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Abstract 

There is widespread transcriptional dysregulation in Huntington’s disease (HD) brain, but analysis is 

inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously 

expressed and acts systemically, meaning blood, which is readily available and contains cells that are 

dysfunctional in HD, could act as a surrogate for brain tissue. Transcriptional changes previously reported in 

HD blood have been inconsistent. We conducted an RNA-Seq transcriptomic analysis using whole blood from 

two HD cohorts, and performed gene set enrichment analysis using public databases and weighted 

correlation network analysis modules from HD and control brain datasets. Expression of PCTP correlated 

with disease severity. We identified dysregulated gene sets in blood that replicated in the independent 

cohorts and correlated with disease severity. These corresponded to the most significantly dysregulated 

modules in the HD caudate, the most prominently affected brain region, and significantly overlapped with 

the transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of gene 

sets likely surmounted the limitations of previously inconsistent HD blood expression studies. Our results 

suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel those in brain. 

Immune upregulation in HD overlapped with Alzheimer’s disease, suggesting a common pathogenic 

mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises the potential for 

shared therapeutic approaches.
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Introduction 

Huntington’s disease (HD), the most common monogenic neurodegenerative disorder in the developed 

world 1, is caused by a CAG repeat expansion in the HTT gene and is characterised by motor, cognitive and 

psychiatric features. Onset occurs around 45 years on average and inversely correlates with CAG repeat 

length 2. The disease progresses inexorably and, with the exception of late-onset cases, is uniformly fatal a 

median of 18 years from motor onset 3. HD is currently incurable and no treatments slow progression. 

HD research has traditionally focused on the brain due to the presence of characteristic mutant huntingtin 

protein aggregates 4 and because the prominent symptoms and signs can be linked to neurodegeneration in 

the basal ganglia and cerebral cortex 5. However, mutant HTT is ubiquitously expressed 6 and mounting 

evidence suggests it has direct effects in peripheral tissues 5,7, though whether these effects are distinct, or 

parallel those in the brain remains unclear. HD patients demonstrate peripheral immune dysfunction

presymptomatically 8-11, as well as weight loss that leads to cachexia with advancing disease 7. There is 

progressive muscle wasting 12, endocrine dysfunction 13 liver impairment 7, cardiac dysfunction 14-16. Mutant 

HTT protein aggregates can be found in the peripheral tissues of HD mice 17, as well as advanced patients 18. 

These peripheral features may contribute to CNS pathology, disease progression and mortality 5,7, and 

strongly suggest that HD is a systemic disorder. This peripheral phenotype provides an opportunity to study 

mutant huntingtin’s pathogenic mechanisms. In contrast to brain tissue, availability of which is limited and 

from post-mortem subjects with end-stage disease 19,20, peripheral tissues can be sampled minimally 

invasively and inexpensively from living patients, enabling longitudinal study throughout disease course.

Transcriptional dysregulation is a central feature of HD pathogenesis 21. However, studies of gene expression 

changes in HD blood have been inconsistent. Using microarray technology, Borovecki, et al. 22 identified 12 

upregulated transcripts, seven of which were also upregulated in brain. However, subsequent studies did 

not replicate these results 23-25. Using tag-based serial analysis of gene expression (SAGE), Mastrokolias, et 



5 

al. 25 found 167 genes differentially expressed by motor score, 40 of which had previously been reported in 

at least one microarray study. 

In the current study we present a transcriptomic analysis of whole blood in human HD using RNA sequencing 

(RNA-Seq). We studied differential expression of individual gene transcripts and enrichment of differential 

expression in gene sets in two independent cohorts from Track-HD 26 and Leiden. We then investigated 

whether transcriptional changes seen in blood parallel those from previous studies in HD brain. There was 

significant dysregulation of brain Weighted Gene Correlation Network Analysis (WGCNA) modules in the 

same direction in blood, as well as significant dysregulation of pathways. Immune gene sets were notably 

upregulated in both analyses and this signal overlapped with the transcriptional signature of Alzheimer’s 

disease (AD) brain. 



6 

Results 

No differential expression of individual transcripts in HD whole blood between disease stages or 

states 

Attempting to identify both HD specific and stage-specific changes in gene expression (mRNA) level we 

compared premanifest, manifest and control subjects, whilst controlling for age and gender. Premanifest

gene carriers had a mean total motor score (TMS) of 2 and total functional capacity (TFC) of 13 (Table 1), 

indicating no substantial motor signs. Manifest subjects demonstrated motor abnormalities that were 

unequivocal signs of HD. No transcripts were significantly differentially expressed (FDR < 0.05) between 

premanifest and manifest HD in either the Track-HD 26 or the independently collected Leiden cohort, or when 

these cohorts were combined (results not shown). As expression changes did not differ significantly between 

disease stages, all mutant HTT gene carriers were combined to increase the analytical power in a comparison 

of HD and controls. Once again there were no individually significant transcripts in independent or combined 

cohorts, but the differential expression analysis in the combined cohort is given in Table S1.  

Pathways are dysregulated in HD blood compared with controls 

We next asked whether networks of genes with similar functional annotation were dysregulated in HD 

relative to controls. Pathway annotations were collated from publicly available gene ontology databases to 

form a set of generic pathways using the same method as the recent HD genome-wide association study 

(GWAS) of modifiers of age at onset 27 (see Materials and Methods). The number of pathways significantly 

dysregulated in both Track-HD and Leiden blood datasets was significantly higher than would be expected 

by chance (Table 2). Our findings indicate shared biology between the two independent cohorts despite 

differences in demographic and disease stage; Leiden subjects were on average 7 years older and had 

correspondingly higher TMS (mean 32 versus 14 in Track-HD) and lower TFC (mean 8 versus 12 in Track-HD). 

The significance of the overlap was greatly increased in analyses specifying the direction of dysregulation 
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(increased or decreased expression) (Table 2). Therefore, directional analyses were used in the combined 

dataset as the primary analysis.

Gene set enrichment analysis (GSEA), with a false discovery rate (q-value) threshold of q < 0.05 to correct 

for multiple testing, identified 53 upregulated (Figure 1 and Table S2) and 14 downregulated pathways 

(Figure 2 and Table S3) that are at least nominally significant in both cohorts. Multiple immune-related 

pathways were upregulated, and RNA processing, ATP metabolism and DNA repair were notably 

downregulated. The 10 most significant pathways for each direction of dysregulation are given in Table 3 

and the full list of significant pathways in Tables S2 and S3. The 10 most dysregulated genes (p < 0.01) from 

the significantly up or downregulated generic pathways (q < 0.05) are listed in Table S4, and a complete list 

of genes (p < 0.05) in all nominally significant pathways (p < 0.05) is given in Table S5. Notably, the 

significantly upregulated pathways contain some of the most differentially expressed transcripts (Table S1), 

with several more contained in pathways reaching nominal significance (p < 0.05) for dysregulation (Table 

S5). Genes highlighted by MGI pathways appear distinct from other pathway databases, likely because they 

are based on knockout studies in mice. 

Pathway dysregulation in HD whole blood overlaps with HD myeloid cells 

Through RNA-Seq, Miller, et al. 28 identified transcriptional dysregulation in unstimulated monocytes from 

HD cases relative to controls. Their GSEA used the same set of generic pathways used here. We found a 

significant excess of pathways to be significantly (p<0.05) enriched for dysregulation in both Miller, et al. 28

and the combined TRACK-HD and Leiden whole blood data (Table S6). This overlap was attributable to a 

significant excess of pathways enriched for upregulation in both datasets. Overlap in downregulated 

pathways was not significantly larger than expected by chance. Pathways significantly (p<0.05) enriched for 

up and downregulation in both myeloid and whole blood are listed in Tables S7 and S8. Pathways that are 

significantly enriched for upregulation relate mainly to immunity. 
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Gene co-expression modules from HD striatum are significantly enriched for dysregulation in HD 

blood 

A limitation of using curated pathways from databases is the incomplete or incorrect annotation. One way 

to overcome this is to use gene co-expression, because genes that are co-expressed often have related 

functions. WGCNA identifies clusters (modules) of genes with highly correlated expression, constructing 

original, unbiased gene co-expression networks based on observed data 29. HD brain expression modules 

were generated by Neueder and Bates 30, who applied WGCNA to Hodges, et al. 31 data and annotated each 

module that was associated with HD disease status. To further fill the annotation gap and better define 

functional biological pathways, we generated co-expression modules for control brain from the Braineac 32

and Gibbs, et al. 33 datasets. 

