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Abstract: A decade of research and development in resting-state functional MRI (RSfMRI) has opened
new translational and clinical research frontiers. This review aims to bridge between technical and clin-
ical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the
brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL)
were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objec-
tives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and
translational studies. Common biomarkers in these studies include functional connectivity, graph met-
rics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-
derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the
brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to
biological confounds, structured noise from motion and physiological confounds, as well as modeling
and inference testing. Currently, these issues are not well explored, and heterogeneities in experimen-
tal design, data acquisition and preprocessing make comparative or meta-analysis of existing reports
impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for
investigating the commonalities and differences in biomarker sensitivity and specificity, and establish-
ing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated
measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are
essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We pro-
vide a list of basic minimum and advanced options that can be considered in design and analyses of
future pharma-RSfMRI studies. Hum Brain Mapp 38:2276–2325, 2017. VC 2017 The Authors Human Brain Map-

ping Published by Wiley Periodicals, Inc.

Key words: resting state fMRI; arterial spin labeling; drug; pharmacological neuroimaging; biomarkers;
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INTRODUCTION

To study the neurochemical substrates of the brain function
is one of the most important aspects of understanding inter-
individual variations in behavior or clinical outcomes of psy-
chotherapeutic interventions. Direct evaluation of brain chem-
istry in vivo has been made possible by positron emission
tomography (PET). In PET, the dynamics of the regional
uptake of neurotransmitter-specific radioligands serve as evi-
dence of the local neurochemical modulation of the brain activ-
ity. Generally, PET provides a quantifiable measure of glucose
metabolism through the use of 18FDG, a direct reflection of
regional glutamate transmission. When receptor-specific
radioligands exist (e.g., 11C-CARFENTANYL and 11C-
METHYLNALTRINDOLE for opioid; 11C-RACLOPRIDE,
18F-FALLYPRIDE for Dopamine R2; 11C-SCH39166, 11C-
NNC-112 for Dopamine R1; 11C-WAY635 for serotonin
5HT1A; 11C-AZ10419369 for 5HT1B; 18f-SETOPERONE for
5HT2A; 18F-FLUMAZENIL for GABA, etc.), PET serves as the
gold standard for studying brain chemistry. The neural corre-
lates of anesthetics [Alkire et al., 1995], analgesics [Hartvig
et al., 1995; Wagner et al., 2001], drug-induced psychosis [Lahti
et al., 1995; Onoe et al., 1994; Vollenweider et al., 1997], depres-
sion [Fowler et al., 1987; Hartvig et al., 1995] or euphoric intoxi-
cation [Volkow et al., 1991, 1995] have long been investigated
with this technology. However, PET is not an easy or cheap
research tool. Appropriate ligands do not always exist, or if
they do, facilities that can produce them are not accessible

broadly. Even when the technology is accessible, experimental
designs are constrained by the half-life of both the drug and
the tracer isotope. The time-dependency of PET experiments
can sometimes make them more difficult to conduct and ana-
lyze. Furthermore, the complex dynamics of drug actions on
peripheral and autonomic autoregulation (which will be dis-
cussed in the following sections) increase the challenge of trac-
er kinetic modeling with respect to non-specific uptake within
a so-called “reference region.” Importantly, dose-radiation
restrictions make PET unsuitable for repeated crossover study
designs in humans. In fact, some Ethics Research Boards
restrict PET scans in healthy individuals. These practical con-
siderations have shifted the spotlight onto pharmacological
fMRI (pharma-fMRI) as an affordable exploratory option for
accelerating bench-to-bed clinical research applications [Wise
and Tracey, 2006].1

MRI methods are not without challenge either. Earlier
reviews have thoroughly covered the practical and theoret-
ical challenges and promises of task-based pharma-fMRI
[Borsook et al., 2008, 2011; Iannetti and Wise, 2007] and

1In this report, pharma-fMRI refers to any fMRI study that includes a
pharmacological manipulation (with or without a task). Pharma-
RSfMRI refers to a pharma-fMRI study that does not include any
active task. PhfMRI refers to a specific case of pharma-RSfMRI where
a drug is the stimulus of interest and dynamics of drug dosage and
uptake are used for estimation of a hemodynamic response.
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resting-state fMRI [Liu, 2013; Lu and Stein, 2014]. The
most important limitation is that fMRI signals hinge on
the assumption that neuronal metabolism and cerebral
blood flow are proportionally related to electrophysiologi-
cal activity of neurons—but these relations are far more
complex than generally considered [Logothetis, 2008]. The
question is whether existing RSfMRI studies of acute drug
effects provide enough evidence to make this method a
valid alternative to PET for studying the neurochemistry
of the brain. We approached this question by surveying
the state-of-the-art resting-state methods that have been
used in pharmacological RSfMRI (Pharma-RSfMRI) studies
of acute drug effects on the brain. The survey is organized
in a manner to bridge between neuroimaging experts–who
like to become familiar with analytical complexities that
arise from neurochemical modulation of the brain—as well
as clinical researchers who need noninvasive neuroimag-
ing biomarkers in pharmacological or diagnostic applica-
tions. We focused on identifying challenges and
opportunities in pharma-RSfMRI, and areas that need fur-
ther development and testing.

This review includes (to the best of our knowledge) all
pharma-RSfMRI in any PubMed publications listed
between Jan 2000 and Jan 2016. Our search was limited to
studies in which acute effects of drugs on resting-state
brain function were investigated. For each of these 85
studies we have extracted information about experimental
design, statistical modeling, acquisition parameters and
subject demographics and clinical indications (Table I).
Reports in which the latent drug effects are studied after a
few days were excluded. We summarize acquisition and
analytical methods used in these studies by providing
examples of application, interpretation and limitations
(“Basics and Biomarkers”); describe various experimental
approaches that demonstrate the potential of pharma-
RSfMRI in pharmacological, clinical and translational
applications (“Experimental Objectives and Clinical Rele-
vance”), and outline theoretical, practical and methodolog-
ical factors that challenge current interpretations and
demand further research (“Challenges and Limitations”).
Finally, we propose a unifying framework that proposes
standardizing design and multimodal data acquisition, as
well as an integrative approach to data fusion and analyti-
cal approaches that will be important both for neurophar-
macology, and basic and clinical research studies
(“Opportunities and Future Directions”).

BASICS AND BIOMARKERS

Drugs modulate the neuronal and metabolic signals by
acting on neurotransmitter receptors (directly or via indi-
rect pathways). Figure 1A presents a schematic overview
of the complex cascade of signaling pathways affected by
different drugs. Drugs may act by directly targeting their
receptors in the central or autonomic nervous systems.
They can also act indirectly, by acting peripherally
and causing sympathetic and parasympathetic responses

related to adaptive feedback regulation. Together, this cas-
cade of events translates to fast and slow alterations in
mental and proprioceptive states, sending top-down and
bottom-up signals between the central and autonomic ner-
vous systems in order to adaptively regulate behavior and
homeostasis. The fMRI technique measures changes in
blood-oxygen-level dependent (BOLD) signal or blood
flow and volume (CBF and CBV) in response to such cas-
cade neuromodulation of the brain.

Pharmacological fMRI (Pharma-fMRI)

The overall goal of pharmacological fMRI is to identify
the site of drug action fingerprinting to estimate the rela-
tion between drug-dose, brain response and clinical out-
come over time (pharmacokinetic/pharmacodynamic
modeling); and to help make go–nogo decisions about the
efficacy of drug-treatment in clinical trials—aimed to accel-
erate the drug discovery process. Pharmacological probing
experiments can also be important for basic neuroscience
and validation studies, by allowing a controlled modula-
tion of a specific pathway and studying its causal effect on
other signals and systems. More on this is covered in
“Experimental Objectives and Clinical Relevance.”

Initial pharma-fMRI experiments involved collecting
regular task-fMRI data and either comparing the activation
maps (i.e., % of the BOLD signal change in response to
task) under drug (at one or more dose strengths) versus
no-drug conditions, or estimating differences in the hemo-
dynamic response functions between drug and control
conditions (Fig. 1B). Task-based pharma-fMRI is valuable
for hypothesis testing, but difficult to conduct in transla-
tional or large-scale clinical studies where standardization
of tasks and normalization of performance metrics is virtu-
ally impossible (yet). Another important pharma-fMRI
approach is to evaluate the pharmacodynamics of the
brain response by collecting fMRI data continuously over
the course of drug infusion, and then evaluating the per-
centage of signal change from the pre-drug baseline as a
surrogate for drug-induced neuronal activation [e.g.,
Becerra et al, 2006; Bloom et al, 1999; De Simoni et al,
2013]. This method is suitable for studying fast-acting
drugs or for anesthesiology experiments, where pharmaco-
kinetic models help reach (pseudo)steady-state plasma
drug concentrations over time (Fig. 1C). We refer to this
technique as phfMRI. A more recent pharma-fMRI
approach involves pharmacological “resting-state” fMRI
(pharma-RSfMRI) in which spontaneous brain activity is
recorded at several brief intervals over the course of drug
administration, and the dynamics of change in spectral
power or network properties of the brain are evaluated
across different phases of the pharmacokinetic profile (Fig.
1D). This review excludes task pharma-fMRI studies, and
focuses on measuring BOLD and CBF signals under
resting-state.

More than 75% of studies surveyed here use
T2*-weighted echo planar imaging (EPI) which is sensitive
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to BOLD contrast. T2*-weighted signals reflect NMR signal
decay arising from local field inhomogeneities related to
deoxygenation of hemoglobin—a proxy for neuronal activa-
tion resulting from increased oxidative metabolism. Oxygen
metabolism is coupled to a hemodynamic response in order
to deliver additional blood to the tissue, thus the BOLD sig-
nal summarizes the combined effects of vascular response,
oxygen metabolism and cerebral perfusion. Around 14% of
the studies that we have reviewed employed phfMRI and fit
a model of the plasma drug concentration to the BOLD sig-
nal, and the rest used multiple metrics derived from RSfMRI
measurements. The other 25% used different versions of the
arterial spin labeling (ASL) techniques, which are sensitive
to cerebral blood flow (CBF) (Fig. 2).

Spontaneous BOLD Signal Fluctuations and

Functional Networks

In RSfMRI, slow fluctuations in the BOLD signal
(around 0.1 Hz frequency) serve as a proxy to regional
spontaneous neuronal activity. Since the discovery of cor-
related patterns of BOLD signal fluctuations in the contra-
lateral part of the un-stimulated motor cortex [Biswal,
et al., 2005], RSfMRI has been explored to evaluate net-
works that are active in the brain at “rest” [Beckmann
et al., 2005; Damoiseaux et al., 2006; Smith et al., 2012] and
to compare these resting-state network maps or metrics to
task-related activity [Calhoun et al., 2008; Smith et al.,
2009]. Similarities in the topography of RSfMRI networks
with task-activation networks [Calhoun et al., 2008; Smith
et al., 2009], anatomical covariance networks [Bullmore
and Sporns, 2009], white matter fiber-tracked networks
[Sui et al., 2014], and electrophysiological networks
[Brookes et al., 2011] justify the use of their spatiotemporal
dynamics as surrogate markers of the brain’s response to
drugs. Because they are task-free, RSfMRI methods are
practical in large cohort studies. Commonly, typical
RSfMRI studies are conducted at spatiotemporal resolution
of TR 5 2–3 s, TE 5 30–35 ms, 100–200 T2* frames, and
2 mm isotropic resolution explore this dataset and to spa-
tial and temporal because such RSfMRI dataset offers a
rich spatiotemporal representation of brain states, it lends
itself to various modeling and signal processing
approaches. Although the origin of the signal measured in
a typical fMRI study remains the same, different analytical

Figure 1.

(A) Schematic diagram of the cascade of drug interactions that

give rise to the hemodynamic response measured by fMRI (PNS,

peripheral nervous system; ANS, autonomic nervous system,

CNS, central nervous system). (B) Schematic diagram of possible

pharmacological fMRI experiments. Top, task-based or calibrated

fMRI in which drugs modulate the magnitude of stimulus versus

no-stimulus signal; Middle, PhfMRI where the drugs cause a

latent neurovascular response consistent with the pharmacoki-

netic profile of the drug; Below, repeated measurements of

RSfMRI signal which will be used to derive connectivity or spec-

tral metrics and study their dynamics over the pharmacodynamic

profile. The red line shows the pharmacodynamic model of a

drug (morphine). [Color figure can be viewed at wileyonlineli-

brary.com]

Figure 2.

Distribution of RSfMRI data acquisition and analytical

approaches.
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approaches can yield myriad biometrics that are more sen-
sitive to one aspect of neurophysiology than other (Fig. 3).
An ongoing and rewarding challenge in RSfMRI research
is to use different mathematical formulations to explore
different temporal and spectral characteristics of the same
data in relation to neurobiological states. In this section we
describe several of these methods that are used in
pharma-fMRI studies. We will discuss limitations in validi-
ty and interpretations of these methods in “Challenges
and Limitations.”

Seed-based analysis

Over 30% of pharmacological studies surveyed here
have relied on region of interest (ROI) seed-based analysis
of resting-state functional connectivity. Seed selection is
based on a priori information about drug actions on local
target receptors, hence this method provides a simple
answer to the question of how local drug effects propagate
across an associated network of regions that collectively
subserve a behavior or a (somato)sensory function. For
example, a seed in the thalamus can be used to investigate
effects of a drug on the sensorimotor network. The seed-
based approach simplifies comparison and within-subject
reproducibility but, as will be discussed in “Challenges
and Limitations,” anatomical variations and heterogeneity
of brain regions can lead to “seed selection bias,” and con-
founds such as proximity to pulsating vessels, motion,

susceptibility and registration artifacts can reduce signal to
noise ratio. Cole et al. have illustrated that three non-
overlapping seeds, all taken from the posterior part of the
default mode network (DMN), produce extensive non-
overlapping cortical connectivity maps [Cole et al., 2010].
On the plus side, these anatomical variations in network
topography help explore the regional specificity of the
response of specific brain regions, for example sub-nuclei
of the thalamus [Niesters et al., 2014], or subsections of the
hippocampus [Khalili-Mahani et al., 2015], to drugs that
are expected to target these regions.

Seed-based connectivity analysis is best suited to
hypothesis-driven research. In testing the neural circuitry
of the dopamine system under the influence of dopaminer-
gic drugs, significant results have been observed focusing
on the functional connectivity of seeds from the ventral
striatum or the nucleus accumbens [Flodin et al., 2012;
Kelly et al., 2009; Konova et al., 2013]. Amygdala and the
hippocampus have been used as seeds in studying effects
of steroids on the brain [Henckens et al., 2012; Sripada
et al., 2014]. Because of the consistent presence of the
DMN across different species, its important role in meta-
bolic and behavioral regulation [Raichle et al., 2001], and
its importance in mentation during the resting-state, often
seeds in the precuneus or medial prefrontal areas are often
used to define the strength of the DMN connectivity as a
primary biomarker [Boveroux et al., 2010; Flodin et al.,
2012; Guldenmund et al., 2013; Scheidegger et al., 2012;

Figure 3.

Schematic representation of analysis approaches that are used in pharma-RSfMRI. (A) Seed-based

connectivity analysis; (B) REHO; (C) (f)ALFF; (D) ICA; (E) dual regression analysis; (F) Graph

theory and (G) Hierarchical clustering.
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Stamatakis et al., 2010]. (See “Experimental Objectives and
Clinical Relevance” for more detailed description of these
studies). Seed-based analysis lends itself to standardized
protocols) and accommodates replication studies. Howev-
er, by restricting the tests with a priori hypotheses, it does
not provide a global view of the brain’s response to a
drug. Other limitations of this method in terms of data
preparation and normalization are further discussed in
“Challenges and Limitations.”

