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IX 
 

SUMMARY 

Clopidogrel, prasugrel, and ticagrelor are antiplatelet agents used for the treatment of acute 
coronary syndromes. Clopidogrel is known to improve endothelial function in patients with 
coronary disease but little is known about either the more potent thienopyridine prasugrel, or 
the irreversible P2Y12 inhibitor ticagrelor. The ability of clopidogrel to undergo S-nitrosation is 
recognised, and the thienopyridines’ ability to form S-nitrosothiols (RSNO) has been 
confirmed in vitro, a finding of significant interest given the potent anti-aggregatory and 
vasomodulatory properties exhibited by S-nitrosothiols. 

This study sought to investigate firstly, the effect of co-administration of oral nitrates and 
proton pump inhibitors on NO metabolites in patients treated with clopidogrel. Secondly, the 
effect of acute and chronic prasugrel treatment on NO metabolite formation was 
investigated, with particular emphasis on SNO bio-synthesis in-vivo. This lead to further 
interest in ticagrelor which, unlike the thienopyridines, lacks a free thiol group, to examine 
the effect of changing pH on its ability to dissolve, react and inhibit platelets, and ultimately 
establish whether ticagrelor could form RSNO. 

Ozone-based chemiluminescence techniques were employed to measure the principal NO 
metabolites in blood samples, and platelet aggregation was measured using multiple 
electrode aggregometry. 

The ability of clopidogrel and prasugrel to form RSNO is demonstrated both in vitro and in 
vivo. An acute rise in plasma RSNO levels occurs following a loading dose of prasugrel in 
patients with coronary disease. 

Ticagrelor’s platelet inhibitory response to ADP was found to decrease after lowering of the 
pH in vitro. However in the presence of nitrite and decreasing pH, it readily formed ticagrelor-
induced RSNO which resulted in augmented platelet inhibition compared to ticagrelor alone. 

These are exciting and novel findings with the potential to shape both our understanding of 
RSNO, and the pleiotropic effects of these commonly prescribed anti-platelet drugs.   
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1 GENERAL INTRODUCTION 

 

1.1 Cardiovascular disease  

Cardiovascular disease (CVD) is caused by disorders of the heart and circulatory system. 

The main forms of CVD are coronary heart disease (CHD) and cerebrovascular disease 

(stroke). The term also encompasses hypertension and peripheral artery disease as well as 

rheumatic heart disease, congenital heart disease and heart failure1. CVD causes over 4 

million deaths in Europe and 1.9 million deaths in the European Union (EU) every year and 

is responsible for 47% of all deaths in Europe. It is the main cause of death in women in all 

European countries and the main cause of death in men in all but 6 countries2. By 2010, it 

was estimated that CVD was no longer responsible for the majority of deaths just in 

developed countries but had also become the leading cause of death in developing 

countries1.  

Furthermore, CHD is the United Kingdom’s biggest single killer responsible for an average of 

200 deaths per day, resulting in an estimated cost of £19 billion per year due to premature 

death, hospital treatment, prescriptions, and lost productivity3. These figures highlight the 

scope of the problem, and this is despite decreases in the CVD mortality rate across Europe 

over the last few decades following huge government expenditure and education 

programmes aimed to modify population behaviour. The prevalence of some of the medical 

risk factors for CVD, including type 2 diabetes mellitus and obesity, has increased, and there 

are already signs that some of the beneficial changes achieved in terms of risk factor 

modification such as dietary choice, smoking and physical activity, are no longer being 

maintained.  

The burden of cardiovascular disease therefore poses a significant threat in view of its 

attendant death, disability, and social and economic costs on a worldwide scale. Research in 
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this field therefore plays an integral role allowing us to better understand the underlying 

mechanisms of CVD and establish strategies to aid its prevention and treatment. 

  

1.2 Vascular endothelium 

Fundamental to vascular health is an intact endothelium. The current view that the 

endothelium is a dynamic, heterogeneous organ with vital synthetic, secretory, metabolic, 

and immunologic functions evolved from work dating back to the 1950s4. Endothelial cells 

form the inner lining of all blood vessels, the structural and functional integrity of these cells 

being imperative for the maintenance of vascular homeostasis and inflammatory status. The 

total endothelial cell (EC) surface in an adult human comprises approximately 1 to 6 × 1013 

cells and weighs approximately 1 kg with a surface area of approximately 1 to 7 m2.5  

The endothelium essentially serves as a physical barrier. However, endothelial cells also act 

as a semipermeable layer regulating the transfer of molecules and controlling important 

functions in vascular homeostasis, co-ordinated by the release of various hormones, 

neurotransmitters and vasoactive factors. Imbalance in the production of these mediators 

can lead to dysfunction of the endothelium and to compromised vessel responsiveness.  

Furthermore, the endothelium is involved in haemostatic processes, platelet activation and 

aggregation, inflammation and immune modulation, vascular permeability, vascular smooth 

muscle cell proliferation and angiogenesis. Phenotypic variation exists between endothelial 

cells in different parts of the vascular tree, resulting in cells from different locations 

expressing different markers and also generating different responses to the same stimulus. 
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Figure 1: Schematic highlighting the important known secretory/expression products of endothelial cells 
relating to vessel physiology. (PGI2 – Prostacyclin, tPA – Tissue Plasminogen Activator, TXA2 – 
Thromboxane A2, PAF – Platelet Activating Factor, PAI – Plasminogen Activator Inhibitor, LDL – Low 
Density Lipoprotein, PDGF – Platelet Derived Growth Factor, EDGF – Epidermal Derived Growth Factor, 
FGF – Fibroblast Derived Growth Factor, IGF – Insulin Like Growth Factor, TGF-b – Transforming Growth 
Factor Beta, GM-CSF – Granulocyte-Macrophage Colony-Stimulating Factor, G-CSF – Granulocyte-
Colony Stimulating Factor, IL – Interleukin, LT – Leukotriene, MCP – Monocyte Chemoattractant Protein, 
MHC – Major Histocompatibility Complex, CAM – Cell Adhesion Molecule, PGE2 – Prostaglandin E2, 
EDHF – Endothelium Derived Hyperpolarising Factor, ACE – Angiotensin Converting Enzyme, TX – 
Thromboxane, EDCF – Endothelium Derived Contracting Factor)   
Adapted from 

6
. 

 

1.2.1 Anatomy of the vasculature 

The vascular wall is made up of three layers; the tunica intima (inner layer) where 

endothelial cells lie, the tunica media (middle layer) and the tunica adventitia (outer layer). 

The structure and phenotype differs depending on the vessel7, but essentially endothelial 

cells are thicker and more continuous in arteries and veins than they are in capillaries. 

Beyond this, the responses to stimuli differ not only between different vascular beds but 

even within the same bed8.  
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Figure 2: Structure of an artery. The artery wall consists of three layers as illustrated. The tunica 
adventitia is the strong outer layer consisting of connective tissue, collagen and elastic fibres. The 
middle layer is the tunica media which consists of smooth muscle and elastic fibres. The inner layer is 
formed by the tunica intima which lies in direct contact with the blood.  

 

Arteries can be subdivided depending on where they lie within the arterial tree. The largest, 

called conducting arteries, have the most elastic tissue allowing them to cope with the blood 

pressure associated oscillatory changes induced by ventricular contractions, and include the 

aorta, pulmonary artery and carotid artery. Conducting arteries branch into conduit arteries 

such as the brachial, radial and femoral which direct blood to specific regions of the body 

before dividing further into resistance arteries. Resistance arteries form part of the 

microcirculation, and due to their predominance of smooth muscle cells and highly 

innervated sympathetic nerve supply, have the ability to finely regulate blood flow, and are 

therefore responsible for organ tissue perfusion.  

Capillaries also form part of the microcirculation, and due to the presence of fenestrations 

and a single layer of endothelial cells, diffusion between tissue and blood is optimised 

allowing enhanced exchange of metabolites and gases. Gaseous exchange can continue as 

metabolite-rich blood flows into venules before feeding into peripheral veins and ultimately 

back to the heart9.  
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1.2.2 Maintenance of vascular tone 

The importance of the endothelium was initially recognized by its effect on vascular tone. 

This effect is achieved by production and release of several vasoactive molecules 

comprising vasodilatory factors such as nitric oxide (NO), prostacyclin (PGI2) and 

endothelium derived hyperpolarising factor (EDHF), and vasoconstrictive factors such as 

thromboxane (TXA2) and endothelin-1 (ET-1), discussed in more detail below. The 

endothelium also responds to and modifies other circulating vasoactive mediators including 

bradykinin and thrombin. The maintenance of vascular tone is critical to the balance of tissue 

oxygen supply and metabolic demand, and is also involved in remodelling vascular structure 

and maintaining long-term organ perfusion10. 

   

Substance 
Principle 

Effect 
Other Effects Secretion Compound 

Precursor 
Compound 

NO Vasodilation 

Maintain vessel tone  

 

Inhibits leukocyte 

adhesion  

 

Inhibits platelet 

adhesion + activation 

 

Promotes platelet 

disaggregation 

 

Inhibits smooth 

muscle cell migration 

+ proliferation 

Paracrine/Constitutive 

Induced by 

 thrombin, 

 ADP 

 bradykinin, 

 substance P 

 muscarinic 

agonists 

 shear stress 

 strain 

 cytokines 

Heterodiatomic 

free radical 

 
L-arginine 

PGI2 Vasodilation 
Retard platelet 

aggregation/ deposition 

Paracrine/Induced at 

sites of vascular 

perturbation 
Eicosanoid  Arachidonic acid 

PAF TXA2 Vasoconstriction 
Promote leukocyte 

adhesion Juxtacrine/Induced Phospholipid Arachidonic acid 

EDHF Vasodilation 
Role in tissue perfusion 

and blood flow 

Dependent on 

potassium channel 

activation 

Various (see 

below) 

Arachidonic acid 

and others 

ET-1 Vasoconstriction 

Mitogen for smooth 

muscle cells 

 

Paracrine 

Induced by 

 hypoxia 

 shear stress 

 ischaemia 

Amino acid 

Peptide 
Preproendothelin-1 

 

 
Table 1: Principal regulatory compounds synthesised by the endothelium, their effects on the 
vasculature and other processes, their mode of secretion, and the nature of their chemical composition 
and precursor compounds. Adapted from

11
. 
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1.2.2.1 Nitric Oxide 

Initially termed endothelium-derived relaxing factor, pioneering experiments first performed 

over 30 years ago identified this substance to be nitric oxide (NO)12-14. NO is a free gaseous 

signalling molecule with many different functions that is involved in the regulation of the 

cardiovascular, nervous and immune system. NO acts as a major endogenous vasodilator, 

countering the vasoconstrictor effects of the sympathetic nervous system and renin-

angiotensin system. It is the smallest signalling molecule known and is produced by three 

isoforms of NO synthase (NOS), all of which utilise l-arginine and molecular oxygen as 

substrates.  Neuronal NOS (nNOS), also known as NOS I, is a constitutively expressed low-

output NOS, the prototypical enzyme being present in neurons15. Inducible NOS (iNOS), or 

NOS II, is a high-output NOS whose expression is induced by cytokines, and typically 

expressed by activated murine macrophages16. Endothelial NOS (eNOS) or NOS III, is also 

a low-output NOS that is constitutively expressed, and predominantly found in endothelial 

cells17.  

Additional cofactors are required to synthesise NO and these include reduced nicotinamide-

adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin 

mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH4)
18. 
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Figure 3: Diagram showing NOS monomer and associated NO cofactors. Each monomer is composed of 
an N-terminal oxygenase domain and a C-terminal reductase domain. A zinc (Zn) ion holds each subunit 
together, bound by two cysteines from each oxygenase domain. Calmodulin (CaM) is required for 
activation. The reductase domains, which supply electrons for the NOS reaction, contain two redox-
active groups, Flavin Adenine Dinucleotide (FAD) and Flavin Mononucleotide (FMN). Nicotinamide 
Adenine Dinucleotide Phosphate (NADPH) binds and passes an electron to FAD and then onto FMN. 
5,6,7,8-Tetrahydrobiopterin (BH4) and Heme (Fe) are also involved as redox active groups.  

  

All three NOS isoforms bind calmodulin, require haem for dimerisation19 and have 

physiological and pathophysiological relevance in the cardiovascular system but eNOS is 

arguably the most important enzyme of the three in the vasculature. iNOS contains 

irreversibly bound calmodulin, making it largely independent of calcium, whereas activation 

of eNOS and nNOS is via elevation of intracellular calcium followed by the subsequent 

binding of Ca2+/Calmodulin20.  

Intracellular calcium levels play a pivotal role in eNOS activation and this process of calcium 

regulation is referred to as store-operated Ca2+ entry or capacitative Ca2+ entry21. Inactive 

eNOS is bound to the protein caveolin, located in membrane invaginations called caveolae. 

Elevated levels of intracellular calcium lead to activation of eNOS by releasing it from 

caveolin whereas reduced intracellular calcium causes dissociation of the calcium-

calmodulin complex from eNOS resulting in re-attachment to caveolin22.  
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Figure 4: Simple schematic demonstrating NO generation. Nitric oxide synthases, of which there are 
three isoforms, convert arginine into citrulline using oxygen and NADPH as co-factors. This process 
leads to the production of nitric oxide. NADPH is the reduced form of NADP. 

 

Whilst short term NO release is related to intracellular calcium levels, other mechanisms 

exist once calcium levels are depleted including eNOS phosphorylation via protein kinases23, 

specifically protein kinase A and cGMP-dependent protein kinase II. Shear stress from blood 

flow through the vasculature can also induce eNOS phosphorylation via protein kinase A and 

protein kinase B (Akt)24,25 but it can also lead directly to increased intracellular calcium by 

several mechanisms including the carriage of blood borne agonists allowing attachment to 

and stimulation of endothelial cell receptors, increased activation of G-proteins which 

participate in calcium signalling, and by increased permeability of the cell membrane to 

extracellular Ca2+ upon exposure to flow26. 

Even before EDRF had been identified as NO, Murad’s group had shown that both NO and 

nitrovasodilators such as sodium nitroprusside activate soluble guanylyl cyclase (sGC) to 

effect smooth muscle relaxation and vasodilatation27.  NO synthesis via eNOS is stimulated 

by various receptor agonists and by shear stress, but importantly is produced from the 

vascular endothelium under basal conditions. From the endothelium, NO diffuses into 

adjacent smooth muscle cells where it binds to sGC resulting in increased conversion of 

GTP to cyclic guanosine 3’-5’ monophosphate (cGMP) resulting in decreasing smooth 
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muscle tension28,29. As mentioned above, NO which diffuses into the vascular lumen is key 

to the maintenance of vascular homeostasis. The NO agonists are typically calcium 

mobilising drugs and exert their effect by increasing calcium availability from the 

endoplasmic reticulum triggering the release of eNOS from caveolin; they include bradykinin, 

acetylcholine, adenosine di-phosphate, adenosine tri-phosphate and thrombin30. The release 

of NO by endothelial cells can be up-regulated by a variety of factors including oestrogens, 

insulin, adiponectin, exercise and dietary factors such as chronic intake of ω3-unsaturated 

fatty acids. Down-regulation occurs secondary to oxidative stress, certain hormones 

including melatonin and long term exposure to aldosterone, smoking, ageing, obesity, sleep 

apnoea, and oxidised low-density lipoproteins amongst others31. 

Other mechanisms exist to enable vasodilation, but NO release is critical to maintaining 

vasodilator tone, and as such has an important role in blood pressure regulation, as 

demonstrated by administration of an NO antagonist such as LG monomethyl-L-arginine (L-

NMMA) which results in a dose-dependent increase in blood pressure32.  
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Figure 5: Vascular smooth cell relaxation. Nitric oxide formed via endothelial nitric oxide synthase 
(eNOS) acts downstream reducing platelet adhesion, decreasing leukocyte adhesion, inhibiting smooth 
muscle proliferation and migration, and inducing vasodilation. In addition, acetylcholine, adenosine 
triphosphate, adenosine, bradykinin, substance P and histamine all act on different receptors to generate 
downstream prostacyclin, which induces vasodilation and platelet inhibition. The release of Prostacyclin 
and NO generates Cyclic Adenosine Monophosphate (cAMP) and Cyclic Guanosine Monophosphate 
(cGMP) respectively which, through alteration of calcium/calmodulin binding, act on myosin light chain 
kinase (MLCK) resulting in smooth muscle cell relaxation. This is achieved through activation of Protein 
Kinase A (PKA) and Protein Kinase G (PKG), both cyclic nucleotide dependent, which result in 
vasodilatation by decreasing intracellular Ca

2+
.  (ATP – Adenosine Triphosphate, GTP – Guanosine 

Triphosphate) Adapted from 
33

. 
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1.2.2.2 Prostacyclin 

Even before the discovery of nitric oxide, prostaglandins (PG) were first identified as 

endothelium-derived vasoactive paracrine substances in 197634. We now know that the 

prostanoids, comprising prostaglandins and thromboxane A2 form a group of bioactive 

substances which work together to modulate vascular tone and platelet activity under both 

physiological and pathophysiological conditions. Arachidonic acid (AA), the most common 

prostaglandin precursor, is released from extracellular membrane phospholipids and 

hydrolysed by the enzyme phospholipase A2 (PLA2) and then modified by cyclo-oxygenase 

enzymes to form an intermediate precursor prostaglandin G2 (PGG2) via the addition of two 

oxygen (O2) molecules. Prostaglandin H2 (PGH2) is subsequently formed by the actions of 

peroxidase enzyme, releasing a single oxygen molecule. All prostanoids are then derived 

from this parent compound PGH2.  

Prostacyclin is the major metabolite of arachidonic acid produced in endothelial cells by the 

action of prostacyclin synthase on PGH2, and is given the eicosanoid nomenclature PGI2 

(prostaglandin I2). Besides PGI2, the other principal bioactive prostanoids generated in vivo 

include prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), prostaglandin F2α (PGF2α), and 

thromboxane A2 (TXA2), all formed via their respective synthase enzymes34,35.  

 



Page | 12  
 

 

  

Figure 6: Prostaglandin pathway. Prostaglandins and thromboxane A2 (TXA2), collectively termed 
prostanoids, are formed when arachidonic acid, is released from the plasma membrane by 
phospholipases and metabolised by the sequential actions of PGG/H synthases or by cyclo-oxygenase 
(COX) and their respective synthases to form prostaglandin G2 and prostaglandin H2. There are then 4 
principal bioactive prostaglandins in vivo: Prostacyclin (PGI2), Prostaglandin E2 (PGE2), Prostaglandin D2 
(PGD2) and Prostaglandin F2α (PGF2α). (VSMCs = vascular smooth muscle cells). Adapted from 

36
. 

 

The conversion of AA into PGH2 is catalysed by both cyclo-oxygenase enzymes; COX-1 is 

present in most cells including endothelial cells and its expression is therefore generally 

considered constitutive whereas expression of COX-2 is driven by damage to the 

endothelium or following exposure to inflammatory cytokines37, and it is predominantly COX-

2 that is responsible for the generation of PGI2 within the systemic and pulmonary 

circulations in vivo38. Unstable at physiological pH it has a half-life in vivo of less than 2 

minutes and as a result, rapidly breaks down into 6-keto-prostaglandin F1α (6-keto-PGF1α), 

an inactive hydration product39.  
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Released partly in response to endothelial vasodilator agonists such as acetylcholine, and 

shear stress40,41, PGI2 exerts its effect through a seven-transmembrane-spanning G-protein 

coupled receptor (GPCR) known as the IP receptor (International Union of Pharmacology 

nomenclature). The human prostanoid IP receptor is functionally coupled to a signalling 

pathway in both smooth muscle cells and platelets that involves stimulation of intracellular 

cyclic adenine monophosphate (cAMP) via adenylyl cyclase42. Cyclic AMP activates protein 

kinase A in the same way as it does for NO leading to smooth muscle cell relaxation. In 

contrast to NO, it does not contribute to maintenance of basal tone in large conduit 

arteries43, but it has been shown that PGI2 can adopt a more compensatory role when NO 

bioavailability is reduced, typically in patients with endothelial dysfunction44,45. There is also 

some evidence that suggests PGI2 effects on the vasculature might be mediated by the 

PPARδ pathway46. 

The primary function of PGI2 is as an inhibitor of platelet aggregation but it is also a very 

effective vasodilator, vessel homeostasis being maintained by the balancing of its actions 

with thromboxane A2. Amongst its additional physiological effects are inhibition of vascular 

smooth muscle cell proliferation47, reduction of pulmonary blood pressure and bronchial 

hyper-responsiveness48, and regulation of renal blood flow, glomerular filtration rate, and 

renin release49. 

 

1.2.2.3 Thromboxane A2 

The two prostanoids PGI2 and thromboxane A2 (TXA2) act in synergy to maintain vascular 

function, so in contrast to PGI2, TXA2 causes platelet aggregation and vasoconstriction. The 

existence of TXA2 was first demonstrated in platelets50, and as illustrated above, it is 

synthesised by the action of thromboxane synthase on PGH2, following COX-1 conversion of 

arachidonic acid51. It is an unstable AA metabolite with a half-life of about 30 seconds at 
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37°C and pH 7.4, resulting in non-enzymatic degradation into biologically inactive 

thromboxane B2 (TXB2). 

TXA2 activity, mediated through the thromboxane receptor (TP), couples with G proteins to 

regulate several effectors, including phospholipase C, small G protein Rho, and adenylyl 

cyclase52. Activation of TP mediates several physiological and pathophysiological 

responses, so besides platelet adhesion/aggregation and smooth muscle contraction and 

proliferation, TXA2 plays a role in allergies, modulation of acquired immunity, atherogenesis, 

neovascularisation, metastasis of cancer cells, and activation of endothelial inflammatory 

responses53. 

 

1.2.2.4 EDHF 

Endothelium dependent relaxation is not fully explained by NO synthase and cyclo-

oxygenase pathways, implying the existence of an additional pathway54. This resulted in the 

discovery of the endothelium derived hyperpolarising factor (EDHF), a term first coined in 

1987 to describe a hypothetical factor that caused endothelium-dependent myocyte 

relaxation that was not associated with either NO or prostacyclin55. However, the term is 

misleading as it has been found to represent a variety of different mediators, with even NO 

and prostacyclin having the ability to hyperpolarise vascular smooth muscle cells. EDHF 

seems to play a relatively minor part in the vasoactive responses of conduit vessels, its main 

responsibility lying in endothelium-dependent vasodilator response in resistance arteries56.  

There are two principle mechanisms by which EDHF-induced hyperpolarisation is mediated, 

either via the release of diffusible mediators in response to a number of stimuli including 

endothelial agonists such as acetylcholine, bradykinin and shear stress, or directly in 

response to the increase in cytoplasmic Ca2+ concentrations triggered by endothelium 

dependent vasodilators. In most arteries, the latter leads to activation of intermediate (IKCa) 
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and small (SKCa) conductance calcium-activated potassium channels located in the 

endothelium which release potassium ions into the sub-endothelial space57,58, resulting in 

endothelial cell hyperpolarisation. 

Transmission of this hyperpolarisation to vascular smooth muscle cells occurs directly and is 

therefore more appropriately termed endothelium-dependent hyperpolarisation (EDH). 

Heterocellular coupling between endothelial and smooth muscle cells allows propagation of 

the hyperpolarisation current via myo-endothelial gap junctions59. In fact, expression of gap 

junctions and the occurrence of EDH-mediated responses is very closely correlated60. 

Alternatively, K+ ions which have accumulated within the intracellular space following 

activation of the endothelial IKCa and/or SKCa potassium channels efflux towards the 

extracellular space. Depolarisation and contraction would be expected as predicted by the 

Nernst equation, but even a small increase in extracellular potassium concentration causes 

activation of both inward rectifying potassium (KIR) channels and the Na+/K+ pump resulting 

in hyperpolarisation57,61.  These two mechanisms of direct EDH-induced vasodilation can 

occur simultaneously or sequentially but may also act synergistically.  

It is important to clarify again that even in the presence of inhibitors to NO and prostacyclin, 

NO can still itself lead to vascular smooth cell hyperpolarisation through the process of 

potassium channel activation62, either due to residual production from endothelial cells or 

from NO stores including S-nitrosothiols63, a concept that will be discussed later. 

Furthermore, hyperpolarisation secondary to the opening of potassium channels can also 

occur in response to prostacyclin. Large conductance calcium-activated potassium channels 

(BKCa), voltage-activated potassium channels (KV) and/or inwardly rectifying potassium 

channels (KIR) can all be associated with prostacyclin-induced relaxation64. 
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Besides hyperpolarisation induced by myo-endothelial gap junctions and K+ ion 

accumulation, EDHF is believed to comprise a selection of other endothelial factors including 

hydrogen peroxide, C-type natriuretic peptide (CNP), and arachidonic acid (AA) metabolites 

such as epoxyeicosatrienoic acids (EETs), 15-hydroxy-11,12-epoxyeicosatrienoic acids (15-

H-11,12-EETA) and 11,12,15-trihdyroxyeicosatrienoic acid (THETA)65.  

 Hydrogen peroxide is constitutively expressed in some arteries but its effect varies 

with the vascular bed. It is generated from the hydration of superoxide by superoxide 

dismutase and accounts for a small part of the relaxation secondary to endothelial 

agonists66. 

 CNP, triggered by endothelial agonists is constitutively expressed in endothelial cells 

and relaxes smooth muscle cells by increasing cyclic GMP levels67,68. 

 EETs are cytochrome P450 (CYP) metabolites of AA. CYP2C and CYP2J are 

constitutively expressed in endothelial cells. They are synthesised by the 

endothelium and induce hyperpolarisation by activating large conductance calcium-

activated potassium channels (BKca)
69. 

 15-H-11,12-EETA and 11,12,15-THETA are endothelial 15-lipoxygenase (15-LO) 

metabolites of AA that mediate relaxation in response to acetylcholine in several 

arteries through activation of smooth muscle cell SKCa channels as well as by other 

less well characterised mechanisms. This 15-LO pathway represents an inducible 

EDHF70. 

The contribution of each of these mediators depends on the species and/or the vascular bed 

studied.  
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Figure 7: Endothelium Derived Hyperpolarising Factor (EDHF) Signalling Mechanisms. Shear stress or 
endothelium-dependent agonists including acetylcholine and bradykinin stimulate EDHF-dependent 
vascular relaxation. Mediators include: 1) electrical transmission through myoendothelial gap junctions, 
2) Potassium (K) ions, 3) C-type natriuretic peptide (CNP), 4) hydrogen peroxide (H2O2), 5) 
epoxyeicosatrienoic acids (EETs) and 6) 15-lipoxygenase-1 (15-LO-1) metabolites, 15-H-11,12-EETA and 
11,12,15-THETA.  IKCa = intermediate conductance calcium activated potassium channels, SKCa = small 
conductance calcium activated potassium channels Kir = inward rectifying potassium channels. BKCa = 
large conductance calcium activated potassium channels, Em = membrane potential. Adapted from 

70
. 

 

The relative involvement of EDHFs and EDH in the development of endothelial dysfunction 

remains relatively unknown and comprehensive investigations are still lacking. Nevertheless, 

alteration of EDHF-mediated responses has been reported with atherosclerosis, 

hypercholesterolaemia, heart failure, hypertension, eclampsia, diabetes, sepsis and ageing.  

 

1.2.2.5 Endothelin-1 

The endothelin (ET) family comprises four isoforms, ET-1, ET-2, ET-371, and ET-4 

(vasoactive intestinal constrictor)72 each made of up 21-amino acid peptides. Endothelin-1, 

the predominant isoform, is a potent vasoconstrictor synthesised and released from the 
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endothelium throughout the human vasculature. Prepro-endothelin mRNA is translated to 

form prepro-endothelin-1 which is cleaved to form Big ET-1 and this in turn is processed into 

endothelin predominantly by the action of endothelial converting enzyme73. ET-1 is unique 

amongst constrictor peptides in being released from human coronary artery endothelial cells 

via two distinct secretory pathways, a regulated pathway where release from storage in 

Weibel-Palade bodies occurs in response to external stimuli, and continuously released via a 

constitutive secretory pathway74. 

Once formed, vasoactive endothelin acts on Gi-protein–coupled receptors of which there are 

two in mammals, ETA found on vascular smooth muscle cells and ETB found predominantly 

on endothelial cells75,76.   The binding of ET-1 to ETA receptors activates phospholipase C, 

leading to accumulation of inositol triphosphate and intracellular calcium77, resulting in 

vasoconstriction with an unusually long duration of action when compared to other 

endogenous vasoactive compounds78. Conversely, ETB activation results in vasodilation 

secondary to release of NO and PGI2
79,80, and is also responsible for mediating the 

clearance of circulating ET-1 via the lungs81. 

ET-1 effects include vasoconstriction, cell growth, cell adhesion, and thrombosis, 

predominantly via activation of ETA receptors. As a result of these effects, ET-1 has been 

implicated in the pathogenesis of hypertension, coronary artery disease, pulmonary 

hypertension, and chronic heart failure. 

Blockade of ET receptors has shown promise as a therapeutic target in both experimental 

and clinical studies involving a wide variety of diseases including hypertension, 

atherosclerosis, heart failure, and pulmonary hypertension. It has been demonstrated that 

selectively inhibiting ETA receptors does result in vasodilation in patients with endothelial 

dysfunction but dual blockage of both ETA and ETB receptors may be superior 82. A non-

selective ET-1 receptor antagonist (bosentan) is currently used in the treatment of 

pulmonary hypertension. 

http://www.cvpharmacology.com/clinical%20topics/hypertension.htm
http://www.cvpharmacology.com/clinical%20topics/heart%20failure.htm
http://www.cvpharmacology.com/vasodilator/ETblockers.htm
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1.2.3 Haemostasis 

The intimal surface of healthy endothelium is both anticoagulant and antithrombotic. A 

careful balance must be maintained between pro-coagulant and anticoagulant factors to 

ensure haemostasis, so a normally functioning endothelium allows platelets to circulate 

without adhesion to the vascular wall. Fundamental to this process is the production of the 

major antiplatelet agents prostacyclin and NO by the endothelium83. 

Prostacyclin and NO release are constitutive, but molecules such as bradykinin and 

thrombin that are involved in the coagulation process, and secretion of ATP by aggregating 

platelets, lead to increased expression from endothelial cells. In addition to NO and 

prostacyclin, ectonucleotidases at the endothelial luminal surface act as important regulators 

of haemostasis by hydrolysing ATP and ADP, both potent platelet aggregating agents, into 

AMP and adenosine84.  

There are numerous anticoagulant pathways, the most important in the quiescent state 

being the protein C/protein S pathway. This is initiated when thrombin interacts with the 

endothelial cell receptor thrombomodulin. Protein C is activated but must form a complex 

with protein S (synthesised by endothelial cells) to be effective. It is then able to inactivate 

factors VIIIa and Va which are essential for blood coagulation85. Furthermore, thrombin and 

thrombomodulin form a complex which prevents the former from being able to clot fibrinogen 

or activate platelets86.  

Other important coagulation inhibitory proteins include antithrombin, which is bound to 

glycosaminoglycans on the endothelial cell surface, providing the main site for inactivation of 

active thrombin, and tissue factor pathway inhibitor (TFPI), a Kunitz-type protease inhibitor 

that inhibits the initial reactions of blood coagulation87.  

