeometric function
pFq with p = 2 and q = 1, see Slater (1966) or Olver et al. (2010).

For more details on FS diffusion and the proof of this representation of the transition density we refer
to Avram et al. (2013b).

Theorem 4.2. The transition density of fractional FS diffusion is given by

pα(x, t;x0) =
⌊ β

4 ⌋∑

n=0

fs(x)Fn(x0)Fn(x) Eα(−λnt
α) +

fs(x)
π

∞∫

θβ2

8(β−2)

Eα(−λtα) a(λ) f1(x0,−λ), f1(x,−λ) dλ,

(4.26)
where the FS polynomials are given by equation (4.22), function f1 is given by (4.25), and a(λ) given by
(4.24).

Proof. Since the FS diffusion X(t) is independent of the time change Et, using (4.23) and (4.1) together
with the Fubini argument, we have:

P (Xα(t) ∈ B|Xα(0) = x0) =
∫ ∞

0

P (X1(τ) ∈ B|X1(0) = x0) ft(τ) dτ

=
∫ ∞

0

∫

B

p1(x, τ ;x0) ft(τ) dx dτ

=
∫

B

∫ ∞

0

(pd(x, τ ;x0) + pc(x, τ ;x0)) ft(τ) dτ dx (4.27)

=
∫

B




∞∫

0

⌊ β
4 ⌋∑

n=0

fs(x)Fn(x0)Fn(x) e−λnτ ft(τ) dτ +
fs(x)
π

∫ ∞

0

∞∫

θβ2

8(β−2)

e−λτ ft(τ) a(λ)f1(x0,−λ) f1(x,−λ) dλ dτ


 dx

=
∫

B




⌊ β
4 ⌋∑

n=0

fs(x)Fn(x0)Fn(x) Eα(−λnt
α) +

fs(x)
π

∞∫

θβ2

8(β−2)

Eα(−λtα) a(λ) f1(x0,−λ) f1(x,−λ) dλ


 dx.

(4.28)
Change of the order of integration in (4.27) is justified by the Fubini-Tonelli Theorem since functions
p1 and ft are non-negative. Change of the order of integration in (4.28) cannot be justified by the
Fubini-Tonelli Theorem as in (4.27) since the integrand

g(λ, τ) = e−λτ ft(τ) a(λ) f1(x0,−λ) f1(x,−λ)
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is not necessarily non-negative. In order to use the Fubini Theorem, we need to show that
∞∫

θβ2

8(β−2)

∞∫

0

|g(λ, τ)| dτ dλ < ∞. (4.29)

Let
h(λ) = Eα(−λtα) a(λ) f1(x0,−λ) f1(x,−λ).

Since
∞∫

θβ2

8(β−2)

∞∫

0

|g(λ, τ)| dτ dλ =

∞∫

θβ2

8(β−2)

∞∫

0

e−λτ ft(τ) |a(λ) f1(x0,−λ) f1(x,−λ)| dτ dλ

=

∞∫

θβ2

8(β−2)

Eα(−λtα) |a(λ) f1(x0,−λ) f1(x,−λ)| dλ

=

∞∫

θβ2

8(β−2)

|h(λ)| dλ

we need to show that
∞∫

θβ2

8(β−2)

|h(λ)| dλ < ∞.

From (Erdelyi 1981, p. 77, Equation (17)),

f1(x,−λ) =
Γ
(

1 + β
4 + ik(λ)

)
Γ
(

γ
2

)

Γ
(

1
2

)
Γ
(

γ
2 + β

4 + ik(λ)
) · 2− β

2 −1 ·
(
1 − eξ

)− γ
2 + 1

2 ·
(
1 + eξ

) γ
2 + β

2 − 1
2

· (ik(λ))− 1
2 ·
(
eξ( β

4 +ik(λ)) + eiπ( γ
2 − 1

2 ) · eξ( β
4 −ik(λ))

) (
1 +O(|k(λ)|−1)

)
, λ → ∞,

where eξ = 1 + 2γ
β x+

√
4γ
β x(1 + γ

βx).
It follows that

|f1(x,−λ)| ≤

∣∣∣∣∣∣

Γ
(

1 + β
4 + ik(λ)

)
Γ
(

γ
2

)

Γ
(

1
2

)
Γ
(

γ
2 + β

4 + ik(λ)
)

∣∣∣∣∣∣
2− β

2 −1 · |1 − eξ|− γ
2 + 1

2 · |1 + eξ| γ
2 + β

2 − 1
2

× |k(λ)|−
1
2 · eξ β

4

(
1 + |eiπ( γ

2 − 1
2 )|
) (

1 +O(|k(λ)|−1)
)
, λ → ∞.