Regional homogeneity (REHO)

REHO is a voxel-based measure of the coherence and
synchrony of the BOLD signal fluctuations in adjacent vox-
els, based on the hypothesis that clusters of neighboring
neurons drive intrinsic brain activity. Synchrony is com-
puted using Kendall’s coefficient of concordance (KCC)
which measures the ranked correlations at each timepoint
among the timeseries of adjacent voxels (usually 27) [Zang
et al., 2004]. An alternative to KCC, which measures syn-
chronization in the time domain, evaluates coherence and
synchrony in frequency domain (Cohe-REHO) instead of
time domain, and thus eliminates sensitivity to phase var-
iations [Liu et al., 2010]. One advantage of REHO over the
seed-based method is that it does not depend on an a pri-
ori definition of ROIs and can yield information about the
local/regional consistency of activity throughout the brain.
A major disadvantage is that the reliability and reproduc-
ibility of REHO is highly sensitive to motion and physio-
logical noise, as well as the morphology, thus it requires
careful pre-processing and normalization [Zuo et al., 2013].
The functional interpretation of the REHO is still tentative,
but there is preliminary evidence that suggests a correla-
tion between neurovascular coupling and REHO variations
[Yuan et al., 2013], and that regionally-specific REHO
effects under different resting-state conditions, such as
eye-closed or eye-open, are associated with differences in
global BOLD signal fluctuation in these different condi-
tions [Qing et al., 2015]. Application of REHO in pharma-
RSfMRI studies is still limited. REHO has been shown to
be sensitive to the normalizing effect of a single dose of
methylphenidate on the brains of ADHD children com-
pared with healthy controls [An et al., 2013], however, a
placebo-controlled study of a single dose l-dopa and ben-
zodiazepine administration in 81 healthy individuals,
showed that seed-based connectivity analysis was statisti-
cally more powerful than Cohe-REHO [Flodin et al., 2012].
Given that REHO is an entirely model-free technique for
data-mining, further investigation of its viability as a bio-
marker for dissociating regional and global drug effects
under different states is warranted.

Spectral analysis techniques

The spectral characteristics of spontaneous brain activity
have long been studied in RSfMRI experiments [Kiviniemi
et al., 2000, 2003; Suckling et al., 2008]. Two recent

formulations, the amplitude of low frequency fluctuations
(ALFF) and fractional ALFF (fALFF), use a Fourier decom-
position of the RSfMRI BOLD signal, followed by integra-
tion of the amplitudes in a given spectral range, typically
in 0.01–0.1 Hz band, to assess the strength of low frequen-
cy fluctuations in each voxel (ALFF). Normalization of
ALFF by the power in the entire frequency range of the
signal (fALFF) represents the relative contribution of a
specific frequency band to the whole frequency range
[Zou et al., 2008]. Seed- or REHO analyses assess coher-
ence and correlation in temporal characteristics of signal
fluctuations. In contrast, regional variations of (f)ALFF
provide information about the spectral content of the
spontaneous fluctuations in a given voxel independent of
its neighboring, regional or network dependencies. Spec-
tral analyses are usually complementary to other RSfMRI
metrics such as regional homogeneity and functional con-
nectivity. In a cross-sectional randomized study, compar-
ing effects of l-dopa and benzodiazepine versus placebo
[Flodin et al., 2012], fALFF detected moderate local differ-
ences between drug groups in the cerebellum which were
not detectible with REHO—although fALFF was not as
sensitive to detecting cortical effects compared to seed-
based functional connectivity [Flodin et al., 2012]. In
another randomized placebo-controlled study of intranasal
insulin [Kullmann et al., 2013], fALFF revealed a signifi-
cant reduction of hypothalamic and orbitofrontal power
amplitude and a BMI-correlated drug induced change in
brain areas involved in cognitive appetitive control. ROI-
examination of fALFF in drug-naive Parkinson’s patients
versus healthy controls [Esposito et al., 2013a] provided
compelling evidence for a band-specific modulation of the
sensorimotor network with levodopa. As preprocessing
schemes to improve the reliability of fALFF measurements
in the presence of spurious noise become more established
[Yan et al., 2013a], a re-analysis of many connectivity-
based studies might shed a light on the sensitivity of this
method to detecting drug-specific neuromodulation.

Independent component analysis and dual regression

The limitations of seed-based analysis are to some extent
addressed by the data-driven approach of independent
component analysis (ICA). The majority of work reviewed
here applies spatial ICA (sICA) [McKeown et al., 1998],
which decomposes the 4D spatiotemporal fMRI dataset into
a set of “hidden” signals characterized by a spatial map,
and associated timecourses of BOLD signal fluctuations.
These hidden signals may represent resting-state networks,
physiological and subject motion, or other artifacts that all
give rise to the measured BOLD signals. In sICA, the
decomposition is done in such a way as to maximize statisti-
cal independence in the spatial patterns, with no constraints
on the timecourses. An alternative approach to sICA is tem-
poral ICA (tICA), which decomposes the 4D spatiotemporal
fMRI dataset into spatial maps and timecourses in such a
way to maximize statistical independence in the temporal
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domain, with no constraints on the spatial maps [Biswal
and Ulmer, 1999]. In other words, whereas sICA reveals dif-
ferent brain regions that define a dominant temporal behav-
ior, tICA identifies different temporal behaviors that are
dominant in different brain regions. Convergence or diver-
gence of tICA and sICA results depend on assumptions
about, for example, spatial versus temporal independence,
and existence of spatially and temporally separable compo-
nents in the data [Calhoun et al., 2012; Tian et al., 2013]. To
date, because data in the spatial dimension has been much
more abundant (e.g., BOLD signals are measured for many
more voxels than timepoints), sICA has dominated the liter-
ature. However, fMRI data collected using recent fast acqui-
sition techniques with TRs less than 0.25 s [Feinberg et al.,
2010; Posse et al., 2013] have demonstrated the potential of
tICA in doing more refined parcellation of brain networks
[Smith et al., 2012], and clinical exploration of non-
stationarity in spontaneous fluctuations [Miller et al., 2014].
However, these new acquisition techniques are not yet
widely available and to our knowledge, they have not been
explored in pharmacological studies.

Application of ICA to pharma-RSfMRI data was first
done by [Kiviniemi et al., 2003], who used FastICA to ana-
lyze fMRI data collected in 15 anesthetized children. They
were able to successfully delineate large vascular regions,
as well as primary and sensory cortical areas in separate
component maps. The discovery of consistent and func-
tionally relevant ICA networks [Beckmann et al., 2005;
Damoiseaux et al., 2006] has made this technique a com-
mon choice for identifying the functional topography of
networks in an individual or in a group of subjects. It is
common to perform a group ICA (gICA) by concatenating
the data across subjects, in order to obtain a single repre-
sentation of the spatiotemporally independent functional
topographies. The gICA maps are then used as a template
in a two-step multivariate regression analysis to identify
subject-specific spatial maps and timecourses that capture
any group or condition differences (e.g., network changes
between placebo and drug). This process is called dual
regression (DR): the first regression defines the timecourse
of fluctuations in each network; and the second regression
examines the relation between these network-specific fluc-
tuations and the fluctuations within each voxel of the
brain. In gICA/DR studies, the choice of networks of inter-
est (NOIs) is usually limited to 8–20 networks that resem-
ble the most common network anatomies. In theory, by
increasing the number of independent components, one
might explore finer-grained network topographies. How-
ever, component ordering and selection in ICA is very
challenging, as this methods is also sensitive to detecting
structured noise, and physiological and motion artifacts
that diminish the reliability of component detection [Zuo
et al., 2010a]. Techniques such as ICASSO [Himberg and
Hyvarinen, 2003] and RELICA [Artoni et al., 2014] have
been proposed to help identify the most reliable indepen-
dent components, or to reject the most likely spurious

ones [Salimi-Khorshidi et al., 2014]. Yet, to fully automate
the selection of functionally relevant components is not
easy. A proposed workaround is to use predefined NOIs
(instead of seeds) as template networks, and then proceed
with DR. Group/condition differences in network connec-
tivity are then assessed by higher-level statistical analysis
on these subject-specific spatial maps.

GICA/DR and NOI/DR approaches are very common,
and they are vastly used in pharma-RSfMRI studies
[Boveroux et al., 2010; Cole et al., 2013; Esposito et al.,
2013b; Greicius et al., 2008; Guldenmund et al., 2013; Jor-
dan et al., 2013; Khalili-Mahani et al., 2012; Klaassens
et al., 2015; Klumpers et al., 2012; Licata et al., 2013; Muel-
ler et al., 2014; Niesters et al., 2012, 2014; Roseman et al.,
2014; Tanabe et al., 2011]. Similar to seed-based analysis,
NOI/DR-based analyses are easy to standardize and
accommodates replication studies, however issues related
to nonstationarity of functional networks needs to be fur-
ther explored (see “Challenges and Limitations”).

Graph theoretical approaches

Almost 15% of studies surveyed here have explored
drug-induced effects on network properties. Graph-based
metrics are derived from mathematical equations that
examine the global relations between regions whose con-
nectivity is determined from seed/NOI or ICA based anal-
ysis. Whereas seed- and ICA-based approaches reveal
network topographies by finding areas that fluctuate in a
similar and correlated manner, graph theoretical methods
reflect the net value of global interaction in the brain. Met-
rics such as local and global network efficiency, network
modularity and integration, path length, clustering coeffi-
cients, and small-worldness serve as surrogate markers of
the efficiency with which neural information propagates
across brain regions. Compared with other metrics (con-
nectivity, coherence or spectral power), which reflect the
functional anatomy of the drug effect, graph metrics are
more suitable for studying whole-brain dynamics. This
interpretation is supported by the observation of network-
wide variations linked to cerebral blood flow [Liang et al.,
2013] and glucose metabolism [Tomasi et al., 2013].

As will be discussed in “Pharmacological Probing of
Neural Networks,” pharmacological studies involving
anesthetics have been critical in validation of these graph
metrics, by finding association between their features and
states of conscious mental activity. For example, reduced
local and global efficiency of cortical regions are detected
during light chloral hydrate sedation in children [Wei
et al., 2013] and during loss of consciousness in propofol
sedation in adults [Monti et al., 2013], indicating that glob-
al network efficiency can serve as a biomarker of the state
of consciousness. Although these global effects may reflect
the global state of consciousness and metabolism, the
regional network properties do not change in a single
direction. For example, it has been shown that nicotine
causes significant variations in local efficiency of the brain
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networks, with significant increases in the regional effi-
ciency of thalamus and putamen and large decreases in
the regional efficiency of basal ganglia, while leaving the
primary sensory and motor regions unchanged [Wylie
et al., 2012]. Another graph-metric is eigenvector centrality
(EC) that indicates how each brain region connects to the
most important brain hubs [Lohmann et al., 2010]. A sig-
nificant increase in hypothalamic EC has been detected in
response to viewing food pictures under Exenatide (vs.
placebo condition) a drug that is expected to alter energy
uptake by blocking the glucagon-like peptide-1 receptors
in the hypothalamus [Schlogl et al., 2013]. Significant
decreases in EC in the thalamus and the brainstem have
been observed in response to mild propofol sedation [Gili
et al., 2013]. Using the method developed by [Lohmann
et al., 2010], anatomically distinct and drug-specific effects
of morphine (decreases in EC in cerebellum, caudate and
putamen, and increases in anterior cingulate and retrosple-
nium) and alcohol (decreases in EC in cerebellum, hippo-
campus and subthalamic nuclei and an increase in anterior
cingulate cortex) have been discovered in regions other
than those detected from dual regression and parametric
CBF mapping (see Fig. 6).

Different graph metrics can be explored to describe dif-
ferent properties of brain networks. For instance, Schroter
et al. [2012] have demonstrated that, compared with wake-
ful state, propofol-induced loss of consciousness is associ-
ated with a decrease in general connectivity strength
particularly in the hub regions (thalamus, putamen and
associative areas) and decrease in whole brain integration.
In contrast, propofol treatment has been associated with
increases in clustering ratio and small worldness. These
effects have been interpreted as a decoupling of cortical
processing from information integration in the brain
[Schroter et al., 2012]. While corroborating these findings
in another similar study, Monti et al. [2013] have noted
that clustering ratio and small worldness are not specific
to states of consciousness, and remain elevated through
post-sedation recovery, suggesting that the change in these
metrics are not solely related to the drug action in the
brain, but perhaps also related to the state of brain in
response to loss of consciousness [Monti et al., 2013].

These variables are explored in conscious states as well.
It has been shown that catecholaminergic depletion of
dopamine is associated with reduced global and local effi-
ciency of brain networks, within a range that is compatible
with a small-world topology, and reduced regional effi-
ciency of amygdala and orbitofrontal networks [Carbonell
et al., 2014b]. These network-wide changes associated with
dopamine down-regulation have been interpreted as
underlying cognitive impairments that accompany dopa-
minergic dysfunction in Parkinson’s disease or schizophre-
nia. In the same vein, Wylie et al. [2012] have studies the
effect of cholinergic modulation with nicotine, and have
reported a significant increase in local efficiency and sig-
nificant increases in regional efficiency of the limbic and

paralimbic areas, suggesting that nicotine influences cogni-
tion by increasing the efficiency of communication within
the brain [Wylie et al., 2012]. These examples, underline
the potential of pharmacological studies in illuminating
the large-scale network properties of the brain and how
they relate to higher behavioral or cognitive states. How-
ever, as it will be discussed in “Challenges and Limi-
tations” reproducibility and reliability of graph metrics is
contingent on strict preprocessing and analytical
assumptions.

Hierarchical clustering

Techniques such as s/tICA parcellate the brain into spa-
tio/temporally independent networks, and graph theoreti-
cal metrics reflect the states of integration of neuronal
activity in brain networks. Hierarchical clustering techni-
ques combine the two by generating information about the
scale space of functional specialization and functional inte-
gration [Marrelec et al., 2008], yielding a more fine-grained
representation of how different brain sub-networks inter-
act and organize under normal or abnormal (e.g., drug-
influenced) conditions. (For a comprehensive review, see
[Craddock et al., 2015].) Hierarchical clustering is a model-
free approach that parcellates the brain into biologically
and anatomically meaningful spatial scales [Bellec et al.,
2010; Kelly et al., 2012; Power et al., 2011; Smith et al.,
2013]. Hierarchical clustering can be used to study func-
tional modularity, that is, the extent to which the brain is
divided into communities with connections of different
strength. Clinical viability of studying network hierarchy
has been established in demonstrating reduced hierarchi-
cal organization in functional brain connectivity of schizo-
phrenic patients versus healthy controls [Bassett et al.,
2008], in Alzheimer’s patients versus healthy controls [Xia
et al., 2014], in epileptic patients [Dansereau et al., 2014]
and even in relation to impulsivity [Davis et al., 2013].
These techniques have not been extensively reported in
pharmacological neuroimaging, however promising exam-
ples exist. Schrouff et al. showed that sedation with propo-
fol reduced integration of information within and between
six well-known ICA-identified networks, excluding the
ventral attention network, thus suggesting functional spe-
cificity of the method [Schrouff et al., 2011]. Hierarchical
clustering has been used to illustrate a reduction in modu-
larity of resting-state brain networks under acute dopa-
mine depletion, consistent with the expected role of
dopamine in functional integration [Carbonell et al.,
2014b].

Network hierarchies can also be explored to study the
dynamics of brain function and non-stationarity. Methods
such as BASC [Bellec et al., 2010] perform multi-level boot-
strap analysis to identify stable cluster hierarchies, and
aberrations in epileptic patients versus healthy controls
[Dansereau et al., 2014]. Network hierarchies can be plot-
ted as multi-resolution curves over a range of temporal,
spatial, geometric and structural scales [Lohse et al., 2014].
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To study the dynamics of reconfigurations of network
hierarchies in relation to mental states [Bassett et al., 2011;
Cole et al., 2014; Jones et al., 2012] will be a potentially
important method in PK/PD modeling (discussed in
“Experimental Objectives and Clinical Relevance” and
“Challenges and Limitations”).

Arterial Spin Labeling and Cerebral Perfusion

Cerebral perfusion is an important pharmacodynamic
endpoint. It depends on a number of factors including the
viscosity of blood, vascular anatomy and pathology, sys-
temic factors like cardiac output, end-tidal CO2, neuronal
activity and the encompassing cerebrovascular autoregula-
tion [Ainslie and Duffin, 2009]. Autoregulation refers to
the ability to maintain constant cerebral perfusion over a
wide range of perfusion pressures. Cerebrovascular resis-
tance is, however, influenced by many more (physiologi-
cal) parameters, including arterial carbon dioxide levels,
cerebral metabolic rate of oxygen or glucose consumption,
neural activation, activity of the sympathetic nervous sys-
tem, posture and other physiological variables. Under nor-
mal resting conditions, it is expected that global cerebral
blood flow would be relatively stable but under pharmaco-
logical stimulation, variations in CBF become an important
index of how the drug interacts with cerebrovascular
autoregulation.

