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Abstract

The development of disturbances in plane channel flow between compliant

walls is studied. It is well known that compliant walls have the ability to

stabilise the Tollmien-Schlichting instability arising from the flow. However,

given the wave-bearing nature of compliant walls, wall-based instabilities can

be generated. In the absence of any modal interactions, the predominant wall-

based instabilities are those known as divergence and travelling wave flutter

which have their origins in the free-waves that can propagate in either direction

along a compliant wall in the absence of any fluid.

The treatment of the problem at hand is mainly numerical, in particular

two numerical approaches are used. The first involves solving the coupled

fluid flow/compliant wall system of stability equations for disturbances with a

normal mode form and the second is through direct numerical simulations for

a finite compliant wall.

The results presented here show that the normal mode solutions of the gov-

erning equations can provide excellent predictions for the wavenumbers that

characterise the compliant wall displacements for the wall-based modes that

arise in the simulations. This documents the onset of the wall-based instabili-

ties using the current simulation method and this has not been systematically

studied before. Additionally, and perhaps most interestingly, they can also

predict some aspects of the contribution from end effects for finite wall simu-

lations even though the numerical procedure used to obtain said solutions has

been designed for an infinite compliant wall.

Finally, cases which display different types of instability in action and the

range of possibilities for the spatial and temporal evolution are presented.

Modal interactions between wall-based modes and those that can persist in

a rigid channel are discussed and used to analyse the onset of global and

absolute instability. These instabilities are studied from three different points

of view: normal mode solutions of the fluid flow/compliant wall system, two-

dimensional global mode computations and the direct numerical simulations.
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Chapter 1

Introduction

1.1 History

In 1936, a British zoologist by the name of Sir James Gray proposed a

paradox pertaining to the elaborate swimming of dolphins [58]. This paradox,

later termed Gray’s Paradox, was posed to question how dolphins can attain

high swimming speeds and accelerations with what seems to be insufficient

muscle mass capable of overcoming the hydrodynamics drag forces. In light of

his work regarding their muscular physiology, he concluded that the dolphins

had to possess skins with the capacity to reduce drag.

Gray employed a rigid-body hydrodynamic model in order to determine

the drag forces on dolphins at high swimming speeds. Gray’s conclusion was

phrased thusly: “If the resistance of an actively swimming dolphin is equal to

that of a rigid model towed at the same speed, the muscles must be capable of

generating energy at a rate at least seven times greater than that of other types

of mammalian muscle.”

1



Chapter 1. Introduction

The paradox was posed largely due to a flawed assumption by Gray which

stated that the swimmer had to expend muscle energy in order to overcome

the drag forces in the direction of swimming. This statement was later revised

from a mathematical, rather than an experimental, point of view by Bale et al.

[4]. They showed that undulatory swimmers (like most sea dwelling cetaceans

as depicted in Figure 1.1) use their muscle power in order to undulate the body

which results in both drag and thrust simultaneously. Therefore, the power

generated by the muscles should be equated to the power needed in order to

deform the body and not to the drag forces.

Figure 1.1: Schematic representation of the undulatory motion of cetaceans

(side view).

Many decades after the initial proposal of Gray’s Paradox, Fish [40] [41]

[43] [45], Fish & Rohr [42] and Fish & Hui [44] set out to investigate this para-

dox experimentally and test whether there actually is any skin-based trickery

employed by the dolphin. They used particle image-velocometry to show that

dolphins could in fact exert 10 to 20 times the burst forces predicted by Gray

[58]. From their work, it seemed that the basic assertion of the paradox was

flawed due to estimation errors in measuring the dolphin’s swimming perfor-

mance and the data extracted from the muscles. This accumulation of research

into the subject area dispelled Gray’s paradox and the dolphin skin did not

seem to be the only contributing factor in the high swimming speeds.

2



1.1. History

One of the very first experimentalists in the field was a German aeronau-

tical engineer, Max Otto Kramer. He approached the problem from a more

experimental point of view and published a pioneering series of papers outlin-

ing his analysis and experiments [75] [76] [77] [78]. The results claimed that for

a compliant wall of his own making (which is known as the Kramer Coating),

the hydrodynamic drag could be reduced by as much as 30% due to boundary

layer stabilisation. This raised great interest within the fluid dynamics com-

munity since the results seemed very optimistic. The experiments conducted

by Kramer were performed in Long Beach Harbour, California which was not

ideal since this made his experiments difficult to reproduce under more con-

trolled laboratory conditions. Even when the experiments could be duplicated,

the results were very modest and did not match Karmer’s apparently overly

optimistic original findings.

In the years that followed the “Kramer Controversy”, many authors like

included Benjamin [5] [6] [7] and Landahl [81] took it in their stride to study

the matter further. Their analysis did indeed find that flexible walls were capa-

ble of delaying the transition to turbulence and with time, some of Kramer’s

claims were substantiated by further research into the topic. Carpenter &

Garrad [21] [22] later extended the analysis further by studying the different

instabilities that arise in fluid flows with compliant boundaries. They com-

pared the properties of different wall models and their respective advantages

and disadvantages, they also investigated the nature and growth (or suppres-

sion thereof) of the different instabilities in compliant wall bound flows. This

was later followed by carefully conducted experiments which support some of

Kramer’s findings (accounts of these works are outlined in Gad-el-Hak [48],

Gaster [55] and Fisher et al. [82]).

3



Chapter 1. Introduction

1.2 Use of Compliant Walls

1.2.1 Practicality

The use of compliant walls for boundary layer manipulation is quite advan-

tageous from both financial and technological points of view. The alternative

is to use active compliant walls which respond actively to instabilities as they

develop. This requires the use of elaborate equipment such as sensors, pres-

sure pads and actuators which are not necessarily the most economical choice.

Passive compliant walls, on the other hand, can be relatively inexpensive to

manufacture and do not require such luxuries.

1.2.2 Applications

Underwater Travel

The study of dolphin skins was the main motivation for flows with com-

pliant boundaries so it only stands to reason that applications in underwater

travel would be a natural extension. Some of this research gained momen-

tum during the height of the Cold War in order to develop faster submarines,

torpedoes and ships [41] [43] [46].

Artificial compliant skins can also be used for manufacturing swimsuits for

enhanced swimming; wetsuits made of thick rubberised materials (over 5mm in

thickness) with small fins have been suggested to improve swimming speeds and

allow a “better grip on the water” while swimming. These uniforms have been

deemed very effective, however they were once banned by the International

Triathlon Union since they are considered as being “outside the spirit of fair

play in wetsuit design” [35].

4



1.2. Use of Compliant Walls

Engineering

Though compliant walls can be used to improve swimming speeds in water,

the same cannot be said for air-borne applications. In theory, compliant coat-

ings can suppress certain instabilities for use in aeronautical applications but

in practice, the balance between the different wall parameters would result in

a very delicate compliant wall which would be far too impractical to achieve

any desirable effects (according to Carpenter [19]).

Additionally, the design and manufacture of compliant walls is not without

its difficulties. When it comes to large-scale applications, if a surface is to be

rigid, then its stiffness can be scaled up for reasons pertaining to “health &

safety” without any consequences to the final design. However when manufac-

turing flexible surfaces, the wall properties have to be reproduced exactly as

the theory states lest the results would not be as promising.

Anatomy & Physiology

The study of compliant walls can help in modelling certain physiological

phenomena such as blood flow through vessels and wheezing in asthmatics.

The human trachea (windpipe) and blood vessels can be modelled as flexible

tubes so studying the effect of wall flexibility on fluid flows through said pipes

can shed light on the mechanisms that affect the tubes’ collapse, for example.

The study of compliant walls in human anatomy has been studied exten-

sively from a firm mathematical grounding by many authors. The studies

focussed mainly on flows in flexible pipes and their applications in blood and

air flow and the conditions that lead to the pipe’s collapse. Some of this anal-

ysis is presented in several publications including, but not limited to, Gavriely

et al. [57], Grotberg & Davies [60], Grotberg [61], Grotberg & Shee [63] and

5
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Moriarty & Grotberg [101]. A general overview of the whole area was also

given in Grotberg & Jensen [62].

Ecology

In the natural world, modelling of compliant walls can help investigate

how fluid flows erode and alter the state of riverbeds. One of these studies

was conducted by Vignaga et al. [126] where they considered a bacterial bio-

film covering a riverbed which acted as a compliant surface for the river to

flow over. According to experimental evidence, the bio-film can break for river

flow speeds higher than a particular threshold due to the instabilities arising

from the wall’s flexibility. Thus, this breakage can expose the riverbed and

potentially accelerating the rate of riverbed erosion.

1.3 Classification of Instabilities

In the study of hydrodynamic instabilities over compliant walls, there are

different types of instabilities which fall under three classifications: wall/flow

based, energy based and propagation based. The first is with regards to the

coupled fluid/compliant wall system which divides the instabilities to those

which arise due to the fluid flow and those arising from the compliant wall itself.

The second and third classifications pertain to hydrodynamic instabilities in

general, the former considers the irreversible energy exchange into and out

of the flow while the latter describes the direction in which the instability

travels. It should be noted that these classifications aim to distinguish between

the different mechanisms at play for the instabilities that arise in the coupled

fluid/compliant wall system.

6



1.3. Classification of Instabilities

1.3.1 Wall/Flow Based Classification

This classification was investigated at great lengths initially by Carpenter

& Garrad [21] [22] where the instabilities were divided according to where they

proliferate, in the flow or on the wall itself. Since both the wall and the flow

are wave bearing media, the instabilities that arise from the flow have to be

coupled with those arising from the wall itself.

Flow-Based Instabilities

These instabilities, which and are referred to as Tollmien-Schlichting waves/instabilities

(hereafter denoted TS), arise due to the fluid flow even over rigid walls. This

type of instability is one of the more common ways in which a laminar bound-

ary layer becomes turbulent. The effect of wall compliance on the growth and

decay of TSI instabilities was addressed in great detail by Carpenter & Garrad

[21], Davies [28] and Davies & Carpenter [31].

Wall-Based Instabilities/Flow Induced Surface Instabilities

Since the compliant wall is a wave bearing medium, it has the ability to

carry a wave known as the free-wave, even in the absence of fluid flow. Car-

penter & Garrad [21] [22] studied the wall-based modes (also known as flow-

induced surface instabilities and denoted FISI ) extensively and found two most

prominent modes:

∗ Travelling Wave Flutter (hereafter TWF): This instability only exists

when there is a shear in the flow and travels downstream with a speed

similar to that of the free-wave.

IWhen the wall is compliant, the TS instability should technically be referred to as a
modified flow-based mode but it will be referred to as TS instead.

7
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∗ Divergence (Hydroelastic) Instability: This wall-based instability sets in

at very small phase speeds and can also occur when the boundary layer

is turbulent (as suggested by Carpenter et al. [19]). Therefore, the di-

vergence mode can be described as an instability that arises when the

restorative elastic forces are overwhelmed by the destabilising hydrody-

namic forces. Thus, the divergence instability is notorious for being a

dangerous mode and can cause physical damage to the compliant walls

[47].

1.3.2 Energy-Based Classification

For the study of flows with compliant boundaries, Benjamin [5] [6] and

Landahl [81] classified instabilities according to the irreversible energy trans-

fer that takes place between the compliant wall and the flow. These were

referred to by three different classes: Class A (negative energy waves), B (pos-

itive energy waves) and C. These have also been referred to differently by

Sen & Arora [116] as Class TS (Tollmien-Schlichting), Class R (resonant) and

Class KH (Kelvin-Helmholtz). This classification was introduced initially by

Benjamin [5] after having been inspired by Kramer’s results [75] and it was

believed that recognising these three distinct forms of instability provides a

complete interpretation of all the possibilities that could arise in this context.

A brief description is presented here but more details are given in Benjamin

[5] [6], Landahl [81] and Sen & Arora [116].

Class A or Class TS

This type of wave is slightly counter intuitive since it is stabilised by an irre-

versible energy transfer into the flow. Therefore, this class of wall instabilities

can be stabilised by high wall flexibility but destabilised by wall damping.

8
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Class B or Class R

This type of wave is the opposite of Class A where the wall instability is

destabilised by an irreversible energy transfer into the flow. It should be noted

that flows between compliant walls are notorious for having a very rich and

complicated behaviour which can sometimes be counter intuitive.

Class C or Class KH

Class C instabilities are indifferent to irreversible energy transfer between

the flow and the wall however, they can manifest if the wall is too flexible.

1.3.3 Propagation-Based Classification

This classification of instabilities is to demonstrate how the modes dis-

cussed grow in the flow. When a disturbance is excited, an instability could

either travel downstream (convective instability) or it could grow in both the

upstream and downstream directions (absolute instability). Davies [29] and

Yeo et al. [132] [133] investigated these different types of instabilities for flows

with compliant walls.

Absolute Instability

An instability is absolute if at least one of the modes has a zero group

velocity at onset hence causing the instability to grow both upstream and

downstream. Therefore for any point in the flow, the disturbance will be

experienced at some point in time and will persist for all future times. Note,

however, that having a zero group velocity is a necessary but not a sufficient

condition for absolute instability (i.e. if the flow is absolutely unstable, then

there has to be a mode with a zero group velocity but the opposite is not

necessarily true). A depiction of the absolute growth of a disturbance is shown

9



Chapter 1. Introduction

in Figure 1.2(a) where the disturbance grows upstream and downstream from

the point of excitation.

Convective Instabilities

An instability is convective when the disturbance travels downstream from

the point of excitation therefore for any point in the downstream direction,

the instability is experienced for a period of time then it will convect away,

leaving the points in its wake to return to their undisturbed states (as shown

in Figure 1.2(b)).

Figure 1.2: Depiction of (a) absolute and (b) convective instabilities. The

arrows denote the direction of growth.

Different instabilities can interact and coalesce to form new modes that can

be even more effective at destabilising flows than the individual modes that

make them up (see for example [23] [82] [116]). For instance, TS and TWF can

coalesce to give rise to a transitional instability, this arises as a result of using

excessive damping for controlling some of the instabilities. Another interac-

tion can happen between TWF and divergence to form a powerful flutter-type

instability.
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In terms of the energy transfer between the wall and the flow, the “optimal”

compliant wall has to be of high flexibility and low damping in order to suppress

the growth of Class A instabilities. On the other hand, the damping has to

be high enough to suppress Class B modes while the flexibility has to be low

enough to suppress Class B and C instabilities.

1.4 Effect of Wall Compliance on Instabilities

It has been documented that compliant walls can stabilise the TS instability

very effectively given the appropriate choice of wall parameters (see for example

[5] [6] [7] [21] [22] [81]) but as mentioned earlier, both the wall and the flow

can carry waves independently. In this case, suppressing the flow-based TS

mode by using a compliant wall can also risk introducing more instabilities

in the process (namely the wall-based modes). However, the compliant wall

parameters can be modified appropriately in order to delay the onset of wall-

based modes and avoid any interaction between them while still stabilising

TS (at least within a particular region of the parameter space). This gives

greater flexibility when choosing the wall parameters since they can be modified

appropriately to achieve “optimal” suppression of the flow-based modes while

still controlling the wall-based ones.

1.5 Flow Configuration

Several rigid/compliant wall configurations were considered over the years.

For instance, Carpenter & Garrad [21] [22], Green & Ellen [59] and Benjamin

[5] [6] [7] considered compliant walls that extend infinitely while others like

Burke [12], Wiplier & Ehrenstein [131] and Davies & Carpenter [31] only took

11



Chapter 1. Introduction

a finite compliant wall section inserted between two rigid walls.

In Carpenter [15] [17], a compliant wall each assembled out of several com-

pliant panels, each of these sections has wall parameters to suit their local

flow environments. According to numerical results, compliant walls as short

as a single TS wavelength can be very effective at suppressing the growth of

(or even stabilise) the flow-based instability, therefore having a succession of

compliant wall sections each with different wall properties could, at least in

theory, delay the transition to turbulence indefinitely.

1.5.1 Basic Flow Profile: The Plane Channel Flow

For the work presented here, the basic flow configuration is the plane chan-

nel flow (or Poiseuille flow), i.e. a fluid flowing between two parallel walls (be

they rigid or compliant) extending infinitely in the streamwise and spanwise

directions, therefore the undisturbed velocity profile is parabolic. In order to

simplify the problem further, the flow can be assumed to be gravity-driven

rather than having a mean pressure gradient driving the flow, in other words,

the channel can be assumed to be vertical so the fluid flow is driven by gravity.

Initially, a plane channel flow between two infinite compliant walls is consid-

ered however in Chapter 4, direct numerical simulations will only be conducted

for a finite compliant wall section.

The plane channel flow provides a relatively simpler problem compared

to the flow over a flat plate (Blasius boundary layer) since the flow profile is

exactly parallel and no further assumptions need to be imposed on the basic

state. Also, the presence of a wall-bound shear flow results in the growth of TS

instabilities which eventually leads to turbulence. Flows over a flat compliant

plate were studied by authors such as Carpenter [17], Landahl [81], Lee et al.
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1.5. Flow Configuration

[82], Sen & Arora [116] and Wang et al. [127].

Other basic flow profiles were considered by several studies in order to

model different phenomena, for instance flexible tubes were studied by Gavriely

et al. [57], Grotberg [61], Grotberg & Jansen [62] and Moriarty & Grotberg

[101].

The plane channel flow itself has had its fair share of modifications, for

instance, Gajjar & Sibanda [50] considered a flow between two parallel walls

where one of the walls is compliant while the other is rigid. Pedley & Luo [94]

[95] [96] [107] also considered channels with one rigid boundary but the other

wall had a finite compliant wall section (rather than being infinite). Vignaga

et al. [126] considered the plane channel flow where one wall is compliant

while the other boundary is free (exposed to the atmosphere). Other, more

complicated, plane channel flows were also considered by Guaus & Bottaro [64]

where the plane channel flow, with both walls compliant, was curved rather

than being straight.

1.5.2 Wall Model

Over the years, many different compliant wall models have been used to

illustrate the workings of a flexible surface. Some of these models are shown

in Figure 1.3.
In this thesis, the spring-backed plate model (Figure 1.3(b)) is used to

model the compliant wall. The wall consists of a set of springs held perpen-

dicularly on a rigid wall and are attached to a thin flexible membrane with

a substrate filling the central cavity. Carpenter & Garrad [21] [22] discussed

the different materials that can occupy the region between the thin plate and

rigid wall, namely, the substrate material. This can either be a soft solid or

13
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Figure 1.3: Different compliant wall models (taken from Gad-el-Hak [47]).

a fluid is inviscid, viscous or viscoelastic and usually has a different viscosity

and density compared to the fluid in the flow. According to their findings,

an inviscid fluid substrate will stabilise the flow but for a viscous or viscoelas-

tic fluid substrate, the flow could be destabilised. (It should be noted that

it will be assumed that the motion of the springs has negligible effect on the

movement of the fluid substrate.) More details about the wall model will be

provided in Chapter 2.

The Kramer coating (Figure 1.3(a)) was devised and studied by its proposer
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Max O. Kramer, the investigations he carried on this particular wall model

are given in his works [75] [76] [77] [78]. Further studies were conducted by

Carpenter & Garrad [21] [22] for a Blasius flow over a Kramer-type surface

while Wiplier & Ehrenstein [131] considered the same case but with finite

compliant wall panels instead.

Another very popular wall model is the rigid wall with a viscoelastic layer

on top (Figure 1.3(e)), this was studied by many authors such as Lee et al.

[82], Lucey & Carpenter [91], Wang et al. [127] and Yeo et al. [132] and

were mainly used to study the effect of using a compliant wall in the Blasius

boundary layer.

All the models described so far (as well as the double-layer compliant wall

in Figure 1.3(f)) are isotropic, meaning that the wall will behave in exactly

the same way regardless of the direction of flow. These different models can be

modified to have a wall that is anisotropic (or non-isotropic), in other words,

the wall will behave differently depending on the direction of flow, examples of

these are shown in Figures 1.3(c), (d) and (g). (Flows over these types of walls

were studied by Carpenter & Gajjar [20] and Carpenter & Morris [23].) An

example of using anisotropic compliant walls was outlined by Pavlov [106] who

suggested that the morphology of the dolphin skin allows the fluid/surface in-

terface to behave as if though the skin is anisotropic in the regions of favourable

or adverse pressure gradients.

1.5.3 The Spring-Backed Plate Model

For the spring-backed plate model, there are five wall parameters to con-

sider which dictate the wall motion (the governing equations for the wall are

given in Chapter 2). The wall parameters are:
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∗ m: Mass Per Unit Area

This can be considered as the inertial term that characterises the compliant

wall’s mass. It has been shown by Carpenter & Garrad [21] that increasing the

plate mass has a stabilising effect on the flow over a flexible surface. Davies

& Carpenter [30] also showed that the onset of TWF and the flutter-type

instability can be greatly influenced by the wall’s mass but the divergence

onset is indifferent.

∗ B: Flexural Rigidity

This term refers to the flexural rigidity (or bending stiffness) of the compliant

wall which describes the force couple required to bend the wall and an increase

in its value would result in a stabilisation of the flow.

∗ T : Tension Per Unit Length

This term represents the tension on the thin membrane per unit length. Usu-

ally, the value of T is taken to be zero since according to Carpenter & Garrad

[22], the other wall parameters can be modified in order to set T = 0 while still

retaining the same effect on the flow. This can be attributed to an effective

stiffness parameter which behaves as

√
2
√
BK + T , further details of this

are given in Davies & Carpenter [30] and are also elaborated upon further in

Chapter 2.

∗ K: Spring Stiffness

The compliant wall model involves the use of springs between the rigid wall

base and the thin flexible membrane. The springs are attached perpendicu-

larity to both and are sitting in the substrate material. It is assumed that

the motion of the spring acting on the thin membrane can be modelled by an

elastic foundation and spring motion does not affect the movement of the fluid

substrate.
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∗ d: Damping

The final term in the wall model is the damping coefficient of the wall. This

can be introduced as a property of the material making up the wall itself or as

a modification to the wall model by having dampeners alongside the springs

(as used by Burke et al. [12]).

1.5.4 The Dolphin Skin

With regards to the dolphin skin, many of the previous studies such as

those conducted by Bale et al. [4], Fish and others in [40] [41] [42] [44] [45],

and Gray [58] looked at the stabilisation properties of the dolphin skin from

an experimental point of view. Kramer [75] [76] [77] [78] studied the dolphin

skin by modelling it using the wall model shown in Figure 1.3(a) while Pavlov

[106] used an anisotropic wall model for modelling the dolphin skin. A number

of review papers have been published on the subject collating the information

with regards to the suppression capabilities of dolphin skins as in Carpenter

et al. [19], Fish & Hui [44], Gad-el-Hak [49], Gaster [55], Ridgway & Carder

[110].

The spring-backed plate model used here cannot be readily extended to

capture all the effects of the dolphin skin since even some of the simplest

dolphin skin models used in the aforementioned works are more complicated

and intricate compared to the spring-backed plate. One of the reasons is that

a true depiction of the dolphin skin would require an element of active control

by the nervous system in different parts of the dolphin’s body (as suggested

by Ridgway [110]). The dolphin skin has been a motivator for the study

of stabilising flows by using flexible walls from the time Gray first proposed

his paradox but now, compliant walls are of interest in their own right and
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the growth of the wall-based instabilities can shed light not only on the way in

which dolphin skins behave, but on the mechanisms that can lead to instability

when using compliant walls.

1.6 Methodology & Assumptions

Some previous studies, such as Landahl [81], assumed a potential flow over

a compliant surface. However some of the predictions made did not match the

experimental results like those conducted by Riley et al. [111]. The potential

theory predicted an early onset of the divergence instability therefore when

experiments were conducted, the existing theory suggested the use of compliant

walls which were far stiffer than necessary hence affecting the TS suppression.

This presented a limitation when using potential theory to predict the onset

of divergence (similarly for inviscid shear layer theory). Therefore, alternative

approaches were later undertaken, mainly in the form of asymptotic analysis.

In this thesis, most of the work presented will be from a numerical standpoint,

although it will still be interlaced with some previously conducted analysis.

The main assumptions for the present work are two-fold. First, the distur-

bance amplitude will be sufficiently small to allow linear theory to hold and

the second is to take a relatively large value of the Reynolds number.

The first assumption is imposed to predict the onset and behaviour of insa-

tiabilities when the background disturbance is of a low amplitude. Moreover,

small amplitude disturbances avoid non-linearity.

The assumption of having a large yet finite Reynolds number helps simplify

some of the equations by allowing some terms to be negligible in size. It should

be noted that for the TS mode that appears when the Reynolds number is quite

large (5772.2 for the rigid wall plane channel flow), therefore for the purposes
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of studying the effect of using compliant walls on the TS mode, the Reynolds

number can be assumed to be large. The extreme case of having an inviscid

fluid flowing over a compliant wall was studied by Burke et al. [12] and Lucey

& Carpenter [89].

1.7 Thesis Layout

This work will be laid out in several chapters as follows:

∗ Chapter 2: The equations of the system are set up (from earlier works).

First, the equation that governs the stability of parallel flows, namely

the Orr-Sommerfeld equation, and the assumptions imposed on it are

discussed. Then, the rigid and compliant wall boundary conditions are

formulated. Some preliminary numerical results are presented which

illustrate the compliant wall’s TS suppression capabilities and an account

of previous analytic work done by Davies & Carpenter [30] is discussed

briefly.

∗ Chapter 3: The equations of the system determined in Chapter 2 are

discretised using a Chebyshev collocation method in order to solve the

fluid flow/compliant wall system of equations numerically (note that the

compliant wall in this case will be infinite). Some interesting numeri-

cal observations regarding the different instabilities and their prevalence

within the flow parameter space are then presented.

∗ Chapter 4: The procedure for the direct numerical simulation of flows

over finite compliant wall sections is discussed. This previously devised

method is adopted from Davies [28] and Davies & Carpenter [31] and is

deployed for the following chapters. The explanation of this method is
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included here in an attempt to present it in a more concise way (since it

was a collection of different works by different studies).

∗ Chapter 5: In this chapter, some examples of flow simulations are

presented where the effect of different instabilities, wall-based and flow-

based, are studied. The results obtained from Chapter 4 are compared

to the solution of the coupled system of equations from Chapter 3. This

is done in order to demonstrate whether the numerical solution to the

global problem can be used to predict which modes would proliferate

when a simulation is performed and whether the flow parameters can be

predicted effectively. The wall-based modes are also investigated using

the method described in Chapter 4, the results obtained have not been

documented before and this will be a part of the original content of this

thesis.

∗ Chapter 6: In this chapter, absolute and global instabilities arising in

the flow are discussed. Different triggers are used to excite the flow and

the growth of the global instabilities is investigated from three different

points of view: the solution of the coupled system of equations, direct

numerical simulations and two-dimensional global mode computations.

The effect of using different compliant wall parameters and flow configu-

rations on the growth of the absolute instability are also discussed. The

onset of absolute instability within this context has not been documented

before and this will also be a part of the original content of this thesis.

∗ Chapter 7: The final chapter outlines the conclusions of the work as

well as some limitations and further work.
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Chapter 2

Governing Equations of the

Fluid Flow/Compliant Wall

System

In this chapter, the governing equations that dictate the flow configuration are

set up. Establishing these equations constitutes of two parts: the equations

that govern the fluid flow and those that govern the motion of the compliant

wall. First, the perturbed form of the Navier-Stokes equations is used to

obtain expressions that dictate the stability of the plane channel flow as well

as expressions for the pressure field. Then, the equations that dictate the

motion of the wall are established and used to obtain appropriate compliant

wall boundary conditions. These two sets of equations can then be coupled

through the dispersion relation which governs the fluid flow/compliant wall

system.

Some preliminary illustrative numerical examples will be presented after

the equations of the system have been obtained. From now on, the following
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notation will be adopted:

x− streamwise direction

y − direction normal to the wall

z − spanwise direction

t− time

u− streamwise velocity component

v − normal velocity component

w − spanwise velocity component

p− pressure.

It should be noted that even though the equations derived here are already

well-established in the literature, their derivation is outlined since some of the

intermediate equations are used later.

2.1 Flow Equations

Consider a fluid flowing between two rigid parallel walls of distance 2h

apart which extend infinitely in both the streamwise and spanwise directions,

a schematic representation of the flow configuration is shown in Figure 2.1.

The flow in this case is two-dimensional, therefore there is no variation in the

z-direction and there is no spanwise velocity component either, i.e.

w = 0 and
∂f

∂z
= 0 for f = u, v, p.

In the current work, only the two-dimensional development of instabilities in

the plane channel flow are considered as a consequence of Squire’s theorem
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2.1. Flow Equations

Figure 2.1: Flow configuration for the plane channel flow.

which will be stated formally in §2.1.2I.

The fluid in question has density ρ, dynamic viscosity ν and a centreline

(mean) velocity Um. The variables of the system can be non-dimensionalised

by using:

x =
x∗

h
, y =

y∗

h
, t =

t∗Um
h

, û =
u∗

Um
, v̂ =

v∗

Um
, p̂ =

p∗

ρU2
m

(2.1)

and the Reynolds number of the system is given by Re =
Umhρ

ν
.

Terms with an asterisk (�∗) are dimensional quantities and the terms with a

caret/hat (�̂) are disturbed quantitiesII.

In vector form, the two-dimensional non-dimensionalised Navier-Stokes

equations are:

Momentum equations:
∂û

∂t
+ (û · ∇)û = −∇p̂+

1

Re
∇2û+ F

Conservation of mass: ∇ · û = 0

IThe three-dimensional development of instabilities in boundary layer flows over com-
pliant walls was investigated by authors as Carpenter & Gajjar [14]. They compared their
theory to that of Benjamin [5] [6] [7] with regards to the stabilisation of Class B TWF.

IINote that this non-dimensionalisation only holds for the plane channel flow and cannot
be extended to other flow configurations such as the semi-infinite Blasius boundary layer
flow. This is mainly due to the fact that the plane channel flow has an inherent length-scale
built into it, namely the channel half-width, unlike the Blasius case.
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where û = (û, v̂) and ∇ =

(
∂

∂x
,
∂

∂y

)
.

In the case considered here, the body force F includes the effect of gravity only.

Since the flow can be assumed to be flowing vertically downwards (i.e. the flow

is gravity-driven), this term can be neglected. The Navier-Stokes equations

can now be written in their full form as:

x-momentum equation: ût + ûûx + v̂ûy = −p̂x +
1

Re
(ûxx + ûyy) (2.2a)

y-momentum equation: v̂t + ûv̂x + v̂v̂y = −p̂y +
1

Re
(v̂xx + v̂yy) (2.2b)

Conservation of mass ûx + v̂y = 0. (2.2c)

Note that the subscripts here denote differentiation (for instance for a function

f , fx denotes ∂f
∂x

, fxx denotes ∂2f
∂x2

etc.).

If only two-dimensional disturbances are considered, then for a small pa-

rameter ε > 0, the disturbed quantities û, v̂ and p̂ can be expressed as:

û(x, y, t) = U(x, y, t) + εũ(x, y, t)

v̂(x, y, t) = V (x, y, t) + εṽ(x, y, t) (2.3)

p̂(x, y, t) = P (x, y, t) + εp̃(x, y, t).

The terms with a tilde (�̃) denote perturbation quantities and U, V and P are

the basic (undisturbed) velocity and pressure profiles. In the current work,

only the first order approximation is used since the investigation is carried

out on the linear theory only. For the undisturbed plane channel flow, the

streamwise basic velocity profile is parabolic and there is no normal velocity
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component, i.e.

U(x, y, t) = U(y) = 1− y2 and V (x, y, t) = 0.

The perturbation terms appear as O(ε) terms which are

ũt + Uũx + Uyṽ = −p̃x +
1

Re
(ũxx + ũyy) (2.4a)

ṽt + Uṽx = −p̃y +
1

Re
(ṽxx + ṽyy) (2.4b)

ũx + ṽy = 0. (2.4c)

Since the flow is two-dimensional, a streamfunction ψ = ψ(x, y, t) can be

introduced which satisfies

ũ =
∂ψ

∂y
and ṽ = −∂ψ

∂x
.

This allows the incompressibility condition (2.4c) to be satisfied identically. In

order to tackle the resulting set of equations, a normal mode decomposition is

employed.

2.1.1 Normal Mode Decomposition

The normal mode decomposition is a result of a Fourier-type analysis which

assumes that the streamfunction ψ takes the form of a wave that evolves

periodically in x and t with an amplitude function ϕ = ϕ(y) as

ψ(x, y, t) = ϕ(y)ei(αx−ωt).
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The function ϕ represents the disturbance velocity profile, ω ∈ C is the temporal

frequency and α ∈ C is the spatial wavenumber. (Note that if α is real, the

it takes the form α = 2π
λ

where λ is the disturbance wavelength.) With the

normal mode decomposition in mind, the stability characteristics of the flow

can be classified depending on whether the imaginary parts of α and ω are

positive or negative as shown in Table 2.1 (note that <(z) and =(z) denote

the real and imaginary parts of a complex number z respectively).

=(α) < 0 =(α) = 0 =(α) > 0

=(ω) < 0 Spatio-temporal Temporally stable Spatio-temporal

=(ω) = 0 Spatially unstable Neutrally stable Spatially stable

=(ω) > 0 Spatio-temporal Temporally unstable Spatio-temporal

Table 2.1: Different stability characteristics of the flow depending on the signs

of =(ω) and =(α).

Applying the normal mode decomposition to the perturbation quantities

ũ, ṽ and p̃ gives expressions in terms of the flow parameters α, ω and ϕ as

ũ(x, y, t) = ϕ′(y)ei(αx−ωt)

ṽ(x, y, t) = −iαϕ(y)ei(αx−ωt) (2.5)

p̃(x, y, t) = p(y)ei(αx−ωt).

The primes (�′) here represent differentiation with respect to y and p is a

function arising due to the normal mode decomposition being applied to p̃.

Using this approximation on the flow variables implies that differentiating

with respect to x is equivalent to multiplying by iα while differentiating with
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respect to t is equivalent to multiplying by −iω, i.e.

∂f̃

∂x
≡ iαf and

∂f̃

∂t
≡ −iωf for f = u, v, p.

When these decompositions are used in the momentum equations (2.2a)

and (2.2b), the set of equations can be written in terms of the phase speed

c = ω
α

as

(U − c)ϕ′ − U ′ϕ = −p+
1

iαRe
(ϕ′′′ − α2ϕ′) (2.6a)

α2(U − c)ϕ = −p′ − iα

Re
(ϕ′′ − α2ϕ). (2.6b)

The phase speed c of the wave is the rate at which the phase travels through

space. If =(c) > 0 for at least one disturbance mode, then the flow is deemed

unstable but if =(c) < 0 for all disturbance modes, then the flow is stable.

The pressure term p can be eliminated from (2.6) to give the well-known

Orr-Sommerfeld equation

(U − c)(ϕ′′ − α2ϕ)− U ′′ϕ =
1

iαRe

(
ϕ′′′′ − 2α2ϕ′′ + α4ϕ

)
. (2.7)

This is a fourth order ordinary differential equation in the disturbance profile

ϕ which dictates the stability of parallel viscous flows.

For a parallel inviscid flow, the disturbances are governed by the Rayleigh

equation

(U − c)(ϕ′′ − α2)− U ′′ϕ = 0. (2.8)

This can be derived in the same way from the Euler equations and is equiva-

lent to the Orr-Sommerfeld equation after formally passing the limit Re→∞.
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This second order ordinary differential equation has two linearly independent

solutions which were first derived by Heisenberg [70]III. In his solution, ϕ

was expanded asymptotically in powers of α2 which resulted in two decou-

pled solutions, one of which is symmetric/even about the channel centreline

(ϕ(−y) = ϕ(y) for all y ∈ [−1, 1]) while the other is antisymmetric/oddIV

(ϕ(−y) = −ϕ(y) for all y ∈ [−1, 1]). A brief description of his solution is

outlined in Appendix A.

For the rigid wall plane channel flow, the TS instability is dictated by the

symmetric modes therefore for the purposes of TS suppression, the symmetric

form of ϕ is considered. It is possible that there may be cases where an

antisymmetric counterpart to the TS wave is more effective at destabilising

the flow in the compliant wall case but these are not studied here. Later in

§2.4, the consequences of considering a symmetric form of ϕ is illustrated by

numerical examples.

Due to the symmetry of ϕ, only one half of the channel needs to be con-

sidered since the other is the same because of symmetry. For the sake of

convenience, the upper half channel y ∈ [0, 1] is considered. Note that ṽ will

be even while ũ and p̃ will be odd if ϕ is assumed to be even (from equations

(2.5)).

2.1.2 Squire’s Theorem

Only two-dimensional disturbances are considered here as a consequence

of the following theorem:

IIIWerner Heisenberg derived these solutions in 1924 in his earlier work on hydrodynamic
stability theory with his Doctoral advisor Arnold Sommerfeld before embarking on quantum
mechanics.