Cytokine release or vessel injury can upset the balance and tip the endothelium towards a 

pro-coagulant state. Furthermore, activated endothelial cells encourage platelet aggregation 

through the release of von Willebrand factor (vWF) and the lipid mediator platelet activating 
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factor (PAF). ECs are the main source of vWF, which is constitutively secreted into the 

plasma and the subendothelial matrix, and also stored in Weibel–Palade bodies.  

Coagulation in vivo requires the availability of the transmembrane protein tissue factor88. It is 

present on tissue cells beyond the microcirculation and in the adventitia and plaques of 

conduit vessels. It is strongly induced in monocytes-macrophages in inflammation and 

sepsis89, and initiates the extrinsic coagulation pathway by enhancing the proteolytic activity 

of factor VII. This in turn results ultimately in the formation of thrombin from prothrombin. 

Thrombin is an essential effector protease of the coagulation cascade which, in endothelial 

cells causes vWF release, the appearance of P-selectin at the plasma membrane, and 

production of PAF and chemokines. Thrombin signalling is mediated by binding to the G 

protein coupled protease-activated receptors (PAR), and also activates platelets by a similar 

mechanism which will be discussed later in section 1.8.  

Endothelial cells also participate in fibrinolysis through production of tissue type plasminogen 

activator (t-PA), activated by the release of plasmin following fibrin binding. Plasminogen 

activator inhibitor type 1 (PAI-1) is the major plasma inhibitor of t-PA and is constitutively 

produced by endothelial cells, circulating in excess of t-PA. 
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These important pathways are highlighted in the table below. 

Name 
Pro/anti 

thrombotic 
Mechanism 

Proteoglycans Anti 

Negatively charged proteoglycans prevent platelet 

adhesion, some proteoglycans bind to antithrombin 

III which inhibit thrombin activity, dermatan sulfate in 

subendothelium promotes the antithrombotic activity 

of heparin cofactor II 

Protein C Anti Inactivates factor Va and VIIIa 

Thrombomodulin Anti Catalyses the activation of protein C by thrombin 

Protein S Anti Cofactor for action of activated protein C 

Tissue Factor 

Pathway Inhibitor 
Anti 

Binds to VIIa and Xa and inhibits activity of tissue 

factor and extrinsic coagulation pathway 

Ectonucleotidase Anti Degrades platelet-stimulated ADP into AMP 

Platelet Activating 

Factor 
Pro Promotes platelet adhesion to ECs 

Annexin V Anti 

Binds to negatively charged phospholipids and 

inhibits the anchoring coagulation factor to the 

endothelium 

Tissue Plasminogen 

Activator and 

Urokinase 

Anti 
Increase fibrinolytic activity – allows transformation 

of plasminogen into plasmin 

vWF Pro  

Promote thrombosis – binds and stabilises 

coagulation factor VIII, and is a factor required for 

the binding of platelets to exposed extracellular 

matrix components 

NO, PGI2  Anti Suppresses platelet adhesion and activation 

Annexin II Pro 
Binds to t-PA and plasminogen and enhances 

plasmin generation 

 
Table ii: Pro-thrombotic and Anti-thrombotic factors and their mechanisms. Adapted from 

90
.  
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1.2.4 Immunity & Inflammation 

The endothelium also plays a key role in immune and inflammatory reactions through the 

regulation of lymphocyte and leukocyte movement into tissues and extravascular sites of 

inflammation. The main adhesion proteins involved in leucocyte transmigration are the 

selectins, the integrins, the immunoglobulin super-gene family and variants of the CD44 

family. 

 

Figure 8: Schematic illustration of leukocyte extravasation. Following activation of endothelial cells and 
leukocytes pro-inflammatory factors are released. Exposure of cell surface adhesion molecules 
(selectins, ICAM-1/VCAM-1, integrins) leads to leukocyte rolling and leukocyte adhesion. PECAM-1 and 
CD99 are involved in subsequent leukocyte transmigration. (MCP-1 = monocyte chemotactic protein, IL = 
Interleukin, TNF-α = tumour necrosis factor, ICAM = intercellular adhesion molecule, VCAM = vascular 
cell adhesion molecule. PECAM = platelet/endothelial cell adhesion molecule). Adapted from 

91
 and 

92
.  
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The endothelium does not bind leucocytes in the quiescent state but once activated in 

response to cytokines including IL-1, TNFα and lipopolysaccharide93, selectins initiate the 

first stage in leucocyte transmigration, allowing tethering and rolling of the leucocyte on the 

endothelial cell surface94. Specifically, L-selectin is found on most types of leukocytes95, 

whereas E-selectin is specific for endothelial cells96, and P-selectin is found on both 

endothelium and platelets97. 

Integrins are a group of heterodimeric transmembrane glycoproteins. They mediate cell–cell 

and cell–matrix interactions, and those relevant to leucocyte recruitment comprise β1 (VLA 

family) and the β2 integrins98. Their release leads to increased adhesion and subsequent 

promotion of leucocyte flattening and migration along the endothelium, known as diapedesis. 

Extravasation then occurs by migration through endothelial cell junctions resulting in 

attachment/migration on extracellular matrix components. 

The immunoglobulin gene superfamily, comprising T cell receptors (CD4, CD8, CD3 and 

major histocompatibility complex class I and II) and adhesion molecules (ICAM-1, ICAM-2, 

ICAM-3 and VCAM-1), is particularly important in mediating the firm adhesion of neutrophils 

to endothelial cells by acting as ligands for leucocyte β2 integrins99. 

Finally, passage of leukocyte across the endothelium is also regulated by platelet/endothelial 

cell adhesion molecule-1 (PECAM-1), another member of the immunoglobulin superfamily, 

which is expressed on the surface of platelets, endothelial cells, monocytes, and 

neutrophils100. 
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1.2.5 Vasculogenesis & Angiogenesis 

Endothelial cells also play a major role in angiogenesis, and vasculogenesis or angiogenic 

sprouting. Vascular endothelial growth factor (VEGF)101 and its endothelial cell-specific 

receptor, VEGFR2 is critical for vascular formation, initiating the formation of immature 

vessels by vasculogenesis102, which occurs exclusively in the embryo. When the heart starts 

beating, morphogenesis leads to differentiation into arteries, post-capillary venules and 

veins. Angiopoietins then act in the next phase of embryological development, angiogenesis, 

the formation of new blood vessels from pre-existing endothelium, a process which is also 

affected by VEGF. The angiopoietin Ang1, and ephrin B2, ligand for the Eph receptor 

tyrosine kinase family of growth factor receptors, enable remodelling and maturation of this 

initially immature vasculature, at which point Ang1 is required to maintain the stability of the 

mature vasculature103-105. 

 

1.2.6 Neoangiogenesis 

Proliferation of endothelial cells is low in adults, angiogenesis being predominantly limited to 

reproduction and wound healing. However, in the event of solid tumour development and 

metastasis, unregulated angiogenesis ensues resulting in neovascularisation and the 

construction of a new vascular network, activated by numerous angiogenic inducers 

including growth factors, chemokines, angiogenic enzymes, endothelial-specific receptors, 

and adhesion molecules106. 
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1.3 Nitric oxide metabolism 

Nitric oxide is a colourless gas with good water solubility and is an odd-electron species, the 

unpaired electron reducing the bond order to 2.5. NO has paramagnetic properties and its 

chemical structure prevents dimerisation and enhances reactivity with atoms and other free 

radicals.  Despite being a structurally simple free radical it is involved in complex chemistry 

and wide and varied biological actions. It is fundamentally a signalling molecule that is 

synthesised by a number of cell types but because of its reactive nature and very short half-

life in biological systems, has a small sphere of influence of only ∼100 μm from its origin. 

The steady-state concentration of NO is determined by its rate of formation and its rate of 

decomposition. Furthermore, the mode and rate of NO metabolism is dependent on its own 

concentration, diffusion, and the surrounding concentration of other bioreactants107. NO is 

able to diffuse long distances, and particularly at high concentrations can interact with 

molecular oxygen, thiols, and reduced haemoproteins. 

Besides its reaction with O2, several reactive oxygen derived species (ROS), such as 

superoxide anion (O2
−•), hydrogen peroxide (H2O2) and hydroxyl radical (HO⋅) are involved in 

the breakdown of NO, which principally reacts by gaining an electron to form the nitroxyl 

anion NO−, or losing an electron to form NO+, the nitrosonium ion.  

 

1.3.1 NO Metabolism in blood and plasma 

When exposed to molecular oxygen, NO becomes unstable generating various reactive 

nitrogen species. In aqueous solution, auto-oxidation of NO results in formation of nitrogen 

dioxide (NO2) which itself can react with NO to form dinitrogen trioxide (N2O3) or dimerise to 

form dinitrogen tetroxide (N2O4). Hydrolysis of the former leads to the formation of nitrite, 

which in the absence of NO scavengers is the major breakdown product of NO in aqueous 

solutions, whilst the latter hydrolyses to equimolar amounts of nitrite and nitrate.  
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However, because NO breakdown also occurs in the presence of reactive oxygen species 

(discussed further in section 1.5) its half-life and the ratio of its corresponding metabolites in 

aqueous solutions depends on numerous factors including the type and amount of these 

oxygen-derived radicals, pO2, pH, and concentration of transition metals and thiols. 

In blood, NO undergoes many important interactions, amongst these are the reaction with 

oxyhaemoglobin to form methaemoglobin and nitrate, and also the reaction with thiols which 

results in the formation of S-nitrosothiols, such as S-nitrosocysteine and S-nitrosoglutathione 

(GSNO).  The metabolic fate of NO involves metabolism by stepwise oxidation to nitrite and 

ultimately nitrate, but nitric oxide also circulates in plasma complexed in S-nitrosothiol 

species, the principal form being S-nitroso-serum albumin108. It is believed that NO can 

therefore be stabilised, S-nitroso-albumin acting as an intermediate reservoir before transfer, 

termed transnitrosation, to the more reactive and short-lived low molecular weight 

nitrosothiols. These then traverse cellular membranes permitting intracellular access to NO 

target cells109.  

Within the systemic circulation, haemoglobin represents a significant sink for NO110. In fact, 

the endothelium can produce up to 10- to 40-fold more NO than is needed to activate 

guanylate cyclase, but most will still be lost within the vascular compartment111. It is also 

important to note that the haemoglobin derivatives, haemoglobin (Hb), oxyhaemoglobin 

(HbO2) and methaemoglobin (MetHb), all have a different affinity for NO. Without oxygen, 

NO has an affinity for haemoglobin about 1500 times higher than that of CO. 
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Parameter 

 

Molecular 

Wt (g) 

 

Concentration 

(µmol/L) 

 

Half Life 

Nitric Oxide NO 30 0.003-1.0 Plasma 0.05-1 s Blood   

Nitrite NO2
- 46 0.1-0.5 Plasma 110 s Blood 

Nitrate NO3
- 62 30-60 Plasma 5-8 h Blood 

Peroxynitrite ONOO- 62     

Haemoglobin Hb 64 458 2.2x10
3
 Blood   

Albumin Alb 69 900 500 Plasma   

Glutathione Glu 307 20 Plasma 25-45 min  

Cysteine Cys 121 10-30 Plasma   

S-Nitrosoalbumin SNO-Alb 69 029 0.25-7 Plasma 15-40 min  

S-Nitrosoglutathione GSNO 361 0.02-0.2 Plasma 8 min  

S-Nitrosocysteine CysNO 160 0.2-0.3 Plasma <1 min  

Nitrosyl haemoglobin NO-Hb 64 488 0.5(a)-

0.9(v) 

Blood <1 min  

S-Nitrosohaemoglobin SNO-Hb 64 487 0.3(a)-

0.003(v) 

Blood <1 min  

 
Table iii: Table showing a summary of nitric oxide, N-oxides and their predominant bioreactants in 
circulating blood. (a) – arterial, (v) – venous, s = seconds, h = hours, min = minutes.  Adapted from 

112
. 
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The dilator action of endothelium-derived NO, discussed in section 1.2.2.1, contributes to the 

control of basal and stimulated regional blood flow in man113. NO also has a powerful 

inhibitory effect on platelet aggregation and adhesion, via both cGMP-dependent and cGMP-

independent mechanisms, and it also inhibits both inflammatory cell activation and monocyte 

activity114.  

Impairment of the production of NO accounts for many of the abnormalities in vascular 

reactivity that characterise a wide variety of disease states, but the primary role of NO 

arguably lies in its anti-atherothrombotic properties rather than its vasodilator effects, thus 

the impact of decreased NO availability is seen very evidently in conduit arteries as 

atherogenesis.  

 

 

Figure 9: Figure highlighting the many actions of nitric oxide in the cardiovascular system.            
Adapted from 

115
. 

 

In plasma, nitrite primarily derived from the conversion of l-arginine to NO by eNOS116, 

remains stable for several hours, but in blood, depending on the redox conditions can be 
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rapidly oxidised to nitrate. In our laboratory, using similar detection methods to those I have 

utilised in the experiments herein, comprehensive studies were previously undertaken on the 

infusion of nitrite to humans117, with an estimated half-life for nitrite in blood under normoxic 

conditions of 20-22 minutes, which is in good agreement with others118. An alternative 

source of nitrite includes peroxynitrate which can either form nitrosothiols first or decompose 

directly to nitrite and oxygen119. So, although NO detected at the luminal surface of the 

endothelium is unlikely to represent the total NO synthesised in the vascular endothelium, 

there is experimental data to support the measurement of NO oxidation products as a 

marker of total endothelial NO synthesis120,  and the James laboratory has significant 

experience utilising these methods in both healthy subjects and patient cohorts121,122. 

Nitrate levels are a marker for NO metabolism but they are unlikely to be sufficiently 

accurate alone to be used as a direct reflection of eNOS activity or indeed NO formation or 

endothelial dysfunction123. This is due to the fact that levels are influenced by a variety of 

factors, mainly dietary nitrate intake which probably accounts for around 70%124, but also 

saliva formation, bacterial nitrate synthesis in the bowel, denitrifying liver enzymes, 

inhalation of atmospheric gaseous nitrogen compounds, and renal function.  

 

1.3.2 NO metabolism in the gastro-intestinal tract 

Salivary production is responsible for two thirds of the nitrite entering the stomach, the rest 

originating primarily form nutrients in food125. Bacteria in the oral cavity reduce nitrate to 

nitrite dependent on pH, oxygen, and type of bacterial flora with a resultant salivary nitrite 

concentration 30-210 µM and nitrate concentration of 200-600 µM126.  

Upon entering the gastric milieu, nitrite is acidified in the stomach resulting in dimerisation 

and dehydration to form N2O3 which can potentially form NO and NO2. The salivary nitrite 

concentration is directly proportional to the amount of nitrate ingested and it has been shown 

that administration of oral potassium nitrate results in a significant increase in gastric NO 
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concentration127. The remaining nitrite continues into the small intestine where nitrate is 

formed through oxidation.  

Food is not kept in the mouth but chewed and swallowed carrying nitrate through the gastro-

intestinal tract. Nitrate is not absorbed in the stomach but uptake occurs primarily in the 

small intestine. This appears to be an active process with blood then transporting some 

nitrate back to salivary glands. Around 40-45% of the nitrate that passes into the intestines is 

metabolised, the rest filtered in the glomeruli and reabsorbed in the renal tubules prior to 

excretion in urine. The concentration of nitrate in urine is 250–2000 μM, whereas nitrite and 

NO are usually not detectable. 

 

Figure 10: Nitrate-nitrite-nitric oxide pathway. Inorganic nitrates from the diet are absorbed in the small 
intestine, ~25% of which ends up in saliva. Commensal oral bacteria reduces nitrate to nitrite, which once 
swallowed is converted to NO and other nitrogen oxides in the acidic gastric juice. Nitrate and nitrite 
absorbed into blood and can serve as a source of NO in blood and tissue under hypoxic conditions. 
Adapted from 

128
. 
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1.4 S-Nitrosothiols 

1.4.1 Background 

There are a number of species that are capable of stabilising nitric oxide and thus minimise 

its oxidative inactivation. These agents therefore promote the biological actions of nitric 

oxide and one important class is the S-nitrosothiols. It has in fact been suggested that S-

nitrosothiols may, in certain circumstances, be the direct proximate mediator of EDRF-like 

effects108. They are produced by the S-nitrosation of sulphydryl groups (usually cysteine 

thiols), ascribed the general formula RSNO. They occur naturally, having been demonstrated 

initially in human and rabbit plasma108, as well as airway lining fluid where deficiency has 

been linked to severe asthma129,  and in neutrophils, where NO promotes the formation of 

intracellular S-nitrosothiol via activation of the hexose monophosphate shunt130.  

S-nitrosothiol derivatives of amino acids, peptides and proteins are natural products of NO 

metabolism, existing as S-nitroso derivatives of glutathione (GSH), cysteine, haemoglobin, 

BSA, and many other protein or non-protein thiols131. However, they are primarily attached to 

albumin with concentrations initially believed to be in the order of 7 µM in healthy humans. 

They are believed to act as stores of NO which can then be released when needed108,132,133, 

and are involved in many physiological and pathophysiological processes, breaking down to 

release NO and the corresponding disulphide as follows:  

2RSNO → RSSR + 2NO 

Debate has arisen regarding exact plasma levels due to chemical lability, interference of 

nitrite, and inherent errors attributable to the different analytical techniques used for 

measurement, with values ranging from 10 ƞM to 10 µM134-138. 
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1.4.2 Formation 

 

Figure 11: Illustration of the main mechanisms of S-nitrosothiols formation. (NO• = nitric oxide free 
radical, O2 = oxygen, O2

-•
 = superoxide, M = redox metals, ONOO

-
 = peroxynitrite, N2O3/NOx = nitric oxide 

oxides, M-NO = metal-nitric oxide complexes, RS• = thiyl radicals, RS
-
 = thiolate anion, NO

+
 = oxidised 

nitrosonium cation, NO
-
 = reduced nitroxyl anion.  Adapted from 

139
. 

 

There are a number of ways S-nitrosothiols can be formed; the most important, as illustrated 

and described below.  

NO, as a free radical (NO•), reacts primarily with superoxide (O2
-•), oxygen (O2), and redox 

metals. These interactions result in the formation of S-nitrosylating agents including 

peroxynitrite (ONOO-), NO oxides (N2O3/NOx), and metal–NO complexes (M–NO) 

respectively. M-NO complexes also form as a result of the reaction between nitroxyl anions 

and redox metals. Furthermore, NO radicals can react directly with thiyl radicals (RS•) to 

form S-nitrosothiols.  
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Oxidised (nitrosonium cation (NO+)) and reduced (nitroxyl anion (NO-)) forms of NO can 

also act as S-nitrosylating agents. The direct reaction between thiols and NO- is dependent 

on the energy state of NO- and occurs only when NO- is present in the high energy singlet 

state.  

 

1.4.3 Mechanisms of action 

Shortly after the discovery that NO inhibited platelet function, it was identified that 

nitrovasodilator drugs including RSNO compounds could suppress platelet aggregation via 

sGC stimulation140, and cGMP mediated inhibition of platelet adhesion, aggregation, granule 

secretion and fibrinogen binding141-143. 

This primary mode of action is secondary to the NO donor properties of these compounds, 

but other cGMP independent mechanisms also exist, including prevention of thromboxane 

synthesis144, α-actinin nitration145, platelet P2Y12 ADP receptor inhibition146, and S-

nitrosylation147 or altered phosphorylation148 of platelet integrin αIIbβ3. 

Although evidence exists for the role of NO, its direct influence on coagulation and 

fibrinolysis remains relatively unknown and under debate. For example nitrosative stress 

may promote a pro-thrombotic state149 but an anti-thrombotic effect is seen with exposure of 

fibrinogen to GSNO by suppression of fibrin polymerisation150. Furthermore, another 

controversial hypothesis implicates the switching of tissue factor into a coagulation inactive 

form by RSNO compounds151. 

An alternative explanation as to how RSNO compounds exert their effect is cellular 

metabolism, specifically the transfer of NO from extracellular membrane-impermeant RSNOs 

across the plasma membrane of target cells, with cell surface protein disulphide isomerase 

(csPDI) probably representing the most promising mediator of RSNO signalling152. 
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Interestingly, csPDI is known to exist on the external surface of the platelet plasma 

membrane153. 

Cellular uptake of an intact RSNO molecule via a membrane transporter has also been 

suggested. This has typically been shown with smaller RSNO species (cysNO and S-

nitrosohomocysteine) transported via the amino acid transporter system-L (L-AT). The 

process involves extracellular cysteine transnitrosation to allow transporter uptake and 

subsequent intracellular signal transmission154. 

 

1.4.4 Decomposition 

Decomposition of nitrosothiols occurs via several methods and at different rates depending 

on conditions. Firstly, they can be catalysed by Cu+ ions, which can themselves also be 

formed by reduction of Cu2+ ions by thiols155. This results in release of NO, with additional 

production of RS- and Cu+ as depicted below. 

Cu2+    +    RS-                    Intermediate substance (? RSCu-)                Cu+    RS• 

Cu+      +    RSNO                 Intermediate substance                  Cu2+    +    RS-    +    NO 

2RS-                 RSSR 

Indeed, this is the basis of the “2Cs” assay used for nitrosothiols quantification in this thesis 

and described in detail in methods section 2.2.4. 

The type of S-nitrosothiols present determines which of the above pathways is rate-limiting, 

and the quantity of thiol is also critical as it determines whether catalysis of S-nitrosothiols is 

sped up, or slowed down perhaps through formation of Cu2+ complexes155.  

Alternatively, S-nitrosothiols can decompose to release NO via transnitrosation which 

involves the transfer of NO to other thiols156. 
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Enzymatic decomposition has also been reported, specifically g-glutamyl transpeptidase can 

cause breakdown of GSNO to NO in the presence of Cu+ once converted to another less 

stable S-nitrosothiol compound157. 

Importantly, homolytic cleavage of the S-N bond also occurs secondary to decomposition by 

photosensitisers; photolysis of GSNO has been demonstrated at 340 nm and 545 nm with 

release of nitric oxide158,159.  

Other methods comprise homolytic cleavage of the S–N bond to give NO and an alkyl thiyl 

radical secondary to thermal decomposition, and also the presence of ascorbate which leads 

to S-nitrosothiols reduction either through reduction of Cu2+ to Cu+, or directly when, at high 

concentrations, it acts as a nucleophile160,161. 

Although S-nitrosothiols have established NO donor properties and as such potential 

therapeutic applications, it has been shown that their biological effects do not correlate with 

the rate of nitric oxide release in solution, and therefore biological activity cannot necessarily 

be inferred from their rate of decomposition in an experimental buffer162,163. Nevertheless, 

the prospect of their use therapeutically remains appealing, enhanced by the fact they are 

naturally occurring, which would suggest low toxicity. 

   

1.4.5 Clinical Effects 

S-nitrosothiols are not used therapeutically at present, but there is a vast growing library of 

evidence supporting their potential clinical use. This relates to their ability to transport and 

transfer NO, and will therefore be discussed in more detail in section 1.6.4 Endothelial 

Dysfunction – therapeutic targets. 
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1.5 Oxidant stress 

Reactive oxygen species and oxidant stress play a pivotal role in cardiovascular disease and 

endothelial dysfunction.  

Reactive oxygen species (ROS) comprise a family of oxygen-derived molecules produced by 

all aerobic cells164. Small rises in ROS are important in the maintenance of physiological 

functions, as they act as signalling molecules in redox biology, but when produced 

excessively they result in oxidant stress, a harmful process in which biological 

macromolecules including DNA, protein, carbohydrates, and lipids become oxidised.  

Combustion of organic compounds with oxygen by aerobic metabolism allows organisms to 

obtain much more energy than organisms utilising anaerobic processes. However, the 

resultant generation of ROS can damage and destroy cell structures. The most important 

reactive oxygen species include the superoxide anion radical (O2
-•), hydrogen peroxide 

(H2O2) and hydroxyl radical (OH•). Cellular levels of ROS should remain essentially stable so 

long as the balance between constant mitochondrial production of ROS and their continuous 

neutralisation by antioxidant enzymes, such as superoxide dismutases (SOD), catalase, 

glutathione peroxidase, thioredoxins and peroxiredoxins, remains equal. 

Endothelial dysfunction as a result of decreased NO bioavailability may be caused by 

several factors including decreased eNOS expression, reduced substrate and cofactor 

availability for eNOS, alterations in cellular signalling and importantly accelerated NO 

degradation by ROS165.  

Repeated injury to the vascular endothelium as seen in association with many of the 

traditional risk factors for cardiovascular disease including hyperlipidaemia, hypertension, 

diabetes, and smoking, are associated with overproduction of ROS or increased oxidative 

stress166. 
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There are numerous sources of ROS in vascular cells, but the most important are probably 

xanthine oxidase167, NADH/NADPH oxidase168, lipoxygenases, cytochrome p450 and NO 

synthase. The latter is an important source of O2
-• and H2O2, formed when eNOS lacks either 

L-arginine or its cofactor (BH4) in a process referred to as NOS uncoupling169. Furthermore, 

this uncoupling phenomenon has been implicated as a cause of nitrate tolerance170, 

although other ROS-derived mechanisms have also been implicated in this process as 

described in section 1.6.5 Endothelial dysfunction – NO donors (Nitrates). 

Evidence suggests that xanthine oxidase, which is present in the vascular endothelium, 

catalyses the oxidation of hypoxanthine to O2
-• leading predominantly to vascular dysfunction 

and end organ damage secondary to hypertension171.  

The NAD(P)H oxidases (nicotinamide adenine dinucleotide phosphate-oxidase) represent a 

family of seven multi-subunit enzymes that catalyse O2
-• production by the 1-electron 

reduction of O2 using NADPH or NADH. This family comprises the superoxide-producing 

enzymes Nox1, Nox2 (formerly referred to as gp91phox [phagocyte oxidase] when first 

identified due to its expression in phagocytic cells involved in host defence), Nox3, Nox4, 

Nox5, and the dual oxidases Duox1 and Duox2 that release hydrogen peroxide but not 

superoxide. There are multiple signalling pathways responsible for vascular NAD(P)H 

oxidase activation including cytokines, mechanical forces, several growth factors, and 

metabolic factors such as G protein–coupled receptor agonists172,173.  

ROS generated as a result of NAD(P)H oxidase activation have been implicated in the 

regulation of vascular tone both directly, and indirectly by decreasing NO bioavailability, 

these processes contributing to vascular damage and remodelling in hypertension and other 

cardiovascular diseases. 
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The role of oxidant stress is therefore integral to the development of endothelial dysfunction, 

but this can in part be ameliorated with the use of traditional antihypertensive agents such as 

β-adrenergic blockers, angiotensin converting enzyme (ACE) inhibitors and angiotensin 

receptor blockers, AT1 receptor antagonists, and calcium channel blockers. These beneficial 

effects have been attributed to both NAD(P)H oxidase activity inhibition and to intrinsic 

antioxidant properties of the drugs. 

 

 

Figure 12: Overview of the mechanisms of oxidant stress induced endothelial dysfunction in 
cardiovascular disease. Many reactive oxygen species (ROS) possess unpaired electrons and thus are 
free radicals, including superoxide anion (O2

-•
), hydroxyl radical (OH

•
), nitric oxide (NO

•
) and lipid radicals 

(LO• and LOO•). Other ROS, which are not free radicals but having oxidising effects, include peroxynitrite 
(ONOO

-
) and hypochlorous acid (HOCl). (BH4 = tetrahydrobiopterin). Adapted from 

166
. 
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1.6 Endothelial activation and endothelial dysfunction 

Endothelial dysfunction and endothelial cell activation are important converging concepts 

that represent an alteration of normal endothelial physiology with potentially serious 

deleterious effects that culminate in vascular disease.  

 

 

Figure 13: Schematic showing the disease states that are commonly associated with endothelial 
dysfunction. 
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1.6.1 Endothelial dysfunction 

Dysfunction of the endothelium is characterised by reduced vasodilation, a pro-inflammatory 

state, and increased pro-thrombotic properties. Traditional risk factors including diabetes 

mellitus174, hypertension175, cigarette smoking176, and hypercholesterolaemia177 are all 

implicated in the alteration of endothelial function which results in a chronic inflammatory 

process and abnormal vasoreactivity. Other more recent associations include obesity178, 

elevated C-reactive protein179 and chronic systemic infection180. 

It is characterised by decreased synthesis, release, and bioavailability of vasodilators, 

particularly endothelium-derived NO, and/or an increase in endothelium-derived contracting 

factors, resulting in the impairment of endothelium-dependent vasodilation. Decreased 

expression of endothelial cell NO synthase (eNOS)181, a lack of substrate or cofactors for 

eNOS182, alteration of cellular signalling such that eNOS is not appropriately activated183, 

and accelerated NO· degradation by ROS165 can all result in decreased NO bioavailability.  

There is a close association between endothelial cell dysfunction and cardiac events184, with 

a multivariate analysis of almost 2500 patients demonstrating a strong and independent 

association with cardiovascular events such as cardiac death, myocardial infarction, and 

need for revascularisation185. There is a lack of correlation between endothelial dysfunction 

and the presence of traditional cardiovascular risk factors, but nevertheless it can be 

considered reflective of an integrated index of all atherogenic and atheroprotective factors 

present in an individual. Endothelial dysfunction thus reflects a vascular phenotype prone to 

atherogenesis186. 
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1.6.2 Endothelial cell activation 

Under normal homeostatic conditions there is little or no expression of pro-inflammatory 

factors, but the endothelium can undergo changes which allow it to participate in the 

inflammatory response. This is known as endothelial cell activation, a term coined by Willms-

Kretschmer in the 1960s187 and re-introduced in the 1980s by Pober188. There are five core 

changes implicated in endothelial cell activation comprising loss of vascular integrity, 

expression of leukocyte adhesion molecules, change in phenotype from antithrombotic to 

prothrombotic, cytokine production, and up-regulation of HLA molecules. The cell-surface 

adhesion molecules include VCAM-1, ICAM-1, and endothelial leukocyte adhesion molecule 

(ELAM, also known as E-selectin). Release of pro-inflammatory cytokines such as TNF-α 

and IL-6 typically induce endothelial cell activation and also facilitate recruitment and 

attachment of circulating leukocytes to the vessel wall.  

The processes involved in endothelial cell activation are diverse but they appear to share a 

common intracellular control mechanism through transcription factor activation. One 

regulatory factor in particular, nuclear factor κB, (NF-κB), once activated, is transported into 

the nucleus where it binds to promoter areas of genes which are upregulated in endothelial 

cell activation189.  The precursor to this is a switching from the quiescent endothelial 

phenotype, where NO-mediated silencing predominates, towards one where the host 

defence response is activated and ROS signalling dominates. ROS molecules target NF-κB 

and phosphatases, leading to endothelial cell activation. This can occur physiologically in the 

context of host defence, or pathophysiologically in the presence of cardiovascular risk 

factors190.  
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Figure 14: Endothelial dysfunction and endothelial cell activation in vascular disease. Cardiovascular 
risk factors are important mediators of endothelial dysfunction. However, turbulent flow and pro-
inflammatory cytokines promote endothelial cell activation via activation of the transcription factor, 
nuclear factor-kappaB (NF-κB). NO reduces endothelial activation by inhibiting NF-κB whereas loss of NO 
increases endothelial activation. Both endothelial dysfunction and endothelial activation lead to 
atherosclerosis. Adapted from 

191
. 