Cerebral perfusion can be measured with arterial spin
labeling (ASL) techniques, which use radiofrequency
pulses to magnetically label the water molecules in the
arterial blood at the base of the brain for several seconds
(1.5–2.0 s), followed by a readout of the signal within the
brain after a few seconds of delay to allow blood to flow
to the upstream tissue. Subtracting this labeled image
from a second image acquired without labeling the inflow-
ing blood, results in a perfusion-weighted image that can
be used to calculate cerebral blood flow in units of mL/
100 mL tissue/min, using a biophysical model based on
parameters of acquisition, physiological constants and vali-
dated models of “normal” cerebral hemodynamics [Alsop
et al., 2014; Buxton et al., 1998; Buxton, 2005].

Quantitative methods such as ASL are reliable if acquisi-
tion protocols are well standardized [Alslop et al., 2014].
Consistency of CBF estimation with background-
suppressed pCASL has been established in multi-center
and multi-acquisition reproducibility studies [Gevers et al.,
2011; Vidorreta et al., 2013]. Intersession, intrasession and
inter-scanner reproducibility across different vendors sug-
gests that normalizing acquisition parameters on different
machines yields stable measurements of the gray matter
perfusion. However, in presence of differences in acquisi-
tions sequences, spatial differences caused by different
smoothing behavior of the readout module become prob-
lematic [Mutsaerts et al., 2014; Mutsaerts, 2015; Vidorreta
et al., 2013].

Various ASL acquisition schemes exist which differ in
implementation and compatibility with scanner hardware.
The most commonly available sequences are pulsed,
(pseudo)-continuous and velocity-selective ASL (PASL,
pCASL and VS-ASL, respectively) [Wong, 2014]. See Fig-
ure 4 for a schematics representation of labeling differ-
ences in each method. Currently, pCASL in combination
with background suppression and a (segmented) 3D read-
out has been proposed as the work-horse technique for
clinical experiments [Alsop et al., 2014]. Many of the argu-
ments that led to the advice to use pCASL in radiological
applications, such as signal-to-noise ratio (SNR), robust-
ness, and availability [Deibler et al., 2008a,b], also hold
true for applications in pharmacological imaging experi-
ments. More complex methods such as time-encoded ASL
[Teeuwisse et al., 2014], and velocity- and acceleration
selective ASL [Schmid et al., 2014; Wong et al., 2006], are
likely to become valuable assets in PK/PD modeling, but
no feasibility studies have been presented so far. Here, we
focus on three of the most common applications of resting
state-ASL measures used in pharmacological studies.

Global cerebral blood flow

Global CBF is computed by averaging the quantitative
CBF values over the entire brain, or more commonly, over
the gray matter (GM) regions, which have much higher
baseline CBF than white matter (WM) (�60 mL/100g/min
versus �20 mL/100g/min). The global CBF is a single val-
ue estimated over a specific period of time, that constitutes
a pharmacodynamic endpoint in dose-response experi-
ments [Fernandez-Seara et al., 2011; Marxen et al., 2014;
Strang et al., 2015].

The reliability and reproducibility of global CBF over a
1-year period (4 time points) has been demonstrated in
cognitively normal subjects [Jiang et al., 2010]. Recently, in
an O15-H2O PET/pCASL validation study involving
hypercapnia in the same population, precision, accuracy
and high correspondence of pCASL-based quantification
of global CBF with O15-H2O PET (the current gold stan-
dard) has been established [Heijtel et al., 2014]. It has been
shown that within-subject, between-time or between-
session values measured on the same scanner are stable in
the absence of drugs, but change significantly with drug
administration [Khalili-Mahani et al., 2011], and return to
baseline levels, for example, after ketamine washout [Kha-
lili-Mahani et al., 2015]. Although global CBF is a reliable
marker for within-subject comparisons, it should not be
treated as a quantitative measure for between-subject com-
parisons. Between-subject baseline values are expected to
vary within a normal range predicted from the physical
modeling of the ASL signal, however differences in acqui-
sition parameters, modeling, and stereotaxic positioning of
tag pulses with respect to arteries can influence the abso-
lute quantitative values. Therefore, it is important to be
vigilant about validation protocols that establish limits of
the model in presence of acquisition noise or between-
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subject variations in physiology or anatomy. For this rea-
son, it is common to examine relative CBF, normalized to
a within-subject global CBF.

CBF mapping

Voxel-based perfusion maps yield a snapshot of changes
of the spatial distribution of CBF, and are well suited for
drug fingerprinting. A handful of pharma-fMRI studies to
date have employed ASL for examining regional changes
relative to placebo, in response to metoclopramide [Fer-
nandez-Seara et al., 2011], alcohol [Khalili-Mahani et al.,
2011; Marxen et al., 2014; Strang et al., 2015; Tolentino
et al., 2011] morphine [Khalili-Mahani et al., 2011],

ketamine [Khalili-Mahani et al., 2015], psilocybin [Carhart-
Harris et al., 2012], MDMA [Carhart-Harris et al., 2015],
THC [Van Hell et al., 2011], remifentanil [MacIntosh et al.,
2008] and caffeine [Mutsaerts, 2015]. Because most CNS
drugs show both a global and a local CBF response, it is
interesting to study inter-regional differences in CBF maps
by isolating the global CBF effects. There are several
approaches to achieve this. The simplest method is to nor-
malize CBF voxel-wise by taking the ratio of blood flow at
each voxel to global CBF or to CBF in a control region of
interest [Fernandez-Seara et al., 2011]. More complex
approaches to computing relative CBF involve modeling
the effects of a drug on cerebral perfusion with respect to
variations in label-control CBF pairs over time and in

Figure 4.

Schematic representation of ASL tagging and acquisition frames.

Top row: Pulsed ASL (PASL) which provides high labeling effi-

ciency, but low SNR; pseudo-Continuous ASL (pCASL) has

higher SNR, but is susceptible to magnetic field disturbances,

arterial velocities, arterial anatomy and tag position; velocity-

selective ASL (VS-ASL) does not require spatial selectivity as it

tags all inflowing spins as long as they are above a certain

velocity threshold. By including a second velocity selective mod-

ule just before signal readout, signal from venous blood is sup-

pressed, since that normally accelerates upon return. Middle

row, an example of quantified CBF measured using background-

suppressed pCASL. Lower Row, Regional differences in arterial

transit time.
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relation to expected pharmacodynamics [Marxen et al.,
2014], for example, using a general linear models (GLM)
approach.

Although many of pharmacological ASL studies report
regional CBF variations in brain areas with higher affinity
for drug’s target receptors, this does not necessarily mean
an increased activation in the co-localized excitatory sys-
tems [Wagner et al., 2007]. Numerous cofactors such as
interneurons, inhibitory receptors, as well as adaptive
functional changes due to higher-level processing of the
interoceptive or proprioceptive states (e.g., placebo)
[Wager et al., 2007] may impact regional effects. For exam-
ple, factors such as fatigue [Lim et al., 2010] and respira-
tion rates [Khalili-Mahani et al., 2011] can influence both
regional and global CBF values. Thus, relation between
CBF and drug effects must be interpreted carefully.

Arterial transit time

ASL can also be used to map other physiological param-
eters, such as the arterial transit time (ATT, or arterial
time of arrival), which is the time it takes labeled blood to
travel from the labeling plane to the imaging regions.
Changes in ATT can be thought of both as a hemodynamic
parameter that can help localize cerebrovascular effects of
a drug, and as a nuisance parameter that introduces errors
in the CBF quantification model. MacIntosh et al. [2008]
found a spatially variable pre-drug arterial transit time,
ranging from 340 ms in the superior frontal region, to 600
ms in the putamen and insula. Brain regions with the larg-
est ATT had the largest change in response to drug (slow-
ing down by 10–11 ms after drug infusion). ATT
measurements are easily obtained in PASL, but not with
the standard pCASL acquisition protocols [MacIntosh
et al., 2008]. Combined perfusion and ATT measurements
are possible with multi-timepoint ASL as well as time-
encoded pCASL [Teeuwisse et al., 2014]. These advanced
techniques come, however, at a price, as they can suffer
from lower SNR, lower temporal resolution, increased
technological complexity, poorer robustness or a combina-
tion of these.

Combined ASL/BOLD fMRI and Neurovascular

Coupling

The BOLD signal is a combination of variations in blood
oxygenation, metabolic rate of oxygen consumption, cere-
bral blood volume and cerebral blood flow. The complexi-
ty of neurovascular coupling in RSfMRI studies has been
previously reviewed [Liu, 2013], and using a combined
ASL/BOLD fMRI acquisition, together with metabolic cali-
bration methods have been proposed to disambiguate the
neuronal and vascular components of drug effects. Only a
handful of pharma-fMRI experiments have acquired both
ASL and BOLD-fMRI in the same experiment, and in most
cases not simultaneously [Carhart-Harris et al., 2015; Deni-
er et al., 2012; Griffeth et al., 2011; Khalili-Mahani et al.,

2014, 2015; Nasrallah et al., 2012; Perthen et al., 2008; Qiu
et al., 2008; Rack-Gomer et al., 2009; Van Hell et al., 2011].

In the simplest form, ASL and BOLD-RSfMRI acquisi-
tions are made consecutively and analyzed jointly. For
example, Carhart-Harris et al. [2015] showed in humans
that changes in CBF after administration of 3,4-methylene-
dioxymethamphetamine (MDMA) were also accompanied
by changes in BOLD resting-state functional connectivity
in brain regions such as the amygdala and hippocampus
and that the functional changes in CBF and BOLD func-
tional connectivity were related to the global subjective
effects of MDMA. Conversely, using a conjunction analysis
approach, Khalili-Mahani et al. [2014] showed that BOLD-
related connectivity and CBF correlations under a mor-
phine condition were most consistent in the prefrontal net-
works and most uncorrelated in the sensorimotor area.

More elaborate acquisition techniques such as dual echo
PCASL [Dai et al., 2008] allow to acquire BOLD/CBF
measurements simultaneously in order to investigate the
neurovascular coupling with higher temporal precision
[Fukunaga et al., 2008; Gauthier and Hoge, 2012; Tak
et al., 2015; Wu et al., 2009]. In one such pharmacological
experiment, Qiu et al. [2008] estimated both BOLD and rel-
ative CBF after sevoflurane anesthesia induction or after
withdrawal of sevoflurane in healthy subjects, and showed
that CBF and BOLD remained coupled under anesthesia
although the coupling rates varied spatially.

To disentangle the neurovascular component of brain
activity from the measured BOLD signals, the simulta-
neous BOLD/CBF data collected during rest are
“calibrated” (via a biophysical model) using a separate
scan with the same acquisition parameters and under con-
trolled administration of gases (CO2 or O2) or breath-
holding. This, a form of phfMRI itself, is the gold standard
for evaluating the rate of change in neuronal activity, per-
fusion and cerebral metabolic rate of oxygen consumption
(CMRO2). For review, see [Hoge, 2012]. Pharmacological
interventions further complicate the “calibration” of the
hemodynamic response. For example, in studies of caf-
feine, it has been shown that factors such as dosage and
history of exposure determine activation of different recep-
tor subtypes [Chen and Parrish, 2009b, 2009a], which
cause opposite vascular responses depending on dose or
exposure history [Diukova et al., 2012; Griffeth et al.,
2011]. The need for gas challenges (CO2 for hypercapnia,
or O2 for hyperoxia) or breath holding [Bright and Mur-
phy, 2013a; Lipp et al., 2015; Madjar et al., 2012] for cali-
bration makes this technique impractical for most pharma-
fMRI studies. However a promising new technique by
Blockley et al. [2012, 2015] utilizes MR pulse sequences as
a means of estimating the parameters in the BOLD bio-
physical model, obviating the need for a gas calibration
scan. Such quantitative approaches in drug studies will be
important for better modeling of neuronal, vascular and
metabolic factors that modulate brain activity under differ-
ent drugs.
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EXPERIMENTAL OBJECTIVES AND CLINICAL

RELEVANCE

Neuropharmacological research encompasses a broad
range of exploratory, proof-of-concept and clinical objec-
tives. Drug classes and expected pharmacodynamics often
influence experimental design—also the cost. Generally,
pharma-fMRI experiments investigate relationships between
drug actions and brain function in terms of (1) neurophysi-
ological changes resulting from drug interactions with spe-
cific target receptors; (2) alteration of activity of other
neuropeptides in downstream pathways and (3) peripheral
and nonspecific physiological responses in organs other
than the brain. Figure 5 illustrates the proportion of differ-
ent drug classes studied to date in relation to common
study objectives in the literature surveyed here.

Drug Fingerprinting

Drug fingerprinting (FP) refers to characterizing the
drug-specific topography of brain activation, assuming
that drugs modulate the neuronal activity in brain regions
that have a preferred neurotransmitter affinity (i.e., higher
receptor density, higher affinity or higher binding poten-
tial) for that drug. However, drugs rarely act on just one
neurotransmitter, and often produce overlapping side
effects (e.g., most antipsychotic drugs are also sedative, or
drugs used to treat Parkinson’s Disease may lead to psy-
chosis or anxiety side effects). For this reason, it is impor-
tant to define fingerprinting realistically: FP does not refer
to the ability to identify a unique signature of a particular
drug effect in the brain, rather it refers to methods that
help tease apart the drug-specific actions from common
effects. To identify whether a drug acts on a specific neu-
ral pathway is important for target identification and clini-
cal design. As such, FP requires a model-free and
generalizable analytical technique that helps characterize
the full profile of brain’s drug-distinct and physiologically-
common responses to different drugs across populations.
To localize the effect of drugs in the brain is the primary
objective of more than 30% of studies surveyed here (see
Table I and Fig. 5).

In an early FP study (Leiden fingerprinting study, Fig.
6), it was shown that the NOI-based dual regression (DR)
method provides a sensitive framework for detecting
compound-specific effects in resting-state brain networks
[Khalili-Mahani et al., 2012]. A similar analytical approach
has been used to explore the effects of psilocybin versus
MDMA [Roseman et al., 2014]. The NOI/DR method has
been used to study the effects of a single compound on
the topography of resting-state networks under PK-
controlled administration of THC [Klumpers et al., 2012;
Van Hell et al., 2011], ketamine [Niesters et al., 2012] and
bupivacaine [Niesters et al., 2014]. ASL has proven to be a
sensitive method for FP studies of alcohol [Khalili-Mahani
et al., 2011; Marxen et al., 2014; Strang et al., 2015], opioids
[Khalili-Mahani et al., 2011; Kofke et al., 2007; MacIntosh
et al., 2008] and THC [Van Hell et al., 2011].

Other examples of FP experiments without pharmacoki-
netic modeling include mapping the effects of nicotine
[Tanabe et al., 2011], methylphenidate [Mueller et al.,
2014] or amphetamine [Esposito et al., 2013b] and seroto-
nin [Klaassens et al., 2015]. The objective of FP has also
been explored in studying the effect of receptor agonist
and antagonists in cross sectional designs, for example,
comparing functional connectivity in response to levodopa
versus haloperidol [Cole et al., 2013], or the NMDA antag-
onist ketamine versus the glutamate suppressant lamotri-
gine [Deakin et al., 2008; Doyle et al., 2013].

Dose/Response in Anesthesiology

PhfMRI was first conceived to address the questions
related to dose responses in the brain during administration

Figure 5.

A visual summary of the distribution of drugs tested and

research objectives. [Color figure can be viewed at wileyonlineli-

brary.com]
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of different doses of anesthetics and analgesics. In these
studies (depicted in Fig. 1B), the magnitude of change in
the BOLD signals measured over the timecourse of drug
infusion and washout is fit to the pharmacokinetic profile
of anesthetics such as morphine [Becerra et al., 2006; Leppa
et al., 2006], buprenorphine [Upadhyay et al., 2011] and
ketamine [De Simoni et al., 2013]. Seed- or network-based
connectivity analyses of Pharma-RSfMRI data have also
proven sensitive to detecting dose response effects in the
brain. Dose dependent variations in the motor network
(identified by a seed in M1 cortex) under different stages of
anesthesia with different doses of sevoflurane were first
demonstrated by [Peltier et al., 2005]. Using the putamen as
a seed, Upadhyay et al. showed a dose-dependent
decreases in functional connectivity of the somatosensory
and sensorimotor networks [Upadhyay et al., 2012] under
buprenorphine, with a topography that closely resembled
an NOI-based analysis of the morphine effect on these net-
works in an independent study [Khalili-Mahani et al., 2012]

prominent effects in the hippocampus and sensorimotor
networks. A dose-dependent increase in functional connec-
tivity of the frontoparietal and thalamocortical regions has
been shown to correlate with pain perception in spinal
anesthesia using bupivacaine [Niesters et al., 2014]. A dose-
dependent ketamine-induced increase in the functional con-
nectivity of the corticohippocampal subnetworks has also
been reported concurrent with reduced alertness states
[Khalili-Mahani et al., 2015].