IVThe terms “even” and “symmetric” in the context of functions will be used interchange-
ably, similarly for “odd” and “antisymmetric”.
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Squire’s Theorem. [24] Consider a three-dimensional unstable mode with

flow parameters (αx, αz, ω) where αx and αz are the streamwise and span-

wise wavenumbers respectively while ω is the temporal frequency with a growth

rate ωi = =(ω). For this particular mode, there exists an associated two-

dimensional mode (α̃, ω̃) with a temporal growth rate

ω̃i = =(ω̃) =

√
α2
x + α2

z

αx
ωi

which is more unstable than its three-dimensional counterpart since ω̃i > ωi.

This theorem holds for the rigid wall case however the extension to the

compliant wall is only possible for a particular non-dimensionalisation of the

wall parameters.

2.1.3 Pressure Integral

The Orr-Sommerfeld equation in its form given in (2.7) does not take pres-

sure into account. So in order to obtain an expression for the pressure p,

consider the y-momentum equation (2.6b)

p′(y) = −α2(U − c)ϕ+
iα3

Re
ϕ− iα

Re
ϕ′′.

Integrating across the channel half-width y ∈ [0, 1] and using the fact that

ϕ′(0) = p(0) = 0 (since they are both odd), the y-momentum equation then

gives a condition for the pressure at the upper wall, namely

p(1) = −α2

1∫
0

[
(U − c)ϕ− iα

Re
ϕ︸︷︷︸

(I)

]
dy − iα

Re
ϕ︸︷︷︸

(II)

. (2.9)
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The magnitude of the term labelled (II) is, in fact, half of the normal viscous

stress acting on the wall. It can be assumed that the fluid stresses driving the

wall motion can be approximated using the pressure only and to this end, the

term (II) can be dispensed with, similarly for the term labelled (I) (further

details of these assumptions are given in Davies & Carpenter [30]). Therefore,

the terms involving α
Re

can be neglected and the pressure at the upper wall

can be expressed as

p(1) = −α2

1∫
0

(U − c)ϕ dy. (2.10)

This form of the pressure will prove useful in the numerical treatment of the

system of equations.

2.2 Boundary Conditions

2.2.1 Rigid Walls

The Orr-Sommerfeld equation is a fourth order ordinary differential equa-

tion and would therefore require four boundary conditions. For the rigid wall

plane channel flow, these are simply the no penetration and no slip at the

walls, namely

ϕ(±1) = ϕ′(±1) = 0. (2.11)

As for the Rayleigh equation, the only conditions that need to be imposed are

the no penetration conditions at the walls, i.e. ϕ(±1) = 0.

As mentioned earlier, since the stability of the rigid walled plane channel

flow is dictated by the even modes, then two boundary conditions would suffice

and these are imposed at the upper wall y = 1. Therefore the Orr-Sommerfeld

equation only requires two boundary conditions ϕ(1) = ϕ′(1) = 0. Similarly,
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2.2. Boundary Conditions

the Rayleigh equation requires one boundary condition ϕ(1) = 0.

2.2.2 Compliant Walls

For the spring-backed plate model, the pressure driven wall equation at the

upper wall (in its dimensional form) is given by

p∗(x∗, h, t∗) =

(
m∗

∂2

∂t∗2
+ d∗

∂

∂t∗
+B∗

∂4

∂x∗4
− T ∗ ∂

2

∂x∗2
+K∗

)
η∗(x∗, t∗)

(2.12)

where η∗ is the vertical displacement of the upper wall from equilibrium and

the terms with an asterisk (�∗) denote dimensional quantitiesV. The flow

parameters are non-dimensionalised using (2.1) while the wall parameters can

be non-dimensionalised by using

m =
m∗

ρh
,

d

Re
=

d∗

ρUm
,

B

Re2 =
B∗

ρh3U2
m

,
T

Re2 =
T ∗

ρhU2
m

,
K

Re2 =
K∗h

ρU2
m

, η̂ =
η̃

h
.

(2.13)

This particular form of the non-dimensionalisation is chosen since there is no

explicit mention of the centreline velocity Um, therefore the Reynolds number

Re can be varied by changing Um hence keeping the flow terms h and ν fixed

and consequently, the wall parameters m,B, T,K and d will also remain fixed

as wellVI. The pressure at the upper wall given in (2.12) then becomes

p̃(x, 1, t) =

(
m
∂2

∂t2
+

d

Re

∂

∂t
+

1

Re2

[
B
∂4

∂x4
+ T

∂2

∂x2
+K

])
η̃(x, t) (2.14)

where the wall parameters are now non-dimensional.

VFurther details of the spring-backed compliant wall model are given in Carpenter &
Garrad [21] [22].

VINote that, once again, this non-dimensionalisation only holds for the plane channel flow
and cannot be readily extended to other flow configurations where there is only a locally
defined measure of the boundary layer thickness such as the Blasius flow.
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In this context, the spring-backed plate model consists of a thin flexible

membrane of mass m with a damping coefficient d and flexural rigidity B.

The plate is pulled taught with tension per unit length T and is attached

perpendicularly to a series of springs. These springs have a spring stiffness

K and are held perpendicularly to a rigid base. For the sake of simplicity,

the flexible membrane is restricted to move in the vertical direction only. A

schematic representation of the wall model is shown in Figure 2.2 (further

descriptions of each of the individual wall terms was given in §1.5.3).

Figure 2.2: The spring-backed plate model for half the channel.

The disturbance profile ϕ was assumed to be symmetric and therefore, this

requires that the vertical displacement of the compliant wall from its equilib-

rium position η has to also be symmetric. This means that both the upper and

lower walls will move away or towards the channel centreline simultaneously

as opposed to moving in the same direction, this is best observed diagrammat-

ically as shown in Figure 2.3.

When the normal mode decomposition is used on both p̃ and η̃ in equation

(2.14), i.e.

p̃(x, y, t) = p(y)ei(αx−ωt) and η̃(x, t) = ηei(αx−ωt),
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2.2. Boundary Conditions

Figure 2.3: Difference between choosing symmetric and antisymmetric distur-
bance profiles, the dotted line represents the channel centreline.

the result gives an expression for the pressure at the upper wall as

p(1) =

(
−mω2 − idω

Re
+

1

Re2

[
Bα4 + Tα2 +K

])
η. (2.15)

The compliant wall properties are subsequently characterised by two quanti-

ties:

∗ The stiffness coefficient S which takes the form:

S(α, c) = −mc2 − idc

αRe
+

1

Re2

[
Bα2 + T +

K

α2

]
. (2.16)

Thus the pressure in equation (2.15) can be written as

p(1) = α2S(α, ω)η.

∗ The effective stiffness σ which takes the form:

σ(α) = Bα4 + Tα2 +K. (2.17)

Therefore (2.15) can be written as

p(1) =

(
−mω2 − idω

Re
+

1

R2
σ(α)

)
η.
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Since the wall is flexible, the movement of the fluid near the wall has to be

coupled with the movement of the wall itself. Therefore matching the horizon-

tal and vertical velocity components at the upper wall will give the linearised

boundary conditions:

ϕ(1) = cη (2.18a)

ϕ′(1) = −U ′(1)η. (2.18b)

(See for example, Carpenter & Garrad [21].)

Another form of the boundary conditions that involves the wall parameters

may be obtained by first eliminating η from (2.18) to give

U ′(1)ϕ(1) + cϕ′(1) = 0. (2.19)

Eliminating η from (2.18b) and (2.15) (and using (2.16)) gives

p(1)c− ϕ(1)S(α, c) = 0. (2.20)

The two equations (2.19) and (2.20) provide another form of the boundary

conditions that depend on the wall’s stiffness coefficient S rather than its ver-

tical displacement from equilibrium η. This alternative formulation is helpful

when it comes to discretising the boundary conditions when solving the Orr-

Sommerfeld equation numerically as will be described in Chapter 3. (Notice

that if the wall is made stiffer, i.e. S(α, ω)→∞ or η → 0, then the rigid wall

boundary conditions can be recovered.)
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2.3 Previous Analytic Work

For the current problem, a major analytic treatment was conducted by

Davies [28] and Davies & Carpenter [30] amongst others (these two are men-

tioned here since they are the most relevant to the current study). They

obtained analytic approximations to the dispersion relation, onset flow speeds

of the different instabilities and analytic approximations to neutral stability

curves (subject to certain assumptions). Here, a selection of these analytic

results are mentioned since they are used in Chapter 6.

2.3.1 Dispersion Relation

The Orr-Sommerfeld equation and its boundary conditions form a relation-

ship that takes the form

D(α, ω; Re) = 0.

This is known as the dispersion relation which relates the wall and flow pa-

rameters for the current flow configuration. In the absence of the fluid flow,

the wall itself can carry a wave with a speed c0, this is known as the free-wave

speed and takes the form

c0 =
1

Re

√
1

mα2
σ(α) .

Using this, the wall’s stiffness coefficient (2.16) can be rearranged to give an

expression of the dispersion relation which relates the flow and wall parameters

as

m(c2 − c2
0) + S(α, c) +

idc

αRe
= 0. (2.21)
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In the inviscid case, the free-wave speed c0 cannot be expressed in terms

of the Reynolds number, indeed, it will be expressed in terms of the channel

centreline velocity Um. In order to do so, let

f̄ =
U2
m

Re2f for f = B, T, K (2.22)

and these now have the same dimension as the square of the velocity. The

free-wave speed c0 (which is still dimensionless) can now be written as

c0 =
1

Um

√
1

mα2
σ̄(α) . (2.23)

In order to obtain expressions for the onset flow speeds of the different

instabilities, suppose that the minimum dimensional free wave speed that the

compliant wall can attain is given by U0, i.e.

U0 = min
α

(√
σ̄(α)

α2

)
.

Therefore

U0 ≤
√
σ̄(α)

α2
= Umc0

√
m by using (2.23).

The minimum value U0 is attained when the wavenumber α takes a critical

value αc where

αc =
4

√
K̄

B̄
(2.24)

The critical wavenumber αc can also be written differently using (2.22) as

αc =
4

√
K

B
.
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This can give an explicit expansion for U0 as

U0 =

√
2
√
B̄K̄ + T̄ =

Um
Re

√
2
√
BK + T . (2.25)

By imposing a long wave approximation (α ∼ 0), Davies & Carpenter [30]

obtained expressions for the critical flow speeds which cause the onset of certain

instabilities. First, they assumed that the wavenumber is small, in particular

α2 ∼ 0, and obtained an approximation to the wall stiffness. The dispersion

relation (2.21) was then used to show that the flutter-type instability (which

arises due to a interaction between divergence and TWF) has the onset flow

speed

UF = U0
3

2

√
5m+ 5

6m+ 1
. (2.26)

If the damping is assumed to be quite small (particularly d2 ∼ 0), then the

divergence onset flow speed can be obtained by setting c = 0 (since this is the

onset phase speed for divergence) to give

Ud = U0

√
15

8
. (2.27)

Finally, in the absence of damping (d = 0) and at c = 1 (onset phase speed

of the TWF instability), the dispersion relation yields an approximation for

the TWF onset flow speed as

UTWF = U0

√
5

5m+ 1
. (2.28)

The onset flow speeds in equations (2.26), (2.27) and (2.28) provide expressions

for the onset Reynolds numbers by using (2.25). Note that if the wall mass
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m > 1
3
, then

UTWF < Ud < UF

but if 0 < m < 1
3
, then

Ud < UTWF < UF .

From these approximations, it can be seen that the wall mass affects the

onset flow speed of TWF and can push it above or below that of divergence

(whose onset is unaffected by the change in mass). However, note the coa-

lescence between these two, the flutter-type instability, always sets at a flow

speed beyond either TWF or divergence.

All these derivations are discussed at length in Davies & Carpenter [30] to

which reference should be made for further details, they are mentioned here

since they are used later in Chapter 6.

2.4 Numerical Examples: Eigenvalues & Neu-

tral Stability Curves

In this section, preliminary numerical examples are presented which repro-

duce well-known results for the rigid wall case and some comparisons with the

compliant wall case as well.

For a fixed value of Re, the Orr-Sommerfeld equation and its boundary

conditions form an eigenvalue problem for the eigenfunction ϕ and eigenvalues

α, c or ω (depending on how the problem is formulated). Details regarding the

formulation of the eigenvalue problems is presented in Chapter 3 but in this

section, only a preliminary account of some results is given.
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The results shown here are already very well-known, they are presented

mainly to show eigenvalues and neutral stability curves as well as the conse-

quences of choosing an even disturbance profile ϕ. Some examples of eigen-

values on the complex α and ω planes and neutral stability curves are also

shown.

2.4.1 Temporal Stability

The Orr-Sommerfeld equation and its boundary conditions can be written

in the form a temporal eigenvalue problem where the complex eigenvalues ω

are to be determined for fixed Re and α ∈ R. When =(ω) > 0, the flow is

termed temporally unstable but if =(ω) < 0, then it is temporally stable.

Figure 2.4 shows the ω eigenvalues on the complex ω-plane for the rigid

wall plane channel flow with Re = 10000 and α = 1. In general for a real value

of α, the eigenvalues accumulate around three branches: the A branch (where

<(ω
α

) → 0), P branch (where <(ω
α

) → 1) and S branch (where <(ω
α

) ≈ 2
3

ac-

cording to Schmid & Hennignson [115]). The figure shows the eigenvalues that

result from taking even (red) and odd (blue) modes separately, this is possible

since both solutions are uncoupled (as shown by Heisenberg [70] and outlined

in Appendix A). The only temporally unstable eigenvalue with =(ω) > 0 (cir-

cled) corresponds to the flow-based TS instability which belongs to the set of

eigenvalues obtained from assuming that ϕ is even.

Figure 2.5 shows a curve on the α-Re plane which separates the region

of the parameter space where the flow is temporally stable (=(ω) < 0) and

temporally unstable (=(ω) > 0). This curve is known as the neutral stability

curve and represents the locations where =(ω) = 0 = =(α) = 0. The critical

Reynolds number is located at Rec = 5772.2, this means that if Re < Rec,
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Figure 2.4: ω eigenvalues of the Orr-Sommerfeld equation with rigid wall
boundary conditions at Re = 10000 and α = 1, the A, P and S branches are
labelled accordingly. The red/blue points denote the eigenvalues correspond-
ing to the case when ϕ is even/odd. The only temporally unstable eigenvalue
is circled and belongs to the set of values obtained by assuming that ϕ is even.

then the flow is temporally stable for all values of α but if Re > Rec, then the

flow is stable for some values of α (this is denoted by a vertical dashed line).

According to Cowley & Wu [25], the upper and lower branches of the

neutral stability curve represent different underlying structures and reflect dif-

ferent physical balances at play, in fact, each branch represents a distinguished

asymptotic scaling. Analytically, these scalings are obtained from the maximal

interactions between the competing processes and the major difficulty comes

about when attempting to identify these appropriate scalings.

In order to have a more complete picture of what happens in the α-Re plane,

curves of constant growth rate can be plotted, these lines represent locations

where =(ω) take fixed values. Figure 2.6 shows the growth and decay contours
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for the rigid walled plane channel flow, the growth contours are those with

=(ω) > 0 and decay contours with =(ω) < 0. These curves can provide a good

indication of the general stability characteristics of the flow in the α-Re-=(ω)

space as a whole (this is discussed later in Chapter 3).

0.5 1 1.5 2 2.5 3

Re
×10

4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

α

ℑ(ω) > 0
Temporally unstable region

ℑ(ω) < 0
Temporally stable region

ℑ(ω) = 0
Neutral stability curve

Critical Reynolds number
Rc = 5772.2

Figure 2.5: Neutral stability curve on the α-Re plane for the rigid wall plane
channel flow. The neutral curve separates the temporally stable and unstable
regions of the α-Re plane. The critical Reynolds number Rec = 5772.2 is
denoted by a vertical dashed line.

2.4.2 Spatial Stability

The Orr-Sommerfeld equation (2.7) can be reformulated to form a spatial

eigenvalue problem as

[
1

iR
ϕ

]
α4+

[
(U−c)ϕ

]
α3+

[
− 2

iR
ϕ′′

]
α2+

[
−(U−c)ϕ′′+U ′′ϕ

]
α+

[
1

iR
ϕ′′′′

]
= 0.

In this case, the complex eigenvalues α ∈ C are to be determined for fixed

Re and ω ∈ R. When =(α) < 0, the flow is termed spatially unstable but if
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Figure 2.6: Curves of constant growth/decay rate. The curves of constant
growth rate are given by the curves when of =(ω) > 0 while the curves of
constant decay rate are given by =(ω) < 0.

=(α) > 0, then it is spatially stable.

Figure 2.7 shows the α-eigenvalues for the rigid wall plane channel flow

with Re = 10000 and ω = 0.2375. Just as before, the eigenvalues shown are

those which result from taking even (red) and odd (blue) modes separately.

The only spatially unstable eigenvalue with =(α) < 0 (circled) is a result of

assuming that ϕ is symmetric.

From Figures 2.4 and 2.7, it can be seen that the assumption of a symmetric

form of ϕ would suffice for dictating the stability of the flow for the rigid

wall plane channel flow, corroborating the assumptions made earlier. This

assumption also simplifies the analysis substantially as will become apparent

in the subsequent chapters.

These numerical results only illustrate the fact that the most unstable mode
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Figure 2.7: α eigenvalues of the Orr-Sommerfeld equation with rigid bound-
aries at R = 10000 and ω = 0.2375. The red/blue points denote the eigenvalues
corresponding to the case when ϕ is even/odd. The only spatially unstable
mode is given by the circled eigenvalue and belongs to the set of values obtained
by assuming that ϕ is even.

in the rigid wall case, being the TS mode, is governed by the even modes of the

Orr-Sommerfeld equation. Therefore restriction to the even modes aids in the

investigation of TS stabilisation as well as the interaction between the different

modes under this assumption. Moreover, this condition is also instrumental

because of the analogy with the semi-infinite flows such as the Blasius case

(although this investigation is not carried out here).

2.5 Stabilisation of Tollmien-Schlichting Waves

by using Compliant Walls

From the rigid wall plane channel flow, the most unstable mode is that

belonging to the TS mode. When the wall is compliant, however, the TS
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mode is altered and new modes corresponding to the wall-based instabilities

will be present on the complex ω and α-planes. This change in boundary

conditions modifies the shape of the neutral stability curve for TS instability

and introduce new curves which correspond to the wall-based modes as well.

An example of this is given in Figure 2.8 which shows the neutral stability

curves on the α-Re plane for the rigid wall (black) compared to three different

compliant walls with parameters:

m = 2, B = 4K, T = 0, d = 0 with K = 107, 2× 107, 6× 107.

Figure 2.8: Neutral stability curves for the flow-based TS mode on the α-Re
plane for the rigid wall (black) and the compliant walls with the parameters
m = 2, B = 4K,T = 0, d = 0 with K = 107, 2× 107, 6× 107 (labelled accord-
ingly).

(Note that the results shown here are reproduced from Davies & Carpenter

[30] and are included here for illustration purposes.) As the wall is made softer

by decreasing the value of K (and B accordingly), the neutral stability curve
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shrinks down to a small loop, this implies that this set of wall parameters

causes the unstable region of the parameter space to shrink down leading to

the stabilisation of the TS instability.

Figure 2.9 shows the neutral stability curve for the TWF mode. As the

wall is made softer, the wall-based mode starts to occupy a larger region of the

α-Re plane even though the TS mode has been significantly stabilised. This

demonstrates the fact that since the wall can carry a wave independently of

the fluid, the wall flexibility results in wall-based instabilities that can be more

effective at destabilising the flow at an even wider range of flow parameters.

Figure 2.9: Neutral stability curves for the wall-based insatiability on the α-Re
plane for the compliant walls with parameters m = 2, B = 4K, T = 0, d = 0
with K = 107, 2× 107, 6× 107 (labelled accordingly).

Instead of studying the neutral stability curves on the α-Re plane, an alter-

native is to consider the ω-Re plane. In this case, the neutral curve separates

the parameter space into regions where the flow is spatially stable/unstable.

Figure 2.10 shows the neutral curve for the rigid wall (black) and compliant
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Figure 2.10: Neutral stability curves on the ω-Re plane for the rigid wall (black)
and the compliant wall (magenta) with parameters m = 2, B = 4× 107, T =
0, K = 107, d = 0.

wall with K = 107 (magenta). The curve corresponding to the rigid wall TS

mode occupies a region for relatively small values of the frequency ω. However

when the wall is compliant, the TS neutral curve shrinks down to a small loop

but as a consequence of stabilising the TS instability, the wall’s flexibility in-

troduces another instability occupying a large portion of the parameter space,

this is the TWF wall-based mode and is labelled as FISI (flow-induced surface

instability).

From these preliminary numerical results, it can be seen that even though

the compliant wall may stabilise the flow-based TS mode, it can still introduce

wall-based modes that pose a problem to the stability of the flow as a whole.

The way in which these numerical results were obtained is elaborated upon in

the following chapter.
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Chapter 3

Numerical Solution of the

Orr-Sommerfeld Equation

In this chapter, the numerical method used to solve the eigenvalue problem

consisting of the Orr-Sommerfeld equation and its boundary conditions are dis-

cussed. The numerical scheme used here involves discretising the disturbance

and basic velocity profiles in the y-direction using the Chebyshev collocation

method. This converts the differential form of the Orr-Sommerfeld equation

into a matrix eigenvalue problem, the boundary conditions are then discre-

tised and incorporated into said matrices appropriately. Finally, the resulting

matrix system of equations can then be solved numerically on MATLAB to

obtain the eigenvalues. A description of the procedure used to plot the neutral

stability curves is also presented in the later part of this chapter.

After the numerical procedures have been established, some examples of

their application are presented. These include neutral stability curves, curves

of constant growth rate and eigenvalues on the complex c-plane. Some inter-

esting features of the neutral curves are also be discussed.
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3.1 Chebyshev Collocation Method

For problems in hydrodynamic stability theory, a widely used approach in

discretising equations is the Chebyshev collocation method. This involves repre-

senting the functions of the system as a finite linear combination of Chebyshev

polynomials.

The Chebyshev collocation method has a number of practical advantages

over other numerical methods such as finite elements. Firstly, this method

possesses spectral accuracy, in other words, the error decreases more rapidly

than any power of 1
N

as N → ∞ where N is the truncation order. On the

other hand, finite element methods have an accuracy of finite order, i.e. the

error behaves as hp as the grid scale h → 0 for p < ∞. Using a Chebyshev

collocation method also achieves high accuracy with little extra computational

effort (see for example Orszag [104]). Moreover, using Chebyshev polynomials

as a polynomial basis helps determine coefficients very efficiently compared to

other polynomials bases such as Legendre polynomials (see for example Orszag

[105]). Other benefits of using Chebyshev polynomials and comparisons with

other polynomial bases are discussed by Orszag [104] and Peyret [108] to which

reference should be made for further details.

3.2 Discretising the Functions of the System

The first step in the discretisation is to represent the functions of the system

ϕ and U as linear combinations of Chebyshev polynomials. First, the distur-

bance profile ϕ is written as a linear combination of the first N + 1 Chebyshev
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polynomialsI as

ϕ(y) =
N∑
n=0

anTn(y) (3.1)

Since U is a quadratic function, it can be represented as a linear combina-

tion of Chebyshev polynomials as

U(y) = 1− y2 =
1

2

(
T0(y)− T2(y)

)
. (3.2)

The function Tn is the nth Chebyshev polynomial of the first kind and is

given by

Tn(y) = cos
(
n cos−1(y)

)
for n ∈ N0 and y ∈ [−1, 1].

For this Chebyshev expansion, if the series is truncated at the term TN , then

the residual error is close to a multiple of TN+1 (provided the approximated

function would posses a rapidly converging power series according to Peyret

[108]).

The collocation points used here are the extrema of the N th Chebyshev

polynomial, these are known as the Gauss-Lobatto points and are given by

yj = cos

(
πj

N

)
for j = 0, 1, . . . , N. (3.3)

This set of points allows a clustering of collocation values near the boundaries

y = ±1 which helps capture the more interesting behaviours that occur near

the walls. Another advantage of using Chebyshev polynomials is that they

IThe number of Chebyshev polynomials chosen for the truncation N has to be large
enough to determine the eigenvalues accurately but should not be too large. If the value of
N was taken to be excessively large, then the accuracy in determining the eigenvalues would
be reduced as found by McBain et al. [99].
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also possess a relatively simple multiplication formula, namely

2Tm(y)Tn(y) = Tm+n(y) + T|m−n|(y) for any m,n ∈ N0.

Other properties of Chebyshev polynomials, along with differentiation and

integration recipes, are given in Appendix B. The formulae presented there

will prove very useful in discretising the Orr-Sommerfeld equation and the

boundary conditions.

3.3 Discretising the Differential Operators

The expressions for ϕ and U in (3.1) and (3.2) can be used to write the

Orr-Sommerfeld equation as an eigenvalue problem for either finding the eigen-

values ω or c (corresponding to the temporal case) or α (spatial case).

3.3.1 Phase Speed c-Eigenvalue Problem

Consider the Orr-Sommerfeld equation in its differential form

(U − c)(ϕ′′ − α2ϕ)− U ′′ϕ =
1

iαRe
(ϕ′′′′ − 2α2ϕ′′ + α4ϕ).

Collecting the terms involving c gives

[
ϕ′′ − α2ϕ

]
c+

[
1

iαRe
ϕ′′′′ −

(
2α2

iαRe
+ U

)
ϕ′′ +

(
α4

iαRe
+ α2U + U ′′

)
ϕ

]
= 0.

(3.4)

Let a = (a0, a1, . . . , aN)T be the vector of coefficients of ϕ in (3.1) (where

the superscript T denotes transposition) and let Dn be the matrix representa-

tion of the nth derivative for any n ∈ N0 (i.e. dnϕ
dyn
≡ Dna). The differentiation
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matrix Dn is of size (N + 1)× (N + 1) whose expression can be obtained from

the differentiation formulae given in Appendix B. The basic velocity profile U

is discretised by an (N + 1)× (N + 1) matrix whose jth column is 1− y2
j where

yj are the Gauss-Lobatto points given in (3.3).

Define the matrix differential operators A0 and A1 of size (N+1)× (N+1)

as

A0 =
1

iαRe
D4 −

(
2α2

iαRe
+ U

)
D2 +

(
1

iαRe
α4 + α2U + U ′′

)
D0 (3.5)

and A1 = D2 − α2D0.

Therefore Orr-Sommerfeld equation can now be written in matrix form as

(A1c+ A0)a = 0. (3.6)

This is a generalised eigenvalue problem with the eigenvalue c and its corre-

sponding eigenvector a. Since the boundary conditions have not yet appeared

anywhere, solving this eigenvalue problem will not yield a valid solution. The

discretisation of the boundary conditions and their incorporation into the sys-

tem will be addressed later in §3.4 but before that, the spatial eigenvalue

problem is formulated.

3.3.2 Wavenumber α-Eigenvalue Problem

If the Orr-Sommerfeld equation is written differently as a polynomial in α

instead of c, then the result is

[
1

iR
ϕ

]
α4+

[
(U − c)ϕ

]
α3+

[
− 2

iR
ϕ′′

]
α2+

[
− (U − c)ϕ′′ + U ′′ϕ

]
α+

[
1

iR
ϕ′′′′

]
= 0.

(3.7)
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Define the matrix differential operators C0, C1, C2, C3 and C4 (of size (N+1)×

(N + 1)) in terms of the differentiation matrices Dn as

C0 =
1

iR
D4, C1 = −(U − c)D2 + U ′′D0, C2 = − 2

iR
D2, (3.8)

C3 = (U − c)D0 and C4 =
1

iR
D0.

In this case, the Orr-Sommerfeld equation can be written as

(C4α
4 + C3α

3 + C2α
2 + C1α + C0)a = 0 (3.9)

which is a generalised eigenvalue problem with eigenvalues α and their corre-

sponding eigenvector a.

The discretised differential forms of the Orr-Sommerfeld equation given in

(3.6) and (3.9) are used to obtain the eigenvalues and eigenfunctions of the

system after the boundary conditions have been incorporated appropriately.

3.4 Incorporating the Boundary Conditions

For the two eigenvalue problems given in (3.6) and (3.9), there has been

no mention of boundary conditions yet and these need to be incorporated

into the problem to obtain valid solutions. In order to do so, the discretised

forms of the boundary conditions need to be incorporated into the matrices

A0, A1, C0, C1, C2, C3 and C4 appropriatelyII. Simply concatenating the bound-

ary conditions into the matrix problems will lead to an overdetermined system

of equations. In order to remedy this problem, some of the rows from the

matrix equations need to be eliminated and replaced with the boundary con-

IINote that from now on, the rows and columns of these matrices which are of size
(N + 1)× (N + 1) will be labelled from 0 to N .
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ditions hence giving a fully determined system of equations that can then be

solved numerically.

In the case of the Orr-Sommerfeld equation with four boundary conditions,

the first and last two rows of the matrices are replaced with the discretised

form of the four boundary conditions. Since ϕ is assumed to be symmetric then

only two boundary conditions are needed and these replace the last two rows

only. In fact, any four rows can be replaced by the boundary conditions and

the results are unchanged, the first and last two are chosen for convenience.

3.4.1 Rigid Wall Boundary Conditions

When the wall is rigid, the boundary conditions are the no penetration and

no slip at the wall, namely ϕ(±1) = ϕ′(±1) = 0. These boundary conditions

can be discretised by using the differentiation recipes given in Appendix B as

ϕ(±1) ≡
N∑
n=0

(±1)nan = 0 and ϕ′(±1) ≡
N∑
n=0

(±1)n+1n2an = 0.

Since both of these boundary conditions are independent of α and c, they are

incorporated into the matrix coefficients of α0 and c0, namely the matrices C0

and A0 respectively. In other words, all matrices of the system are determined

from their respective forms given in (3.5) and (3.8) then the first and last

two rows are set to zero apart from A0 and C0 which will be replaced by the

discretised forms of the rigid wall boundary conditions. These are given by

vectors of size N + 1 which take the following form:

row 0: ϕ(1) ≡ ( 1, 1, 1, 1, . . . 1 )

row 1: ϕ(−1) ≡ ( 1, −1, 1, −1, . . . (−1)N )

row N − 1: ϕ′(1) ≡ ( 0, 1, 4, 9, . . . N2 )

row N : ϕ′(−1) ≡ ( 0, 1, −4, 9, . . . (−1)NN2 ).

53



Chapter 3. Numerical Solution of the Orr-Sommerfeld Equation

3.4.2 Compliant Wall Boundary Conditions

For the compliant wall case, since ϕ is assumed to be even, its Chebyshev

expansion takes the form

ϕ(y) =
M∑
n=0

a2nT2n(y) (3.10)

whereM = 1
2
N . The odd rows and columns of the matricesA0, A1, C0, C1, C2, C3

and C4 can be eliminated to give a matrix representation of the eigenvalue

problems with the assumption that ϕ is even the and a2n are relabelled an for

the sake of convenience. In this case, only two boundary conditions are needed

and they were mentioned in Chapter 2 and were expressed in terms of the wall

stiffness coefficient S as:

U ′(1)ϕ(1) + cϕ′(1) = 0 (3.11)

p(1)c− ϕ(1)S(α, c) = 0 (3.12)

where S(α, c) = −mc2 − idc

αRe
+

1

Re2

[
Bα2 + T +

K

α2

]
.

The integral expression of the pressure at the upper wall is given in equation

(2.10), this is used in the second boundary condition (3.12) to give

1

α2
S(α, c)ϕ(1) + c

1∫
0

(U − c)ϕ dy = 0. (3.13)

In assuming that ϕ is even, the boundary conditions (3.11) and (3.13) can

be discretised, respectively, as

2c
M∑
n=0

n2an −
M∑
n=0

an = 0 (3.14)
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and

[
−mα2c2 − idαc

Re
+

1

Re2

(
Bα4 + Tα2 +K

)] M∑
n=0

an

+
M∑
n=0

6α2c

(2n+ 1)(2n− 1)(2n+ 3)(2n− 3)
an +

M∑
n=0

α2c2

(2n+ 1)(2n− 1)
an = 0.

(3.15)

These discretised forms of the boundary conditions have to be incorporated

into the matrices of the system. Equation (3.14) replaces row M − 1 while

(3.15) replaces row M (once again, the two last rows are chosen as a matter of

convenience, but any two rows work equally well). If the boundary conditions

are written as polynomials in α, then the resulting coefficients are incorporated

into the last two rows of the matrices C0, C1, C2, C3 and C4 as follows:

Row M − 1: 2c
M∑
n=0

n2an −
M∑
n=0

an︸ ︷︷ ︸
→C0

= 0

Row M :

[
B

R2

M∑
n=0

an

]
︸ ︷︷ ︸

→C4

α4

+

[(
−mc2 +

T

R2

) M∑
n=0

an +
M∑
n=0

c2

4n2 − 1
an +

M∑
n=0

6c

(4n2 − 1)(4n2 − 9)
an

]
︸ ︷︷ ︸

→C2

α2

+

[
− idc

R

M∑
n=0

an

]
︸ ︷︷ ︸

→C1

α +

[
K

R2

M∑
n=0

an

]
︸ ︷︷ ︸

→C0

= 0

Similarly, if the boundary conditions were to be rewritten as polynomials in

c instead, then the resulting coefficients are to incorporated into the matrices

A0 and A1. Notice, however, that there is an extra c2 term appearing in the

boundary conditions so an additional matrix A2 has to be introduced which is

a matrix of zeros with the boundary conditions in the last two rows.
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In summary, the generalised eigenvalue problems are

Temporal: (A2c
2 + A1c+ A0)a = 0,

Spatial: (C4α
4 + C3α

3 + C2α
2 + C1α + C0)a = 0. (3.16)

The matrices A0, A1, A2, C0, C1, C2, C3 and C4 (which now include the bound-

ary conditions) can be written as:

A0 =




 1

iαRe
D4 −

(
2α2

iαRe
+ U

)
D2

+
(

1
iαRe

α4 + α2U + U ′′
)

D0




−1 −1 −1 . . . −1

Bα4+Tα2+K
Re2

Bα4+Tα2+K
Re2

Bα4+Tα2+K
Re2

. . . Bα4+Tα2+K
Re2



A1 =


[[D2 − α2D0]]

0 2 8 . . . 2M2

2
3
α2 − idα

Re
−2

5
α2 − idα

Re
2
35
α2 − idα

Re
. . . 6α2

(4M2−1)(4M2−9)
− idα

Re



A2 =



Zero matrix of size

(M − 1)× (M + 1)


0 0 0 . . . 0

− (1 +m)α2
(

1
3
−m

)
α2

(
1
15
−m

)
α2 . . .

(
1

4M2−1
−m

)
α2



C0 =


[[

1
iR

D4

]]
−1 2c− 1 8c− 1 . . . 2M2c− 1

K
Re2

K
Re2

K
Re2

. . . K
Re2



C1 =


[[−(U + c)D2 + U ′′D0]]

0 0 0 . . . 0

− idc
Re
− idc

Re
− idc

Re
. . . − idc

Re


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C2 =



[[
− 2

iRe
D2

]]
0 0 0 . . . 0

2
3
c− T

Re2
−2

5
c− T

Re2
2
35
c− T

Re2
. . . 6c

(4M2−1)(4M2−9)
− T

Re2

−(1 +m)c2 +(1
3
−m)c2 +( 1

15
−m)c2 . . . +

(
1

4M2−1
−m

)
c2



C3 =


[[(U − c)D0]]

0 0 0 . . . 0

0 0 0 . . . 0



C4 =


[[

1
iR

D0

]]
0 0 0 . . . 0

B
Re2

B
Re2

B
Re2

. . . B
Re2

 .

The terms in the double square brackets ([[�]]) are block matrices of size

(M − 1)× (M + 1), these are determined from their respective forms given in

(3.5) and (3.8), the odd rows and columns are then eliminated and the last

two rows removed in order to incorporate the boundary conditions.

After the generalised eigenvalue problems have been formulated along with

the boundary conditions as in equations (3.16), they can be solved numeri-

cally to the find the eigenvalues α or c and the eigenvector a. This is done

numerically by employing the polyeig command on MATLAB which uses a

QZ-factorisation in order to find intermediate results in the computation of the

generalised eigenvalues [1]. The eigenfunction ϕ can then be determined by a

simple matrix multiplication procedure which is described briefly in Appendix

C.

The eigenvalue problems explained so far were formulated in such a way

that α and c are the eigenvalues. These equations can be reformulated to have

ω as the eigenvalue instead of c and this is very helpful in plotting the curves

57



Chapter 3. Numerical Solution of the Orr-Sommerfeld Equation

of neutral stability (which is discussed in the next section). The eigenvalue

problems in that case are

(Z4α
4 + Z3α

3 + Z2α2 + Z1α + Z0)a = 0 and (Ã2ω
2 + Ã1ω + Ã0)a = 0.

The details of the matrices Ã0, Ã1, Ã2, Z0, Z1, Z2, Z3 and Z4 are given in Ap-

pendix D and also include the incorporated boundary conditions.

3.5 Plotting Neutral Stability Curves

In order to plot the neutral stability curves, an iterative procedure used by

Bridges & Morris [10] is employed. Here, it is more convenient if the system

was to be written as a polynomial eigenvalue problem in ω instead of c, thus

giving the generalised eigenvalue problem

(Z4α
4 + Z3α

3 + Z2α
2 + Z1α + Z0)a = 0. (3.17)

The explicit expressions for the matrices Z0, Z1, Z2, Z3 and Z4 are given in

Appendix D where the boundary conditions were incorporated appropriately.