 

1.6.3 Clinical assessment of endothelial function 

With better understanding of the vascular biology of the endothelium has followed the 

development of clinical tests to evaluate the functional properties of normal and activated 

endothelium192. Importantly, the assessment of endothelial function serves as a good 

predictor of future cardiac events both in individuals at risk of CVD, and those with 

established CVD193. 



Page | 43  
 

 

Figure 15: Overview of the different types of techniques available for the assessment of endothelial 
function and vascular structure performed in different vascular beds. Adapted from

194
. 

 

Initial clinical studies of endothelial function used coronary angiography to evaluate change 

in coronary diameter following local infusion of acetylcholine195. The responses to other 

endothelial agonists including substance P, adenosine, and bradykinin have also been 

measured196, as has the response to specific NO antagonists such as L-NMMA197 

A less invasive approach involves measurement of forearm resistance vessel tone by 

venous occlusion plethysmography following pharmacological infusion198.    

This measures microvascular pathophysiology, so for an even less invasive test with the 

potential for improved repeatability and standardisation, brachial artery flow mediated 

dilatation (FMD) represents the gold standard for clinical research on conduit artery 

endothelial biology as long as the technique is correctly applied199. Alternative non-invasive 

approaches are available for the study of vascular biology in the peripheral circulation 

predominantly through measurement of pulse wave analysis200. 
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Finally, circulating markers can be measured as surrogate indicators of endothelial function, 

including measures of NO biology, inflammatory cytokines, adhesion molecules, and 

regulators of thrombosis but many are difficult and expensive to measure with the inherent 

risk of confounding factors leading to erroneous interpretation. 

 

1.6.4 Endothelial dysfunction – therapeutic targets 

Endothelial dysfunction is potentially reversible, and the mainstay of current treatment is 

aimed at strategies that reduce cardiovascular risk factors. Cholesterol lowering, 

antihypertensive therapy, smoking cessation, ACE inhibitor therapy, oestrogen replacement 

therapy in postmenopausal women, supplementation with folic acid, and physical exercise, 

translate into improved endothelial health.  

Medications that control CVD risk factors such as antihypertensive agents and statins may 

also have beneficial effects on endothelial function through decreasing oxidative stress and 

lipid accumulation. Additionally, some of these established strategies target direct vasoactive 

substances including endothelin, and NO activation which is enhanced for example by 

statins and L-arginine. 

Beta-blockers are considered to have minimal effect on endothelium-dependent vasodilation, 

although nebivolol does induce vasodilation by a direct effect on NO synthase and an 

antioxidant effect201 whilst carvedilol suppresses ROS generation202. Calcium-channel 

blockers are also able to reverse impaired endothelium-dependent vasodilation, mainly in 

the microcirculation201, and ACE inhibitors and angiotensin receptor blockers (ARBs) exert 

several pleiotropic effects, which reduce oxidative stress and stimulate bradykinin to help 

increase NO bioavailability203. Current therapeutic strategies are summarised below; 
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Treatment Associated With Improvement of Endothelial Dysfunction in Humans 

Acute Chronic 

LDL lowering with apheresis LDL lowering with statins 

ACE inhibition/ARBs Antioxidants (probucol with lovastatin) 

Vitamins C + E ACE inhibition /ARBs 

Oestrogen Oestrogen 

L-arginine, D-arginine Oestrogen and progesterone 

Tetrahydrobiopterin, methyltetrahydrofolate Exercise 

Deferoxamine L-arginine 

Glutathione Metformin/Thiazolidine to improve insulin resistance 

Calcium Channel Blockers β-blockers  

 
Table iv: Established treatment strategies for endothelial dysfunction. 

 

Other potential pharmacological therapy comprises drugs which enhance EPC, drugs which 

reduce ADMA, tetrahydrobiopterin, and inhibitors of PKC and TNF-α. Drugs which enhance 

NO release warrant particular mention and will be discussed next. 

 

1.6.5 Endothelial dysfunction – NO donors 

Given that loss of endogenous NO production is integral to endothelial dysfunction which 

manifests as vasoconstriction, increased smooth muscle cell proliferation, and activation of 

platelets and inflammatory cells with resultant adherence at sites of endothelial damage, 

there has been extensive research in an attempt to try and establish a role for exogenous 

NO as a therapeutic target. Unfortunately, relatively little progress has been made in recent 

years, but drugs capable of releasing NO including those listed below remain a focus for 
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potential therapeutic application. Except for its use in pulmonary hypertension and in 

neonates where it can be used in gaseous form, NO generally requires a ‘carrier’ (NO donor 

drugs) allowing its transport and stabilisation until its release is required. 

 

Organic Nitrate:  

Organic nitrates have been a favoured treatment for angina pectoris for many years. 

Nitroglycerin, isosorbide dinitrate and mononitrate are the agents of choice, and although 

they alleviate symptoms of angina through vasodilation, they do not appear to alter the 

progression of platelet and inflammatory cell activation associated with atherosclerosis. The 

mechanism of NO release also remains unclear, although is likely to be mediated by specific 

enzymes in vivo204,205. Furthermore, drug tolerance, although ameliorated with a nitrate free 

period, remains a hindrance to its use with some reports of a paradoxical increase in cardiac 

events with long term use206. Nitrate tolerance, thought to be mediated by increased 

vascular production of superoxide ion (O2
-•) probably occurs via several mechanisms, which 

account for the associated endothelial dysfunction seen with continuous organic nitrate use; 

increased peroxynitrite formation reduces NO availability, vascular oxidative stress inhibits 

sGC and PKG, and mitochondrial ROS inactivate mtALDH which is necessary for nitrate bio-

activation207-209.  

Some confirmation that ROS are central to nitrate tolerance and endothelial dysfunction is 

suggested in the finding that co-administration of antioxidants including vitamin C, vitamin E, 

folic acid, and hydralazine can ameliorate and even negate the effect. 
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Figure 16: Biotransformation of nitroglycerine. GTN is biotransformed by mitochondrial aldehyde 
dehydrogenase (mtALDH) to release nitric oxide (NO) which results in vasodilatation via the well-
described sGC-cGMP-PKG activation pathway . The same transduction mechanism is used by factors 
which lead to eNOS activation. Simultaneously, GTN uncouples the mitochondrial respiratory chain to 
increase superoxide anion production. This results in results in activation of membrane-bound 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase  Adapted from 

205
. 

 

Sodium Nitroprusside (SNP): 

SNP is used clinically for rapid lowering of blood pressure in hypertensive crises and in 

clinical studies as the gold standard NO-dependent, but endothelium-independent 

vasodilator. Its use is limited by the need for intravenous administration, potency and 

sensitivity to photolysis. 

 

Diazeniumdiolates (NONOates): 

These agents decompose spontaneously in solution at physiological pH and temperature, to 

generate up to 2 molar equivalents of NO, but as yet, pending further studies on long-term 
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safety have no therapeutic role in clinical practice despite a wealth of early promising 

studies115. 

 

S-Nitrosothiols: 

The S-Nitrosothiols have been discussed in detail in section 1.4. They generally have less 

stringent metabolic requirements, with some evidence of tissue selectivity and an apparent 

absence of tolerance following long term use, giving them clear advantages over other NO 

donors210. Furthermore, their ability to transfer NO+ species between different thiol groups 

(transnitrosation) enables protection of NO from oxidative stress prior to release. They have 

been investigated extensively, showing promise in human and animal studies predominantly 

in the cardiovascular system. 

S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-DL-penicillamine (SNAP) have proven 

NO donor properties, with evidence of diverse and remarkable biological effects; SNAP is a 

potent vasodilator211, and a 3-minute intracoronary infusion before ischaemia in 

anaesthetised pigs has been shown to decrease infarct size and improve coronary 

endothelial function212. GSNO has exhibited significant protection to the ischaemic 

myocardium in an isolated rat heart model213 and the ability to reduce lesion size in 

transgenic mice with early atherosclerosis214.  

Early studies confirmed that S-nitrosoalbumin could reduce platelet adhesion and neointimal 

thickening in angioplasty-damaged blood vessels both as an infusion in a rabbit model215 

and as a stent-coating in a model using canine blood platelet adhesion in a plate glass 

chamber216. 

This use as an anti-platelet agent represents a particular area of interest but was initially 

limited due to concerns over profound co-existent vaso-dilatory and hypotensive effects.  
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However, with appropriate dosing, GSNO infused via the brachial artery was shown to be 

highly effective as a platelet inhibitor without associated vasodilation, suggesting that it is 

possible to achieve selective antiplatelet and potentially antithrombotic effects with these NO 

donors217, and this was also confirmed following intravenous GSNO administration218. This, 

together with other supportive data, demonstrates the useful downstream effects of RSNO, 

its relative stability allowing carriage of NO and delivery not just locally but to more distal 

sites. Furthermore, it is well established that platelets are activated following percutaneous 

transluminal coronary angioplasty (PTCA) and percutaneous coronary intervention (PCI) 

with potentially harmful effects, but GSNO administered before coronary angioplasty was 

shown to significantly inhibit platelet surface expression of P-selectin and glycoprotein IIb/IIIa 

without altering blood pressure219, and has been shown to reduce platelet adhesion in 

bypass grafts220.  

Other benefits in the cardiovascular system have been demonstrated, with GSNO leading to 

a decrease in both occurrence of cerebral embolism following carotid endarterectomy in 

patients already receiving aspirin and heparin221, and emboli that dissociate from carotid 

plaques222.  

Further large scale studies are required before S-nitrosothiols can establish a therapeutic 

role as antiplatelet agents and also in other conditions where they have shown some 

promise, particularly immune and inflammatory processes, pre-eclampsia223, neuroprotection 

specifically delaying progression of neurodegenerative disorders224, improved wound 

healing225, and as an adjunct for nitrate tolerance226, amongst others. 

It is important to state that NO exerts its cellular influence predominantly in a cGMP-

independent manner and NO-mediated modification of protein cysteine residues through S-

nitrosylation and generation of S-nitrosothiols plays a major role. In particular the redox 

reaction between NO and protein cysteine thiol side chains affects structure and function, 

thus S-nitrosylation is responsible for widespread cellular effects within the cardiovascular 
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system, and conversely protein denitrosylation has been shown to have an important role 

controlling cellular S-nitrosylation. Precisely regulated equilibrium between these two 

pathways, in addition to transnitrosylation reactions (the transfer of a NO from one thiol to 

another) between a variety of peptides and proteins is critical to SNO-based signal 

transduction.227 

Accumulating evidence highlights the role of S-nitrosylation both in normal physiology and in 

a broad spectrum of human diseases. Given this influence of protein S-nitrosylation on the 

ubiquitous action of nitric oxide on cellular signal transduction, the use of exogenously-

derived SNO represents an exciting therapeutic opportunity but its administration must be 

carefully controlled and regulated to avoid interference with normal physiological S-

nitrosylation pathways. 

 

Sydnonimines: 

These are heterocyclic compounds derived from morpholine, the liberation of NO requiring 

an alkaline pH and the presence of oxygen228. 

 

C-nitroso compounds: 

These compounds have been studied for over 120 years, but only recently have they been 

explored with regards to their potential use as nitric oxide donors. Once exposed to light, C-

nitroso compounds may undergo homolytic cleavage of the C-NO bond to generate NO229. 
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Inorganic nitrate: 

Although organic nitrates have been the mainstay of angina treatment for over a century230 

the Chinese used inorganic nitrate as far back as 700AD for the treatment of coronary artery 

disease before the West followed between the 14th and 17th centuries 231. This practice has 

not been commonplace since concerns over potential carcinogenicity were raised in the 

early 20th century. 

Both organic and inorganic nitrates exert their effects via nitric oxide, but their different 

pharmacokinetic properties result in very different bioavailability and metabolic profiles. 

Inorganic nitrates are found in abundance in green leafy vegetables and beetroot, with many 

linking this to the recent association between diets rich in fruit and vegetables and reduced 

cardiovascular morbidity and mortality. There is certainly a correlation between vegetarian 

diets and lower blood pressure. The bioactivation of orally ingested nitrate to nitrite and 

resultant NO formation as part of the entero-salivary circulation is discussed in section 1.3.2 

232. 

NO-mediated vasodilatation and decreases in blood pressure have been demonstrated 

following oral nitrate administration but the exact mechanisms have been unclear. A recent 

study however has demonstrated that exogenous administration of inorganic nitrate in the 

form of beetroot juice or as a potassium nitrate capsule supplement to healthy volunteers 

resulted in attenuation of ex vivo platelet aggregation responses to ADP and collagen, 

predominantly in males. This was associated with a reduction in platelet P-selectin 

expression and elevated levels of platelet-derived cGMP 233.  

Preventing the development of endothelial dysfunction and progression to atherothrombotic 

complications remains a fundamental target, and as opposed to the other NO donors, this 

simple dietary modification could represent one of the easiest and safest strategies.   
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1.7 Atherosclerosis 

Atherosclerosis is a process that begins in childhood, progressing silently through a long 

preclinical stage that culminates in clinical disease usually from middle age. The link 

between endothelial dysfunction and this process was first identified over 35 years ago234, 

and ever since, the study of human endothelium has remained at the forefront of 

cardiovascular research, its exact role in influencing the development and progression of 

vascular disease being the focus. This important lining of cells has emerged as the key 

regulator of vascular homeostasis, acting as a signal transducer with the ability to adopt a 

phenotype that facilitates inflammation, thrombosis, vasoconstriction, and ultimately 

atherosclerotic lesion formation in the presence of coronary artery disease risk factors235.   

Notably, levels of endothelial-derived vasoactive molecules are altered in atherosclerosis. 

Elevated concentrations of the ET peptide have been demonstrated within atherosclerotic 

vessels75, and also in the plasma of patients with both advanced atherosclerosis236 and 

acute myocardial infarction237. Large epicardial coronary arteries are particularly prone to 

atherosclerosis whereas small resistance coronary arteries are less susceptible to plaque 

formation. However, due to the latter’s downstream location and consequent exposure to 

ischaemic conditions, they tend to exhibit increased levels of ET-1.  

Furthermore, in some situations, induction of NOS has been shown to result in a focal 

increase of NO levels within atherosclerotic plaques238, a reflection of the underlying 

inflammatory process. However, in atherosclerotic coronary artery disease, the overall basal 

release of NO from the endothelium is decreased239. 

The steps that culminate in atherosclerosis and ultimately clinical events include initiation of 

endothelial activation and inflammation followed by promotion of intimal lipoprotein 

deposition, release of cytokines, growth factors and chemokines, and build-up of cholesterol-

engorged macrophages termed foam cells. In the early stages of atherosclerosis, lesions are 

labelled “fatty streaks” which although not clinically significant, are the precursor to more 
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complex plaque formation as lipid-rich necrotic debris and smooth muscle cells accumulate. 

With progression, occlusive plaques can form, but clinical events such as myocardial 

infarction and stroke are typically initiated when a plaque ruptures exposing the inner 

contents to vasoactive substances within blood which trigger thrombus formation. Smooth 

muscle cells (SMC) and an extracellular matrix form a “fibrous cap” overlying the lipid rich 

necrotic debris and this can be particularly prone to ulceration and rupture. This process of 

plaque formation has been established as a human disease for thousands of years240, but 

acceleration of atherosclerosis through effects on low-density lipoprotein (LDL) particles and 

inflammation is attributable to risk factors including hypertension, cigarette smoking, obesity, 

diabetes mellitus, and genetic predisposition. 

 

 

Figure 17: Atherosclerotic plaque formation and progression. The illustration depicts the pathological 
progression of atherosclerosis, from no visible disease at birth to the development of complex plaques 
in mid to late adulthood with the potential for rupture and thrombosis. 
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Given that the accumulation of different plasma lipoproteins appears to be of primary 

importance in the aetiology of atherosclerosis, the mainstay of treatment currently comprises 

lipid lowering therapy. The clinical manifestations of atherosclerosis can be significantly 

reduced, proportional to the reduction in LDL cholesterol, by the use of 3-hydroxy-3-

methylglutaryl coenzyme A reductase inhibitors (statins). These have been shown to reduce 

the risk of clinical events, reduce plaque size, alter cellular composition and plaque chemical 

composition, and improve plaque biological activity primarily through mechanisms effecting 

inflammation and lipid metabolism241,242, with regression of atherosclerosis reported243,244. 

Whilst lowering LDL levels is therefore important, elevated levels of high-density lipoprotein 

(HDL) have been considered to be atheroprotective245. 

 

1.8 The role of platelets 

Platelets are anucleated cells of 1–2 μm in length, originating from multinuclear 

megakaryocytes in the bone marrow. They usually circulate in a quiescent state, but 

increased platelet activation is seen in patients with established cardiovascular disease. 

In atherosclerosis, platelets facilitate the recruitment of inflammatory cells towards lesion 

sites and release a variety of inflammatory mediators. They are central to the pathogenesis 

of atherosclerosis and thrombosis with platelet activation being pivotal in ischaemic 

syndromes affecting both the cerebral246 and coronary circulations247. They participate in 

both primary and secondary haemostasis, involving platelet adhesion, aggregation and pro-

coagulant activity. Once activated, platelets produce cytokines and chemokines, released 

from α-granules248, leading to increased levels of circulating platelet-leukocyte aggregates, 

which are fundamental to local atherothrombosis and inflammatory immune reactions at the 

vessel wall249. Activated platelets also release serotonin, soluble p-selectin and 

thrombocidins. Platelet cell surface receptors such as p-selectin and CD40 ligand are 

important in platelet-leukocyte interaction and promotion of atherosclerosis250,251. 
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Thrombus formation occurs following initial platelet tethering mediated by glycoprotein 

GPIbα. This is followed by activation and firm adhesion, aggregation with recruitment of 

more platelets, and then thrombus stabilisation. Thrombin generation at the site of vascular 

injury is the most potent platelet activator and causes platelets to change shape, enabling 

integrin activation and granule secretion, with adenosine diphosphate (ADP) and 

thromboxane A2 (TXA2) release promoting further activation. Thrombin mediates platelet 

activation via protease-activated receptors (PARs) located on platelets, endothelial cells, 

smooth muscle cells, mononuclear cells and fibroblasts, and receptor antagonists have 

attracted recent attention as potential novel antiplatelet agents.  

 

1.9 Antiplatelet therapy 

Aspirin remains the reference antiplatelet drug. In addition, ADP is fundamental to platelet 

activation and aggregation, so the P2Y12 receptor has become the main target of current 

antiplatelet agents. The ADP P2Y1 receptor also represents a potential novel target252. 

The αIIbβ3 (glycoprotein IIb/IIIa) antagonists (abciximab, eptifibatide and tirofiban) also form 

part of the current antiplatelet armament through their mechanism of inhibition of the final 

common pathway of platelet aggregation, usually in the setting of percutaneous coronary 

intervention. 

Finally, vorapaxar has been introduced as a first‐in‐class PAR‐1 antagonist, effective in the 

secondary prevention of atherothrombosis currently licensed for use in the USA253,254. 

 

 1.9.1 Aspirin 

Aspirin's effects on blood clotting (as an antiplatelet agent) were first noticed in 1950 by 

Lawrence Craven. However, it wasn’t until the early 1970s when the first clinical trials 

http://en.wikipedia.org/wiki/Coagulation
http://en.wikipedia.org/wiki/Antiplatelet_agent
http://en.wikipedia.org/w/index.php?title=Lawrence_Craven&action=edit&redlink=1
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confirmed mortality and morbidity benefit that aspirin developed an established role in the 

treatment of cardiovascular disease. 

Aspirin permanently acetylates platelet cyclo-oxygenase 1 (COX-1), blocking the synthesis 

of TXA2, which promotes activation of other platelets and is a potent vasoconstrictor. Cyclo-

oxygenase 2 (COX-2) expressed by cytokines, secondary to inflammatory stimuli and some 

growth factors, is also inhibited but much higher doses of the drug are required. Selective 

COX-2 inhibitors (including celecoxib, rofecoxib and valdecoxib) have been shown to 

improve endothelial function and reduce markers of inflammation255. However, serious safety 

concerns were raised following an observed increase in the incidence of cardiovascular 

events, attributable to their effect of blocking PGI2 without inhibiting TXA2 resulting in platelet 

activation, adhesion and aggregation256.  

It has been suggested that aspirin can induce the formation of NO257, and also modulate 

signalling through NF-κB258.  

Aspirin has no effect on other platelet activators, such as adenosine diphosphate (ADP), 

thrombin or serotonin. 

 

1.9.2 Thienopyridines 

Ticlopidine, clopidogrel and prasugrel are members of the thienopyridine family of platelet 

anti-aggregants. Ticlodipine was the first FDA licensed thienopyridine for clinical use in 1991 

and clopidogrel followed soon after in 1997. Unfortunately, ticlopidine causes severe 

neutropenia in more than 1% of patients and thrombotic thrombocytopenic purpura (TTP) in 

about 0.2% of patients, in which up to 25-50% can be fatal259. Clopidogrel is synthesised by 

the addition of a substituted ester linkage to the base molecule ticlopidine. Both compounds 

are converted from the inactive parent compound to labile active metabolites in the liver. The 

active metabolites irreversibly inhibit platelet aggregation by selectively decreasing binding 
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of adenosine diphosphate (ADP) to its platelet receptor, P2Y12, via the single active thiol 

group which is revealed in the active molecule, thereby interfering with subsequent ADP-

mediated activation and glycoprotein IIb/IIIa signalling. 

These agents are widely used for the secondary prevention of cardiovascular disease, and 

until expiry of its US patent in 2012, clopidogrel had been ranked as the second most 

prescribed drug worldwide260. Use of these agents is well established for the prevention of 

ischaemic complications in patients undergoing percutaneous coronary intervention261-263 

and for the treatment of acute coronary syndromes. 

 

 
Clopidogrel Prasugrel Ticagrelor Cangrelor 

Chemical 

class 

Thienopyridine Thienopyridine Cyclopentyl-triazolo-

pyrimidine 

ATP analogue 

Route Oral Oral Oral Intravenous 

Pro-drug 
Yes (requires hepatic 

cytochrome P450 

activation) 

Yes (requires hepatic 

cytochrome P450 

activation) 

No No 

Standard 

dose 

300 mg/ 600 mg 

loading 

60 mg loading 180 mg loading 30 µg/kg bolus 

75 mg OD 10 mg OD 90 mg BD 4 µg/kg/min 

Reversibility 

of binding 

Irreversible Irreversible Reversible Reversible 

Excretion 
50% renal, 46% 

biliary 

68% renal, 27% 

faeces 

Biliary Not dependent on 

hepatic or renal 

clearance 

 
Table v: Characteristics of P2Y12 receptor antagonists. 

 

However, clopidogrel has limitations. It has a modest antiplatelet effect, a delayed onset of 

action and considerable inter-patient variability in drug response. 15–40% of patients are 

poor responders to treatment264. The distribution of responses to clopidogrel is wide, and a 

large fraction of the population carries a gene that may account for some of the inter-patient 

variation. 
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Figure 18: Clopidogrel and Prasugrel chemical structure. A) Native Clopidogrel, B) Active Clopidogrel,   
C) Native Prasugrel, D) Active Prasugrel.  Thiol group is shown in red. 

 

These disadvantages motivated the development of prasugrel, approved by the FDA in 

2009. It has a greater antiplatelet effect than clopidogrel because it is metabolised more 

efficiently.  Prasugrel is about 10 times more potent than clopidogrel and 100 times more 

potent than ticlopidine. All three thienopyridines act via the single thiol group revealed in the 

active molecule. Treatment with 5mg of prasugrel results in inhibition of platelet activity 

(distributed in a Gaussian curve) very similar to that produced by 75mg of clopidogrel. Even 

a maintenance dose of 150mg of clopidogrel inhibits platelet activity to a lesser degree than 

10mg of prasugrel (46% vs 61%) so clopidogrel appears to reach a plateau of platelet 

inhibition that prasugrel can overcome265. Some of the differences in metabolism between 

clopidogrel and prasugrel may be explained by genetic polymorphisms affecting the 

cytochrome P-450 system. 
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TRIAL NAME 

 

 
TRIAL DETAILS 

 
PATIENTS 

 
RESULTS 

Percutaneous Coronary Intervention 

REAL LATE, ZEST LATE, 
2010 
(n=2701) 

Clopidogrel + Aspirin vs 
Aspirin after 12 months of 
DAPT 

Patients who had received 
DES, free of major adverse 
cardiac/cerebrovascular 
events and major bleeding 
for >12 months 

After a median 19.2 months, the 
cumulative risk of primary end 
point (MI or death from cardiac 
causes) was not significantly 
different: DAPT group 1.8% vs 
1.2% in aspirin group. 

GRAVITAS, 2011 
(n=5429) 

High dose Clopidogrel vs 
regular Clopidogrel 

Patients receiving DES with 
high residual platelet activity 
(PRU>230, tested with 
VerifyNow) on regular 
clopidogrel (platelet-function 
tested12-24 hours after PCI) 

High dose compared to 
standard dose clopidogrel did 
not reduce incidence  of death 
from cardiovascular (CV) 
causes, non-fatal MI, or stent 
thrombosis  

Mϋller, 2000 
(n=700) 

Clopidogrel 75mg vs 
Ticlopidine 325mg 

A randomised comparison of 
clopidogrel and aspirin 
versus ticlopidine and aspirin 
after the placement of 
coronary-artery stents. 

Non cardiac events significantly 
reduced with clopidogrel. Aspirin 
and clopidogrel is comparably 
safe and effective as ticlopidine 
and aspirin. 

CLASSICS, 2000 
(n=1020) 
 

Clopidogrel 300mg vs 
Ticlopidine 250mg 

Double-blind study of 
clopidogrel safety with and 
without a loading dose (plus 
aspirin) compared with 
ticlopidine (plus aspirin) after 
coronary stenting 

The safety/tolerability of 
clopidogrel (plus aspirin) is 
superior to that of ticlopidine 
(plus aspirin) 

TOPPS, 2000 
(n=1016) 

Clopidogrel 300mg vs 
Ticlopidine 500mg 

Patients underwent coronary 
stent placement and were 
randomised to clopidogrel vs 
ticlopidine to assess 
effectiveness at preventing 
stent thrombosis 

Clopidogrel better tolerated than 
ticlopidine, and offered similar 
protection against sub-acute 
stent thrombosis and MACE. 
Stent thrombosis rate was 
1.53% in ticlopidine compared to 
2.02% in clopidogrel patients. 

Piamsomboon, 2001 
(n=68) 

Clopidogrel 300mg vs 
Ticlopidine 250mg 

Patients undergoing coronary 
stenting were randomised to 
assess stent thrombosis 
prevention with clopidogrel 
plus aspirin compared with 
ticlopidine plus aspirin 

Clopidogrel and aspirin is an 
effective coronary stenting 
regime comparable to ticlopidine 
and aspirin. 

Acute Coronary Syndrome 
CURE PCI substudy, 2001 
(n=2658) 

Clopidogrel + Aspirin vs 
Placebo + Aspirin 

Patients with NSTEMI 
undergoing PCI 

Clopidogrel + aspirin  
demonstrated a 31% relative 
risk reduction  from 
randomisation to end of follow 
up, and a 25% relative risk 
reduction  in composite end 
point of MI or CV death with 
long term use.  

COMMITT, 2005 
(n=45852) 

Clopidogrel vs placebo Patients admitted to hospital 
within 24 hours of suspected 
acute myocardial infarction 
onset   

1
st
 primary endpoint was death 

from any cause, 2
nd

 endpoint 
was first occurrence of re-
infarction, stroke or death. 
Clopidogrel significantly reduced 
relative risk of 1

st
 endpoint by 

7%, and 2
nd

 endpoint by 9%, an 
absolute reduction of 0.5% and 
0.9%, respectively. 

CLARITY-TIMI 28, 2005 
(n=3491) 

Clopidogrel 300mg then 
75mg vs placebo 

Patients, 18 to 75 years of 
age, within 12 hours after the 
onset of a STEMI 

15% of patients in clopidogrel 
group and 21.7% in placebo 
group reached the primary 
endpoint (occluded infarct-
related artery on the pre-
discharge angiogram, or death 
or recurrent MI before coronary 
angiography. 

CURE, 2001 
(n=12562) 

Clopidogrel 300mg then 
75mg + aspirin vs aspirin + 
placebo 

NSTEMI within 24 hours after 
the onset of symptoms 

CV death, MI, or stroke occurred 
in 9.3% in the clopidogrel-
treated group and 11.4% in the 
placebo-treated group, a 20% 
relative risk reduction.  
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CURRENT OASIS 7, 2010 
(n=25087) 

Double vs standard dose 
Clopidogrel 

ACS patients referred for 
invasive strategy (scheduled 
for PCI <72 hours after 
randomisation)   

Double dose clopidogrel 
reduced stent thrombosis and 
MACE in the PCI group, but 
showed no difference in the 
non-PCI group.  

Cardiovascular Protection 
CAPRIE, 1996 
(n=19185) 

Clopidogrel 75mg vs aspirin 
325mg 

Patients with atherosclerotic 
vascular disease (recent 
ischaemic stroke or MI, or 
symptomatic peripheral 
arterial disease) 

Clopidogrel significantly reduced 
the incidence of new ischaemic 
events (combined end point of 
myocardial infarction, ischaemic 
stroke and vascular death) when 
compared to aspirin 

CHARISMA, 2006 
(n=15603) 

Clopidogrel 75mg + aspirin 
vs placebo + aspirin 

Patients with either clinically 
evident CVD or multiple risk 
factors 

No significant difference in the 
primary efficacy endpoint, but a 
composite of the primary 
endpoint plus hospitalisation for 
unstable angina, TIA, or a 
revascularisation procedure, 
was significantly lowered by 
7.7% in the clopidogrel plus 
aspirin group. 

ASCET, 2012 
(n=1001) 

Clopidogrel 75mg vs aspirin 
160mg 

Patients with documented 
CAD and treated with aspirin   

No difference in the composite 
endpoint between the groups 

Atrial Fibrillation 

ACTIVE W, 2006 
(n=3335) 

Clopidogrel 75mg + aspirin 
vs oral anticoagulant (OAC) 

Patients with atrial fibrillation 
(AF) plus one or more risk 
factor for stroke 

Demonstrated that OAC 
treatment with vitamin K 
antagonists was more effective 
than with clopidogrel and ASA 

ACTIVE A, 2009 
(n=7554) 

Clopidogrel 75mg + aspirin 
vs aspirin alone 

Patients with AF and at least 
one risk factor for stroke, 
who are not candidates for 
warfarin therapy 

Strokes occurred in 7.8% 
patients receiving clopidogrel + 
aspirin and 10.8% of patients 
receiving placebo + aspirin 

CLAAF, 2004 
(n=30) 

Clopidogrel 75mg + aspirin 
vs OAC 

Non high-risk patients with 
permanent AF or with 
persistent AF awaiting 
cardioversion 

Aspirin plus clopidogrel and 
warfarin were equally safe and 
effective in preventing 
thromboembolism. 