GSEA for brain co-expression modules was applied to our combined Track-HD and Leiden blood expression 

dataset. Immune- and inflammatory-related brain modules were upregulated in HD blood, and notable 

downregulated modules included synaptic function, proteasomal degradation, mitochondrial function and 

transcription. The 10 most significantly up and downregulated modules in the combined dataset that were 

also nominally significant (p<0.05) in both independent cohorts are given in Table 4, and the full list of 

modules nominally significant in both datasets in Table S9. A list of genes from the modules in Table S9 that 

are themselves nominally significantly dysregulated (p < 0.05) in the combined dataset is given in Table S10. 

In addition to reinforcing the biological conclusions from our pathway analysis, the significantly dysregulated 

modules from Table 4 also share genes with the top pathways, as shown in supplementary figures S1 and 

S2. We then investigated whether gene sets that are dysregulated in HD brain 30 are also disrupted in 

peripheral blood. Table 5 lists the modules that were significantly dysregulated (after correcting for multiple 

testing of modules) in both HD brain 30 and in our combined Track-HD and Leiden blood expression dataset. 

The direction of dysregulation in brain is shown by the correlation between the module eigengene and HD 

status (with a positive correlation corresponding to upregulation in the HD brain). Notably, two of the most 

significantly dysregulated modules in HD caudate 30 were also significantly dysregulated in the same 
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direction in blood (Table 5), not only in the combined dataset, but in each of the Track-HD and Leiden 

datasets independently; these being module 48 (CNpos2), which is upregulated in HD, and module 66 

(CNneg1), which is downregulated. 

The module membership (kME) of a gene is measured by the correlation of its expression with the eigengene, 

which is representative of all gene expression profiles in the module 34; highly connected ‘hub’ genes have 

high kME values. Interestingly, among genes in module 48 (CNpos2), the Neueder and Bates 30 HD caudate 

module that was also significantly upregulated in blood, there was a significant (p = 7.6 x 10-4) correlation 

between dysregulation p-value in the direction of interest (positive) in HD blood and degree of module 

membership (kME) 30. This suggests that highly connected “hub” genes in this module may play a role in 

transcriptional dysregulation in HD. A similar, although much stronger, effect was noted in caudate 30. There 

was no significant correlation in module 66 (CNneg1). Genes in module 48 (CNpos2) that are dysregulated 

(p < 0.05) in both blood and caudate are shown in Table S11, ranked by their kME value. 

Expression changes in HD blood replicate those in HD prefrontal cortex 

Labadorf, et al. 35 identified dysregulated expression of immune and developmental genes in human HD 

postmortem prefrontal cortex (BA9). Fold changes in expression of individual genes in the combined Track-

HD and Leiden data were compared to those observed in Labadorf, et al. 35, and were found to be in the 

same direction for 8,425 out of the 15,834 genes present in both datasets. This is a highly significant (p < 

2.2x10-16) excess (see Materials and Methods), suggesting some concordance in signal at the individual gene 

level. Furthermore, a significant excess of generic pathways was found to be significantly (p < 0.05) 

dysregulated in both datasets, most markedly in the positive (p < 0.001) direction, but also negative (p = 

0.028), thus showing an overlap in biological signal. Pathways significantly upregulated in both datasets are 

mainly related to immune response (Table S12), a pattern also observed in the upregulated brain co-

expression modules (Table S13). Pathways downregulated in both datasets are shown in Table S14, with 

modules in Table S15. Notably, several modules related to the synapse and neuron projection are 

downregulated in both datasets. The two HD-related caudate modules from Neueder and Bates 30 that were 
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significantly dysregulated in blood were also significantly dysregulated in the same direction in Labadorf, et 

al. 35. Module 48 (CNpos2) was significantly upregulated (p < 1x10-16, Table S13) and module 66 (CNneg1) 

significantly downregulated (p < 1x10-16, Table S15), as are several other significant modules from Neueder 

and Bates 30. 

Pathways dysregulated in the blood of HD subjects are associated with motor score 

We investigated the effect of disease severity by testing for correlation between gene expression and UHDRS 

total motor score (TMS) in the 112 gene positive Track-HD subjects (Table S16). After correcting for multiple 

testing, expression of phosphatidylcholine transfer protein (PCTP) was significantly positively correlated with 

TMS. However, this gene was not found to be significantly correlated with TMS by Mastrokolias et al 25.

We then tested whether generic pathways that were significantly enriched for upregulated (Table S2) or 

downregulated (Table S3) genes, also enriched for genes correlated with TMS in the expected direction 

(Tables S17 and S18) using a similar method to that previously used to test for enrichment of differentially 

expressed genes. Several immune related pathways were positively correlated with TMS, including 

MGI:2419, the most significantly dysregulated pathway in HD blood (Table S2). Downregulated pathways 

that correlated with TMS were related to ATP metabolism and DNA repair. 

Similarly, we tested whether modules dysregulated in HD blood relative to controls (Table S9) also correlated 

with TMS in the expected direction (Table S19). Many modules significantly correlated with TMS, including 

68 (CNpos5; p=5.52x10-7) and 66 (CNneg1; p=1.05x10-7), which were also dysregulated in the HD caudate 30. 

Mastrokolias et al 25 listed 170 genes significantly associated with TMS, of which 142 passed quality control 

in our RNA-Seq data. We tested for correlation between these genes and TMS in gene positive subjects from 

the Track-HD cohort (Table S20). 14 genes were nominally significant (p < 0.05), which is significantly higher 

than expected by chance (p = 7.89x10-3). Using the same method as for concordance with Labadorf, et al. 35

(see Materials and Methods), we compared fold changes in expression of individual genes between Track-

HD and Mastrokolias et al 25. Strikingly, 101 genes showed consistent direction of effect, as measured by 
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log(FC), significantly greater than expected by chance (p=4.78x10-7). Thus, we can conclude that analysis of 

TMS in the Track-HD cohort broadly supported the associations reported in Mastrokolias et al 25.

The Alzheimer’s disease brain transcriptional signature is significantly dysregulated in HD blood 

In Alzheimer’s disease, an early inflammatory response involving microglia contributes to pathogenesis 36-38. 

Given the upregulation of immune-related gene sets in HD, we next asked whether co-expression modules 

dysregulated in Alzheimer’s disease (AD) brain were also disrupted in HD blood. Recently the International 

Genomics of Alzheimer’s Disease Consortium (IGAP) identified four modules from the Gibbs, et al. 33 brain 

co-expression network that showed enrichment of signal in the GWAS of >70,000 late-onset Alzheimer’s 

disease (LOAD) and control subjects 39. These four modules, each derived from a different brain region, are 

all involved in the immune response and were all significantly upregulated in our combined HD blood dataset 

(Table S21). Module 56, derived from pontine data, was also significantly enriched in both Track-HD and 

Leiden datasets independently. IGAP identified 151 genes that were present in two or more of these modules 

and showed the most significant enrichment with LOAD GWAS signal 39. These 151 genes were also 

significantly enriched for upregulation in the combined HD blood dataset (p = 2.50 x 10-4). 