Now we have

|h(λ)| ≤ Eα(−λtα)

∣∣∣∣∣∣

B
1
2

(
γ
2 ,

β
2

)

Γ
(

1
2

)

∣∣∣∣∣∣

2 ∣∣∣∣∣∣

Γ
(

− β
4 + ik(λ)

)
Γ
(

1 + β
4 + ik(λ)

)

Γ (1 + 2ik(λ))

∣∣∣∣∣∣

2

2−β−2 · |(1 − eξ)(1 − eξ0)|− γ
2 + 1

2

×
∣∣(1 + eξ)(1 + eξ)

∣∣
γ
2 + β

2 − 1
2 · e(ξ+ξ0) β

4

(
1 + |eiπ( γ

2 − 1
2 )|
)2 (

1 +O(|k(λ)|−1)
)
, λ → ∞.

Using (4.18) and (4.19) we obtain

|h(λ)| ≤ 1
1 + Γ(1 + α)−1 λ tα

·B
(
γ

2
,
β

2

)
· |k(λ)|−1 2−β−2 · |(1 − eξ)(1 − eξ0)|− γ

2 + 1
2

×
∣∣(1 + eξ)(1 + eξ)

∣∣
γ
2 + β

2 − 1
2 · e(ξ+ξ0) β

4

(
1 + |eiπ( γ

2 − 1
2 )|
)2 (

1 +O(|k(λ)|−1)
)
, λ → ∞.

It follows that
|h(λ)| = O(λ− 3

2 ), as λ → ∞.

Finally, according to (Erdelyi 1981, p. 68), λ 7→ f1(x, λ) is an entire function for a fixed x and so
λ 7→ |h(λ)| is also an entire function. This verifies (4.29) and completes the proof of the spectral
representation of the transition density of the fractional FS diffusion.
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5 Stationary distributions of the fractional reciprocal gamma

and Fisher-Snedecor diffusions

We now show that as t → ∞, the distribution of Xα(t) approaches the stationary distribution of the
non-fractional FS or RG Pearson diffusion, respectively.

Theorem 5.1. Let Xα(t) be reciprocal gamma or Fisher-Snedecor fractional diffusion defined by (4.2)
and let pα(x, t) be the density of Xα(t). Assume that Xα(0) has a twice continuously differentiable density
f that vanishes at infinity. Then

pα(x, t) → m(x) as t → ∞,

where m(·) is the density of the non-fractional stationary reciprocal gamma or Fisher-Snedecor diffusion,
respectively.

Proof. Using the definition of the transition density pα(x, t; y) (4.3), we have

pα(x, t) =
∫ ∞

0

pα(x, t; y)f(y)dy

and therefore it suffices to prove that

pα(x, t; y) → m(x) as t → ∞

for fixed x and y. This together with the fact that f(y) and pα(x, t; y) are density functions then yields
∫ ∞

0

pα(x, t; y)f(y)dy → m(x)
∫ ∞

0

f(y)dy = m(x) as t → ∞.

We treat the reciprocal gamma and Fisher-Snedecor cases separately.

Reciprocal gamma diffusion

Since λ0 = 0, it follows that

pα(x, t; y) =
⌊ β

2 ⌋∑

n=0

rg(x)Bn(x) Bn(y) Eα(−λnt
α) +

rg(x)
4π

∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(y,−λ) dλ

= rg(x) +
⌊ β

2 ⌋∑

n=1

rg(x)Bn(x)Bn(y) Eα(−λnt
α) +

rg(x)
4π

∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(y,−λ) dλ.