In order to start the iterative procedure, very good initial estimates for

the flow parameters α,Re and ω are needed for a given set of wall parameters

at some point on the neutral stability curve. These values can be found by

solving the eigenvalue problem (3.17) globally for a fixed value of α = α0

and changing the Reynolds number incrementally until an eigenvalue ω is

reached with =(ω) = 0. This gives the first three ingredients for the plotting

procedure: the temporal frequency ω ∈ R (since it is on the neutral curve),

Reynolds number Re and the spatial wavenumber α (which could be complex

in general).
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The wavenumber α needs to be “corrected” using a matrix form of an

iterative procedure by Lancaster [79]. This method is cubically convergent

and takes the root α back to the <(α)-Re plane (this method is, in fact, a

modification of Halley’s root finding algorithm). The iterative procedure is as

followsIII: starting with k = 0,

1) Dk := Z4α
4
k + Z3α

3
k + Z2α

2
k + Z1αk + Z0

2) εk := −
2T
[
(Dk)−1 ∂Dk

∂αk

]
(
T
[
(Dk)−1 ∂Dk

∂αk

])2

− T
[(

(Dk)−1 ∂2Dk

∂α2
k

)
−
(

(Dk)−1 ∂Dk

∂αk

)2
]

3) αk+1 = αk + εk.

This iterative procedure starts with the initial guess for α being equal to α0

while the values of ω and Re obtained earlier are used in determining the

coefficient matrices Z0, Z1, Z2, Z3 and Z4. This iterative procedure is repeated

until the error εk is below a given tolerance (which is 10−8 here) and the final

value of αk ∈ R is as the “corrected” value of the wavenumber.

For the value of the wavenumber α, a corresponding matrix polynomial D

is defined as

D = Z4α
4 + Z3α

3 + Z2α
2 + Z1α + Z0.

Left and right eigenvectors of this matrix D, labelled vl and vr respectively,

need to be determined by using the iterationIV:

vlk+1 =
(D−1)∗vlk
‖(D−1)∗vlk‖2

, vrk+1 =
D−1vrk
‖D−1vrk‖2

.

IIIThe operation T here denotes the trace of a matrix
IVThe matrices with an asterisk denote the complex conjugate transposed
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The initial values of the eigenvectors for starting the iterative procedure are

vl0 = vr0 = (1, 1, . . . , 1).

The iteration converges quite rapidly (usually, in less than 10 iterations) to

obtain the left and right eigenvectors vl and vr.

Now that the corrected wavenumber α, its corresponding matrix polyno-

mial D, Reynolds number Re, temporal frequency ω and the left and right

eigenvectors vl and vr are obtained, the iterative procedure for plotting the

neutral stability curve can begin. For a subsequent value of Re (Re← Re+δRe

for some small enough increment |δRe|), let

∂α

∂ω
:= −

(vl)
∗ ∂D
∂ω
vr

(vl)∗ ∂D
∂α
vr

and ∆ω := − =(α)

=(∂α
∂ω

)
.

The values of ω and α need to be redefined as follows:

ω ← ω + ∆ω

<(α)← <(α) + <
(
∂α

∂ω

)
∆ω

α← <(α).

This iterative procedure will find α ∈ R and ω ∈ R for the new value of Re

to give the next point on the neutral stability curve. This process can be

continued for subsequent values of Re to form the neutral stability curve.

Note that the Reynolds number increment |δRe| has to be sufficiently small

in order to capture all the interesting and fine behaviour that the neutral curve

displays. If |δRe| is too large, then either the iteration may not converge or

the more interesting details of the neutral stability curve may not be captured.
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The whole process of establishing the coefficient matrices, incorporating

boundary conditions, correcting the value of α, forming the matrix polynomial

D for the new value of Re, establishing the left and right eigenvectors vl and vr

then finally obtaining new values of α and ω will have to be repeated for every

subsequent values of Re. This plots the neural stability curve on the α-Re plane

which separates the temporally stable and unstable regions of the parameter

space. A similar procedure to the one described here can be employed to plot

the neutral curves on the ω-Re plane as well.

Bridges & Morris [10] and Davies [28] used a form of the Orr-Sommerfeld

equation that involved the use of integral operators as opposed to differential

ones used here and incorporated the boundary conditions using the Chebyshev-

Tau method due to Lanczos [80]. An advantage of using this alternative form

is that some of the matrices do not have to be recalculated at every step,

however it has been found that the computational time saved is not substantial

compared to the differentiated form is used instead. Details of this alternative

formulation for the rigid walled plane channel flow is given in Bridges & Morris

[10] and the compliant wall given in Davies [28]. In the next chapter, this

will be discussed further since the integrated form is more convenient for the

purposes of the simulations.

3.6 Some Numerical Examples

A selection of illustrative numerical results are now presented, in particular,

neutral stability curves and some c-eigenvalues for certain choices of α and Re.

All the cases presented here already been documented (see for example Davies

& Carpenter [30]) but they are shown here in order to illustrate how these will

be used in the chapters to follow. For the cases shown, three wall parameters

61



Chapter 3. Numerical Solution of the Orr-Sommerfeld Equation

choices are considered which are

m = 2, B = 4K, T = 0, d = 0 for K = 107, 2× 107, 6× 107.

This set of wall parameters is chosen so that the ratio of B and K remains con-

stant thus keeping the critical wavenumber αc (in equation (2.24) in Chapter

2) constant as well, taking the value

αc =
4

√
K

B
=

√
2

2
≈ 0.7071.

For the three different values ofK, the approximations for the onset Reynolds

numbers for divergence and TWF (in equations (2.27) and (2.28)) are given in

Table 3.1. This particular set of wall parameters was considered by Davies &

Carpenter [30] and some of the results are reproduced here in order to show

some of the eigenvalues and neutral curves.

K 107 2× 107 6× 107

ReTWF 4264 6030 10445

Red 8660 12247 21213

Table 3.1: Onset Reynolds numbers for TWF (ReTWF ) and the divergence

(Red) instabilities for the different choices of K.

K=2×107

Figure 3.1 shows the neutral stability curves when K = 2× 107, one curve

represents the modified flow-based TS mode (labelled TS) and the other rep-

resents the wall-based mode (labelled FISI denoting flow-induced surface in-

stabilities). The wall-based mode in this case can be identified as the TWF

instability and this can be verified by checking its growth rates. Also, the
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analytic approximation for the onset Reynolds number of the TWF instability

(which is 6030) compares quite well with this curve. (Note that according to

Davies & Carpenter [30], as the value of the critical wavenumber αc increases,

the approximation for the onset Reynolds numbers become less accurate, hence

the discrepancy.)

Figure 3.1: Neutral stability curves for the wall parameters m = 2, B =
8 × 107, T = 0, K = 2 × 107, d = 0. The curves represent the TS and
FISI modes (which are labelled accordingly). The dot denotes the point where
α = 0.95 and Re = 6500 where the flow is destabilised by TS only, this is
illustrated by the c eigenvalues shown in Figure 3.2.

In order to see an example of the temporal stability properties of different

parts of the α-Re plane, a particular choice of flow parameters is chosen to see

where the eigenvalues lie on the complex c-plane. To this end, choose the flow

parameters α = 0.95 and Re = 6500 (denoted by a dot in Figure 3.1), according

to the neutral curves, the flow possessing these flow parameters is destabilised

by the TS mode. This can be seen from the c-eigenvalues obtained by solving

the eigenvalue problem numerically for the chosen wall and flow parameters,
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as presented in Figure 3.2.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

ℜ(c)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

ℑ
(c
)

cf = 0.26033 + 5.686 × 10−4i cw = 1.0081 − 7.0898 × 10−5i

Figure 3.2: Complex c-eigenvalues for the same wall parameters as in Figure
3.1 with α = 0.95 and R = 6500. The unstable TS mode is labelled cf and
the stable FISI is labelled cw.

There are now two modes that are the least stable/unstable. The TS mode,

labelled cf , is temporally unstable (since =(cf ) > 0) while the FISI, cw, is tem-

porally stable (since =(cw) < 0). This combination of wall parameters allows

the TS instability to have a slightly lower onset Reynolds number compared

to the FISI.

K=107

When the wall is made softer by reducing K to 107 (and changing B accord-

ingly), the neutral stability curve in Figure 3.3 representing the TS instability

shrinks down considerably to a small loop implying that it has been effectively

stabilised by the compliant wall but in doing so, the FISI starts to occupy a

large portion of the α-Re plane.
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Figure 3.3: Neutral stability curves for the wall parameters m = 2, B =
4×107, T = 0, K = 107, d = 0. The curves represent the TS and FISI modes
(which are labelled accordingly). The dot denotes the point when α = 1 and
Re = 7000 where the flow is destabilised by the FISI only, this is illustrated
by the c-eigenvalues shown in Figure 3.4.

A choice of flow parameters can be taken to see which eigenvalues play a

part in destabilising the flow. Consider the case when α = 1 and Re = 7000

(represented by the dot in Figure 3.3), the c eigenvalues for this choice of flow

parameters is shown in Figure 3.4. In this case, the flow is destabilised by

the TWF (labelled cw) therefore even though the TS instability (cf ) has been

stabilised by the compliant wall, its flexibility has resulted in the TWF mode

to destabilise the flow instead.

K=6×107

When the wall is made stiffer by increasing the value of K to 6× 107 (and

changing B accordingly), the TWF onset Reynolds number is pushed to higher

values (as shown by the analytic approximation in Table 3.1). However, the

compliant wall still allows the TS mode to be unstable for lower values of R.
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Figure 3.4: Complex c-eigenvalues for the same wall parameters as in Figure
3.3 with α = 1 and Re = 7000. The unstable FISI mode is labelled cw and the
stable TS mode is labelled cf .

This is seen from the neutral stability curves on the α-Re plane given in Figure

3.5.

Consider the choice of flow parameters α = 0.9 and Re = 14000, the eigen-

values that result show two unstable modes (since their imaginary parts are

positive) as shown on the complex c-plane in Figure 3.6. The two eigenvalues

correspond to different instabilities, the wall-based TWF mode (labelled cw)

and the TS mode (labelled cf ).

From these preliminary results, it can be seen that the choice of wall pa-

rameters can influence the stability of the flow greatly. Even though only two

wall parameters were varied here (in order to keep their ratio fixed), the results

shown demonstrate the rich behaviour of flows over compliant walls. In Chap-

ters 5 and 6, other wall parameters are varied and their effect on the different

modes will be investigated.
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Figure 3.5: Neutral stability curves for the wall parameters m = 2, B =
24 × 107, T = 0, K = 6 × 107, d = 0. The curves represent the TS and
FISI modes (which are labelled accordingly). The dot denotes the point when
α = 0.9 and Re = 14000 where the flow is destabilised by both TSI and FISI,
this is illustrated by the c-eigenvalues in Figure 3.6.

3.7 Merged Neutral Curves

In the examples presented so far, the neutral curves representing TS and

FISI can be considered as being distinct. In other words, the two modes are

represented by two overlapping, yet separate, neutral curves. However in some

cases, the TS and FISI modes can merge together giving rise to a single neutral

curve that encompasses both of them. For example consider a compliant wall

with parameters

m =
1

3
, B = 1.28× 109, T = 0, K = 312500, d = 200.

Figure 3.7 shows the rigid (black) and compliant wall (red) neutral curves

for this set of wall parameters and in this case, the neutral stability curve
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Figure 3.6: Complex c eigenvalues for the same wall parameters as in Figure
3.5 with α = 0.9 and Re = 14000. The two unstable modes are TS, labelled
cw, and the FISI, labelled cf .

representing the compliant wall consists of the TS and the wall-based flow

induced surface instability (hereafter labelled FISI) regions, both of these parts

are now joined together and represented by a single curve. It can be made

certain that the neutral curves are merged rather than overlapping due to

their associated curves of constant growth rate as in Figures 3.8 and 3.9.

Figure 3.8 shows the growth/decay rates starting from =(ω) = −0.005 and

increasing incrementally to =(ω) = 0.005 in steps of 0.001, the neutral curve

is when =(ω) = 0 (recall that the growth rates are given by the curves when

=(ω) > 0 and the decay rates when =(ω) < 0).

At =(ω) = 0.002, the curves representing the TS and divergence modes

start to separate into two district curves but as =(ω) is increased further, the

TS curve shrinks considerably while divergence remains largely unchanged.
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Figure 3.7: Neutral stability curves for a rigid (black) and a compliant wall
(red) with m = 1

3
, B = 1.28 × 109, T = 0, K = 312500, d = 200. The sections

of the neutral curves that represent the TS and FISI modes are labelled ac-
cordingly. The vertical dashed lines denote fixed values of Re equal to 15000
and 24000 while the horizontal dashed lined denote the fixed values of α equal
to 0.1, 0.4 and 0.8.

Similarly, Figure 3.9 shows growth rates from =(ω) = 0.01 up to 0.09 in

increments of 0.01. This reinforces the fact that the TS mode is far weaker (has

a smaller growth rate) than the divergence instability which has a substantially

heightened growth rate.

The growth rates of the different instabilities can be studied from two

different points of view by taking cross sections across the stability curves

diagrams for fixed values of α or Re.

3.7.1 Curves of c Against Re

In order to observe the variation of the phase speed c for a fixed value of the

wavenumber α while changing Re, a “cross section” of the stability diagram
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Figure 3.8: Curves of constant growth and decay rates for the same wall pa-
rameters as in Figure 3.7. The outermost plot is when =(ω) = −0.005 while
the innermost has =(ω) = 0.005 and the lines are plotted in increments of
0.001 (the colours are labelled accordingly).

can to be taken at said value of α (these are represented by the horizontal

lines in Figure 3.7). This provides valuable information to see how the real

and imaginary parts of the phase speed belonging to different instabilities

behave by changing Re. Consider, for example, the variation of c against Re

for a fixed wavenumber α = 0.8 (as shown by the horizontal line at α = 0.8 in

Figure 3.7). From the neutral curves in Figure 3.7, it can be seen that the TS

onset for both the rigid and compliant walls is almost the same but at large

enough Re, the compliant wall restores stability. Figure 3.10 shows the real

and imaginary parts of the phase speed c plotted against the Reynolds number

Re for the fixed wavenumber α = 0.8. This way of presenting the information

is useful when comparing growth rates of the different modes. Note that the

instability that arises here is the TS and has a growth rate that barely reaches

0.01. This growth rate is typical of the TS instability since it is destabilised
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Figure 3.9: Curves of constant growth rate for the same wall parameters as
in Figure 3.7. The outermost plot is the neutral curve with =(ω) = 0 while
the innermost has a growth rate of =(ω) = 0.09, the graphs are plotted in
increments of 0.01.

by a weak viscous mechanism (unless highly modified by the compliant wall).

Now consider the variation of c against Re for a smaller value of α, in

particular α = 0.1. Figure 3.11 shows the curves of c against Re for the FISI,

this mode is unstable for all the values of Re greater than Re ≈ 9350. The

growth rate (given by the imaginary part) is at least an order of magnitude

greater than the TS mode seen in Figure 3.10. Notice, also, that both the

real and imaginary parts cross c = 0 at approximately the same value of Re,

this implies that the instability takes the form of a standing wave at onset (as

seen in Figure 3.11 at Re ≈ 9350). This behaviour is highly distinctive of the

divergence instability (see for example Davies & Carpenter [30]).

Perhaps the most intriguing part of the neutral curve is the region where

the two modes appear to merge into one another at around α = 0.4. The
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Figure 3.10: Real and imaginary parts of c against Re for a fixed α = 0.8 and
the same wall parameters as in Figure 3.7.

variation of c against Re at this value of α reveals three coexisting modes, two

of which are stable for all values of Re as shown in Figure 3.12. These three

can be identified as the TS (black), divergence (red) and TWF (blue) modes

and these can be identified from the solutions of the Orr-Sommerfeld equation.

The flow is stable up to Re ≈ 21000 at which point the TS mode starts to

set in but the flow returns to a stable state after Re ≈ 26000. At even higher

Reynolds numbers, the TWF mode undergoes a very strong stabilisation while

the TS growth rate increases drastically causing the flow to be unstable for all

subsequent values of Re.

The interaction between the divergence and TWF modes can be predicted

by a low wavenumber asymptotic theory (see for example Lucey [87] and Gad-

el-Hak [47]). It can be seen that the TS and TWF modes strongly interact,

leading to a dramatic increase in the TS growth rates with a correspondingly
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Figure 3.11: Real and imaginary parts of c against Re for a fixed α = 0.1 and
the same wall parameters as in Figure 3.7. Both the real and imaginary parts
of c cross c = 0 at approximately the same value of Re suggesting that this
behaviour is highly reminiscent of the divergence instability.

drastic stabilisation of the TWF mode.

3.7.2 Curves of c Against α

Another way of comparing instabilities is to consider the variation of c

against α for a fixed value of Re (represented by the vertical lines in Figure 3.7).

At Re = 15000, the neutral curve shows that the flow will be destabilised at two

separate ranges of α by two different modes. Figure 3.13 shows the variation of

the real and imaginary parts of c against α for this value of Re and indeed, the

flow destabilised at two septate regions by the TS mode and FISI (the range of

wavenumbers at which the instabilities act are labelled accordingly). The TS

instability can be identified as such due to its correspondence with TS mode

73



Chapter 3. Numerical Solution of the Orr-Sommerfeld Equation

0.5 1 1.5 2 2.5 3 3.5 4

×10
4

-0.5

0

0.5

1

ℜ
(c
)

0.5 1 1.5 2 2.5 3 3.5 4

Re
×10

4

-0.1

-0.05

0

0.05

0.1

ℑ
(c
)

Figure 3.12: Real and imaginary parts of c plotted against Re for a fixed
α = 0.4 and the same wall parameters as in Figure 3.7. The three lines
represent the divergence (red), TWF (blue) and TS (black) modes.

for the rigid wall (plotted in black). On the other hand, the FISI is stationary

at onset and has a growth rate that is at least 20 times greater than that of

TS implying that the wall-based mode is the divergence instability.

Increasing the Reynolds number to 24000 shows three modes as in Figure

3.14, one is unstable between α = 0.032 and 0.962 (red) while other two

are stable throughout (blue and green). The mode that is responsible for

destabilising the flow (red) is due to an interaction between divergence and

TS. This particular interaction between the instabilities and its implications

for the disturbance behaviour as a whole is discussed in more detail in Chapter

6.
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Figure 3.13: Real and imaginary parts of c plotted against α for a fixed Re =
15000 and the same wall parameters as in Figure 3.7. The vertical dashed lines
show the regions where the TS and FISI (particularly the divergence mode)
are unstable since the imaginary part is positive.
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Figure 3.14: Real and imaginary parts of c plotted against α for a fixed
Re = 24000 and the same wall parameters as in Figure 3.7. The instabil-
ity in red destabilises the flow at values of α between 0.032 and 0.962, the
others, however, are stable.
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Chapter 4

Numerical Simulation Method

This section describes the method employed to conduct the linear direct numer-

ical simulationsI (denoted DNS) which are then used extensively in Chapters

5 and 6. The procedure described here was initially developed by Davies [28]

and Davies & Carpenter [31] having been inspired by the works of Fasel [36]

[37] and Fasel & Konzelmann [38] [39]. This method was intended to inves-

tigate the evolution of Tollmien-Schlichting waves (be it growth or decay) as

they propagate over a compliant wall section of finite length. However in the

current investigation, the behaviour of the wall-based modes and their possible

interactions (perhaps leading to absolute instabilities) are of greatest interest.

In Chapter 5, the linear DNS method described here are used to perform

numerical experiments and the extracted results will be compared to the solu-

tions of the Orr-Sommerfeld equation obtained from Chapter 3. Later on, in

Chapter 6, absolute instabilities are presented and compared to a saddle point

analysis due to Briggs and two-dimensional global mode computationsII.

IIn the current work, only linear direct numerical simulations are performed since tur-
bulence will not be accounted for

IIWhen the term “DNS results” is used, it refers to information extracted from the DNS
which include wavenumbers, phase speeds, frequencies, growth/decay rates and time periods.
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4.1 Introduction

The study of boundary layer transition by means of direct numerical sim-

ulations was first conducted by Fasel [36] [37] using a finite difference model.

At the time, Fasel and co-workers were limited to studies of two-dimensional

disturbances mainly due to the lack of computational power. However the

processing power available now makes it possible to simulate the transition to

turbulence for a fully developed three-dimensional flow (subject to certain do-

main restrictions). For the current purposes, Squire’s theorem is evoked (as was

remarked for the rigid wall in Chapter 2) and therefore only two-dimensional

disturbances with small amplitudes are considered.

For a flow bound by compliant walls, any disturbance to the flow results

in pressure changes which generate forces that deform the wall from its equi-

librium position. This wall deflection modifies the motion of the fluid flowing

over it which, in turn, alters the wall’s deflection even further. This feedback

loop results in the decay of the TS instability but in doing so, it can also be

responsible for generating wall-based modes as well. These instabilities can

have a detrimental effect on the stability of the flow, even more so than the

TS mode can exhibit by itself.

In order to capture the interesting interactive behaviour between the wall

and the flow, a highly efficient scheme was developed by Davies [28] to resolve

the more prominent features of the flow to achieve stable converged solutions.

This scheme involves using a hybrid between two numerical methods: a finite

difference method for streamwise and time discretisations and a Chebyshev

spectral method for the direction normal to the wall. The governing equations

of the system are based on the velocity-vorticity formulation which gives a very
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efficient and stable diagonal scheme when integration is performed.

In the previous chapters, the compliant wall was assumed to be of infinite

extent in both the streamwise and spanwise directions but here, a wall of finite

length is considered. The flow configuration consists of a compliant wall section

attached to two rigid wall sections in the upstream and downstream locations

by hinging or clamping. The flow is disturbed by either introducing an inflow

profile or by means of a localised impulsive forcing.

After the DNS method is described, examples of its application will be

shown in Chapters 5 and 6. First, the behaviour of the TS instability over

compliant walls is studied, though this is reproduced from earlier works, these

cases are still presented to show the way in which the method works. Then, the

wall-based instabilities are studied and the DNS results are compared to those

obtained from the solutions of the Orr-Sommerfeld equation. The proliferation

of the wall-based modes has not been documented before in the literature us-

ing the current DNS scheme and this is where the original content of the thesis

begins. In Chapter 6, the growth of absolute and global instabilities is inves-

tigated using this linear DNS method, Briggs’ method and two-dimensional

global mode computations.

4.2 Flow Set-up

4.2.1 Flow Configuration

Figure 4.1 shows a schematic representation of the flow configuration. The

computational domain extends from x = 0 to x = L which is where inflow and

outflow conditions are imposed respectively. Both walls are rigid except in the
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region x ∈ [L1, L2] where a compliant section is inserted (0 < L1 < L2 < L).

The join conditions (be they hinging or clamping) are imposed at x = L1 and

x = L2. Only the half channel y ∈ [0, 1] is considered due to the assumed

symmetry of ϕ.

Figure 4.1: Schematic representation of the flow configuration used for the
DNS.

It should be noted that the location of the start of the compliant wall L1

should be sufficiently downstream of x = 0 in order to ensure that no upstream

propagating effects reach location of the inflow. Otherwise, the solution near

x = 0 could be contaminated by these spurious effects. Similarly, L2 has to be

sufficiently upstream of x = L in order to apply a rigid wall outflow condition

without risk of having any effects from the compliant wall.

4.2.2 Disturbing the Basic Flow

There are two ways in which the flow is disturbed, either by using an inflow

profile or a localised impulsive excitation.

Inflow Profile

Since the wall is rigid at the inflow x = 0, a disturbance streamfunction

corresponding to the rigid TS mode can be used as an inflow condition. This
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allows the TS wave to enter the computational domain onto the rigid wall

and as it travels over the compliant wall, it acts as a continuous source of

excitation for the wall-based modes. In this case, there has to be an inherent

inflow frequency associated with the disturbance profile and this is denoted β.

The advantage of using a TS inflow profile to disturb the flow is that there will

be no near-field effects associated with this disturbance as opposed to using

other methods of excitation such a localised impulse, bump on the rigid wall

section or vibrating ribbon for example.

Localised Impulsive Forcing

Another way in which the flow can be disturbed is through a localised

impulsive forcing which takes the form

e−σ
2t2
(

1− e−σ
2t2
)

e−(x−L̄)2 .

The term σ defines a timescale for the forcing where this timescale behaves

as 1
σ

for the impulse (in all the cases presented here, σ is taken to be 1).

The impulsive excitation is imposed at the location L̄ which is usually taken

to be the middle of the compliant wall section (note that any other suitable

location can be taken for L̄ but the middle is chosen here). This form gives

the compliant wall an initial disturbed form that can then excite the flow

without having to impose an inflow frequency to the system. The localised

impulse is used mostly for the cases in Chapter 6 that show absolute and

global instabilities.
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4.3 Establishing the Governing Equations

4.3.1 Velocity-Vorticity Formulation

In the past, the Navier-Stokes equations have been formulated differently,

these include forms such as the Primitive Variable, Streamfunction-Vorticity,

Streamfunction, Three-Field and Velocity-Vorticity formulations. For the work

presented here, the Velocity-Vorticity formulation of the Navier-Stokes equa-

tions is used, this is given by the set of equations:

∂ω

∂t
+ u · ∇ω =

1

Re
∇2ω

ω =
∂u

∂y
− ∂v

∂x

∇ · u = 0.

This particular form is used as opposed to its equivalent counterparts since,

first of all, it eliminates the need for determining the pressure p explicitly (as

in the Primitive Variable and Three-Field formulations). Moreover, it also

allows the boundary conditions to be imposed on the velocity components as

opposed to the streamfunction (as in Streamfunction-Velocity and Streamfunc-

tion formulations). A more detailed account of the relative advantages of the

Velocity-Vorticity formulation is given in Fasel [37] and Gatski [56]III.

In this section, the simulation method used for the DNS from Davies [28]

and Davies & Carpenter [31] is described. In the sections that follow, ω will

be used to represent the vorticity while β will represent the frequency.

IIIIt should also be noted that Davies & Carpenter [32] have obtained a novel velocity-
vorticity formulation of the Navier-Stokes equations along with applications to different
problems in hydrodynamic stability theory such as flows over compliant surfaces and over
rotating discs.
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4.3.2 Governing Equations

The governing equations of the system in terms of the disturbance velocities

and pressure (derived from the Navier-Stokes equations as shown earlier in

equation (2.4), Chapter 2) are:

x-momentum equation:
∂u

∂t
+ U

∂u

∂x
+

dU

dy
v =− ∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
(4.1a)

y-momentum equation:
∂v

∂t
+ U

∂v

∂x
=− ∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
(4.1b)

Conservation of mass:
∂u

∂x
+
∂v

∂y
= 0 (4.1c)

Vorticity:
∂u

∂y
− ∂v

∂x
= ω. (4.1d)

First, the equations that govern the fluid motion are derived from (4.1).

These equations, which are in their differential form, are then converted to

integral equations since this facilitates the discretisation of the governing equa-

tions and boundary conditions in the y-direction by means of a Chebyshev-Tau

method.

In the sections that follow, the equations of the system will be discussed in
this order:

1. Governing equations

2. Integral forms of the governing equations

3. Pressure integral

4. Pressure driven wall equation

5. Boundary conditions

6. Inflow and Outflow conditions

7. Join conditions.
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These equations are then discretised in the y-direction by means of a

Chebyshev-Tau method and then in the x and t-directions by using a finite

difference method.

Before continuing, it should be made very clear that the equations and

the method presented in this chapter have already been well-established, the

main application of this method was in Davies [28] which was a collection of

previous works as well as novel ones. This chapter only aims to collect these

different ideas and present them for the sake of completeness.

4.3.3 Fluid Motion

Vorticity Transport Equation

To obtain the equation that dictates the evolution of the vorticity, differ-

entiate (4.1a) with respect to y and subtract (4.1b) differentiated with respect

x to give

∂ω

∂t
+ U

∂ω

∂x
+ U ′′v =

1

Re
∇2ω. (4.2)

(The dashes here represent differentiation with respect to y.) Equation (4.2) is

known as the vorticity transport equation and is the first of the two governing

equations of the flow.

Even Forms of the Functions

Since both ϕ and U are symmetric, the normal velocity v has to also be

symmetric according to the vorticity transport equation (4.2). With this as-

sumption in mind, the streamwise disturbance velocity u and the pressure p

have to be antisymmetric according to (4.1), hence u(0) = p(0) = 0. Therefore

all in all, the functions v, ω and U are symmetric while u and p are antisym-

metric.
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Notice that the streamwise velocity component u does not appear explicitly

in the vorticity transport equation (4.2), this could suggest that the evolution

of the vorticity may be independent of the streamwise velocity but this is of

course invalid. This problem can be resolved by an integral constraint on u

which is obtained by imposing the no slip condition at the wall. Integrating

the vorticity (4.1d) with respect to y gives an expression for the streamwise

velocity u in terms of v and ω as

u(y) =

y∫
0

(
ω +

∂v

∂x

)
dy. (4.3)

Evaluating at y = 1 gives the boundary condition on u

uw =

1∫
0

(
ω +

∂v

∂x

)
dy. (4.4)

From now on, the terms with a subscript w (�w) represent functions evaluated

at the upper wall, i.e.

fw = fw(x, t) = f(x, 1, t) for some function f.

Poisson Equation

The vorticity transport equation (4.2) is the first of two governing equations

of the system, the second is the Poisson equation

∇2v = −∂ω
∂x
. (4.5)
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This Poisson equation ensures that the conservation of mass ∇ · u = 0 is

satisfied, indeed,

∇ · u =
∂u

∂x
+
∂v

∂y

=
∂

∂x

 y∫
0

ω dy +
∂

∂x

y∫
0

v dy

+
∂v

∂y
from (4.3)

=

y∫
0

∂ω

∂x
dy +

y∫
0

∂2v

∂x2
dy +

y∫
0

∂2v

∂y2
dy

=

y∫
0

(
∂ω

∂x
+∇2v

)
dy = 0 from (4.5).

Therefore, the two governing equations of the system are:

Vorticity transport equation:
∂ω

∂t
+ U

∂ω

∂x
+ U ′′v =

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(4.6a)

Poisson equation:
∂2v

∂x2
+
∂2v

∂y2
= −∂ω

∂x
. (4.6b)

According to Bridges & Morris [10], in order to discretise the governing

equations in the y-direction, it is convenient if they were to be converted to

equations that involve integral operators. In their work, they solved the Orr-

Sommerfeld equation by integrating four times to obtain its corresponding

integrated formIV. This idea of integrating the governing equations (4.6a)

and (4.6b) was used by Davies [28] and Davies & Carpenter [31] in order to

facilitate the discretisation of the governing equations by using the Chebyshev-

Tau method. An advantage of casting the problem into a form that involves

integral operators is that the system can be written as a set of banded matrices

IVThe phrase “integral form” or “integrated form” used here denote the form of the
equations which involve the use of integral operators rather than differential ones.
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(diagonal, tridiagonal, pentadiagonal, etc.). In this case, a modified form of

the Thomas Algorithm can be used for solving the equations numerically (this

algorithm is discussed in some detail in Appendix G and Davies [28]).

Integral Operators

In its differential form, the vorticity transport equation (4.6a) can be writ-

ten as

∂ω

∂t
+

∂

∂x
(Uω) + U ′′v =

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
.

Integrating with respect to y twice gives

∂

∂t

∫∫
ω+

∂

∂x

∫∫
Uω+

∫∫
U ′′v =

1

Re

∂2

∂x2

∫∫
ω+

1

Re
ω+A1(x, t)y+A0(x, t)

(4.7)

where A0(x, t) and A1(x, t) are functions of integration. Here, the double

integrals are a notational abbreviation denoting

∫∫
f =

y∫
0

y2∫
0

f(y1) dy1 dy2 for some function f .

Doing the same with the Poisson equation (4.6b),namely

∂2v

∂x2
+
∂2v

∂y2
= −∂ω

∂x
,

gives its corresponding integrated form

v +
∂2

∂x2

∫∫
v = − ∂

∂x

∫∫
ω +B1(x, t)y +B0(x, t) (4.8)

where B0(x, t) and B1(x, t) are functions of integration. Since v, ω and U are

all symmetric, the functions A1(x, t) and B1(x, t) can both be taken as 0 since

there are no other odd terms present. Therefore the integrated forms of the
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governing equations are:

∂

∂t

∫∫
ω +

∂

∂x

∫∫
Uω +

∫∫
U ′′v =

1

Re

∂2

∂x2

∫∫
ω +

1

Re
ω + A0(x, t) (4.9a)

v +
∂2

∂x2

∫∫
v = − ∂

∂x

∫∫
ω +B0(x, t). (4.9b)

4.3.4 Pressure Integral

So far, the governing equations have not referred to the pressure term p

is needed since the pressure at the wall pw needs to be calculated in order to

determine the interactively coupled wall motion. Consider the y-momentum

equation (4.1b)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
.

Integrating with respect to y and using the fact that p(0) = 0 gives

p(y) =

y∫
0

[
−∂v
∂t
− U ∂v

∂x
+

1

Re
∇2v

]
dy.

Evaluating this expression at the upper wall y = 1 and using the Poisson

relation (4.6b) gives an expression of the fluid pressure at the upper wall

pw = −
1∫

0

[
∂v

∂t
+ U

∂v

∂x
+

1

Re

∂ω

∂x

]
dy. (4.10)

4.3.5 Wall Motion

In order to couple the fluid and wall motions, the pressure at the wall needs

to be obtained from the pressure driven wall equation. For the spring-backed
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plate model, the pressure driven wall equation is

p∗(h) =

(
m∗

∂2

∂t∗2
+ d∗

∂

∂t∗
+B∗

∂4

∂x∗4
− T ∗ ∂

2

∂x∗2
+K∗

)
η∗

where the terms with an asterisk (�∗) are dimensional quantities. Previously

in Chapter 2, the system was non-dimensionalised using the mean centreline

velocity Um, channel half-width h, fluid density ρ and kinematic viscosity ν as:

x =
x∗

h
, η =

η∗

h
, t =

t∗Um
h

, p =
p∗

ρU2
m

m =
m∗

ρh
,

d

Re
=

d∗

ρUm
,

B

Re2 =
B∗

ρh3U2
m

,
T

Re2 =
T ∗

ρhU2
m

,
K

Re2 =
K∗h

ρU2
m

and the Reynolds number is Re =
Umh

ν
.

If the Reynolds number is thought of as being varied by only changing

the centreline velocity, then the non-dimensional wall parameters will also

be altered accordingly. However, in order to keep the wall parameters fixed

with this respect to this change, an alternative non-dimensionalisation can be

employed for the wall parameters, particularly,

m =
m∗

ρh
, d =

d∗ρ

ν
, B =

B∗

ρhν2
, T =

T ∗h

ν2ρ
, K =

K∗h3

ρν2
.

This uses the kinematic viscosity ν as a reference scale for the wall parameters

and therefore if the Reynolds number is changed (by changing Um), then the

non-dimensional wall parameters (m,B, T,K and d) and the flow’s physical

configuration (ν and h) will remain unchanged. Using this alternative non-

dimensionalisation will give an expression for pw (which is the same as (2.14)
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in Chapter 2) as

pw =

(
m
∂2

∂t2
+
d

R

∂

∂t
+

1

R2

[
B
∂4

∂x4
− T ∂2

∂x2
+K

])
η. (4.11)

4.3.6 Boundary Conditions

Two different sets of boundary conditions need to be imposed to the prob-

lem, one for the rigid sections and the other for the compliant wall section. At

the rigid walls, the no slip and no penetration conditions are imposed, i.e.

uw(x, t) = vw(x, t) = 0 for x ∈ [0, L1) ∪ (L2, L].

Along the length of the compliant wall, components of the velocity and

stress have to be continuous between the fluid and the compliant wall hence

giving two boundary conditions, one on u and the other on v. (Note that the

boundary condition on u needs to be determined from the interactive coupling

of the wall and fluid motions.) Therefore, the boundary conditions on u and

v can be obtained by evaluating (4.3) and v at the upper wall y = 1 to give

uw =

1∫
0

(
ω +

∂v

∂x

)
dy and vw = v(x, 1, t) for x ∈ [L1, L2].

4.3.7 Inflow & Outflow Conditions

Inflow Condition at x = 0

For the the current investigation, there are two ways in which the flow

can excited, either by introducing an inflow profile ϕ or by using a localised

impulsive forcing in the middle of the compliant wall (the form of the impulse
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forcing was mentioned earlier in §4.2.2). If an inflow profile is introduced,

then u, v and ω have to be prescribed at x = 0 and y ∈ [0, 1]. All these

can be determined from the solutions of the Orr-Sommerfeld equation with a

symmetric eigenfunction ϕ corresponding to the TS wavenumber for the rigid

wall (since the wall is rigid at the inflow). Therefore at x = 0, the flow variables

take the form

f(0, y, t) = <
(
fOS(y)e−iβt

[
1− e−

βt
P

])
where f = v, ω

The forcing frequency of the inflow is β and the subscript OS refers to the

Orr-Sommerfeld solutions for the rigid wall. The term in the square brackets

([�]) is a ramping up term which allows the disturbance to grow from zero and

P refers to a delay parameter (i.e. the higher the value of P , the longer it will

take for the ramping up to reach full amplitude), for all the cases presented,

P = 4π2.