Zhang, et al. 40 identified co-expression modules that were differentially connected between LOAD and 

controls. Ten of these were also significantly enriched for upregulation in our HD blood expression dataset 

(Table S22) after correction for multiple testing (q < 0.05), with their most significant module, yellow, being 

particularly highly enriched (combined Track-HD and Leiden p < 1x10-16). Notably, this module has immune 

and microglia-specific functions 40. This enrichment for modules from the IGAP GWAS 39 and Zhang, et al. 40

in the HD blood transcriptome suggests a shared immune-related mechanism between different 

neurodegenerative diseases, at least including HD and Alzheimer’s disease.  
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Discussion 

HD research has focused on the brain as the most conspicuous clinical features can be clearly linked to 

progressive degeneration of specific brain regions 4,5. However, HD is a systemic condition with peripheral 

expression of mutant huntingtin directly driving abnormalities such as immune dysfunction, metabolic 

derangement and transcriptional dysregulation that contribute to onset, progression, quality of life and 

mortality 5,7.

We conducted RNA-Seq of whole blood in two independent cohorts of HD patients. Using gene set 

enrichment analysis (GSEA) with publicly-available pathway databases and WGCNA modules from HD and 

control brain datasets, we identified dysregulated genes and gene sets in blood that replicated in both 

independent cohorts and correlated with clinical motor signs (TMS). These correspond to the most 

significantly dysregulated modules in caudate nucleus, the most prominently affected region in HD brain. 

This suggests mutant huntingtin drives a common pathogenic signature in both blood and brain. 

RNA-Seq more comprehensively and accurately quantifies mRNA than hybridisation-based microarrays or 

tag-based methods 41. Expression of phosphatidylcholine transfer protein (PCTP) significantly correlated with 

TMS (Table S16). This protein transports phospholipids across intracellular membranes, which is of interest 

given the upregulation of lipid metabolic modules identified above (Tables 4 and 5) and increasing evidence 

for a pathological interaction between mutant huntingtin and membrane phospholipids 42. However, PCTP 

was not significantly correlated with TMS in Mastrokolias et al 25. It is perhaps unsurprising that there was 

limited differential expression of individual transcripts by disease state (Table S1) or severity in either the 

independent or combined cohorts; the major cell types known to contribute to symptoms are not present

in blood and the haematogenous cells known to be dysfunctional in HD, such as monocytes and macrophages 

9,43, constitute only a small proportion of circulating cells 44. The variation of gene expression in blood with

age, gender, cell type and time of day is also likely to contribute 44,45. Our results are consistent with previous 

studies that have shown weak correlation at the transcript level between blood and brain 46.
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Despite these limitations, gene set enrichment analysis identified significantly overlapping dysregulated 

pathways in the Track-HD and Leiden HD blood datasets, even though they differed in age and disease 

severity. Thus, through grouping transcripts into biologically relevant pathways and co-expressed 

transcripts, we could highlight areas of dysfunctional biology in HD. The observed upregulation of immune-

related pathways is consistent with that previously identified in transcriptional and functional studies 5,7,25.

HD patients are known to have immune dysfunction, both in the central nervous system (CNS) with microglial 

activation 8, and peripherally with elevated proinflammatory cytokines in premanifest carriers up to 16 years 

before predicted onset 9,43. The migration of phagocytic cells is impaired in HD 10,11 and patient-derived 

monocytes are hyperactive on stimulation, an effect reduced by HTT lowering 9. Modulation of the peripheral 

immune system with a type 2 cannabinoid receptor (CB2) agonist 47 or bone marrow transplantation 48 can 

increase lifespan and reduce motor deficits and synaptic loss in HD mouse models.

RNA processing pathways were downregulated, which is congruent with known decreases in miRNAs and 

altered expression of key miRNA processing enzymes in HD 49. Consistent with the downregulation of 

pathways involved in energy metabolism that we observe, mitochondrial ATP is known to be reduced in HD 

brain 50 and blood 51, and PGC-1α, a member of the dysregulated ATP metabolic process pathway (Tables 3, 

S14 and S18), is a key protective regulator of mitochondrial genes that is repressed HD mouse models 52,53. 

Downregulation of genes involved in DNA repair is likely to be relevant to somatic expansion that may 

influence disease onset and progression 54. The signature of pathway dysregulation we identified in HD 

whole blood correlates with TMS in HD subjects from Track-HD. It also significantly overlaps with that 

recently found in unstimulated HD monocytes 28. This enrichment was driven primarily by upregulation of 

immune pathways, as might be expected given that Miller, et al. 28 isolated myeloid cells. 

To overcome the annotation gap commonly observed with publicly-derived pathway databases and to 

investigate whether gene expression changes from HD brain are also present in blood, we performed GSEA 

using brain co-expression networks derived from HD 30 and control 32,33 subjects. Several HD brain modules 
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were significantly dysregulated in HD blood, suggesting a common signature of transcriptional dysregulation 

between blood and brain.  

Brain modules upregulated in blood were enriched for immune-related genes, confirming the results of our 

pathway analysis. Strikingly, two of the modules most significantly dysregulated in HD caudate, 48 (CNpos2) 

and 66 (CNneg1), were also significantly dysregulated in the same direction in both independent blood 

datasets. Compared with other brain regions, the caudate has the largest number of expression changes and 

the highest correlation with HD 30. Module 48 (CNpos2), the second most significantly upregulated module 

in caudate, is enriched for transcriptional regulators, chromatin modifiers and genes involved in mRNA 

processing 30. We also find this module to be significantly enriched for immune response genes, giving further 

support to the pathway results. Module 66 (CNneg1), the most significantly downregulated module in 

caudate, contains genes involved in neuronal function, particularly synaptic function and plasticity, and ion 

channels. Around half of its hub genes are implicated in synaptic function and all were significantly 

downregulated in Hodges, et al. 31. Though synapses are not present in blood, synaptic genes may be 

dysregulated in circulating cells without significant pathogenic impact, or alternatively they may serve 

distinct functions in blood cells. Indeed, Cai, et al. 46 found that the synaptic module was well preserved 

between brain and blood. We also found that gene expression and pathway dysregulation from HD 

prefrontal cortex 35 was replicated in HD blood. The high degree of replication increases confidence in the 

shared signal between blood and brain. A significant proportion of the modules dysregulated in HD blood 

correlated with TMS. 

Our demonstration of a transcriptional signature common to both HD blood and brain supports the use of 

blood cells to study aspects of HD biology. HD model systems, such as mice, only recapitulate aspects of 

disease and must be compared to the relevant data in human tissue 55,56. Access to brain tissue is very limited 

and tends to be from post-mortem subjects with advanced disease, which affects RNA integrity 19,20. Blood, 

by contrast, is readily available and can be obtained longitudinally from HD subjects. Recently, Mina, et al. 57

performed WGCNA on the Leiden blood sample, finding modules related to immune response that were 
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associated with TFC and TMS. Furthermore, by comparing biological annotations of their HD blood modules 

with those they derived from Hodges, et al. 31 brain expression data, they showed a common signature 

between blood and caudate related to immune response. These analyses, using different methodology to 

ours, lend further support to our conclusions. 

In AD, amyloid plaques are surrounded by chronically activated microglia 36,37 and GWA studies have 

identified immune-related genes as risk factors for LOAD 58. Recently Hong, et al. 38 showed that early in the 

disease process, before plaque formation, microglia and complement activation drive synaptic loss, a process 

that may reflect reactivation of developmental synaptic pruning 59. In HD blood we found significant 

upregulation of immune modules associated with AD in the IGAP GWAS 39, a subset of genes with shared 

membership of several of these modules, and the most significant immune and microglia-related modules 

from Zhang, et al. 40. In a co-expression network generated from prefrontal cortex of 194 HD patients, Zhang, 

et al. 40 found that their most significant immune and microglia module was well conserved, though was not 

significantly dysregulated in HD and did not correlate with CAG repeat length. This may be because cortex 

shows less severe pathology and transcriptional dysregulation than caudate 21. Overlapping immune 

upregulation in HD and AD suggests these two distinct neurodegenerative diseases share some common 

pathogenic mechanisms, including macrophage function38. Improved understanding of these mechanisms 

may open the way to therapeutic targets in these currently incurable diseases.  
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Materials and methods 

All experiments we performed in accordance with the Declaration of Helsinki and approved by the University 

College London (UCL)/UCL Hospitals Joint Research Ethics Committee and the LUMC IRB. Peripheral blood 

samples were donated by genetically-diagnosed HD patients and controls, and all subjects provided 

informed written consent.