For a constant c such that

c ≥ 4(β − 1)
θβ2tα

+ Γ(1 − α) ≥ 1
λtα

+ Γ(1 − α) > 0

from (4.19) we obtain

1
cλtα

≤ 1
1 + Γ(1 − α)λtα

≤ Eα(−λtα) ≤ 1
1 + Γ(1 + α)−1λtα

.

Now it follows that

1
tα

∞∫

θβ2

4(β−1)

1
cλ

b(λ)ψ(x,−λ)ψ(y,−λ) dλ ≤
∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(y,−λ) dλ,

∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(y,−λ) dλ ≤ 1
tα

∞∫

θβ2

4(β−1)

Γ(1 + α)
λ

b(λ)ψ(x,−λ)ψ(y,−λ) dλ.
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Letting t → ∞ yields

∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(y,−λ) dλ → 0 , t → ∞

and
⌊ β

2 ⌋∑

n=1

rg(x)Bn(x)Bn(y) Eα(−λnt
α) → 0, t → ∞.

Therefore
pα(x, t; y) → rg(x), x > 0 as t → ∞.

Fisher-Snedecor diffusion

Since λ0 = 0, it follows that

pα(x, t; y) =
⌊ β

4 ⌋∑

n=0

fs(x)Fn(y)Fn(x) Eα(−λnt
α) +

fs(x)
π

∞∫

θβ2

8(β−2)

Eα(−λtα) a(λ) f1(y,−λ) f1(x,−λ) dλ

= fs(x) +
⌊ β

4 ⌋∑

n=1

fs(x)Fn(y)Fn(x) Eα(−λnt
α) +

fs(x)
π

∞∫

θβ2

8(β−2)

Eα(−λtα) a(λ) f1(y,−λ) f1(x,−λ) dλ.

Let c be a constant such that

c ≥ 8(β − 2)
θβ2tα

+ Γ(1 − α) ≥ 1
λtα

+ Γ(1 − α) > 0.

From (4.19) we obtain

1
cλtα

≤ 1
1 + Γ(1 − α)λtα

≤ Eα(−λtα) ≤ 1
1 + Γ(1 + α)−1λtα

.

Therefore,

1
tα

∞∫

θβ2

8(β−2)

1
cλ

a(λ) f1(y,−λ) f1(x,−λ) dλ ≤
∞∫

θβ2

8(β−2)

Eα(−λtα) a(λ) f1(y,−λ) f1(x,−λ) dλ,

∞∫

θβ2

8(β−2)

Eα(−λtα) a(λ) f1(y,−λ) f1(x,−λ) dλ ≤ 1
tα

∞∫

θβ2

8(β−2)

Γ(1 + α)
λ

a(λ) f1(y,−λ) f1(x,−λ) dλ.

Letting t → ∞ yields

∞∫

θβ2

8(β−2)

Eα(−λtα) a(λ) f1(y,−λ) f1(x,−λ) dλ → 0, as t → ∞

and
⌊ β

4 ⌋∑

n=1

fs(x)Fn(y)Fn(x) Eα(−λnt
α) → 0, as t → ∞.

Therefore
pα(x, t; y) → fs(x), x > 0 as t → ∞.
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6 Correlation structure of fractional Pearson diffusions

Assume that X(t) is a stationary Pearson diffusion and that its parameters are such that the stationary
distribution has finite second moment. Then the correlation function of X(t) is given by

Corr [X(t), X(s)] = exp(−θ|t− s|), (6.1)

where θ is the autocorrelation parameter. Since the autocorrelation function (6.1) falls off exponentially,
Pearson diffusions exhibit short-range dependence.

We say that fractional Pearson diffusion Xα(t) defined by (4.2) is in the steady state if it starts from
its invariant distribution with the density m. Then the autocorrelation function of Xα(t) = X(Et) is
given by

Corr [Xα(t), Xα(s)] = Eα(−θtα) +
θαtα

Γ(1 + α)

s/t∫

0

Eα(−θtα(1 − z)α)
z1−α

dz (6.2)

for t ≥ s > 0.
The proof of this fact for non-heavy-tailed fractional Pearson diffusions is given in Leonenko et al.