Anesthetics have often been used to gain a better under-
standing of the clinical relevance of resting-state fMRI bio-
markers (see “Methods Validation and Calibration” for
details). Derivative biomarkers such as network properties,
coherence or spectral power, have been used to study the
global effects of drugs on the brain, in terms of the reconfigu-
ration of resting-state networks under sedation with propofol
[Gili et al., 2013; Jordan et al., 2013; Monti et al., 2013; Schroter
et al., 2012; Schrouff et al., 2011], chloral hydrate [Wei et al.,
2013] and sevoflurane [Peltier et al., 2005; Qiu et al., 2008].

Figure 6.

Schematic summary of the Leiden Fingerprinting Study, which

aimed to investigate sensitivity and drug-specificity of biomarkers

derived from RSfMRI and ASL data. (A) 12 healthy young men

participated in a double blind, crossover, placebo controlled

study and were scanned several times under morphine, alcohol

or sham placebo conditions; (B) Drugs were administered

according to pharmacokinetic models and repeated scans were

made; (C) After common preprocessing, drug with time interac-

tions with RSfMRI were studied using ICA/DR and EC methods

[Khalili-Mahani et al., 2012]; (D) Impact of drugs on CBF was

also studied [Khalili-Mahani et al., 2012]; (E) Physiological rates

were measured and the data was integrated in statistical analysis

[Khalili-Mahani et al., 2013]; (F) Drug specific changes in the cor-

tical areas in relation to some of the canonical NOIs were

detected. (G) ECM revealed drug-distinct changes in subcortical

hub regions, which differed from effects detected by ICA/DR;

(H) Drug effects on CBF maps were also distinguishable in mor-

phine and in alcohol (vs. placebo); (I) The topography of differ-

ent physiological noise regressors was examined to rule out

confounding neurovascular artifacts.
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As will be discussed in “Challenges and Limitations,”
dose/response evaluation, also known as pharmacokinet-
ic/pharmacodynamic (PK/PD) modeling is one of the
most challenging, but also most important goals of phar-
macological neuroimaging.

Pharmacological Probing of Neural Networks

In pharmacological probing, the effects of a given dose
of a neuroreceptor agonist/antagonist or blocker are inves-
tigated in order to test an a priori hypothesis about the
relationship between the drugs mechanism of action on a
region or a system, and the neuropsychological function
targeted by that drug. Pharmacological probing experi-
ments can serve several research objectives.

Systems neuroscience

In the simplest designs, pharmacological probing can be
used to investigate the neuro-circuitry of a given
neurotransmitter-signaling pathway in animals or humans.
(See Fig. 5 for a summary of the most commonly tested
neurotransmitter systems.)

Pharmacological probing of the dopaminergic system with
direct or indirect targeting of the dopamine receptors has
been well-studied [Carbonell et al., 2014b; Cole et al., 2013;
Fernandez-Seara et al., 2011; Flodin et al., 2012; Kelly et al.,
2009; Mueller et al., 2014; Ramaekers et al., 2013; Vytlacil
et al., 2014]. For instance, Cole et al. compared the effects of
the dopamine agonist levodopa and the dopamine antagonist
haloperidol against placebo on large-scale network connec-
tivity using group ICA and dual regression, and found a
dichotomous pattern of activity in the connectivity of the
anteromedial cortical regions to the DMN: compared with
levodopa, haloperidol administration was associated with
higher positive correlations between the DMN and left pre-
central and middle frontal gyri, and higher negative correla-
tions between the DMN and the supramarginal gyrus and
intraparietal sulcus. Halopridol induced modulation of the
connectivity in these regions was also associated with behav-
ioral scores, with higher negative connectivity predicting
higher impulsivity [Cole et al., 2013].

With a growing understanding of the role of glutamater-
gic dysregulation in various neurological and psychiatric
disorders [Krystal et al., 2003], pharmacological probing of
the NMDA receptor system is becoming a more active
area of research as well [Becerra et al., 2009; De Simoni
et al., 2013; Deakin et al., 2008; Doyle et al., 2013; Driesen
et al., 2013; Gass et al., 2014; Grimm et al., 2015; Khalili-
Mahani et al., 2015; Li et al., 2014; Niesters et al., 2012;
Scheidegger et al., 2012]. In the first study of its kind, Dea-
kin et al. [2008] probed the glutamatergic system using an
NMDA-receptor antagonist to test an experimental model
of schizophrenia and demonstrated a significant ketamine-
induced reduction of the BOLD signal in the antero- and
posteromedial regions, that was significantly associated
with psychosis scales [Deakin et al., 2008]. Taking a

different analytical approach, Driesen et al. [2013] showed
a significant correlation between increase in global connec-
tivity and increased psychotic-like and social withdrawal
and cognitive distraction scores [Driesen et al., 2013]. In an
elaborate partial-crossover design, Doyle et al. [2013] used
two different pre-treatments with lamotrigine (300 mg,
oral single dose, an anticonvulsant drug that directly
inhibits glutamate release) and risperidone (2 mg, oral sin-
gle dose, an antipsychotic drug that acts on the serotoner-
gic system and indirectly inhibits glutamate release) to
provide evidence that ketamine modulation of the resting-
state BOLD amplitude is linked to glutamate release
[Doyle et al., 2013]. Importantly, by showing distinct
regional interactions of risperidone and lamotrigine with
ketamine (compared with placebo), this study offered fur-
ther evidence for the plausibility of such experimental
designs in drug fingerprinting.

From a different perspective, Khalili-Mahani et al. [2015]
used ketamine to test the “hippocampal negative feedback
inhibition of the HPA axis” model [Khalili-Mahani et al.,
2010; Pruessner et al., 2008], and asked whether a pharma-
cological blockade of NMDA-receptors would cause a de-
activation of the hippocampus and trigger a neuroendo-
crine stress response due to disinhibition of the hippocam-
pal controlled HPA axis. In fact a reduction of
hippocampal CBF relative to the rest of the brain, concom-
itant with increased cortisol secretion, and increased
cortico-hippocampal connectivity that correlated with
changes in states of alertness was observed [Khalili-
Mahani et al., 2015]. An independent research group has
reported a similar increase in corticohippocampal connec-
tivity in both men and mice [Grimm et al., 2015].

The GABAergic system is often associated with inhibito-
ry neuronal activity, and pharmacological stimulation with
drugs such as zolpidem and alcohol that act on GABA
receptors. For example, it has been shown that alcohol and
zolpidem decrease activation of visual cortex during visual
stimulation [Calhoun et al., 2004; Levin et al., 1998; Licata
et al., 2011]. However GABAergic drugs have been shown
to increase functional connectivity within many cortical
regions [Licata et al., 2013, Esposito et al., 2010; Greicius
et al., 2008; Khalili-Mahani et al., 2012; Kiviniemi et al.,
2005]. Specifically, zolpidem increased resting-state func-
tional connectivity within auditory, visual, motor, and lim-
bic networks [Licata et al., 2013]; midazolam enhanced
BOLD signal synchrony within visual, auditory, and motor
cortices during conscious sedation [Greicius et al., 2008;
Kiviniemi et al., 2005], and alcohol also increased the con-
nectivity strength in the auditory, somatosensory, sensori-
motor, cerebellar, and visual RSNs [Esposito et al., 2010;
Khalili-Mahani et al., 2011]. Although interpretation of
these studies is still tentative, they illustrate that RSfMRI
connectivity analysis provides a complementary view of
brain’s activation states, which challenges the assumptions
of deactivation at the receptor site, and suggests wide
spread effects of GABAergic signaling on the entire brain.
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Disease mechanisms

To differentiate disease-related aberrations in neural
function, by using drugs that target brain regions or neu-
rotransmitters affected by the disease, is another objective
of probing studies. Pharmacological stimulation of the
dopaminergic system has been tested in search of bio-
markers that differentiate the states of brain activity in
ADHD [An et al., 2013], in Parkinson’s disease versus nor-
mal [Esposito et al., 2013a], and in addiction to heroine
[Denier et al., 2013; Schmidt et al., 2015] and cocaine
[Konova et al., 2013, 2015; Kufahl et al., 2005]. With grow-
ing interest in the glutamatergic underpinnings of mood
and anxiety disorders, several RSfMRI studies have
attempted to probe variations in resting-state functional
connectivity during pharmacological perturbation of the
NMDA receptor system [De Simoni et al., 2013; Doyle
et al., 2013; Khalili-Mahani et al., 2015; Scheidegger et al.,
2012]. Yet in other studies, differences in cognitive control
between healthy adult and alcohol-dependent individuals
have been probed using stimulants such as modafinil
[Schmaal et al., 2013], and differences in emotional sys-
tems in patients with anxiety disorder and healthy controls
have been probed with oxytocin [Dodhia et al., 2014].
Even sucrose has been used to investigate differences in
the neural correlates of metabolic regulation between
healthy obese and lean individuals [Kilpatrick et al., 2014].

Methods Validation and Calibration

Resting-State fMRI has exponentially grown in populari-
ty; however, the majority of studies to date are correlation-
al or methodological investigations. Pharmacological
experiments offer an important opportunity to study caus-
al relationships, and increase the biological impact of
RSfMRI findings. Greicius et al. [2003] validated their theo-
ry about the role of the DMN in sustaining the states of
consciousness [Greicius et al., 2003] by comparing func-
tional connectivity during administration of midazolam in
a sedated but awake state versus a resting unsedated state
[Greicius et al., 2008]. The link between the DMN and
states of consciousness has also been studied under propo-
fol [Boveroux et al., 2010; Stamatakis et al., 2010]. The gen-
eral resting-state brain activity related to consciousness
states has also been investigated in other relay hubs such
as the thalamus and brainstem [Guldenmund et al., 2013].

Similarly, drugs can be used to “calibrate” neuroimag-
ing variables, such as the BOLD signal and blood flow.
For example, based upon a priori hypotheses about the
vasoconstrictive properties of caffeine [Rack-Gomer et al.,
2009; Tal et al., 2013; Wong et al., 2012; Wu et al., 2014],
and the vasodilatory effects of CO2 [Gauthier et al., 2012;
Wise et al., 2004b; Xu et al., 2011], these substances have
served as “non-invasive” neurochemical modulators of the
neurovascular components of the BOLD signal to study
neurovascular coupling.

Finally, pharmacological calibration may lead to more
accurate models of the BOLD/CBF relationship. Although
the correlation between BOLD fluctuations and cerebral
blood flow in brain networks is significant [Chuang et al.,
2008], this relationship is not uniform across the brain
[Khalili-Mahani et al., 2014; Li et al., 2012]. Using drugs to
manipulate brain physiology may help clarify to what
extent this heterogeneity arises from spatial variations in
cerebrovascular physiology [Liu, 2013] or from regional
chemoarchitecture affecting neuromodulation [Zilles and
Amunts, 2009]. This insight will be critical for developing
more accurate models to describe the relationships
between brain metabolism, neuronal activity and vascular
reactivity.

Animal Research

Drug development and basic neuroscience discovery
hinge on animal-to-human translation. Methodological
issues related to animal phfMRI studies have been long
investigated [Gozzi et al., 2005, 2007; Schwarz et al., 2003,
2006]. In vivo mapping of the functional connectivity of
neurotransmitter networks of the animal brain under
drugs was first introduced by Schwarz et al., who have
since explored and validated various approaches to animal
phfMRI analysis [Schwarz et al., 2007a,b, 2007c, d]. With
methods being established and availability of ultra-high
field (>9 Tesla) scanners, rodent pharma-RSfMRI is likely
to become a very active research field. A full review of
challenges of animal fMRI is beyond the scope of the cur-
rent review. For a recent review of the promising implica-
tions of this method, see Jonckers et al. [2013]. However,
some animal studies have been specifically conducted to
validate several of the RSfMRI biomarkers used in
humans. To date, animal pharma-RSfMRI studies have:

� established a link between spontaneous electrophysio-
logical and hemodynamic fluctuations measured in
rat brain by measuring EEG and BOLD signal [Liu
et al., 2011; Nasrallah et al., 2014a; Otte et al., 2014],
and by pharmacological manipulation of the mito-
chondrial Ca11 influx [Sanganahalli et al., 2013];
� detected reproducible set of anatomically distinct

resting-state network from ICA of BOLD signal fluctu-
ations in rats [Becerra et al., 2011] and mice [Mechling
et al., 2014] and characterized similarities and differ-
ences between rats and mice [Jonckers et al., 2011],
thus providing a methodological framework for stan-
dardized model-free exploration of drug effects on the
brain of different species;
� illustrated different patterns of resting-state connectiv-

ity with different anesthetics (isoflurane, alpha-
chloralose and medetomidine) [Williams et al., 2010],
or adrenergic agonists versus antagonists [Nasrallah
et al., 2014b], thus providing evidence for the sensitiv-
ity of the methods to detecting receptor-specific
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effects. These findings confirm potential biases that
are expected from interactions of the anesthetic drugs
with the test compounds [Gozzi et al., 2008].
� illustrated that the functional network topography

[Liu et al., 2013b], and spectral power [Magnuson
et al., 2014] of the spontaneous fluctuation in the
BOLD signal were dynamically altered by different
doses of the anesthetics isoflurane and medetomidine
[Nasrallah et al., 2014a], even at different stages of
coming out of anesthesia during ketamine washout
[Bettinardi et al., 2015];
� And last but not least, illustrated the efficacy of the

technique in fingerprinting and pharmacological prob-
ing by providing evidence of homologous effects of
an opiodergic drug, buprenorphine, in humans and in
rats [Becerra et al., 2013], by detecting changes in the
dopaminergic system after haloperidol [Gass et al.,
2013] administration, and by detecting changes in the
glutamatergic system (including hippocampus and
medial prefrontal cortex) with the NMDA antagonist
memantine [Sekar et al., 2013].

These findings strengthen the case for applicability of
RSfMRI in translational neuroscience.

CHALLENGES AND LIMITATIONS

For pharma-RSfMRI to be clinically viable, three aspects
of reliability, reproducibility and sensitivity are critical.
First, it must be established that the biomarkers are reli-
able and robustly reproducible. Next, those biomarkers
must be able to measure drug effects with a certain degree
of statistical reliability within a standardized framework,
and third, the models used to assess effects must be clini-
cally meaningful.

So far, we have shown applications of different fMRI
biomarkers and provided evidence from existing studies
to illustrate the clinical plausibility of these metrics to
characterize regional and global effects of drugs in the
brain. However, several limitations in study design and
analysis that remain to study further.

Biological Confounds

As discussed in “Basics and Biomarkers,” both BOLD
and ASL measurements relate to cerebral blood flow,
which is tied to autoregulation and is affected not only by
the direct modulation of neuronal activity at the site of
drug receptors, but also by indirect modulation of the
endocrine system, overall metabolic rate and the cardio-
pulmonary function that may demand an autoregulatory
response from the brain (Fig. 1). These interdependencies
challenge a simple interpretation of neuroimaging findings
as pure neuronal activity, and necessitate a multivariate
approach to assess the impact of different confounds. Most
critical biological confounds include:

Baseline (psycho)physiological states

One of the most challenging aspects of designing func-
tional neuroimaging studies is to establish and define a
“baseline” state. In task-based fMRI, the problem is to
some extent circumvented by the explicit design of a
“resting” block, against which the activation in the task-
blocks is compared. In RSfMRI, however, inferences are
made based on the spatiotemporal features of the sponta-
neous hemodynamic fluctuations over time. Slight psycho-
physiological variations such as keeping eyes open or
closed [Patriat et al., 2013], or diurnal phases [Hodkinson
et al., 2014] may impact the reliability of functional net-
work detection. It has been shown that circadian rhythm
(with respect to the time of awakening) influences fluctua-
tions in DMN and sensorimotor areas over the course of
ten hours of wakefulness [Blautzik et al., 2013]. Interesting-
ly, the functional connectivity of the posterior component
of the DMN, and the insula have the highest interclass cor-
relation coefficients if assessed from BOLD signals (but not
from similar analysis of perfusion-weighted timeseries)
[Jann et al., 2015]. It is not yet clear whether this BOLD-
specific interclass correlation is explained by the consisten-
cy of physiological pulsations [Liu et al., 2013a], by the
neuronal or cerebrovascular physiology [Liu, 2013] or by
anatomy [Vigneau-Roy et al., 2014]. However by adding a
control baseline condition (i.e., a pre-drug scan) and
including an additional placebo session to the design,
might make it more likely to tease apart such confounds.