Stable Angina/CAD 
CAPRIE, 1996 
(n=19185) 

Clopidogrel 75mg vs aspirin 
325mg 

Patients with atherosclerotic 
vascular disease (recent 
ischaemic stroke or MI, or 
symptomatic peripheral 
arterial disease) 

Clopidogrel significantly reduced 
the incidence of new ischaemic 
events (combined end point of 
MI, stroke and vascular death) 
when compared to aspirin. 

CABG 

CASCADE, 2009 
(n=113) 

Aspirin 162mg + Clopidogrel 
vs aspirin + placebo 

Patients after CABG 
involving at least two 
saphenous vein grafts (SVG) 

Aspirin plus clopidogrel did not 
significantly reduce SVG intimal 
hyperplasia following CABG 
when compared to aspirin alone. 

 
Table vi: Table summarising the main clopidogrel trials. 

 

1.9.3 Non-thienopyridines 

Whereas the active metabolites of the thienopyridine prodrugs (ticlopidine, clopidogrel, and 

prasugrel) covalently bind to the P2Y12 receptor and are irreversible, indirect platelet 

inhibitors, the newer, direct-acting P2Y12 inhibitors (cangrelor, ticagrelor and elinogrel) are 

not based on thienopyridines and act by changing the conformation of the P2Y12 receptor, 

resulting in reversible, concentration dependent inhibition of the receptor. More importantly, 
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these do not require prior metabolism and act directly without involving the binding of an 

integral thiol group.  

 

 

Figure 19: Ticagrelor chemical structure. Thiol group is shown in red. 

 

Ticagrelor is quickly absorbed and has a rapid antiplatelet effect and onset of action. Early 

trials in patients with acute coronary syndromes suggest it may be superior to clopidogrel in 

reducing death from vascular causes, MI or stroke266. Furthermore, recent evidence has 

shown that long-term dual antiplatelet therapy in the form of ticagrelor and aspirin instead of 

placebo and aspirin leads to a reduction in major adverse cardiac events when given to 

patients who have suffered a myocardial infarction within the previous 2 years267. The 

mechanism behind this benefit, so distant form the acute coronary event, remains to be 

explained. 
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1.10 Pleiotropic effects 

Attention has turned to potential properties of thienopyridines beyond their inhibitory action 

on platelets. Substantial evidence now exists to support these extra-platelet manifestations, 

presumed to be explained by the fact that besides the platelet, the P2Y12 receptor can be 

found in several different regions and tissues of the body including the brain, vascular 

smooth muscle cells268, leukocytes269, macrophages270, microglial271 and dendritic cells272. 

Alternatively, off-target mechanisms with no relation to the P2Y12 receptor have also been 

hypothesised. To date, the main areas of interests with regard pleiotropic effects have been 

endothelial function, vascular tone, inflammatory processes, plasma adenosine levels and 

cardio-protection. A brief summary of these discoveries follows. 

 

1.10.1 Clopidogrel Pleiotropic effects 

Clopidogrel’s beneficial effect on endothelial function was the first implication that off-target 

effects existed, with both clopidogrel and ticlopidine exhibiting vasomodulatory activity in 

murine, rabbit and canine models262,263. Jakubowski et al have also shown that clopidogrel 

(and its inactive metabolites) can stimulate guinea pig coronary endothelial cells to release 

nitric oxide273. Simon et al274 have identified the P2Y12 receptor on rat brain capillary 

endothelial cells, whilst Shanker et al275 have demonstrated the same in human coronary 

artery endothelial cells, HUVEC, and on human aortic smooth muscle cells. Oral 

administration of a single loading dose of clopidogrel to patients with stable coronary artery 

disease leads to a dose-dependent improvement of endothelial dysfunction which is 

independent of platelet activation276, although the same group also believe the beneficial 

effects of this short term treatment on the endothelium is abolished following a longer 

duration of clopidogrel, 28 days in their study277. Heitzer et al have also reported 

improvement of endothelial nitric oxide bioavailability with clopidogrel in a similar patient 

group278, and Schafer et al have shown improved endothelial function and nitric oxide 
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bioavailability in association with clopidogrel administered to rats with congestive heart 

failure279. Froldi et al studied the direct activity of thienopyridines in rat caudal arterial rings 

and aortic smooth muscle cells in culture, revealing in vitro arterial relaxation is endothelium-

independent280.  

The role of inflammation in atherosclerosis is well established, and evidence now exists 

linking clopidogrel treatment with reduced levels of CD40 ligand, CRP, P-selectin and 

platelet-leukocyte aggregate formation, all inflammatory markers associated with activated 

platelets281. Patients recruited to the PLATO trial taking clopidogrel were also shown to have 

reduced leukocyte counts confined to the treatment period282, and reduced inflammatory 

markers secondary to clopidogrel treatment have been demonstrated both in patients on 

long term treatment before undergoing PCI283, and in patients with superficial femoral artery 

stenosis284. 

 

1.10.2 Prasugrel Pleiotropic effects 

Similarly, prasugrel is also capable of modulating inflammation as shown by Liverani et al, 

who demonstrated inhibition of neutrophil transmigration, CD16 surface expression, and 

neutrophil-platelet aggregation by a prasugrel metabolite mixture285, through direct neutrophil 

targeting. Platelet-leucocyte interaction was also inhibited by prasugrel active metabolites in 

mice pre-treated with endotoxin to induce an acute inflammatory reaction. Specifically, 

prasugrel treatment reduced TXB2 and tumour necrosis factor-α synthesis whilst increasing 

nitric oxide metabolites in vivo286. Furthermore, using a mouse model to measure therapeutic 

index and bleeding relating to the thienopyridines, prasugrel exhibited dose- and time-

dependent off target P2Y12-independent effects of a reversible nature at the vessel wall 

secondary to inhibition of vascular tone287. 
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1.10.3 Ticagrelor Pleiotropic effects 

Questions regarding probable ticagrelor pleiotropic effects have arisen due to the discovery 

of a disproportionate mortality benefit despite only a moderate reduction in myocardial 

infarction in the ticagrelor arm of the PLATO trial266. This has been attributed to a significant 

reduction in deaths related to sepsis and pulmonary adverse events as compared to the 

clopidogrel arm of the study282. Dyspnoea, ventricular pauses and transient rises in uric acid 

and creatinine levels, observed in the PLATO trial, are known adverse effects of ticagrelor. It 

is tempting to speculate a link between ticagrelor and increased adenosine release as these 

effects are also typical for adenosine.  

Augmented plasma adenosine levels in ticagrelor treated ACS patients have been shown288, 

as has adenosine-induced enhanced coronary vasodilatation secondary to ticagrelor289. 

Furthermore, ticagrelor can induce ATP release from red blood cells with subsequent 

enzymatic degradation to adenosine290. An alternative explanation for the increased 

sensation of breathlessness observed in these patients has been attributed to the reversible 

inhibition of P2Y12 receptors on sensory neurons291.  

Whilst adenosine does have a wide range of physiological effects including vasodilatation, 

release of endothelial factors, cardio-protective and anti-inflammatory effects, whether any of 

these explanations or indeed an altogether different mechanism is responsible for the 

observations in the PLATO trial remains to be confirmed. The argument for adenosine may 

seem compelling but it has failed to show positive clinical outcomes in ACS patients292, 

suggesting an alternative explanation may exist. 

Consistent with the thienopyridines’ effects on the vascular endothelium, substantial 

improvement in peripheral arterial function has also been observed in a cohort of ACS 

patients treated with ticagrelor293, with additional evidence in a rat model suggesting that 

orally administered ticagrelor prevents ADP-induced vascular smooth muscle cell 

contraction294. Findings of increased carcinogenicity with prasugrel295 and decreased with 
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ticagrelor266 have attracted further hypothesis generation, but more evidence is required to 

corroborate these findings. 

 

1.10.4 Pleiotropic Effects Conclusion 

Taken together, all of these findings imply mechanisms of action beyond the inhibition of 

platelet aggregation and may point to direct effects on vascular endothelium/smooth muscle 

that may, or may not be specific to the active metabolite and could be ascribed to the parent 

drug. 

In vivo, the active metabolite of clopidogrel exhibits a critical thiol group that governs its 

interaction with platelets. This prompted investigation at the Wales Heart Research Institute 

(WHRI) into whether active clopidogrel might form nitrosothiols derivatives. Indeed, the 

James group have recently shown direct nitrosothiols formation from clopidogrel, prasugrel, 

and ticlopidine formulations296,297. Thus a circulating SNO store can be formed which has 

demonstrated additive anti-platelet properties and acts directly to vasodilate isolated blood 

vessels, thereby acting as an NO donor. 

Novel work at the Wales Heart Research Institute has recently confirmed that following 

administration of clopidogrel to patients, there is an increase in circulating NO metabolites 

measured in blood samples298. It has also become apparent that in vivo conditions promote 

the formation of SNO – acidic thienopyridine enters the stomach where further acidity and 

copious levels of nitrite provide ideal reaction conditions.  

In patients at the WHRI, chronic clopidogrel treatment was noted to significantly alter the 

profile of nitric oxide metabolites in blood, predominantly via increased nitrite. Both P2Y12 

dependent and P2Y12 independent components were implied following platelet aggregability. 
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1.11 Thesis Aims 

Ample data exists relating to the antiplatelet effect of the thienopyridine group of drugs 

predominantly via their action on the P2Y12 receptor. Relatively little information is available 

on the direct vascular effects, and given the varied patient response to these agents, further 

clarity is needed regarding the relevance and importance of the pleiotropic effects, and in 

particular whether responses are affected by concurrent use of proton pump inhibitors and 

oral nitrates, commonly co-prescribed with antiplatelet drugs.   

Furthermore, given the improved efficacy of novel P2Y12 receptor antagonists, such as 

prasugrel and ticagrelor, that have started to replace clopidogrel use in clinical practice, it 

would be interesting to investigate whether the pleiotropic effects of clopidogrel also relate to 

these novel compounds and whether they are characterised by large inter-individual 

differences.  

Endothelial nitric oxide bioavailability has been shown to increase following an oral loading 

dose of clopidogrel but the mechanisms behind this are not fully understood. In their active 

forms, both clopidogrel and prasugrel contain a readily available thiol group (see figure 18), 

so it can be speculated that in an appropriate environment, RSNO could be produced to 

serve as an NO reservoir independent of NOS. This would imply an additional mechanism of 

action of these drugs with anti-aggregatory and vasomodulatory properties in addition to the 

established P2Y12 inhibition. 
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On this basis and given the observations outlined above, the objectives of this study are to 

determine whether, in addition to P2Y12 inhibition, the antiplatelet drugs clopidogrel, 

prasugrel and ticagrelor can also act as NO donors through the formation of RSNO 

compounds, and specifically whether;  

 

1) Co-administration of oral nitrate drugs to patients treated with clopidogrel leads to 

enhanced levels of circulating NO metabolites by improving the yield of RSNO. 

 

2) Co-administration of proton pump inhibitors to patients treated with clopidogrel leads 

to a reduction in the levels of circulating NO metabolites by impairing the 

environment necessary for RSNO production. 

 

3) An increase in circulating NO metabolites is also measured following oral 

administration of prasugrel, or indeed whether the NO profile is more greatly 

enhanced due to prasugrel’s increased potency as compared to clopidogrel. 

 

4) Ticagrelor administration has the same effects on circulating NO metabolites as the 

thienopyridines, given that it does not contain a readily available thiol group.  
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1.11.1 Hypothesis 

 

 Elevated nitrite and nitrosothiols levels secondary to clopidogrel loading will be 

augmented by concurrent oral nitrate treatment, and reduced by concurrent proton 

pump inhibitor therapy. 

 

 Prasugrel contains a thiol group so will therefore be able to form a vasoactive 

nitrosothiols derivative under physiological conditions and will enhance NO 

bioavailability following administration of a loading dose in vivo. 

 

 Ticagrelor will not form a vasoactive nitrosothiols derivative due to the lack of a 

critical thiol group at its active centre (or because its mode of action does not involve 

a critical thiol group). 
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2 GENERAL METHODS 

 

2.1 Blood Collection 

Blood was required from both healthy volunteers and patients with coronary artery disease 

for the purposes of the study, and taken in accordance with guidance set out by Cardiff and 

Vale Health Board. Approval was gained from the Local Research Ethics Committee for 

Wales and the study was conducted according to the recommendations for physicians 

involved in research on human subjects adopted by the 18th World Medical Assembly, 

Helsinki 1964 (and later revisions).  

For patient studies, an 18G cannula was inserted into the ante-cubital fossa vein and blood 

drawn directly into vacutainers (Vacuette Greiner Bio-OneTM). For NO metabolites analysis, 

2x 4 ml K3EDTA per patient sample were collected, and for platelet analysis, 1x 3 ml Hirudin 

vacutainer (Roche Hirudin Vacutainer). Repeat samples were required dependent on patient 

group, and these were taken from the same cannula. Cannulas were flushed with 0.9% 

normal saline after each use, so prior to repeat sampling, a tourniquet was re-applied above 

the cannula and the first 10 ml of whole blood discarded prior to sampling to prevent saline 

contamination. NO metabolites degradation is rapid so the K3EDTA tubes were placed on 

ice immediately and for the duration of transportation. 

Platelet studies were performed on the Hirudin vacutainer samples. These were transported 

at room temperature taking care not to shake or agitate the tubes in order to minimise 

platelet activation. They were analysed by multiple electrode aggregometry (Multiplate®) 

between 30 and 45 minutes after acquisition. 
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2.1.1 Platelet Poor Plasma (PPP) Preparation 

PPP was prepared for NO metabolites measurements. Immediately following return to the 

laboratory, typically within 15 minutes of acquisition, the K3EDTA tubes were centrifuged at 

3000rpm for 10 minutes at 4°C.  Samples were then carefully separated and aliquoted into 

plasma and erythrocyte fractions prior to immediate snap freezing in liquid nitrogen and 

placed in storage at -80°C. When ready for NO metabolite analysis, aliquots were thawed for 

3 minutes in a water bath kept at 37°C and analysed immediately. 

 

2.1.2 Platelet Rich Plasma (PRP) Preparation 

PRP from healthy volunteers was used for all in-vitro experiments including platelet and 

nitrosothiols studies. Blood was drawn from the ante-cubital fossa vein and carefully 

aliquoted into vacutainers containing hirudin anticoagulant (Roche Hirudin Vacutainer 3mL). 

Following centrifugation (800rpm at 20°Celcius) for 10 minutes, the formed PRP was 

immediately drawn off taking care not to agitate the sample, and left to stand for 10 minutes 

at room temperature. In order to ensure adequate PRP preparation and consistency of 

technique, the platelet count was confirmed on several samples using a standardised flow 

cytometer (Horiba Medical ABX Pentra ML) and comparison was also made with paired 

whole blood at 30 and 60 minutes post venepuncture. In view of degradation in platelet 

quality, analysis of hirudin-collected plasma was performed within 30 minutes. PRP was 

used in lieu of whole blood for all Multiplate® analysis to test platelet response to both ADP 

and thrombin-receptor agonist peptide (TRAP) agonists in a variety of settings as described 

in the relevant results chapters. 
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2.2 Measurement of NO derivatives by Ozone Based Chemiluminescence 

Ozone based chemiluminescense (OBC) was utilised to quantify the nitric oxide metabolites 

nitrite, nitrosothiols and nitrate. 

Other techniques are available for the measurement of NO derivatives and some 

undoubtedly have distinct advantages over OBC, such as ease of operation, minimal 

specialist equipment, and the ability to process multiple samples simultaneously, but OBC 

provides a sensitivity of better than 1 pico mole NO and can specifically measure different 

NO metabolites following appropriate sample pre-treatment. 

 

Figure 20: Techniques for measuring S-nitrosothiols. There are a number of methods for the “direct” 
detection of the S–NO bond which rely on measurement of its characteristic absorbance band at 340 nm, 
but sensitivity tends to be low. “Indirect” chemical methods require cleavage of the S–NO bond and 
detection of the species formed 
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OBC measurement first requires specific cleavage reagents to be added to a reaction vessel 

in order to liberate NO• from the species of interest within the specified samples, typically 

solutions or human plasma. This is then carried by inert N2 gas at a flow rate of 200cm3 per 

minute through a trap containing 40mls of 1N sodium hydroxide which serves two main 

purposes, firstly it prevents contamination from any other NO• generated by acids, and 

secondly it protects the analyser form hot acidic vapour. From here, the generated NO• is 

carried onto the NO analyser (Sievers NOA 280i, Analytix, UK). Here it reacts with ozone 

(O3) as per the equation below,  

NO• +O3 → NO2
• +O2 → NO2 +O2 + hv 

Energy released from this reaction in a form of a photon (hv) is amplified in a photo-multiplier 

tube (PMT) and recorded as a potential difference (mV).  

This mV signal provides a graphical data series seen as peaks by the NO Analysis software 

(Liquid). These peaks are then analysed by measuring the area under curve (AUC) 

corresponding to each sample using the Liquid software or, if needed in the case of 

nitrosothiols for increased accuracy, Origin software. This AUC correlates with the quantity 

of NO metabolites as determined from relevant standard curves performed daily. 

OBC analysis has been investigated thoroughly and extensively through previous work at 

the WHRI299. The NOA requires minimal maintenance; as per the manufacturer’s guidelines, 

consumables require replacement approximately every six months (which equates to around 

900 hours of operation). The firmware tracks operating time and alerts the user as 

necessary, but to ensure robust performance routine manufacturer maintenance is 

performed every 6 months.  
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2.2.1 Special Considerations 

The half-life of NO and the ratio of the final NO metabolites in aqueous solutions, namely 

nitrite and nitrate, will depend on surrounding conditions including pH and temperature, and 

the concentration of transition metals and thiols. In whole blood, nitrite is rapidly converted to 

nitrate with an approximate half-life of 110 seconds.  

Furthermore, serum nitrosothiols can destabilise in part during sampling, and also with the 

passage of time to form nitrite. Therefore, in order to ascertain reliable nitrite and 

nitrosothiols levels which accurately reflect NO release, prompt sample preparation is 

paramount. Assuming samples are immediately snap frozen in liquid nitrogen, storage in the 

freezer for up to 6 months tends not to alter the total NO metabolite levels when compared 

with analysis of freshly measured samples. However, the apportionment of NO between 

metabolite species does begin to alter; RSNO starts declining significantly after 7 days and 

nitrite within weeks. Ultimately, plasma RSNO and nitrite are gradually oxidised to nitrate299.  

Analysis of S-nitrosothiols levels is also subject to error. Decomposition is affected by 

numerous factors including light, temperature, pH, and contaminating transition metal 

ions300. Elimination of these confounding factors when performing OBC analysis is thus 

pivotal to the accurate measurement of NO metabolites. It has been shown that biologically 

relevant S-nitrosothiols are stable in the dark in the presence of transition metal ion 

chelators. Furthermore, metal-ion catalysed decomposition of S-nitrosothiols in the dark 

generates nitric oxide and disulfides without the intermediate production of thiyl radicals301 

which can often have additional and unknown effects of their own. Careful attention is 

therefore paid to performing analysis in the dark where possible and maintaining consistency 

of these additional confounding factors. 
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2.2.2 Measurement of plasma nitrite and nitrosothiols 

The cleaving agent used to quantify plasma nitrite and nitrosothiols by OBC is tri-iodide (I3), 

consisting of 0.78 M glacial acetic acid, 66.9 mM potassium iodide and 28.5 mM iodine.  

The assay reagent (5ml) is placed in a glass purge vessel with a rubber septum covered 

injection inlet.  Oxygen free nitrogen gas is bubbled through the reagent mix, which is heated 

to 50ºC (± 1ºC) in a water bath on a thermostatically controlled hotplate.  A stock solution of 

acidic/tri-iodide cleavage reagent (70mls) is prepared fresh each day and 200 microlitre 

freshly thawed plasma samples are injected directly into the 5ml reagent, and analysed in 

duplicate as demonstrated in figure 24. 20 µL of AntifoamTM is added to the reagent chamber 

to prevent foaming caused by bubbling of nitrogen gases and plasma proteins. This assay is 

sensitive to <10nM nitrite with an accuracy better than ±10%. 

 

Figure 21: NOA setup for measurement of plasma nitrite. Sample and Antifoam
TM

 is injected through the 
rubber septum and into a vessel containing tri-iodide reagent, the temperature of which is maintained at 
50°C by a beaker of water kept on a hot plate linked to a thermostat. Released NO is carried in a nitrogen 
(N2) gas stream controlled by a flowmeter into a round-bottomed flask containing 1 M Sodium Hydroxide 
(NaOH). Neutralised NO vapour is directed to the NO analyser 
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Use of the tri-iodide reagent allows cleavage of both plasma nitrite and nitrosothiols as 

illustrated in the following equations. Firstly, nitrite conversion to nitrous acid occurs due to 

excess acid and is followed by reduction to NO and water; 

H+ + NO2
- ↔ HNO2 

HNO2 + 2I- + 2H+ → 2NO + I2 +2H2O  

Nitrosothiols are reduced to NO• and water due to the excess iodine;    

 I2 + I- → I-3 

 I-3 + 2RSNO → RS-SR + 2NO• 

 2NO• + 2I- + 2H+ → 2NO + I2 + H2O 

 

 

Figure 22: Analysis of standard curve for plasma nitrite and RSNO measurement. Peaks, in order, 
correspond to sodium nitrite concentrations of 1000 nM, 500 nM, 250 nM, 125 nM, 62.5 nM, and finally a 
blank HPLC-grade water signal.  
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Figure 23: Nitrite standard curve - corresponding areas under the curve of the detected peaks shown in 
figure 22 (corrected by AUC of water) were used to calculate the slope coefficient of the standard curve. 

  

A standard curve was constructed using HPLC-grade water and different concentrations of 

sodium nitrite 62.5 nM, 125 nM, 250 nM, 500 nM and 1000 nM. The corresponding AUC of 

detected peaks were used to calculate the slope coefficient of the standard curve. Correction 

was made for area under curve for water to eliminate the risk of nitrite contamination.  

To distinguish between nitrite and RSNO, the same sample was run before and after a pre-

treatment with 5 % acidified sulphanilamide (290 mM). This binds nitrite ions rendering 

plasma nitrite undetectable and allows selective measurement of the residual signal 

attributable to plasma RSNO. Acidified sulphanilamide is typically mixed with the plasma 

sample and left in the dark for 15 minutes to reduce all the nitrite.  

RSNO signals are small with a typical noise to signal ratio for plasma nitrite/RSNO of <10. 

Origin version 8.0 software is better suited to calculating the AUC in this situation as the 

signal is smoothed prior to analysis, the standard curve being analysed the same way.  

The intra-assay coefficient of variation (CV) has been determined previously in our lab as 

7%302, and the inter-assay CV is 8%. For each patient sample, duplicate measurements are 

[Nitrite] = AUC/2.2319 
R² = 0.999 
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made for plasma nitrite before treatment with sulphanilamide and measurement of RSNO as 

shown in figure 24. Additional CV measurements have been performed on a random 

selection of these duplicate samples as illustrated in table vii to highlight the consistency 

seen with OBC analysis. 

 

Figure 24: Typical duplicate nitrite signal and RSNO signal from the same plasma sample. 

 

PLASMA 
NITRITE 

Sample number 1 
(ηM) 

Sample Number 2 
(ηM) 

Mean 
(ηM) 

Coefficient of 
Variation 

1 248.4 242.4 245.4 0.017 

2 247.7 260.9 254.3 0.037 

3 279.2 275.1 277.2 0.010 

4 114.1 120.2 117.1 0.037 

5 223.6 228.4 226.0 0.015 

6 172.5 195.1 183.8 0.087 

7 262.9 256.0 259.4 0.019 

8 177.3 176.5 176.9 0.003 

Table vii: Random patient selection chosen for analysis. Table demonstrates paired plasma nitrite 
sample results and the calculated coefficient of variation for each. Mean CV is 0.028. 
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2.2.3 Measurement of plasma nitrate 

The agent of choice for cleavage of plasma nitrate is vanadium chloride (VCl3). The reagent 

contains 49.9 mM VCl3 and 0.8 M HCl and is a more potent reductive agent than tri-iodide 

reducing nitrate to NO• as shown in the following equation; 

2VCl3 + 4HCl + NO3
- → 2VCl5 + 2H20 + NO   

 

 

Figure 25: NOA setup for measurement of plasma nitrate.  The sample is injected through the rubber 
septum into a 2-neck round-bottomed flask containing vanadium chloride reagent, the temperature of 
which is maintained at 85°C by a beaker of water kept on a hot plate linked to a thermostat. Released NO 
is carried in a nitrogen (N2) gas stream controlled by a flowmeter and directed through a condenser  then 
to a 1 M NaOH  trap. Neutralised NO vapour is directed to the NO analyser. 
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Vanadium chloride is mixed for 15 minutes and then filtered through a 0.22 µm filter to 

remove undissolved salt prior to addition to the reagent chamber which is kept at a steady 

85°Celsius for effective cleavage. A large purge vessel is used to allow any vaporised 

reagent to condense back into the chamber. 30ml of vanadium chloride is used and this 

typically allows 20 plasma samples of 20 µL each to be analysed before deterioration in the 

quality and reliability of the OBC signal is seen302. Again, each patient plasma sample is 

analysed in duplicate.  20 µL of AntifoamTM is added to the reagent chamber to prevent 

foaming caused by bubbling of nitrogen gases and plasma proteins. 

 

 

Figure 26: Analysis of standard curve for plasma nitrate measurement.  Peaks, in order from left to right, 
correspond to sodium nitrate concentrations of 100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM, and finally a 
blank HPLC-grade water signal. 
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Figure 27: Nitrate standard curve - corresponding areas under the curve of the detected peaks shown in 
figure 26 (corrected by AUC of water) were used to calculate the slope coefficient of the standard curve. 

 

A standard curve was constructed using HPLC-grade water and different concentrations of 

sodium nitrate; 6.25 μM, 12.5 μM, 25 μM, 50 μM and 100 μM. Due to its reductive power, 

vanadium chloride reduces not only nitrate, but also nitrite and RSNO to NO, so to calculate 

an accurate nitrate level the total nitrite and RSNO measured by tri-iodide analysis must first 

be subtracted from that observed with the VCl3 reagent. 

The intra-assay CV has been determined previously in our lab as 4%302, and the inter-assay 

CV is 4%. As with plasma nitrite analysis, each patient sample is run in duplicate before 

averaging to establish a mean plasma nitrate result. Additional CV measurements have 

been performed on a random selection of these duplicate samples as illustrated in table viii. 

 

  

 

[Nitrate] = AUC/105.92 
R² = 0.9992 
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PLASMA 
NITRATE 

Sample number 1 
(µM) 

Sample Number 2 
(µM) 

Mean 
(µM) 

Coefficient of 
Variation 

1 67.0 64.7 65.9 0.025 

2 57.7 55.5 56.6 0.027 

3 34.0 32.4 33.2 0.034 

4 43.4 42.0 42.7 0.023 

5 83.2 83.1 83.1 0.0009 

6 19.9 17.0 18.4 0.111 

7 23.7 27.3 25.5 0.099 

8 73.4 73.7 73.6 0.003 

Table viii: Random patient selection chosen for analysis. Table demonstrates paired plasma nitrate 
sample results and the calculated coefficient of variation for each. Mean CV is 0.040. 

 

2.2.4 Measurement of Nitrosothiols in Thienopyridine-SNO preparations  

Artificially synthesised nitrosothiols are measured using OBC, with cysteine and copper (1) 

chloride as the cleavage agent. This “2Cs” reagent comprises 0.1 mM CuCl and 0.97 mM 

cysteine, with the following equation illustrating the cleavage mechanism; 

RS-NO + Cu+ + H+ → RSH + Cu2+ + NO 

2RSH + 2Cu2+ → RS-SR + 2Cu+ + 2H+ 

Assay reagents (5ml) are placed in a glass purge vessel with a rubber septum covered 

injection inlet, into which is injected 200 µL samples. As described above for nitrite 

measurement using tri-iodide, the set-up is the same bubbling oxygen free nitrogen gas 

through the reagent mix, which is heated to 50ºC (± 1ºC) in a water bath, and linked to a trap 

containing 20mls of 1M sodium hydroxide, and then connected to the NO analyser. PBS is 
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used rather than water to maintain neutrality of the 2Cs reagent and avoid detection of nitrite 

and nitrate contaminants. 

N-acetyl cysteine-SNO (NAC-SNO) is prepared fresh using 1 M N-acetyl cysteine (NAC) and 

1.1 M sodium nitrite and used in increasing concentrations of 250 nM, 500 nM, 1000 nM, 

2000 nM and 4000 nM to create a standard curve. To maintain stability and prevent 

decomposition, the NAC-SNO is kept in the dark and on ice. The intra-assay CV has been 

determined previously in our lab as 7%302, and the inter-assay CV is 18%. 

UV spectrophotometry is used to confirm the precise NAC-SNO concentration prior to NOA 

analysis based on the following direct relationship with maximal light absorbance occurring 

at 334 nM. The absorption coefficient is ε 727. 

[NACSNO] = Light absorbance / Absorption coefficient  

The advantage of the 2Cs reagent lies in its neutrality which ensures that other metabolites 

such as nitrites and nitrates remain undetected in biological samples, thus providing 

specificity303. This makes it ideal for measurement of RSNO species in aqueous samples. 

However, the sensitivity and practicality of undertaking measures of plasma RSNO using 

2Cs is poor; it cannot accurately determine levels within the range necessary for analysing 

human plasma samples under normal conditions (<50 nM). Furthermore, it is not suitable for 

samples with high protein content due to the formation of foam in the reaction vessel at 

neutral pH. Therefore, use of the 2Cs method is reserved for analysis of laboratory based 

samples throughout this work, and tri-iodide for plasma samples299. Both methods have 

been extensively characterised and are well proven304.  
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2.3 Platelet Function Testing Using Multiple Electrode Impedance 

Aggregometry (MEA) 

The role of dual antiplatelet therapy (DAPT) is well established in the treatment of acute 

coronary syndromes and following percutaneous coronary intervention to prevent major 

adverse cardiovascular events (MACE). Interest has arisen in measuring platelet function to 

assess the risk of arterial thrombosis in these clinical contexts because individuals with 

platelet hyper-reactivity are known to be at greater risk305.  Furthermore, those with high 

residual platelet reactivity (HRPR) despite antiplatelet therapy are also at increased 

thrombotic risk306,307. Unfortunately, the definitions of resistance vary widely dependent on 

the platelet function test, to the point that patients classified as non-responders by one test 

were considered responders by another. HRPR is frequent, particularly amongst clopidogrel 

users (30% to 40%), but the low frequency of MACE following PCI (0.5% to 2.5%) makes 

establishing a causal relationship between platelet function result and event difficult. It was 

hoped that bedside platelet testing would facilitate antiplatelet prescribing, tailoring 

appropriate medication and dosing to the individual with the aim of reducing MACE, but this 

has not been borne out in practice, trials suggesting no role for this approach308,309.  

Numerous tests exist to analyse platelet function. 