The terms with a subscript OS are given in terms of the inflow disturbance

profile ϕ as

vOS(y) = −iαϕ and ωOS(y) = ϕ′′ − α2ϕ.

No inflow condition on u is necessary since it does not appear explicitly in the

vorticity transport equation, moreover if both v and ω are known, then u can

be determined from (4.3) if so desired.

If the flow is disturbed by a localised impulsive forcing, then the inflow

profile ϕ can be set to zero and therefore u, v, ω = 0 at x = 0 and y ∈

[0, 1]. Care needs to be taken in monitoring the progression of the excited

disturbances in order to ensure that no artificial effects appear from reflections

at the inflow boundary.
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Outflow Condition at x = L

At the outflow, it can be assumed that the flow variables are wavelike (as

was suggested by Fasel [36]), this means that they take the form f ∼ eiαx

where α is complex in general. Therefore the flow variables u, v and ω satisfy

the differential equation

∂2f

∂x2
+ 2=(α)

∂f

∂x
+ |α|2f = 0.

This outflow condition allows small amplitude TS waves to pass out of the

computational domain smoothly without causing unphysical reflections from

the end of the computational boundary. Imposing this condition requires an

approximate value of the wavenumber α to be prescribed at the outflow and

this can be obtained from the solution of the Orr-Sommerfeld equation for the

rigid wall as well. It should be noted that the outflow condition is relatively

insensitive of the exact value of the wavenumber α provided that the distance

between the downstream end of the compliant wall (x = L2) and the outflow

(x = L) is sufficiently long.

4.3.8 Join Condition Between the Rigid & Compliant

Walls

At the compliant wall ends (x = L1, L2), either hinging or clamping condi-

tions can be imposed in order to attach the rigid and compliant wall sections.

The hinged conditions are:

∗ η = 0: The edges of the compliant wall section do not deflect from their

equilibrium positions

∗ ∂2η
∂x2

= 0: The edges of the compliant wall section are free to rotate but
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do not experience any torque.

On the other hand, the clamped conditions are:

∗ η = 0: Same interpretation as the hinged case

∗ ∂η
∂x

= 0: The compliant wall is horizontal at the edges.

Previous accounts on the join conditions (see for instance Davies & Car-

penter [31]) reported that changes at the leading and trailing edge were less

drastic when the clamped condition was imposed since clamping the wall effec-

tively increases the wall stiffness, but otherwise the flow dynamics were largely

similar. For the current purposes, the hinged conditions will be used unless

otherwise stated.

4.4 Numerical Discretisation Procedure

The numerical scheme used here employs a hybrid approach combining

a Chebyshev-Tau spectral method for discretising the flow variables in the y-

direction and a second order finite differencing in the x and t-directions. In the

following sections, the equations obtained earlier are discretised spatially and

temporally, the system of equations then forms a banded system of matrices

that can then be solved by using the modified Thomas Algorithm. These

equations and boundary conditions are restated here for ease of reference:

– Governing equations which involve integral operators:

∗ Vorticity transport equation:

∫∫ [
∂ω

∂t
+

∂

∂x
(Uω) + U ′′v

]
=

1

Re

∂2

∂x2

∫∫
ω +

1

Re
ω + A0(x, t). (4.12)
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∗ Poisson equation:

v +
∂2

∂x2

∫∫
v = − ∂

∂x

∫∫
ω +B0(x, t). (4.13)

– Pressure integral:

pw(x, t) = −
1∫

0

(
∂v

∂t
+ U

∂v

∂x
+

1

Re

∂ω

∂x

)
dy. (4.14)

– Pressure driven wall equation:

pw(x, t) =

(
m
∂2

∂t2
+

d

Re

∂

∂t
+

1

Re2

[
B
∂4

∂x4
− T ∂2

∂x2
+K

])
η. (4.15)

– Boundary conditions:

∗ Rigid wall x ∈ (0, L1) ∪ (L2, L):

uw(x, t) = vw(x, t) = 0. (4.16)

∗ Compliant wall x ∈ (L1, L2):

uw(x, t) =

1∫
0

(
ω +

∂v

∂x

)
dy, vw(x, t) = v(x, 1, t). (4.17)

– Inflow conditions:

∗ Inflow profile ϕ:

f(0, y, t) = <
(
fOS(y)e−iβt

)
for f = v, ω (4.18)

where vOS(y) = −iαϕ, ωOS = ϕ′′ − α2ϕ.

The function ϕ is the disturbance streamfunction which is obtained from
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the solution of the Orr-Sommerfeld equation for the TS mode over a rigid

wall.

∗ Impulsive excitation: ϕ ≡ 0

– Outflow condition:

∂2f

∂x2
+ 2=(α)

∂f

∂x
+ |α|2f = 0 for f = u, v, ω. (4.19)

– Join conditions at x = L1, L2:

∗ Clamped:

η =
∂η

∂x
= 0 (4.20)

∗ Hinged:

η =
∂2η

∂x2
= 0. (4.21)

Once again, it should be made very clear that all the details of the discreti-

sation have been taken from elsewhere, particularly Davies [28] and Davies

& Carpenter [31]. However, detailed accounts of this method have not been

previously given in the literature in a fully collated form.

4.5 Discretisation in the y-Direction

First, the Chebyshev-Tau method is used to discretise the disturbances

in the y-direction, this involves representing the functions of the system as a

linear combination of Chebyshev polynomials. Since v and ω are symmetric,

they can be represented as a linear combination of even Chebyshev polyno-

mials. The function u, on the other hand, is odd and can be represented as

a linear combination of odd Chebyshev polynomials, alternatively, if v and ω
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are known, then u can be determined from (4.3).

The Chebyshev-Tau method was used by Bridges & Morris [10] in order to

discretise the Orr-Sommerfeld equation by first converting it into an equation

with integral operators rather than differential ones. The boundary conditions

for the rigid wall plane channel flow were then incorporated by using the Tau

method in order to have a fully determined set of equations (this is due to Lanc-

zos [80] and is described in Appendix F). The details for the y-discretisation

of the Orr-Sommerfeld equation for the rigid wall plane channel flow is given

in their appendix while that of the compliant wall is given in Davies [28].

4.5.1 General Form of the Discretised Functions

For an arbitrary even function f = f(x, y, t), the general form for the y-

discretisation and the corresponding matrix form of f ,
∫∫
f and

∫∫
Uf need to

be established.

First, since f is even, it can be represented as a linear combination of even

Chebyshev polynomials as

f(x, y, t) =
1

2
f1(x, t)T0(y) +

N∑
k=2

fk(x, t)T2(k−1)(y)

for some functions f1, f2, . . . , fN to be determinedV. Alternatively, f can be

written as

f(x, y, t) =
N∑
k=1

rkfk(x, t)T2(k−1)(y) (4.22)

where rk =


1
2

k = 1

1 k = 2, 3, . . . , N.

(4.23)

VBridges and Morris [10] used this expansion with the first term being 1
2 rather than 1 for

convenience when it comes to deriving the discretisation of the Orr-Sommerfeld equation.
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A diagonal matrix M1 (of size N ×N) can be used to represent this expansion

and is given by

M1 =



1
2

1

. . .

1

1


. (4.24)

In the current scheme, the first row of the matrices is replaced with one of the

boundary condition giving a matrix that will be denoted M̃1 (therefore having

the first term being 1
2

is not pertinent any more). Additionally, dispensing

with the first row is a feasible step since the first equation only serves the

purpose of determining the functions of integration A0 and B0 (further details

are given in the next section). The discretisation of the boundary conditions

and their incorporation is discussed later in §4.5.4.

When the Chebyshev representation (4.22) is used to discretise
∫∫
f , an

extra equation would result equating the coefficients of the polynomial T2N

(since the integration increases the order of the polynomials). The matrix

representation of
∫∫
f , denoted M3, will therefore be of size N × (N + 1). Just

as before, the first row is replaced by the boundary condition while the last

row (equating the coefficients of T2N) is dispensed with as a consequence of

the Tau method, this new matrix is now denoted M̃3. The full form of the

y-discretisation of
∫∫
f as well as its full matrix form M3 is given in Appendix

E. After the rows have been removed and the boundary conditions have been

incorporated appropriately, the matrix M̃3 will in fact be a tridiagonal matrix

with a full first row (hence the subscript 3).

Finally, the discretisation of
∫∫
Uf is required. The basic velocity profile
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U can be represented as linear combination of Chebyshev polynomials as

U(y) = 1− y2 =
1

2
[T0(y)− T2(y)] for y ∈ [0, 1].

The corresponding matrix representation of
∫∫
Uf is denoted M5 and its full

form, along with the y-discretisation is given in Appendix E. The discretised

form of
∫∫
Uf introduces two extra polynomials T2N and T2N+2, their corre-

sponding equations are dispensed with as a consequence of the Tau method

and the first row is replaced with the boundary condition (just as before). This

modified matrix will be denoted by M̃5 and is a pentadiagonal matrix with a

full first row.

The banded matrices that are formed here can then be solved using the

modified Thomas Algorithm, this method eliminates terms from the first row

of the matrices during the backwards sweep. The Thomas algorithm for tridi-

agonal, pentadiagonal and pentadiagonal with a full first row is described in

Appendix G.

Now that the general forms of the y-discretisations of f,
∫∫
f and

∫∫
Uf

have been obtained for an arbitrary even function f , they will now be used to

obtain the discretised forms of the governing equations.

4.5.2 Governing Equations

Poisson Equation

Since v and ω are symmetric, they can be expanded in the form given in

(4.22). The y-discretisation of
∫∫
f can be used in the Poisson equation (4.13),

namely, ∫∫ (
∂2v

∂x2
+
∂ω

∂x

)
+ v = B0
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with

f =
∂2v

∂x2
+
∂ω

∂x

since f is even. The result is a set ofN+1 equations (equating the coefficients of

T0, T2, . . . , T2N) in N unknown functions (v1, v2, . . . , vN). As discussed earlier,

the boundary condition replaces the first row and the last row is dispensed.

This leaves a set of N − 1 equations in N unknown functions which can be

written as:

N∑
k=1

[
δjkvk + Ijk

(
∂2vk
∂x2

+
∂ωk
∂x

)]
= 0 for j = 2, 3, . . . , N. (4.25)

The term Ijk represents the matrix operator of
∫∫
f obtained from the full

expression given in equation (E.1) in Appendix E and can be written as

Ijkfk =
δjk
4

(
fk−1

(2k − 2)(2k − 3)
− 2fk

(2k − 1)(2k − 3)
+

fk+1

(2k − 1)(2k − 2)

)
(4.26)

where δjk is the Kronecker delta function

δjk =

1 j = k

0 j 6= k.
(4.27)

The resulting set of N − 1 equations can be written in a tridiagonal matrix

form by using the matrices M̃1 and M̃3 (which are the matrices M1 and M3

with their first row replaced with the boundary condition and the last row of

M3 removed). Suppose that a caret over a vector (�̂) is the same vector with
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its first term removed only, i.e.

if w =



w1

w2

...

wn


, then ŵ =


w2

...

wn

 .

The remaining set of equations can then be written as a tridiagonal matrix

system of equations with a full first row as:



• • • • · · · • •

• • •

• • •
. . . . . . . . .

• • •

• • •

• •



← Boundary condition

These terms are obtained

from equation (4.25) as

M̃1v̂ + M̃3f̂ = 0

where

f̂ = ∂2v̂
∂x2

+ ∂ω̂
∂x
.

This set of equations can then be tackled by the modified Thomas algorithm

(as explained in Appendix G).

Vorticity Transport Equation

The second governing equation of the fluid flow is given by the vorticity

transport equation (4.12), namely

− 1

Re
ω +

∫∫ (
∂ω

∂t
+ U ′′v − 1

Re

∂2ω

∂x2

)
+

∫∫ (
U
∂ω

∂x

)
= A0.

This is discretised in the same way as the Poisson equation using the y-

discretisations of
∫∫
f and

∫∫
Uf . Therefore the remaining set of equations
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can be written as

− 1

Re

N∑
k=1

[
δjkωk + Ijk

(
∂ωk
∂t

+ U ′′vk −
1

Re

∂2ωk
∂x2

)
+ Ujk

∂ωk
∂x

]
= 0

for j = 2, 3, . . . , N. (4.28)

The term Ujk represents the matrix operator of
∫∫
Uf obtained from the full

expression given in equation (E.2) Appendix E. The operator Ujkf is equiva-

lent to writing Ijk(Uf) where

Uf =
f1 − f2

2
−

N−1∑
k=2

fk+1 − 2fk + fk−1

4
T2(k−1)(y) +

2fN − fN−1

4
. (4.29)

The resulting set of equations can be written in a pentadiagonal matrix

form by using the matrices M̃1, M̃3 and M̃5 with a full first row as:



• • • • • • · · · • •

• • • •

• • • • •

• • • • •
. . . . . . . . . . . . . . .

• • • • •

• • • • •

• • • •

• • •



← Boundary condition

These terms are obtained

from equation (4.28) as

− 1
Re
M̃1ω̂ + M̃3ĝ + M̃5ĥ = 0

where

ĝ = ∂ω̂
∂t

+ U ′′v̂ − 1
Re

∂2ω̂
∂x2

and

ĥ = ∂ω̂
∂x
.

101



Chapter 4. Numerical Simulation Method

4.5.3 Pressure Integral

The fluid pressure at the upper wall is given in equation (4.14) as

pw = −
1∫

0

[(
∂v

∂t
+

1

Re

∂ω

∂x

)
+ U

∂v

∂x

]
dy.

When the y-discretisation is imposed on v and ω, the pressure can be written

as

pw = −
N∑
k=1

[
qk

(
∂vk
∂t

+
1

Re

∂ωk
∂x

)
+ sk

∂vk
∂x

]
. (4.30)

The term qk represents the coefficients of the Chebyshev expansion when in-

tegrated with respect to y across the half-channel and sk represents the coef-

ficients of the Chebyshev expansion multiplied by the basic velocity profile U

and then integrated on y ∈ [0, 1], in other words

qk =

1∫
0

T2k(y) dy =


1
2

k = 1

− 1
4k2−1

k = 2, 3 . . . , N

(4.31)

and sk =

1∫
0

U(y)T2k(y) dy =


1
3

k = 1

6
(4k2−1)(4k2−9)

k = 2, 3 . . . , N.

(4.32)

The pressure term found here aids in updating the wall heights since the wall

motion is assumed to be pressure driven.

4.5.4 Boundary Conditions

Over the rigid wall sections, the boundary conditions are simply zero, i.e.

uw = vw = 0.
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Over the compliant wall insert, the two boundary conditions are

uw =

1∫
0

(
ω +

∂v

∂x

)
dy (4.33a)

vw = v(x, 1, t). (4.33b)

Using the assumed expansion for v and ω given in (4.22) and the integra-

tion recipes in Appendix B, the compliant wall boundary conditions can be

discretised, respectively, as

uw =
N∑
k=1

qk

(
ωk +

∂vk
∂x

)
(4.34a)

vw =
N∑
k=1

rkvk. (4.34b)

The term rk represents the coefficients of the Chebyshev expansion (4.22) (as

given in equation (4.23)) while qk represents the coefficients of the Chebyshev

expansion when integrated on y ∈ [0, 1] (as in (4.31)).

4.6 Discretisation in the x & t-Directions

The governing equations, boundary conditions and pressure integral have

all been discretised in the y-direction by using a Chebyshev discretisation and

the Tau method. Now, they shall be discretised in x and t using a finite

differencing scheme.

For the current investigation, a second order finite differencing scheme is

used in order to discretise the equations in x and t. For a function f , let

f lk,n denote fk(xn, tl)
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where k ∈ {1, 2, . . . , N}, n ∈ {0, 1, . . . , ne} and l ∈ N.

The indices of f lk,n are interpreted as follows:

∗ k denotes the coefficient of the Chebyshev polynomial T2(k−1) as given in

(4.22), namely the underlined terms below:

f(x, y, t) =
N∑
k=1

rkfk(x, t)T2(k−1)(y).

∗ n denotes the discretised streamwise location where xn = n∆x for the

streamwise increment ∆x. This means that the inflow is at n = 0 (i.e.

x0 = 0), the outflow is at n = ne (xne = L) and the compliant wall

extends from n = n1 (xn1 = L1) to n = n2 (xn2 = L2).

∗ l denotes the discretised time where tl = l∆t for the time increment ∆t.

For the x-discretisation, a second order centred finite differencing approx-

imation is taken, the expressions for the first four derivatives with respect to

x are given as the following:

∗
∂f lk,n
∂x

=
1

2∆x

(
f lk,n+1 − f lk,n−1

)
∗

∂2f lk,n
∂x2

=
1

(∆x)2

(
f lk,n+1 − 2f lk,n + f lk,n−1

)
∗

∂3f lk,n
∂x3

=
1

2(∆x)3

(
f lk,n+2 − 2f lk,n+1 + 2f lk,n−1 − f lk,n−2

)
∗

∂4f lk,n
∂x4

=
1

(∆x)4

(
f lk,n+2 − 4f lk,n+1 + 6f lk,n − 4f lk,n−1 + f lk,n−2

)
. (4.35)

For the t-discretisation, a three-point backward differencing method is used,

particularly,

∂f lk,n
∂t

=
1

2∆t

(
3f lk,n − 4f l−1

k,n + f l−2
k,n

)
. (4.36)
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4.7 The Numerical Procedure

The numerical procedure employed here come in three steps, first, the

vorticity ω is predicted from the vorticity equation using the values of v and

ω from the previous time steps. Second, the velocity v is solved for iteratively

by using the Poisson equation and finally, the vorticity ω is corrected using

the vorticity equation. The vorticity predictor-corrector stage of the current

method was used by previous authors such as Davies [28], Davies & Carpenter

[32], Heaney [69] and Togneri [122].

4.7.1 Vorticity Predication

Consider the vorticity equation (4.2),

∂ω

∂t
+ U

∂ω

∂x
+ U ′′v =

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
.

This can be rewritten as

∂ω

∂t
= E +

∂2ω

∂y2
where E = −U ∂ω

∂x
− U ′′v +

1

Re

∂2ω

∂x2
. (4.37)

The term E can be treated explicitly while the term ∂2ω
∂y2

is treated implicitly.

The predicted value of E, denoted Ē, can be obtained from values of v and ω

from the previous times as

Ē = 2El−1 − El−2 = 2E(ωl−1, vl−1)− E(ωl−2, vl−2). (4.38)

This can be used to predict the value of the vorticity ω at the timestep l and

this shall be denoted ω̄l. Using the time discretisation (4.36) and equation
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(4.38), the vorticity transport equation (4.37) can be written as

(
3

2∆t
− 1

Re

∂2

∂y2

)
ω̄l =

[
2El−2 − El−1

]
+

2

∆t
ωl−1 − 1

2∆t
ωl−2. (4.39)

This is solved to find the predicted vorticity ω̄l subject to the integral condition

∫
ω̄l =

∫ (
2ωl−1 − ωl−2

)
. (4.40)

An equivalent form of this condition can be obtained by using the constraint on

u given in equation (4.4) and the linearised boundary conditions on u, namely

uw =

1∫
0

(
ω +

∂v

∂x

)
dy and uw = −U ′(1)η. (4.41)

The integral condition on ω given in equation (4.40) now becomes

∫
ω̄l = −U ′(1)

(
2ηl−1 − ηl−2

)
− ∂

∂x

∫ (
2vl−1 − vl−2

)
.

Notice that solving for the predicted vorticity ω̄l under this restriction is inde-

pendent of the streamwise location.

4.7.2 Velocity Iteration

Now that the vorticity ω̄l has been predicted, the Poisson equation can

be used to obtain an expression for the velocity field vl (and hence the wall

displacement ηl). Consider the Poisson equation (4.5), namely

∂2v

∂x2
+
∂2v

∂y2
= −∂ω̄

∂x
. (4.42)
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The right hand side of this equation is fixed after having been determined

from the vorticity prediction stage. The Poisson relation needs to be solved

iteratively in order to determine the velocity vl. However, a problem arises

since attempting to solve the system of equations for the fluid and wall motions

independently will most likely incur numerical instabilities. Further details of

this issue were addressed in Lucey & Carpenter [89] where they suggested that

the wall and hydrodynamic inertias should be coupled otherwise if treated

separately, one of the terms may dominate and the method fails to converge.

Flow Inertia

According to Lucey & Carpenter [89], the fluid and wall motions across the

compliant wall section can be coupled by using the total normal momentum of

the channel µ which consists of the wall and hydrodynamic inertial terms as

µ(x, t) = mvw︸︷︷︸
wall inertia

+

1∫
0

v dy

︸ ︷︷ ︸
hydrodynamic inertia

(4.43)

where m is the mass of the wall. This equation provides a condition when

determining v from the Poisson equation over the compliant wall. As for the

rigid sections, the condition on v is

vw = 0. (4.44)

The Poisson equation has to be solved for v iteratively subject to the conditions

(4.43) and (4.44). After v is determined, the wall displacement η can be

obtained by using the linearised boundary condition

vw =
∂η

∂t
. (4.45)
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Using the time discretisation (4.36), equation (4.45) can be written in a form

that would determine η at the current timestep l by using the determined value

vl as well as the values of η and the two previous timestep as

ηl =
2∆t

3

[
2

∆t
ηl−1 − 1

2∆t
ηl−2 + (vw)l

]
. (4.46)

As yet, the newly introduced total normal momentum µ has not been used.

This term comes into play when coupling the fluid and wall motions.

Total Normal Momentum

Consider the expressions for the pressure at y = 1 in equations (4.14) and

(4.15):

∗ pw =

(
m
∂2

∂t2
+

d

Re

∂

∂t
+

B

Re2

∂4

∂x4
− T

Re2

∂2

∂x2
+

K

Re2

)
η (4.47)

∗ pw = −
1∫

0

[
∂v

∂t
+ U

∂v

∂x
+

1

Re

∂ω

∂x

]
dy. (4.48)

Equating both these expressions and using the linearised boundary condition

vw = ∂η
∂t

gives

∂µ

∂t
+

d

Re
vw + Lη = − ∂

∂x

1∫
0

[
Uv +

1

Re
ω

]
dy (4.49)

where L is a linear differential operator defined as

L ≡ 1

Re2

(
B
∂4

∂x4
− T ∂2

∂x2
+K

)
.
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For an arbitrary function f , the operator L acting on f at a point x = xn can

be discretised using the x-discretisations in (4.35) as

Lfn =
1

Re2

(
B

(∆x)4
(fn+2 + fn−2)− 1

(∆x)2

[
4B

(∆x)2
+ T

]
(fn+1 + fn−1)

+

[
6B

(∆x)4
+

2T

(∆x)2
+K

]
fn

)
.

Using the t-discretisation (4.36), equation (4.49) can be used to determine

µ at the current timestep by using the predicted vorticity ω̄l and the velocity

vl as

µl =
1

3

[
4µl−1 − µl−2

]
− 2∆t

9
L
[
4ηl−1 − ηl−2

]
− 2∆t

3

[
d

Re
+

2∆t

3
L
]
vlw −

2∆t

3

∂

∂x

1∫
0

[
Uvl +

1

Re
ω̄l
]

dy. (4.50)

Using the expression for µ given in (4.43), equation (4.50) can be expressed in

terms of v and η as

mvlw +

1∫
0

vl dy =
1

3

m (4vl−1
w − vl−2

w

)
+

4

1∫
0

vl−1 dy −
1∫

0

vl−2 dy


−2∆t

9
L
[
4ηl−1 − ηl−2

]
−2∆t

3

[
d

Re
+

2∆t

3
L
]
vlw−

2∆t

3

∂

∂x

1∫
0

[
Uvl +

1

Re
ω̄l
]

dy.

(4.51)

According to Davies & Carpenter [31], equation (4.51) can be used to couple

the fluid and wall motions effectively via the total inertia µ. Therefore the

boundary condition (4.34b),

vw =
N∑
k=2

rkvk,
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can then be modified to include the wall terms as

ṽw =
N∑
k=2

r̃kvk

where r̃k = m+
2d∆t

3Re
+

4(∆t)2

9Re2

[
6B

(∆x)4
+

2T

(∆x)2
+K

]
+ qk

and qk is given in (4.34a). The modified term r̃k here can be regarded as being

an effective wall stiffness.

Returning to the Velocity Iteration

Now that the predicted vorticity ω̄ has been obtained and fluid/wall mo-

tions have been coupled appropriately, the Poisson equation can be solved

iteratively to obtain vl (and hence vlw) subject to the boundary conditions:

vlw = 0 on the rigid sections

µl = mvlw +

1∫
0

vl dy on the compliant section.

The wall displacement ηl can now be determined by using the discretised

form of the linearised boundary condition vw = ∂η
∂t

as given in equation (4.46).

4.7.3 Vorticity Correction

The final stage is to correct the vorticity using its predicted value ω̄l and

the velocity vl. The vorticity transport equation is used just as in equation

(4.39) but with a slight modification, particularly

(
3

2∆t
− 1

Re

∂2

∂y2

)
ωl = Ēl +

2

∆t
ωl−1 − 1

2∆t
ωl−2 where Ēl = E(ω̄l, vl).

(4.52)

110



4.8. Summary

This equation is solved subject to a similar integral constraint as before, namely

∫
ωl = −U ′(1)ηl − ∂

∂x

∫
vl.

4.8 Summary

The velocity-vorticity formulation is used as a basis for the numerical pro-

cedure described here and consists of two equations, the vorticity transport

equation and the Poisson equation. The Chebyshev-Tau method is used to

discretise the equations in the y-direction then a second order finite differenc-

ing scheme is used for the x and t-discretisations. This forms a set of banded

matrices with a full first row (representing the boundary conditions) which

are then be tackled by using a modified form of the Thomas Algorithm. The

numerical procedure is conducted in three steps as follows:

1. The vorticity is predicted from the vorticity transport equation using

the values of v and ω from the previous time steps subject to an integral

constraint on the vorticity.

2. The Poisson equations is solved iteratively in order to obtain the new

velocity v subject to the local boundary conditions. The fluid and wall

motions had to be coupled through a total momentum term to ensure

that the method converges. The value of the wall displacement can also

be obtained simultaneously alongside the velocity v during this iteration

step.

3. The vorticity is corrected using the predicted vorticity and the newly

obtained velocity field.
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All the details of this method have been presented previously in different

studies, particularly in Davies [28], Davies & Carpenter [30] [32], Fasel [36]

[37] and Fasel & Konzelmann [38] [39]. However, its inclusion here serves the

purpose of collating some of their different ideas and schemes.

In the two chapters that follow, this procedure is implemented for differ-

ent cases. In Chapter 5, the results obtained from this numerical simulation

are compared to the solutions of the Orr-Sommerfeld equation obtained from

Chapter 3 to show how these solutions can be used to predict the behaviour

of the waves appearing in the DNS.

In Chapter 6, the simulations are conducted to investigate the prospect of

absolute and global instabilities in some flow scenarios. The Orr-Sommerfeld

equation are used to locate regions in the parameter space where absolute

growth may be expected then the DNS can be used to corroborate these claims.
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Chapter 5

Simulation of Disturbance

Development for Various

Instabilities

5.1 Introduction

In this chapter, direct numerical simulations (DNS) are performed for

specifically chosen wall and flow parameters in order to investigate the spa-

tial development of the different instabilities, particularly, the effect of each

of these instabilities/modes on the wall’s displacement, velocity and vorticity

are investigated. The solution of the Orr-Sommerfeld equation (described in

Chapter 3) is used to obtain predictions for the wavenumbers that would be

expected to arise from the DNS and the results will be compared.

The DNS method described in Chapter 4 was initially developed by Davies

[28] in order to study the effect of wall compliance on the evolution of the TS

instability. Here, this is extended to study the effects of wall compliance on the
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wall-based instabilities as well and this has not been documented previously.

In the next chapter, this method will be taken even further to investigate

absolute and global instabilities.

Four different investigations are carried out in this chapter and these dif-

ferent cases are labelled in bold letters as follows:

∗ TSM: This is a corroborative test showing a pure TS wave passing over

the rigid and compliant wall sections. A particular set of wall parameters

is chosen to demonstrate the spatial behaviour of the TS wave across the

whole domain. Though this particular example has been documented

previously, it is repeated here simply to set a theme for the rest of the

cases and to show the workings of the DNS and how the Orr-Sommerfeld

solutions can be used to predict the arising modes.

∗ TSS: This case illustrates the compliant wall’s TS stabilisation capabil-

ities. An unstable TS wave is introduced at the inflow and the effect of

the compliant wall on this wave is assessed. Once again, this case has

been investigated before, particularly by Davies & Carpenter [31] but is

reproduced here to show the original intention of the DNS method.

∗ TWF: This case considers an interaction between different modes where

the wall displacement takes the form of an amplitude modulated wave.

This form is a result of a superposition of two modes travelling in differ-

ent directions, one can be attributed to the TWF mode while the other is

due to a reflection from the downstream boundary. This is the first doc-

umented evidence of using the current DNS method to show the spatial

development of the TWF mode and the fact that the Orr-Sommerfeld

solutions can predict the arising wavenumbers very effectively.
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∗ DivEnd: The final case to consider is perhaps the most interesting. The

wave that results is a combination of five modes, each playing a different

role in forming the wall displacement. These modes arise as a result of the

wall-based modes due to the choice of flow parameters, particularly the

divergence instability. In this case, the solutions of the Orr-Sommerfeld

equation can effectively predict the behaviour of the wall displacement

in the central region of the compliant wall and the end effects as well

(hence the name, Div for the divergence and End for the end effects).

This is a peculiar phenomenon since the Orr-Sommerfeld equation solved

in Chapter 3 assumes that the wall is infinitely long, even with this in

mind, it can still predict the end effects that arise from the DNS when

the wall is finite.

The cases labelled TSM and TSS are corroborative tests to demonstrate

the way in which the DNS method works. TWF and DivEnd, on the other

hand, are cases when the method is pushed to flow regimes that it was not

initially intended to tackle. These two new cases show the TWF and divergence

modes at play and these have not been observed before.

In the cases presented here, a set of wall parameters is chosen after being

motivated by the neutral stability curves on the α-Re and β-Re planes (recall

that β is the frequency here and ω is the vorticity). This is used to find regions

of the flow parameter space which are of the greatest interest (this will be dealt

with in a case by case basis). A DNS is then performed for the wall and flow

parameters and the solution of the Orr-Sommerfeld equation is used to predict

the arising wavenumbers.

The wavenumbers from the DNS can be isolated by using a Fast Fourier

Transform (FFT) and these can be compared to those obtained from the solu-
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tions of the Orr-Sommerfeld equation. The wall displacement profiles can then

be reconstructed from a superposition of these different modes. The reason

for doing this is that isolating the different wavenumbers will show how every

mode affects the overall development of the waveI as it travels along the length

of the compliant wall section.

In order to reconstruct the individual modes by superposition, a least

squares fitting is employed to obtain the amplitudes of the different modes

(this procedure is discussed in §5.2). At the start of the simulation, the wall

and the flow responds to the initial wavepacket due to the starting up proce-

dure (be it an inflow profile or a localised impulsive forcing). The transient

waves that result due to this sudden change have to be filtered out of the

computational domain before the fitting procedure is performed to avoid con-

taminating the results. Therefore, the wave fitting is only done after at time

t∗ when the wall displacement shows a time-periodic form, i.e. η(t+ τ) = η(t)

for a time-period τ and any time t > t∗.

For all the cases shown here, the flow is disturbed by means of an inflow

profile, not by a localised impulse. The reason for this is that the inflow

provides a constant source of excitation while the impulse does not. Having

an impulse only allows the wall to respond to the initial excitation after which

the disturbance starts to decay, returning the wall and the flow to their initially

undisturbed states. Additionally, imposing an inflow profile avoids any near-

field effects arising due to the impulse.

IThe term “wave” is used to refer to the wall displacement/velocity profile.
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5.2 Least Squares Fitting

The least squares fitting procedure is performed on the wall displacement

and velocity obtained from the DNS data in order to obtain the amplitudes and

wavenumbers of the different modes. These can then used to reconstruct the

waves by superposition in order to see the role played by each of the individual

modes/wavenumbers.

Consider two given vectors x and y of length k. The vector x represents the

streamwise positions and y represents a function y evaluated at said locations,

this function could be displacement, velocity, etc.. In other words,

x = (x1, x2, . . . , xk)

and y = (y1, y2, . . . , yk) where ym = y(xm) for m = 1, 2, . . . , k.

Since the arising modes were assumed to evolve spatially as ∼ eiαx (according

to the normal mode decomposition), the function y can be approximated by

a function f which is a linear combination of N modes, each taking the same

form. The value of N is number of the most unstable and/or least stable

wavenumbers. In other words, ym takes the approximate complex form

ym ≈ f(xm) = A1eiα1xm + A2eiα2xm + · · ·+ ANeiαNxm for m = 1, 2, . . . , k.

(5.1)

The set of equations (5.1) can be rewritten in matrix form as y ≈ EA where

y =



y1

y2

...

yk


, A =



A1

A2

...

AN


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and E =



e11 e12 . . . e1N

e21 e22 . . . e2N

...
...

. . .
...

ek1 ek2 . . . ekN


where emn = eiαnxm for

n ∈ {1, 2, . . . , N}

m ∈ {1, 2, . . . , k}.

The fitting procedure requires initial estimates for the values of the wavenum-

bers αn and amplitudes An, these values are then iteratively refined. The initial

guess for the wavenumbers is taken from the solution of the Orr-Sommerfeld

equation but the initial estimates for the amplitudes have to be taken from

the DNS. Several choices for the initial amplitude were tested but the one that

gave the most consistent results was taking wall’s maximum height from the

DNS as the starting value for the amplitude.

The temporal variation of these modes is ∼ e−iβt (where β is the frequency

at the inflow), this can be incorporated into the solution after the wavenumbers

and amplitudes have been obtained.

This fitting procedure needs to be carried out on a central portion of the

compliant wall section in order to avoid contamination due to edge effects.

Doing this gives a more accurate reflection as to what would be expected

to happen if the compliant wall was of infinite length. The size of the wall

portioning is chosen visually to avoid the end effects.

The inbuilt MATLAB operation lsqcurvefit is used to determine the

values of the amplitudes An and wavenumbers αn for the assumed form of the

solution given in (5.1) and the initial estimates provided for the wavenumbers

and amplitudes. This command uses the Levenberg-Marquardt algorithm to

obtain a non-linear least squares fit. This is quite robust and the wavenumbers

and amplitudes always converge, even for relatively inaccurate initial values.
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If the initial guess for a wavenumber is chosen very far away from the true

solution, then the iterative procedure refines the wavenumber and could cause

it to converge to another wavenumber but with a zero (or at least comparatively

negligible) amplitude. This indicates that either the chosen wavenumber plays

no part or that a more accurate initial estimate is needed.

The fitting procedure is usually quite accurate but in order to quantify the

difference between the DNS and the fitted data, the following measure of the

approximation error is used:

error =
||f − f̃ ||2
||f ||2

× 100%

where f is the initial vector of information from the DNS and f̃ is the approx-

imated vector.

5.3 TSM: Tollmien-Schlichting Mode

First, an example of a well-established case is investigated, namely the

excitation of the TS mode. This case gives a general overview of how the rest

of the cases in this chapter are tackled.

For this investigation, the set of wall parameters are chosen to be:

m = 2, B = 8× 107, T = 0, K = 2× 107, d = 0.

(This particular set of parameters was also considered by Davies & Carpenter

[30].)
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5.3.1 Choice of Flow Parameters

Figures 5.1 and 5.2 show the neutral curves on the α-Re and β-Re planes

restrictively, for the compliant (black) and the rigid (red) walls. The wall-

based mode (labelled FISI) can be identified as the TWF instability due to

the growth rates obtained from the solution of the Orr-Sommerfeld equation.

Figure 5.1: Neutral stability curves on the α-Re plane for the rigid (red) and
compliant (black) wall with m = 2, B = 8× 107, T = 0, K = 2× 107, d = 0.
The curves representing the wall-based (FISI) and the TS modes are labelled
accordingly.

If the inflow frequency β = 0.25 and the Reynolds number Re = 7000, then

this set of flow parameters falls within the unstable region for both the rigid

and compliant walls. Indeed, Figure 5.3 shows a section of the β-Re plane

showing this choice of flow parameters.

Over the rigid wall, these flow parameters correspond to the spatially un-
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Figure 5.2: Neutral stability curves on the β-Re plane for the rigid (red) and
compliant (black) wall with m = 2, B = 8× 107, T = 0, K = 2× 107, d = 0.
The curves representing the FISI and the TS modes are labelled accordingly.
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Figure 5.3: Neutral stability curve just as in Figure 5.2 but zoomed in on the
TS section. The dot represents the flow parameters chosen for TSM.
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stable TS wavenumber

αr = 0.992− 4.67× 10−3i.