(2013a). The proof does not depend on the type of invariant Pearson distribution, and therefore the same
proof can be repeated for all three heavy-tailed fractional Pearson diffusions, provided that the tails are
not too heavy so that the second moment of the corresponding heavy-tailed Pearson distribution exists.

The autocorrelation function (6.2) falls off like power law with exponent α ∈ (0, 1), i.e. for any fixed
s > 0

Corr[Xα(t), Xα(s)] =
1

tαΓ(1 − α)

(
1
θ

+
sα

Γ(1 + α)

)
(1 + o(1)) as t → ∞.

Therefore, unlike non-fractional Pearson diffusions, their fractional analogues are long-range dependent
processes in the sense that their correlation functions decay slowly.

7 Strong solutions of time-fractional backward Kolmogorov equa-

tion

To establish the main result of this section, we need the following Lemma.

Lemma 7.1. For the reciprocal gamma and Fisher-Snedecor diffusions, the family of operators

Ttg(y) = E[g(X(t)) |X(0) = y], t ≥ 0

forms a strongly continuous bounded (C0) semigroup on the space of bounded continuous functions g on
[0,∞) vanishing at infinity.

Proof. The proof of this Lemma is the same as for the non-heavy-tailed diffusions considered in Leonenko
et al. (2013b). We provide it here for completeness. The semigroup property follows from the Chapman-
Kolmogorov equation for the reciprocal gamma and Fisher-Snedecor diffusions, and uniform boundedness
of the semigroup on the above Banach space of continuous functions with the supremum norm follows
from (Friedman 1975, Theorem 3.4). Therefore, the family of operators {T (t), t ≥ 0} forms a uniformly
bounded semigroup on the respective Banach space of continuous functions, with the supremum norm.
Next, we show the pointwise continuity of the semigroup. For any fixed y ∈ (l, L)

T (t)g(y) − g(y) =
∫ L

l

p1(x, t; y)(g(x) − g(y))dx

=
∫

|x−y|≤ǫ∩(l,L)

p1(x, t; y)(g(x) − g(y))dx

+
∫

|x−y|>ǫ∩(l,L)

p1(x, t; y)(g(x) − g(y))dx

≤ sup
|x−y|≤ǫ∩(l,L)

|g(x) − g(y)|
∫

|x−y|≤ǫ∩(l,L)

p1(x, t; y)dx

+ C

∫

|x−y|>ǫ∩(l,L)

p1(x, t; y)dx
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since the function g is bounded. Since
∫

|x−y|>ǫ∩(l,L)
p1(x, t; y)dx → 0 as t → 0 for any ǫ > 0 (see Karlin

& Taylor (1981), p. 158), the second term in the above expression tends to zero as t → 0. The first term
is bounded by sup|x−y|≤ǫ∩(l,L) |g(x) − g(y)|, which tends to zero as ǫ → 0 because of the continuity of g.
Pointwise continuity then implies strong continuity in view of (Rogers & Williams 1994, Lemma 6.7).

The next result gives a strong solution to the fractional Cauchy problem associated with the time-
fractional backward Kolmogorov equation.

Theorem 7.2. For any g from the domain of the generator G specified in (2.5), a strong solution to the
fractional Cauchy problem (3.1) is given by

q(t; y) =
∫ L

l

pα(x, t; y)g(x)dx, (7.1)

where the transition density pα is given by equation (4.12) in the reciprocal gamma case and by equation
(4.26) in the Fisher-Snedecor case.

Proof. The proof of this Theorem consists of several steps. First, Lemma 7.1 and (Arendt et al. 2011,
Proposition 3.1.9) show that q(t; y) = T (t)g(y) solves the non-fractional Cauchy problem (3.2). Second,
strong continuity of the semigroup in the Banach space of continuous functions with the supremum norm
and Theorem 3.1 in Baeumer & Meerschaert (2001) show that

Stg(y) =

∞∫

0

Tug(y) ft(u) du, (7.2)

where ft is the density of the inverse stable subordinator Et given by (4.1), solves the fractional Cauchy
problem (3.2) for any g from the domain of the generator G.