Cohorts 

The Track-HD cohort consisted of 54 premanifest gene carriers, 63 manifest HD subjects and 23 controls. 

These were a representative sample from the Track-HD study (Table 1), preselected to assure a wide range 

of disease risk and severity. Control subjects were age and gender matched to individuals in the premanifest 

and manifest groups, and selected from spouses or partners to ensure consistency of environments. Track-

HD enrolled participants at four study sites in London (UK), Paris (France), Leiden (Netherlands), and 

Vancouver (BC, Canada) 26. Manifest subjects demonstrated motor abnormalities that were unequivocal 

signs of HD, as evidenced by total motor scores (TMS) over 5 on the Unified Huntington’s Disease Rating 

Scale (UHDRS). Premanifest gene carriers had a burden of pathology score (age x [CAG – 36.5)) 60 greater 

than 250, and a TMS of 5 or lower and a diagnostic confidence score (DCS) less than 4 on the UHDRS 61, 

indicating no substantial motor signs 26. Age and clinical scores considered for the analysis were at time of 

blood collection. 

The Leiden cohort 25 consisted of 18 premanifest gene carriers, 56 manifest HD subjects and 27 age and 

gender-matched controls. Motor onset was determined by an experienced neurologist using the same 

UHDRS standard as in TRACK-HD. All premanifest carriers showed no substantial motor signs, with a TMS of 

5 or less and a UHDRS diagnostic confidence level less than 4. All controls were free of known medical 

conditions. Blood sample collection and analysis methods, described below, were identical for the two 

cohorts. 
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Sample collection 

Whole blood was collected in two PAXGene Blood RNA tubes (PreAnalytix, Qiagen/BD Company) per subject, 

and immediately placed upright at room temperature. They were checked at 5 hours for incomplete mixing 

or separation, and any showing separation were remixed with a further 10 inversions. Tubes were stored 

overnight at -20C and transferred to -80C the following morning. They were sent on dry ice to Biorep within 

30 days. 

RNA preparation 

Total RNA extraction was performed using the PAXGene Blood RNA kit (catalog N. 762174; PreAnalytix, 

Qiagen/BD Company), following the supplier’s instructions. Each solution in the kit was divided into aliquots 

to process batches of 12 samples. Replicate tubes for each subject were processed on different days. RNA 

was stored at -80oC before proceeding with the quality measurements and further use. RNA was collected 

by centrifugation, washing with 70% ethanol, and resuspended in buffer. Quality measurements of total RNA 

were made using spectrophotometric analysis (Nanodrop), 260/280 ratio denaturing agarose gel, and the 

RNA 6000 Nano kit for the Agilent Bioanalyzer (catalog N. 5067-1511, Agilent Technologies). Samples were 

globin reduced using the GLOBINclearTM method (catalog N. AM1980, ThermoFisher Scientific). Quality 

control measures were made on globin-reduced samples on the Bioanalyzer RNA 6000 Nano kit (Catalog N. 

5067-1511, Agilent Technologies). 

Sequencing 

Indexed cDNA sequencing libraries were prepared using the TruSeqTM Poly-A mRNA method (Illumina). In 

short, poly-A mRNA transcripts were captured from total RNA using poly-T beads and cDNA generated using 

random hexamer priming 62. Paired-end sequencing of indexed cDNA libraries on a HiSeq 2500 generated at 

least 50 M reads per sample. Sequencing was performed using SBS and cluster kits from Illumina. Indexed 

samples were demultiplexed and FASTQ files were generated. 



18 

Quality control 

Sequencing failed for six Track-HD samples, including four premanifest, one manifest and one control 

subject. Quality control analysis was performed using the RNA-SeQC package 63, ensuring measures including 

rRNA rate, mapping rate, concordance mapping rate and uniqueness rate were within acceptable ranges. 

Globin depletion was checked by inspecting read counts mapped to HBB, HBA1 and HBA2, confirming they 

made up less than 2% of reads for all samples. Four Track-HD and six Leiden samples failed quality control 

for duplication rate over 75%, GC bias or 5’ bias, and were removed, leaving 48 premanifest, 61 manifest 

and 21 control subjects in the Track-HD cohort and 15 premanifest, 54 manifest and 26 control subjects in 

the Leiden cohort. 

Gene expression analysis 

RNA-Seq data were aligned to the human reference genome hg19 using TopHat2 64. Read counts were 

summarized using HTSeq, keeping any duplicates and using the Ensembl transcript/gene database 

(http://www.ensembl.org/info/data/ftp/index.html, obtained in gtf format, genome build GRCh38.3, gene 

build updated in June 2015). To remove residual batch effects the R package svaseq was used 65. Using the 

cleaned count data, differential expression analysis was conducted using the R package DESeq2 66. Outlier 

counts were removed using a Cooks distance cutoff of 5 in DESeq2. After filtering by the mean of normalised 

counts, 18,257 transcripts were detected. Age and gender were used as covariates in the analysis.

Pathway analysis 

Enrichment of differential expression among gene sets corresponding to biological hypotheses (pathways) 

was tested using the Gene Set Enrichment Analysis (GSEA) method 67. Rather than defining a list of significant 

genes, GSEA ranks all genes in order of their differential expression statistic, and tests whether the genes in 

a particular gene set have a higher rank overall than would be expected by chance. The analysis is weighted 

by the differential expression statistic, thus giving more weight to more significant genes. Significance of 

enrichment was obtained by randomly permuting gene-wide association statistics among genes. One-sided 

http://www.ensembl.org/info/data/ftp/index.html
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p-values were calculated separately for differential upregulation and downregulation of expression in HD, 

and these were then converted into the corresponding chi-square statistic for use in the GSEA analysis. To 

avoid making a priori assumptions, we collated a large pathway set from publicly available pathway 

databases, including Gene Ontology (GO) 68, Kyoto Encyclopedia of Genes and Genomes (KEGG) 69, Mouse 

Genome Informatics (MGI) 70, PANTHER 71, BioCarta 72, REACTOME 73 and NCI 74. This resulted in a total of 

14,706 functional gene sets, many with overlapping members, containing between 3 and 500 genes. To 

correct for multiple testing of pathways we converted the GSEA p-values into q-values 75, which can be 

interpreted as the minimum false discovery rate at which that q-value would be counted as significant. 

Gene co-expression networks 

Weaknesses of relying on public databases to provide pathways for analysis include their restriction to prior 

biological knowledge and the poor annotation of many genes. To overcome this annotation gap, we also 

tested the following sets of gene co-expression modules for enrichment of dysregulation: 

1. The set of 124 HD brain expression modules derived by Neueder and Bates 30, who applied weighted 

gene correlation network analysis (WGCNA) 34 to the Hodges, et al. 31 microarray brain expression 

data set of 44 human HD and 36 matched control brains. They generated networks for four brain 

regions; the caudate nucleus (CN), BA4 region of the frontal cortex, which has motor function (FC-

BA4), BA9 region of the frontal cortex, involved in association and cognitive functions (FC-BA9), and 

cerebellum (CB). 

2. A set of 117 co-expression modules derived from the Gibbs, et al. 33 dataset, comprising microarray 

expression data from 150 control individuals measured in four brain regions: cerebellum (CB), frontal 

cortex (FC), caudal pons (Pons) and temporal cortex (TCTX). Modules were generated using WGCNA 

as described in 39. 