On the other hand, over the compliant wall, the wavenumber is

αc = 0.962− 2.60× 10−3i.

Both these wavenumbers are obtained from the solutions of the Orr-Sommerfeld

equation (as described in Chapter 3).

For the DNS, a domain of length 500 is chosen where the compliant wall

extends from x = 50 to 450 and is hinged to the upstream and downstream

rigid walls (i.e. L1 = 50, L2 = 450, L = 500). A DNS is performed for this wall

configuration and wall displacement will be approximated using the wavenum-

ber αc. First of all, the time t∗ after which the flow displays a time-periodic

behaviour needs to be found.

5.3.2 Vorticity Time-History

The vorticity time-history shows the value that the vorticity takes at a

given location during the whole simulation time. Figure 5.4 shows the vorticity

time-history at the wall position x = 250. From this, it can be seen that after

about t = 1500, the vorticity becomes sinusoidal and the amplitude reaches

a fixed value. This implies that after such time, the flow has reached a time-

periodic state and therefore, the flow variables can be approximated without

risk of contamination from transient effects. In this case, the value t∗ is taken

to be 1500 meaning that for t > t∗, the are no transient effects that could

contaminate the observations. The value of t∗ is dictated by two factors:
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5.3. TSM: Tollmien-Schlichting Mode

1. The ramping up of the periodic forcing from zero

2. The time it takes for the disturbance to reach the chosen location.

Figure 5.4: Plot of the vorticity time-history at the wall position x = 250. The
wall response starts to take a time-periodic state after about t = 1500.

The vorticity time-history for other locations in the flow has been plotted

but the results are slightly shifted to higher timesII. The wavenumber approx-

imation procedure was performed at t = 5000 to ensure that all the transient

effects have been filtered out of the domain. The vorticity time-history is used

to determine the time t∗ in all the subsequent cases but the details are not

presented, only the value of t∗ would be given.

Now that the appropriate time for the approximation has been obtained,

the frequency of the system also needs to be determined. Even though the

frequency of the system is known (being the forcing frequency β = 0.25), this

is still carried out to illustrate that indeed, the most dominant frequency of

the system is the inflow forcing frequency.

IIPerhaps it is more appropriate if the vorticity time-history was taken near the end of
the compliant wall section but in that case, the results may display some effects that arise
from the compliant wall ends, the qualitative behaviour is nonetheless the same.
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5.3.3 Frequency

Since the flow is excited by means of an inflow disturbance profile, the

frequency should be that of the inflow forcing, namely 0.25. Indeed, Figure

5.5 shows a plot of the FFT applied to the vorticity time-histories at evenly

spaced wall positions from x = 60 to x = 450. The sharp peak is located at

the frequency 0.25 which is exactly the inflow frequency (unsurprisingly).

Figure 5.5: Plot of the FFT of the vorticity time-history along the compliant
wall section from x = 60 to x = 450. This is done in order to determine
the most dominant frequency in the system which in this case, is the inflow
frequency β = 0.25.

The vorticity time-history and the FFT for obtaining the frequency are

done for all the cases presented in this chapter but they are not discussed in

detail, only the most relevant information is given.
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5.3. TSM: Tollmien-Schlichting Mode

5.3.4 Approximating the Wall Displacement

After the DNS is performed for the proposed flow configuration, the wall

displacement takes the form shown in Figure 5.6 where the wall displacement

forms a spatially growing wave along the length of the compliant wall. The wall

displacement can now be approximated to see how the arising DNS wavenum-

ber compares to the predicted wavenumber αc.
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Figure 5.6: Wall displacement taken from the DNS. The fitting region is chosen
in such a way that the end effects are not captured.

The approximation has to be done in a central portion of the compliant

wall in order to avoid end effects. Seeing as that these effects are not very

prominent (as seen visually), the fitting region can be taken to be reasonably

large and is represented by the dashed lines in Figure 5.6. In other cases, the

wall end effects can be relatively more noticeable and the region in which the

wall displacement is approximated has to be made smaller.

Figure 5.7(a) shows the DNS wall displacement η taken from the DNS

within the fitting region given in Figure 5.6. Figure 5.7(b) shows two plots,
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the DNS wall displacement (black) and the approximated wall displacement

η̃ (red). It can be seen that the two plots are virtually indistinguishable from

one another and the fitting error is less than 0.5%. The difference between

these two plots is made clearer when considering the relative error between

them as shown in Figure 5.7(c). The ends effects play a minor role as seen by

the increased error near the ends but nevertheless, the approximation is quite

accurate giving a very small value of the error.
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Figure 5.7: (a) DNS wall displacement η in the fitting region shown in Figure
5.6. (b) DNS wall displacement η (black) and the approximated wall displace-
ment η̃ (red). (c) Relative error between η and η̃.

The least squares fitting gives an approximation to the wall displacement

η̃ as

η̃(x) = A1eiα1x + A2eiα2x

where A1 =0.305− 4.66× 10−2i, α1 = 0.968− 2.85× 10−3i,

A2 =0.305 + 4.66× 10−2i, α2 = −0.968− 2.85× 10−3i.
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This can be rewritten as

η̃(x) = Aeiα̃cx + c.c.

where A = 0.305− 4.66× 10−2i and α̃c = 0.968− 2.85× 10−3i (5.2)

and c.c. represents the complex conjugate of all the previous terms. The value

of the amplitude A is not significant here since this is to test the efficacy of

the Orr-Sommerfeld solutions in predicting the wavenumbers that arise in the

DNS, not the amplitudes.

The approximated wavenumber α̃c is very close to the predicted wavenum-

ber from the Orr-Sommerfeld equation, namely

αc = 0.962− 2.60× 10−3i.

Therefore in this case, the Orr-Sommerfeld equation has effectively predicted

the arising wavenumber obtained from the DNS which corresponds to a spa-

tially growing TS waveIII. It can be seen that the Orr-Sommerfeld equations

provides an excellent prediction for the wavenumber that dictates the wall dis-

placement. The same can now be done to the wall velocity to see how this

predictions fairs. Even though the predicted wavenumber is still expected to

be a very good approximation to that of the DNS, the wall velocity approxi-

mation will nonetheless be undertaken to show the time dependence and the

incorporation of the forcing frequency into the general form of η̃.

IIINote that the agreement between the wavenumber extracted from the simulation and
the one predicted by the Orr-Sommerfeld equation can be improved by either increasing the
resolution in the simulations or increasing the number of iterations in the fitting procedure.
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5.3.5 Wall Velocity

The wall velocity is now approximated in exactly the same way as the

wall displacement. Figure 5.8(a) shows the DNS wall velocity ∂η
∂t

in the fitting

region given in Figure 5.6, Figure 5.8(b) shows two plots, the DNS wall velocity

∂η
∂t

(black) and the approximated wall velocity ∂η̃
∂t

(red). Once again, it can be

seen that the two plots are virtually indistinguishable from one another with a

fitting error of less than 2.5%. The difference between these two plots is made

clearer in Figure 5.8(c) showing the relative error between them.
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Figure 5.8: (a) DNS wall velocity ∂η
∂t

in the fitting region shown in Figure 5.6.

(b) DNS wall velocity ∂η
∂t

(black) and the approximated wall velocity ∂η̃
∂t

(red).

(c) Relative error between ∂η
∂t

and ∂η̃
∂t

.

The approximate complex form of the wall velocity obtained from the fitting

can be written as

∂η̃

∂t
(x) = Beiα̃cx + c.c. (5.3)

where B = −1.21× 10−2 − 7.79× 10−2i

and the wavenumber α̃c is the same as the one obtained in (5.2).
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5.3. TSM: Tollmien-Schlichting Mode

The wavenumber obtained from approximating the wall displacement and

the velocity are the same even though they have both been obtained indepen-

dently of one another (i.e. the approximations were carried out separately yet

yielded the same result). The fact that the Orr-Sommerfeld equation managed

to predict the wavenumber with considerable accuracy can be an indication

that this can be extended to other, more complicated cases, when more than

one mode is affecting the flow.

5.3.6 Incorporating the Time-Dependence

The approximated forms of the wall displacement η̃ and velocity ∂η̃
∂t

have to

include a time dependent element of the form∼ e−iβt. This can be incorporated

by simply multiplying η̃ by e−iβt without the need for an additional amplitude

term coming from the forcing, therefore the wall displacement can be gievn by

η̂(x, t) = e−iβtη̃(x, t) = Aei(α̃cx−βt) + c.c. (5.4)

where A and α̃ are given in (5.2) and β = 0.25. This can be done since if η̂ is

differentiated with respect to t, then

∂η̂

∂t
(x, t) = −iβAei(α̃cx−βt) + c.c..

For the given values of A and β, the coefficient of ei(α̃cx−βt) is

−iβA = −1.17× 10−2 − 7.63× 10−2i ≈ B.

This reinforces the fact that the approximation for the wall displacement is

valid and the temporal contribution takes the form e−iβt (which is unsurprising
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given the normal mode form of the terms). The incorporation of the time

dependence is shown here for completeness, the wall velocities are not shown

in any of the cases presented later since the intricate details are not necessary,

only the final form of η̂.

5.3.7 Remarks on TSM

In Figures 5.7 and 5.8, it can be seen that the errors near the start and/or

end of the fitting region are greater than the central portion, this is because

near the ends, edge effects become more noticeable. The ends will certainly

affect the approximation however the fit is still quite accurate nonetheless.

Later in the case DivEnd, the end effects become very apparent and therefore

the fitting region has to be made smaller in order to avoid contamination due

to end effects.

For this preliminary TSM case, a lot of detail is presented but this is

simply to show the extent of the analysis that could be undertaken. However

in the following cases where behaviour is more complicated, only the most

relevant results are presented. For instance, since the amplitudes cannot be

predicted from the solutions of the Orr-Sommerfeld equation, they are not

mentioned from this point forward but they were included in this first case

to show that amplitudes can be obtained and the waves can be superimposed

effectively to reconstruct the waves, even in the presence of more than one

mode. Moreover, the vorticity time-histories and the application of the FFT in

order to determine the time t∗ and most dominant frequency are not presented

unless necessary. And finally, the wall velocity is not considered again since in

all the remaining cases, the results are exactly as expected. It was only included

here to illustrate that the approximated wall velocity can be recovered from
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the wall displacement and the inflow frequency.

This preliminary case is presented as a test for the performance of the nu-

merical simulation and the fitting procedure. The DNS results were validated

against the Orr-Sommerfeld solutions in the case when there is no wall-based

mode, this only increases confidence in the effectiveness of the simulation, fit-

ting procedure and the numerical solution of the Orr-Sommerfeld equation.

Additionally, the end effects observed here are localised. In some of the cases

to follow, more complicated flow behaviours will be investigated (particularly

TWF and DivEnd) which show a more significant contribution from the wall-

based modes as well as the end effects. This will test the efficacy of the current

DNS method to investigate cases that have not been documented previously.

5.4 TSS: Tollmien-Schlichting Stabilisation

In the previous case TSM, a spatially unstable TS mode was excited but as

it travelled over the compliant wall section, its growth rate was only reduced.

In the case presented here, a TS wave is introduced and then stabilised as

it travels over the compliant wall section. Unlike TSM, there is more than

just the TS mode, two other modes are also provoked and their effects on the

wall displacement and vorticity are studied. This TSS case is, once again,

a corroborative test and is presented here to illustrate the compliant wall’s

TS stabilisation capabilities. (Note that this case, along with TSM, were

documented by Davies [28] and Davies & Carpenter [30].)

For this case, the same wall parameters as TSM are, namely,

m = 2, B = 8× 107, T = 0, K = 2× 107, d = 0.
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5.4.1 Choice of Flow Parameters

In order to choose the appropriate flow parameters to illustrate the com-

pliant wall’s suppression capabilities, the neutral stability curves on the β-Re

plane has to be investigated. Figure 5.9 shows the neutral stability curves on

the β-Re plane exactly as in Figure 5.3, the flow parameters are chosen in such

a way that the flow is spatially unstable over the rigid wall but stable over the

compliant wall. Therefore an appropriate set of flow parameters can be

Re = 10000 and β = 0.2375.

This choice of parameters is labelled accordingly in Figure 5.9.
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Figure 5.9: Neutral stability curves just as in Figure 5.2 but zoomed in on the
TS section. The dot represents the flow parameters chosen for TSS.

According to the solutions of the Orr-Sommerfeld equation, the most un-

stable wavenumber over the rigid wall section can be identified as the spatially
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unstable TS mode with the wavenumber

αr = 1− 1.10× 10−2. (5.5)

However over the compliant wall, there are three wavenumbers which are the

least stable/most unstable (closest to the real line), these are:

αc1 = −0.764− 1.08× 10−2i

αc2 = −8.58× 10−2 + 3.41× 10−5i (5.6)

αc3 = 0.923 + 2.18× 10−3i.

The locations of these wavenumbers are shown on the complex α-plane in

Figure 5.10 and these will be used to predict the wavenumbers arising from

the DNS.
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Figure 5.10: Locations of the rigid (blue ×) and compliant (red •) wall eigen-
values obtained from the solutions of the Orr-Sommerfeld equation.
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DNS

For this case, the flow configuration is a compliant wall extending from

the streamwise locations x = 100 to x = 900 in a computational domain

of non-dimensional length of 1000. Figure 5.11 shows the wall displacement

obtained from the DNS, notice that the end effects are more prominent here

compared to TSM and the fitted region was chosen in accordance with this (as

denoted by the vertical dashed lines). It is clear that the wall displacement is a

superposition of several modes, at least one of which is a long wavelength mode,

this will now be investigated by decomposing the profile into its individual

components.
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Figure 5.11: Wall displacement taken from the DNS. The fitting region is
chosen in such a way that the end effects are not captured (and is indicated
by the dashed lines).

Figure 5.12(a) shows the DNS wall displacement η within the region indi-

cated by the dashed lines in Figure 5.11. Figure 5.12(b) shows both η (black)

and its approximation η̃ (red) where once again, the approximation is quite

accurate with an approximation error of 0.2%. The relative error between η

and η̃ is shown in Figure 5.12(c) where the error is higher towards the down-
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stream end but nonetheless, the approximation is still very good. This implies

that the ends still have some effect on the wall displacement but these effects

are still somewhat negligible compared to the rest of the compliant wall.
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Figure 5.12: (a) DNS wall displacement η. (b) DNS wall displacement η (black)
and the approximated wall displacement η̃ (red). (c) Relative error between η
and η̃.

The wall displacement profile seen in Figure 5.11 consists of three wavenum-

bers:

α̃c1 = −0.764− 1.09× 10−2i

α̃c2 = −8.56× 10−2 + 8.3× 10−5i (5.7)

α̃c3 = 0.931 + 2.03× 10−3i.

This gives an approximation η̃ for the DNS wall displacement η as

η̂(x, t) = η̃(x)eiβt = A1ei(α̃c1x−βt) + A2ei(α̃c2x−βt) + A3ei(α̃c3x−βt) + c.c. (5.8)

where β = 0.2375 (which is the inflow frequency). From this, it can be seen that

the wavenumber predictions obtained from the solutions of the Orr-Sommerfeld
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equation given in (5.6) are quite accurate. However the exact values of the

amplitudes An is not important but what is significant is their relative sizes,

this can either be seen from the values of the ratios between them or through

the Fourier spectrum of the wave.

Figure 5.13 shows the Fourier decomposition of the wall displacement pro-

file shown in Figure 5.11. The decomposition shows three peaks centred around

the locations of the magnitudes of the wavenumbers given in (5.7). (Note that

the Fourier decomposition cannot distinguish between upstream and down-

stream travelling modes, only their magnitudes.) Therefore, this implies that

the mode α̃c2 has the highest relative amplitude, this is followed by α̃c3 then α̃c1.
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Figure 5.13: Fourier spectrum of the wall displacement profile shown in Figure
5.11. The three peaks that result are centred around the magnitudes of the
approximated wavenumbers given in (5.7) and this gives an indication of their
relative associated amplitudes.

5.4.2 Wall Displacement Decomposition

The wall displacement in Figure 5.11 is a superposition of three modes

with the wavenumbers given in (5.7). Figure 5.14 shows these three individ-
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ual wavenumbers plotted separately to illustrate the contribution of each to

the wall displacement (note that these have been plotted across the whole

compliant wall and not just the fitting region).

The wavenumber labelled α̃c3 can be associated with the TS mode which

is stabilised by the compliant wall and this can be verified by its location in

complex α-plane shown in Figure 5.10 (this TS stabilisation will be explained

further in the next subsection). Unlike in TSM, the TS mode is not the only

mode present here. The mode α̃c2 is a long wavelength wall-based mode that

decays very slowly as it travels downstream and given its relatively small mag-

nitude, this wavenumber can be associated with the divergence mode. Finally,

α̃c1 has a negative real part implying that its associated phase velocity travels

upstream, therefore this particular mode originates from the downstream end

of the compliant wall and decays as it travels upstream.

5.4.3 Tollmien-Schlichting Stabilisation

In order to further understand the TS stabilisation capabilities of the com-

pliant wall, suppose that the flow domain consists of a rigid wall only, then

given the location of the flow parameters on the β-Re plane, the flow has to

be destabilised by the TS mode. Indeed, Figure 5.15 shows a plot of the wall

vorticity when the whole domain (x = 0 to x = 1000) is bound by a rigid wall.

The exponential growth rate of the wall vorticity is given by the rigid wall

wavenumber αr in (5.5) and is represented by the dashed lines surrounding

the wave.

If the compliant wall section is inserted between x = 100 and 900, the wall

vorticity is stabilised across the compliant wall. Indeed, Figure 5.16 shows the

vorticity across the flow domain when the compliant wall is inserted (and this
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Figure 5.14: Wall displacement components for the wavenumbers given in
(5.6). The superposition of these modes forms of the approximate wall dis-
placement η̃ given in Figure 5.12(b).

is denoted by the vertical dotted lines). In the upstream rigid wall section x ∈

[0, 100], the TS mode causes the vorticity to grow exponentially (as denoted

by the black dashed lines). However over the compliant wall, the vorticity

is stabilised and is associated with an exponential decay (denoted by the red

dashed lines surrounding the wave in the region x ∈ [100, 900]). Finally after

the flow exits the compliant wall section at x = 900, the TS mode starts to

grow exponentially again (denoted by the dashed lines).

5.4.4 Remarks on TSS

In TSM, the TS mode and how the compliant wall can reduce its growth

rate was investigated. Here, the TS mode has been stabilised by the compliant

wall section as seen in Figures 5.15 and 5.16. If the compliant wall section
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Figure 5.15: Vorticity across the flow domain if the wall is rigid throughout.
The dashed lines denoted the exponential growth rate of the wave given by αr

given in (5.5).

was longer, then the TS instability will continue to decay even further and

therefore, the compliant wall can be used as an effective means of controlling

the growth of the flow-based TS instability.

In the two cases TSM and TSS shown so far, the TS mode and the effect of

the compliant wall on its growth was investigated and were reproductions from

earlier works. The DNS method described in Chapter 4 was initially intended

to deal with these cases and the solution of the Orr-Sommerfeld equation

predicted the wavenumbers quite accurately when the TS mode is present. In

the two forthcoming sections TWF and DivEnd, the DNS method is pushed

further to investigate the wall-based modes which have not been seen using

the current method.
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Figure 5.16: Vorticity across the wall with the compliant section between
x = 100 and 900 (denoted by the vertical dotted lines). The dashed lines
denote the exponential growth and decay rate of the vorticity over the rigid
and compliant wall sections, respectively. Over the rigid walls, the growth is
exponential (denoted by the black dashed lines) while over the compliant wall,
the vorticity decays exponentially (denoted by the red dashed lines).

5.5 TWF: Travelling Wave Flutter

In the following case, a set of flow parameters is chosen in such a way that

the TS mode is not excited, only the TWF mode. First of all, in order to

avoid the TS mode, a relatively small value of the Reynolds number needs to

be chosen. Second, in order to avoid exciting the divergence mode, the wall

mass m has to be greater than one thirdIV.

IVRecall from Chapter 2 that the onset Reynolds numbers for divergence and TWF are

Red = Re0

√
15

8
and ReTWF = Re0

√
5

5m+ 1

respectively. Therefore if m > 1
3 , then Red > ReTWF .
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For TWF, the same wall parameters are used as in TSM and TSS with

the exception of the wall mass which is increased to 10, therefore the set of

wall parameters are

m = 10, B = 8× 107, T = 0, K = 2× 107, d = 0.

The onset Reynolds numbers for the divergence and TWF modes are

Red ≈ 12247 and ReTWF ≈ 2800.

5.5.1 Flow Parameter Choices

Figures 5.17 and 5.18 show the neutral curves for this set of flow parameters

on the α-Re and β-Re planes respectively, the contributions from the rigid and

compliant walls have been labelled accordingly. In Figure 5.17, it can be seen

that the curve associated with the TS mode has shrunk implying that the

compliant has effectively stabilised by the TS instability but as a consequence,

the FISI (being the TWF mode) has occupied a large portion of the α-Re plane.

As for Figure 5.18, the TS mode has been assimilated into the compliant wall

neutral curve forming a single curve that includes both the wall and flow-based

modes.

For this case, the proliferation of the TWF mode is desired with no effects

coming from either the divergence or TS modes. Therefore, the flow parameters

can be chosen as

Re = 4000 and β = 0.6

as labelled in Figure 5.18. For this choice, the TS mode is far from being

excited since the Reynolds number is far smaller than the TS onset.
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Figure 5.17: Neutral stability curves on the α-Re plane for the rigid (red) and
compliant (black) wall with m = 10, B = 8×107, T = 0, K = 2×107, d = 0.
The curves representing the FISI and the TS modes are labelled accordingly.

For this set of wall and flow parameters, there are two spatial eigenvalues

that are the most unstable which are:

α1 = −0.901− 1.66× 10−3i

α2 = 0.834− 1.11× 10−4i. (5.9)

The locations of these wavenumbers are shown on the complex α-plane in

Figure 5.19. Initially from these eigenvalues, it can be hypothesised that

there should be two unstable modes travelling in opposite directions. These

wavenumbers can be used as predictions for those arising from the DNS.
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Figure 5.18: Neutral stability curves on the β-Re plane for the rigid (red) and
compliant (black) wall with parameters m = 10, B = 8 × 107, T = 0, K =
2 × 107, d = 0. The dot represents the flow parameters chosen for the case
TWF. The curve representing the flow-based mode has been assimilated into
the compliant wall neutral curve.

5.5.2 DNS

A DNS is performed for the a compliant wall extending from x = 50 to 450

in a domain of length 500, the wall displacement, shown in Figure 5.20, takes

the form of an amplitude modulated waveV.

Figure 5.21(a) shows the DNS wall displacement η within the region in-

dicated in Figure 5.20. Figure 5.21(b) shows the DNS wall displacement η

(black) and its approximation η̃ (red), the fit is somewhat less accurate com-

pared to the previous cases observed, this is seen in the relative error between

η and η̃ as shown in Figure 5.21(c), the approximation error in this case is

VIt should be noted that the vorticity time-histories were investigated beforehand and it
seems that the wall displacement takes a significantly longer time to settle down to a time-
periodic state compared to TSM and TSS, however the wave here was only approximated
after such a time has been reached.
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Figure 5.19: Location of the wavenumbers (5.9) which will be used as predic-
tions for the DNS.
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Figure 5.20: Wall displacement taken from the DNS. The fitting region is
chosen in such a way that the end effects are not captured (and is denoted by
the dashed lines)

6%. The approximation to the wall displacement is given by η̂ which takes the
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form

η̂(x, t) = A1ei(α̃1x−βt) + A2ei(α̃2x−βt) + c.c.

where α̃1 = −0.904− 1.72× 10−3i (5.10)

α̃2 = 0.836− 8.7× 10−5i. (5.11)

For this case, the fit is not as good as the previous two cases but notwith-

standing, the wavenumbers obtained from the solution of the Orr-Sommerfeld

equation still provides a good approximation to those obtained from the DNS.
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Figure 5.21: (a) DNS wall displacement η. (b) DNS wall displacement η (black)
and the approximated wall displacement η̃ (red). (c) Relative error between η
and η̃.

The relative sizes of the amplitudes for the two modes are represented in

the form of the Fourier spectrum shown in Figure 5.22. The magnitudes of the

amplitudes of the two waves are comparable unlike in TSS where one mode

dominated the other two. This means that both modes play similar roles in

predicting the wall displacement.
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Figure 5.22: Fourier spectrum of the wall displacement profile shown in Figure
5.11. The two peaks are centred around the magnitudes of the approximated
wavenumbers given in (5.10) and this gives an indication of their relative sizes.

5.5.3 Wall Displacement Decomposition

The wall displacement shown in Figure 5.20 is the superposition of the two

modes dictated by the wavenumbers given in (5.10). These two constituent

modes can be plotted separately as shown in Figure 5.23 (note that these have

been plotted across the whole compliant wall and not just the fitting region).

Both waves that arise are due to the TWF mode and according to the values

of their real parts, these modes travel in opposite directions. Although these

two waves have similar wavelengths (approximately 7.3), they are out of phase

in such a way that they result in the modulated amplitude wave seen in Figure

5.20.

The relatively small value of the Reynolds number has avoided the exci-

tation of the TS instability, however the stable TS wave at the inflow has

acted as a source of excitation at the upstream boundary for the α̃2 mode to

propagate over the compliant wall. Additionally, another mode arises due to

146



5.6. DivEnd: Divergence & End Effects

100 150 200 250 300 350 400

-3

-2

-1

0

1

2

3

η̃
1

×10
-4 α̃1 = −0.904− 1.72× 10−3i

100 150 200 250 300 350 400

x

-3

-2

-1

0

1

2

3

η̃
2

×10
-4 α̃2 = 0.836− 8.7× 10−5i

Figure 5.23: Wall displacement components for the wavenumbers given in
(5.10). The superposition of these modes forms of the approximate wall dis-
placement η̃ given in Figure 5.21(b).

a reflection from the downstream boundary (corresponding α̃1) causing it to

travel upstream and decays as it does so.

This case is the first documented evidence of the TWF mode being provoked

by using the present DNS method. Here, the TS mode plays no part but it

does act as a source of excitation for the wall-based modes. The DNS method

works well and the wavenumbers obtained can be predicted from the solutions

of the Orr-Sommerfeld equation with reasonable accuracy.

5.6 DivEnd: Divergence & End Effects

In this final case, the effects of the divergence instability are investigated.

One of the more interesting characteristics, which will become apparent, is the
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fact that the solution of the Orr-Sommerfeld equation not only predicts the

wavenumbers that approximate the wall displacement in the middle region,

but also predicts the wavenumbers that dictate the end effects as well.

In order to choose the appropriate wall and flow parameters, several factors

have to be taken into consideration. First of all, the Reynolds number of the

flow has to be relatively small in order to excite the divergence mode without

provoking the TS mode as well. Second, the wall mass m has to be less than 1
3

in order to have an onset Reynolds number for the divergence mode to be less

than that of TWF. To this end, a choice of wall parameters can be chosen as

m = 0.17, B = 4.167× 107, T = 0, K = 6.67× 104, d = 100.

The onset Reynolds numbers for the divergence and TWF modes in this case

are

Red = 2500 and ReTWF = 3001.

5.6.1 Choice of Flow Parameters

Figures 5.24 and 5.25 show the neutral stability curves on α-Re and β-Re

planes respectively. In Figure 5.24, there are two curves for the compliant wall

(black), the inner (dashed) curve represents TWF mode while the outer curve

represents a merger between the divergence and TS modes. In fact, the TS

mode has been stabilised and assimilated into the larger curve to take the form

of a “hump” over the larger curve.

Figure 5.25 shows the two neutral curves on the β-Re plane, one repre-

senting the TS mode from the rigid wall (red) while the other represents the

FISI from the compliant wall (black). The choice of flow parameters should
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Figure 5.24: Neutral stability curves on the α-Re plane for the rigid (red)
and compliant (black) wall with m = 0.17, B = 4.167 × 107, T = 0, K =
6.67× 104, d = 100. The dashed black curve represents the TWF mode while
the solid black curve represents the merger between the TS and divergence
modes.

be such that the divergence mode is excited and not the others and having a

small Reynolds number and frequency helps in achieving this. Therefore, the

appropriate choice of flow parameters can

Re = 3000 and β = 0.01049

as labelled in Figure 5.25.

When the solution of the Orr-Sommerfeld equation is obtained for the

compliant wall, there are five wavenumbers that the least stable/most unstable

for the given parameter choices which are:
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Figure 5.25: Neutral stability curves on the β-Re plane for the rigid (red)
and compliant (black) walls with m = 0.17, B = 4.167 × 107, T = 0, K =
6.67×104, d = 100. The dot on the β-Re plane represents the flow parameters
chosen for the case DivEnd.

α1 = −0.301− 1.26× 10−2i

α2 = −0.111 + 3.88× 10−3i

α3 = 1.79× 10−2 + 1.19× 10−2i (5.12)

α4 = 0.151− 5.11× 10−4i

α5 = 0.261− 1.8× 10−2i.

The locations of these wavenumbers are indicated on the complex α-plane as

shown in Figure 5.26.

5.6.2 DNS

For this case, the flow configuration consists of a relatively long compliant

wall extending from x = 100 to x = 900 in a flow domain of length 1000. Since

the divergence mode is expected to have a wavelength longer than either TS or
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Figure 5.26: Locations of the wavenumbers obtained from the solutions of the
Orr-Sommerfeld equation over the compliant wall as given in (5.12).

TWF, a longer wall is needed to observe the full extent of the mode’s growth.

Figure 5.27 shows the wall displacement obtained from the DNS with two

regions labelled L1 and L2. It can be seen that the arising mode has a relatively

large wavelength (compared to those of TS and TWF instabilities observed

before). It is also apparent that the compliant wall ends have a considerable

effect on the wall displacement, therefore in order to have a good approximate

form for the wall displacement and avoid contamination from the wall end

effects, the smaller fitting region L1 will be used for the approximation. Later

when the end effects are investigated, the region L2 shall be used.

In order to see which modes are necessary to approximate wall displacement

within L1, a FFT can be used to determine which modes have the highest

relative amplitudes, and hence are the most dominant (or at least, the most

151



Chapter 5. Simulation of Disturbance Development for Various Instabilities

100 200 300 400 500 600 700 800 900 1000

x

-4

-3

-2

-1

0

1

2

3

4

η

L2

L1

Figure 5.27: Wall displacement taken from the DNS. There are two different
fitting regions labelled L1 = [300, 700] and L2 = [140, 860]. The region L1 does
not capture the contribution coming from the end effects but L2 does.

pertinent to the approximation). Figure 5.28 shows the FFT applied to the

wall displacement across the entire compliant wall section, the spectrum shows

three peaks centred at 0.151, 0.107 and 0.0251 as well as a range of values

extending from 0.2 to 0.32. For now, suppose that the wavenumbers closest to

the two highest peaks α2 and α4 are used to approximate the wall displacement

η. The approximate from of the wall displacement η̃ within the region L1 can

be obtained as

η̃(x, t) = A2ei(α̃2x−βt) + A4ei(α̃4x−βt) + c.c.

where α̃2 = −0.111 + 4.77× 10−3i (5.13)

α̃4 = 0.151 + 9.07× 10−4i. (5.14)

The predicted wavenumbers α2 and α4 from the Orr-Sommerfeld equation

given in (5.12) provide excellent estimates for those arising from the DNS.

Indeed, Figure 5.29(a) shows the DNS wall displacement η within the region

labelled L1, this is approximated by η̃ (red) mentioned above to give an approx-
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Figure 5.28: Fourier spectrum of the wall displacement profile shown in Figure
5.27 across the entire compliant wall section. The values at the peaks have
been labelled accordingly.

imate form shown in Figure 5.29(b) (red) superimposed on η (black). From

this, it can be seen that the approximated wall displacement η̃ corresponds

quite well with that of the DNS. The relative error between the two waves is

shown in Figure 5.29(c) with an approximation error of 4%.

The approximated wall displacement η̃ consists of two modes that corre-

spond to α̃2 and α̃4, the contributions of each of these is shown in Figure

5.30. The two arising modes have a relatively large wavelength, α̃4 is almost

neutrally stable (since its imaginary part is close to zero) while α̃2 decays

downstream.

The mode α̃4 can be identified as the divergence instability given its growth

rate, wavelength and very small phase speed. On the other hand, the mode

α̃2 represents an upstream travelling growing mode which originates from the
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Figure 5.29: (a) DNS wall displacement η within L1. (b) DNS wall displace-
ment η (black) and the approximated wall displacement η̃ (red). (c) Relative
error between η and η̃.

downstream boundary.
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Figure 5.30: Wall displacement components for the wavenumbers α̃2 and α̃4

given in (5.13). The superposition of these two modes forms the approximate
wall displacement η̃ given in Figure 5.29(b).
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As yet, it can be seen that only the two most dominant modes α̃2 and α̃4

(from the point of view of their amplitudes as illustrated by the Fourier spec-

trum in Figure 5.28) are sufficient to approximate the wall displacement within

a region where the end effects play an insignificant role, namely L1. Therefore,

it can be posited that the wavenumbers α̃2 and α̃4 are good predictors for the

arising wavenumbers when no end effects are prevalent, specifically if the wall

is infinitely long. But a question can posed that asks how this approximation

would fair if the end effects were included, this is investigated below where the

role of the other wavenumbers α̃1, α̃3 and α̃5 come into play.

5.6.3 End Effects

Suppose, for the sake argument, that the two modes α2 and α4 (as earlier)

are used to approximate the wall displacement within the larger region L2

shown in Figure 5.27. In this case, the wall ends distort the efficacy of the

approximation near the wall ends, indeed, this approximation is shown in

Figure 5.31(b). The error between η and η̃ (as in Figure 5.31(c)) becomes

more apparent near the ends of the fitting region implying that the wall end

effects start to play a more significant role and the approximation has to be

modified since α̃2 and α̃4 can no longer be used as effective predictions for the

wall displacement. (Note that this discrepancy only holds when the wall is

finite.)

Suppose that now, the other wavenumbers α1, α3 and α5 are used in mod-

ifying the wall displacement approximationVI. These three wavenumbers will

be used as predictions in different combinations in order to modify the wall

VINote that the modes α2 and α4 have to be included in the approximation since, first
of all, they are the most dominant according to the Fourier spectrum and, second, they
approximate the wall displacement in the middle region.
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Figure 5.31: (a) DNS wall displacement η within L2 using α2 and α4 as es-
timates. (b) DNS wall displacement η (black) and the approximated wall
displacement η̃ (red). (c) Relative error between η and η̃.

displacement.

Figure 5.32 shows the DNS wall displacement η (black) and the correspond-

ing approximations η̃ (red) using different combination of the wavenumbers as

follows:

(a) Using α2 and α4 to approximate the wall displacement in L2

(b) α2, α3, α4

(c) α1, α2, α4, α5

(d) α1, α2, α3, α4, α5.

Figure 5.33 shows the corresponding absolute errors between η and η̃ for

the different approximations while Figure 5.34 shows the relative error. These

can be interpreted as follows:

(a) α2, α4: This is simply a reproduction of Figure 5.31 and is included here to

facilitate comparison with the next cases. The approximation works well

in the middle bulk of the compliant wall but ceases to hold near the ends

since end effects become more prominent.
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Figure 5.32: DNS wall displacement η (black) and the approximated wall
displacement η̃ (red) for different modes used in the approximation. These are
labelled accordingly.
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Figure 5.33: Absolute errors between η and η̃ from Figure 5.32.

(b) α2, α3, α4: Here, it can be seen that including the wavenumber α3 in the

approximation improves the fit at the upstream end of the compliant wall

greatly, however the same cannot be said about the downstream end. This
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Figure 5.34: Relative errors between η and η̃ from Figure 5.32.

can also be seen from the error in Figure 5.33(b) where at the upstream

end, the error becomes almost negligible but at the downstream end, the

error is the same as in (a).

(c) α1, α2, α4, α5: Now, the approximation includes the modes α1 and α5 as

well α2 and α4. The result is the opposite of what happens in the case (b),

namely, the downstream end is approximated well but the upstream end

is still subjected to the discrepancy from the wall ends. It should be noted

that including either α1 or α5 will not improve the approximation at the

downstream end, they have to both be included in the approximation.

(d) α1, α2, α3, α4, α5: From the previous two cases (b) and (c), including α3

in the approximation improves the accuracy at the upstream end while

including α1 and α5 does the same for the downstream end. Therefore,

including all three modes α1, α3 and α5 should improve the approximation

at both ends and capture the wall end effects very effectively. Indeed,

Figure 5.32(d) shows this very situation with the significantly minimised

error in Figure 5.33(d).
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Figure 5.34 shows the relative errors for the four cases mentioned above. It

can be seen that when α3 is included in the approximation, the relative error at

the upstream boundary is substantially reduced while the downstream bound-

ary is unaffected, similarly for the inclusion of α1 and α5 at the downstream

end. But when all modes are included in the approximation, the relative error

reduces from over 260 to less than 4 implying that all five modes play a role

in approximating the wall displacement profile.