Light transmission aggregometry (LTA) was invented in the early 1960s and despite being 

regarded as the gold standard for platelet function testing, its use is poorly standardised with 

wide variations in laboratory practice310, and is certainly impractical as a bedside test. 

Additional point-of-care tests have been developed since and most commonly used are the 

PFA-100 (Siemens Medical, Munich, Germany)311 and VerifyNow (Accumetrics, San Diego, 

California)312 but others include multiple electrode platelet aggregometry (MEA), vasodilator-

stimulated phosphoprotein (VASP) phosphorylation, Cone-and Plate(let) assay (IMPACT-R, 

DANED SA, Beersel, Belgium), Plateletworks (Helena Laboratories, Beaumont, Texas) and 

others as shown in table ix below.  
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Method Pros Cons 

Bleeding time Quick 

No WB processing 

Invasive 

Poorly standardised 

Multiple variables 

LTA Gold standard 

Flexible 

Diagnostic 

Different platelet pathways 

Sensitive to therapy 

Manual sample processing 

Pre and analytical variables 

High sample volume 

Time consuming 

Impedance aggregometry No sample processing 

Diagnostic 

Flexible 

Different platelet pathways 

Sensitive to therapy 

POC 

Limited haematocrit 

Limited platelet count range 

VerifyNow POC 

No WB processing 

Easy and Quick 

 

Inflexible 

Expensive 

Monitoring anti-platelet 

therapy 

Limited haematocrit 

Limited platelet count range 

Plateletworks POC 

Minimal sample prep 

Easy and Quick 

Indirect 

Requires platelet count 

Scarce data 

PFA-100, Innovance PFA-

200 

In vitro standardised BT 

Easy and Quick 

POC 

Closed system 

Platelet count and 

haematocrit dependent 

Impact Cone and Plate(let) 

Analyser 

WB assay 

Small sample volume 

Global platelet method 

Expensive 

Experience required 

Limited evidence 

Limited availability 
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Global thrombosis test POC 

Global haemostasis test 

Small sample volume 

Insufficient evidence 

Limited availability 

TEG (thrombo-

elastography) platelet 

mapping 

POC 

Global haemostasis test 

Reduces blood transfusion 

Insufficient evidence 

 

ROTEM (rotational 

thrombo-elastometry) 

POC 

Predicts bleeding 

Reduces blood transfusion 

Global haemostasis test 

WB platelet aggregometry 

Limited haematocrit 

Limited platelet count range 

Insufficient evidence 

 

 
Table ix: Platelet Function Tests available and their pros and cons (Adapted from Platelet function tests: 
a comparative review

313
). POC = point-of-care. WB = whole blood. BT = bleeding time.  

 

There is relatively poor correlation between the different platelet function tests available so 

the decision to use MEA was based on the need for an easy to use, reliable and repeatable 

test which provided multiple channels for simultaneous recording.   

Impedance aggregometry involves stirring whole blood or PRP at 37°C whilst measuring 

electrical impedance as platelets adhere to the surface of two fine, precious metal, wire 

electrodes314. Impedance aggregation measurements in whole blood may be influenced by 

parameters such as haematocrit, platelet count, and elevated white cell count315,316. 

Technical problems associated with whole blood impedance aggregation have been 

obviated by the development of newer machines including the Multiplate® Analyser 

(Dynabyte, Munich, Germany) which employs disposable electrodes, standardised reagents 

and 5 channels for simultaneous recording. Use of this technique has been shown to be 

easy, reproducible and sensitive for assessing stimulated platelet aggregation, and 

evaluating antiplatelet drugs in diluted whole blood. The use of hirudin rather than citrate as 

an anticoagulant is recommended317. Trisodium citrate dihydrate has been the preferred 

anticoagulant agent for platelet function testing, but it chelates calcium making its use for in 
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vivo assessment sub-optimal. Resultant inhibitory effects on coagulation are likely to lead to 

under- or overestimation of the true inhibitory effects of P2Y12 receptor antagonists318.  

Additional common sources of error comprise both pre-analytical, including variable 

venepuncture technique, collection, blood/anticoagulant ratio, transportation, and storage, 

and analytical, such as calibration, reagent issues, methodology and instrument problems. 

Limitation of pre-analytical error has been discussed. Analytical error was minimised by daily 

calibration of the Multiplate® equipment, use of fresh, standardised reagents and agonists, 

plus the inherent benefits of single use disposable test cells and internal controls.  

 

2.3.1 Multiplate® setup 

 

 

Figure 28: Standard Multiplate
®
 Analyser set-up. The figure shows the bench top device and different 

components of the electrical impedance aggregometer. It is an easy to use instrument that allows 
standardised measurement of platelet function using small quantities of whole blood. The five channel 
analyser has a wide menu of CE marked tests. 
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Briefly, a test cell is attached to an electrical sensor cable. Into this cell 300 µL of 0.9% 

normal saline is added to 300 µL of blood collected in Hirudin anticoagulant and incubated 

for 3 minutes prior to the addition of an agonist, namely ADP and TRAP for the purposes of 

this study. One Multiplate® test cell incorporates two independent sensor units. The increase 

in impedance, proportional to the adherence of platelets to the electrodes is converted by 

each sensor unit into arbitrary aggregation units (AU) that are plotted against time. The 

duplicate sensors serve as an internal control. 

 

 

Figure 29: Typical example of a Multiplate
®
 signal trace using 2 of the 5 channels simultaneously. The 

aggregometer uses a windows
®
-based design providing live viewing of the impedance aggregometry, 

plotting platelet aggregation measurements against time (in AU*min). The red and blue lines represent 
the measurements taken from each of the pair of independent sensors within each test cell. Each sensor 
comprises two pairs of electrodes. 
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Whole blood is used in the patient studies. Platelet rich plasma has been substituted in the 

in-vitro studies due to the need to measure a direct effect of NO-induced platelet inhibition 

produced by ticagrelor-derived SNO. This cannot be measured in whole blood due to the 

scavenging effect of RBCs on nitric oxide. 

To ensure optimal performance of the Multiplate® analyser, the manufacturer guidelines 

were followed as per the operator’s manual. Prior to each daily use, an electronic quality 

control measurement was performed, allowing at least 20 minutes for the analyser to reach 

its operating temperature of 37°C. Reagent vials were marked with the date of reconstitution, 

not refrozen and used within 24 hours. Pre-heated sterile saline solution (0.9% NaCl) was 

used as stated. Daily inspections of the electronic pipette and sensor cables were 

performed, with changing of the pipette filter as required. Routine analyser servicing was 

performed annually.   

 

2.4 cGMP ELISA  

The ‘R & D Systems ParameterTM cGMP Assay Kit’ was used for cyclic guanosine 3’,5’-

monophosphate (cGMP) quantification and was chosen due to the wide detection range (0-

500 pmol/ml). As previously described, cGMP is a second messenger converted from 

guanosine triphosphate (GTP) via the action of guanylyl cyclase. Cyclic GMP generation can 

occur either through a soluble pathway by the action of cytoplasmic nitric oxide-activated GC 

or via a particulate pathway through the action of transmembrane proteins typically involving 

atrial (ANP) and B-type natriuretic peptides (BNP)319. Cyclic GMP acts through four different 

pathways; cGMP-dependent protein kinases (PKG/GK), cyclic nucleotide-gated (CNG) 

channels, cAMP-dependent protein kinase (PKA), and phosphodiesterases. 
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2.4.1 Assay principle 

This ELISA kit is based on competitive binding of the substrate using a rabbit polyclonal 

antibody. Cyclic GMP present in plasma samples compete with a fixed amount of 

horseradish peroxidase-labelled cGMP on the antibody, which, during incubation, then binds 

to goat anti-rabbit antibody embedded on the plate. Conjugate and unbound sample is then 

washed off prior to the addition of the substrate to determine bound enzyme activity. Colour 

development is stopped before reading the absorbance, and quantifying cGMP levels which 

are inversely proportional to colour intensity. This ELISA method is concentration dependant, 

and the signal output is inversely correlated to the amount of cGMP in the sample. 

  

 

Figure 30: Competitive cGMP ELISA. Based on the principle that the antigen in the sample competes for 
limited antibody binding sites. cGMP present in the sample competes with a fixed amount of horseradish 
peroxidase-labelled antibody for sites on a rabbit polyclonal antibody. The antibody binds to anti-rabbit 
antibody coated on the microplate during incubation. Washing then removes unbound sample and 
conjugate following which a substrate solution is added to determine bound enzyme activity.    
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2.4.2 cGMP Assay Preparation:  

The kit comprises the following: 

 Goat anti-rabbit microplate  

 cGMP Conjugate  

 cGMP Standard  

 Primary Antibody Solution  

 Calibrator Diluent RD5-5   

 Wash Buffer Concentrate  

 Colour Reagent A and Colour Reagent B  

 Stop Solution  

 Adhesive Plate Sealers 

With regards reagent preparation, 20 mL of Wash Buffer Concentrate was diluted in de-

ionised water to prepare 500 mL Wash Buffer. The cGMP standard was reconstituted in 1 

mL of de-ionised water to produce a stock solution of 5000 pmol/mL which was diluted 

further to prepare diluted standards at concentrations of 500 pmol/mL, 167 pmol/mL, 56 

pmol/mL, 18.5 pmol/mL, 6.2 pmol/mL and 2.1 pmol/mL.  
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Figure 31: Diagram showing preparation of diluted standards. cGMP standard is reconstituted in 1 mL of 
de-ionised water to produce the stock solution from which the diluted standards are made. Each tube is 
thoroughly mixed and pipette tips are changed between each transfer.  

 

Stored plasma samples, collected using EDTA as the anticoagulant, were thawed at 37°C 

for 3 minutes prior to diluting 20 fold with Calibrator Diluent RD5-5. Each sample was mixed 

thoroughly prior to adding to the 96-well plate. 

 

 

2.4.3 Assay Procedure  

All reagents and samples are brought to room temperature before use, and every sample, 

control and standard is assayed in duplicate to minimise error. 
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 The plate layout comprises non-specific binding (NSB) wells which serve as the 

control, zero standard wells and remaining standard and sample wells. 

 150 μL of Calibrator Diluent is first added to the NSB wells and 100 μL to the zero 

standard wells, followed by 100 μL of standard or sample to the remaining wells.  

 50 μL of cGMP conjugate is added to each well producing a slight red colour. 

 50 μL of Primary Antibody Solution is then added to each well, excluding the NSB 

wells. This results in a slight violet appearance to all except the NSB wells.  

 The plate is covered with an adhesive strip.  

 Then follows a 3 hour incubation phase, gently stirring the plate on a microplate 

shaker at 500 ± 50 rpm at room temperature.  

 Plate washing is then performed; well contents are aspirated and replaced with 400 

μL of diluted wash buffer, repeated 4 times, and then blotted dry.  

 Colour reagent A (stabilised hydrogen peroxide) and colour reagent B (stabilised 

chromogen (tetramethylbenzidine)) are mixed in equal quantities to produce the 

Substrate solution. 

 200 μL of this Substrate Solution is added to each well within 15 minutes of its 

preparation, covered with foil and protected from light, then incubated for a further 30 

minutes at room temperature. 

 50 μL of Stop Solution (containing 2 N sulphuric acid) is added to each well, which 

should lead to a colour change from blue to yellow, but often requires tapping of the 

plate for thorough mixing. 

 Optical density of each well is then determined within 30 minutes, using a microplate 

reader set to 450 nm. Density is also measured at 540 nm and subtracted from the 

450 nm value. This corrects for optical imperfections in the plate.  
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Figure 32: Typical R&D parameter assay standard curve. A standard curve is generated for each set of 
samples assayed. For each standard, control and sample duplicate readings are made and then 
averaged. The standard curve is then created by plotting mean absorbance on a linear y-axis against the 
concentration on a logarithmic x-axis. A best fit curve is then drawn through the points on the graph. 
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2.5 Artificial Stomach Medium Preparation 

2.5.1 Gastric Physiology 

Absorption of orally administered antiplatelet agents is an important determinant to drug 

effectiveness and speed of onset.  Gastric physiology is therefore integral to a full 

understanding of how oral anti-platelet agents work. The stomach normally produces about 2 

litres of gastric juice a day, in response to eating, but during fasting there is little or no 

secretion. The main constituents are hydrochloric acid, intrinsic factor, pepsinogens, mucus, 

water and electrolytes, particularly K+ and Cl−, with a resultant pH of 1–1.5. The stomach 

empties when pressure generated by the antral pump exceeds pyloric sphincter resistance. 

Emptying occurs at an exponential rate proportional to the volume of the stomach, mediated 

by vagal excitatory reflexes. In a normal stomach, 95% of ingested clear liquid reaches the 

duodenum within 1 hour and 50% of a meal will pass the pylorus in 2 hours. 

2.5.2 Stomach Medium Set-up 

In order to replicate physiological conditions as closely as possible, simulated human gastric 

fluid (SGF) was prepared according to a formula reported by Beumer et al320. This comprises 

the following; Peptone 4.15g, D-Glucose 1.75g, NaCl 1.025g, KH2PO4 0.3g, CaCl2 0.055g, 

KCl 0.37g, Porcine Bile 0.025g, Lysozyme 0.05g, Pepsin 0.00665g, Resazurin 0.001g. This 

was made up to 500 mL with de-ionised water and acidified using 1 M HCl.  

It is known that the pH of a fasted stomach ranges from 1 to 3 and fasted volumes average 

25 mL but are frequently higher. Furthermore, when a tablet is ingested, fluid is typically co-

administered, and in pharmacokinetic studies, this is usually in the range of 200-250 mL. 

Once prepared, SGF was gently stirred, and filtered through a 0.22µM pore. 100 mL was 

added to a conical flask and kept at a steady temperature of 37°C on a hotplate. 
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3 Clopidogrel: The effect of Proton Pump Inhibitors and organic 

nitrates on NO Metabolites 

 

3.1 Introduction 

Clopidogrel, a second-generation thienopyridine, cemented its status as an essential 

treatment in acute coronary syndromes as a result of the CURE study in 2001321, and 

subsequently as a treatment in patients undergoing percutaneous coronary intervention. 

Clopidogrel is an inactive prodrug that undergoes a two-step activation process. It is 

absorbed in the intestine322, mediated by the intestinal efflux transporter P-glycoprotein 

(Pgp), encoded by ABCB1, and must then undergo a two-step oxidative bio-activation 

process in the liver.  

Several cytochrome P450 (CYP) enzymes are implicated including CYP1A2, CYP2B6, 

CYP2C9, CYP2C19, and CYP3A4/5, but the relative contribution of each remains unclear. 

However, it was suggested by Kazui et al that CYP2C19 contributes substantially to both 

oxidative steps and CYP3A4 predominantly the second oxidative step323. (see figure 33) 

In view of this reliance on CYP-dependent metabolism, concern therefore exists about 

potential drug-drug interactions with clopidogrel and the impact this may have on resultant 

platelet inhibition, amplified by the known increased risk of stent thrombosis seen in 

clopidogrel “non-responders”325. Interactions resulting in low efficacy of clopidogrel have 

been reported with morphine326, fluoxetine327, ketoconazole328, the oral hypoglycaemic 

sulfonylureas329, the calcium-channel blockers (CCB) but primarily the non-Pgp-inhibiting 

CCB amlodipine330,331, and the proton-pump inhibitors omeprazole and esomeprazole332,333. 

Pantoprazole and rabeprazole have been shown not to affect the pharmacokinetics and 

antiplatelet efficacy of clopidogrel332. 
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Figure 33: Clopidogrel bio-activation. Diagram highlighting the main candidate genes involved in 
clopidogrel metabolism and its primary mechanism of action. Adapted from 

324
. 

 

Presumed to be related to liver metabolism, several reports have implicated cytochrome 

P450 enzymes, in particular, showing a higher rate of cardiovascular events in patients 

carrying CYP2C19 loss-of-function alleles334, with the genetic variant CYP2C19*2 (loss of 

function allele “star 2”) thought to account for most of the associated diminished platelet 

response to clopidogrel335.  

However, there are many factors that may account for this decreased response to 

clopidogrel besides genetic polymorphisms, including age, presence of diabetes, renal 

failure, and reduced left ventricular function336. Furthermore, the implication that genetic 

polymorphisms alone can be used to determine clopidogrel responsiveness and likelihood of 

clinical sequelae has been contested337. Hochholzer et al identified the major independent 

predictors of insufficient antiplatelet response to clopidogrel as CYP2C19*2 carrier status, 

age, diabetes mellitus, and body mass index. However, analysis using a model that only 
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comprises CYP2C19*2 carrier status could explain only 4.6% of the variability in on-

clopidogrel residual platelet aggregation. Furthermore, when allowing for all factors including 

genetic variance together with all demographic and clinical predictors, CYP2C19*2 carrier 

status could only explain 11.5% of residual platelet aggregation. 

 

 

Figure 34: Schematic highlighting the main parameters responsible for decreased responsiveness to 
clopidogrel. 

 

So despite these variables showing a statistically significant association with clopidogrel 

response, they are insufficient to fully predict high on-clopidogrel residual platelet 

aggregation and should not be used for clinical decision-making. 

By implication, there must be other, as yet undiscovered factors accounting for clopidogrel 

non- and reduced- responsiveness. This may be attributable to other genetic polymorphisms 

including for genes encoding for drug metabolism, enzymes, transporter proteins such as P-

glycoprotein, and drug target proteins, although there is little evidence to support a 

significant clinical effect to date338-340. Another focus of interest involves paraoxonase-1 

CYP2C19 
status 

Diabetes 

↑ BMI 

↑ Age  11.5% 
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(PON1), a high-density-lipoprotein (HDL) associated enzyme with anti-oxidative and anti-

atherogenic properties. Synthesised in the liver, it is a genetically controlled enzyme involved 

in the formation of the thiol active metabolite from clopidogrel with esterase and more 

specifically paraoxonase activity. It is a crucial enzyme responsible for clopidogrel 

bioactivation341.  

So, various hypotheses exist to explain the reduced effectiveness of clopidogrel in certain 

individuals, but the biological mechanisms underlying this remain largely unclear, with 

genetic variants only accounting for a minority of the response variability identified thus far. 

Previous work undertaken at the Wales Heart Research Institute has revealed that all 

clopidogrel salts, when in an acidic milieu akin to that in the human stomach, form S-

nitrosothiols (RSNO) derivatives with anti-aggregatory and vasomodulatory properties. This 

effect is reliant on the availability of the free thiol within the clopidogrel molecule297,342. 

Importantly, this work also showed clopidogrel induces significant increases in circulatory 

nitrite in both the acute (compared to clopidogrel naïve) and chronic treatment of patients. 

Given that plasma nitrite not only reflects vascular endothelial NO production but is also a 

breakdown product of RSNO, this result is indicative of increased circulating NO metabolites 

following clopidogrel administration298.  

Given that the formation of RSNO is dependent on low pH, and the presence of nitrite, it 

must be established whether co-administered drugs which affect these parameters have an 

effect on the RSNO yield. Proton pump inhibitors (PPIs) block the gastric acid pump, 

H(+)/K(+)-adenosine triphosphatase (ATPase), inhibiting gastric acid secretion thus raising 

pH. Oral administration of organic nitrates for the treatment of angina leads to increased 

gastric nitrite availability as explained by the entero-salivary nitrate-nitrite-nitric oxide 

pathway described in section 1.3.2  
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Therefore, patient studies were devised to establish whether; 

 Patients taking regular clopidogrel who were also on concomitant PPIs had lower 

RSNO plasma levels than those not taking PPIs. 

 Patients taking regular clopidogrel who were also on concomitant organic nitrate 

medication had higher RSNO plasma levels than those not taking organic nitrates. 

 

3.2 Methods 

All biochemical methods including analysis of plasma NO metabolites and platelet function 

testing are as described in the Methods section. 

 

3.2.1 Patient Recruitment 

Patients for all the clinical studies were recruited from the cardiac day-case unit at the 

University Hospital of Wales. For this study, it was decided that the most effective and 

simplest population to evaluate in order to assess response to antiplatelet agents are 

elective patients attending routinely for coronary angiography +/- percutaneous coronary 

intervention. They are easily identifiable, clinically stable, and fasted. Furthermore, these 

patients all attend at least 3 days prior to their procedure for pre-assessment allowing an 

ideal opportunity to meet and discuss the study with potential participants before recruitment. 

With clopidogrel, maximum inhibition of platelet aggregation occurs 3 to 5 days after starting 

therapy with 75mg daily without a loading dose343, but within 4 to 6 hours if a loading dose of 

300 to 600mg is given. 

Therefore, all patients attending the cardiac day case unit who were receiving long term 

clopidogrel therapy (>1 month) were studied. All patients have an 18G intravenous cannula 

inserted by an experienced doctor as part of their routine care on the morning of their 
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admission. These ‘chronic’ patients, identified at the pre-assessment clinic, require a single 

15 mL blood sample to be taken from their intravenous cannula before their coronary artery 

intervention. 

These samples are then individually analysed for platelet aggregation and nitrite/nitrate/NO 

metabolites in the Wales Heart Research Institute. 

Participation was voluntary. Full ethical approval for the study was sought from and 

approved by the Local Research Ethics Committee for Wales, and then conducted in 

accordance with the recommendations for physicians involved in research on human 

subjects adopted by the 18th World Medical Assembly, Helsinki 1964 (and later revisions). 

 

3.2.2 Inclusion Criteria 

Clopidogrel treatment is the focus of this chapter, but work highlighted in later chapters 

involves treatment with prasugrel and ticagrelor. All patient studies are intended to be a 

study of the real world use of the antiplatelet drugs clopidogrel, prasugrel and ticagrelor. The 

decision to prescribe one of these agents is made by the responsible consultant cardiologist, 

conforming with both nationally and internationally approved criteria, and is in no way linked 

to any research team decisions or opinions. Therefore, inclusion criteria are as follows;   

 

1)  Any adult over the age of 18 years with stable coronary artery disease (confirmed on 

coronary angiography) admitted routinely to the University Hospital of Wales for 

coronary angiography +/- percutaneous coronary intervention. 

2)  All patients must be taking aspirin. 

3)  Patient must be due to start or already be taking a thienopyridine/non-thienopyridine 

drug for a clinically-approved condition. For the purposes of this study, this 
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encompasses patients due to have a coronary stent implanted or who have already 

had a stent implanted, and patients who have previously had a myocardial infarction. 

(The duration of treatment in each situation varies and is ultimately down to the 

discretion of the responsible cardiologist).   

4)  Patients must have fasted for at least 6 hours 

 

3.2.3 Exclusion Criteria 

Patients whose baseline characteristics are likely to interfere with NO metabolite 

measurement and platelet function evaluation are excluded, so the exclusion criteria are 

therefore as follows; 

 

1) Patients with contra-indication to, or are unable to take Clopidogrel, Prasugrel or 

Ticagrelor. 

2)  Patients who are unable to provide informed consent. 

3)  Patients presenting with acute coronary syndromes (STEMI, NSTEMI, unstable 

angina). 

4) Patients using non-steroidal anti-inflammatory drugs (NSAIDs). 

5)  Patients using long term anti-coagulant therapy (for example warfarin or novel oral 

anticoagulants such as dabigatran, rivaroxaban and apixaban). 

6)  Patients receiving intravenous or subcutaneous anti-thrombin therapy. 

7)  Co-existent pro-inflammatory condition (for example malignancy) 
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INCLUSION CRITERIA EXCLUSION CRITERIA 

Adult >18 years of age Patient unable to provide informed consent 

Concurrent Aspirin use of at least 75mg daily Patients presenting with ACS  
(i.e. STEMI/NSTEMI/unstable angina) 

Due to start or already taking one of; 
- Clopidogrel 
- Prasugrel 
- Ticagrelor 

Contraindication to or inability to take Clopidogrel 
or Prasugrel or Ticagrelor 

Fasted for ≥6 hours Concurrent use of NSAIDs 

Know coronary artery disease Concurrent use of Warfarin/long term 
anticoagulant therapy 

 Concurrent IV or SC anti-thrombin therapy 

 Pro-inflammatory condition 
 
Table x: Summary of inclusion and exclusion criteria. 

 

3.2.4 Statistical Analysis 

Based on previous plasma analysis performed in the laboratory at the WHRI, typical nitrite 

and nitrate levels measured by ozone based chemiluminescence (OBC) are 160 nM and 30 

µM respectively, with a coefficient of variation of 4% for plasma nitrates and 7% for plasma 

nitrites/nitrosothiols. OBC has been shown to be highly sensitive for the determination of 

nanomolar quantities of NO and NO-related species in biological fluids. Nagababu measured 

fasting plasma nitrite levels in the range 56-210 nM (mean 110+/- 36 nM) with high 

sensitivity and an accuracy of 97%344. Baseline plasma nitrate levels are normally around 25 

µM. D’Agostino & Pearson omnibus normality testing was used to facilitate determination of 

normally distributed data. For 2 groups comparisons, either the unpaired Students t-test or 

Mann-Whitney test was applied depending on distribution of the data. For comparison of 

more than 2 groups, one way ANOVA or Kruskal Wallis was applied as explained in the text. 

The presented data show means with error bars representing the standard deviation. A p 

value of <0.05 was considered statistically significant. Analysis was performed using 

GraphPad PrismTM version 5 software.  
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3.3 Results 

Patient demographics are shown in table xi. All patients were questioned to confirm both 

medication compliance and a fasting duration in excess of 6 hours. 

 

 
Clopidogrel 

only 
Clopidogrel + 

PPI 
Clopidogrel + 

oral nitrate 

Clopidogrel 
+ PPI + oral  

nitrate 

Number of patients 15 14 22 8 

Mean age (years) 62 60 63 71 

Male (%) 81 86 68 89 

β-blockers (%) 69 79 68 67 

ACEi (%) 75 36 59 67 

CCB (%) 38 43 50 56 

Statin (%) 75 79 100 89 

Diabetes (%) 0 0 0 0 

LV impairment 6 7 5 11 
 
Table xi: Patient demographics for all clopidogrel patient groups, comprising number of patients, mean 
age, sex, concurrent medication use, diabetes mellitus and significant impairment of the left ventricle 
(LV) 

 

 

3.3.1 Effect of Co-administration of PPIs with Clopidogrel on plasma NO 

metabolites 

15 patients were recruited into the clopidogrel only arm, and 14 patients on a combination of 

clopidogrel and a PPI. The PPIs used comprised omeprazole (n=7), lansoprazole (n=6) and 

esomeprazole (n=1). 
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Figure 35: Plasma NO metabolites in fasted patients with CAD taking clopidogrel and a PPI compared to 
patients on clopidogrel alone. 
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D’Agostino & Pearson omnibus normality testing confirmed Gaussian distribution of the data. 

There was no statistical difference between measured plasma NO metabolites in patients 

taking a PPI compared to those taking clopidogrel alone with p values of 0.186, 0.098 and 

0.144 for plasma nitrite, nitrate and SNO respectively. For plasma nitrite the difference 

between means was 48.0 +/- 35.4, with a 95% confidence interval (CI) of -24.7 to 120.7.  For 

plasma nitrate, the difference between means was 6.6 +/- 3.9, with a 95% CI of -1.3 to 14.5, 

and for plasma SNO the difference between means was -8.8 +/- 5.9, with a 95% CI of -20.9 

to 3.2. 

 

3.3.2 Effect of Co-administration of organic nitrates with Clopidogrel on plasma 

NO metabolites 

The 15 patients recruited into the clopidogrel only arm were compared with 22 patients 

taking a combination of clopidogrel and an oral nitrate. Nitrates included all brands of organic 

nitrate approved for use in angina, including both short and long acting forms. (Imdur, 

Monomil, ISMN, Ismo, and Monomax). 
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Figure 36: Plasma NO metabolites in fasted patients with CAD taking clopidogrel and an oral nitrate 
compared to patients on clopidogrel alone. 

 

There was no statistical difference between measured plasma NO metabolites in patients 

taking an oral nitrate compared to those taking clopidogrel alone. P values for plasma nitrite, 

nitrate and SNO were 0.622, 0.821 and 0.809 respectively. For plasma nitrite the difference 

between means was -22.6 +/- 45.5, with a 95% CI of -115.0 to 69.7.  For plasma nitrate, the 

difference between means was 0.8 +/- 3.6, with a 95% CI of -6.5 to 8.2, and for plasma SNO 

the difference between means was -1.2 +/- 5.0, with a 95% CI of -11.5 to 9.0. 
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3.3.3 Effect of Co-administration of PPIs with Clopidogrel on platelet function 

Platelet function was measured using multiple electrode aggregometry with Multiplate®, as 

described in section 2.3.1, in response to both ADP and TRAP agonists.  
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Figure 37: Platelet function tested with Multiplate
®
 in fasted patients with CAD taking clopidogrel and a 

PPI compared to patients on clopidogrel alone, using A) ADP agonist and B) TRAP agonist. 

 

Data for ADP-induced aggregation was not distributed normally so the Mann-Whitney test 

was used, revealing no statistical difference in platelet response to ADP (p=0.378). Using 

the unpaired t-test, there was also no statistically significant change in response to TRAP-
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induced aggregation between the two groups (p=0.211). The difference between means was 

-168.2 +/- 131.2, with a 95% CI of -438.5 to 102. 

 

3.3.4 Effect of Co-administration of organic nitrates with Clopidogrel on platelet 

function 
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Figure 38: Platelet function tested with Multiplate

®
 in fasted patients with CAD taking clopidogrel and an 

oral nitrate compared to patients on clopidogrel alone, using A) ADP agonist and B) TRAP agonist. 
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There was no statistically significant difference in platelet response to ADP (p=0.484) using 

the Mann-Whitney test, but TRAP-induced platelet aggregation was significantly higher 

(p=0.050) in those taking concomitant oral nitrates. The difference between means was -

209.6 +/- 103.2, with a 95% CI of -419.4 to 0.2. 

 

3.3.5 Comparison of all chronic Clopidogrel patient groups 

Besides patients taking either clopidogrel and a PPI, or clopidogrel and an organic nitrate, a 

cohort of patients on all three agents were also recruited. 8 patients were taking clopidogrel 

with an oral nitrate and a PPI. 

There was no statistical difference between the groups. Using one way ANOVA, p values for 

plasma nitrite, plasma nitrate, plasma SNO and TRAP-induced aggregation were 0.249, 

0.231, 0.333, and 0.209 respectively. For ADP-induced aggregation p = 0.814, using non-

parametric testing with the Kruskal-Wallis test. 
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Figure 39: Summary of results per patient group. A) Plasma nitrite.   B) Plasma nitrate.   C) Plasma SNO.    
D) Response to ADP.   E) Response to TRAP. 