3. We generated a set of 213 co-expression modules from Braineac 32, which consists of microarray 

expression data for 12 brain regions from 134 control brains; occipital cortex, frontal cortex, temporal 

cortex, hippocampus, intralobular white matter, cerebellar cortex, thalamus, putamen, substantia 
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nigra, and medulla (inferior olivary nucleus). For each brain region, the array data was normalised in 

the R statistical-programming environment using the RMA algorithm 76. Principal Component 

Analysis (PCA) and hierarchical clustering were used to identify single outlier arrays for removal. In 

addition, small outlier clusters (<6 arrays) that were distinct from most of the other arrays were 

removed (i.e. small clusters appearing at the top of the dendrogram). Once outlier arrays were 

removed, the arrays were re-normalized and inspected again and re-processed if necessary until a 

homogenous dataset was produced. WGCNA was performed using the R package to derive modules 

34. Multiple probesets of the same gene were collapsed to a single value using the collapseRows() 

function, using default settings and based on gene annotation provided by Affymetrix 77. Scale 

independence and mean connectivity were plotted to derive a soft threshold power of 6. Networks 

were unsigned. 

4. The set of 111 co-expression modules from Zhang, et al. 40, generated using microarray expression 

data on 1,647 postmortem samples from three brain regions of late-onset Alzheimer’s disease 

(LOAD) and control subjects; prefrontal cortex (BA9), primary visual cortex (BA17), and cerebellum. 

Concordance of fold change in gene expression between datasets 

Labadorf, et al. 35 analysed the transcriptome of human postmortem prefrontal cortex Brodmann area 9 

(BA9) from 20 HD subjects and 49 controls using next-generation high throughput sequencing, identifying 

dysregulation of immune and developmental genes. Of the 15,834 genes common to both the combined 

Track-HD and Leiden blood dataset and the Labadorf, et al. 35 prefrontal cortex dataset, 8447 had a fold 

change >1 (i.e. upregulated) in blood and 7860 in cortex. Thus, if fold changes in the two datasets were 

assumed to be unrelated, the expected probability that a gene would show concordant fold change is equal 

to ((8447/15834)x(7860/15834))+((7387/15834)x(7974/15834)) = 0.4997. The number of genes with 

concordant fold change in the absence of a relationship between the datasets is thus distributed as a 

binomial (15834, 0.4997) distribution. In the actual data, 8425 genes were observed to have concordant 

direction of fold change, significantly higher than the number expected by chance (7912). 
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We used a similar method to test for concordance of fold change in genes between the Track-HD and

Mastrokolias et al. datasets. 

Data availability 

All data is deposited at the European Genome-phenome Archive (EGA) and accessible through the authors 

or the NeurOmics consortium.  



22 

Acknowledgements 

We would like to thank the patients and control subjects who donated samples and took part in these 

studies, as well as the Track-HD investigators, particularly Professors Blair Leavitt (UBC, Vancouver), 

Alexandra Durr (Pitié-Salpêtrière Hospital, Paris) and Raymund Roos (LUMC, Leiden). Some of this work was 

undertaken at UCLH/UCL who acknowledge support from the Department of Health’s NIHR Biomedical 

Research Centre. We thank R.C. van der Mast and E. van Duijn at the Psychiatry department of the LUMC for 

collecting blood samples from the Leiden cohort.

Funding 

This work was supported by funding from the European Community’s Seventh Framework Programme 

(FP7/2007-2013) under grant agreement n° 2012-305121 “Integrated European –omics research project for 

diagnosis and therapy in rare neuromuscular and neurodegenerative diseases (NEUROMICS)” [261358], the 

Medical Research Council UK [MR/J003832/1, 515109 MR/L02053X/1], CHDI Foundation, the BBSRC, the 

Dementia and Neurodegenerative Disease Network UK, the European Huntington’s Disease Network, the 

Huntington’s Disease Association of the UK, the Guarantors of Brain [523410], the Rosetrees Trust 

[JS16/M220], the Centre for Medical Systems Biology within the framework of the Netherlands Genomics 

Initiative/Netherlands Organization for Scientific Research and the Dutch Centre for Biomedical Genetics.

Competing interests 

The authors have declared that no competing interests exist. 

tel:523410


23 

Figure legends 

Table 1. Track-HD and Leiden cohorts for RNA-Seq analysis. Manifest subjects demonstrated motor 

abnormalities that were unequivocal signs of HD. Premanifest gene carriers had a total motor score of 5 or 

lower and a diagnostic confidence score (DCS) less than 4 on the UHDRS, indicating no substantial motor 

signs. The HD group consists of the combined premanifest and manifest subjects. Controls were matched for 

age and gender. Age and clinical scores considered for the analysis were at time of blood collection. SD –

standard deviation; TFC – Total Functional Capacity; TMS – Total Motor Score. 

Table 2. Overlap analysis of Track-HD and Leiden cohorts shows that a significant excess of pathways are 

associated with HD (p < 0.05) in both datasets. Significance of overlap is greatest when directionality is 

taken into account. There is an excess of significantly enriched pathways and modules in the reference 

dataset conditional on the pathway being enriched (p < 0.05) in the comparison dataset. The generic 

Cohort Group n Mean age, y

± SD (range)

Gender

(male/female)

Mean (CAG)n length

± SD (range)

Mean TMS

± SD (range)

Mean TFC

± SD (range)

Premanifest 50 42 ± 9 (22-64) 24/26 43 ± 3 (39-52) 2 ± 2 (0-8) 13 ± 0 (12-13)
Manifest 62 48 ± 10 (23-64) 26/36 44 ± 3 (39-59) 23 ± 11 (5-45) 11 ± 2 (7-13)
HD 112 46 ± 10 (22-64) 50/62 44 ± 3 (39-59) 14 ± 13 (0-45) 12 ± 2 (7-13)
Control 22 45 ± 5 (34-53) 9/13 - - -

Premanifest 18 46 ± 10 (29-63) 5/13 42 ± 2 (39-47) 3 ± 2 (0-5) 12 ± 1 (10-13)
Manifest 56 55 ± 11 (35-79) 29/27 44 ± 3 (39-53) 42 ± 30 (6-102) 7 ± 5 (0-13)
HD 74 53 ± 11 (29-79) 34/40 44 ± 3 (39-53) 32 ± 31 (0-102) 8 ± 5 (0-13)
Control 27 43 ± 11 (26-65) 13/14 - - -

HD 186 48 ± 11 (22-79) 84/102 44 ± 3 (39-59) 21 ± 24 (0-102) 10 ± 4 (0-13)
Control 49 44 ± 9 (26-65) 22/27 - - -

Track-HD

Leiden

Combined

Generic

pathways

HD brain

modules

Control brain

modules

Nondirectional 69 (4.6E-02) - -

Downregulated 130 (<1.0E-03) 4 (1.1E-01) 24 (<1.0E-03)

Upregulated 219 (<1.0E-03) 9 (<1.0E-03) 23 (<1.0E-03)

Nondirectional 69 (1.4E-01) - -

Downregulated 130 (1.7E-02) 4 (3.5E-02) 24 (<1.0E-03)

Upregulated 217 (<1.0E-03) 10 (<1.0E-03) 21 (<1.0E-03)

Number of pathways significant in both

datasets (p value)

Leiden Track-HD

Track-HD Leiden

Reference

dataset

Comparison

dataset

Direction of

dysregulation in

HD
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pathways gene set is collated from publicly-available databases including GO and KEGG. HD brain modules

are derived from Neueder and Bates 30. Control brain modules are from the Braineac 32 and Gibbs, et al. 33

expression datasets. 

Figure 1. Upregulated pathways in HD versus control blood. Schematic representation of pathways collated 

from publicly available databases that are significantly upregulated in HD versus controls after correction for 

multiple testing (q < 0.05). Modules with similar gene content and functional annotation have been 

consolidated. Nodal shading is inversely proportional to false discovery rate threshold (q value); deep shades 
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have low q values and pale shading is close to the 5% threshold. The weight of connecting lines is 

proportional to the number of genes shared between pathways. 