Therefore, it can be seen that each of the five modes in (5.12) play an

important role in approximating the wall displacement as follows: α2 and α4

approximate the wall displacement in the middle region, α3 approximates the

effects from the upstream end while α1 and α5 approximate the effects from

the downstream end. The full form of η̂, in this case, is

η̂(x, t) =
5∑

n=1

Anei(α̃nx−βt) + c.c..

The approximated wavenumbers in this case are given in Table 5.1 and are

compared to those obtained from the solutions of the Orr-Sommerfeld equa-

tion.

DNS Orr-Sommerfeld Solutions

α̃1 = −0.301− 1.33× 10−2i α1 = −0.301− 1.26× 10−2i

α̃2 = −0.111 + 4.6× 10−3i α2 = −0.111 + 3.88× 10−3i

α̃3 = 2.11× 10−2 + 1.36× 10−2i α3 = 1.79× 10−2 + 1.19× 10−2i

α̃4 = 0.151 + 8.66× 10−4i α4 = 0.151− 5.11× 10−4i

α̃5 = 0.261− 1.92× 10−2i α5 = 0.261− 1.8× 10−2i

Table 5.1: DNS wavenumbers compared to those obtained from the Orr-

Sommerfeld solutions.
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Note that for the mode α̃4, the imaginary part has a different sign compared

to that of the Orr-Sommerfeld solution α4. One explanation of this would be

the fact that the DNS surely has a slight discrepancy when the approximation

is performed. All the other modes have imaginary parts that are slightly

different compared to those obtained from the approximation but given the

size of =(α4) (which is O(10−4)), a minuscule deviation managed to change its

sign.

The separate modes that make up the wall displacement in Figure 5.32(d)

are plotted in Figure 5.35. The values of α̃2 and α̃4 are slightly different

to those obtained in the case when the fitting region was L1 but they still

approximate the wall displacement well nonetheless. Here, η̃2 and η̃4 take the

same forms are they did in Figure 5.35 allowing the middle portion of the

wall to be approximated well. The mode α̃3 is a very long wave that decays

very rapidly over the compliant wall and therefore alters the upstream end to

such an extent that the approximation is improved but at the downstream end,

there is little to no affect. Finally, the two modes α̃1 and α̃5 may seem to be the

least significant (given their small relative amplitudes according to the Fourier

spectrum given in Figure 5.28), however near the downstream end, both these

modes start to grow in amplitude to such an extent that they compete with

other three modes hence improving the approximation at the downstream end.

5.6.4 Remarks for DivEnd

This case has shown that the solutions of the Orr-Sommerfeld equation

not only provide predictions to the wavenumbers arising from the DNS for

the divergence case, but it also provides predictions for the wavenumbers that

predict the end effects as well. A flow configuration where the divergence in-
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Figure 5.35: Wall displacement components for the all the wavenumbers in
(5.12). The superposition of these modes gives the approximate wall displace-
ment in Figure 5.32(d).

stability is observed using the current DNS method has not been documented

and this is the first evidence of such a mode that is unaffected by other insta-

bilities. Also, it is interesting to note that even though the method used to

obtain solutions of the Orr-Sommerfeld equation described in Chapter 3 was

designed for an infinite compliant wall, it still managed to obtain approxima-

tions to the wavenumbers that dictate the wall end effects arising from the

DNS for a finite compliant wall section.

A similar case was performed using a different set of flow parameters that

resulted in a decaying divergence mode and the conclusions were the same, i.e.

there will be five modes that are unstable/least stable.
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5.7 Summary

All the cases in this chapter considered flows with a spatial variation and

the two new cases are those labelled TWF and DivEnd. In both cases, the

flow parameters were chosen to avoid exciting the TS mode in order to observe

the wall-based modes, TWF and divergence, unpolluted by the flow-based TS

mode.

In TWF, the first wall-based was discussed from a DNS point of view

and the wavenumbers arising in that case have been effectively predicted by

the solutions of the Orr-Sommerfeld equation as per the method discussed in

Chapter 3.

In the first three cases, the wall end effects did not affect the wall displace-

ment near the ends drastically however the same cannot be said for the last

case DivEnd. Here, the divergence instability played a role in affecting the

wall displacement profile and the wall end effects played a huge role in affecting

the displacement near the ends of the compliant wall. Even with this in mind,

the solutions of the Orr-Sommerfeld equation managed to effectively predict

the arising wavenumbers from the divergence instability as well as those that

contribute to the end effects. There were five eigenvalues of greatest interest

(those which are closest to the real line on the complex α plane), two of those

approximated the contribution of the divergence instability, another two cap-

tured the downstream end effects and the last one captured the upstream end

effects.
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Chapter 6

Absolute Instability

6.1 Introduction

In this section, several cases are considered for which the flow exhibits a

global or absolute instability. In Chapter 5, the spatial evolution of the TS,

TWF and divergence modes was studied when the flow was subjected to a

time-periodic forcing. The wall displacement profiles were a superposition

of several modes which were predicted effectively by the solutions of the Orr-

Sommerfeld equation. In some of the cases (particularly with a small Reynolds

number and forcing frequency), the contribution from the end effects was also

predicted effectively.

In this chapter, the disturbances generated by either a periodic forcing or

a localised impulsive disturbance cause the wall displacement to take an abso-

lutely unstable form; the wall heights grow everywhere causing the disturbance

to grow in both the upstream and downstream directions. There are be two

different characteristic themes that will be presented here (and they will be

labelled using bold letters). The first, labelled STG, is when the disturbance
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results in an absolute instability that grows spatially and temporally while the

second, labelled TG, is when the disturbance grows temporally only and takes

the form of a static, non-oscillating wave.

In the first case STG, the solutions of the Orr-Sommerfeld equation and

the curves of c against R and α are used to provide candidates for the flow

parameters that are expected to result in absolute instability. Then, a DNS are

preformed to see if the flow is indeed absolutely unstable, finally, the wall dis-

placements obtained from the DNS will be corroborated using Briggs’ method

(which is discussed in Appendix H).

In the second case TG where the disturbance develops into a static tem-

porally growing global instability, the results from the DNS are compared to

two-dimensional global mode computations (which come courtesy of Dr. M. J.

Blount). Several changes will also be made to the flow configuration to study

the effects of changing, for instance, the compliant wall length, join conditions,

wall mass and damping. Finally, a brief account of the energy equations will

be set up to study the energy transfer between the compliant wall and the

flow.

6.1.1 Wall Parameters

For all the cases presented in this chapter, the following one-parameter

family of wall parameters will be considered:

m = 2, B =
5.12× 109

2n
, T = 0, K = 78125× 2n, d = 200.

This family of wall parameters is chosen particularly since it shows the desired

characteristics which are the subject of study in this chapter most clearly. Also,
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the product of B and K is kept constant and therefore, the lengthscale of the

system is also constant. Recall that the inherent lengthscale of the system is

given by

R0 =

√
2
√
BK + T .

Therefore keeping the product of B and K constant allows R0 to take the

approximate fixed value of 6325. The analytic approximations of the critical

Reynolds numbers of divergence, TWF and the flutter-type instability depend

on R0 (see for example Chapter 2 and Davies & Carpenter [31]) and therefore,

they will also remain constant and take the following values:

Divergence: Rd =

√
15

8
R0 ≈ 8660

TWF: RTWF =

√
5

5m+ 1
R0 ≈ 4264 (6.1)

Flutter-type: Rf =
3

2

√
5m+ 5

6m+ 1
R0 ≈ 10190.

The product of K and B dictates the lengthscale of the system but their

ratio dictates the critical wavenumber for the divergence instability. Accord-

ing to Davies & Carpenter [30] (and is indicated in Chapter 2), the analytic

approximation for the critical wavenumber is

αc =
4

√
K

B
= 2

n
2
−4. (6.2)

The approximations given in (6.1) and (6.2), are valid under the long-wavelength

approximation (α ∼ 0) but as the ratio αc → 1, these approximations ceases

to hold.

Table 6.1.1 shows the values of B and K for different values of n along with

their corresponding critical wavenumbers αc from (6.2). The table also shows
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the numerically obtained critical Reynolds number Rc and temporal frequency

ωc at this fixed wavenumber (i.e. Rc is the value of the Reynolds number at

which the flow becomes unstable for the fixed wavenumber αc while ωc is its

corresponding frequency).

n B K αc Rc ωc

0 5.12× 109 78125 1
16

8869 10−3

1 2.56× 109 156250

√
2

16
8924 1.67× 10−3

2 1.28× 109 3.125× 105 1
8

9913 1.71× 10−2

3 6.4× 108 6.25× 105

√
2

8
9886 3.35× 10−2

4 3.2× 108 1.25× 106 1
4

9732 5.52× 10−2

5 1.6× 108 2.5× 106

√
2

4
9454 8.58× 10−2

6 8× 107 5× 106 1
2

8902 0.126

7 4× 107 107

√
2

2
7555 0.181

8 2× 107 2× 107 1 7252 0.572

Table 6.1: Values of B and K for different n along with the analytic approx-

imation for αc from equation (6.2) and the numerical approximations for Rc

and ωc.

A Note on the Discretisation of Space & Time

In Chapter 5, the ratio between the temporal and spatial discretisations

∆t
∆x

was taken to be 1
2

(∆x = 0.5 and ∆t = 0.25). This ratio served the

purpose of resolving the instabilities accurately, smaller values were also tested

but yielded the same results. In the cases shown in this chapter, the flow is

set up to become absolutely unstable and therefore the ratio ∆t
∆x

had to be

made smaller in order to avoid numerical instabilities. To this end, ∆t
∆x

= 1
10

(∆x = 0.25 and ∆t = 0.025) was found to be the most appropriate choice

166



6.2. STG: Spatio-Temporal Growth

(smaller values were also taken but the results were the same).

6.2 STG: Spatio-Temporal Growth

In this section, the absolute instability that grows spatially and temporally

is studied. This section is split into two subsections labelled STG1 and STG2

and these present the information under two different settings. In both STG1

and STG2, the disturbance is excited in three ways: an inflow profile with high

frequency, low frequency and a localised impulsive forcing. The different inflow

frequencies are chosen to investigate how the absolute instability is affected by

forcing frequencies at the inflow. On the other hand, the localised impulsive

forcing is used to excite the disturbance to study the effect of a background

impulse on the proliferation of the absolute instability. The results extracted

from these three different cases are compared to one another and to the results

obtained from Briggs’ method.

6.2.1 STG1

For this first case, the set of wall parameters given by n = 0 is chosen and

the neutral stability curve on the α-Re plane is shown in Figure 6.1. In order

to find a suitable candidate for the Reynolds number of the flow that results

in an absolute instability, the variation of the phase speed c against α and Re

need to be studied. After the suitable value of Re is obtained, a DNS will

then be performed for the given flow parameters then the wavenumbers and

phase speeds for the absolute instability are extracted. Finally, Briggs’ method

will used to interpret and corroborate these results and to confirm that the

instability is in fact absolute.
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Figure 6.1: Neutral stability cure on the α-Re plane for the wall parameters
m = 2, B = 5.12× 109, T = 0, K = 78125, d = 200.

c-α Curves

In order to obtain a candidate for the Reynolds number for an absolute in-

stability, first consider the variation of the phase speed c against the wavenum-

ber α for a fixed value of Re. Figures 6.2 and 6.3 show the variation of the real

and imaginary parts of c plotted against α for fixed Re = 13190 and 13210

respectively.

Figure 6.2 shows three different modes: the modified flow-based/TS (blue),

divergence (red) and TWF (green) modes (note that the vertical dashed lines

denote the locations where any of the modes cross =(c) = 0). The TS mode

is unstable for values of α in the interval IT = [0.734, 1.077] while divergenceI

is unstable in Id = [0.0297, 0.1126]. The TWF mode is stable throughout and

plays no significant role here but is included for completeness.

INotice that the divergence mode is stationary at onset (has zero phase speed at α =
0.0297) and its maximum growth rate is at least 30 times greater than that of TS.
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Figure 6.2: Components of c against α for a fixed Re = 13190. The three
lines represent the TS (blue), divergence (red) and TWF (green) modes. The
labelled wavenumber intervals show where TS and divergence destabilise the
flow (IT and Id respectively). Around α = 0.1138 (circled), the divergence and
TS modes start to interact at c = 0.121− 0.025i.

At α = 0.1138 (represented by a circle), the lines representing the TS and

divergence modes (blue and red respectively) start to “interact” at the phase

speed c = 0.121 − 0.025i. Increasing the Reynolds number slightly to 13210

results in a distinct change in behaviour as seen in Figure 6.3. This interaction

at α = 0.1138 yields two new modes, one of them (blue) destabilises the flow at

two separate wavenumber intervals ĨT = [0.734, 1.077] and Ĩd = [0.0297, 0.1128]

while the other mode (red) is stable throughout. This implies that a small

increase in the Reynolds number has lead to an instability that is the result

of an interaction between the divergence and TS modes which destabilises

the flow at two separate wavenumber intervals. This can be seen in a clearer

setting in Figures 6.4 and 6.5 which are the same as 6.2 and 6.3 respectively

but zoomed in at the regions of interest around α = 0.1138.
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Figure 6.3: Similar to Figure 6.2 but for Re = 13210. The divergence and TS
modes interact at α = 0.1138 (circled) resulting in an instability (blue) that
destabilises the flow at the two intervals labelled ĨT and Ĩd.

From this, it can be deduced that the Reynolds number Re = 13200 can be

a good candidate for absolute instability. In order to further verify this choice

of flow parameters, the variation of c against Re for a fixed wavenumber α will

be investigated.

c-Re Curves

Figure 6.6 shows the variation of the phase speed components <(c) and =(c)

with Re for a fixed wavenumber α = 0.1137 (less than the proposed location

of the interaction at α = 0.1138). The two modes start interacting around

the vicinity of Re = 13200 (circled) and a slight increase in the value of the

wavenumber α to 0.114, as in Figure 6.7, causes the two modes to “interact”

just as before.

170



6.2. STG: Spatio-Temporal Growth

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135

0.1

0.11

0.12

0.13

0.14

0.15

ℜ
(c
)

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135

α

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

ℑ
(c
)

Figure 6.4: Just as in Figure 6.2 but zoomed in on the circled region. The line
representing real part of the divergence mode (red) crosses over the TS mode
while the imaginary parts form a pinch.
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Figure 6.5: Just as in Figure 6.3 but zoomed in on the circled region. After
the increase in the Reynolds number, the lines representing the real parts of
the divergence mode form the pinch while the imaginary parts cross over.
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Figure 6.6: Components of c against Re for a fixed α = 0.1137. The two lines
represent different modes and the vertical dashed line denotes the location
where any mode crosses =(c) = 0. Around Re = 13200 (circled), the two
modes interact at c = 0.121− 0.025i.
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Figure 6.7: Similar to Figure 6.6 but for α = 0.114. The two lines interact and
switch over for values of Re less than 13200 (circled).
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Figure 6.8: Just as in Figure 6.6 but zoomed in on the circled region. The line
representing real part of the divergence mode (red) crosses over the TS mode
while the imaginary parts form a pinch.

Figures 6.8 and 6.9 are the same as Figures 6.6 and 6.7, respectively, but

zoomed in at the circled regions to show the interaction between the divergence

and TS modes.

From Figures 6.2, 6.3, 6.6 and 6.7, it can be deduced that the interaction

between the TS and divergence modes around Re = 13200 and α = 0.1138

forms a new mode which destabilises the flow at two distinct wavenumber

intervals and this interaction could result in a disturbance that grows abso-

lutely. This claim shall now be verified by performing several simulations for

this choice of flow parameters then confirmed by Briggs’ method.

DNS

Three different flow simulations are performed here, two for an inflow pro-

file with forcing frequencies β = 0.12 and 0.01137 and one with a localised
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Figure 6.9: Just as in Figure 6.7 but zoomed in on the circled region. After
the increase in the wavenumber, the lines representing the real parts of the
divergence mode form the pinch while the imaginary parts cross over.

impulsive excitation. Disturbing the flow by means of a localised impulsive

forcing will eliminate the need for introducing a forcing frequency β into the

system. Additionally, since the flow is suspected to be unstable, any near-

field effects due to the impulsive excitation are not going to affect the overall

behaviour.

β=0.12

Consider a flow domain of length 500 with a compliant wall section extend-

ing from x = 100 to 450 in a flow with Re = 13200 (which is the value at which

the modal interaction was observed earlier in the plots of the components of

c against Re and α). The flow is excited by means of an inflow profile with a

forcing frequency β = 0.12 and in this case, the disturbance will cause the wall

displacement to take the general form shown in Figure 6.10. The instability

has a phase speed 0.1736 (i.e. this is the non-dimensional speed at which the
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crests/troughs travel down the length of the compliant wall). The instabil-

ity also grows spatially and temporally everywhere hence implying that the

instability grows absolutely (at least according to the DNS).

Note that in Figure 6.10, the wall displacement axis has not been labelled,

this is because the waveform has an associated geometric quasi-periodic time

period τ . This means that if the wall displacement takes the form η(t) at some

time t, for example, then η(t+ τ) will be exactly the same as η(t) but with an

amplification factor, this is explained further below.
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Figure 6.10: STG1 with β = 0.12, the vertical dashed lines denote the start
and end of the compliant wall section. The instability has a phase speed 0.1736
and an exponential growth rate 0.01257. The most dominant wavenumber is
0.08796 and the gq-period is 410.
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The Geometric Quasi-Period τ

Suppose that the wall height at all the streamwise locations at some time

t is given by the vector

η(t) = (η(x0, t), η(x1, t), . . . , η(xne , t))

where the streamwise positions within the compliant wall is given by the vector

x = (x0, x1, . . . , xne).

If the wall displacement profile is geometric quasi-periodic, then after a time

τ (known as the geometric quasi-period), the wall takes the same form it did

before but with a multiplicative factor, i.e.

η(t0 + τ) = Ãη(t0) (6.3)

where t0 is any time after which the transients have subsided and Ã is an

amplification factor. Therefore, this implies that the wall heights η will have

to grow exponentially. The term “geometric quasi-period” is borrowed from

mathematical analysis since it best describes the evolution of the waves ob-

served in the DNS, this will be hereafter denoted as gq-period. For the partic-

ular case when β = 0.12, the gq-period τ is approximately 410. (It should be

noted that the values of τ will be given to the nearest 10 since they have to

extracted manually from the DNS.)

Extracting Wavenumbers

In order to see which wavenumbers are the most dominant, a Fast Fourier

Transform (FFT) can be applied on the wall displacements giving the most
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dominant wavenumber as 0.08796II.

Extracting Growth Rates

The profile that is observed in Figure 6.10 grows temporally everywhere

and the growth rate can be determined using a relatively crude, yet effective

method. First of all, the height at a fixed streamwise position x = X will be

denoted η̃X and is assumed to take the form

η̃X(t) = Aeλt (6.4)

which satisfies (6.3). The time t has to be greater than the time t0 mentioned

earlier and for the sake of convenience, t can be taken to be an integer multiple

of τ . Taking the logarithm of (6.4) gives

ln(η̃X(t)) = C + λt where C = ln(A).

The DNS results provide values of t and η̃X(t) and therefore λ and A can be

determined by means of a linear regression, an example of this is shown in

Figure 6.11.

The figure shows the plot of ln(η̃347(t)) (the logarithm of the wall height

at the fixed streamwise position x = 347) at different times separated by

multiples of τ . The plot forms a straight line implying that the assumption of

exponential growth is perfectly valid (which is not unexpected). The values of

A and λ in this particular case are

A = 9.782× 10−7 and λ = 0.01253.

IIThe term “most dominant wavenumber” here refers to the wavenumber that has the
highest value in the Fourier spectrum.
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Figure 6.11: Logarithm of the wall height at the fixed streamwise location
x = 347 plotted against time. The wall heights obtained from the DNS (×)
and the exponential curve of best fit (—) are plotted together to show that
the growth is in fact exponential.

Note that the amplification factor A is not relevant, the important term is λ

and the fact that it should be positive for exponential growth.

β=0.01137

Suppose now that the inflow disturbance frequency is reduced to β =

0.01137 and the compliant wall is shortened, in particular, it now extends

from x = 20 to 200 in a domain of length 220. If the simulation is run for

a long enough time, the wall displacement takes the general form shown in

Figure 6.12. (Once again, the wall displacement axis has not been labelled

since the wall takes this exact same form at different gq-periods as it grows

exponentially.)

The instability in this case has a phase speed of 0.17 and grows temporally

everywhere with an exponential growth rate 0.01156. The most dominant
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Figure 6.12: STG1 with β = 0.01137, the vertical dashed lines denote the
start and end of the compliant wall section. The instability has a phase speed
0.17 and an exponential growth rate 0.01156. The most dominant wavenumber
is 0.08568 and the gq-period is 430.

wavenumber is 0.08568 and the gq-period τ is 430. All these results were

extracted in exactly the same way as before. In this case, even though both

the compliant length and the inflow frequency were reduced for the same wall

parameters and the Reynolds number, similar values of the wavenumber, phase

speed and growth rates were obtained.

Localised Impulsive Forcing

Consider the same flow configuration as when β = 0.01137 (a flow domain

of length 220 with a compliant wall between x = 20 and 200) but is undisturbed

at the inflow (ϕ = 0 at x = 0) and the excitation is triggered by a localised

impulsive forcing. At the start of the simulation, the wall responds to the

initial excitation but after some time, the wall displacement starts to take the

general form shown in Figure 6.13.
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Figure 6.13: STG1 with a localised impulse, the vertical dashed lines denote
the start and end of the compliant wall section. The instability has a phase
speed 0.1641 and an exponential growth rate 0.01155. The most dominant
wavenumber is 0.08568 and the gq-period is 430.

The instability grows with an exponential growth rate 0.01155 and has a

phase speed 0.1641, the most dominant wavenumber is 0.08568 and the gq-

period τ is 430. Notice that the profile observed in Figure 6.13 appears to

be strikingly similar to that in Figure 6.12 implying that the impulse and the

inflow profile both act as triggers for the absolute instability.

Comparison Between the Different Simulations

Table 6.2 shows a summary of results extracted from the three different

simulations. These include the magnitudes of the most dominant wavenumber

|αDNS|, phase speed cDNS, the exponential growth rate λDNS and the gq-period

τ .
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Method of Excitation |αDNS| cDNS λDNS τ

β = 0.12 0.08796 0.1736 0.01257 410

β = 0.01137 0.08568 0.17 0.01156 430

Impulse 0.08568 0.1641 0.01155 430

Table 6.2: Summary of results from the three different simulations.

Note that all the three simulations yield very similar results (the case when

β = 0.12 is a little different due to the longer compliant wall length, but

nevertheless, it is still quite reasonably close to the others). Therefore it seems

that the chosen set of wall parameters, given by n = 0, and the Reynolds

number Re = 13200 have a natural tendency to give an instability with a

most dominant wavenumber |α|≈ 0.086, a phase speed c ≈ 0.17 which has

an exponential temporal growth rate λ ≈ 0.119. These results arise even

when the wall length and the method of excitation are different. The growth

of this particular disturbance is an indication of absolute instability due to

an interaction between TS and divergence (as noted from the plots of the

components of c against α and Re in Figures 6.2, 6.3, 6.6 and 6.7). Briggs’

method will now be used to verify the fact that the instability is absolute.

Briggs’ Method

Consider a fixed complex temporal frequency ω = ωr + iωi (ωr, ωi ∈ R).

This corresponds to eigenvalues on the complex α-plane that are the result

of solving the dispersion relation ω(α) = 0. Fixing ωr and varying ωi forms

spatial branches on the complex α-plane and some of these branches form

saddle points. If these branches originate from different half-spaces and the

saddle point corresponds to a complex temporal frequency whose imaginary

part is positive, then the instability is absolute.
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Figure 6.14 shows the set of points that trace out two spatial branches

formed by fixing ωr = 0.0157 (red) and 0.0158 (blue) while varying ωi. A sad-

dle point is formed at the wavenumber α = 0.0855 − 0.0121i (represented by

a cross) which corresponds to a root of the dispersion relation ω = 0.01576 +

0.01301i. This complex frequency has a positive imaginary part and the spatial

branches originate from different half-spaces (as in Figure 6.14). Therefore ac-

cording to Briggs’ criterion, this implies that the disturbance grows to become

an absolute instability. The results from Briggs’ method are summarised thus

(SP here denotes “saddle point”):

αSP = 0.0855− 0.0121i

ωSP = 0.01576 + 0.01301i (6.5)

cSP =
ωSP
αSP

= 0.1596 + 0.1747i.
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Figure 6.14: Saddle point formed at α = 0.0855 − 0.0121i (×). These spatial

branches are formed by varying =(ω) for fixed <(ω) = 0.0157 (red) and 0.0158

(blue).
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Comparison Between DNS & Briggs’ Method

Table 6.3 shows a comparison between the results extracted from the three

simulations and Briggs’ method. These include the magnitude of the most

dominant wavenumber |α|, phase speed c and temporal growth rate λ (note

that from the saddle point, the phase speed is c = <(cSP ) and the growth rate

is λ = =(ωSP )). From this table 6.3 it can be seen that Briggs’ method can

be used as a way to predict the wavenumbers, phase speeds and exponential

growth rates of the absolute instability.

|α| c λ

β = 0.12 0.08796 0.1736 0.01257

β = 0.01137 0.08568 0.17 0.01156

Impulse 0.08568 0.1641 0.01155

Briggs’ method 0.08635 0.1596 0.01301

Table 6.3: Comparison between the results obtained from the three simulations

of STG1 and Briggs’ method.

Another Saddle Point?

It is worth noting that this system has another saddle point but that does

not mean it would manifest as an absolute instability. Indeed, Figure 6.15

shows a saddle point that is formed by taking the spatial branches for a fixed

value of ωr = 0.022299 (blue) and 0.022301 (red) while varying ωi. The saddle

point is located at α = 0.1134 + 0.2381i which corresponds to a complex

temporal frequency ω = 0.0223+0.004812i. Even though the imaginary part of

the frequency is positive, it does not correspond to an absolute instability since

the two branches do not originate from different half-spaces. This explains why

these parameters were not observed in any of the simulations.
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Figure 6.15: Saddle point formed at α = 0.1137 + 0.0238i (×). These spatial
branches are formed by varying =(ω) for fixed <(ω) = 0.022299 (blue) and
0.022301 (red), however this saddle point does not correspond to an absolute
instability since the branches do not originate from different half-spaces.

6.2.2 STG2

The fact that Briggs’ method can be used to predict the wavenumbers,

phase speeds and growth rates will now be exploited.

For this case, a different set of wall parameters is chosen, particularly the

set given by n = 1. In order to obtain a potential candidate for the Reynolds

number, the curves of c against α need to first be studied to find a location of

interaction between the divergence and TS modes. Briggs’ method can then be

used to identify the saddle point that can be used to predict the parameters for

the absolute instability. Finally, simulations are performed (similar to STG1)

to confirm the predictions obtained from Briggs’ method.
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6.2. STG: Spatio-Temporal Growth

Candidate Reynolds Number for Absolute Instability

In order to obtain a value of the Reynolds number that leads to absolute

instability for this set of wall parameters, consider the variation of c against α

for fixed values of Re. Figures 6.16 and 6.17 show this variation for R = 10880

and 10900 respectively.

In Figure 6.16, the two curves represent different instabilities: the diver-

gence mode (red), which is unstable for values of α in Id = [0.054, 0.122], and

the TS mode (blue), which is unstable in IT = [0.772, 1.087]. These two modes

interact at α = 0.1225 to give a phase speed c = 0.126−0.025i (circled). (Note

that the TWF mode has not been shown here since it plays no part.)
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Figure 6.16: Components of c against α for a fixed Re = 10880. The two lines
represent the TS (blue) and divergence (red) modes. The labelled wavenumber
intervals show where TS and divergence are destabilised (IT and Id respec-
tively). Around α = 0.1225 (circled), the divergence and TS modes start to
interact at c = 0.126− 0.025i.

Increasing the Reynolds number to 10900, as in Figure 6.17, shows a dis-

tinct interaction between the two modes (the exact same phenomenon that
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was observed in Figures 6.2 and 6.3 in STG1). This interaction between the

divergence and TS modes results in a mode (red) that destabilises the flow

for values of α in two separate wavenumber intervals Ĩd = [0.053, 0.122] and

ĨT = [0.772, 1.087] while the other mode (blue) is stable throughout. Therefore

Re = 10890 can be a possible candidate for the Reynolds number that results

in an absolute instabilityIII.
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Figure 6.17: Similar to Figure 6.16 but for Re = 10900. The divergence and
TS modes interact at α = 0.1225 (circled) resulting in a mode (red) that
destabilises the flow at the two intervals labelled ĨT and Ĩd.

Prediction: Briggs’ Method

Figure 6.18 shows the set of points that trace out two spatial branches on

the complex α-plane obtained by fixing the real part of the complex frequency

to 0.0167 (red) and 0.0169 (blue) and varying its imaginary part. These spatial

branches originate from different half-spaces and form a saddle point at α =

0.099 − 0.01i (cross) which corresponds to a root of the dispersion relation

IIIThe variation of α against Re was also used to corroborate that this is indeed a suitable
choice of Re.
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ω = 0.01686+0.008644i. Therefore Briggs’ method gives the following results:

αSP = 0.099− 0.01i

ωSP = 0.01686 + 0.008644i

cSP = 0.1599 + 0.1035i.

Since =(ω) is positive and the branches originate from different half-spaces,

this implies that the disturbance forms an absolute instability. If a DNS is

performed, then Briggs’ method can provide the following predictions for the

most dominant wavenumber, phase speed and temporal growth rate as follows:

|α| = 0.0995 (6.6)

c = <(cSP ) = 0.1599 (6.7)

λ = =(ωSP ) = 0.008644. (6.8)

Figure 6.18: Saddle point formed at α = 0.099 − 0.01i (×). These spatial

branches are formed by varying =(ω) for fixed <(ω) = 0.0167 (red) and 0.0169

(blue).
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Verifying the Predication: DNS

Consider a domain of length 350 with a compliant wall between x = 20

and 320 in a flow with Re = 10890. Just as in STG1, three simulations are

conducted which are excited in three different ways; an impulse excitation and

two inflow profiles with β = 0.12 and β = 0.01476.
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Figure 6.19: General form of STG2 for β = 0.12, 0.01476 and the impulse
excitation (the vertical dashed lines denote the start and end of the compli-
ant wall section). The crests/troughs travel downstream with a speed c, the
magnitude of the most dominant wavenumber is |α| and the instability grows
with an exponential growth rate λ, all these are given in Table 6.4. The same
general form is displayed for all three different excitations.

After enough time has passed -to allow the transients to subsided- the wall

displacement in all three cases takes the general form shown in Figure 6.19

(notice that the wall displacement axis has not been labelled since it has an

associated gq-period τ just as in STG1). The resulting instability has a phase

speed c and grows temporally everywhere with an exponential growth rate

λ. The magnitude of the most dominant wavenumber α can be isolated by
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applying a FFT on the wall displacements. All this information from the three

simulations is shown in Table 6.4 along with the predictions made from Briggs’

method.

|α| c λ τ

β = 0.12 0.09875 0.1649 0.00785 380

β = 0.01476 0.09873 0.1675 0.00786 380

Impulse 0.09873 0.1649 0.00785 380

Briggs’ method 0.0995 0.1599 0.008644 -

Table 6.4: Comparison between the three STG2 simulations along with the

predictions made from Briggs’ method given in (6.6).

From the DNS results, it can be seen that the choice of wall parameters

and Reynolds number have a tendency to produce very similar phase speeds,

wavenumbers and growth rates regardless of how the flow has been excited.

The saddle point also gives very similar results to those obtained from the

DNS suggesting that Briggs’ method is a reliable way to predict the onset of

an absolute instability which is a result of an interaction between the TS and

divergence modes and gives parameters that are similar to those obtained from

the DNS.

Notice that the in both STG1 and STG2, there has been a slight discrep-

ancy between the predicted values from the saddle point and those obtained

from the DNS. This is because the eigenvalues on the complex α and ω-planes

have been determined under the assumption that the compliant wall is in-

finitely long. Even with this hindrance, the predictions are still very good.
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6.2.3 Summary of STG

Choice of Reynolds Number for Absolute Instability

Consider a fixed set of wall parameters and Reynolds number Re0. The

choice of Re0 should be such that if the components of the phase speed c are

plotted against the wavenumber α for fixed Reynolds numbers Re = Re0−δRe

and Re0+δRe (for some δRe << Re0), then there will be an interaction between

the TS and divergence modes for values of α close to the unstable region of the

divergence mode. More precisely, if the components of c were to be plotted

against α for Re0 − δRe, then there should be two modes that destabilise

the flow, divergence at a range of small wavenumbers Id and TS at a range

of higher wavenumbers IT (for example, see Figures 6.2 and 6.16). The two

modes interact at a location near the higher end of Id (as denoted by the

circles in Figures 6.2 and 6.16). When the Reynolds number is increased to

Re0+δRe, the divergence and TS modes would interact to form two new modes,

one of them is stable for all the values of Re while the other destabilises the

flow at Ĩd and ĨT (which are the modified intervals Id and IT respectively as

seen in Figures 6.3 and 6.17). Denote the wavenumber at the location of the

interaction by α̃ and the phase speed by c̃ ∈ C (i.e. the location of the circle

in Figures 6.2, 6.3, 6.16 and 6.17).

Prediction of the Wavenumbers, Phase Speeds & Growth Rates

In order to use Briggs’ method to obtain predictions for the absolute in-

stability, consider the values of a complex temporal frequency near ω̃ = α̃c̃.

Fixing <(ω̃) and varying =(ω̃) traces out spatial branches on the complex α-

plane to form a saddle point α∗ (as denoted by the crosses on Figures 6.14 and

6.18). This point corresponds to a root of the dispersion relation located at
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ω∗ on the complex ω-plane. If =(ω∗) > 0 and the spatial branches originate

from different half-spaces, then the disturbance would grow to form an abso-

lute instability. Therefore predictions for absolute instability from the saddle

point are:

∗ Most dominant wavenumber: |α∗|

∗ Exponential temporal growth rate: =(ω∗)

∗ Phase speed: <(ω
∗

α∗ ).

DNS

For the DNS, a simulation can be performed for Re = Re0 prescribed earlier

and the disturbance can be excited by either an inflow profile or a localised

impulsive forcingIV.

The simulations have to be run for a long enough time in order to allow

any transients to subside. The disturbance causes the wall displacement to

take the form of a spatially growing instability with a positive phase speed,

the wave has an associated gq-period and an exponential growth rate as well

(just as in Figures 6.12, 6.10, 6.13 and 6.19). The following information can

be extracted from the DNS:

∗ Exponential growth rate: λ

∗ Most dominant wavenumber: |α̂|

∗ GQ-period: τ

∗ Downstream speed: ĉ.

IVFrom STG1 and STG2, it was seen that the different methods of exciting the distur-
bance yielded similar results. To this end, an impulse excitation may be more appropriate
in disturbing the flow since it is analogous to a background disturbance that triggers the
absolute instability. Additionally, no inflow frequency has to be assigned. The near-field
effects that arise due to this excitation will be irrelevant since they are overwhelmed by the
absolute instability.

191



Chapter 6. Absolute Instability

The predictions made from Briggs’ method can be compared to the infor-

mation extracted from the DNS as follows:

λ ≈ =(ω∗)

ĉ ≈ <
(
ω∗

α∗

)
|α̂| ≈ |α∗|⊆ Ĩd.

Briggs’ method has proved vital in predicting the onset of an absolute

instability for STG when the divergence and TS modes interact.

6.3 TG: Temporal Growth

In this section, a more interesting phenomenon is presented with regards to

the growth of global instabilities. In STG, the absolute instability evolved spa-

tially and temporally with an associated gq-period and an exponential growth

rate. In the cases to follow, the global instability takes the form of a static

wave that grows temporally with an exponential growth rate (i.e. the wall dis-

placement profile takes the form eT (t) sin(X(x)) for some functions T and X

where t is the after which all transients have dissipated and x is the streamwise

location in the compliant wall).

First, a set of wall and flow parameters is chosen and the variation of

the phase speed c against α is investigated. Once a viable candidate for the

Reynolds number is found, simulations are performed where the flow is excited

by means of a localised impulsive force. Afterwards, modifications to the flow

configuration are made in order to investigate their individual effects on the

instability.
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6.3.1 TG

Consider the set of wall parameters given by n = 1 in Table 6.1. The

variation of <(c) and =(c) should first be used to locate possible interesting

flow parameter choices and then simulations can be performed.

c-α Curves

Consider the components of the phase speed c against the wavenumber α

for a fixed Reynolds number Re = 10000 as shown in Figure 6.20. The three

lines indicate different modes: TS (blue), divergence (red) and TWF (green).

The TS mode is unstable for values of α in the IT = [0.793, 1.091] while the

divergence mode is unstable in Id = [0.06, 0.11] (the TWF mode is stable

everywhere and does not play a role here).