The placebo effect on neuroimaging biomarkers in
pharma-fMRI studies is not negligible [Meissner et al., 2011].
To add a placebo session can help identify drug-unrelated
effects related to the experience of being in the scanner (e.g.,
fatigue, phobia, anticipation). However, variations in psy-
chological states over time (during drug administration or
placebo session) can contribute to the nonstationarity of the
resting-state brain fluctuations (further discussed in
“Reliability, Reproducibility”). It is therefore important to
include repeated measurements of in both placebo and drug
conditions in order to evaluate the influence of interinidivid-
ual variations in brain’s psychopharmacodynamics.

Cardiopulmonary function

As will be discussed in “Structured Noise and Artifact
Removal,” most fMRI studies treat respiration- or heart-
related signals as nuisance factors and try to eliminate
them, although some argue that by removing these varia-
tions information about neural correlates of proprioceptive
functions or autonomic and metabolic control may be erro-
neously discarded [Bright and Murphy, 2015; Iacovella
and Hasson, 2011; Vazquez et al., 2014].

Physiological correction in pharma-fMRI is a more com-
plicated issue because of the direct and indirect effects of
the CNS drugs on the autonomic nervous system. Respira-
tion and heart rate are regulated by the interplay between
brain areas that integrate autonomic, somatomotor and
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proprioception, and by cerebrovascular autoregulation that
adaptively maintains cerebral oxygen level via arterial
inflow. Changes in the heart rate or respiration can be corre-
lated with activation of the brainstem nuclei that control the
autonomic system, or with neurovascular and neurochemi-
cal processes that fluctuate with the cardiac or respiratory
rhythms, respectively. For instance, respiratory depression
after opioidergic drugs causes hypercapnic conditions that
trigger a strong vasodilatory response and create strong vas-
cular reactivity, which in turn confounds the use of BOLD
signal to detect neuronal responses [Pattinson et al., 2009].
Drugs that increase heart rate or blood pressure also increase
pressure wave pulsatility in cerebral arteries, and may result
in motion-related spurious effects in the proximity of major
arteries [Dagli et al., 1999]. Global physiological responses of
the cardiorespiratory system during different drug condi-
tions likely give rise to signal changes that resemble a global
change in CBF—which will be indistinguishable between
different drug classes. Efforts to tease apart these mecha-
nisms on phMRI signals continue [Faull et al., 2015; Mitsis
et al., 2009; Pattinson et al., 2009], but combined BOLD/ASL
acquisitions discussed in “Combined ASL/BOLD fMRI and
Neurovascular Coupling” will further improve our under-
standing of these mechanisms.

Either way, neuronal fluctuations related to physiological
factors are essential pharmacodynamic endpoints and must
not be discarded as “noise.” Physiological noise correction
schemes may drastically alter the statistical outcome of the
drug effects on the brain [Khalili-Mahani et al., 2013]. Inter-
estingly, the regions of precuneus and posterior cingulate
cortex in the DMN seem to be most vulnerable to physiolog-
ical effects especially in higher-level statistical comparisons
[Khalili-Mahani et al., 2011]. However, regional susceptibili-
ty to physiological noise relates to the scale of drug-induced
change in respiration and heart rate. For example, these
effects are very significant in the morphine condition that
causes strong respiratory effects, and non-significant in alco-
hol condition in the same subjects [Khalili-Mahani et al.,
2013]. The method chosen for physiological noise correction
can also impact the extent of the statistical outcome. For
example, the impact of time-series correction using derived
respiration and cardiac variation regressors, or RETROICOR
on final statistical outcome is lower than using averaged res-
piration rates in the highest level group analysis [Khalili-
Mahani et al., 2013] (see Fig. 6). Unfortunately, many of
existing pharmacological studies surveyed here do not
report any physiological records (see Table I). However, a
rigorous characterization of the physiological interactions
with vascular effects of the drugs is essential and informa-
tive in understanding specific and nonspecific effects of the
drug on neuroimaging biomarkers.

Age and sex effects

As Figure 7 shows, the age range (20–45, with the excep-
tion of three studies) and sample sex (male> female) are
biased in the studies we reviewed, reflecting the

challenging nature of experimental designs. In older
adults, the study design must provision for how a particu-
lar compound interacts with other medications or concom-
itant health conditions. To include females would require
controlling for endocrinological factors related to menstru-
al cycle, birth control or hormonal replacement therapy (in
older women) [Comasco et al., 2014]. Yet, without expand-
ing demographic representation of females and age ranges
in pharma-fMRI studies, it remains a challenge to draw
general conclusions about the CNS mechanisms of any
drug. While challenging in humans, animal pharma-
RSfMRI studies might illuminate the significance of these
variables.

Anatomical variability

This survey illustrates a general neglect of the potential
impact of anatomical variations on localizing drug effects.
In particular, given that drugs reach the brain via the cir-
culatory system, and given the high likelihood of cardio-
pulmonary physiological responses to drugs, the impact of
the morphology of the cerebrovascular tree and flow terri-
tories on functional topography of drug effects may not be
a negligible confound.

Gross anatomical features include variables such as the
shape and the size of certain brain structures, cortical sur-
face anatomy and gyrification. Cao and colleagues have
shown that anatomical variations related to the choice of
anatomical parcellation schemes used for network repre-
sentation of the brain) do impact the reliability of graph-
metrics, although some local and global network proper-
ties are more robust to parcellation effects than other met-
rics [Cao et al., 2014].

Gross anatomical features also include configurations of
the cerebrovascular tree and the white matter fiber tracts
that underpin connectivity by “wiring” the brain. CNS
drugs are transported into brain tissue from blood across
the walls of capillaries or through CSF transportation into
venous blood [Pardridge, 2012]. Variations in the cerebro-
vascular architecture are thus likely to influence variations
in measured RSfMRI and ASL signals [Tak et al., 2014,
2015; Vigneau-Roy et al., 2014]. In fact, one of the major
challenges in reproducing ASL results stems from
between-subject variations in cervical anatomy that can
alter model parameters used to quantify CBF [Aslan et al.,
2010]. To what extent these model parameters vary with
pharmacological stimulation, cerebrovascular anatomy or
the layout of the arterial flow territories [Bokkers et al.,
2011; Hartkamp et al., 2011] is not yet studied.

Structured Noise and Artifact Removal

Head motion

Rigid-body head motion artifacts, that is, those caused
by moving the head during acquisition, deteriorate the
quality of the MRI data. If the movement happens during
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acquisition of a frame, the data becomes corrupted and
must be discarded, but if motion happens between acqui-
sition echoes, then it causes misalignment of frames and it
can be corrected. The most common motion correction
technique uses simple transformation (3 translation and 3
rotations, and maybe three stretches, using a standard cost
minimizing function such as least square error) to align all
frames of an EPI dataset with respect to an arbitrary frame
of reference from the time series (usually the middle
frame). This procedure often returns a matrix with an esti-
mate of linear movement, stretch and rotation in a 3D
space per each frame, or an estimate of excessive and arti-
factual signal spikes in adjacent frames. These motion
parameters (and their derivatives) are often included as
nuisance regressors, and included in models that estimate
connectivity. Another approach is to “scrub” or “censor”
frames that are characterized with excessive movement
and to discard them out of the RSfMRI timeseries [Power
et al., 2011], albeit with added temporal and spatial

filtering and regression options [Carp, 2013; Power et al.,
2014; Satterthwaite et al., 2013].

In an elegant study evaluating the impact of interactions
between the temporal, spatial and spectral characteristics
of motion and different preprocessing techniques, Sat-
terthwaite et al. have demonstrated that different correc-
tion methods are not uniformly effective [Satterthwaite
et al., 2013]. In fact, in a survey of various motion-
correction methods, Power and colleagues have concluded
that regression-based motion-corrections “represent cos-
metic improvements rather than true correction of the
data” [Power et al., 2014] and that there is no definitive
answer to the best way motion effects can be mitigated
[Power et al., 2015]. Methods using ICA to isolate motion
components from the data [Griffanti et al., 2014; Kundu
et al., 2012; Salimi-Khorshidi et al., 2014; Tohka et al.,
2008] avoid breaking the temporal continuity of the data
or creating inconsistent temporal degrees of freedom,
which would be caused by scrubbing methods. But ICA-

Figure 7.

Sample sizes and age ranges distribution in the surveyed studies.
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denoising techniques depend either on subjective classifi-
cation of the artifact components, or on automatic feature
selection based on a priori assumptions about the pattern
of motion artifacts [Pruim et al., 2015]. In a recent compar-
ative analysis Pruim et al. have compared eight common
motion correction strategies, and have concluded that
ICA-AROMA was more effective in reducing motion arti-
facts across datasets in retaining signal of interest and
improving reproducibility.

Although these corrective measures seem to improve
the consistency of detecting the functional architecture of
the brain, the correction residuals of these regressors are
not “white,” and remain anatomically specific [Power
et al., 2012; Van Dijk et al., 2012; Yan et al., 2013b]. In fact
the problem of motion may be different in patients versus
healthy controls [Kong et al., 2014; Wylie et al., 2014]. This
raises concern for pharmacological studies, if the drug
causes variations in movement patterns, for example, with
sedatives and anti-tremor compounds that are likely to
reduce movement as compared with placebo, or stimulants
and hallucinogens that may increase it.

Physiological artifacts

Physiological signals are important biological confounds
but they can give rise to artifacts. The simplest form of
physiological artifact arises from arterovascular pulsation
correlated with the heart beating, bulk movement due to
breathing, or even a movement of the imaging plane due
to magnetic susceptibility artifacts resulting from breathing
in the magnet. These artifacts are often dealt with in addi-
tion to motion, either by modeling a movement-related
phase-shift in each EPI acquisition, combined with a
canonical hemodynamic response function to respiration
and heart rate [Birn et al., 2008b; Chang et al., 2009]; by
using a proxy correction by assuming that the BOLD sig-
nal fluctuations in the deep WM and CSF encode non-
neuronal variations in respiration and heart rate signals
[Birn, 2012]; or by using dual-echo acquisition methods
that can help separate true noise from biologically relevant
signals [Bright and Murphy, 2013b]. To date, the majority
of work examining the impact of physiological correction
on resting-state fMRI has focused on improved consistency
of the DMN [Marchitelli et al., 2016], although in some
cases, the DMN and the respiration component identified
from ICA may be overlapping [Birn et al., 2008a]. In fact,
it has been shown that respiration-related changes in end-
tidal CO2 create anatomically specific patterns in many
temporal (e.g., Insula) and medial brain areas (e.g., cingu-
late cortex) that are commonly studied in pharmacological
studies [Peng et al., 2013; Wise et al., 2004b].

In more than 60% of studies surveyed here, heart and
respiration rates are not measured or reported. In only
half of the rest, these variations are used as nuisance fac-
tors to “clean” artifacts from the data. In only one of these
studies, the impact of various noise removal techniques on
the statistical outcome of drug effect on the brain has been

reported [Khalili-Mahani et al., 2013]. This study shows
that morphine doses that cause significant physiological
response (in terms of respiratory depression) also cause
significant changes in the topography of the group
results—namely a significant reduction of the statistical
significance of drug effect on the DMN. In this study, cor-
rective methods that are applied at the level of individual
RSfMRI preprocessing or DR (e.g., regressors correspond-
ing to respiration or heart rate variations or retrospective
image correction with RETROICOR and RVHRCOR), were
not as impactful–even though their impact on within-
subject BOLD variations were significant and consistent
[Khalili-Mahani et al., 2013] (also see Fig. 5). These obser-
vations raise concern about the implications of unscruti-
nized physiological “noise” correction and their impact on
interpretations of results.

Global signal regression

Global Signal Regression (GSR) aims to correct for com-
bination noise arising from subject movement, physiologi-
cal artifacts, as well as high frequency electronic noise, or
amplitude drift [Power et al., 2014; Satterthwaite et al.,
2013]. Similar to motion and physiological correction, there
is also no consensus on whether this preprocessing step
improves the results or gives rise to false positives and
misinterpretation. The strongest argument against GSR is
that it artificially shifts and zero-centers the distribution of
correlations, thus giving rise to anti-correlated patterns
“erroneously” interpreted as deactivation [Murphy et al.,
2009; Weissenbacher et al., 2009]. It has also been shown
that GSR can hinder analyses of inter-individual differ-
ences [Saad et al., 2012], bias the topography of networks
in relation to motion parameters [Satterthwaite et al.,
2013], and confound activity that is closely correlated with
signal in the gray matter [Yan et al., 2013a], including
spontaneous fluctuations in local field potentials induced
by changes of behavioral states of monkeys [Scholvinck
et al., 2010]. Although the mathematical argument against
zero-centering holds, others argue that this process
increases the detectability of physiologically meaningful
phenomena from the cortex [Fox et al., 2009]. The impact
of GSR on test-retest reliability of metrics other than func-
tional connectivity is also contentious. It has been shown
that GSR improves the reliability of spectral analysis
(using Alff) [Yan et al., 2013a], but worsens REHO [Zuo
et al., 2013], although the influences of GSR on REHO reli-
ability seem to be complex, anatomically varying, and
related with neuronal mechanisms that underlie eyes-
closed or eyes-open states [Qing et al., 2015]. It has also
been shown that GSR alters the topography of graph rep-
resentation of the brain by altering the network thresholds
[Schwarz and McGonigle, 2011]. The effect of GSR on
graph properties and test–retest reliability is made further
complex by the mathematical assumptions underlying
graph computations, for example, partial correlation or
Pearson correlation, although differences in terms of
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improved reliability with and without GSR may be negli-
gible [Liang et al., 2012]. A recent review indicates that
GSR does not cause significant changes in degree, local
and global efficiency, but lowers the reliability of cluster-
ing coefficient and assortivity [Andellini et al., 2015]. In
presence of these uncertainties, newer methods advise per-
forming post-hoc estimation of the extent to which GSR
changes the analysis outcomes [Carbonell et al., 2014a]. In
general, although there is no consensus about including
GSR in preprocessing, existing evidence suggest the neces-
sity of considering the full scope of anatomical and spec-
tral characteristics correlated with GSR [Liang et al., 2012;
Qing et al., 2015]. Given the repeated-measures design in
most pharmacological studies here, it might be revealing
to investigate the differences in the test outcomes with
and without applying different preprocessing steps.

Reliability, Reproducibility

In pharmacological neuroimaging, biomarker test–retest
reliability is critical and a determining factor in establish-
ing a meaningful effect size. It is also the most challenging,
because spontaneous brain oscillations are non-stationary.
Reliability and reproducibility in pharma-RSfMRI is not
well addressed yet. In one study involving pharmacologi-
cal stimulation by ketamine, it was shown that reliable
estimates of the pharmacodynamics in the ROIS were pos-
sible but only if nuisance variables such as motion and
drift were well modeled [De Simoni et al., 2013]. Although
an important first step, the conclusions of this study are
not generalizable. In this section, we highlight the impact
of non-stationarity, data acquisition and analytical parame-
ters on test–retest reliability in RSfMRI studies.

Non-stationary neural networks

A major challenge in establishing a ground truth for
RSfMRI metrics is the fact that resting-state functional net-
works can be non-stationary, i.e. exhibit time-varying func-
tional connectivity patterns [Allen et al., 2014; Hutchison
et al., 2013; Jones et al., 2012; Liu and Duyn, 2013; Messe
et al., 2014]. Non-stationarity in the brain is not ubiqui-
tous, and may vary depending on the mental state, net-
work of interest, or the time window over which
connectivity is assessed. Although mentation is an obvious
source of non-stationarity in brain physiology [Barttfeld
et al., 2015], it can also exist in the absence of conscious or
cognitive states. For example, Hutchison et al. [2013] have
observed non-stationary behavior in the resting-state ocu-
lomotor network of anesthetized macaques that are com-
parable to those observed in awake human subjects
[Hutchison et al., 2013]. It has been suggested that this
dynamic change in network topographies relates to an
adaptive change of states, in order to balance information
processing and metabolic expenditure of the brain [Zale-
sky et al., 2014]. Using mathematical modeling in both
simulated and empirical data, Messe et al. [2014] have

shown that anatomical connections (derived from DWI)
drive the stationary dynamics of functional connectivity.
These findings create a compelling case for exploring non-
stationarity itself as a biomarker of disease [Jones et al.,
2012], or as a pharmacological endpoint.