Figure 2. Downregulated pathways in HD versus control blood. Schematic representation of pathways 

collated from publicly available databases that are significantly downregulated in HD versus controls after 

correction for multiple testing (q < 0.05). Modules with similar gene content and functional annotation have 

been consolidated. Nodal shading is inversely proportional to false discovery rate threshold (q value); deep

shades have low q values and pale shading is close to the 5% threshold. The weight of connecting lines is 

proportional to the number of genes shared between pathways. 
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Table 3. The 10 most significantly up and downregulated ‘generic’ pathways in HD versus control blood 

GSEA. A total of 14,706 Generic pathways, each containing between 3 and 500 genes, were collated from 

publicly-available databases including GO and KEGG. Pathways are significantly dysregulated after multiple 

testing correction (q < 0.05). Enrichment p values in the current study for the Track-HD, Leiden and combined 

datasets are shown. 

Direction of

dysregulation in

HD

Pathway Number of

dysregulated

genes

p

(combined)

q

(combined)

p

(Track-HD)

p

(Leiden)

Description

MGI: 2419 434 3.03E-10 4.32E-06 5.10E-05 3.01E-05 Abnormal Innate Immunity

MGI: 3009 432 5.78E-09 4.13E-05 5.96E-06 1.65E-04 Abnormal Cytokine Secretion

GO: 50792 117 2.59E-08 1.23E-04 1.12E-02 7.24E-05 Regulation Of Viral Process

GO: 9615 208 1.22E-07 4.36E-04 3.06E-02 5.34E-06 Response To Virus

MGI: 2451 278 1.68E-07 4.80E-04 1.26E-02 9.51E-06 Abnormal Macrophage Physiology

GO: 19221 308 2.38E-07 5.45E-04 4.60E-05 1.71E-04 Cytokine-Mediated Signaling Pathway

GO: 2252 365 3.10E-07 5.45E-04 7.01E-03 1.14E-04 Immune Effector Process

MGI: 5025 406 3.44E-07 5.45E-04 5.91E-05 2.02E-04 Abnormal Response To Infection

MGI: 1793 372 4.33E-07 5.82E-04 5.93E-05 2.42E-04 Altered Susceptibility To Infection

MGI: 8568 305 4.49E-07 5.82E-04 4.79E-05 6.25E-05 Abnormal Interleukin Secretion

GO: 8380 282 5.22E-08 7.45E-04 4.25E-05 7.24E-05 RNA splicing

GO: 6397 359 2.38E-07 1.70E-03 1.48E-04 4.14E-04 mRNA processing

GO: 16887 329 1.37E-06 5.48E-03 1.96E-04 3.34E-02 ATPase activity

GO: 6200 333 1.54E-06 5.48E-03 2.42E-04 3.36E-02 ATP catabolic process

GO: 46034 361 5.36E-06 1.53E-02 1.74E-04 4.45E-02 ATP metabolic process

GO: 16607 144 9.06E-06 2.15E-02 4.68E-04 4.61E-03 Nuclear speck

GO: 6281 356 1.66E-05 2.75E-02 2.00E-03 1.18E-04 DNA repair

GO: 16604 271 2.08E-05 2.75E-02 5.59E-03 2.46E-03 Nuclear Body

GO: 4386 135 2.12E-05 2.75E-02 2.83E-02 4.81E-02 Helicase Activity

GO: 375 184 2.40E-05 2.86E-02 1.14E-03 2.05E-03 RNA splicing, via transesterification reactions

Upregulated

Downregulated

Direction of

dysregulation in

HD

Brain expression

gene set

Module Brain region Annotation Number

of genes

p

(Combined)

p

(Track-HD)

p

(Leiden)

HD 111 FC BA9 Immune response 514 7.8E-12 1.3E-04 7.5E-05

HD 69 (FC4pos1) FC BA4 Inflammatory response 712 3.8E-08 3.1E-05 1.3E-03

Control (Braineac) 712 TCTX Inflammatory response 213 1.4E-07 3.4E-05 8.1E-04

HD 48 (CNpos2)* CN Lipid metabolism/regulation of transcription 1785 2.0E-07 3.9E-03 6.3E-03

Control (Braineac) 110 FCTX Inflammatory response 173 8.9E-07 1.0E-03 2.5E-03

Control (Braineac) 909 White Matter Activation of immune response 265 2.1E-06 1.2E-03 2.5E-02

Control (Braineac) 610 Substantia Nigra Inflammatory response 178 1.2E-05 8.6E-04 5.6E-04

Control (Braineac) 811 Thalamus Inflammatory response 142 1.6E-05 3.9E-03 2.9E-03

Control (Gibbs) 56 Pons Lipoprotein/ immune response /GTPase regulator activity 207 2.0E-05 2.4E-04 4.2E-02

Control (Braineac) 911 White Matter Inflammatory response 159 3.0E-05 8.4E-04 1.4E-02

Control (Gibbs) 22 CB Pro-rich region 831 1.8E-08 2.5E-03 2.1E-02

Control (Gibbs) 28 FC Intra-cellular transport/mitochondrion 3178 2.1E-08 6.3E-04 7.7E-05

Control (Braineac) 304 Medulla mRNA metabolic process 1811 2.9E-08 5.0E-15 4.0E-02

HD 66 (CNneg1)* CN Synapse/ion channels 2645 2.7E-07 1.5E-04 2.1E-02

Control (Braineac) 804 Thalamus Regulation of cell morphogenesis 857 1.3E-06 4.0E-02 4.1E-04

Control (Braineac) 522 Putamen Regulation of RNA splicing 64 4.4E-06 6.3E-03 2.7E-04

Control (Gibbs) 74 Pons Transcription/acetylation/protein transport 1183 9.2E-06 3.9E-08 7.4E-04

Control (Braineac) 702 TCTX Antigen processing: ubiquitination and proteasome degradation 4602 3.9E-04 1.2E-03 2.5E-02

Control (Gibbs) 48 FC Transcription corepressor/cell morphogenesis 648 4.7E-04 7.8E-03 2.1E-02

Control (Braineac) 202 Hippocampus Mitochondrial membrane 2737 4.8E-04 1.2E-07 1.5E-02

Upregulated

Downregulated
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Table 4. The 10 most significantly up and downregulated WGCNA brain expression modules in HD versus 

control blood. All modules in this table are significantly dysregulated after correction for multiple testing (q 

< 0.05) in the combined blood sample. HD brain modules were defined by Neueder and Bates 30, and Control 

brain modules were generated from Braineac 32 and Gibbs, et al. 33. Neueder and Bates 30 module identifiers 

are given in brackets where available. * denotes the caudate modules that were highly positively and 

negatively correlated with HD in their study. CN – caudate nucleus; FC – frontal cortex; FC BA4 – BA4 region 

of the frontal cortex; FC BA9 – BA9 region of the frontal cortex; CB – cerebellum; TCTX – temporal cortex. 

Table 5. Brain expression modules significantly dysregulated both in HD brain and HD blood. All modules 

in this table are significantly dysregulated after correction for multiple testing (q < 0.05) in the combined 

blood sample, and are nominally significantly dysregulated (p<0.05) in both Track-HD and Leiden datasets 

separately. Cor(HD brain) – the correlation between module eigengene and HD status observed by Neueder 

and Bates 30 in brain expression data, with a positive correlation corresponding to upregulation in HD. p(HD 

brain)  is the p-value for that correlation (corrected for multiple testing of modules). 