At α = 0.093 (indicated by a dotted vertical line), the real parts of the

curves representing the TS and divergence modes “collide” to give a phase

speed whose real part is 0.1235 (as denoted by the circle), the divergence

growth rate (given by imaginary part) at that this particular value of α is

0.03129.

If the value of the Reynolds number is increased to 10500, the lines repre-

senting the real parts of the divergence and TS modes cross over but do not

interact in the same way seen earlier in STG (see for example Figures 6.3 and

6.17). With this increase in the value of Re, the maximum growth rate of

divergence more than doubles while that of TS remains relatively unchanged.

In this case, the Reynolds Re = 10000 can be chosen as a candidate for the

absolute instability.
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Figure 6.20: Components of c against α for a fixed Re = 10000. The three
lines represent the TS (blue), divergence (red) and TWF (green) modes. The
labelled wavenumber intervals show where TS and divergence are destabilised
(IT and Id respectively). Around α = 0.093 (denoted by the vertical dotted
line), the divergence and TS modes start to “collide”.

DNS

Consider a flow domain of length 150 with the compliant wall section ex-

tending from x = 44 to 116 in a flow with Re = 10000. The flow is disturbed

by means of a localised impulsive forcing in the middle of the compliant wall

in order to eliminate the need for introducing an inflow disturbance frequency.

At the start of the simulation, the wall will respond to the initial excitation but

after the transients effects have subsided, the wall displacement starts to settle

down and take the form of a static, non-oscillating wave that grows temporally

everywhere. The general form of the wall displacement is given in Figure 6.22

and the wall takes this same form for all subsequent times and keeps growing

temporally everywhere with no spatial oscillation. Therefore, the instability
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Figure 6.21: Similar to Figure 6.20 but with Re = 10500. The lines represent-
ing the real parts of TS and divergence have crossed over without displaying
the same interaction behaviour seen in STG.

in this case has zero phase speed and zero group velocity. The wavenumber

spectrum shows a range of values around a single peak as shown in Figure

6.23.

In order to visualise this better, the wall displacements at different times

have been superimposed on top of one another in Figure 6.24. The wall heights

are plotted from t = 2500 to 3140 in increments of 80 with the arrows showing

the direction of growth. From this, it can be hypothesised that the instability’s

temporal growth rate is exponential (as expected).

Figure 6.25 shows the logarithm of the crest’s height obtained from the

DNS (located at x = 74 and is denoted by a series of crosses) plotted against

time in order to determine the exponential growth rate which is denoted λ.

From this, it can be deduced that the height of the crest grows exponentially
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Figure 6.22: General form of the wall displacement for TG. The vertical dashed
lines denote the start and end of the compliant wall section.
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Figure 6.23: Fourier spectrum of the wall displacement shown in Figure 6.22.
The spectrum shows range of values that peak at |α|= 0.08378.
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Figure 6.24: Plot of the wall displacements for the times t = 2500 to 3140 in
increments of 80. This is shown in order to illustrate the exponential growth
rate of the instability as indicated by the arrows.

with time as ∼ eλt where λ = 5.752×10−3. The line η̃74(t) (which is the height

of the wall at x = 74) given by

η̃74(t) = Aeλt

where A = 7.443× 10−5 and λ = 5.752× 10−3

which represents the approximated wall height at x = 74 (once again, the

value of A is not relevant in this context, only λ). This is plotted in Figure

6.25 (line) and it fits all the data point obtained from the DNS.

In summary, it seems that this combination of the Reynolds number, wall

length and end conditions have lead to a perfect balance to allow the dis-

turbance to develop into a static, non-oscillating, temporally growing global

instability with an exponential growth rate of 5.75 × 10−3 and a wavenum-
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Figure 6.25: Logarithm of the crest’s height (at x = 74) plotted against time.
The wall heights obtained from the DNS (×) and the exponential curve of best
fit (—) are plotted together to show that the growth is in fact exponential.

ber 0.08378. If any one of these factors is changed, then the same behaviour

might not be observed. These characteristics suggest that the instability is

reminiscent of the divergence mode at onset, this is because it takes the form

of a long wavelength static wave forming “nodes” and “anti-nodes” as it grows

temporally everywhere. It should be made very clear that the instability is

not a typical standing wave since the peaks do not oscillate, they only keep

growing temporally.

Briggs’ Method

In this subsection, Briggs’ method is used to see whether it can be used

as a predictor for the growth rates, wavenumbers and phase speeds just as in

STG. Pre-emptively, it may be hypothesised that Briggs’ method may not be

the best way to make these predictions. This is because the static development

of the global instability is sensitive to changes in wall length (as will become

198



6.3. TG: Temporal Growth

apparent in §6.4.2) and this is not captured by Briggs’ method since it is based

on the procedure which does not take wall lengths into account.

Figure 6.26 shows two spatial branches on the complex α-plane that are

formed by fixing the real part of the temporal frequency to 0.01115 (blue) and

0.01135 (red) and varying its imaginary part. These branches originate from

different half-spaces and form a saddle point at α = 0.09304−0.004296i (cross)

which corresponds to the root of the dispersion relation ω = 0.01128 + 2.762×

10−3i.
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Figure 6.26: Saddle point formed around α = 0.09304 − 4.296 × 10−3i (×).
These spatial branches are formed by varying =(ω) for fixed <(ω) = 0.01115
(blue) and 0.01135 (red).

Table 6.5 shows the relevant information extracted from the simulations

and Briggs’ method. The results from the DNS and the saddle point do not

match and the main reason for that could be the fact that the procedure used

for Briggs’ method does not take wall lengths or edge effects into account.

Notice that, =(ω) is positive and the branches originate from different half-
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spaces implying that the instability is absolute which matches up with the

findings of the DNS. However the error between the two is significantly greater

than those seen in STG.

DNS Briggs’ Method

Wavenumber |α| 0.08378 0.09314

Growth Rate λ or =(ω) 5.75× 10−3 2.762× 10−3

Table 6.5: Comparison between the three STG2 simulations along with the

predictions made from Briggs’ method given in (6.6).

This indicates that Briggs’ method could predict the general behaviour

of the instability (i.e. absolute) but not the parameters that make up the

instability. Additionally, Briggs’ method gives no indication that the wall

displacement forms a static global instability (i.e. zero phase speed).

To this end, another approach has to be employed to verify the growth

rates and can then be used as a method for predicting them, in this case, two-

dimensional global mode computations are used. This method was devised by

Dr. M. J. Blount and is used to corroborate growth rates for the statically

growing global instabilities since it takes wall lengths into account. Before the

two-dimensional global mode computations are conducted, some modifications

to TG are first be made and this includes changing the compliant wall length,

mass, damping coefficient and the Reynolds number. This is done in order

to see what effects they have on the growth rates then later in §6.5, the DNS

results are compared to the two-dimensional global mode computations.
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6.4 Modifications to TG

In this section, the flow configuration in TG will be modified by changing

one factor. These modifications will be labelled thusly:

• TGE: End conditions

• TGL: Length of the compliant wall section

• TGR: Reynolds number

• TGC: Combination of factors

• TGM: Mass of the compliant wall

• TGD: Damping coefficient.

The growth rates obtained from these different cases are then compared to

the growth rates obtained from the two-dimensional global mode computations

in §6.5.

6.4.1 TGE: End Conditions

Suppose that the compliant wall section is now clamped at the ends instead

of being hinged while keeping all the other factors the same. After the initial

excitation, the wall settles down to take the general form shown in Figure 6.27.

The instability in this case has negative velocity and an associated gq-period of

τ = 1270. It interesting to note that the instability decays temporally every-

where with an exponential decay rate of λ = −1.279× 10−3 and has a velocity

of −0.04356 (i.e. the crests/troughs of the wave travels backwards). This is

shown in Figure 6.27 where the wall displacement is plotted at consecutive

periods and the arrows denote the instability’s exponential decay (the vertical

dashed lines represent the positions of the start and end of the compliant wall

section which are the same as in TG).
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Figure 6.27: General form of the wall displacement when the wall is clamped
at the ends, the wave is plotted at consecutive gq-periods and the arrows show
the exponential decay. The vertical dashed lines represent the start and end
of the compliant wall section.

Imposing the clamping condition makes the compliant wall effectively stiffer

thus causing the delicate balance that gives rise to the static wave (as seen in

TG) to break resulting in an instability that decays and has a non-zero group

velocity. These claims can be difficult to corroborate using the solutions of

the Orr-Sommerfeld equation since it was based on a compliant wall of infinite

length. Nevertheless, it is still interesting to see the effect of changing only the

end condition on the development of the instability.

6.4.2 TGL: Compliant Wall Length

In the cases presented earlier, TG and TGE, the compliant wall length L

was fixed to be 72. If the length L is changed, then the wall displacement will

behave differently.

202



6.4. Modifications to TG

L>72

First, consider a compliant wall section of length L = 144 while all other

factors are kept the same. Näıvely, it might be expected that the instabil-

ity should take the form of two wavelengths (more particularly, the Fourier

spectrum should show a range of values that peak at a single point just as

in Figure 6.23). The wave would be expected to be a global instability that

is static, non-oscillating and temporally growing everywhere since the wall is

twice as long, but such is not the case. Instead, the instability that arises

has a speed c = 0.08965 and grows exponentially with a temporal growth rate

λ = 2.819× 10−3 and has an associated gq-period of τ = 900.

The simulation was also repeated for compliant walls of lengths greater

than 72. In general, increasing the length of the wall section results in a global

instability with a positive phase speed and an exponential growth rate which

is less than that of TG. Some of these results are shown in Table 6.6.

L<72

Consider a compliant wall of length L = 36. In this case, the wall displace-

ment takes the form of half a wavelength that is static and non-oscillating as

shown in Figure 6.28. The instability grows temporally everywhere with an

exponential growth rate λ = 0.01013 which is almost twice that of TG. Simu-

lations were also performed for compliant walls of lengths less than 72 and in

general, reducing the wall length increases the exponential growth rate while

still retaining the static nature of the instability. However, reducing the wall

length too much (below 33) causes the wall to respond to the initial excitation

then decay completely.

Exponential growth rates and phase speeds from the DNS for different
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Figure 6.28: Wall displacement plotted at several times when the wall length
36.

compliant wall lengths are shown in Table 6.6. It seems that increasing the

wall length significantly above 72 breaks the delicate balance that gives rise

to the static wave and results in an instability with a positive group velocity

and a reduced growth rate. However reducing the length of the compliant wall

section can allow the instability to retain its static, non-oscillating nature while

increasing its growth rate. The general effect of changing the wall length is

investigated further by using the two-dimensional global mode computations

later in §6.5.

L λ c
33 1.07× 10−2 0
36 1.013× 10−2 0
54 2.954× 10−3 0
72 5.752× 10−3 0
100 9.651× 10−4 0.03165
108 3.301× 10−3 0.06142
144 2.844× 10−3 0.08965

Table 6.6: Growth rates λ and phase speeds c for different wall lengths L.
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From this table, it can be hypothesised that for long walls, the finite end

effects play a major role in destabilising the flow but for shorter walls, the

resonance effects are the most dominant suggesting that different destabilising

mechanisms are at play.

6.4.3 TGR: Reynolds Number

Suppose that the Reynolds number is increased to Re = 11000 while keep-

ing all other factors the same. The instability that results has a phase speed

c = 0.0848 and grows with an exponential growth rate of λ = 0.007926. In-

creasing the Reynolds number can be thought of as effectively reducing the

viscosity of the flow hence causing an increased growth rate but this also

causes the instability to have a positive speed as well.
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Figure 6.29: Wall displacement plotted at evenly spaced times for TGR, the
arrows indicate the exponential decay.

On the other hand, reducing the Reynolds number down to Re = 8900 gives
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a wall displacement that looks very similar to TG (as in Figure 6.22) but in

this case, the wave takes the form of a static wave that decays temporally

everywhere. Figure 6.29 shows the wall displacements plotted at different

times to show the exponential rate of decay (depicted by the arrows) which is

λ = −0.001274. Therefore, reducing the Reynolds number can be thought of

as effectively increasing the fluid viscosity which has a stabilising effect on the

development of the wall displacement.

6.4.4 TGC: A Combination of Factors

The cases presented in TGL and TGR show how delicate the static growth

of the divergence instability at onset can be when the wall lengths and Reynolds

numbers are changed. Changing any of these factors can cause the global in-

stability to have a non-zero speed or result in temporal decay. With this in

mind, it can be hypothesised that if several factors were changed appropri-

ately, then the static temporally growing instability can be recovered. Indeed,

suppose that the compliant wall section is made longer, extending from x = 20

to 200, and the Reynolds number is reduced to Re = 8900. In this case, the

wall displacement takes the form shown in Figure 6.30.

The global instability forms a static, non-oscillating temporally growing

wave with the exponential growth rate λ = 6.086 × 10−4 and consists of

21
2

wavelengths (in other words, the wave consists of 6 “nodes” and 5 “anti-

nodes”). Therefore, this indicates that if several appropriate changes are made

to the flow configuration, then the static exponentially growing global instabil-

ity can be recovered even though the individual changes do not preserve this

property.
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Figure 6.30: Wall displacement for TGC plotted at evenly spaced time inter-
vals to show the exponential growth rate. The vertical dashed lines denote the
start and end of the compliant wall section.

A very similar phenomenon has been observed in the swimming of dolphins

as noted by Aleyev [2] where at high swimming speeds, the dolphin skin forms

wave-like folds that are stationary with respect to the motion of the dolphin

itself, this is shown in Figure 6.31 taken from Aleyev [2] (in fact, these exper-

iments were also conducted on swimming humans as well). These folds look

very similar to the static wave seen in Figure 6.30 which could suggest that

the dolphin may be experiencing divergence instability at onset.

6.4.5 TGM: Wall Mass

The inherent lengthscale of the flow configuration is dictated by the product

of B and K (since T = 0) therefore changing the other wall parameters should

not affect the lengthscale of the system but can have an effect on the growth

rate. First of all, consider the flow configuration given by TG (Re = 10000
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Figure 6.31: Wave-like folds on the dolphin skin which are stationary with
respect to the motion of the dolphin, this is taken from Aleyev [2]

and L = 72) for different wall masses. The instability in this case takes exactly

the same form as it did in Figure 6.24 but with different growth rates as in

Table 6.7.

m λ
0.2 5.82× 10−3

2 5.75× 10−3

20 4.51× 10−3

200 2.53× 10−3

Table 6.7: Growth rates of TG with different values of m.

Therefore increasing the wall mass reduces the growth rate of the instability

hence effectively controlling its growthV. This will elaborated upon further in

§6.5.

6.4.6 TGD: Damping Coefficient

It was seen that the wall mass acted as a control mechanism for the growth

of the global instability. Another wall parameter that can be changed without

VNote that regardless of the wall mass, the instability grows exponentially, this fits in
well with the fact that the divergence onset is unaffected by the wall’s mass (see for example
Davies & Carpenter [30]). Even though the onset of divergence is not affected, its growth
rate is.
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affecting the inherent lengthscale is the damping coefficient d. For the sake

of variety, the damping coefficient will be changed for the flow configuration

given in TGC (Re = 8900 and L = 180). Once again, the instability takes

exactly the same form as in Figure 6.30 but the growth rates are reduced and

this information is shown in Table 6.8.

d λ
0 6.47× 10−4

200 6.09× 10−4

1000 4.30× 10−4

2000 2.87× 10−4

Table 6.8: Growth rates of TGC with different values of d.

Just as in TGM, increasing the damping has reduced the exponential

growth rate of the instability and therefore, it can be used a means of control-

ling the growth of the instability but not stabilise it. A brief investigation into

the mechanism behind the growth of these instabilities for different values of

m and d is conducted later in §6.6 by means of energy transfer.

All the results presented so far in TG, TGL, TGM and TGD have only

included growth rates that are obtained from the DNS. These are now com-

pared to two-dimensional global mode computations in order to corroborate

the values of the growth rates and to see the general effect of changing the wall

length, wall mass and damping.

6.5 Two-Dimensional Global Mode Computa-

tions

This section briefly outlines a numerical procedure developed by Dr. M.

J. Blount that incorporates the compliant wall length into the solutions of
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the Orr-Sommerfeld equation in order to obtain growth rates. This is used to

verify the growth rates of the instability found in TGL, TGM and TGD.

The procedure takes full advantage of the fact that the basic velocity U ,

normal velocity v and disturbance profiles ϕ are all symmetric. A tridiagonal

form of the matrix equations is used to form a block diagonal matrix form

of the global eigenvalue problem which also takes into account the compliant

wall length. Note that for this procedure, the end conditions are assumed to

be hinged. The eigenvalues of the generalised eigenvalue problem are obtained

by using an Arnoldi iteration subject to approximate starting values for the

growth rates and an outflow wavenumber.

6.5.1 Compliant Wall Length

Figure 6.32 shows the growth rates observed in TGL. The line shows the

exponential growth rates obtained from the global solver while the crosses are

some sampled values obtained from the DNS as given in Table 6.6. From

this, it can be seen that the global eigenvalues can predict the DNS results for

different compliant wall lengths effectively.

Note that as the compliant wall length is increased, the growth rate keeps

increasing to reach a maximum point then decreases again and continues to do

so for all subsequent wall lengths. The growth rate for short compliant walls

is greater than those for a longer wall and each part of the curve represents a

different observed state, in other words, as the wall length increases, the wall

displacement shifts between different states (some of the states represent an

instability that is static while others can have positive group velocity).

As the length of the compliant wall is increased further, the fluctuations of
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Figure 6.32: Comparison between the growth rates obtained from the two-
dimensional global mode computations (—) and the DNS (×) given in Table
6.6 for TGL. The horizontal dashed line is at the growth rate 7.307 × 10−4

which is the approximation to the average growth rate as the wall becomes
longer.

the growth rate decreases to approach the positive growth rate of 7.307×10−4

(as denoted by the horizontal dashed line). This value is an approximation to

the average growth rate that results if the wall was very long.

From this, it can be conjectured that in the limit of very long compliant

walls, the growth of the instability arises from a modal interaction but for

short panels, the growth rate can either be intensified or diminished due to

resonance effects. These effects depend on how an unstable wave can be fitted

between the ends of the compliant panel.

Very short compliant walls (particularly less than 33) have not been con-

sidered since in those cases, the wall is far too short to even support half a

wavelength. Therefore when the impulsive excitation is introduced, the wall

would respond to the impulse but then start to oscillate and decay.
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6.5.2 Wall Mass & Damping

Figure 6.33 shows the change in the growth rate for different values of

m for the flow configuration given in TGM, the global mode computations

are compared to the DNS results given in Table 6.7. As the wall mass is

increased, the compliant wall becomes effectively heavier therefore hindering

the growth of the global instability. It is worth noting that for very large values

of m, other factors may affect the growth rate, this could explain the relative

disparity between the DNS results and the global modes for m = 200.
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Figure 6.33: Comparison between the growth rates obtained from the two-
dimensional global mode computations (—) and the DNS (×) given in Table
6.7 for TGM.

Similarly, Figure 6.34 shows the change in the growth rate for different

values of d for the flow configuration given in TGD. The global mode com-

putations are compared to the DNS results given in Table 6.8. Increasing the

wall damping can be thought of as effectively removing energy from the wall
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and into the flow hence reducing the growth rate. This is characteristic of the

Class A instabilities mentioned in Chapter 1 which is when a flow is stabilised

by the irreversible energy transfer into the flow.
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Figure 6.34: Comparison between the growth rates obtained from the two-
dimensional global eigenvalues (—) and the DNS (×) given in Table 6.8 for
TGD.

6.5.3 Remarks on the Two-Dimensional Global Mode

Computations

It should be noted that this two-dimensional global solver that includes the

compliant wall length was developed by Dr. M. J. Blount, it was provided for

the purposes of this thesis as a means for verifying the exponential growth rates

obtained from the DNS. This only increases confidence that the simulation

method presented in Chapter 4 can capture global instabilities that take the

form of a static, non-oscillating, temporally growing wave and gives reasonably

accurate predictions for the growth rates. The results obtained from the two-
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dimensional global mode computations and the DNS have a few discrepancies

(as observed in Figures 6.32, 6.33 and 6.32) but these differences are minuscule,

usually of O(10−4) or less.

This method provides an excellent view of what happens when some of

the factors are changed, for example, increasing the wall mass or damping

coefficient reduces the growth rate without changing the inherent lengthscale

of the system. Therefore, the parameters m and d can act as a means of

controlling the growth of the instability but not as a means of stabilising it.

Similarly for the compliant wall length, the solution of the Orr-Sommerfeld

equation described in Chapter 3 only accommodates for an infinite compliant

wall and cannot be used in this context. Therefore, using this global solver

incorporates the wall lengths into the problem to obtain values for the growth

rates.

6.6 Wall Energy Balances

It was seen that increasing the wall mass or damping can reduce the

growth rate of the instability without affecting its qualitative behaviour. These

changes can be attributed to an energy transfer from the wall into the flow

hence causing the growth rate of the instability to decrease due to this energy

removal. In order to investigate this energy exchange, the energy flux equa-

tions are set up (from previous literature) and then be applied to some of the

examples seen earlier.

In order to obtain the energy flux equation, consider the governing equa-
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tions as in Chapter 4:

x−momentum equation:
∂u

∂t
+ U

∂u

∂x
+

dU

dy
v = −∂p

∂x
+

1

R

(
∂2u

∂x2
+
∂2u

∂y2

)
(6.9a)

y −momentum equation:
∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

R

(
∂2v

∂x2
+
∂2v

∂y2

)
(6.9b)

Conservation of mass:
∂u

∂x
+
∂v

∂y
= 0 (6.9c)

Vorticity:
∂u

∂y
− ∂v

∂x
= ω. (6.9d)

Multiplying (6.9a) by u and adding it to (6.9b) multiplied by v gives

u
∂u

∂t
+ v

∂v

∂t
+ Uu

∂u

∂x
+ Uv

∂v

∂x
+

dU

dy
uv = −

{
∂p

∂x
u+

∂p

∂y
v

}
+

1

R

[
u
∂2u

∂x2
+ u

∂2u

∂y2
+ v

∂2v

∂x2
+ v

∂2v

∂y2

]
. (6.10)

The terms on the left hand side can be simplified to

1

2

∂

∂t

(
u2 + v2

)
+

1

2

∂

∂x

[
U
(
u2 + v2

)]
+

dU

dy
uv.

The pressure terms on the right hand side ({�}) can be written as

{�} =
∂

∂x
(pu) +

∂

∂y
(pv) by using (6.9c).

Finally, the Reynolds number terms ([�]) can be written as

[�] =
∂

∂y
(uω)− ∂

∂x
(vω)− ω2 by using (6.9c) and (6.9d).
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Therefore, equation (6.10) becomes

1

2

∂

∂t
(u2 + v2) +

1

2

∂

∂x

[
U(u2 + v2)

]
+

dU

dy
uv +

{
∂

∂x
(pu) +

∂

∂y
(pv)

}
=

1

R

[
∂

∂y
(uω)− ∂

∂x
(vω)− ω2

]
. (6.11)

Integrating with respect to y across the channel half-width y ∈ [0, 1] gives

1

2

∂

∂t

1∫
0

(
u2 + v2

)
dy+

1

2

∂

∂x

1∫
0

U(u2 + v2) dy+

1∫
0

dU

dy
uv dy+

∂

∂x

1∫
0

pu dy+[pv]10

=
1

R

[uω]10 −
∂

∂x

1∫
0

vω dy −
1∫

0

ω2 dy

 . (6.12)

This expression can be simplified by using the fact that the pressure p and

the streamwise disturbance velocity u were both assumed to be odd, therefore

u(x, 0, t) = p(x, 0, t) = 0.

Two of the terms in the energy equation (6.12) are of special interest, the

first term is a disturbance energy term which is expressed in terms of the flow

speed |u|2= u2 + v2 as

K = K(x, t) =
1

2

1∫
0

(
u2 + v2

)
dy.

The second is with regards to the dissipation effects related to the kinetic

energy and is known as the enstrophy E , this is given by

E = E(x, t) =
1

2

1∫
0

ω2 dy.
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Equation (6.12) can now be rewritten as a function in x and t only as

∂

∂t
K +

∂

∂x

1

2

1∫
0

U(u2 + v2) dy +

1∫
0

up dy +
1

R

1∫
0

vω dy


+

1∫
0

dU

dy
uv dy +

2

R
E = −pwvw +

1

R
uwωw. (6.13)

The terms with a subscript w (�w) denote quantities evaluated at the wall,

i.e.

fw = fw(x, t) = f(x, 1, t).

In order to obtain the energy flux equation, (6.13) would have to be aver-

aged in time but there are three qualitatively different cases to consider:

1© Time periodic case (as in Chapter 5)

2© GQ-periodic case (STG)

3© Divergence case (TG).

1© Time-Periodic Case

In Chapter 5, the flow variables displayed a time-periodic behaviour, i.e. the

flow variables, denoted f (be they the wall displacement, velocity components,

etc.) take the form

f(x, y, t+ τ) = f(x, y, t)

where τ is the time period. It is crucial to note that the flow variables take

this form after the transients have subsided and any reflections have died out,

this time will be denoted T0 here. All the flow simulations shown with this

property were disturbed by an inflow profile with a built-in frequency β.
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To the normal mode approximation implies that the arbitrary function f

has to take the form

f(x, y, t) = <
(
F (x, y)e−iω̃t

)
for t > T0 (6.14)

where the function F is complex in general and the frequency ω̃ is real, in fact,

it has to be equal to the inflow frequency β ∈ R. With this form in mind, the

function f can be rewritten as

f =
1

2

(
F e−iβt + F̄ eiβt

)

where the single bar (�̄) denotes the complex conjugate. From this, it can be

deduced that the time period τ takes the form

τ =
2π

β∆t
(6.15)

and therefore, τ satisfies the integral

1

τ

τ∫
0

e±iβt dt = 0.

Notice that in equation (6.13), all the flow terms appear as products of

pairs, therefore another function g needs to be introduced which takes the

same form as f in (6.14), i.e.

g(x, y, t) = <
(
G(x, y)e−iβt

)
.
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The products fg and f 2 are given by:

fg =
1

4

[
FGe−2iβt + F̄ Ḡe2iβt + FḠ+ F̄G

]
(6.16a)

f 2 =
1

4

[
F 2e−2iβt + F̄ 2e2iβt + 2FF̄

]
(6.16b)

The term fg represents the product of pairs of u, v, p or ω while f 2 represents

u2 and v2. Since the time derivative of u2 and v2 is taken in ∂
∂t
K, then an

expression for the time derivative of f 2 is needed which is

∂

∂t
f 2 = − iβ

2

[
F 2e−2iβt − F̄ 2e2iβt

]
(6.17)

Denote the two-term average over a time period τ by two bars (�), i.e.

fg = fg(x, y) =
1

τ

τ∫
0

f(x, y, t)g(x, y, t) dt. (6.18)

Taking the time-average of equations (6.16a), (6.16b) and (6.17) eliminate the

oscillatory terms (those with e±2iβt) and therefore

fg =
1

4

(
FḠ+ F̄G

)
(6.19a)

f 2 =
1

2
FF̄ (6.19b)

∂

∂t
f 2 = 0. (6.19c)

Taking the two-term average of equation (6.13) over the time-period τ

eliminates the oscillatory terms to give an equation in terms of the streamwise
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direction x only as

d

dx

(I)︷ ︸︸ ︷1

2

1∫
0

U(u2 + v2) dy +

(II)︷ ︸︸ ︷
(IIi)︷ ︸︸ ︷

1∫
0

up dy+

(IIii)︷ ︸︸ ︷
1

R

1∫
0

vω dy


+

1∫
0

dU

dy
uv dy

︸ ︷︷ ︸
(III)

+
2

R
E︸︷︷︸

(IV)

= − pwvw︸ ︷︷ ︸
(V)

+
1

R
ωwuw︸ ︷︷ ︸
(VI)

(6.20)

where E = E(x) =
1

2

1∫
0

ω2 dy.

(Note that in this case, averaging over a single-time period is equivalent to

averaging over the whole simulation time.)

In this arrangement, the energy terms that arise due to the fluid flow are

on the left hand side while those arising from the wall flexibility are on the

right. The terms labelled with Roman numerals are interpreted as follows:

(I) Disturbance energy arising due to the fluid motion of the basic flow past

a given streamwise location.

(II) Work done as a result of disturbance and perturbation stresses (note

that in practice, the term labelled (IIii) is usually quite small).

(III) Energy production due to the Reynolds stress.

(IV) Enstrophy representing viscous dissipation.

The terms on the right hand side can be expressed differently using the

linearised boundary conditions, namely

uw = u(x, 1, t) = −U ′(1)η(x, t) = 2η(x, t) and vw = v(x, 1, t) =
∂η

∂t
(x, t).
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These terms can be interpreted as follows:

(VI) −pwvw = −pw
∂η
∂t

: the irreversible work done by the disturbance pres-

sure on the compliant wall.

(VII) 1
R
uwωw = 2

R
ωwη: the energy removal which is equivalent to an addi-

tional viscous dissipation (according to Carpenter [14]).

This now establishes the energy flux equation for the case when the flow

is time-periodic and will now be applied to the TSS case shown in Chapter 5

(this has been documented before in Davies & Carpenter [30])VI.

Energy Equation for TSS

In the TSS case shown in Chapter 5, the TS mode has been stabilised

by the presence of the compliant wall and this is seen in Figures 6.35 and

6.36. First, Figure 6.35 shows the streamwise variation of the disturbance

energy (which was labelled (I) in equation (6.20)). Over the upstream rigid

wall section, the energy increases exponentially but as soon as it enters the

compliant wall, there is a drastic jump followed by exponential decay. This

decay continues until the end of the compliant wall is reached after which

point the energy starts to grow again over the downstream rigid section. If the

compliant wall is long enough, then the disturbance energy will keep decaying

hence effectively stabilising the TS instability.

Figure 6.36 shows the streamwise variation of the enstrophy term E . Once

again, there is exponential growth over the rigid sections but the compliant

wall has effectively stabilised the disturbance resulting in exponential decay.

This energy equation can be used for all cases where the flow is time-

VINote that not all the terms in the energy equation will be presented, only the relevant
ones. The other energy terms are presented in order to establish the energy equations.
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Figure 6.35: Streamwise variation (labelled (I) in equation (6.20)) of the dis-
turbance energy for TSS. The vertical dashed lines indicate the start and end
of the compliant wall section.
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Figure 6.36: Streamwise variation of the enstrophy for TSS. The vertical
dashed lines indicate the start and end of the compliant wall section.

222



6.6. Wall Energy Balances

periodic, for example TSM, TWF and DivEnd, but these will not be pre-

sented here since they do not provide interesting insight into the energy ex-

change. For example, in TSM, the results are similar to those observed with

the wall heights, in other words, the compliant wall serves the purpose of reduc-

ing the TS growth rate but not stabilise it. However in TWF and DivEnd,

the wall energy plummets shortly after entering the flow domain since over the

rigid wall section, the TS mode is highly stabilised particularly due to the low

Reynolds number and so it does not manifest in the flow at all.

2© GQ-Periodic Case

When the disturbance develops into an absolute instability that grows with

a gq-period as in STG, the time-averaging obtained earlier does not hold any

more since the flow variables have an associated exponential growth rate as well

as an oscillatory component. However the way in which the energy equations

are obtained is somewhat similar.

Suppose that the flow variables evolve gq-periodically with a gq-period τ

as in STG. In this case, the flow variables take the form

f(x, y, t) = <
(
F (x, y)e−iω̃t

)
(6.21)

where the frequency ω̃ is complex in this case, i.e. ω̃ = ωr + iωi (ωr, ωi ∈ R).

Therefore, the arbitrary function f can be written as

f =
1

2

(
F e−iωrt + F̄ eiωrt

)
eωit. (6.22)

With these expressions in mind, the products fg and f 2 (where g takes
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the form (6.21)) are the same as in equations (6.16) but with an additional

exponential term e2ωit, i.e. :

fg =
1

4

[
FGe−2iωrt + F̄ Ḡe2iωrt + FḠ+ F̄G

]
e2ωit (6.23a)

f 2 =
1

4

[
F 2e−2iωrt + F̄ 2e2iωrt + 2FF̄

]
e2ωit. (6.23b)

Taking the time derivative of the f 2 term results in additional terms (compared

to (6.17))

∂

∂t
f 2 = − iωr

2

[
F 2e−2iωrt − F̄ 2e2iωrt

]
e2ωit

+
ωi
2

[
F 2e−2iωrt + F̄ 2e2iωrt+2FF̄

]
e2ωit (6.24)

(Note that if ωr = β and ωi = 0, then equations (6.16) and (6.17) for the

periodic evolution will be recovered.)

The extra term e2ωit is the exponentially growing contribution compared

to (6.16), this can be divided out before taking a time-average, let this be

denoted by a double tilde (
˜̃�), i.e.

˜̃
fg =

˜̃
fg(x, y) =

1

τ

τ∫
0

1

e2ωit
f(x, y, t)g(x, y, t) dt (6.25)

Dividing the expressions in (6.23) and (6.24) by e2ωit then taking the time-

average eliminates the oscillatory terms e±2iωrt to give

˜̃
fg =

1

4

(
FḠ+ F̄G

)
(6.26a)

˜̃
f 2 =

1

2
FF̄ (6.26b)˜̃

∂

∂t
f 2 = ωiFF̄ . (6.26c)
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Notice that equations (6.26a) and (6.26b) are the same as (6.19a) and (6.19b),
so ˜̃

fg = fg and
˜̃
f 2 = f 2.

However, the average of the time derivative in (6.26c) is no longer zero;

˜̃
∂

∂t
(u2 + v2) =

˜̃
∂

∂t
u2 +

˜̃
∂

∂t
v2 = ωiû¯̂u+ ωiv̂¯̂v = ωi

(
|û|2+|v̂|2

)
. (6.27)

The functions û and v̂ are the equivalent of F in relation to u and v, i.e.

u = <
(
ûe−iω̃t

)
and v = <

(
v̂e−iω̃t

)
.

Equation (6.27) is not zero as in (6.19c) and therefore, this adds an extra

contribution to the energy equation. In summary, dividing equation (6.13) by

e2ωit then taking the two term average will give equation (6.20) with an extra

term coming from the disturbance energy:

(X)︷ ︸︸ ︷
ωi

1∫
0

|û|2+|v̂|2 dy+
d

dx

(I)︷ ︸︸ ︷1

2

1∫
0

U(u2 + v2) dy +

(II)︷ ︸︸ ︷
1∫

0

up dy +
1

R

1∫
0

vω dy


+

1∫
0

dU

dy
uv dy

︸ ︷︷ ︸
(III)

+
2

R
E︸︷︷︸

(IV)

= − pwvw︸ ︷︷ ︸
(V)

+
1

R
ωwuw︸ ︷︷ ︸
(VI)

(6.28)

where E = E(x) =
1

2

1∫
0

ω2 dy.

In the gq-periodic case as in STG, there is an extra term (labelled (X))

proportional to the growth rate ωi contributing to the disturbance energy

compared to equation (6.20).
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Energy Equation for STG2

Figures 6.37 and 6.38 show the streamwise variation of the enstrophy and

the disturbance energy, respectively. It can be seen that these values grow to

large magnitudes compared to TSS seen earlier and this is expected since the

instability grows absolutely.
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Figure 6.37: Streamwise variation of the enstrophy for STG2. The vertical
dashed lines indicate the start and end of the compliant wall section.

Figure 6.39 shows the streamwise variation of the production and dissipa-

tion terms ((IV) and (V) in equation (6.28) respectively) and it is clear that

the energy production far surpasses the energy dissipation and this can be the

reason behind the growth of the wall displacement.

The STG cases show that the extra term (X) in (6.28) proportional to the

growth rate ωi causes the absolute growth. This term arises due to the fact

that the flow variables grow gq-periodically with an associated exponential

growth rate.
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Figure 6.38: Streamwise variation of the disturbance energy (labelled (I)) for
STG2. The vertical dashed lines indicate the start and end of the compliant
wall section.

3© Divergence Case

For the final case, the energy flux with regards to the exponential growth

attributed to the global instability due to the onset of the divergence instability

(as shown in the TG cases) is investigated. In this case, there is no time period

associated with the growth, in fact, the flow variables grow exponentially, as

f(x, y, t) = <
(
F (x, y)e−iω̃t

)
(6.29)

where the frequency ω̃ is purely imaginary. The factor ω̃ can therefore be

written as ω̃ = iλ where λ is the growth rate. Therefore f can be written as

f = <(F )eλt =
1

2

(
F + F̄

)
eλt. (6.30)
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Figure 6.39: Streamwise variation of the energy production and dissipation
terms for STG2 (which are labelled accordingly). The vertical dashed lines
indicate the start and end of the compliant wall section.

The products fg and f 2 (where g takes the form (6.29)) will be:

fg = <(F )<(G)e2λt (6.31a)

f 2 = <(F )2e2λt. (6.31b)

Taking the time derivative of f 2 gives

∂

∂t
f 2 = 2λ<(F )2e2λt. (6.32)

(Note that if ωr = 0 and ωi = λ in equations (6.23) and (6.24), then (6.31)

and (6.32) can be recovered.)