As will be discussed in “Opportunities and Future
Directions,” re-analyzing existing pharma-RSfMRI data
with attention to the non-stationary nature of the sponta-
neous brain fluctuations and dynamics of network modu-
larity might provide interesting information about cerebral
pharmacodynamics.

BOLD RSfMRI test–retest reliability

The problem of non-stationarity underpins challenges in
test-retest reliability of the BOLD response.

Moderate to high reliability is observed in seed-based
or NOI-based analysis; however, the degree of reliability
varies between networks suggesting that some networks
are more susceptible to state changes in acquisition or
(psycho)physiological [Birn et al., 2013; Jann et al., 2015;
Shehzad et al., 2009]. REHO seems to offer high test–ret-
est reliability but is also sensitive to motion, global sig-
nal, scan duration and anatomical variations, thus can
drastically change with preprocessing options [Zuo et al.,
2013]. Moderate to high intra- and inter-session test–ret-
est reliability of (f)ALFF has been shown although reli-
ability varies in different brain regions, leaving the
question of the impact of variations in mental states on
reliability assessments [Zuo et al., 2010b]. Dual regres-
sion analysis using NOIs, seems to produce more reliable
and reproducible results than seed-based analysis
[Schultz et al., 2014; Zuo et al., 2010a], however the
reproducibility of results depend on which set of net-
works are included in the analysis [Schultz et al., 2014],
and preprocessing options or physiological covariates
can change the configuration of certain networks [Khalili-
Mahani et al., 2013]. The reliability of graph metrics is
still under investigation. A systematic review of graph
metrics failed to make definitive conclusions regarding
the best technique, due to the heterogeneity of study
designs and analytical choices [Welton et al., 2015]. Two
studies [Braun et al., 2012; Cao et al., 2014] indicated that
graph metrics such as path length, global efficiency,
assortativity and modularity have higher test–retest reli-
ability (0.57< ICC’s< 0.75) than clustering coefficient,
local efficiency and degree. The consistency of several
brain networks that emerge from ICA has been well
established [Damoiseaux et al., 2006; Wisner et al., 2013;
Zuo et al., 2010a], but structured noise, and physiological
and motion artifacts diminish the reliability of compo-
nent detection [Zuo et al., 2010a]. Also, inconsistencies in
dimensionality of ICA (e.g., number of components, and
component ordering) impact the reliability of individual
[Esposito and Goebel, 2011] and group [Abou-Elseoud
et al., 2010] ICA. A relatively reliable group-ICA does
not guarantee the reliability of the same individual ICA
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[Wisner et al., 2013]. Lower individual reliability is likely
to impact the reliability of the group inference testing as
well, and therefore interpretation of effects. Several
methods such as ICASSO [Himberg and Hyvarinen,
2003], RELICA [Artoni et al., 2014] and FOCIS [Wang
and Li, 2014] have been proposed to help identify the
most reliable independent components, however to auto-
mate the selection of functionally relevant components
from spurious networks remains challenging. Interesting-
ly, the impact of post-processing noise regression on
group level statistics varies between different biomarkers
[Yan et al., 2013a].

Acquisition time is an important factor in test-retest reli-
ability. Gonzalez-Castillo et al. [2014] have conducted a
series of tests to investigate the impact of scan duration
and window size on reliability of functional networks,
both at the individual and group levels. They found that
the primary sensory-motor network was the most stable
network across different scan time and analytical win-
dows, compared with areas involved in higher cognitive
processing. Tomasi et al. have recently shown that non-
stationarity affects various RSfMRI metrics differently
[Tomasi et al., 2016b]. For example, they showed that func-
tional connectivity density (FCD, a data-driven graph theo-
ry metric that quantifies the local degree, the size of the
local network cluster functionally connected to each brain
network node) was more accurate than sICA or seed-
based connectivity, but that accuracy for each metric var-
ied with acquisition time, that is, sICA relied on longer
scans (>12 min) to achieve the same accuracy as FCD (7
min).

Reliability of different RSfMRI metrics can vary depend-
ing on the mathematical description of the biomarker,
which hinge on various factors including data acquisition
parameters, preprocessing and statistical approaches, as
well as different approaches to establishing reliability (e.g.,
interclass correlations versus coefficient of variation).
These complexities make it difficult to be conclusive yet
but encourage adopting standardized protocols that will
enable us to compare sensitivity, accuracy, and reliability
of various metrics toward establishing a practical
guideline.

ASL test-retest reliability

Because ASL methods can provide a quantitative mea-
sure of cerebral perfusion, it is easier to evaluate their reli-
ability. Consistency of CBF estimation with background-
suppressed pCASL has been established in multi-center
and multi-acquisition reproducibility studies [Gevers et al.,
2011; Vidorreta et al., 2013]. Intersession, intrasession and
inter-scanner reproducibility across different vendors sug-
gests that normalizing acquisition parameters on different
machines yields stable measurements of the gray matter
perfusion. However, in presence of differences in acquisi-
tions sequences, spatial differences caused by different
smoothing behavior of the readout module become

problematic [Mutsaerts et al., 2014; Mutsaerts, 2015; Vidor-
reta et al., 2013].

A major challenge in reproducing ASL results stems
from between-subject variations in cervical anatomy that
can alter model parameters used to quantify CBF. The
main limiting factor in between-examination and -subject
variability is probably differences in labeling efficiency
[Aslan et al., 2010]. Labeling efficiency in pCASL is depen-
dent on local off-resonance effects, blood velocity as well
as the angle of the artery with respect to the labeling plane
[Dai et al., 2008]. Variations in labeling efficiency differ-
ences can be minimized by employing a pre-scan [Jung
et al., 2010] or by performing additional shimming of the
labeling region. Finally, during post-processing normaliza-
tion by average whole brain CBF can partially correct for
variations in labeling efficiency.

Another factor affecting the accuracy of CBF quantifica-
tion by ASL is ATT (see “Arterial Transit Time”). The
common model employed to quantify CBF assumes that
all labeled blood has reached the imaging volume. Incom-
plete delivery of label would lead to underestimation of
CBF. Furthermore, the loss of label due to longitudinal
relaxation (T1) depends on whether the label is located in
blood where it will decay with the T1 of arterial blood
(�1,650 ms), or whether the label is in tissue where it will
decay with the T1 of tissue (61,200 ms). Shorter arterial
transit times will often be accompanied with earlier arrival
in tissue, and therefore faster decay of label. To what
extent these model parameters can vary with pharmaco-
logical experiments, cerebrovascular anatomy or the layout
of the arterial flow territories [Bokkers et al., 2011; Hart-
kamp et al., 2011] is not yet well understood. As discussed
in “Arterial Spin Labeling and Cerebral Perfusion,” ASL
methods are best suited for crossover designs where state-
dependent variations in baseline cerebral perfusion, or
regional heterogeneities in perfusion caused by drug can
serve as surrogate markers of neuronal activity.

Statistical Analysis

Besides data acquisition, preprocessing protocols and the
biomarker type, reliability depends on the criteria of statisti-
cal analyses. Pharmacological studies, whether exploratory
(i.e., finger printing and probing experiment) or intended
for clinical trials, demand establishing reliable statistical cri-
teria to assess interpretable effectiveness of a given interven-
tion. Existing statistical modeling approaches and toolboxes
available for the statistical analysis of RSfMRI and ASL data
are by and large inherited from task-based fMRI. As such,
there are limitations in terms of estimating the effect size
and statistical modeling, which we briefly discuss here.

Effect size estimation

Three main components are involved in the estimation
of the statistical power: (1) the expected effect size, (2) the
variability of the effect size and (3) the sample size of the
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study. To establish an a priori effect size is one of the
most critical aspects of clinical pharmacology for making
go-no go decisions. In task-fMRI, the percentage of the
change in BOLD signal is estimated by fitting a canonical
hemodynamic response function to epochs of rest and acti-
vation, at the subject level. As such it is possible to com-
pute the effect size as a voxel-wise averaged percentage of
change. Usually, a 2% signal change from the no-task con-
dition reflects a task-induced neuronal effect. Effect size
can also be easily estimated in ASL studies, as it is possi-
ble to quantify the percentage of change in cerebral blood
flow. In RSfMRI, effect size is estimated in terms of con-
nectivity (z-scores or correlation coefficients) or some
graph metric, which are dependent on meaningful thresh-
olding of connectivity or coherence metrics. Given the
dynamic nature of drug effects on the brain and thus on
RSfMRI fluctuations, interpretation of an effect depends
not only on the magnitude of change (e.g., pre- vs. post-
drug, placebo versus drug), but also on the dynamics of
change (increases and decreases) between different time-
points. Furthermore, as discussed above, the direction of
observed effects do not represent absolute neurobiological
phenomena, but relative changes which can vary with var-
iations in global or regional corrections and noise thresh-
olds. For this reason, it is essential to interpret results with
attention to the mathematical underpinnings of each bio-
marker, and in the least plotting the temporal profile of
data in a given region during the course of drug adminis-
tration in relation to placebo—instead of just relying on
test statistics and average activation maps.

In neuroimaging studies, power analysis may become
possible by collecting information from one ROI, but the
choice of the ROI runs the risk of biasing the estimated
effect size [Mumford, 2012]. It is also possible to select
multiple ROIs, although there are no generally established
guidelines to account for multiple comparisons in this
case. A major complication in power analysis for any fMRI
experiments is that variability comes (in a hierarchical
way) from several sources: intra-run variability that
reflects noise within auto-correlated time series of each
fMRI run; intra-subject variability that comes from repeat-
ed runs within the same subject; and between-subjects var-
iability within a population. To this complicated picture,
add the complexity of central and peripheral pharmacody-
namic effects over time, and over different regions, which
need to be accounted in power analysis as well.

Statistical modeling

There are three existing limitations in statistical model-
ing for pharmacological imaging experiments. First, drugs
exert non-linear and spatially heterogeneous effects (relat-
ed to a combination of neurovascular factors or chemo-
architecture [Shulman and Rothman, 1998]). What
covariates to include in an analysis can impact the topog-
raphy of the results significantly [Khalili-Mahani et al.,
2012, 2013; Niesters et al., 2012]. We have shown that the

relations between CBF and connectivity measures can vary
from region to region, depending on what explanatory
variables are included in the model [Khalili-Mahani et al.,
2013, 2014]. Secondly, pharmacological experiments ideally
depend on integration of repeated measurements from dif-
ferent modalities, for example BOLD-related connectivity
maps and relative CBF maps, which are correlated but
have different smoothing characteristics. Finally, and
importantly, repeated measures analysis is essential to
most pharmacological experiments concerned with finger-
printing, where the minimum number of scans is four
(one pre-, and one post drug scan per placebo and drug
session), thus controlling for within-subject correlations is
important.

The majority of neuroimaging reports surveyed here
rely on voxel-wise T-tests (between group or between
time), (m)AN(c)OVA or multilevel GLM with mixed
effects (time, group, drug, nuisance, behavior) analyses,
often using standard software packages [Beckmann et al.,
2003; Chen et al., 2012; Friston et al., 2005; Worsley et al.,
2002]. Methods to address the first two problems are
explored in the context of multivariate analysis and
machine learning, which will be discussed later in this sec-
tion. The third problem is addressed in newer methods
such as multi-scale adaptive generalized estimating equa-
tion (MA-GEE) [Li et al., 2013] or Sandwich Estimator
[Guillaume et al., 2014], which are more suitable to infer-
ence testing with repeated, longitudinal measurements.
However, to our knowledge, these methods have not been
used by any of the studies in this survey. A re-analysis of
the data using these methods will be informative.

Significance criteria

Neuroimaging studies create massive amounts of data,
and rely on special adjustments for addressing the prob-
lem of multiple comparisons. The issue of multiple com-
parisons is well addressed in neuroimaging statistics. Most
current fMRI studies surveyed here rely on cluster-wise
correction of family-wise errors. In this approach voxels
satisfying a nominal threshold (e.g., t-value >1.7, to yield
uncorrected threshold of 0.05, on assumption of a normal-
ly distributed t-test) are selected, then a cluster-level extent
threshold, measured in units of contiguous voxels over res-
olution elements (resels, which depend on the search vol-
ume and the FWHM of the smoothing kernel) is
determined based on the estimated distribution of cluster
sizes under the null hypothesis of no activation to correct
for family-wise errors. The sampling distribution of the
largest null cluster size can be estimated using random
field theory [Worsley et al., 1992], Monte Carlo simulation
[Forman et al., 1995], or nonparametric methods [Nichols
and Holmes, 2002]. To avoid this arbitrary selection of the
initial threshold, Smith and Nichols [2009] have proposed
a threshold-free-cluster-estimation (TFCE) method, which
considers the entire statistical data in order to identify
voxels that, judged by the magnitude of the signal and its
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spatial distribution, cluster together [Smith and Nichols,
2009]. Whereas these sets of techniques try to minimize
the probability of false positives), another method, false
discovery rate (FDR) provides more statistical power by
setting thresholds based on tolerance for false positives, by
ranking the probability of all observations and arbitrarily
rejecting a percentage of those [Genovese et al., 2002].
Whether cluster- or FDR-based correction methods are
stringent or reliable enough has recently come under scru-
tiny [Eklund et al., 2016; Woo et al., 2014]. A recent analy-
sis of 499 RSfMRI datasets has estimated that standard
cluster-based thresholding methods available in popular
analysis packages (FSL, AFNI and SPM) are prone to
inflating false positives [Eklund et al., 2016] and have pro-
posed permutation testing to avoid errors arising from
unmet assumptions about smoothness and normal distri-
bution of the data.

Permutation testing provides a more stringent approach
to determining statistical significance based on consistent
estimates of means and variances for central and non-
central t-tests [Nichols and Holmes, 2002; Zhou et al.,
2014]. This is particularly important in pharmacological
studies, which have small samples and thus may not satis-
fy the assumptions of normal distribution at the level of
group analysis. Permutation testing is also more robust to
cluster-size changes due to non-stationarity in fMRI sig-
nals, whether using RFT methods [Hayasaka et al., 2004]
or TFCE [Salimi-Khorshidi et al., 2011] to establish statisti-
cal significance. Multi-level permutation testing will also
give more stringent control of false positives [Winkler
et al., 2015] in repeated measures longitudinal analysis,
which would be necessary for most pharmacological
experiments.

Multivariate analysis and machine learning

Univariate analyses (discussed above) aim to detect if
and how different brain regions are affected by a given
stimulus (regression), or by other independent variables
(factors or covariate), while accounting for the problem of
multiple comparisons. Multimodal data collection lends to
more sophisticated multivariate analysis approaches. In
the simplest implementation, multivariate models extend
the GLM to allow for a single analysis with multiple
dependent variables (as opposed to running several
regressions on a single dependent variable in univariate
analysis). As such a single analysis provides multiple lev-
els of inference and a more suitable design for complex
research such as pharmacoimaging.

Supervised Machine Learning (ML) techniques are
increasingly important for multivariate analysis, and pre-
dictive pattern recognition. These methods aim to identify
optimal mappings between the multivariate brain signals
and external variables, such as symptom levels or drug
conditions. ML algorithms might utilize any number of
data features, such as network connectivity matrices, seed
or dual regression maps, variance or REHO measures, or

graph theoretical characterizations. These mappings can
produce prediction accuracies in new data that greatly
exceed what is possible from any individual feature of the
data, and can reveal the modulation of subtle, spatially
extended features of neural activity by pharmacological
agents that would otherwise be missed by univariate anal-
yses. As such ML techniques are likely to be crucial for
potential translational applications of pharmacological
imaging such as the identification of disease states in
patients with limited ability to communicate [Wager,
2013], the assessment of pharmaceutical candidates for sig-
natures of pharmacological efficacy [Doyle et al., 2013;
Duff et al., 2015], or the characterization of the timecourse
of drug action in individual subjects [Paloyelis et al.,
2016].