Module Brain Region Module

name

Number of

genes

p

(combined)

p

(TRACK)

p

(Leiden)

cor

(HD brain)

p

(HD brain)

Description

69 FC_BA4 FC4pos1 712 3.77E-08 3.05E-05 1.32E-03 0.610 3.77E-03 Inflammatory response

48 CN CNpos2 1785 2.03E-07 3.85E-03 6.33E-03 0.724 2.21E-11 Lipid metabolism/regulation of transcription

64 CN CNpos6 114 3.13E-04 1.18E-02 3.80E-02 0.463 2.28E-04 Inflammatory response

66 CN CNneg1 2644 2.71E-07 1.51E-04 2.13E-02 -0.800 6.03E-15 Synapse
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Supplementary information 

Supplementary figures 

Figure S1. Network diagram of the relationship between significantly (q<0.05) upregulated gene modules 

(Table 4) and generic biological pathways (Table S2) based on shared gene membership. The thickness of 

the edges corresponds to the proportion of overlap from the smaller term to the larger (overlap coefficient). 

Intensity of shading indicates p-value (darker colours have lower p-values), node size indicates size of gene 

content, node shape indicates origin of data (modules or pathways). For clarity, biological pathways with 

similar gene content are grouped together, as described in Supplementary Table S18, and the shading 

reflects the most significant pathway in the group. Nodes are arranged such that the distance between them 

reflects similarity in gene content. Diagram rendered in Cytoscape.
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Figure S2. Network diagram of the relationship between significantly (q<0.05) downregulated gene 

modules (Table 4) and generic biological pathways (Table S3) based on shared gene membership. The 

thickness of the edges corresponds to the proportion of overlap from the smaller term to the larger (overlap 

coefficient). Intensity of shading indicates p-value (darker colours have lower p-values), node size indicates 

size of gene content, node shape indicates origin of data (modules or pathways). For clarity, biological 

pathways with similar gene content are grouped together, as described in Supplementary Table S19, and the 

shading reflects the most significant pathway in the group. Nodes are arranged such that the distance 

between them reflects similarity in gene content. Diagram rendered in Cytoscape.

Supplementary tables 

Table S1. Differential expression analysis in HD (premanifest and manifest combined) versus controls for 

the combined Track-HD and Leiden cohorts. p (diffexp) – p value for differential expression between HD and 
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controls; q (diffexp) – q value shows correction for multiple testing in the combined dataset; Log2(FC) – log2 

of the ratio of the mean counts in HD and controls. 

Table S2. All significantly upregulated generic pathways (p < 0.05) in both Track-HD and Leiden datasets 

from HD versus control blood GSEA. A total of 14,706 generic pathways, each containing between 3 and 

500 genes, were collated publicly-available databases including GO and KEGG. q values show correction for 

multiple testing in the combined dataset. Enrichment p values for Track-HD, Leiden and combined analyses 

are given. 

Table S3. All significantly downregulated generic pathways (p<0.05) in both Track-HD and Leiden datasets 

from HD versus control blood GSEA. A total of 14,706 generic pathways, each containing between 3 and 

500 genes, were collated publicly-available databases including GO and KEGG. q values show correction for 

multiple testing in the combined dataset. Enrichment p values for Track-HD, Leiden and combined analyses 

are given. 

Table S4. The 10 most significantly dysregulated genes (p<0.01) in up or downregulated generic pathways 

(q<0.05). p (Comb/Track-HD/Leiden) – p value for differential expression between HD and controls in the 

combined, Track-HD or Leiden datasets; Log2FC – log2 of the ratio of mean counts in HD and controls. 

Table S5. All significantly dysregulated genes (p<0.05) from generic pathways that were dysregulated (up 

or down) in HD blood. p (Comb/Track-HD/Leiden) – p value for differential expression between HD and 

controls in the combined, Track-HD or Leiden datasets; Log2FC – log2 of the ratio of the mean counts in HD 

and controls. 



31 

Table S6. Number of pathways nominally significantly enriched (uncorrected p<0.05) in both the combined 

Track-HD/Leiden blood dataset and the unstimulated myeloid data of Miller, et al. 28. The p-value measures 

whether there is an excess of significantly enriched pathways in the blood dataset conditional on the 

pathway being enriched (p < 0.05) in the myeloid dataset. The set of pathways was collated from publicly-

available databases including GO and KEGG. 

Table S7. Pathways significantly (p<0.05) upregulated in both the combined Track-HD and Leiden whole 

blood data and the unstimulated myeloid cell dataset of Miller, et al. 28. Pathways are ordered by their 

combined p-value, which was obtained by combining the blood and myeloid p-values by Fisher’s method.

Table S8. Pathways significantly (p<0.05) downregulated in both the combined Track-HD and Leiden whole 

blood data and the unstimulated myeloid cell dataset of Miller, et al. 28. Pathways are ordered by their 

combined p-value, which was obtained by combining the blood and myeloid p-values by Fisher’s method.

Table S9. All WGCNA brain expression modules significantly dysregulated (p < 0.05) in both Track-HD and 

Leiden datasets in HD versus control blood. HD brain modules were defined by Neueder and Bates 30, and 

Control brain modules were derived from Braineac 32 or Gibbs, et al. 33 expression data. Neueder and Bates 

30 module identifiers are given in brackets where available. * denotes the caudate modules that were highly 

positively and negatively correlated with HD in their study. HTT is part of modules 66 (CNneg1) and 3 

(CBneg2). HD  co-expression modules defined by Neueder and Bates 30; CTRL (B) – control brain co-

expression modules from Braineac 32; CTRL (G) – control brain co-expression modules from Gibbs, et al. 33. p 

(Combined/Track-HD/Leiden) – p value for differential expression between HD and controls in the combined, 

Track-HD or Leiden datasets; BH (HD)  the Benjamini Hochberg significance value of correlation with HD in 
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Neueder and Bates 30 brain expression analysis, corrected for multiple comparisons; Cor (HD)  the direction 

and size of correlation of a module with HD in Neueder and Bates 30; CN – caudate nucleus; FC – frontal 

cortex; FC_BA4 - BA4 region of the frontal cortex; FC_BA9 – BA9 region of the frontal cortex; CB – cerebellum; 

TCTX – temporal cortex. 

Table S10. All nominally significantly dysregulated genes (p<0.05) from the WGCNA brain expression 

modules that were dysregulated (up or down) in HD blood. p (Comb/Track-HD/Leiden) – p value for 

differential expression between HD and controls in the combined, Track-HD or Leiden datasets; Log2FC –

log2 of the ratio of the mean counts in HD and controls; HD  co-expression modules defined by Neueder and 

Bates 30; CTRL (B) – control brain co-expression modules from Braineac 32; CTRL (G) – control brain co-

expression modules from Gibbs, et al. 33. 

Table S11. Module membership (kME) of genes in module 48 (CNpos2) that are dysregulated in both blood 

and caudate. There is a significant correlation between the dysregulation of a gene (p value) in the combined 

Track-HD and Leiden HD blood dataset and its kME, or degree of module membership (p = 7.6 x 10-4). kME –

correlation of a gene’s expression profile with the module eigengene (representative of all gene expression 

profiles in a module). 0 implies no connection, 1 a strong positive and -1 a strong negative connection to the 

genes in a module. Highly connected intramodule hub genes have high kME; Log2FC (blood/caudate) – log2 

of the ratio of the mean counts in HD and controls in our combined blood dataset or the caudate nucleus 

from Neueder and Bates 30; Directional p (blood/caudate) – directional p value for differential expression 

between HD and controls in our combined blood dataset or the caudate nucleus from Neueder and Bates 30. 

Table S12. Generic pathways significantly upregulated in both HD blood and prefrontal cortex. Comparing 

gene expression changes in the combined Track-HD and Leiden HD blood dataset with HD prefrontal cortex 
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from Labadorf, et al. 35, a significant (p < 0.001) excess of generic pathways are significantly upregulated (p 

< 0.05) in both datasets. Blood/brain p  the p value for pathway enrichment in HD relative to controls in the 

combined Track-HD and Leiden blood dataset (Combined) or the prefrontal cortex dataset (Labadorf). 