 

3.4 Discussion 

Clopidogrel is safer than aspirin in terms of gastro-intestinal (GI) bleed risk, but the risk is not 

negligible, and it is often prescribed together with aspirin as recommended in treatment 

guidelines for ACS and post PCI345,346, thereby further increasing the risk. In addition, elderly 

patients, and those also taking steroids and/or non-steroidal anti-inflammatory drugs are at 

even greater risk of bleeding. Proton pump inhibitors are therefore commonly co-prescribed 

to patients treated with dual anti-platelet therapy in order to minimise the chance of bleeding 

from the GI tract347.  To confound the difficulty with identifying the true risks associated with 

taking this combination of drugs, many patients either take non-prescribed over-the-counter 

PPIs, or use the medication only intermittently. It is an important consideration however, 

because there is evidence to suggest PPIs are associated with increased cardiovascular risk 

irrespective of clopidogrel use following myocardial infarction348. Furthermore, Shih et al 

conducted observational studies which revealed that PPI use even in patients without prior 

cardiovascular history may be independently associated with an increased risk of MI349.  
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Clopidogrel-treated patients taking regular proton pump inhibitors would be expected to have 

increased gastric pH, and as such a less favourable environment for the yield of nitrosothiols 

(RSNO) derivatives. However, this study has shown no statistical difference in measured 

plasma metabolites between those taking PPIs and those taking clopidogrel alone. The 

results also confirm no significant change in platelet reactivity between the two groups as 

measured with multiple electrode aggregometry in response to both ADP and TRAP 

agonists.  

There are several explanations for these findings. Firstly, the nitrosothiols yield from 

clopidogrel, the weakest of the currently used non-aspirin antiplatelet drugs, is small even in 

optimum conditions, so identifying a significant reduction secondary to reduced acid 

availability is unsurprisingly difficult. Furthermore, it was not within the remit of this study to 

measure gastric pH prior to measurement of plasma nitrosothiols levels, so given the known 

compliance issues and evidence that PPIs must be taken regularly to maintain elevated 

gastric pH levels350, doubt could exist as to whether these results are reflective of a true 

population with suppressed stomach acidity. Indeed, variance in both stomach pH and 

nitrosothiols levels is likely to exist, so a solitary plasma measurement may not be 

representative, and serial measurements would be preferential. Furthermore, it is known that 

use of PPIs simply raises stomach pH but does not reach neutrality. As such, there remains 

an acidic environment (although reduced) in which to form RSNO. It should also be noted 

that 48% of all clopidogrel-treated patients were also prescribed a calcium channel blocker, 

which is known to interact with clopidogrel activation, and may therefore influence the 

witnessed response to additional PPI use351.   

Of course, PPI users who are poor CYP metabolisers are likely to have higher intra-gastric 

pH (median pH 6) as well as being poor responders to clopidogrel. Extensive metabolisers, 

although responsive to clopidogrel, would be expected to have a median intra-gastric pH of 

3-4352, a level where according to previous work at the WHRI302 clopidogrel may still be able 

to form nitrosothiols. So it would be interesting to evaluate plasma nitrosothiols levels 
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specifically in these groups of patients, i.e. according to genetic phenotype. An explanation 

is still needed to understand the relationship between response to clopidogrel, PPI use and 

adverse cardiovascular events.  

Nevertheless, these results are consistent with those found by other groups who also 

suggest that concomitant PPI use does not attenuate the anti-platelet effect of clopidogrel353.    

Notwithstanding these observations, as previously discussed, patients with coronary artery 

disease who are treated with clopidogrel have poorer clinical outcomes if they have 

CYP2C19*2 carrier status354. So current recommendations are that co-prescribing of PPIs 

with clopidogrel should be avoided unless deemed necessary based on an individual risk-

benefit assessment taking into account both cardiovascular and gastrointestinal bleed risks, 

and avoidance of omeprazole and esomeprazole, the most potent CYP2C19 inhibitors355, is 

advocated356.  

It was also anticipated that clopidogrel-treated patients taking anti-anginal medication in the 

form of oral nitrates would exhibit higher levels of plasma nitrosothiols, primarily due to the 

greater availability of gastric nitrite. However, there was no statistical difference between 

these two groups of patients. The most likely explanation for this is simply, insufficient 

augmentation of intra-gastric nitrite concentration. The bio-availability of inorganic nitrate is 

very high following oral ingestion, but this is not true for organic nitrates which undergo first 

pass metabolism. Metabolism of inorganic nitrates is via the nitrate-nitrite-NO pathway (see 

chapter 1, section 1.3.2 NO metabolism in the gastro-intestinal tract), whereas most organic 

nitrate undergoes rapid activation via the cytochrome P450 system, and some higher 

potency nitrates also undergo metabolism via various enzymes including mitochondrial 

aldehyde dehydrogenase357, xanthine oxidase, glutathione-S-transferase and glutathione 

dependent reductases205,358. Some organic nitrates such as ISMN and ISDN have better 

bioavailability profiles359,360, but it appears that in-sufficient nitrate is available for conversion 

to nitrite and subsequent generation of intra-gastric S-nitrosothiols.  
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However, it is believed that bio-activation and metabolism of organic nitrates results in the 

generation of glycerol-1,2-dinitrite, inorganic nitrite, and both NO and S-nitrosothiols, so even 

in the absence of an increase in gastric S-nitrosothiols, it may be expected that increased 

plasma nitrosothiols levels would be measurable. Corollary to this, development of nitrate 

tolerance (and therefore presumed increased ROS generation), leads to a decrease in bio-

activation, and, as with PPI co-prescribing nitrate compliance is difficult to confirm, both of 

these factors likely to be contributory to the negative results seen. Furthermore, from the 

baseline measurements in patients receiving both clopidogrel and organic nitrate, there is no 

increase in NO, nitrite or nitrate as a result of the latter. This is not entirely expected as 

increases in NO bioavailability are evident (flow, MABP, etc).   

Interestingly, there appeared to be a trend towards increased ADP-induced platelet 

aggregation and a significant rise in TRAP-induced aggregation in patients taking clopidogrel 

in conjunction with oral nitrates. Speculatively, this could be explained by the concept of 

nitrate tolerance and increased ROS generation leading to greater platelet aggregation. 

Previous studies have shown that in the presence of acid, increasing nitrite concentrations 

do correlate with greater nitrosothiols formation, but this effect is small with clopidogrel, and 

greater with prasugrel. Furthermore, pH must be <5, and optimally 2 or less. Of interest, if 

clopidogrel-treated patients were supplemented with inorganic nitrates in lieu of the organic 

compounds investigated above, increased S-nitrosothiols production might be anticipated. In 

addition, it would of course be intriguing to re-evaluate the effect of using inorganic nitrates 

on the platelet aggregation studies given the effects seen on TRAP-induced aggregation in 

particular.  
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3.4.1 Study limitations  

There is significant intra- and inter-individual variability in terms of circulating plasma nitrate 

levels and urinary nitrate excretion; this is strongly influenced by variance in daily nitrate 

intake which ranges from 75 to 150 mmol, so ideally plasma levels should only be measured 

after a low nitrate/nitrite diet. This has been previously recommended to be after at least 4 

days361, a time scale and goal that is difficult to achieve in this selected cohort of patients.  

Although levels drop dramatically after 24 hours, patients were only fasted overnight so 

dietary influences are possible and the lack of individual food diaries is a limitation here, and 

certainly something that should be considered in any future patient studies.      

Furthermore, serial NO metabolites and platelet function measurements would likely be 

more helpful in identifying the existence of any link between these and PPI and nitrate use in 

clopidogrel-treated patients.  

It has to be acknowledged that medication compliance is a key determinant to achieving 

accurate results, and unfortunately it is known that adherence to long-term therapy for 

chronic illnesses in developed countries averages only 50%362. All patients were questioned 

with regards their adherence to taking prescribed medication to minimise this.   

 

3.5 Conclusions 

PPI co-administration to patients taking chronic clopidogrel therapy had no effect on 

measured plasma NO metabolites or platelet function testing. Furthermore, treatment with 

organic nitrates did not augment the NO metabolites profile as would be expected.  

With regards PPI use, to prove the validity of these findings, it would be preferable to confirm 

intra-gastric pH prior to plasma NO metabolites measurements and interrogate findings 

dependent on both cytochrome P450 phenotype and brand of PPI. 
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The role of organic nitrates is well established, but with increased interest in their inorganic 

cousins, questions remain unanswered as to whether these agents could augment intra-

gastric nitrite sufficiently to result in therapeutic plasma levels of clopidogrel-derived 

nitrosothiols. 

 

CHAPTER SUMMARY 

It has previously been shown that clopidogrel induces a significant increase in circulatory 

nitrite in patients on both chronic treatment and acutely loaded, but this study has shown 

that;  

 Co-administration of proton pump inhibitors with clopidogrel had no effect on plasma 

NO metabolites (plasma nitrite, plasma nitrate and plasma SNO) 

 

 Co-administration of organic nitrates with clopidogrel had no effect on plasma NO 

metabolites (plasma nitrite, plasma nitrate and plasma SNO) 

 

 Co-administration of proton pump inhibitors with clopidogrel had no effect on platelet 

function tests (using ADP and TRAP agonists) 

 

 Co-administration of organic nitrates with clopidogrel had no effect on platelet 

function tests (using ADP and TRAP agonists)  
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4 Prasugrel: The effect of drug loading on plasma NO 

metabolites and in vivo formation of nitrosothiols   

   

4.1 Introduction 

The use of dual anti-platelet therapy has played an integral role in the reduction of 

thrombotic complications following percutaneous coronary intervention (PCI). Furthermore, 

clopidogrel used in conjunction with aspirin, has proven morbidity and mortality benefit when 

given to patients presenting with acute coronary syndromes (ACS).  

Due to the large inter-patient variability, delayed onset of action and modest anti-platelet 

effect associated with clopidogrel363,364, the newer thienopyridine prasugrel365 has been used 

widely as an alternative agent in patients with ACS undergoing PCI. When compared with 

clopidogrel use in patients with coronary artery disease (CAD), prasugrel exhibits more 

potent and less variable platelet inhibition with a quicker onset of action. It has also been 

shown to significantly reduce rates of ischemic events compared to clopidogrel in patients 

with ACS undergoing PCI295,366. Prasugrel is a pro-drug requiring bio-activation, and once in 

its active state also possesses a free thiol as previously shown with clopidogrel. 

Widespread use of the thienopyridines has led to increased interest in their pleiotropic 

effects.  This particularly applies to clopidogrel in which improvement in endothelial 

function276, anti-inflammatory effects278, and reduced endothelial injury after PCI have all 

been reported, although the exact mechanisms remain unclear.  

The interaction between platelets and endothelial cells is critical to the development and 

progression of atherosclerosis, and NO pathways play an integral role in maintaining both 

vascular endothelial and platelet homeostasis. NO acts by directly activating platelet 

guanylyl cyclase, causing an increase in intraplatelet cGMP (Cyclic Guanosine 

Monophosphate). This cGMP pathway is distinct from the cAMP pathway which is 

modulated by PGI2 and P2Y12, but studies have shown that activation of both of these 
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inhibitory pathways produces a synergistic antiplatelet effect. Furthermore, it has been 

shown that a NO donor drug can boost the effectiveness of P2Y12 inhibitors against 

thrombus formation ex vivo367,368. 

S-nitrosothiols are a class of compound produced by S-nitrosation of reduced sulphydryl 

groups that act as NO donors. They are capable of cGMP generation, and have been shown 

to induce vessel relaxation and exhibit potent platelet anti-aggregatory effects296. They exist 

naturally in blood and tissues predominantly as S-nitrosoalbumin and S-nitrosohaemoglobin 

but also as low molecular weight forms such as S-nitrosoglutathione, typically in the low 

nanomolar range. Usually ascribed RSNO, they have been considered an attractive source 

in the hunt for more potent yet safer anti-thrombotic agents369,370. Stimulation of sGC is 

considered perhaps the most important mechanism by which S-nitrosothiols exert their 

effect140. However, there has been recent progress in this field and numerous pathways 

have been postulated, including denitrosation at the cell surface, transport via the amino acid 

transporter system-L, regulation of key cell surface targets371, and transnitrosation of 

secondary intracellular targets to modulate effect. 

Importantly, it has been demonstrated by our group previously that by virtue of their crucial 

thiol group (-SH), clopidogrel and prasugrel both readily form RSNO compounds under 

laboratory conditions. Critically, formation of thienopyridine induced RSNO compounds was 

found to be dependent on the availability of inorganic nitrite, an acidic environment, and the 

resulting stability of the SNO produced297 (see also section 3.1). Prasugrel exhibits the 

greatest capacity for RSNO production of all thienopyridines tested, largely attributable to 

possession of more free thiol and the stability of the resulting RSNO. 

In vivo, this perfect milieu for RSNO formation exists in the stomach where nitrite 

concentrations in the saliva and stomach are typically 20-210 µmol/L and 0.6-20 µmol/L, 

respectively, and pH is usually between 1 and 4372,373. Despite this, evidence for in vivo 

RSNO formation in blood by thienopyridines is absent to date.  
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In patients with CAD undergoing planned PCI, experiments conducted at the WHRI have 

recently demonstrated that after a loading dose of 600mg of clopidogrel there is a time-

proportional increase in NO bioavailability as reflected by elevated levels of plasma nitrite 

and cGMP298.  

Given the increased potency of prasugrel over clopidogrel in terms of platelet inhibition374 

and the increased capacity for prasugrel to undergo S-nitrosation in vitro, it was investigated 

firstly whether prasugrel could form detectable RSNO in patients with CAD and if so its 

potential relationship with platelet inhibition in the acute and chronic setting. Secondarily, 

confirmation was sought regarding the importance of in vivo RSNO formation by examining 

whether proton pump inhibition, which reportedly does not affect total prasugrel active 

metabolite formation375 but elevates stomach pH, had an impact on these parameters. 

 

4.2 Materials and Methods 

 

4.2.1 Patient Recruitment and Collection of blood samples 

A prospective, single centre study was undertaken. Approval was granted by the Local 

Research Ethics Committee, and the study was conducted in accordance with the 

recommendations for physicians involved in research on human subjects adopted by the 

18th World Medical Assembly, Helsinki 1964. 

A total of 60 patients with coronary artery disease undergoing elective PCI were enrolled and 

informed consent was obtained from all patients prior to venepuncture.  All patients were 

fasted for at least 6 hours and on a maintenance dose of Aspirin 75mg daily. Patients taking 

concurrent anticoagulants, anti-thrombin agents or anti-inflammatory drugs in the previous 7 

days were excluded. They were divided into 2 separate groups.  
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The first group comprised 34 thienopyridine-naïve patients. They each received a standard 

oral loading dose of prasugrel (Effient® Daiichi Sankyo UK, tablets containing 60 mg 

prasugrel hydrochloride) prior to their procedure. Blood samples were collected from an 18G 

intravenous cannula pre and 2 hours post prasugrel loading into vacutainers containing 

K3EDTA (Vacuette Greiner Bio-OneTM) or Hirudin. Immediate centrifugation of the EDTA 

samples was performed (1500g for 10 minutes at 4°C) to prevent NO metabolite 

degradation. Platelet poor plasma was isolated, snap frozen with liquid nitrogen and then 

stored at -80°C in preparation for batch analysis. Platelet function testing was performed on 

the Hirudin samples within 45 minutes as described below. 

The second group comprised 26 patients already on a maintenance dose of prasugrel 10mg 

daily. One patient had been taking the treatment for 7 days, all others for over 28 days. A 

single blood sample was taken and analysed as described for the first group above. 

 

4.2.2 Platelet Function Testing Using Multiplate® Multiple Electrode Impedance 

Aggregometry 

Multiplate® is one of the most widely used bedside kits for testing platelet function, with 

evidence to support its use in clinical practice376,377. Analysis using whole blood is based on 

impedance aggregometry and is described in the methods chapter, Chapter 2: section 2.3.  

 

4.2.3 Measurement of plasma NO metabolites 

Plasma nitrite, nitrate and RSNO were measured using well established ozone-based 

chemiluminescense techniques, as described previously299. This is described in the methods 

chapter, Chapter 2: section 2.2. 
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4.2.4 cGMP ELISA 

cGMP was quantified using a cGMP Enzyme Immunoassay kit (R&D systems KGE003). 

Patient platelet poor plasma was diluted 20 times with assay calibrator diluent and the assay 

procedure was then performed according to the manufacturer’s instructions as described in 

the methods chapter, Chapter 2: section 2.4 

 

4.2.5 Statistical Analysis 

The results of plasma NO metabolites levels and of platelet function tests are expressed as 

the mean with standard deviation (in brackets) and presented data also show means with 

error bars representing the standard deviation. D’Agostino & Pearson omnibus normality 

testing was used to facilitate determination of normally distributed data. Proportions in 

Tables were analysed using Fisher’s exact test. Two-tailed paired t-test were used to 

compare the means for normally distributed data, and the 2-tailed Mann-Whitney test to 

compare the medians of non-parametric distributions. The unpaired t-test was also used 

when analysing differences between patients on chronic prasugrel treatment (>28 days) and 

those 2 hours after acute loading. A p value of <0.05 was considered statistically significant.  

Pearson’s method was used to determine correlation coefficients. 

Analysis was performed using GraphPad PrismTM version 5 software. 
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4.3 Results 

 

4.3.1 Patient groups and characteristics 

This prospective, single centre study was undertaken in 60 patients with coronary artery 

disease undergoing elective PCI. The first group comprised 34 thienopyridine-naïve patients 

who were sampled pre and 2hrs post administration of prasugrel. The second group 

comprised 26 patients already on a maintenance dose of prasugrel for >28 days. The 

patients in both groups demonstrated no significant difference in the incidence of clinical 

characteristics including hypertension, hyperlipidaemia, cigarette smoking, family history of 

ischaemic heart disease and drug treatment, except for the use of calcium channel blockers 

which was higher in the thienopyridine-naïve group, and angiotensin converting enzyme 

inhibitors (ACEIs) which was higher in the chronically-treated patients (Table x). Whilst some 

of the differences between groups appear large it is only these latter two that differ 

significantly. It is acknowledged that these differences could be important and any 

subsequent analysis could try to take account of these covariates. 

The increased use of ACE inhibitors, and also of beta-blockers and statins in the chronic 

group is unsurprising following the diagnosis and treatment of coronary artery disease. 

Furthermore, treatment of coronary disease with percutaneous revascularisation frequently 

enables the discontinuation of anti-anginal medication such as nitrates and calcium channel 

blockers. Dual anti-platelet therapy is also likely to increase the incidence of gastro-

oesophageal related side-effects and is reflected in the increased prescription of PPIs. 
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Characteristic Chronic (n=26) Acute Loading 
(n=34) 

P 

Age (years) 62 +/- 8.7 65 +/- 8.9 ns 

Male % 88 78 ns 

Hypertension % 54 56 ns 

Hyperlipidaemia % 67 56 ns 

Cigarette Smoker % 43 19 ns 

Family History of ischaemic 
heart disease % 

19 32 ns 

Beta-blocker % 84 76 ns 

Statin % 91 82 ns 

Calcium Channel Blocker % 8 41 0.01 

ACE inhibitor % 92 35 0.0007 

Nitrate % 8 29 ns 

Proton Pump Inhibitor % 46 34 ns 

 
Table xii: Clinical characteristics of patients in the chronic treatment and acute loading groups. Mean age 
(as shown +/- standard deviation) was compared using the two-sample t-test and all other proportions 
were compared using the Fisher’s exact test. 

 

4.3.2 Influence of acute prasugrel loading on NO metabolites   

Concentration of mean plasma RSNO rose significantly (p=0.0018) from a baseline of 25.8 

(17.1) nmol/L to 34.7 (24.5) nmol/L 2hrs following prasugrel loading (Figure 40A). The mean 

of differences was -9.0 with a 95% CI of -14.3 to -3.6. Plasma RSNO was shown to be 

predominantly associated with plasma protein, as reflected by the finding that protein 

removal from the sample reduced RSNO by 58.1+/-3.5%. Two hours after a loading dose of 

prasugrel plasma nitrite concentration also rose significantly (p=0.0044) from 239.9 (128.8) 

to 268.2 (125) nmol/L (Figure 40B). Mean of the differences was -28.3 and 95% CI was -

47.1 to -9.4. Plasma nitrate concentration fell significantly (p=0.0053) from 40.6 (24.5) 
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µmol/L before prasugrel administration to 38.2 (24.2) µmol/L 2 hours post dose (Figure 40C). 

95% CI was 0.7 to 3.9 with a mean of differences of 2.3. There was no significant difference 

(p=0.3847) between circulating cGMP levels measured in the plasma samples taken before 

and after prasugrel loading. Mean before was 214.4 (36.4) pmol/mL, and after was 209.4 

(35.5) pmol/mL (Figure 40D), with a mean of differences of 5.0 and 95% CI from -6.6 to 16.7. 
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Figure 40: Charts showing the effect of acute prasugrel loading on plasma NO metabolites and cGMP.  
A) Plasma SNO  
B) Plasma nitrite 
C) Plasma nitrate 
D) Plasma cGMP 
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4.3.3 Effect of chronic treatment vs acute loading of prasugrel on NO 

metabolites 

The data is normally distributed taking into account experimental design, and using 

D’Agostino & Pearson omnibus normality testing. Comparison between patients after acute 

prasugrel loading and those on chronic therapy was therefore performed using an unpaired 

t-test. RSNO means were 23.7 (15.1) nmol/L and 34.7 (24.5) nmol/L in the chronic group 

and acute prasugrel loading group respectively. This represented a statistically significant 

drop in plasma RSNO in the chronic group (p=0.0478), with a difference between means of -

11.0 +/- 5.5 and 95% CI from -22.0 to -0.1. Mean plasma nitrite was significantly lower 

(p=0.0034) in the chronic group at 180.8 (80.3) mol/L vs the post-prasugrel group, 268.2 

(125) nmol/L. The difference between means in this group was -87.4 +/- 28.6 and 95% CI 

was -144.6 to -30.1. Mean plasma nitrate remained virtually unchanged (p=0.479). Mean 

plasma nitrate in the chronic group was 34.4 (13.6) µmol/L and in the post-prasugrel group 

38.2 (24.2) µmol/L (see Figure 41). Difference between means was -3.8 +/- 5.4, and 95% 

was -14.6 to 6.9. 
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Figure 41: Charts showing the effect of chronic prasugrel therapy on NO metabolites.  
A) Plasma SNO  
B) Plasma nitrite  
C) Plasma nitrate 
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4.3.4 Effect of prasugrel loading on platelet aggregation  

Multiple electrode aggregometry using Multiplate® confirms a mean platelet response to ADP 

of 755.2 (248.9) AU*min before loading with prasugrel, and a mean of 102.3 (65.6) AU*min 2 

hours following administration. This represents a significant drop with a p value <0.0001, 

mean of differences of 662.4, and 95% CI from 582.4 to 742.4. Platelet response to TRAP 

was 1312 (282.4) AU*min at baseline and 994.7 (256.7) AU*min following prasugrel loading. 

This also represents a significant drop with a p value <0.0001, mean of differences of 322.0, 

and 95% CI from 257.8 to 386.2. Taken together this confirms efficient inhibition of platelet 

aggregation following prasugrel loading. All patients were on long term aspirin treatment of 

75mg daily (see Figure 42).  

Patients receiving chronic therapy exhibit greater residual platelet aggregation in response to 

ADP measured at a mean of 174.7 (121.0) AU*min compared with a mean of 102.3 (65.6) 

AU*min two hours following a prasugrel loading dose. This is statistically significant with 

p=0.0071 using the Mann-Whitney test. No significant difference (p=0.4341) in platelet 

responses to TRAP is observed when comparing the acute versus chronic group. Mean 

response in the acute group is 994.7 (256.7) AU*min versus 935.8 (295.0) AU*min in the 

chronic group (see Figure 43). Difference between the means is -58.9 +/- 74.7 with 95% CI 

from -208.8 to 91.1. 
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Figure 42: Charts showing the effect of acute prasugrel loading on platelet aggregation in response to 
the agonists  
A) ADP and B) TRAP. 
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Figure 43: Charts showing the effect of chronic prasugrel therapy on platelet aggregation in the response 
to the agonists  
A) ADP and B) TRAP.  



Page | 131  
 

4.3.5 Effect of PPI on indices of NO and platelet aggregation following 

prasugrel loading 

Normal distribution was confirmed. Using the paired t-test, a significant rise in mean plasma 

RSNO was detected whether patients were using PPIs (p=0.0422) or not (p=0.0197) as 

shown in Figures 44A and 44B respectively. Mean plasma SNO was almost identical at 

baseline, rising from 25.7 (18.2) nmol/L to 39.5 (32.5) nmol/L in the on PPI group, and 25.8 

(17.0) nmol/L to 32.4 (20.1) nmol/L in those not taking a PPI group. Mean of differences was 

-13.7 in the PPI group with a 95% CI from -26.9 to -0.6, and mean of differences in the non-

PPI group was -6.7 with a 95% CI from -12.2 to -1.2. 

 

A 

Pre-Prasugrel Post-Prasugrel
0

20

40

60

80

100

120

n=11

S
N

O
 (

n
m

o
l/
L

)

p <0.05

 

 

 

 

 

 

 



Page | 132  
 

B 

Pre-Prasugrel Post-Prasugrel
0

20

40

60

80

n=23

S
N

O
 (

n
m

o
l/
L

)

p <0.05

 
 
Figure 44: Charts showing the effect of concurrent PPI therapy on plasma SNO in patients loaded with 
prasugrel.  
A) Patients on concurrent PPI treatment.  
B) Patients not taking PPI. 

 

 

A significant increase in nitrite was exhibited when comparing pre and post prasugrel in 

patients receiving concurrent PPI medication (p=0.0173), whereas patients not receiving a 

PPI showed no change in plasma nitrite when compared to their baseline values (p=0.0895), 

as shown in Figure 45A and Figure 45B, respectively.  The mean of differences in the group 

receiving a PPI was -46.5 (with a mean of 278.0 (150.7) nmol/L before and mean of 324.5 

(135.0) nmol/L after loading) with a 95% CI from -82.9 to -10.1. The mean of differences in 

the group not taking concurrent PPI treatment was -19.6 (mean of 221.7 (116.1) nmol/L 

before and 241.2 (113.1) nmol/L after loading) with a 95% CI from -42.4 to 3.3. 
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Figure 45: Effect of concurrent PPI therapy on plasma nitrite in patients loaded with prasugrel.  
A) Patients on concurrent PPI treatment.  
B) Patients not taking PPI. 

 

No significant difference in plasma nitrate concentration was seen before and after prasugrel 

loading in patients taking concurrent PPI therapy (p=0.8359). Mean before loading was 43.1 

(33.3) µmol/L and after loading was 42.9 (34.2) µmol/L. Mean of differences was 0.3 with 

95% CI from -2.7 to 3.3. However, a significant drop in nitrate was detected in patients not 
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using PPIs (p=0.0014) with a mean before prasugrel loading of 39.4 (19.7) µmol/L and after 

loading of 36.0 (18.2) µmol/L. Mean plasma nitrate differences in those not taking a PPI was 

3.3 with a 95% CI from 1.4 to 5.2. These results are shown in Figures 46A and 46B 
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Figure 46: Charts showing the effect of concurrent PPI therapy on plasma nitrate in patients loaded with 
prasugrel.  
A) Patients on concurrent PPI treatment.  
B) Patients not taking PPI. 
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ADP induced aggregation, measured pre and post prasugrel administration to naïve 

patients, was considered separately in patients receiving PPI versus those who did not. The 

degree of inhibition afforded by prasugrel was greater in patients not receiving PPI 

(p=0.0253), shown in Figure 47, confirming a direct link between stomach acidity and anti-

platelet activity of prasugrel in vivo. 
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Figure 47: Degree of platelet inhibition in response to ADP, as measured by Multiplate
®
. Bars represent 

change in ADP reading before and after loading with prasugrel in patients on a PPI as compared to those 
off a PPI. 

 

4.3.6 Effect of PPI on indices of NO and platelet aggregation following chronic 

prasugrel treatment 

Mean plasma SNO, nitrite and nitrate was measured in all patients taking chronic prasugrel 

therapy. Of the 26 patients in this group, 12 were receiving concurrent PPI therapy and 14 

were not taking a PPI. Normal distribution was confirmed. Mean plasma SNO was higher in 

those taking prasugrel only, 28.2 (18.0) nmol/L, compared to those taking prasugrel with a 

PPI, 18.3 (8.8) nmol/L but did not reach statistical significance (p=0.0972). Difference 

between means was 9.9 +/- 5.7 with a 95% CI from -1.9 to 21.7.   
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Mean plasma nitrite was 191.2 (83.1) µmol/L in those taking prasugrel alone and 167.6 

(78.5) µmol/L in those taking the combination of prasugrel and a PPI, with no statistical 

significance between the groups (p=0.4773). Difference between means was 23.6 +/- 32.7 

with a 95% CI from -44.0 to 91.3.  

There was also no statistical difference (p=0.1698) in mean plasma nitrate between the 2 

groups, with means of 30.2 (9.1) nmol/L in those on a PPI versus 37.8 (15.8) nmol/L in those 

not taking a PPI. The difference between means was 7.6 +/- 5.4 with a 95% CI from -3.5 to 

18.7.  

These results are shown in Figure 48. 
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Figure 48: Mean NO metabolites in patients treated with chronic prasugrel alone compared to those 
receiving chronic prasugrel and PPI treatment.  
A) Mean plasma SNO  
B) Mean plasma nitrite  
C) Mean plasma nitrate 
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Patients receiving chronic prasugrel treatment also had platelet function testing performed in 

response to ADP and TRAP specifically to identify any difference in those taking a PPI 

compared to those taking prasugrel alone. No statistical difference was found in response to 

ADP (p=0.9376) or TRAP (p=0.2155). Mean aggregation response to ADP was 176.4 

(143.7) AU/min in the prasugrel only group and 172.3 (86.8) AU/min in the prasugrel plus 

PPI group. Difference between means was 4.1 with a 95% CI from -102.1 to 110.2. 

Mean aggregation response to TRAP was 867.8 (285.3) AU/min in the prasugrel only group 

and 1024 (298.2) AU/min in the prasugrel and PPI group. Difference between means was -

156.3 +/- 122.4 with a 95% CI from -410.7 to 98.2.  

These results are shown in Figure 49. 
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Figure 49: Charts showing the mean platelet response to A) ADP and B) TRAP in patients receiving 
prasugrel and a PPI vs those receiving prasugrel alone. 
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4.3.7 Results Summary Table 

The following table summarises all the results for patients receiving prasugrel. Plasma 

measures of SNO, nitrite, nitrate, cGMP and platelet response to ADP and TRAP agonists 

are shown for the various patient groups. 