Common ML pattern recognition techniques include
support vector machine (SVM) and Gaussian process clas-
sification (GPC). SVM aims to classify individual observa-
tions (e.g., connectivity maps) into distinct groups or
classes based on maximizing the margin between classes
in a high-dimensional space (i.e., multivariate data). This
classification depends on a pre-defined training data,
which is obtained by exhaustive comparison of data from
two groups (e.g., patient and control, or pre and post
drug). This classifier is then used to identify to which
group data from a new individual maps [Orru et al.,
2012]. In contrast to SVM, where the certainty of the pre-
diction is tested against the support vector, GPCs are
based on a probabilistic distribution of functions which
represent the training data. As such GPCs are suitable for
providing a probabilistic prediction (as opposed to binary
prediction in SVM) of states such as pain [Marquand
et al., 2010]. Differences in SVM and GPC have implica-
tions for when to apply which. For example, linear SVMs
discriminate according to a subset of samples (training set)
that form the separating support vector. As such SVMs are
robust to outliers and perform reasonably well with the
typically low sample sizes of pharma-fMRI studies. How-
ever, SVMs are most suitable to binary discrimination
between two groups, and heterogeneous data may require
more complex discrimination functions which can be diffi-
cult to define with SVMs. Because GPC utilizes the full
sample distribution for predictions it allows using more
complex decision functions and probabilistic outcomes,
but these functions are more challenging to estimate than
support vectors and, due to its probabilistic nature, GPC is
more affected by outliers.

To date, Monti et al. [2013] have used network connec-
tivity matrices as inputs to SVMs in an exploration of
states associated with propofol anesthesia. In their study,
connectivity matrices could reliably discriminate wakeful-
ness from periods of sedation and unconsciousness. Simi-
larly, Sripada et al. [2013a] trained SVMs to discriminate
effects of methylphenidate from placebo scans using net-
work connectivity matrices generated from 1,080 ROIs.
The whole-brain data was able to reliably identify the
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effects of methylphenidate. The results of an initial feature
selection stage were used to identify predictive changes as
being associated with reductions in coupling within a
number of resting-state networks (RSNs), and changes in
the coupling of the default mode network (DMN) with
other RSNs.

Classifications algorithms can also be used to character-
ize similarity. Using GPC, Doyle et al. [2013] first estab-
lished the predictive probability of BOLD signal change in
response to ketamine based on discriminating placebo–sa-
line and ketamine–placebo) and then showed that pretreat-
ment with lamotrigine and risperidone attenuated the
effects of ketamine, making resting-state ketami-
ne–lamotrigine and ketamine–risperidone conditions more
difficult to distinguish from placebo.

GPC has also been used to explore the dynamics of oxy-
tocin action on the spatiotemporal profiles of brain activi-
ty, by examining changes in the sensitivity of connectivity-
based classifiers across an administration period [Paloyelis
et al., 2016].

However, despite their strengths, all ML techniques
have limitations and tradeoffs, and are not always the
appropriate tool. Due to the multivariate nature of ML
algorithms, it can be difficult to determine the nature of
the signals driving predictive accuracy. ML algorithms
may take advantage of subtle modulations of brain activity
for prediction, but may also exacerbate the influence of
subtle confounds. Choosing and tuning a classification
algorithm can be complex, particularly with the low sam-
ple numbers of imaging, which make selection of parame-
ters via approaches such as cross-validation unreliable.
The diversity of options for ML, and lack of standard soft-
ware for neuroimaging applications, produce additional
challenges for reproducibility. Also, multivariate analysis
depends on complete sample and is not amenable to miss-
ing data. Therefore, in many cases, univariate analysis
would be more appropriate.

Pharmacokinetic/Pharmacodynamic (PK/PD)

Modeling

The ultimate goal of pharmacological neuroimaging is to
establish a relation between drug dose, and a meaningful
effect in neuronal activity that helps estimate the efficacy
of the treatment. PK/PD modeling (which encompasses
limitations discussed in “Statistical Analysis”) involves
estimating piecewise-linear transfer functions that describe
the nonlinear profile of the drug uptake and washout. A
mathematical description of a predictive transfer function
is obtained from solving a partial differential equation that
estimates pharmacokinetics model coefficients, that is, the
time course of drug action at different doses in different
compartments (e.g., gut, liver, blood, target tissue) in rela-
tion to different pharmacodynamic phenomena (i.e., the
behavioral or symptomatic endophenotypes for which the
drug is designed). Such predictive models are important

for reproducing results, or for identifying deviations from
the model in clinical populations. Within this mathemati-
cal framework, differences between subjects (e.g., in terms
of age, gender, illness severity and comorbidities, medica-
tions, etc.) should also be accounted for.

PK/PD modeling has contributed significantly to a bet-
ter understanding of drug effects (and their variability) in
clinical studies, to the translation of drug effects between
species or populations, and to the optimization of clinical
trial designs. A clear PK/PD-relationship also offers reli-
able information on which part of an observed effect is
due to pharmacological activity—in addition to other sour-
ces of variation. For these reasons, the identification of
PK/PD models that predict the relation between the rates
of drug distribution, absorption, metabolism and excretion
(pharmacokinetics) and changes of MRI parameters, will
provide strong support for the significance of neurophar-
macological imaging.

PK/PD modeling is a challenging method in general
and even more so in fMRI experiments. The CNS effects of
drugs are highly dependent on the concentrations of the
pharmacologically active moiety at the action site. The
time to reach an effect, the concentration at the site of
action, and hence the intensity of the effect, are deter-
mined by the pharmacokinetic properties of a drug. The
onset and the size of the effect can vary considerably
among individuals and over time, depending on differ-
ences in absorption (related to formulation, mode of
administration and influence of meals), metabolism to
active or inactive moieties, and excretion and distribution
of the compound. Penetration of the brain is regulated by
the blood–brain barrier (BBB), which can limit the extent
and rate of distribution of compounds into the CNS. In
humans, it is almost always impossible to measure the
concentrations of the active compounds (which can also be
metabolites) at the action sites in the brain. In most cases,
drug concentrations are measured in blood serum or plas-
ma. The anatomy and density of blood vessels that deliver
the drug to the BBB are likely to introduce variations in
that measure as well.

The consequence of this complex cascade of pharmaco-
kinetic and pharmacodynamic events is that there is nearly
always a time lag between administration of the drug, its
binding to its target, and the measurement of CNS effects.
This can vary from seconds or minutes for intravenously
injected drugs that penetrate rapidly into the brain and
affect cell membrane receptors, to hours for compounds
that are slowly absorbed or induce protein formation, and
even longer for medicines that influence cell growth.
Moreover, the relationships between concentrations and
effects can change over time, by development of tolerance
or by accumulation of lipophilic active metabolites in the
effect compartment. Finally, most effects require a minimal
level of drug exposure, and are limited to a maximum tol-
erable dose. As a consequence, the relationships between
blood concentrations and effects are usually not linear, but
can often be adequately described by a more complex
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mathematical function, incorporating measures of baseline
activity, minimal and maximal effect and (cumulative)
time delay.

The earlier phfMRI experiments (to remind, these are
experiments where the drug serves as a stimulus and the
hemodynamic response is estimated from variations in the
drug dose) used pharmacokinetic modeling to estimate
regional activations, for example with nicotine [Bloom et al.,
1999; Stein et al., 1998], cocaine [Kufahl et al., 2005], remifen-
tanil [Leppa et al., 2006], morphine [Becerra et al., 2006], cita-
lopram [McKie et al., 2005], m-Chlorophenylpiperazine
(mCPP) and Mirtazapine [McKie et al., 2011] and ketamine
[Deakin et al., 2008]. In these studies, duration of acquisitions
was short and consistent with peak effects, for example, 7
minutes for remifentanil [Leppa et al., 2006], 8 [Deakin et al.,
2008] and 10 minutes with ketamine [De Simoni et al., 2013],
and 25–30 minutes for morphine [Becerra et al., 2006] and
between 30 and 60 minutes for the serotonergic drugs citalo-
pram and mPCC [McKie et al., 2005, 2011]. Pharmacokinetic
modeling enables dose normalization in pharma-RSfMRI
studies and preliminary attempts have been made to illus-
trate a link between plasma drug concentrations of drugs
such as ketamine [De Simoni et al., 2013; Doyle et al., 2013;
Khalili-Mahani et al., 2015], THC [Klumpers et al., 2012],
opioidergic drugs [Becerra et al., 2006, 2013; Khalili-Mahani
et al., 2012; Wise et al., 2004a] and alcohol [Esposito et al.,
2010; Khalili-Mahani et al., 2012], and the amplitude of
change in selective brain regions significantly affected by
these drugs. However, no formal PK/PD models for predict-
ing a cerebral dose-response have been reported yet. There
are two main reasons for this: one is the paucity of studies
with detailed time profiles of drug concentrations and effects,
and the second is the lack of simple MRI readouts.

Current attempts at PK modeling have been further lim-
ited by either fitting a canonical PK model to the brain
data [Bloom et al., 1999; Doyle et al., 2013; Stein et al.,
1998], or by using a summarized readout (e.g., global sig-
nal change or ROI signals) to identify and validate a mod-
el [De Simoni et al., 2013]. As statistical parametric maps
of the chemoarchitecture of the brain are being developed
[Zilles et al., 2002; Zilles et al., 2004; Zilles and Amunts,
2009], to impose a single model across the entire brain
anatomy (e.g., in calibrated BOLD/ASL modeling of neu-
rovascular coupling) becomes questionable. However, with
evidence from fingerprinting dose-response, and probing
experiments it becomes feasible to integrate data from dif-
ferent modalities (e.g., cortical morphology, white matter
tractography, and cerebrovascular anatomy) and apply
advanced biomathematical modeling in a similar fashion
as proposed for PET [Gunn et al., 2011]. (See section
“Contributions From PET” for more details.)

OPPORTUNITIES AND FUTURE DIRECTIONS

The field of RSfMRI is relatively new, yet rapidly evolv-
ing. Many of the limitations mentioned above, such as

optimal pre-processing and data cleaning, biomarker accu-
racy and reliability, and the best statistical modeling and
effect size estimation methods, are being actively investi-
gated. So far, we have discussed existing methods that can
be used for studying brain chemistry and have provided
examples to illustrate how pharmacological experiments
can help interpretability of RSfMRI studies in general.
There are still unexplored opportunities provided by the
current state-of-the-art data acquisition and analysis strate-
gies, which will guide future pharmacological studies.

Data-Sharing and Meta-Analysis of

the Existing Data

In many areas of clinical neuroimaging research, collab-
orative research takes place within a common framework
for data harmonization, sharing and standardized analysis
[Das et al., 2016; Petersen et al., 2010; Schmaal et al., 2016;
Thyreau et al., 2012; Zijdenbos et al., 2002]. In 2007, the
Radiologic Society of North America (RSNA) organized
the Quantitative Imaging Biomarker Alliance (QIBA) to
develop standards for reducing variability across instru-
ments and analysis, and they have now provided guide-
lines for uniformed terminology, statistical approach and
performance measure [Kessler et al., 2015]. Pharmacoimag-
ing researchers may provision for more impactful research
through data-sharing and data-mining. In fact, FDA’s Crit-
ical Path Initiative [2004] emphasizes the importance of
using technology in drug discovery process. Since then,
initiatives such as the Open Pharmacological Concepts Tri-
ple Store (Open PHACTS) have aimed to create a pharma-
cological data-mining platform to address drug discovery
problems including target identification, dose optimiza-
tion, toxicology and drug-drug interaction [Goldmann
et al., 2014; Williams et al., 2012]. Existing neuroinfor-
matics platforms for collaborative neuroimaging data-
sharing and data-mining [Das et al., 2011; Glatard et al.,
2013, 2015; Sherif et al., 2014] can be adapted to advance
reliability and reproducibility of pharmacological trials.

With few exceptions of studies conducted in the same
center, the studies surveyed here are very heterogeneous
in experimental and analytical designs and because there
are no standards for modeling and defining a meaningful
effect size yet, it is difficult to perform a meta-analyses and
arrive at a conclusive interpretation of the sensitivity and
reliability of a given biomarker to a given neurobiological
process. Nevertheless, there are many commonalities in
the existing datasets from multiple centers that it is plausi-
ble to aim for a future data-mining exploration. The major-
ity of pharmacological experiments reviewed here have
collected data from healthy young men (Fig. 7) and T2*W
images are collected in more than 75% of these studies.
Two thirds of research objectives of studies reviewed are
drug fingerprinting (33%) and probing specific neuro-
chemical signaling systems (33%), with a majority also
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using functional connectivity metrics obtained from seed,
ICA, clustering or graph analyses (>53%).

To pool, harmonize and (pre-)process common data
through a standardized pipeline, serve the objectives of an
exploratory model-free mega-analysis which may shed
light on current uncertainties about meaningful effect sizes
and analytical and biological factors that differentiate the
sensitivity of various metrics and models. This approach
could increase the clinical impact of pharmacological stud-
ies. For example, different groups have studied pharmaco-
logical probing of the dopaminergic, opioidergic,
GABAergic and glutamatergic systems using the same
scanning parameters. Data processing parameters (e.g.,
choice of filters, blurring kernels and inclusion of common
nuisance regressors) and statistical analysis criteria (e.g.,
standards for thresholding to assess statistical significance
or inclusion of common covariates such as physiological
rates or voxel-based anatomical regressors in the group-
level models) can be established independent of drug
class. Re-analyzing these data with similar preprocessing
options and statistical modeling choices will make direct
comparison of results possible. For instance, Kleinloog
et al. [2015] combined 323 identically-acquired RSfMRI
samples from four different pharmacological challenges
(ethanol, morphine, D(9)-tetrahydrocannabinol and keta-
mine) to examine the relation between the severity of drug
induced psychomimetic effects and functional connectivity
and showed that the subjective effect of perception was
the only psychomimetic factor that was commonly corre-
lated with the connectivity of the posterior cingulate cortex
and precentral gyrus with the sensorimotor network
[Kleinloog et al., 2015].

The issue of non-stationarity and dynamics of net-
work hierarchy and modularity is poorly studied, and
a joint analysis of data under different drugs may help
better characterize which neural networks are station-
ary and which vary according to drug-dependent
dynamics.

Standardizing Multivariate Data Acquisition

Pharmacological fMRI experiments are expensive and
necessitate highly controlled monitoring setups, which
generally make the datasets richer than non-pharma
RSfMRI studies. With the current drive for generating
Open Science and data-sharing platforms, it is important
to provision for a longer life cycle for the data, by adher-
ing to operational guidelines that help minimize data
acquisition errors [Schwarz et al., 2011a,b] and by develop-
ing community standards for data acquisition in such a
way as to maximize the amount of data that can be gath-
ered from a given study without compromising the main
study objectives. Given the cost and practical difficulties
associated with a pharmacological experiment, the benefits
of collecting comprehensive datasets outweigh the cost of
adding scan time. Furthermore, with growing availability

of pharma-RSfMRI data, and with unified and standard-
ized analytical approaches to biomarker development and
validation, multivariate data analysis, and machine learn-
ing pattern recognition are expected to become the para-
digm of choice for response prediction and drug-effect
classification, which are critical objectives for CNS drug
research.

We have summarized the minimum recommended
requirements of a standard pharmacological imaging
experiment in Table II, and have listed all basic and
advances design, acquisition and analysis options in Table
III, which can serve as a guideline.