For the growth of the global instability, there is no time-period associated

with the growth. Therefore simply dividing the terms in (6.31) and (6.32) by

228



6.6. Wall Energy Balances

e2λt eliminates the time dependence completelyVII.

The functions u, v, p and ω in (6.13) can be represented as

u(x, y, t) = <(ûe−iω̃t) = <(û)eλt etc. .

For the sake of simplicity, denote real part of û by ŭ (similarly for the rest),

therefore dividing equation (6.13) by e2λt gives

2λ

1∫
0

ŭ2 + v̆2 dy +
d

dx

1

2

1∫
0

U(ŭ2 + v̆2) dy +

1∫
0

ŭp̆ dy +
1

R

1∫
0

v̆ω̆ dy


+

1∫
0

dU

dy
ŭv̆ dy +

2

R
Ĕ = −p̆wv̆w +

1

R
ω̆wŭw. (6.33)

where Ĕ = Ĕ(x) =
1

2

1∫
0

ω̆2 dy.

This energy equation is qualitatively different to those obtained in equa-

tions (6.20) and (6.28) earlier since there is no period associated with the

growth. The time averaging only yields the real parts for the functions in

question.

Energy Equation for TGC

Figures 6.40 and 6.41 show the disturbance energy and the enstrophy while

Figure 6.42 shows the energy production and dissipation. Just as before, the

production term is far greater than the dissipation term and dominates to

destabilise the flow absolutely.

The purpose of obtaining the energy flux equations for the divergence case

VIISince the flow is not periodic in any way, setting ωr = 0 and ωi = λ in (6.26) does not
recover the expressions for the divergence case.
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Figure 6.40: Streamwise variation of the enstrophy for TGC. The vertical
dashed lines indicate the start and end of the compliant wall section.
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Figure 6.41: Streamwise variation of the enstrophy for TGC. The vertical
dashed lines indicate the start and end of the compliant wall section.
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Figure 6.42: Streamwise variation of the energy production and dissipation
terms for TGC (which are labelled accordingly). The vertical dashed lines
indicate the start and end of the compliant wall section.

TG was to study the energy exchange for the different wall parameters, par-

ticularly m and d in TGM and TGD. It was seen that increasing the wall

mass or damping can reduce the growth rate of the global instability but not

stabilise it.

Energy Equation for TGD

If these energy plots were considered for the different values of damping (as

in TGD), then the way in which the damping affects the energy exchange can

be investigated. For example, Figure 6.43 shows the disturbance energy for

two of the cases seen in TGC where d = 1000 (denoted by −−) and d = 2000

(—). Increasing the value of d caused the growth of the energy to be hindered

and judging from the growth rates seen earlier, this observation is expectedVIII.

VIIIThe energy plots for the other values of the damping are not plotted here since their
growth rates are far higher than those of d = 1000 and 2000 making it very difficult to
distinguish between the different cases.
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Figure 6.43: Streamwise variation of the disturbance energy for TGC with
d = 1000 (−−) and d = 2000 (—). The vertical dashed lines indicate the start
and end of the compliant wall section.

Energy Equation for TGM

One final modification would be the change in mass as in TGM. Figure

6.44 shows the streamwise variation of the disturbance energy when the mass

is m = 0.2 (−−) and m = 2 (—). Therefore as the mass of the compliant

wall increases, the rate of growth of the energy decreases, this corresponds to

an global instability whose growth rate is reduced by an increase in the wall

mass.

Remarks on the Energy Equations

From the first example TSS where the flow variables are time-periodic,

the presence of the compliant wall section caused the energy from the TS

mode to dissipate as the disturbance travels over the compliant wall section

implying that the TS mode has been effectively stabilised. As for the two

cases of absolute and global instability STG2 and TGC, the energy equations
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Figure 6.44: Streamwise variation of the disturbance energy for TG with m =
0.2 (−−) and m = 2 (—). The vertical dashed lines indicate the start and end
of the compliant wall section.

resulted in an extra term that is proportional to the growth rate which is the

main culprit for causing the instability grow absolutely/globally.

The account for the energies has not been made extensive here mainly due

to time restrictions. However, these result further support the fact that the

compliant wall is an excellent way of stabilising the TS mode (as documented

before extensively), the absolute/global instability, on the other hand, causes

the disturbance energy to grow exponentially. Changing the wall mass and

damping can effectively control the growth of the global instability; changing

these can alter the exponential growth rate without changing the inherent

characteristics or lengthscale of the flow as a whole.
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6.7 Summary

In this chapter, the growth of absolute and global instabilities was stud-

ied. The first case STG showed an absolute instability that grew spatially

and temporally with a gq-period and an amplification factor. This absolute

instability was a result of an interaction between the TS and divergence modes

and was excited by an impulsive forcing or an inflow profile associated with

the TS mode. In either case, the DNS produced similar results for a given

set of wall and flow parameters implying that the absolute instability was an

inherent feature for this choice of parameters. The wavenumbers, phase speeds

and growth rates of this form of instability were predicted effectively by using

the solution of the Orr-Sommerfeld equation, the curves of of c against R and

α as well as Briggs’ method.

In the second case TG, the global instability took the form of a static,

non-oscillating temporally growing wave which was a result of exciting the

divergence mode at onset. The growth rates from the DNS were compared to

those obtained from the two-dimensional global mode computations and the

results were comparable. The effect of changing some of the factors in the flow

configuration was studied, this included changing the end effects, compliant

wall length, Reynolds number, wall mass and damping.

Finally, the energy flux equations for the cases when the flow variables are

periodic, gq-periodic and globally growing were set up. This was mainly to

study the effect of changing the wall parameters m and d on the growth of the

divergence mode at onset.
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Conclusions

7.1 Conclusion of the Thesis

In this thesis, we have documented the onset of the wall-based TWF and

divergence instabilities from a numerical point of view. In the past, these

modes have not been systematically studied using the current DNS method

since a majority of the work focussed on TS suppression. It was found that

the solutions of the Orr-Sommerfeld equation managed to obtain very good

predictions for the wavenumbers arising from the DNS for the wall-based modes

even though these solutions are only strictly valid for an infinitely extended

compliant wall. Moreover, when the end effects were quite prominent and

affected the wall displacement near the ends more drastically (just as in the case

of the divergence instability), the solutions of the Orr-Sommerfeld equation still

managed to predict the contributing wavenumbers from the end effects as well

as the divergence mode itself.

A numerical investigation into the onset of absolute and global instabili-

ties was also carried out where the disturbances grew to such an extent that
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they destabilised the flow. First, an absolute instability that developed both

spatially and temporally was investigated. In this case, the variation of the

real and imaginary parts of the phase speed against the wavenumber and

Reynolds number were used as a means for obtaining candidates for appropri-

ate flow parameters. The simulations were performed by using different means

of excitation, particularly, two different excitations frequencies and a localised

impulsive forcing. The results obtained from the three simulations were then

compared to Briggs’ method which was used to predict the growth rates, phase

speeds and wavenumbers and the results were comparable.

Finally, the growth of a global instability which took the form of a static,

non-oscillating temporally growing wave were studied. This was quite intrigu-

ing part since this shows the manifestation of the divergence instability at

onset (since the instability ha zero phase speed). The wave that forms the

wall displacement does not oscillate in time but does continue to growing ex-

ponentially with a fixed form of spatial variation.

This final case was then modified by changing several factors such as the

compliant wall length, mass and damping. It seems that this particular be-

haviour (global growth of the instability in a static fashion) is quite sensitive

to changes in the compliant wall length and therefore, the originally developed

Orr-Sommerfeld solutions and Briggs’ method were not capable of capturing

all the interesting characteristics. However, a global eigenvalue solver with the

wall length built in proved helpful in corroborating the results obtained from

the DNS. Increasing the wall mass and damping, on the other hand, acted as

control mechanisms for the the growth of this global instability, in other words,

the instability will still grow globally but with a reduced growth rate which is

inversely proportional to the mass or damping.
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7.2 Future Work

An investigation into the energy balances that result in absolute and global

instabilities (as described in Chapter 6) can be carried out in order to inves-

tigate the mechanisms that lead to the instability. Moreover, the effects of

changing the wall mass and damping on the energy transfer can be studied in

more depth.

The two-dimensional global mode computations can be modified in order

to obtain phase speeds as well as the growth rates. An investigation into these

can help identify a range of wall lengths that support the static temporally

growing waves and their associated growth rates.
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Appendix A

Inviscid Solutions

This part of the appendix gives a brief description of the solutions of the

Rayleigh equation obtained by Heisenberg [70].

Consider the Rayleigh equation

(U − c)(ϕ′′ − α2ϕ)− U ′′ϕ = 0. (A.1)

This is a second order differential equation and therefore, it has to have two

linearly independent solutions. Heisenberg solved the Rayleigh equation by

expanding ϕ analytically in terms of α2 (where he assumed that α2 ∼ 0) as

ϕ(y) =
∞∑
n=0

α2nϕn(y).

Replacing ϕ into (A.1) gives an O(1) equation

(U − c)ϕ′′0 − U ′′ϕ0 = 0
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which has a general solution

ϕ0(y) = k0(U − c) + k1(U − c)
y∫

y0

(U − c)−2 dy

where y0 is an arbitrary constant and ki are constants of integration. The

constant y0 can be fixed to any desired value, the only consequence is a resulting

multiplicative factor, but here, y0 = 0 denoting the channel centreline.

The terms of O(α2n) for n ∈ N are

(U − c)ϕ′′n − U ′′ϕn = (U − c)ϕn−1

with a solution that can be recursively defined as

ϕn(y) = (U − c)
y∫

0

(U − c)−2

y1∫
0

(U − c)ϕn−1 dy2 dy1. (A.2)

For example,

ϕ1(y) = k0(U − c)
y∫

0

(U − c)−2

y1∫
0

(U − c)2 dy2 dy1

+ k1(U − c)
y∫

0

(U − c)−2

y1∫
0

(U − c)2

y2∫
0

(U − c)−2 dy3 dy2 dy1.

Notice that ϕ0 and ϕ1 have even and odd parts and therefore ϕ can be

written in a different form as

ϕ(y) = k0ϕ
e(y) + k1ϕ

o(y).

Here, ϕ has been decoupled into its even and odd parts represented by ϕe and
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ϕo respectively. These individual components are:

ϕe(y) = (U − c)

1 + α2

y∫
0

(U − c)−2

y1∫
0

(U − c)2 dy2 dy1 +O(α4)



ϕo(y) = (U−c)
y∫

0

(U − c)−2

1 + α2

y1∫
0

(U − c)2

y2∫
0

(U − c)−2 dy3 dy2 +O(α4)

 dy1.

Therefore in general, the Heisenberg solution can be written as

ϕj(y) = kj(U − c)
∞∑
n=0

α2nqj,n(y) for j = 0, 1

where q0,0(y) = 1, q1,0(y) =

y∫
y0

(U − c)−1 dy

qj,n+1(y) =

y∫
y0

(U − c)−2

y∫
y0

(U − c)2qj,n(y) dy dy ∀ n ∈ N0. (A.3)

The case when j = 0 corresponds to the even solution while j = 1 corresponds

to the odd solution. These expressions are uniformly convergent for bounded

values for α and a fixed value of y 6= 0.
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Appendix B

Chebyshev Polynomials

This part of the appendix lists some properties of Chebyshev polynomials,

along with useful formulae for their derivatives and integrals. These are used

extensively in order to discretise flow variables in the y-direction in Chapters

3 and 4.

Definition

• For any n ∈ N0, the nth Chebyshev polynomial of the first kind is defined

as:

Tn(y) := cos(n cos−1(y)) ∀ y ∈ [−1, 1].

• The Chebyshev polynomial Tn(y) is one of the two linearly independent

solutions of the Chebyshev differential equation of degree n ∈ N0

(1− y2)u(y)′′ − yu(y)′ + n2u(y) = 0 for y ∈ [−1, 1].

The other solution (also known as the Chebyshev polynomial of the sec-

ond kind and denoted Un(y)) will not be discussed.
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Appendix B. Chebyshev Polynomials

• The Chebyshev polynomials are orthogonal with the weighting (1−y2)−
1
2 ,

in other words:

1∫
−1

Tn(y)Tm(y)√
1− y2

dy =



0 n 6= m

π n = m = 0

π
2

n = m 6= 0.

• The Chebyshev polynomials can be defined recursively for y ∈ [−1, 1] as:

Tn(y) =



1 n = 0

y n = 1

2yTn−1(y)− Tn−2(y) n ≥ 2

• These recursive relations can be used to prove the following:

∗ Tm(y)Tn(y) =
1

2

(
Tm+n(y) + T|m−n|(y)

)
∀ m,n ∈ N0

∗ Tn(±1) = (±1)n ∀ n ∈ N0.

Differentiation Formulae

• At y = ±1, the pth derivative of Tn(y) is given by:

dpTn
dyp

∣∣∣∣
y=±1

= (±1)n+p

p−1∏
k=0

n2 − k2

2k + 1
for 1 ≤ p ≤ n.

• The Chebyshev polynomial Tn(y) has:
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∗ Extrema at the Gauss-Lobatto points :

yj = cos

(
j

n
π

)
for j = 0, 1, . . . , n.

∗ Roots at the Chebyshev nodes :

ỹj = cos

(
2j − 1

n
π

)
for j = 0, 1, . . . , n.

• The kth derivative of the nth Chebyshev polynomial Tn evaluated at the

Gauss-Lobatto points is given by:

T (k)
n (yj) =



0 n = 0

T
(k−1)
0 (yj) n = 1

4T
(k−1)
1 (yj) n = 2

2nT
(k−1)
n−1 (yj) + n

n−1
T

(k)
n−1(yj) n = 3, 4, . . . , N

Integration Formulae

For a function Y = Y (y) and n ∈ N0, the following integration recipes will

prove useful in Chapter 5:

∗
y∫

0

Tn(y1) dy1 =



T1 n = 0

1
4

(T2 + T0) n = 1

1
2

(
1

n+1
Tn+1 − 1

n−1
Tn−1

)
n ≥ 2
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Appendix B. Chebyshev Polynomials

∗
y∫

0

y1∫
0

Tn(y2) dy2 dy1 =



1
4

(T2 + T0) n = 0

1
24

(T3 + 3T1) n = 1

1
48

(T4 − 8T2 − 9T0) n = 2

1
4

(
1

(n+1)(n+2)
Tn+2 − 2

(n+1)(n−1)
Tn + 1

(n−1)(n−2)
Tn−2

)
− cnT0 n ≥ 3

where cn =


0 if n is odd

(−1)
n
2

n2−4
if n is even

∗
1∫

−1

Tn(y) dy =


0 n = 1

(−1)n+1
1−n2 otherwise

∗
1∫

0

T2n(y) dy = − 1

4n2 − 1
.
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Appendix C

Plotting Eigenfunctions

This part of the appendix describes the way in which the eigenfunctions ϕ can

be plotted.

Suppose that an eigenvalue problem (given in (3.16)) has been solved in

order to obtain an eigenvalue be it α, c or ω and its eigenvector a. The corre-

sponding eigenfunction ϕ can be written as a vector

ϕ(y) ≡ (ϕ0, ϕ1, ϕ2, . . . , ϕN)

where ϕn = ϕ(yn) and yn = cos

(
πn

N + 1

)
where N is the highest degree of the Chebyshev polynomial taken in the ap-
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proximation. The values of ϕn can be determined from the matrix equation



ϕ0

ϕ1

ϕ2

...

ϕN


=



T0(y0) T2(y0) T4(y0) . . . TM(y0)

T0(y1) T2(y1) T4(y1) . . . TM(y1)

T0(y2) T2(y2) T4(y2) . . . TM(y2)

...
...

...
. . .

...

T0(yN) T2(yN) T4(yN) . . . TM(yN)





a0

a2

a4

...

aM


.

This provides an expression for ϕ in terms of its components and can therefore

be used to plot the eigenfunctions which correspond to a given eigenvalue.
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Appendix D

Reformulation of the

Discretisation in Terms of α & ω

In this part of the appendix, the generalised eigenvalue problems in α and

c are reformulated in order to have ω as the eigenvalue rather than c. The

method in which this is performed is the same as the original derivation in

Chapter 3. The boundary conditions are also reformulated accordingly and

are incorporated into the last two rows of the matrices in question.

The generalised eigenvalue problems in α and c can be rewritten in terms

of α and ω instead as:

(Z4α
4 + Z3α

3 + Z2α2 + Z1α + Z0)a = 0 and (Ã2ω
2 + Ã1ω + Ã0)a = 0.
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Appendix D. Reformulation of the Discretisation in Terms of α & ω

The matrices of the system are:

Ã0 =




 1

iR
D4 −

(
2α2

iR
+ αU

)
D2

+
(

1
iR
α4 + Uα3 − 2α

)
D0




−α −α −α . . . −α

Bα4+Tα2+K
R2

Bα4+Tα2+K
R2

Bα4+Tα2+K
R2 . . . Bα4+Tα2+K

R2



Ã1 =


[[D2 − α2D0]]

0 2 8 . . . 2M2

2
3
α− id

R
−2

5
α− id

R
2
35
α− id

R
. . . 6α

(4M2−1)(4M2−9)
− id

R



Ã2 =



Zero matrix of size

(M − 1)× (M + 1)


0 0 0 . . . 0

−1−m 1
3
−m 1

15
−m . . . 1

4M2−1
−m



Z0 =



[[
1
iR

D4 + ωD2

]]
0 2ω 8ω . . . 2M2ω

(−1−m)ω2 (1
3
−m)ω2 ( 1

15
−m)ω2 . . .

(
1

4M2−1
−m

)
ω2

− idω
R

+ K
R2 − idω

R
+ K

R2 − idω
R

+ K
R2 . . . − idω

R
+ K

R2



Z1 =


[[−UD2 − 2D0]]

−1 −1 −1 . . . −1

2
3
ω −2

5
ω 2

35
ω . . . 6ω

(4M2−1)(4M2−9)


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Z2 =


[[
− 2

iR
D2 − ωD0

]]
0 0 0 . . . 0

T
R2

T
R2

T
R2 . . . T

R2



Z3 =


[[UD0]]

0 0 0 . . . 0

0 0 0 . . . 0



Z4 =


[[

1
iR

D0

]]
0 0 0 . . . 0

B
R2

B
R2

B
R2 . . . B

R2

 .

The terms in the double square brackets ([[�]]) are block matrices of size

(M − 1) × (M + 1). These are determined from their respective forms in

Appendix B (where the rows and columns of the matrices are labelled from 0

to N), the odd rows and columns are then eliminated and the last two rows

removed in order to incorporate the boundary conditions.
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Appendix E

Full Forms of M3 & M5

In §4.5 Chapter 4, the matrices M3 and M5 were introduced as the discretised

forms of
∫∫
f and

∫∫
Uf . The first rows of said matrices are eliminated in

order to incorporate the boundary conditions while the last row of M3 and the

last two rows of M5 are dispensed with as a consequence of the Tau method

(due to Lanczos [80]).

Consider the Chebyshev expansion of the function f , namely

f(x, y, t) =
1

2
f1(x, t)T0(y) +

N∑
k=2

fk(x, t)T2(k−1)(y).

The full form of
∫∫
f is given as by

∫∫
f =

[
f1

8
− 3f2

16
+

N∑
k=3

fkc2(k−1)

]
T0

+
N−1∑
k=2

([
ak23fk−1 − 2ak13fk + ak12fk+1

]
T2(k−1)

)
+
[
aN23fN−1 − 2aN13fN

]
T2(N−1) + aN+1

23 T2N (E.1)
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where akmn =
1

4(2k −m)(2k − n)
and c2k =

(−1)k

4(k2 − 1)
.

The ck terms arise due to the indefinite integration but these terms are irrel-

evant since they are replaced by the boundary conditions. The corresponding

matrix form M3 will be

M3 =



1
8

− 3
16

c4 c6 . . . c2(N−3) c2(N−2) c2(N−1)

a2
23 −2a2

13 a2
12

a3
23 −2a3

13 a3
12

a4
23 −2a4

13 a4
12

. . . . . . . . .

aN−2
23 −2aN−2

13 aN−2
12

aN−1
23 −2aN−1

13 aN−1
12

aN23 −2aN13

aN+1
23



.

Once again, the full form is not necessary since the last row is eliminated and

the first row is replaced with one of the boundary conditions.

As for
∫∫
Uf , the y-discretisation takes a far more complicated form:

∫∫
Uf =

[
7

64
f1 −

5

32
f2 +

3

64
f3 +

1

4

N−1∑
k=3

(
(fk−1 − 2fk + fk+1) c2k−2

)
+

1

4
(fN−1 − 2fN) c2N−2 +

1

4
fNc2N

]
T0 +

[
B2

3f1 − 6b2
13f2 +B2

5f3 − b2
12f4

]
T2

+
N−2∑
k=4

([
−b3

23fk−2 +B3
3fk−1 − 6b3

13fk +B3
5fk+1 − b3

12fk+2

]
T2(k−1)

)
+
[
−bN−1

23 fN−3 +BN−1
3 fN−2 − 6bN−1

13 fN−1 +BN−1
5 fN

]
T2N−4

+
[
−bN23fN−2 +BN

3 fN−1 − 6bN13fN
]
T2N−2

+
[
−bN+1

23 fN−1 +BN+1
3 fN

]
T2N − bN+2

23 fNT2N+2 (E.2)
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where bkmn =
1

16(2k −m)(2k − n)
, Bk

n =
4k − n

8(2k − 1)(2k − 2)(2k − 3)

and c2k =
(−1)k

4(k2 − 1)
.

The corresponding matrix representation M5 is:

M5 =



7
64

−5+8c4
32

3−32c4+16c6
64

C6 C8 . . . C2(N−3) C2(N−2) C2(N−1)

B2
3 −6b2

13 B2
5 −b2

12

−b3
23 B3

3 −6b3
13 B3

5 −b3
12

−b4
23 B4

3 −6b4
13 B4

5 −b4
12

. . . . . . . . . . . . . . .

−bN−3
23 BN−3

3 −6bN−3
13 BN−3

5 −bN−3
12

−bN−2
23 BN−2

3 −6bN−2
13 BN−2

5 −bN−2
12

−bN−1
23 BN−1

3 −6bN−1
13 BN−1

5

−bN23 BN
3 −6bN13

−bN+1
23 BN+1

3

−bN+2
23



where Ck =
1

4
(ck−2 − 2ck + ck+2) .
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Appendix F

The Tau Method

This part of the appendix briefly describes the Tau method due to Lanczos

[80]. This method is discussed by means of an example, in particular, the Airy

differential equation

d2y

dx2
− xy = 0 x ∈ R.

This differential equation has two linearly independent solutions represented

as Ai(x) and Bi(x) for all x ∈ R but in order to demonstrate the Tau method,

consider a power series expansion for y as

y(x) =
∞∑
n=0

anx
n

for some coefficients an to be determined. Replacing the expansion into the

Airy equation gives

2a2 +
∞∑
n=1

([an+2(n+ 1)(n+ 2)− an−1]xn) = 0.
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The coefficients an can be determined by using the recursive relation

a2 = 0, an+2 =
1

(n+ 1)(n+ 2)
an−1 ∀ n ∈ N

where the coefficients a0 and a1 can be determined from appropriate ini-

tial/boundary conditions, if so, all the coefficients can then be determined

uniquely. Here, an infinite expansion is assumed and there is the distinct pos-

sibility that it may not converge in some cases. However if it does converge,

then the range of convergence may or may not be finite and this issue needs

to be addressed separately.

Suppose now that the power series expansion for y is truncated at some N ,

in other words, y takes the form

y(x) =
N∑
n=0

anx
n.

In this case, establishing a recurrence relation is not valid since it would require

a non-zero aN+1 term. Replacing into the Airy differential equation gives

2a2+
N−2∑
n=1

([
an+2(n+ 1)(n+ 2)− an−1

]
xn

)
−aN−2x

N−1−aN−1x
N−aNxN+1 = 0.

This forms a set ofN+2 equations (equating the coefficients of x0, x1, x2, . . . , xN+1)

in N + 1 unknowns (a0, a1, . . . , aN) making the system overdetermined.

In order to deal with the overdetermination, some terms can be introduced

to the right hand side of the Airy equation. These terms can be regarded as

error terms which are introduced intentionally in order to solve the equation

by means of a finite power series. In the case of the Airy differential equation,
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a function that takes the form

ρ(x) = τ1x
N + τ2x

N+1.

can be introduced to the right hand side where τ1 and τ2 are a priori unknown

constants. The resulting equation equates the highest powers of x with the τ

terms and since they are regarded as error terms, they can then be dispensed

with at a later point.

In general, the overdetermination can be removed by a having a right hand

side term of the form

ρ(x) = τpn(x)

for some polynomial pn. This error term allows a truncated series expansion

which is quite small near x = 0. The differential equation is hence, satisfied

accurately in the neighbourhood of x = 0 but the error increases rapidly near

x = 1. In practice, one τ term usually suffices and more than two terms are

almost never required.

This is of course a very brief account of the Tau method by means of a

relatively simplistic example. For further details, refer to Lanczos [80].
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Appendix G

Thomas Algorithm (TDMA)

In this part of the appendix, the Thomas algorithm (otherwise known as the

Tri-Diagonal Matrix Algorithm) and its modified form are be described.

The Thomas algorithm is equivalent to Gaussian elimination and is used

to solve banded systems of equations. In general, the Thomas algorithm is

not always stable but it can be in some cases, say if the matrix is diagonally

dominant. First, the Thomas algorithm is described for tridiagonal and pen-

tadiagonal systems of equations, then the modified form is discussed which is

when the matrix is banded and has a full first row.
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Appendix G. Thomas Algorithm (TDMA)

Tridiagonal

Consider the tridiagonal system of equations



b1 c1

a2 b2 c2

. . . . . . . . .

aN−1 bN−1 cN−1

aN bN





y1

y2

...

yN−1

yN


=



f1

f2

...

fN−1

fN


.

where the a, b, c and f terms are known while the y terms are to be determined.

First, the a-diagonal can be eliminated using a forward sweep as follows:

b′1 = b1, c′1 = c1, f ′1 = f1

b′n = b′n−1 −
anc
′
n−1

b′n−1

, c′n = cn, f ′n = fn −
anf

′
n−1

b′n−1

∀ n = 2, 3 . . . , N.

This eliminates the a-diagonal to give an upper diagonal system of equations:



b′1 c′1

b′2 c′2

. . . . . .

b′N−1 c′N−1

b′N





y1

y2

...

yN−1

yN


=



f ′1

f ′2
...

f ′N−1

f ′N


.

This can then be solved by backward substitution using

yN =
f ′N
b′N

and yn =
f ′n − c′nyn+1

b′n
∀ n = 1, 2, . . . , N − 1.
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For a tridiagonal system of N equations, the Thomas algorithm requires O(N)

computations as opposed to O(N3) by using Gaussian elimination. It should

be noted that a similar procedure can be used to first eliminate the c-diagonal

rather than the a-diagonal, this gives a lower diagonal matrix that can be

solved by forward substitution.

Pentadiagonal

Consider the pentadiagonal system of equations



c1 d1 e1

b2 c2 d2 e2

a3 b3 c3 d3 e3

. . . . . . . . . . . . . . .

aN−2 bN−2 cN−2 dN−2 eN−2

aN−1 bN−1 cN−1 dN−1

aN bN cN





y1

y2

y3

...

yN−2

yN−1

yN



=



f1

f2

f3

...

fN−2

fN−1

fN


where the terms a, b, c, d, e and f are known while the y terms are to be de-

termined. First, Gaussian elimination will be used to eliminate the a-diagonal

by using the following transformations:

b′1 = b1, c′1 = c1, d′1 = d1, e′1 = e1, f ′1 = f1

b′n = b′n −
anc
′
n−1

b′n−1

, c′n = c′n −
and

′
n−1

b′n−1

, d′n = d′n −
ane

′
n−1

b′n−1

e′n = en, f ′n = fn −
anf

′
n−1

b′n−1

∀ n = 2, 3 . . . , N.
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Appendix G. Thomas Algorithm (TDMA)

This reduces the matrix equation to



c′1 d′1 e′1

b′2 c′2 d′2 e′2

b′3 c′3 d′3 e′3

. . . . . . . . . . . .

b′N−2 c′N−2 d′N−2 e′N−2

b′N−1 c′N−1 d′N−1

b′N c′N





y1

y2

y3

...

yN−2

yN−1

yN



=



f ′1

f ′2

f ′3
...

f ′N−2

f ′N−1

f ′N



.

The b′-diagonal can now be eliminated and the main c-diagonal will be nor-

malised simultaneously by using the transformations:

c′′1 =
c′1
c′1

= 1, d′′1 =
d′1
c′1
, e′′1 =

e′1
c′1
, f ′′1 =

f ′1
c′1

d′′n =
d′n − b′ne′′n−1

c′n − b′nd′′n−1

, e′′n =
e′n

c′n − b′nd′′n−1

, f ′′n =
f ′n − b′nf ′′n−1

c′n − b′nd′′n−1

∀ n = 2, 3, . . . , N.

The system of equations then takes the upper diagonal form



1 d′′1 e′′1

1 d′′2 e′′2

1 d′′3 e′′3

. . . . . . . . .

1 d′′N−2 e′′N−2

1 d′′N−1

1





y1

y2

y3

...

yN−2

yN−1

yN



=



f ′′1

f ′′2

f ′′3
...

f ′′N−2

f ′′N−1

f ′′N



.

The values of y can finally be determined using backward substitution:

yN = f ′′N , yN−1 = f ′′N−1−d′′N−1yN , yn = f ′′n−d′′nyn+1−e′′nyn+1 ∀ n = 1, 2, . . . , N−2.
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Similarly, the same can be done to eliminate the superdiagonals first rather

than the subdiagonals, giving a lower diagonal matrix (with two subdiagonals)

which can be solved by forward substitution.

Modified Thomas Algorithm

For a tridiagonal matrix with a full first row, the Thomas algorithm needs

to be modified slightly. During the backwards sweep, terms from the first

row can be removed successively to give a lower/upper diagonal matrix. For

the standard TDMA presented earlier, the matrix was converted to an upper

diagonal matrix but for the sake of variety, the lower diagonal matrix is shown

here.

Consider the system of equations



d1 d1 d3 d4 . . . dN−1 dN

a2 b2 c2

a3 b3 c3

. . . . . . . . .

aN−2 bN−2 cN−2

aN−1 bN−1 cN−1

aN bN





y1

y2

y3

...

yN−2

yN−1

yN



=



f1

f2

f3

...

fN−2

fN−1

fN



.

A procedure similar to the standard tridiagonal form of the Thomas algorithm

is used to eliminate the c-diagonal first by using the transformations:

a′N = aN , b′N = bN , f ′N = fN

a′n = an, b′n = bn −
an+1cn
b′n+1

, f ′n = fn −
fn+1cn
b′n+1

∀ n = 2, 3, . . . , N − 1.
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Appendix G. Thomas Algorithm (TDMA)

This reduces the system of equations to a lower diagonal matrix with a full

first row as:



d1 d1 d3 d4 . . . dN−1 dN

a′2 b′2

a′3 b′3

. . . . . .

a′N−2 b′N−2

a′N−1 b′N−1

a′N b′N





y1

y2

y3

...

yN−2

yN−1

yN



=



f1

f ′2

f ′3
...

f ′N−2

f ′N−1

f ′N



.

During the backward substitution, terms from the first row can be eliminated

successively. The first row gives the equation

d1y1 + d2y2 + · · ·+ dN−1yN−1 + dNyN = f1

and after eliminating N − n terms (for some n ∈ {1, 2, . . . , N}), this equation

reduces to

d1y1 + d2y2 + · · ·+ dn−1yn−1 + d′nyn = f
(n)
1

where d′N = dN , f
(N)
1 = f1,

d′n = dn −
an+1d

′
n+1

b′n+1

, f
(n)
1 = f

(n+1)
1 −

f ′n+1d
′
n+1

b′n+1

∀ n = 1, 2, . . . , N − 1.

Repeating this elimination procedure for the elements of the first row leaves

one term at the start, reducing the system of equations to a lower diagonal
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matrix



d′1

a′2 b′2

a′3 b′3

. . . . . .

a′N−2 b′N−2

a′N−1 b′N−1

a′N b′N





y1

y2

y3

...

yN−2

yN−1

yN



=



f
(1)
1

f ′2

f ′3
...

f ′N−2

f ′N−1

f ′N



.

This can then be solved using a forward substitution

y1 =
f

(1)
1

d′1
, yn =

f ′n − a′nyn−1

b′n
∀ n = 2, 3, . . . , N.

A very similar procedure can be done when the matrix in question is pentadi-

agonal as well.
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Appendix H

Identification of Absolute

Instabilities via Briggs’ Method

Briggs’ method for identifying absolute instabilities will be discussed here

briefly. This procedure was initially developed by Briggs [11] in his work on

plasma physics (the description provided here is taken from Schmid & Hen-

nignson [115]). An earlier mention of this method can be found in a 10 volume

Course on Theoretical Physics written by Landau & Lifchitz in 1953. This

procedure is similar to the steepest descent method however Briggs’ method

can distinguish between branches originating in different half-spaces and this

criterion is imperative for identifying absolute instabilities.

Suppose that for fixed Reynolds number and wall parameters, the Orr-

Sommerfeld equation and its boundary conditions give the dispersion relation

D(α, ω;R) = 0.

If the wavenumber α is real and the temporal frequency ω is complex then

the problem is in its temporal form, on the other hand, if ω is real and α is
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Appendix H. Identification of Absolute Instabilities via Briggs’ Method

complex then the problem is in its spatial form. If both α and ω are complex

then the problem is termed spatio-temporal.

In the context of hydrodynamic stability theory, the spatio-temporal form

of the Orr-Sommerfeld equation was studied by Betchov & Criminale [8] for

inviscid fluid flows. Briggs [11] then proposed a proof for deriving the general

criterion for absolute instabilities, he was then attributed with the method

which now bears his name and has become a standards in the field.

In the years that followed, Gaster [54] investigated the eigenvalues of the

Orr-Sommerfeld equation with non-negligible viscosity and found that the sin-

gularities obtained by Betchov & Criminale [8] still persisted for finite Reynolds

numbers. These singularities must occur on the complex c-plane when

dc

dα
= 0

while the singularities on the complex ω-plane correspond to locations where

dω

dα
= 0.

Hence, this implies that the disturbance wavepacket has a zero group velocity.

Briggs’ method was employed in order to investigate absolute instabilities in

other flow configurations such as a finite compliant wall sections in a semi-

infinite flow by Wiplier & Ehrenstein [131] and the rotating disc by Lingwood

[85] [86].

Briggs’ method focusses on the dispersion relation in the form ω(α) = 0

and the branch point singularities ω∗ which lie on the complex ω-plane that

satisfy

∂ω∗

∂α
= 0 for some ω∗ ∈ C.

270



The type of instability that arises is dictated by the positions of ω∗ on the

complex ω-plane. If all these branch point singularities ω∗ lie on the bottom

half-space (i.e. =(ω∗) < 0), then the instability is convective. If at least one is

in the upper half-space, then the instability is absolute.

In order to find the branch point singularities, a fixed value of ω ∈ C

is chosen, this frequency corresponds to eigenvalues on the complex α-plane

which are a result of solving the dispersion relation. The real and imaginary

parts of ω can then be varied and the corresponding roots on the complex α-

plane are traced. If a saddle point is formed which corresponds to a complex

frequency whose imaginary part is positive, then the instability is absolute

provided that the branches forming the saddle point originate from different

half-spaces, this is what is known as Briggs’ criterion and is best described

diagrammatically below.

Figure H.1 shows a generic example of how Briggs’ method works. The

left figure shows a grid of horizontal and vertical lines on the complex ω-plane;

the horizontal lines represent choices of ω where =(ω) is fixed and <(ω) is

varied while the vertical lines represent the opposite. Each line corresponds

to a curve traced out by the eigenvalues in the wavenumber space which form

a saddle point (marked by the red dot on the complex α-plane). In turn, this

saddle point corresponds to a complex frequency (given by the red dot) which

is the determining factor as to whether or not the flow is absolutely unstable.

The two conditions that have to be satisfied for absolute instability are:

• Unstable temporal frequency : The saddle point corresponds to a complex

temporal frequency ω whose imaginary part is positive.

• Briggs’ criterion: The branches that form the saddle point on the com-

plex α-plane originate from different half-spaces.
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For the generic example in Figure H.1, the saddle point corresponds to a value

on the complex ω-plane whose imaginary part is positive but the branches do

not originate from different half-spaces, therefore the instability is not absolute

in this case. This example is merely a demonstration of the workings of Briggs’

method.
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Figure H.1: Generic demonstration of Briggs’ method.

An alternative approach was developed by Triantafyllou et al. [123] which

considered the reverse problem. Suppose a wavenumber α ∈ C is chosen, this

gives roots of the dispersion relation as eigenvalues on the complex ω-plane.

If the real and imaginary parts of α are varied (in the same grid fashion as in

Figure H.1), then the temporal contours trace out a cusp on the complex ω-

plane instead of a saddle point to indicate whether the instability is absolute.

In the literature, this method is usually referred to as Bers’ method
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