 

GROUP N 
SNO 

(nmol) 

Nitrite 

(nmol) 

Nitrate 

(µmol) 

cGMP 

(pmol) 

ADP 

(AU*min) 

TRAP 

(AU*min) 

Pre-Prasugrel 
34 

25.8 

+/-17.1 

239.9 

+/-128.8 

40.6 

+/-24.5 

214.4 

+/-36.4 

755.2 

+/-248.9 

1312 

+/-282.4 

     + PPI 11 
25.7 

+/-18.2 

278.0 

+/-150.7 

43.1 

+/-33.3 
 

606.5 

+/-265.0 

1182 

+/-210.7 

     no PPI 23 
25.8 

+/-17.0 

221.7 

+/-116.1 

39.4 

+/-19.7 
 

829.6 

+/-208.7 

1377 

+/-295.0 

Post-Prasugrel 
34 

34.7 

+/-24.5 

268.2 

+/-125.0 

38.2 

+/-24.2 

209.4 

+/-35.5 

102.3 

+/-65.6 

994.7 

+/-256.7 

     +PPI 11 
39.5 

+/-32.5 

324.5 

+/-135.0 

42.9 

+/-34.2 
 

87.3 

+/-60.9 

773.6 

+/-176.7 

     no PPI 23 
32.4 

+/-20.1 

241.2 

+/-113.1 

36.0 

+/-18.2 
 

109.1 

+/-67.9 

1095 

+/-223.7 

Chronic Prasugrel 
26 

23.7 

+/-15.1 

180.8 

+/-80.3 

34.4 

+/-13.6 
 

174.7 

+/-121.0 

935.8 

+/-295.0 

     +PPI 12 
18.3 

+/-8.8 

167.6 

+/-78.5 

30.2 

+/-9.1 
 

172.3 

+/-86.8 

1024 

+/-298.2 

     no PPI 14 
28.2 

+/-18.0 

191.2 

+/-83.1 

37.8 

+/-15.8 
 

176.4 

+/-143.7 

867.8 

+/-285.3 
 
Table xiii: Prasugrel results summary. Values shown represent mean +/- standard deviation  
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4.4 Discussion 

This study shows that administration of a single loading dose of prasugrel to CAD patients 

previously naïve to thienopyridine treatment results in a significant increase in circulating 

RSNO and nitrite acutely at 2hrs, although this is not evident in CAD patients receiving 

prasugrel for >28 days. Platelet aggregability was significantly inhibited by prasugrel, but 

effectiveness was markedly reduced in patients receiving PPI who also exhibited reduced 

RSNO. 

The discovery that significant rises can be detected in not only plasma nitrite concentration 

but more importantly plasma RSNO concentration following a standard loading dose of 

prasugrel is both novel and noteworthy and may have important implications in terms of 

different mechanisms of action of thienopyridine agents. Time-proportional increases in NO 

metabolites following clopidogrel loading have been demonstrated previously by colleagues 

at the WHRI298, reflected predominantly by elevated nitrite, and corresponding with 

increased plasma cGMP. Given that plasma nitrite itself is considered a marker of vascular 

NO production/bioavailability, and circulating cGMP is derived primarily from endothelium 

(and to a lesser extent platelets), these results confirm clopidogrel exhibits beneficial off-

target effects on the vasculature. The fact that demonstrable increases in RSNO following 

prasugrel that were not evident in studies previously conducted with patients receiving 

clopidogrel could be considered consistent with the earlier laboratory findings298. In vitro, 

prasugrel consistently produced more RSNO/mole drug (x10) across a very broad range of 

nitrite concentrations without the need for bioconversion to the active drug metabolite, which 

if translated to the in vivo setting may result in significant increases in RSNO. 

The fact that plasma cGMP concentration did not change whereas increases in circulating 

RSNO resulted following prasugrel administration is key. This implies that the significant 

increase in RSNO did not result in vasodilation, a finding consistent with the fact prasugrel 

dosing is not associated with acute changes in blood pressure per se. RSNO are NO donors 
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with established antiplatelet140 and probable antithrombotic378 effects, and there is evidence 

to suggest they also reduce stent thrombosis post PCI219. Evidence from previous in vivo 

studies using the endogenous RSNO, nitroso-glutathione (GSNO) suggests a degree of 

platelet selectivity, with platelet inhibition at doses that failed to produce significant 

vasodilatation379. In fact, this is one of the characteristics of RSNOs that makes them 

appealing as possible therapeutic agents. In addition, some examples show tissue 

selectivity, they do not have the disadvantage of tolerance that is associated with organic 

nitrates and given that they tend to be naturally occurring are unlikely to induce cytotoxicity. 

Thus, detection of elevated nitrite and augmented RSNO concentrations as demonstrated in 

this study in patients undergoing PCI therefore has clear clinical relevance, and may account 

for firstly some of the putative early benefit of prasugrel use in patients undergoing STEMI 

PCI and secondly decreased stent thrombosis366.  

There does appear to be a trend towards decreased plasma NO metabolites, including 

RSNO, following chronic prasugrel therapy as compared to the early post-dosing levels. 

Furthermore, there is a statistically significant increase in platelet aggregation seen in 

response to ADP, but not TRAP, following prolonged prasugrel treatment. This is likely to be 

due to the reduced dose of prasugrel used for regular prescribing as compared to the 

loading dose resulting in less P2Y12 inhibition, but the associated change seen in plasma NO 

metabolites could also be indicative of a reduced bio-availability of nitrosothiols and thereby 

resulting in reduced platelet inhibition. Certainly, a larger dose of thienopyridine and hence 

thiol availability together with plentiful stomach acid and nitrite would have a much greater 

potential to yield more RSNO.      

The measures of platelet responsiveness to prasugrel loading in patients with stable 

coronary disease in this study are consistent with previous studies using other modalities of 

platelet function testing, and do correlate closely with those reported by other groups379,380.  

However, the effect of co-treatment with PPIs and thienopyridines has been and continues to 

be the source of much debate. Pharmacological interaction between clopidogrel and some 
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PPIs has been proposed based on mutual CYP450-dependent metabolism, but available 

evidence of subsequent clinical sequelae has ultimately been inconsistent381. This has been 

discussed in chapter 3. Conversely, prasugrel metabolism to its active metabolite(s) is 

reportedly unaffected by PPI use375, allowing utilisation of the PPI effect on neutralising 

stomach pH to directly test the influence of RSNO formation on platelet inhibition by 

prasugrel. This provided an in vivo model that enabled separation of the classic P2Y12 

inhibition pathway and alternative RSNO/NO pathway of inhibition. 

Co-treatment of CAD patients with prasugrel and a PPI significantly reduced the 

effectiveness of platelet inhibition in this study. Taken together with a tendency to reduced 

RSNO formation in this same patient group may suggest a link between neutralising 

stomach pH, reducing plasma RSNO and reduced effectiveness of prasugrel in patients. 

However, in order to prove this association, accurate information on stomach pH through the 

use of nasogastric aspirates would be required.  

Although prasugrel-induced RSNO formation was reduced with PPI, significant increases 

remained compared to pre-prasugrel levels. This may relate to the fact stomach pH is 

unlikely to reach neutrality in patients on chronic PPI therapy372,373,382-384 and RSNO 

formation from nitrite occurs across the range <pH7, with marked reduction only when 

approximating neutrality. The human stomach typically contains ~6-20 µmol/L inorganic 

nitrite which provides plentiful substrate for the ingested 60 mg prasugrel (equivalent to 16 

mmol/L assuming a stomach volume of 100mL) – concentrations which were shown in vitro 

to generate prasugrel-SNO in a pH dependent manner.        

Of note, measuring RSNO is notoriously difficult and dependent on the technique used. 

Nevertheless, OBC is considered perhaps the most robust method for accurate analysis of 

NO metabolites and the set-up used in the WHRI is tried and tested, and well validated299. 

There has been much debate about the relevance of RSNO and the exact circulating 

concentration at baseline in plasma. Results of this study reveal baseline RSNO 
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concentrations consistent with those measured previously both by colleagues at the WHRI 

and other groups138 (25+/-17 nmol/L), which is towards the lower end of what is measurable 

with OBC in plasma samples (~5-10 nmol/L). By employing a paired study design, it is 

shown for the first time that an acute and significant rise in plasma RSNO can be measured 

in vivo in patients.  

It is acknowledged that the measurement is a composite of all RSNO species present in 

plasma at any one time as opposed to specific quantification of prasugrel-SNO. The latter 

was beyond the scope of this study and may be beyond the detection limits of complex 

analytical mass spectrometry. In a sub-cohort of plasma samples, the removal of protein 

components was found to result in a decrease in plasma RSNO in the aqueous 

compartment by >58%. This implies very strongly that RSNO elevation following prasugrel is 

primarily protein associated (whereas prasugrel and prasugrel-SNO is completely soluble in 

aqueous media). This is in keeping with previous work in vitro in which it has been 

demonstrated by our group that clopidogrel-SNO readily undergoes rapid and efficient trans-

nitrosation with transfer of the NO moiety to albumin-SNO.  

The fall in nitrate concentrations detected in patients following prasugrel treatment is 

surprising given that more than 70% of circulating plasma nitrate is dietary in origin. Patients 

were fasted and remained so following loading with prasugrel. The drop is potentially 

explained by the theory that RSNO and resulting nitrite could be formed preferentially over 

nitrate.  

It is intriguing to postulate that this difference in thienopyridine-induced RSNO formation 

could possibly further explain differences in platelet inhibition and the clinical results seen 

with these agents. In particular, patients with endothelial dysfunction, a characteristic of 

conditions such as diabetes mellitus, are at increased cardiovascular risk largely due to the 

decrease in NO bio-availability may accrue particular clinical benefit. Given the novel 

discovery that prasugrel loading increases RSNO concentrations and plasma nitrite levels, it 
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would be tempting to speculate that its ability to undergo S-nitrosation could account for its 

potency in this patient subgroup. This needs further proof, but the case for investing further 

interest and resources into S-nitrosothiols as potential therapeutic agents for patients with 

cardiovascular disease is becoming more compelling. Dietary manipulation of stomach nitrite 

content via ingestion of beetroot concentrate or other products high in inorganic nitrate is 

also now well established and may also provide a new and complimentary route by which 

the action of current anti-platelet drugs could be modified. 

 

4.5 Conclusion 

Prasugrel induces an acute rise in plasma RSNO and nitrite following a loading dose in 

patients with coronary artery disease which is not maintained with chronic prasugrel 

treatment. Patients receiving PPI exhibited reduced RSNO formation and reduced platelet 

inhibition, confirming the potent antiplatelet effects of prasugrel-induced RSNO in vivo. This 

offers a new and alternative mechanism of action that contributes significantly to the potency 

of prasugrel. 

The fact that prasugrel forms RSNO in vivo may not preclude it from exhibiting a dual effect 

on platelets – inhibition of P2Y12 in parallel with delivery of SNO. Confirmation of a potential 

role of thienopyridine derived SNO in future therapeutics needs further evaluation and study 

to establish more direct correlation with platelet inhibition in clinical trials, but these results 

may go some way into demonstrating beneficial pleiotropic effects in patients. 
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CHAPTER SUMMARY 

Given the previously demonstrated effects of clopidogrel treatment on plasma nitrite, the 

effect of treatment with prasugrel was assessed; 

 

 A statistically significant acute rise in plasma RSNO is seen in patients following 

acute prasugrel loading 

 

 A statistically significant acute rise in plasma nitrite is seen in patients following 

acute prasugrel loading 

 

 This rise in plasma RSNO and nitrite does not persist in patients on chronic 

prasugrel treatment 

 

 The  acute rise in plasma RSNO seen following acute prasugrel loading is seen 

irrespective of whether or not a concurrent PPI was being used  

 

 The degree of platelet inhibition afforded by prasugrel (in response to ADP ) was 

greater in patients not receiving PPI 

 

 Patients receiving a PPI who were on chronic prasugrel treatment exhibited reduced 

RSNO formation, although this was not statistically significant 
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5 Ticagrelor: In vitro nitrosothiols formation and modification of 

drug effect by acidification   

 

5.1 Introduction 

The use of dual anti-platelet therapy has played an integral role in the reduction of 

thrombotic complications following percutaneous coronary intervention (PCI)385 and 

clopidogrel has proven morbidity and mortality benefit when given to patients presenting with 

acute coronary syndromes (ACS)321. Newer, more potent antiplatelet agents have been 

developed to overcome some of the perceived weaknesses of clopidogrel, already 

discussed, such as the large inter-patient variability, delayed onset of action and modest 

anti-platelet effect363,364. Ticagrelor has been tested in various ACS populations in the 

PLATO trial, exhibiting more potent anti-platelet effects, with more consequent bleeding side 

effects, but showing overall clinical superiority to clopidogrel in reducing death from vascular 

causes, myocardial infarction or stroke266.   

It has been shown in previous chapters and previously by our group that the thienopyridines, 

clopidogrel and prasugrel, expose a free thiol group (Figure 50) in their chemical structure 

and in the presence of nitrite (from saliva and the stomach) form nitrosothiol derivatives 

(Thienopyridine-SNO-(RSNO))297,342. These RSNO compounds exhibit typical nitrosothiol 

biochemistry; they can undergo transnitrosation allowing potential transportation via plasma 

proteins to their effector destination and potential localised delivery of nitric oxide (NO) within 

the circulation. RSNO compounds can inhibit platelets directly217,386 and exert a 

vasomodulatory effect on the vascular tree276,278, thereby offering a potentially synergistic 

antiplatelet effect in addition to the intended P2Y12 receptor inhibition exhibited by 

thienopyridines.   
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Figure 50: Chemical structures of;  

A) Native clopidogrel.  B) Clopidogrel active metabolite. C) Native prasugrel. D) Prasugrel active 
metabolite (S group (red) shown in native thienopyridines, with exposed thiol group after bio-activation 
(blue highlighted)). 

 E) Ticagrelor with S-group shown (No thiol group is exposed). 
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Given that ticagrelor lacks a free thiol group with the sulphydryl group contained within the 

ring structure of the molecule (as shown in Figure 50E) it is hypothesised that it will not have 

the ability to form an S-nitrosothiol compound. Unlike the thienopyridines, which irreversibly 

inhibit platelet aggregation by selectively decreasing binding of adenosine diphosphate 

(ADP) to its platelet receptor, it acts directly by changing the conformation of the P2Y12 

receptor387. This results in reversible, concentration dependent inhibition of the receptor388. 

More importantly, ticagrelor is quickly absorbed although its exact mechanism of absorption 

is unknown and does not require in vivo metabolism so has a rapid antiplatelet effect and 

onset of action within 30 minutes389. Median time to TMAX is 3 hours (range 1 to 4 hours) for 

ticagrelor and 4 hours for the major (active) circulating metabolite AR-C124910XX, with a 

CMAX of 931 ng/mL following a standard 180mg loading dose390.  

Interestingly, in the PLATO trial there was a significant attenuating effect of proton pump 

inhibitors (PPIs, which typically raise the gastric pH levels in patients to >5) on the mortality 

benefit seen with both clopidogrel and ticagrelor391. Given the previous experimental data on 

the effect of pH on thienopyridine induced RSNO formation392, the following merited 

investigation; 

Firstly, the potential effect of changing pH on native ticagrelor’s ability to inhibit platelets, and 

to dissolve in gastric media. Secondly, whether ticagrelor, as previously demonstrated with 

the thienopyridines, could form ticagrelor induced RSNO when in an acidic milieu containing 

physiological levels of nitrite. Thirdly, whether ticagrelor could form ticagrelor induced RSNO 

in an artificial gastric environment using a simulated stomach media to allow exploration of 

the interplay between the stomach constituents, different nitrite concentrations, and 

ticagrelor on any resultant RSNO formation. Finally, and importantly from a clinical 

perspective, to examine whether any formed ticagrelor induced RSNO could exhibit or 

account for any of the antiplatelet effect of ticagrelor. 
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5.2 Methods 

 

5.2.1 Preparation of Ticagrelor solution 

Ticagrelor (BriliqueTM, Astra-Zeneca, London, UK) film-coated tablets containing 90mg 

ticagrelor were crushed individually and mixed with 17.2mls 0.9% sodium chloride to create 

a stock 10 mmol/L milky solution.  

Pure ticagrelor was unavailable so crushed tablets were used which also contain the 

following excipients; mannitol (E421), calcium hydrogen phosphate dihydrate, magnesium 

stearate (E470b), sodium starch glycolate type A and hydroxypropyl-cellulose (E463) in the 

tablet core, and talc, titanium dioxide (E171), iron oxide yellow (E172), macrogol 400 and 

hypromellose (E464) in the tablet coating.  

Whilst the effects of BriliqueTM excipients on platelet function were not specifically assessed, 

the whole tablet was used for the purposes of this study in an attempt to more closely 

replicate in vivo use.   

Furthermore, in initial experimentation, the waxy coating was scraped off prior to forming the 

solution but this inevitably led to loss of some of the drug and a tendency to inconsistent 

results. It was later appreciated that aggressive mixing meant that removal of the coating 

was unnecessary, allowing more realistic interpretation of real-world ticagrelor use.   

 

5.2.2 The Effect of Lowering pH on the Activity of Ticagrelor 

In order to specifically test the effect of lowering pH on the effectiveness of ticagrelor, 1mL 

aliquots of prepared ticagrelor suspension were adjusted to different pH (2–7) by adding 1M 

HCl and incubating for 10 minutes at 37°C. The mixture was then neutralised prior to adding 

to PRP and performing platelet inhibition testing with Multiplate®. No sodium nitrite was 
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added to these samples because the intention was to assess ticagrelor activity once 

acidified, without interference from concomitant production of ticagrelor induced-SNO.  

 

5.2.3 Ticagrelor acidification and addition of nitrite 

In vivo, ticagrelor would be exposed to intra-gastric nitrite, so using the 10 mmol/L stock 

solution, 1mL of ticagrelor was added to 1mL of sodium nitrite (NaNO2) in a small brown 

bottle to protect from light and incubated in a water bath for 10 minutes at 37°C. The solution 

was then neutralised and immediate quantification of SNO content confirmed using ozone 

based chemiluminescense and the 2Cs analysis method as described in section 2.2.4.  This 

experiment was repeated by adding 1M HCl to the ticagrelor/sodium nitrite mixture to create 

increasingly acidic (pH 2-7) solutions prior to incubation and subsequent neutralisation. 0.5 

µL HCl increments were added to the ticagrelor solution and tested both with litmus paper 

and with formal pH testing to establish volume required to achieve desired acidity. 
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Figure 51: Increments of hydrochloric acid were added to the ticagrelor solution. Graph shows the 
volume of HCl required to achieve the desired pH of ticagrelor solution. Summarised below. 
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Desired pH 

 

 
2 

 
3 

 
4 

 
5 

 
6 

 
HCl volume 

added to 
Ticagrelor 
Solution 

 

 
 

60 µL 

 
 

22 µL 

 
 

14 µL 

 
 

10 µL 

 
 

2.5 µL 

 

5.2.4 Precautions regarding application of 2Cs for measurement of RSNO 

The 2Cs method is well established as a means of specifically cleaving NO form SNO and is 

able to measure nanomolar quantities with a high degree of accuracy by OBC. However, 

when using very high concentrations of nitrite, it has been shown by our group at the 

WHRI392 that a background NO signal can also be detected, attributable to nitrite itself. 

Therefore, to ensure that only RSNO derived NO signals were reported, appropriate nitrite 

controls were performed on a daily basis and respective areas under curve (AUC) were 

subtracted from the total AUC generated by drug-SNO. 

 

5.2.5 Ticagrelor dose inhibition analysis 

Reference ticagrelor dose inhibition was assessed by simply adding ticagrelor solution (after 

10 minutes incubation at 37°C and neutralisation) to PRP or whole blood in a Multiplate® test 

cell. Ticagrelor induced RSNO was prepared by adding 1mL ticagrelor solution to 1mL nitrite 

of varying concentrations, acidifying to pH2, and then adding to PRP in a Multiplate® test 

cell, again after incubation and neutralisation. The ticagrelor solutions are used in lieu of the 

normal saline used in the standard test protocol. 
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5.2.6 Statistical Analysis 

Comparison of ticagrelor effectiveness before and after acidification was performed using 

PRP from healthy volunteers. Multiple channels in the Multiplate® aggregometer allow 

simultaneous recording of platelet function tests, so the paired 2-tailed students t-test was 

applied. Concentration-responses to inhibitors of platelet aggregation were fitted by 

nonlinear regression curves and the respective doses producing 50 % platelet inhibition 

(IC50).  

The presented data show means with error bars representing standard error of the mean. A 

p value of <0.05 was considered statistically significant. Analysis was performed using 

GraphPad PrismTM version 5 software. A normal distribution is assumed. 

 

5.3 Results 

 

5.3.1 Effect of acidifying ticagrelor 

Crushed ticagrelor tablets were mixed with 0.9% normal saline in order to create a solution, 

the pH of which could then be adjusted. It was observed that the process of acidifying the 

solution with 1 M HCl, incubating at 37°C, and then neutralising with 1 M NaOH had a 

dramatic effect on the parent drug’s ability to inhibit platelet aggregation when activated by 

the agonist ADP. Platelet function testing was performed on the prepared solutions both 

before and after the acidification process. Importantly, samples were only added to PRP in 

the Multiplate® aggregometer once neutral pH had been confirmed. 

 At neutral pH (and without exposure to acid conditions), addition of a 2.5 mmol/L 

preparation of ticagrelor in normal saline solution to PRP from healthy volunteers effectively 

inhibits platelet aggregation in response to ADP as would be expected. Preliminary 

experiments revealed that lowering the pH of the ticagrelor solution significantly reduced 
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effectiveness of inhibition, and at pH 3 or below, the ability of the parent drug to inhibit 

platelet aggregation is lost altogether as demonstrated in Figure 52.  
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Figure 52: Graph showing the effect of increasing ticagrelor acidity on its ability to inhibit platelet 
aggregation as measured with Multiplate

®
 multiple electrode aggregometer using a standard ADP 

agonist. 

 

PRP from healthy volunteers was added separately to ticagrelor at neutral pH and ticagrelor 

that had been acidified for 10 minutes at pH 2 then returned to neutrality prior to use. 

Simultaneous test cells were then run using Multiplate® to assess response to ADP in nine 

paired experiments. This is shown in Figure 53 confirming that ticagrelor exposed to an 

acidic environment is unable to inhibit platelet aggregation via P2Y12 receptor blockade in 

vitro.  
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Figure 53: Graph showing the comparison of acidified ticagrelor vs ticagrelor at neutral pH on ADP 
response as measured with Multiplate

®
. (n=9, *** p<0.0001). 

 

The exact mechanism of ticagrelor absorption in vivo is unknown. The marketed drug has a 

waxy coating but given the findings that the action of ticagrelor is impaired in an acidic 

environment, the effect of adding a standard 90mg tablet of ticagrelor to simulated gastric 

fluid was investigated. 

The time required for firstly the coating and then the whole tablet to dissolve, were recorded 

at various induced pH as shown in the table xiv . Phosphate buffered solution was used as a 

control.  
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Simulated Gastric Fluid 
(pH) 

Time for coating to 
dissolve (min:sec) 

Time for whole tablet to 
dissolve (min:sec) 

1.6 1:30 2:35 

1.95 2:00 3:50 

2.9 1:45 3:00 

5.15 1:40 3:25 

6.8 1:10 3:00 

PBS control 7.6 1:20 2:15 

 
Table xiv: Time, shown in minutes and seconds, taken for 90mg ticagrelor (Brilique

TM
) tablet coating and 

then the whole tablet to dissolve at various induced pH when added to simulated gastric fluid. 
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Figure 54: Time taken for 90mg ticagrelor tablet to dissolve at various pH when added to simulated 
gastric fluid. 

 

No measurable difference is noted in time taken to dissolve and irrespective of pH, ticagrelor 

appears to dissolve completely within 4 minutes. Extrapolated to the in vivo patient scenario, 

this data implies that ticagrelor would be fully exposed to the acidic human stomach 

environment within the first 4 minutes of ingestion. 
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5.3.2 Ticagrelor transformation after acidification (in the presence of nitrite) 

In order to assess whether ticagrelor could form nitrosothiols derivatives, 1mL of the stock 

10 mmol/L ticagrelor solution was added to 1ml sodium nitrite and incubated at 37 °C for 10 

minutes prior to neutralisation. Immediate analysis by OBC using the Cu+/Cys (2Cs) method 

was then performed. This was also concurrently performed for control samples containing 

sodium nitrite only, and these results subtracted from the ticagrelor/nitrite mixture to ensure 

that displayed SNO quantities reflect production from ticagrelor alone. Following initial 

analysis at the drug’s native pH of 7.4, experiments were repeated in an increasingly acidic 

environment to determine the effect of pH on nitrosothiols yield. 

This confirmed that ticagrelor has the ability to form RSNO compounds in the presence of 

nitrite in vitro. Experiments were repeated four times with mean ticagrelor-SNO production 

and SEM shown in Figure 55 below where the ratio of drug to nitrite is 10 mmol/L to 1. 

Ticagrelor forms RSNO efficiently as the pH drops below 3, and to a greater degree than 

RSNO formation found with the thienopyridines, ticlopidine, clopidogrel and prasugrel297.  
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Figure 55: Drug-SNO is shown for ticagrelor relative to the thienopyridines at different forced pH (Figure 
55B adapted with permission). 1mL of stock 10 mmol/L ticagrelor solution is added to 1ml sodium nitrite, 
and immediate analysis performed by OBC using the 2Cs method, with experiments repeated at different 
forced pH. 
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5.3.3 Ticagrelor induced RSNO formation in simulated gastric media 

RSNO generation in a simulated gastric media both with and without ticagrelor was 

measured. This experiment was conducted by a colleague at the WHRI (Dr Fairoz Abdul, 

MBBS, MRCP) using the same gastric media as described above.  

Adding nitrite, at varying concentrations, to gastric media resulted in the formation of RSNO 

from the endogenous proteins within the media (Figure 56). Furthermore, when ticagrelor 

was added to gastric media in addition to nitrite, RSNO production was augmented. 

Although this effect was only modest at physiological levels of nitrite, it was measurable at 

the low doses (Figure 57A), but occurred particularly at higher nitrite levels (Figure 57B 

shown in grey).  

Increased RSNO formation in the ticagrelor group was significant at both 5000 µmol/L and 

1000 µmol/L concentrations of nitrite. P values are shown below, applying the 2 way ANOVA 

and Bonferroni post-test analysis to assess significance between the ticagrelor and gastric 

media group and the gastric media group alone.  

 Nitrite (µmol/L) P value 

5000 < 0.001 

1000 < 0.05 

500 > 0.05 (ns) 

50 > 0.05 (ns) 

25 > 0.05 (ns) 

12.5 > 0.05 (ns) 

Figure 56: Comparison between the ticagrelor and gastric media group, and the gastric media group 
alone at decreasing nitrite concentrations. Grouped analysis was performed using 2way ANOVA, and 
Bonferroni post-test analysis to compare replicate means. N=5 for each concentration.    
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Figure 57: Graphs showing the quantity of drug-SNO generated in a simulated gastric media both with 
and without ticagrelor. SNO formation is plotted against high (57A) and low (57B) dose nitrite showing 
augmented RSNO production with drug in gastric media. (90mg ticagrelor dissolved in 30mls of gastric 
media).  
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5.3.4 Ticagrelor dose inhibition curves 

A ticagrelor dose inhibition curve was created at neutral pH as a reference. Responses to 

ADP (6.5 µmol/L) for both PRP and whole blood were analysed as shown in Figure 58.    

 

Figure 58: Ticagrelor dose-inhibition curve at neutral pH. Response to ADP agonist for both PRP and 
whole blood is plotted against log 10 ticagrelor concentration. Multiple whole blood and platelet rich 
plasma samples were taken from healthy volunteers. (n=15). A non-linear best fit log(inhibition) vs 
response curve is applied. 

 

Platelet inhibition in response to ticagrelor-SNO (produced at pH 2) was also measured 

using PRP from healthy volunteers. Analysis was performed at neutral pH in response to 

both ADP and TRAP agonists using different SNO concentrations, as confirmed with the 2Cs 

measurement, to create dose inhibition curves as follows. 
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Figure 59: Graphs showing ticagrelor-SNO dose-inhibition curve (ticagrelor-SNO produced at pH 2) in 
response to A) ADP agonist, and B) TRAP agonist using platelet rich plasma from healthy volunteers. 
(n=15) 

 

In an attempt to match physiological conditions as closely as possible, a final concentration 

of 5 mmol/L ticagrelor was added to a range of nitrite concentrations from 50 µmol/L to 1.25 

mmol/L to produce ticagrelor-SNO. The ability to measure the effect of ticagrelor induced 
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RSNO on platelet reactivity in relative isolation is only possible due to the earlier discovery 

that the parent drug is no longer able to inhibit platelets once exposed to a highly acidic 

environment.  The above Figures (59A and 59B) are therefore an accurate reflection of 

specific drug induced RSNO action on platelet rich plasma. They demonstrate the 

concentration of drug-SNO needed to fully inhibit platelets from healthy volunteers in vitro, 

using the standard manufacturer-recommended concentrations of ADP and TRAP. 

This makes it possible to derive an IC50 for ticagrelor induced RSNO on platelet inhibition in 

response to ADP and TRAP of 1.0 µmol/L and 4.7 µmol/L, respectively. This difference in 

IC50 for the two agonists is not unexpected as they act via independent pathways and 

receptor. Various other determinants including patient factors will also influence the final 

result.    

Importantly, the IC50 for ticagrelor induced RSNO is a magnitude lower than that required for 

native ticagrelor implying that relatively smaller amounts of ticagrelor-SNO are required to 

inhibit platelets compared to native ticagrelor. 

 

5.4 Discussion 

The most striking finding is that, in vitro, acidifying ticagrelor reduces its ability to inhibit 

platelet aggregation in response to either ADP or TRAP agonists, in platelet rich plasma. 

This poses a conundrum given that the pH of a fasting stomach is typically between 1 and 3 

at which, in vitro, the inhibitory effect of native ticagrelor appears to be completely lost. 

Furthermore, with a gastric emptying half-life of 20-40 minutes in patients, ticagrelor will not 

be protected from this harsh environment by its waxy coating due to its rapid dissolution at 

any pH within 4 minutes, as shown in the studies using an artificial stomach medium.  

Furthermore, in the in vitro experiments ticagrelor does readily form RSNO molecules 

(presumed ticagrelor-SNO) in a biochemical milieu that is analogous to the human stomach 
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i.e. following acidification (pH<3) in the presence of biologically relevant levels of nitrite. In 

addition, this RSNO compound is shown to be a potent inhibitor of platelet aggregation when 

compared with the parent drug ticagrelor. Extrapolating to the in vivo scenario this raises the 

intriguing possibility that whereas the anticipated mode of action of ticagrelor (via P2Y12 

inhibition) is lost following metabolism at pH<3, the drugs antiplatelet action is not only 

maintained, but potentially enhanced by the formed ticagrelor induced RSNO, which is 

known to be extremely potent. This suggests a completely novel mechanism for platelet 

inhibition which is dependent on low stomach pH. These findings may go some way to 

explaining the observation that proton pump inhibitors (via raising stomach pH) blunt the 

clinical effectiveness of this drug in the PLATO trial391. This is of course speculative as with 

higher pH, RSNO formation would be lost but the expected P2Y12 inhibitory effect 

predominates. 

It should be stated that the PLATO trial authors do suggest that the PPI effect is related to 

possible confounding, but there is conflicting evidence in the literature. The effect of PPI 

treatment on cardiovascular outcomes using a variety of different antiplatelet agents remains 

unclear and a causal link is difficult to establish.  