As discussed in “Challenges and Limitations,” RSfMRI
signals are highly sensitive to psycophysiological states.
Randomized and placebo controlled experiments that
include repeated RSfMRI and ASL measurements help
increase the power of the study and provide a picture of
the dynamics of drug action in the brain during the pre-
drug baseline, the peak of drug dose, and the washout, if
the drug is fast acting. Monitoring cardiac and respiration
rates is critical for data interpretation and noise removal.
Repeated psychosomatic readouts (e.g., nausea, weakness,
sleepiness) and psychometric assessments (e.g., alertness,
hallucination, calmness, anxiety), as well as serum samples
from which to measure plasma concentrations of the drug,
certain hormones, proteins and metabolites, will provide a
richer parameter set for machine learning or PK/PD
modeling. Furthermore, Including MR angiography or
venography scans can help characterize the contribution of
vascular factors to resting-state functional variations and
to learn how neurovascular features such as capillary den-
sity, tissue vascularization and arterial flow territories fac-
tor into the efficacy of drug transportation to its site of
action. Also, since functional and structural connectivity
are closely linked [Greicius et al., 2009], and disease-
related changes in white matter fiber connections might
influence resting-state functional biomarkers [Wang et al.,
2015], including diffusion weighted tractography further
enriches any phMRI dataset. More recent methods such as
ultra-fast fMRI [Feinberg et al., 2010], multi-echo fMRI
[Kundu et al., 2013], quantitative fMRI [Christen et al.,
2013], and vessel-encoded [Zhang et al., 2016] or time-
encoded [Teeuwisse et al., 2014] pCASL have not been
tested in pharmacological studies yet, but are likely to
improve the temporal resolution of data and circumvent
some errors related to physiological or motion artifacts.
Importantly, to acquire fMRI data at higher temporal reso-
lution would be important for exploring non-stationarity
in spontaneous BOLD fluctuations—which can be studied
in windows of 40–100 s [Leonardi and Van De Ville, 2015;
Zalesky and Breakspear, 2015]. Such datasets provide a
better opportunity to study the dynamics of functional
connectivity toward a better understanding of the neural
mechanisms of brain adaptation to intervention or disease
[e.g., Bassett et al., 2011; Cole et al., 2014; Jones et al.,
2012].
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Of course, collecting multimodal data causes subject
fatigue and increases the risks of excessive movement and
discontinuation. A well-designed pharmacological experi-
ment is usually conducted in two independent sessions
(one for drug and one for sham placebo). In each session,
one set of anatomical scans (T1W, MRA and DTI) are
acquired—usually at the beginning of each scanning ses-
sion to help localize the field of view for RSfMRIs. Opti-
mal acquisition time for detecting reliable functional
networks is between 7 and 14 min, albeit dependent on
the metric of interest [Anderson et al., 2011; Gonzalez-
Castillo et al., 2014; Tomasi et al., 2016b], and a reliable
background suppressed whole-brain pCASL (30–40 pairs)
can be acquired in less than 5 min; thus each repetition of
a post-drug RSfMRI can be done in less than 20 min which
is tolerable. In drug fingerprinting studies conducted at
Leiden University Medical Centre that run up to 8 hours,
the scanner areas are designed in such a way to allow roll-
ing study participants in and out of the scanner (prefera-
bly in supine position) at given intervals. Psychometric
and bio-specimen data are thus collected outside the scan-
ner in a dedicated private area. Such procedures are made
possible by scanners that are equipped with a smart scout
protocol (e.g., SMART in Philips or AutoAlign in Siemens
scanners), including the scanner used in the Leiden stud-
ies, that help automatically reposition the field of view
(FOV) in subsequent scans to facilitate breaking up scan-
ning sessions when conducting repeated measurements.
To provision for a comfortable scanning environment will
increase participant compliance with longer scanning pro-
tocols accommodating multi-modal data acquisition.

Contributions from PET

The arguments in favor of MRI versus PET, for mapping
neuronal response to pharmacological interventions have
already been presented at the very beginning of this arti-
cle. Although BOLD-fMRI effects are by and large indirect
and nonspecific (confounding neuronal, metabolic, and
hemodynamic responses), the convergence between
RSfMRI biomarkers and metabolic activity detected by
PET [Aiello et al., 2015; Passow et al., 2015; Soddu et al.,
2016; Tomasi et al., 2013, 2016a; Toussaint et al., 2012] jus-
tifies substitution of some PET experiments with fMRI for
localizing brain activity. However, in pharmacological
applications, the value of PET rests with its exquisite sen-
sitivity to radioactivity concentration variations, which
makes it capable of measuring interactions of PET radioli-
gands with different molecular targets in the physiologic
range. To this day, no other non-invasive imaging
approach has been able to obtain the type of molecular
information provide by PET, and none is expected to do
so in the short to medium term. Recent advanced in PET/
MRI imaging are thus critical to advancing pharma-fMRI
research.

T
A

B
L

E
II

.
T

a
b

le
o

f
c
h

a
ll
e
n

g
e
s

a
n

d
st

u
d

y
o

b
je

c
ti

v
e
s

a
n

d
re

la
te

d
d

a
ta

a
c
q

u
is

it
io

n
so

lu
ti

o
n

s

P
la

ce
b

o
-d

es
ig

n
R

ep
ea

te
d

m
ea

su
re

s
M

u
lt

im
o

d
al

im
ag

in
g

P
h

y
si

o
lo

g
ic

al
B

lo
o

d
S

am
p

le
S

al
iv

a
C

o
rt

is
o

l
P

sy
ch

o
m

et
ri

c
M

eg
a-

an
al

y
ti

ca
l

fr
am

ew
o

rk
S

ta
n

d
ar

d
iz

ed
M

R
ac

q
u

is
it

io
n

C
H

A
L

L
E

N
G

E
S

P
sy

ch
o

p
h

y
si

o
lo

g
ic

al
S

ta
te

s
X

X
X

X
X

C
ar

d
io

p
u

lm
u

n
ar

y
co

n
fo

u
n

d
s

X
X

X
X

X

A
g

e
an

d
G

en
d

er
X

X
X

X
X

X
A

n
at

o
m

ic
al

v
ar

ia
b

il
it

y
X

X
X

A
rt

if
ac

t
re

m
o

v
al

X
X

X
S

ta
ti

st
ic

al
m

o
d

el
in

g
X

X
X

X
X

X
X

X
X

R
el

ia
b

il
it

y
an

d
re

p
ro

d
u

ci
b

il
it

y
X

X
X

X

P
h

ar
m

ac
o

k
in

et
ic

m
o

d
el

in
g

X
X

X
X

X
X

X
X

X

O
B

JE
C

T
IV

E
S

F
in

g
er

p
ri

n
ti

n
g

X
X

X
X

X
P

ro
b

in
g

X
X

X
X

X
X

X
X

C
al

ib
ra

ti
o

n
V

al
id

at
io

n
X

X
X

X
X

C
li

n
ic

al
re

se
ar

ch
X

X
X

X
X

X
X

A
n

im
al

re
se

ar
ch

X
X

X
X

X

r Khalili-Mahani et al. r

r 2310 r



TABLE III. Guidelines for design and analysis of pharmacological RSfMRI studies

Minimum standards Advanced state-of-the-art Section in text

Design Considerations
Study Objectives Experimental Objectives and

Clinical Relevance
Pharmacokinetics 10-min RSfMRIs, repeated as

needed to cover the entire
duration of drug administra-
tion and washout

Fast RSfMRI Pharmacokinetic/Pharmacody-
namic (PK/PD) Modeling

Baselines and Control Placebo Control Pre-drug, post-washout scans in
both drug session and placebo
session

Biological Confounds

Health condition Full screening of prescriptions as
well as medical screening of
physiological and metabolic
state

Biological Confounds

Mode of administrations Single or multi-dose oral PK-controlled infusion Table I
MRI Acquisition
Anatomical T1W anatomical MRI TOF-MRA Biological Confounds, Standard-

izing Multivariate Data
Acquisition

Functional fMRI T2*w EPI (TR/TE 5 2,000/30),
5–10 min

Ultrafast T2* , dual-echo BOLD/
ASL

Pharmacological fMRI (Pharma-
fMRI), Spontaneous BOLD Sig-
nal Fluctuations and Function-
al Networks, Standardizing
Multivariate Data Acquisition

Blood flow pCASL VS-ASL, TE-ASL Arterial Spin Labeling and Cere-
bral Perfusion

Myelination DWI Standardizing Multivariate Data
Acquisition

Biomarkers
Functional connectivity Seed-based or NOI-based

networks
Dynamic FC, hierarchical

clusters
Spontaneous BOLD Signal

Fluctuations and Functional
Networks and Reliability,
Reproducibility

ICA sICA, tICA, gICA ICASSO, RELICA Spontaneous BOLD Signal
Fluctuations and Functional
Networks and Reliability,
Reproducibility

Graph Centrality, efficiency, small
worldness, path length

Dynamic modularity,
assortativity

Spontaneous BOLD Signal
Fluctuations and Functional
Networks, Dose/Response
in Anesthesiology, and
Reliability, Reproducibility

spatial coherence REHO Spontaneous BOLD Signal
Fluctuations and Functional
Networks, and Reliability,
Reproducibility

Spectral features f(ALFF) Spontaneous BOLD Signal
Fluctuations and Functional
Networks, and Reliability,
Reproducibility

CBF Average biophysical model of
perfusion weighted images

ATT Arterial Spin Labeling and Cere-
bral Perfusion and Combined
ASL/BOLD fMRI and Neuro-
vascular Coupling

BOLD signal Fitting a hemodynamic response
to drug’s pharmacokinetic
curve.

Pharmacological fMRI (Pharma-
fMRI), Dose/Response in
Anesthesiology, and Methods
Validation and Calibration
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After a relatively long period of development, PET/MR
scanners have now reached the stage of commercial avail-
ability [Heiss, 2016], and are sold as whole-body, dedicat-
ed brain and pre-clinical (small animal) systems. The first
immediate benefit of such systems is that they improve
anatomical localization of PET anomalies in oncology [Bag-
ade et al., 2015] and clinical studies in dementia and other
neurodegenerative diseases[Barthel et al., 2015; Schutz
et al., 2016] and epilepsy [Shin et al., 2015]. In the field of
translational pharmacological research, the combination of
simultaneous MRI and PET acquisitions allows for better
interpretation of different resting-state fMRI metrics
[Aiello et al., 2016], which is of course critical to the inter-
pretation of pharma-fMRI. In one such study, Aiello et al.
[2015] have provided evidence for a regionally specific

correlation between regional glucose uptake (FDG-PET)
and simultaneously measured REHO and fALFF. Their
findings confirm the importance of considering spatial het-
erogeneity of the relations between metabolism and blood-
flow-driven measures obtained from fMRI [Aiello et al.,
2015]—a concern that requires more careful modeling and
interpretation of pharma-RSfMRI studies [Khalili-Mahani
et al., 2014]. Particularly, hybrid PET/fMRI will help better
understand the coupling [Riedl et al., 2014; Soddu et al.,
2016] and the decoupling [Di et al., 2012] of metabolic and
connectivity metrics against the pathological background
over which pharmacological interventions may be
performed.

The second, and by far the most important impact of
combined PET/MRI technologies on pharmacological

TABLE III. (continued).

Minimum standards Advanced state-of-the-art Section in text

Preprocessing
Motion Realignment to a frame of

reference
Scrubbing, including motion

regressors, ICA-based
correction

Structured Noise and Artifact
Removal and Reliability,
Reproducibility

Physiological noise Monitoring and regressing out
(e.g., RETROICOR,
RVHRCOR)

Post hoc analysis of neurobiolog-
ical correlates

Biological Confounds and Struc-
tured Noise and Artifact
Removal

Global signal regression Controversial Compare results with and with-
out regressors

Structured Noise and Artifact
Removal and Reliability,
Reproducibility

Registration Functional to anatomical Biological Confounds
Validity
Stability Standardized acquisition and

preprocessing
Characterization of non-

stationarity, dynamic connec-
tivity and hierarchical
clustering

Reliability, Reproducibility

Test-retest reliability Different subjects, similar
biomarkers

Same subject, same biomarker
from repeated measurements

Reliability, Reproducibility

Interpretation Hybrid PET/MRI, hybrid
BOLD/CBF, meta-analysis

Experimental Objectives and
Clinical Relevance, Biological
Confounds, Data-Sharing and
Meta-Analysis of the Existing
Data, and Contributions From
PET

Statistics
Univariate analysis Mixed effect multilevel GLM Multi-scale adaptive GEE, Sand-

wich estimator
Statistical Analysis

Multivariate analysis MGLM Machine learning (SVM,
response prediction, GCP
dose/response-prediction)

Statistical Analysis , Data-Shar-
ing and Meta-Analysis of the
Existing Data

Statistical thresholding FDR, cluster-correction, TFCE Permutation testing Statistical Analysis
Covariates of interest
Structured noise Anatomical correlates of Physiol-

ogy and motion
Structured Noise and Artifact

Removal
Psychophysical states Eyes open/close Anxiety, arousal, physiological

rates
Biological Confounds , Struc-

tured Noise and Artifact
Removal

Circadian phases Control time of day Collect blood/saliva samples Biological Confounds
Age and sex Control for variations in age and

sex group analysis
Include anatomical MRIs as a

covariate in group analysis
Biological Confounds
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interventions will come from combining different but
highly complementary types of information gleaned dur-
ing the exact same time frame from the two techniques.
Such studies have only recently become feasible. For
example, in a recently reported study hybrid PET/MRI
has been used to assess receptor occupancy variations and
BOLD variations using different 5-HT1a agonists, in order
to evaluate whether it is possible to target different cellular
pathways using molecules with similar receptor targeting-
properties, but slightly different binding which will affect
molecular/pharmacological responses [Vidal et al., 2016].

Hybrid PET/MRI will also be critical for advancing both
kinetic modeling for PET, and by extension PK/PD model-
ing for fMRI. Both PET and PK/PD modeling depend on
accurate assessment of the arterial input functions (AIF)
for full quantification of tracer kinetics or pharmacokinet-
ics. In PET studies, this is typically obtained from arterial
blood sampling, an invasive, cumbersome and often inac-
curate approach. To address this problem, Su et al. [2016]
have developed and validated an image-derived AIF
(IDAIF) estimation technique to simultaneously quantity
brain hemodynamic parameters, by acquiring a TOF MRA
in the same anatomical space as the PET data in order to
assess image-derived time-activity curves in arterial
regions of interest [Su et al., 2016].

Such interventions are, again, only beginning to be
reported. However, by drawing on the strengths of fMRI
(high spatial/temporal resolutions) and of PET (high sensi-
tivity to even limited signal changes, access to a large vari-
ety of highly specific ligands), combined PET/MRI studies
have the potential to bring pharmacological intervention
studies to a new level of sophistication.

CONCLUSIONS

This survey provides compelling evidence for applicabil-
ity of the pharma-RSfMRI method in studying neurochem-
istry. Animal studies corroborate the viability of these
methods in pharmacological research, but the ultimate
goal of PK/PD modeling hinges on further reliability and
reproducibility tests, characterizing confounding factors
that determine the interpretability of RSfMRI biomarkers
and establishing meaningful effect size. This review illus-
trates the great degree of heterogeneity in data acquisition,
experimental and analytical designs, statistical analysis
and modeling of existing reports, and highlights the need
for further research and development to create a standard-
ized framework for data acquisition and analysis of phar-
macological studies. We share recent concerns about
validity and reliability of fMRI studies, and emphasize the
fact that most existing statistical analyses methods are
oblivious to nonstationarity of functional networks, and
complex dynamics of regionally heterogeneous neuro-
chemical modulation of the neuroimaging signals. We
have provided a summary table of the basic and advanced
options for design and execution of pharma-RSfMRI

studies. To have these many options is itself a limitation in
terms of what the optimum approach could be. However,
the minimum requirements for such studies should
include: (1) Placebo-controlled, repeated measures, and
cross-over design; (2) multimodal data acquisition includ-
ing data to characterize cerebral blood flow, and brain
anatomy (myelin, and cerebrovascular architecture); (3)
diligent monitoring of physiological pulses during the
MRI acquisition as well as recording of somatosensory
and awakeness states; (4) studying the impact of prepro-
cessing and noise-regression residuals on statistical infer-
ence tests; (5) permutation testing of a multivariate
parameter space.

In conclusion, we emphasize the necessity of collabora-
tive efforts in at least two areas:

First, the community (including pharmaceutical indus-
try) must invest into developing practical and methodo-
logical frameworks that promote and facilitate data-
sharing and allow for meta- and mega-analyses of existing
pharma-RSfMRI data. Such a framework will also enable
the community to evaluate and optimize different prepro-
cessing and modeling pipelines. Only within a standard-
ized data-processing framework would it be possible to
investigate the commonality and differences sensitivity of
different biomarkers to different drug classes.

Second, the community must adopt a set of standard-
ized basic practices for data acquisition, which takes
advantages of the state-of-the-art imaging technologies for
acquiring multispectral and quantitative MRI data, as well
as various metabolic, physiological and psychometric sam-
ples. A rich multimodal data (for different drug types) can
be explored using multivariate and univariate analysis
methods, to answer a range of questions about the effect
size, specificity, reliability and, most importantly, interpre-
tation of the biomarkers. It can also help us investigate
between-subject variations in response to the same drug.

Collaborations between neuroimaging methodologists
and clinical neuropharmacologists over such experiments
will be mutually beneficial. To develop and validate non-
invasive methods and biomarkers for studying drug
effects on the brain will also open a window of opportuni-
ty to study the chemical underpinnings of healthy brain
development and aging, with implications for clinical
diagnostics and interventions.
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