Table S13. Gene co-expression modules significantly upregulated in both HD blood and prefrontal cortex. 

Comparison of gene expression changes in the combined Track-HD and Leiden HD blood dataset with HD 

prefrontal cortex from Labadorf, et al. 35. HD brain modules were defined by Neueder and Bates 30, and 

Control brain modules were generated from Braineac 32 and Gibbs, et al. 33. Neueder and Bates 30 module 

identifiers are given in brackets where available. CN – caudate nucleus; FC – frontal cortex; FC BA4 – BA4 

region of the frontal cortex; FC BA9 – BA9 region of the frontal cortex; CB – cerebellum; TCTX – temporal 

cortex; Blood/brain p  the p value for module enrichment in HD relative to controls in the combined Track-

HD and Leiden blood dataset (combined) or the prefrontal cortex dataset (Labadorf); Cor (HD)  the direction 

and size of correlation of a module with HD in Neueder and Bates 30; p (HD) – the BH-corrected p value for 

module enrichment in HD in Neueder and Bates 30. 

Table S14. Generic pathways significantly downregulated in both HD blood and prefrontal cortex. 

Comparing gene expression changes in the combined Track-HD and Leiden HD blood dataset with HD 

prefrontal cortex from Labadorf, et al. (35), a significant (p = 0.028) excess of generic pathways are 

significantly downregulated (p < 0.05) in both datasets. Blood/brain p – the p value for pathway enrichment 

in HD relative to controls in the combined Track-HD and Leiden blood dataset (Combined) or the prefrontal 

cortex dataset (Labadorf). 

Table S15. Gene co-expression modules significantly downregulated in both HD blood and prefrontal 

cortex. Comparison of gene expression changes in the combined Track-HD and Leiden HD blood dataset with 
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HD prefrontal cortex from Labadorf, et al. 35. HD brain modules were defined by Neueder and Bates 30, and 

Control brain modules were generated from Braineac 32 and Gibbs, et al. 33. Neueder and Bates 30 module 

identifiers are given in brackets where available. CN – caudate nucleus; FC – frontal cortex; FC BA4 – BA4 

region of the frontal cortex; FC BA9 – BA9 region of the frontal cortex; CB – cerebellum; TCTX – temporal 

cortex; Blood/brain p  the p value for module enrichment in HD relative to controls in the combined Track-

HD and Leiden blood dataset (combined) or the prefrontal cortex dataset (Labadorf). ; Cor (HD)  the direction 

and size of correlation of a module with HD in Neueder and Bates 30; p (HD) – the p value for module 

enrichment in HD in Neueder and Bates 30. 

Table S16. Correlation between gene expression and TMS in gene positive Track-HD  subjects. p (corr-TMS)

– p value for correlation between expression and TMS; q (corr-TMS) – q value shows correction for multiple 

testing of genes;  Log2(FC) – the change in log2 (expression) per unit increase of TMS. 

Table S17. Enrichment of up or downregulated pathways from HD vs. control blood (Table S2) with TMS 

in the combined Track-HD and Leiden cohort. p(combined-diffexp) – enrichment p-value for upregulated 

genes in the combined Track-HD and Leiden sample. p(TRACK-diffexp) - enrichment p-value for upregulated 

genes in the Track-HD sample alone. p(TRACK-TMS) - enrichment p-value for genes positively correlated with 

TMS in the TRACK-HD sample.  

Table S18. Enrichment of negatively correlated pathways from HD vs. control blood (Table S3) with TMS 

in the combined Track-HD and Leiden cohort. p(combined-diffexp) – enrichment p-value for downregulated 

genes in the combined Track-HD and Leiden sample. p(TRACK-diffexp) - enrichment p-value for 

downregulated genes in the Track-HD sample alone. p(TRACK-TMS) - enrichment p-value for genes 

negatively correlated with TMS in the TRACK-HD sample.  
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Table S19. Enrichment of modules from HD vs control blood (Table S9) with TMS in the combined Track-

HD and Leiden cohort. Table is sorted by p (TRACK-TMS). p(combined-diffexp) – enrichment p-value for 

downregulated genes in the combined Track-HD and Leiden sample. p(TRACK-diffexp) - enrichment p-value 

for downregulated genes in the Track-HD sample alone. p(TRACK-TMS) - enrichment p-value for genes 

negatively correlated with TMS in the TRACK-HD sample. BH (HD)  the Benjamini Hochberg significance value 

of correlation with HD in Neueder and Bates 30 brain expression analysis, corrected for multiple comparisons; 

Cor (HD)  the direction and size of correlation of the module with HD in Neueder and Bates 30

Table S20. Correlation between genes differentially expressed in HD from Mastrokolias et al 25 and TMS in 

the Track-HD gene positive subjects. p(Mastrokolias) – p-value for correlation between expression and TMS 

in Mastrokolias et al. p(TRACK) – p-value for correlation between expression and TMS in TRACK. Log2(FC) –

the change in log2 (expression) per unit increase of TMS. 

Table S21. WGCNA co-expression modules from the Gibbs, et al. 33 control brain expression dataset 

significantly associated with late-onset Alzheimer’s disease (LOAD) in the IGAP GWAS are upregulated in 

HD blood. The four immune-related modules that were the most significantly enriched modules in LOAD are 

also significantly enriched for upregulation in the combined Track-HD and Leiden HD blood dataset. p (IGAP) 

– p value for enrichment of the gene set between LOAD and controls in the IGAP GWAS; p (Combined/Track-

HD/Leiden) – p value for enrichment of the gene set between HD and controls in our HD blood expression 

dataset. 

Table S22. Co-expression modules from Zhang, et al. 40 late-onset Alzheimer’s disease (LOAD) brain 

expression dataset. Several modules, including yellow that was the most significantly differentially 
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connected in LOAD, show enrichment for upregulation in the HD blood expression dataset. Rank (Zhang) –

modules ranked for significance of differential connectivity with LOAD in Zhang, et al. 40; p (Combined/Track-

HD/Leiden) – p value for enrichment of the module between HD and controls in our HD blood expression 

dataset; q (Comb)  the false discovery rate estimate given by the q-value. 

Table S23. Grouping of upregulated pathways from the combined Track-HD and Leiden data for 

representation in Supplementary Figure S1.

Table S24. Grouping of downregulated pathways from the combined Track-HD and Leiden data for 

representation in Supplementary Figure S2.
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Cohort Group n Mean age, y

± SD (range)

Gender

(male/female)

Mean (CAG)n length

± SD (range)

Mean TMS

± SD (range)

Mean TFC

± SD (range)

  Premanifest 50 42 ± 9 (22-64) 24/26 43 ± 3 (39-52) 2 ± 2 (0-8) 13 ± 0 (12-13)

  Manifest 62 48 ± 10 (23-64) 26/36 44 ± 3 (39-59) 23 ± 11 (5-45) 11 ± 2 (7-13)

HD 112 46 ± 10 (22-64) 50/62 44 ± 3 (39-59) 14 ± 13 (0-45) 12 ± 2 (7-13)

Control 22 45 ± 5 (34-53) 9/13 - - -

  Premanifest 18 46 ± 10 (29-63) 5/13 42 ± 2 (39-47) 3 ± 2 (0-5) 12 ± 1 (10-13)

  Manifest 56 55 ± 11 (35-79) 29/27 44 ± 3 (39-53) 42 ± 30 (6-102) 7 ± 5 (0-13)

HD 74 53 ± 11 (29-79) 34/40 44 ± 3 (39-53) 32 ± 31 (0-102) 8 ± 5 (0-13)

Control 27 43 ± 11 (26-65) 13/14 - - -

HD 186 48 ± 11 (22-79) 84/102 44 ± 3 (39-59) 21 ± 24 (0-102) 10 ± 4 (0-13)

Control 49 44 ± 9 (26-65) 22/27 - - -

Track-HD

Leiden

Combined