Third, since

Stg(y) =

∞∫

0

Tu g(y) ft(u) du

=

∞∫

0

E[g(X(t)) |X(0) = y] ft(u) du

= E[g(X(Et)) |X(E0) = y]

= E[g(Xα(t)) |Xα(0) = y]

where E0 = 0 almost surely and

E[g(Xα(t)) |Xα(0) = y] =
∫
pα(x, t; y) g(x) dx,

a strong solution to (3.1) is given by (7.1).

Remark 7.3. The explicit expressions for strong solutions of the fractional Cauchy problem associated
with the generators of the reciprocal gamma and Fisher-Snedecor diffusions are:

urg(t; y) =
⌊ β

2 ⌋∑

n=0

Bn(y) Eα(−λnt
α)

∞∫

0

Bn(x) rg(x) g(x) dx

+

∞∫

0

rg(x) g(x)
4π

∞∫

θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(y,−λ) dλ dx
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and

ufs(t; y) =
⌊ β

4 ⌋∑

n=0

Fn(y)Eα(−λnt
α)

∞∫

0

Fn(x) fs(x) g(x) dx

+
1
π

∞∫

0

fs(x) g(x)

∞∫

θβ2

8(β−2)

Eα(−λtα)a(λ)f1(y,−λ)f1(x,−λ)dλ dx.

The explicit expressions for strong solutions of the Cauchy problem for the fractional Fokker-Planck
equations were obtained in Leonenko et al. (2013b) for all three non-heavy-tailed fractional Pearson
diffusions using their spectral properties. Since the structure of the spectrum for the reciprocal gamma
and Fisher-Snedecor diffusions is much more complex than in the non-heavy-tailed cases, strong solutions
of Cauchy problems associated with the fractional Fokker-Planck equation are not presented here. Below
we state the result on the L2 solutions. Proving that these are also strong solutions that hold pointwise
remains an open problem at this time.

Theorem 7.4. The fractional Cauchy problem

∂αq(x, t)
∂tα

= − ∂

∂x
(µ(x)q(x, t)) +

1
2
∂2

∂x2

(
σ2(x)q(x, t)

)
, q(x, 0) = f(x), (7.3)

where f is twice continuously differentiable function that vanishes at zero and has a compact support, is
solved by

q(x, t) =
∫ ∞

0

pα(x, t; y)f(y)dy. (7.4)

The transition density pα is given by equation (4.12) in the reciprocal gamma case and by equation (4.26)
in the Fisher-Snedecor case, and the solution is in the following sense: for every t > 0, q(x, t) given by
(7.4) satisfies (7.3), and the equality holds in the space of functions {q(·, t) ∈ L2 ((0,∞))}.

Proof. As discussed in Section 2, the generator of the reciprocal gamma and Fisher-Snedecor diffusions de-
fined on the space of functions (2.5) with (l, L) = (0,∞) is self-adjoint. We consider the space L2((0,∞))
without the weight m, and the generator defined on a subset of its domain, namely on the set of functions
f ∈ L2 ((0,∞)) ∩ C2 ((0,∞)) such that f vanishes at 0 and has compact support.

The Fokker-Planck operator

Lf(x) = − ∂

∂x
(µ(x)f(x)) +

1
2
∂2

∂x2

(
σ2(x)f(x)

)

is adjoint to the generator of the diffusion G on this subset of L2((0,∞)). The semigroup Tt is a C0-
semigroup in this space as well as in the space of continuous functions with the supremum norm. From
(Pazy 1983, Corollary 10.6), the adjoint semigroup T ∗

t

T ∗
t f(x) =

∫ L

l

p(x, t; y)f(y)dy

is the C0-semigroup as well, and its generator is the Fokker-Planck operator.
Since T ∗

t f solves the non-fractional Cauchy problem for the Fokker-Planck equation (Arendt et al.
2011, Proposition 3.1.9), the application of Theorem 3.1 in Baeumer & Meerschaert (2001) completes the
proof.
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