The pharmacokinetics, metabolism and excretion of [14C]ticagrelor have been investigated 

by other groups, and it has been revealed that ticagrelor has one active metabolite, AR-

C124910XX which is at least as potent at the P2Y12 receptor as the parent drug. In the 

proposed metabolic pathway for the formation and elimination of ticagrelor metabolites, the 

authors state that total recovery of the radiolabelled drug reached only 84.3%, the lower than 

expected result likely due to limitations of the procedure393. Notably, the radiolabel used by 

the research team was attached between the thiol and free methyl group, so the formation of 

an RSNO group as implied by our results could conceivably account for at least a proportion 

of the ‘lost’ radiolabel. This could potentially be investigated by expansion of their LC-MS/MS 

analysis technique.  
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This demonstrated ability to generate nitrosothiols is nevertheless an unexpected discovery 

because ticagrelor lacks a free thiol moiety. By implication, the formation of ticagrelor-

derived RSNO is dependent on liberation of the thiol group from within its structure, and 

although the mechanism of this remains unclear, it is likely that it becomes available 

following the breakdown of ticagrelor in the acidic stomach environment. The in vitro model 

used utilises a very clean system with only ticagrelor in normal saline, thereby implying that 

any derived nitrosothiols formed on addition of nitrite must come from here. 

It is important to highlight that physiological conditions ideally match those in the laboratory, 

and favour ticagrelor-induced RSNO production. Nitrite concentrations in the saliva and 

stomach are typically 20-210 µmol/L and 0.6-20 µmol/L respectively127. The in vitro 

experiments show that RSNO signals were generated when ticagrelor solutions were mixed 

with physiological nitrite concentrations (well below 50 µmol/L). However, elevated pH, very 

low stomach nitrite concentrations and dilution of ticagrelor will all result in an insufficient 

SNO yield to inhibit platelet aggregation. In the clinical setting stomach nitrite levels could be 

augmented with exogenous supplementation. In addition, taking ticagrelor on an empty 

stomach and avoidance of agents such as PPIs or H2 antagonists which will lead to 

elevation of the fasting stomach pH could reinforce these findings further. Furthermore, 

evidence already exists in humans demonstrating RSNO formation in stomach fluid 

aspirates, associated with anti-aggregatory and vascular modulatory effects after an oral 

nitrate load394. 

Once formed, the fate of ticagrelor-SNO in vivo is unclear. The tissue effects of all RSNOs 

are largely determined by their ability to release NO, although correlation between rate of 

NO release and potency of RSNOs is known to be poor395. Assuming a fasting stomach 

volume of 30mls, ingestion of a typical dose of 90mg ticagrelor would result in a gastric 

concentration of 6.9 mmol/L of ticagrelor, which in turn could yield RSNO as demonstrated in 

the studies. The data suggest an IC50 of approximately 1 µmol/L in platelet rich plasma, but it 

remains to be proven whether standard dosing of ticagrelor is sufficient to produce 
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physiologically relevant plasma levels of RSNO in vivo. Measuring RSNO is notoriously 

difficult and dependent on the technique used, and if the nitrosothiols group remained 

attached to the drug, quantifying accurate plasma concentrations would require complex 

analytical mass spectrometry. However, this seems unlikely as it has been shown previously 

that clopidogrel derived nitrosothiols can participate in transnitrosation reactions with bovine 

and human albumin with the potential to shuttle around the human circulation297. It has also 

been demonstrated that in patients following an oral dose of prasugrel, the rise in plasma 

RSNO measured is largely the result of protein based-SNO (albumin-SNO) which implies in-

vivo transfer and circulatory stability. (also see section 4.3.2). The process of transnitrosation 

is well described and is typically a reversible second-order reaction between a nitrosothiol 

and a thiol, with high molecular weight SNO such as albumin-SNO representing a much 

more stable pool of NO than low molecular weight SNOs. 

Nitrosothiols, and therefore potentially ticagrelor-SNO, can exhibit platelet anti-aggregatory 

properties similar to biologically occurring nitrosothiols like glutathione-SNO297. There are 3 

potential antiplatelet activity targets. Firstly, downstream dampening of the P2Y12 mediated 

activation pathway by activating soluble guanylate cyclase (sGC) causing inhibition of 

intracellular calcium flux371. Secondly, by acting as a source of NO, thrombin-induced platelet 

activation is decreased via direct inhibition of PI3K pathway activation by TRAP396. The third 

target involves nitrosation reactions in platelets, specifically protein tyrosine residues of the 

COX1 enzyme which inhibit the conversion of arachidonic acid to thromboxane-A2
397. 

Activation of platelet sGC to produce cyclic guanosine monophosphate (cGMP) causes a fall 

in intracytoplasmic calcium levels, which inhibits platelet shape change and glycoprotein 

IIb/IIIa expression, but how much platelet inhibition mediated by NO donor compounds is 

cyclic GMP-dependent and how much is via cyclic GMP-independent pathways remains 

unclear398. Nitrosovasodilation can also occur with nitrosothiols via NO (or more correctly, 

NO+) donation which can induce relaxation of vascular smooth muscle, mediated via classic 

sGC signal transduction, a finding predominantly seen in vitro, but likely to occur in vivo also. 
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Vasodilation has been observed in patients as soon as 2 hrs after a loading dose of 

clopidogrel with an increase in NO bioavailability and effective vasodilation, as reflected by 

higher levels of plasma nitrite and cGMP298,371. 

 

5.4.1 Limitations 

There are limitations to this work. It is well established that each of the major constituents of 

whole blood, plasma, platelets and red blood cells contribute towards clot formation, and will 

thus affect Multiplate® results. Only platelet rich plasma has been used to demonstrate 

effects on platelet aggregation, so although these results can be extrapolated to real world 

populations they need to be interpreted with appropriate caution. Furthermore, definitive 

proof of in vivo ticagrelor induced RSNO production remains to be established. 

 

5.5 Conclusion  

Ticagrelor loses capacity to inhibit platelet aggregation in response to the agonists ADP and 

thrombin after relatively brief exposure to acidic conditions in vitro. However, in the presence 

of even trace amounts of inorganic nitrite, ticagrelor readily formed RSNO resulting in potent 

platelet inhibition via a possible alternative mechanism to that of native ticagrelor. 

Furthermore, ticagrelor dissolves readily in gastric media within 4 minutes to form RSNO in 

vitro. This is an exciting and novel finding for this drug that may explain some of the putative 

pleiotropic effects of ticagrelor and its rapid onset of action. This could have implications in 

the search for potent anti-platelet agents without the inherent bleeding associated with P2Y12 

receptor inhibition, and potentially with the benefits associated with a drug capable of acting 

as an NO donor. 
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CHAPTER SUMMARY 

Ticagrelor does not contain a free thiol group so would not be expected to be able to form 

nitrosothiols derivatives. Ticagrelor acidification and addition of nitrite was investigated. 

 

 Ticagrelor is unable to inhibit platelet aggregation in response to ADP and thrombin 

following exposure to acidic conditions in vitro 

 

 Ticagrelor does readily form RSNO when exposed to nitrite and an acidic 

environment 

 

 Ticagrelor dissolves readily in simulated gastric media to form RSNO 

 

 Ticagrelor induced RSNO leads to profound platelet inhibition in vitro   
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6 GENERAL DISCUSSION   

 

 

Cardiovascular disease is the leading cause of death globally, and accounted for 31.5% of 

all deaths in 2013399. The progression of atherosclerosis, the major precursor to 

cardiovascular disease, can be delayed by aggressive control of modifiable risk factors, but 

antiplatelet drugs currently form the basis of treatment for atherosclerosis and prevention of 

atherothrombosis. Over recent years, the hunt for the ‘perfect’ antiplatelet drug which 

protects against ischaemic events without increasing bleeding risk has led to rapid 

expansion of the use of thienopyridines, and more recently, non-thienopyridines including 

ticagrelor and cangrelor for short and long term use400,401. 

Varying approaches exist when it comes to prescribing these ubiquitous drugs because of 

their relative novelty and a new and expanding evidence base, so given what is at stake a 

complete understanding of the action of these drugs is paramount. It is clear that all three of 

the most commonly prescribed agents ticagrelor, prasugrel and clopidogrel exert effects 

beyond those predicted at the level of the platelet receptor. A variety of pleiotropic effects 

have been demonstrated, and specific work carried out at the Wales Heart Research 

Institute has revealed both the ability of parent thienopyridines to form vasoactive 

nitrosothiols without prior metabolism, and also to enhance plasma NO species in patients 

following loading with clopidogrel. 

These exciting initial findings prompted the work outlined in this thesis, and further novel 

discoveries have followed, specifically related to the ability of clopidogrel, prasugrel and 

ticagrelor to form vasoactive nitrosothiol derivatives both in vitro and in vivo. Additional work 

has focussed on how the co-administration of other commonly prescribed drugs effects the 

nitrosothiols yield from these anti-platelet drugs. 
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These findings are summarised as follows; 

 

1) The co-administration of proton pump inhibitors with chronic clopidogrel therapy in 

patients with established coronary artery disease had no adverse effect on measured 

plasma NO metabolites or platelet function testing. 

 

2) Treatment with organic nitrates did not augment the NO metabolites profile of 

patients taking regular clopidogrel. 

 

3) Prasugrel induces an acute rise in plasma RSNO and nitrite following a loading dose 

when administered to patients with coronary artery disease. 

 

4) Patients treated with prasugrel in the acute setting (large loading dose) who were 

also receiving a proton pump inhibitor exhibited reduced plasma RSNO formation 

and reduced platelet inhibition.  

 

5) Exposure of ticagrelor to acidic conditions in vitro causes it to lose its capacity to 

inhibit platelet aggregation in response to the agonists ADP and thrombin. 

 

6) In the presence of even trace amounts of inorganic nitrite, ticagrelor readily formed 

RSNO resulting in potent platelet inhibition via a possible alternative mechanism to 

that of native ticagrelor. 
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The novel finding that the critical thiol group within thienopyridine drugs, that by design is 

more usually associated with binding to and inhibiting the platelet P2Y12 receptor, can in fact 

be a source of nitrosothiols formation under physiological conditions even without prior 

metabolism in vitro was discovered by Bundhoo et al297 at the Wales Heart Research 

Institute.  This early discovery has now been expanded in this work, and although plasma 

nitrosothiol levels did not increase in patients loaded with clopidogrel, a statistically 

significant rise was seen in patients loaded with prasugrel. Plasma nitrite levels were 

previously shown to rise following long term clopidogrel use in patients with coronary artery 

disease298 and the current study confirms elevation of plasma nitrite levels following acute 

loading with prasugrel, a finding that is considered reflective of enhanced systemic NO∙ 

availability either through enhanced production or increased RSNO breakdown. 

Furthermore, ticagrelor, which does not require bio-activation in patients was also shown to 

form nitrosothiols derivatives in the presence of acid and trace amounts of nitrite in vitro 

although confirmation of this effect in vivo is still awaited. 

The excitement surrounding the discovery of an agent that can generate nitrosothiols exists 

because of its potential to act as a nitric oxide donor. Loss of endogenous NO production is 

integral to endothelial dysfunction and the search for carrier agents able to transport and 

release NO as required throughout the circulation still continues. 

Nitric oxide itself plays a vital role in maintaining normal vascular function, and since the 

early work carried out over three decades ago by Furchgott et al into establishing the identity 

of endothelium derived relaxing factor, our knowledge of the complex mechanisms of action 

and important biological properties of this signalling molecule have developed vastly.  

NO formed by vascular endothelium diffuses rapidly into the blood where it binds to 

haemoglobin, and into vascular smooth muscle cells where it binds to and activates guanylyl 

cyclase which catalyses dephosphorylation of GTP to cGMP. The resultant vascular effects 

of NO are extensive, most importantly;  
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 direct vasodilation  

 indirect vasodilation by inhibition of vasoconstrictor responses 

 anti-thrombotic effects through inhibition of platelet adhesion to the vascular 

endothelium  

 anti-inflammatory effect by inhibiting leukocyte adhesion,  

 anti-proliferative effect through inhibition of smooth muscle hyperplasia 

Reduced bioavailability of NO therefore results in vasoconstriction, thrombosis, 

inflammation, and vascular hypertrophy, so a drug capable of delivering exogenous nitric 

oxide has clear therapeutic benefit. Furthermore, amongst the various NO donors 

discovered to date, nitrosothiols have shown perhaps the greatest potential210.  

Nitrosothiols are naturally occurring and produced by the S-nitrosation of sulphydryl groups, 

typically cysteine thiols, with the ability to transfer NO+ species between different thiol 

groups, a trait which protects NO from oxidative stress prior to release.  

The formation of nitrosothiols highlighted in this study through the use of the critical thiol 

group within the thienopyridines and non-thienopyridines is reliant on the acidic gastric 

environment, and therefore interplay in this environment between the antiplatelet drugs and 

proteins, other stomach constituents and co-administered drugs is likely to be important. The 

reliance on low pH and availability of nitrite mean that PPI use and exogenous nitrate/nitrite 

use need to be considered as both are likely to affect nitrosothiols yield.  

In fact, the use of proton pump inhibitors in general, and particularly their administration to 

patients with cardiovascular disease continues to generate a lot of interest both amongst 

clinicians and the lay press. Although CYP2C19*2 carrier status is probably the most notable 

independent predictor of insufficient antiplatelet response to clopidogrel, it is certainly not the 

sole predictor and there are likely to be numerous, some as yet undiscovered, factors 

contributing to this reduced response. Furthermore, it is likely that these factors are additive 
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so likelihood of drug non-responsiveness will increase depending on the total number and 

combination of these, the antiplatelet drug dose and the choice of PPI agent.  

The case against PPIs, and their link with adverse outcomes in patients with cardiovascular 

disease has predominantly revolved around the association with cytochrome P450 genetic 

polymorphisms as discussed, but amongst the numerous postulated causes, recent groups 

have suggested a direct link between PPI use and endothelial dysfunction through elevation 

of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, in 

a murine model402. However, it should be noted that the same group have more recently 

gone on to perform a human prospective cross-over pilot study403, and although not 

completely dispelling their earlier theory, there was no statistically significant difference in 

plasma ADMA levels.   

The argument that nitrosothiols yield is reduced by concurrent PPI use is a compelling one, 

particularly given the sound physiological explanation, and certainly the results in this study 

have shown reduced platelet aggregation in patients loaded with prasugrel who are taking a 

concomitant PPI as compared to those not on PPI therapy. No changes were noticed in the 

clopidogrel-treated patients, but this can be explained by the reduced potency of clopidogrel 

and therefore reduced available thiol for nitrosothiols formation. 

In fact, a recent study conducted in two-kidney, one-clip hypertensive rats treated with 

omeprazole showed that orally administered nitrite lowered blood pressure and increased 

plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Furthermore, 

increasing gastric pH secondary to omeprazole treatment did not affect plasma nitrite or 

nitrate concentrations but was noted to severely attenuate the increases in plasma S-

nitrosothiol. This completely blunted the antihypertensive effects of nitrite, and further 

reinforces this credible concern that concomitant PPI use can also limit the effectiveness of 

antiplatelet therapy assuming the role of thienopyridine-induced nitrosothiols. The authors go 

on to state that co-administration of buthionine sulfoximine, which induces partial thiol 
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depletion, attenuated the increases in S-nitrosothiol concentrations and antihypertensive 

effects of oral nitrite. They conclude that gastric S-nitrosothiols formation drives the 

antihypertensive effects of oral nitrite and nitrates404.  

This emphasises the need for further studies to tease out the exact risks of prescribing PPIs 

to patients with cardiovascular disease, and given all the permutations with regards choice of 

antiplatelet drug, genetic variance, concomitant drug related interactions and other potential 

predictors of non-responsiveness, these will need to be large scale and well conducted. 

Whilst the regular use of PPIs makes the gastric environment less conducive to formation of 

nitrosothiols derivatives, increased nitrite availability should enable increased production. 

The other facet of this study was to further assess this interaction, but to date, this project 

has shown no conclusive proof that organic nitrate taken regularly by patients with coronary 

artery disease has any significant impact on NO metabolites. 

The role of organic nitrates is well established in cardiovascular disease, but the use of 

inorganic nitrates lost favour due to concerns over potential carcinogenic effects. However, 

there is already ample evidence to suggest that conversion of inorganic nitrate into nitrite in 

the gastro-intestinal tract can acutely elevate vascular nitric oxide levels with the potential to 

result in clear therapeutic benefit. Differences in chemistry between the two classes mean 

their pharmacokinetics and pharmacodynamics differ, and this has re-ignited interest in 

inorganic nitrates due to their vascular benefits and potential antiplatelet properties. 

However, questions remain unanswered as to whether these agents could augment intra-

gastric nitrite sufficiently to result in therapeutic plasma levels of clopidogrel-derived 

nitrosothiols. 

Although many effects of nitrite and nitrate are attributed to increased circulating 

concentrations of nitrite and its ultimate conversion to NO, nitrite is known to generate 

nitrosating species at low pH promoting S-nitrosothiols formation in the stomach and there is 

no doubt that further studies are required to investigate this intriguing interaction within the 
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gastric milieu to establish the perfect “recipe” for nitrosothiols generation. Diets rich in fruit 

and vegetables reduce blood pressure and the risk of ischaemic heart disease and 

ischaemic stroke, thought to be attributable at least in part to the presence of inorganic 

nitrate. This beneficial effect is thought to result from the formation of nitric oxide and has led 

to various manufacturers producing and promoting “sports” sachets which contain relatively 

large quantities of inorganic nitrate with the promise that they will “provide an innovative way 

to enhance endurance performance”. Indeed, multiple studies support nitrate 

supplementation as an effective method to improve exercise performance405. 

More interestingly, it would be prudent to establish whether these gels could enhance the 

NO profile of patients with cardiovascular disease, and in particular whether they could 

sufficiently increase intra-gastric nitrite levels to enhance thienopyridine and non-

thienopyridine derived nitrosothiols.  

 

6.1 Future Directions 

The nitrosylation properties of the thienopyridines have been explored but the effects of 

ticagrelor and cangrelor in vivo remain to be investigated. If the in-vitro effects of ticagrelor 

demonstrated in this work regarding augmentation of plasma SNO and nitrite through 

generation of nitrosothiols derivatives were effected in vivo this could explain some of the 

interesting off-target findings in the PLATO trial and potentially open the door to a new 

understanding about the effects of this widely prescribed anti-platelet agent. 

Expansion of its therapeutic application through the dual mechanism of both P2Y12 inhibition 

and NO donation through nitrosothiols formation could lead the way to creation of new and 

very powerful drugs for the treatment of coronary artery disease and all forms of 

cardiovascular disease. Therefore, measurement of NO metabolites in patients loaded with, 

and taking chronic ticagrelor would be the obvious target for future investigation.  
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Furthermore, further clarity is required regarding the thienopyridines’ and non-

thienopyridines’ exact effect on NO profile and this would require multiple sampling points 

following drug loading to include not only post-loading and chronic treatment, but plasma 

nitrite/nitrate/SNO following drug discontinuation as well to establish the longevity of any 

beneficial effects of enhancement of plasma NO metabolites. 

 The findings in the pilot study highlight the need for further investigation into the effects of 

inorganic nitrate, and provided there is favourable ethical approval, the observed response 

to these gels in a population of patients with coronary artery disease would yield potentially 

exciting results. In addition, the interactions between anti-platelet drugs and, not only nitrates 

and PPIs, but other commonly prescribed drugs including calcium channel blockers and 

statins amongst others should also be the focus of future work.  

The vasomodulatory effects of increased plasma nitrosothiols formation should be quantified 

and even simple measures such as forearm plethysmography and arterial waveform 

recording using pulsed wave analysis could be employed. The vasomodulatory effects of 

antiplatelet agents on coronary flow are more difficult to assess but this would remain the 

gold standard when trying to evaluate the benefits of these drugs in patients with coronary 

artery disease if safe and reliable techniques for assessing this could be established. 

Further studies should be appropriately tailored to answer the pertinent questions that 

remain about the three main antiplatelet agents currently in clinical use. 

Regarding clopidogrel use, we know that a large proportion of patients are non-responders. 

It has been shown that all clopidogrel salts can form RSNO derivatives with anti-aggregatory 

and vasomodulatory properties when in an acidic milieu in vitro, and in vivo increases in 

circulatory nitrite are seen with acute and chronic clopidogrel treatment. Although this effect 

is weak, could it be enhanced by the co-administration of inorganic nitrates, particularly in 

the cohort of patients who are poor responders? A simple crossover study using SIS® sports 
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supplement gels to increase inorganic nitrate availability in patients on clopidogrel treatment 

could satisfactorily answer this. 

In view of the known problems with clopidogrel use, and the general trend for using the 

newer antiplatelet agents, focus should perhaps turn to prasugrel and in particular, 

ticagrelor. Prasugrel is a much more potent anti-platelet agent, so augmenting its anti-

platelet effect further may not be beneficial. However, the elevated plasma RSNO and nitrite 

levels seen in these patients may be relevant. Recent analysis of the TRILOGY ACS trial, 

specifically focusing on the ACS cohort who were managed without revascularisation, and 

randomised to clopidogrel or prasugrel and also receiving a PPI, has shown a decreased MI 

rate in the prasugrel arm 406. Whether or not this difference can be attributable to differing 

plasma RSNO production correlating to altered stomach pH is unknown. However, it would 

be intriguing to analyse the gastric contents of patients loaded with clopidogrel and prasugrel 

to quantify RSNO levels. This would require passage of a nasogastric tube to allow 

aspiration of stomach contents, and although difficult, a pilot study could be considered in 

those patients already intubated requiring administration of antiplatelet drugs. 

Ticagrelor is still a relatively new drug compared to the thienopyridines and the pleiotropic 

effects of its use in patients with coronary artery disease remain unknown so warrant further 

evaluation.  Interestingly, the recent PEGASUS study suggested that treatment with 

ticagrelor significantly reduced the risk of cardiovascular death, myocardial infarction, and 

stroke when used in patients who had suffered a myocardial infarction more than 1 year 

previously267. It remains unclear why a P2Y12 inhibitor would confer such long term benefits, 

and further justifies investigation into whether there are additional actions that perhaps 

enhance endothelial function. Proof or otherwise about the ability of ticagrelor to form 

plasma nitrosothiols derivatives in vivo could be established with an extension of this study.  

It remains an exciting time for antiplatelet agents as interest in finding the perfect drug shows 

little sign of waning.  
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6.2 Conclusion 

The pleiotropic effects of antiplatelet drugs have been a focus of interest for several years 

now. However, a safe drug which inhibits unwanted platelet aggregation whilst also acting as 

a nitric oxide donor and at the same time minimising bleeding risk could be considered the 

Holy Grail for the therapeutic management of patients with cardiovascular disease and 

particularly those with coronary artery disease and acute coronary syndromes. 

The findings in this study add to our knowledge about the current generation of anti-platelet 

drugs clopidogrel, prasugrel and ticagrelor. Specifically, the exciting novel discovery that 

prasugrel augments plasma nitrosothiols levels in vivo, and ticagrelor readily forms RSNO 

that results in potent platelet inhibition in vitro complements our recent discovery that 

clopidogrel also enhances NO species in patients and effects blood vessels with 

enhancement of the effectiveness of NO donors. 

This novel mechanism of action could lead to the production of a newer generation of 

antiplatelet drugs resulting in improved outcomes for a huge number of patients suffering 

from coronary artery disease.  
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Appendix II – Patient Information Sheet 
 

PATIENT INFORMATION LEAFLET 

 

1. Study Title 

Effects of Anti-platelet Drugs on Endothelial Dysfunction 

 

2. What is the purpose of the study? 

The overall purpose of the study is to see if the anti-platelet drugs clopidogrel, prasugrel and 

ticagrelor, drugs which are used to thin the blood of patients who are undergoing coronary 

stenting or those who are at risk of having coronary disease and heart attacks, have an 

additional benefit on the blood vessel wall.  

 

3. Why have I been chosen? 

You have been chose because you will be undergoing a procedure called coronary stenting, 

where you will be given one of the drugs clopidogrel, prasugrel or ticagrelor before the 

procedure. In order to carry out the procedure safely, you need to have your blood thinned by 

taking one of the drugs clopidogrel, prasugrel or ticagrelor about 2 hours before the 

procedure. This is a standard form of treatment given to all patients who undergo coronary 

stenting. 

Patients undergoing coronary stenting who are already taking one of these three drugs may 

also be invited to take part in the study. 

 

4. Do I have to take part? 

Your participation in this study is entirely voluntary. You can decline to take part or withdraw at 

any time without explanation. 

 

5. What will happen to me if I take part? 

We will fully explain the procedure and ask you to sign a consent form. The study will take 

place at the Cardiac Day Case Unit, University Hospital of Wales, Cardiff. You will be given 

one of the drugs, clopidogrel, prasugrel or ticagrelor in the form of tablets to swallow about 2 

hours before you have your stenting procedure. Before giving you the drug, we will take a 

blood sample from a vein. After 2 hours, we shall take another blood sample from your vein 

through the same drip needle. 
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If you are already taking one of the drugs clopidogrel, prasugrel, or ticagrelor, we only require 

one blood sample from your vein before your stenting procedure. 

You may also be invited to re-attend the hospital once you have finished the full course of 

drug treatment. This will usually be between 1 and 12 months after your coronary stenting 

procedure. All that will be required at this final visit is one further blood sample from a vein. If 

needed, travel expenses can be provided for you for this follow-up visit. 

 

6. What do I have to do? 

Once you have read this form and had time to think about the study, you will be contacted by 

Dr James’s research team. If you agree to participate then you will be asked to sign a consent 

form. The study involves taking blood samples, before and after you have taken the drug, from 

a single drip needle (a tiny piece of plastic that sits in the vein) that will have already been 

placed into the vein of your arm for the purpose of your procedure. It avoids the need to 

puncture the vein multiple times.  

 

7. What are the drugs that are being tested? 

Patients who have coronary disease or diabetes are prone to have poor function of the 

endothelium. The endothelium is a lining of special cells that cover all the inner layer of all the 

arteries (blood vessels carrying oxygen). Their function is to keep the arteries healthy and 

allow blood to flow to all of the organs. Clopidogrel, prasugrel and ticagrelor are similar drugs 

that keep the blood thin, make the blood less sticky and prevent the formation of blood clots. 

They are widely used in patients who have had heart attacks or diseased coronary arteries as 

well as in patients who undergo coronary stenting. We are however testing whether the drugs 

have additional beneficial effects on the endothelium apart from their known function to keep 

the blood thin. 

 

8. What are the side effects of taking part? 

Before your doctor decides to perform the coronary stenting procedure, (s)he will check 

whether you would be suitable to take clopidogrel, prasugrel, or ticagrelor. It is a vital 

requirement of your procedure that you take these drugs regularly; side effects from the drugs 

are rare. It is possible you may have some bruising to your forearm after the drip needle has 

been removed at the end of the study, or after a simple blood sample is taken when you re-

attend after stopping the drug. There are no direct side effects or consequences related to 

your taking part in this study. 
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9. How much blood would be taken for the study? 

The total amount of blood required for each sample will be about a quarter of an eggcup full 

(15mls). Most patients will require two blood samples on the day of the procedure, unless you 

are already taking one of the drugs clopidogrel, prasugrel or ticagrelor, in which case only one 

blood sample is necessary. If you are invited to re-attend on another day once you have 

stopped your drug, one further blood sample will be needed. 

 

10. What are the possible benefits of taking part? 

There is no benefit to you, but by measuring any biologically active chemicals, we may be 

better able to understand people with diseased arteries. This study does not affect your 

treatment in any way. 

 

11. What happens when the research study stops? 

You may be asked to re-attend for one further blood sample once you have stopped taking the 

drug clopidogrel, prasugrel or ticagrelor. You will not be asked to attend any additional follow 

up visits for the purpose of the study. 

 

12. What if something goes wrong? 

This study is being sponsored by the University Hospital of Wales. Therefore if you suffer 

negligent harm as a result of participation in the study you will be covered by the NHS 

indemnity scheme. 

 

13. Will my taking part in this study be kept confidential? 

Dr James, Dr Anderson, Dr Thornhill and their study personnel will collect information about 

you. This will remain confidential. This data will be kept in a secure office at the Wales Heart 

Research Institute. Anonymity will be maintained throughout the trial. 

 

14. What will happen to the results of the research study? 

The data from this study may be used in publications. However, your name will not appear in 

the publications. 

 

15. Who is organising and funding the research? 

The study has been funded by the Cardiff and Vale University Health Board. It has been 

organised jointly with the Wales Heart Research Institute, Cardiff University.  
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16. Who has reviewed the study? 

The study has been reviewed by the Research and Development Office at Cardiff and Vale 

University Health Board, and the Research Ethics Committee for Wales. 

 

17. Where can I obtain independent information about being involved in a research 

study? 

You can contact Dr Tim Kinnaird (Consultant Cardiologist) who is a colleague at the University 

Hospital of Wales but is not involved with this study. He is extremely experienced in patient 

participation in research and clinical trials. 

Dr Tim Kinnaird, Department of Cardiology,  

Wales Heart Research Institute, Cardiff, 

CF14 4XN 

029 2074 7747 

  

18. Contact for further information. 

If you or your relatives have any questions about the study, please call Dr Laurence Thornhill 

029 2074 4192, email laurencethornhill@yahoo.com or write to: 

Dr. Laurence Thornhill 

Clinical Research Fellow in Cardiology 

Wales Heart Research Institute, Heath Park, Cardiff, CF14 4XN 

  

mailto:laurencethornhill@yahoo.com
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Appendix III – Patient Consent Form 
 

PATIENT CONSENT FORM 

 

Patient Identification Number for this trial:  

Effects of Anti-platelet Drugs on Endothelial Dysfunction 

 

Name of researchers: Dr Philip James, Dr Richard Anderson, Dr Laurence Thornhill 

Please initial each box 

 

1. I confirm that I have read and understood the information  
sheet dated 24/09/2012 for the above study and have had the 
opportunity to ask questions. 

 

2. I understand that my participation is voluntary and that I  
am free to withdraw at any time without giving any reason. 

 

3. I agree to take part in the study. 
 

 

4.       I agree to being contacted by the research team once the 
drug treatment course has been completed (between 1 and 12 
months after procedure).  

 

 

_____________________________  ________ _____________________ 

Name of Volunteer    Date  Signature 

 

 

_____________________________  ________ _____________________ 

Researcher     Date  Signature 
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Appendix IV – Patient Flow Chart: Overview 
 

PRE-ARRIVAL: 

  
 
 
 
 

PRE-ASSESSMENT CLINIC: 

 
 
 
 

        3-5 days  
 

DAY OF ARRIVAL UHW: 

 
 
 
 
 
 
 
 
 

 
 
 
GROUP 2   GROUP 1  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

                            GROUP 3 

 
         1-12 months 

 
INVITED TO ATTEND WHRI: 

 
 

 
 

Patient suitability confirmed from clinical case 

notes and NHS database 

Patient attends cardiac day case unit for pre-assessment. 

Study discussed. 

Venflon (IV cannula) inserted by experienced doctor in 

preparation for the case, as part of routine management 

15ml blood sample at 0min 

Arrive for angiogram/PCI. Confirm that patient still willing 

to participate. Further opportunity for patient to ask 

questions. Patient consent form signed 

Loading with Clopidogrel or 

Prasugrel or Ticagrelor 

One final 15ml blood sample for patients discontinuing 

Clopidogrel/ Prasugrel/ Ticagrelor 

15ml blood sample at 120min 

15ml blood sample 
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