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ABSTRACT 

To explore the potential of ammonia-based fuel as an alternative fuel for future power generation, studies 

involving robust mathematical, chemical, thermofluidic analyses are required to progress towards 

industrial implementation. Thus, the aim of this study is to identify reaction mechanisms that accurately 

represents ammonia kinetics over a large range of conditions, particularly at industrial conditions. To 

comprehensively evaluate the performance of the chemical mechanisms, 12 mechanisms are tested in 

terms of flame speed, NOx emissions and ignition delay against experimental data. Freely propagating 

flame calculations indicate that Mathieu mechanism yields the best agreement within experimental data 

range of different ammonia concentrations, equivalence ratios and pressures. Ignition delay times 

calculations show that Mathieu mechanism and Tian mechanism yield the best agreement with data from 

1Corresponding author: Hua Xiao, School of Engineering, Cardiff University, E-mail: 

XiaoH4@cardiff.ac.uk 

Journal of Engineering for Gas Turbines and Power. Received November 29, 2016; 
Accepted manuscript posted February 6, 2017. doi:10.1115/1.4035911 
Copyright (c) 2017 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://gasturbinespower.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jetpez/0/ on 03/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Journal of Engineering for Gas Turbines and Power 

 

GTP-16-1553 Xiao    2 

 

shock tube experiments at pressures up to 30 atm. Sensitivity analyses were performed in to identify 

reactions and ranges of conditions that require optimization in future mechanism development. The 

present study suggests that the Mathieu mechanism and Tian mechanism are the best suited for the 

further study on ammonia/hydrogen combustion chemistry under practical industrial conditions. The 

results obtained in this study also allow gas turbine designers and modelers to choose the most suitable 

mechanism for combustion studies. 

1 INTRODUCTION 
 

Under the background of ever increasing energy demand and climate change 

issues, ammonia is a promising energy storage chemical which could be utilized to 

replace conventional fossil fuel. When derived from renewable sources, ammonia can 

be a long-term sustainable fuel capable of fulfilling some of the energy demand in 

isolated areas disconnected from main national grids. Compared to other fuels such as 

hydrogen, biofuels, shale gas, dimethyl ether, etc. ammonia can also have many 

advantages for its storage, delivery and distribution. For instance, ammonia contains a 

large hydrogen component but it does not have the same issues during storage as it can 

be converted into a liquid at relatively low pressure (~8 bar). Moreover, as ammonia is 

an important chemical used as a fertilizer, there are already well established 

infrastructures and experience for its storage, handling, transportation and distribution 

worldwide.  

There have been several groups trying to utilize ammonia for practical 

combustion systems, mostly in internal combustion engines [1-5]. Academia has shown 

some development in the understanding of these systems, but this is limited [6-9]. 

Results show a series of challenges when utilizing this fuel including: a) lower flame 
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temperatures and slower kinetics; b) stability and efficiency problem; c) requirements 

for pre-vaporizing the ammonia ; d) pre-cracking of the molecule to improve ignition 

reliability and increase burning rate. NASA also identified during their XLR-99 program 

the need for “combustor enhancers” during start-up and idle [9]. Thus, considering 

hydrogen is also a carbon-free fuel and can be produced from ammonia, this research 

appraises ammonia/hydrogen as the fuel to be studied for the purpose of application in 

practical industrial system e.g. gas turbine combustion of the future[10, 11]. 

To utilize ammonia/hydrogen effectively, it is essential to understand better the 

reaction mechanisms using detailed chemical kinetic models. In addition, since 

computational fluid dynamics (CFD) simulations can serve as a powerful tool for 

analyzing and designing ammonia combustion systems, developing a CFD-based 

methodology alongside a detailed ammonia mechanism can help to capture more 

accurate information for the prediction of NOx emissions, turbulent reacting flows, 

combustion dynamics, ignition delays, etc. The challenging conditions in practical 

combustion system (e.g. gas turbine combustors) require a more specific study on the 

chemical progression of ammonia/hydrogen species, which is still immature for 

development of large scale industrial systems. Some previous studies [12-16] have 

developed detailed chemical mechanisms of ammonia combustion and provided 

agreement between measurements and simulations. For instance, Hayakawa et al. [17] 

provided predictions of unstretched laminar flame speed of ammonia under elevated 

pressure conditions with five detailed mechanisms; Kumar and Meyer [13] compared 

three detailed chemical mechanisms for flame speed characteristics of H2/NH3 
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combustion; Duynslaegher et al. [15] presented an improved ammonia combustion 

mechanism validated for the flame structure prediction of 

ammonia/hydrogen/oxygen/argon, etc. However, in most studies only limited chemical 

mechanism models, initial conditions and combustion characteristic parameters have 

been investigated. Therefore, mechanism studies are still not enough for more practical 

use, e.g. 3D CFD simulation. 

Thus, there is a need to comprehensively compare the performance of different 

detailed ammonia combustion mechanisms in order to define the most suitable at 

present, simultaneously identifying the strengths and weaknesses of the mechanisms 

for further research. This can be resolved using numerical models to distinguish which 

one is capable of providing a better correlation to ammonia combustion kinetics 

especially under typical industrial conditions. Without any previous study in the field, it 

is clear that there is a great opportunity in the area to develop new mechanisms, CFD 

simulations, experimental setups and industrial designs. 

The aim of this study is mainly to compare the performance of different detailed 

ammonia (NH3) combustion mechanisms and distinguish which is most capable of 

representing ammonia-based fuels combustion kinetics especially under industrial 

conditions such as gas turbine combustor. Therefore in this study 12 recently published 

or tested ammonia mechanisms in literature were employed to investigate their 

performance on modelling ammonia-based fuel combustion. For instance, Konnov 

mechanism provides full implementation of kinetic data for NO formation, which has 

been validated by many combustion studies [13, 18]. Other mechanisms tested in this 
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study include Tian mechanism [19], Mathieu mechanism [14], Duynslaegher mechanism 

[15], Klippenstein mechanism[20], Dagaut mechanism [21], Miller mechanism [22], 

Lindstedt mechanism [23], ÅA mechanism [24], Mendiara mechanism [25], Mével 

mechanism [26] and GRI 3.0 mechanism [27]. In fact, among these detailed chemical 

mechanism models developed for ammonia combustion quite few of them were 

developed based on elevated pressure conditions. Only the model of Mathieu and 

Petersen was examined under pressure up to 30 atm based on shock tube experiments. 

The rest of the mechanisms were built up using atmospheric or low pressure conditions. 

Although they were not developed for conditions inside gas turbine combustors, it is 

meaningful to validate and expand their application range and compare the accuracy of 

these mechanisms for their application in gas turbines running on ammonia/hydrogen 

fuel blends. To comprehensively evaluate the accuracy of each detailed kinetic 

mechanism, unstretched flame speed, ignition delay times and NOx emissions are 

studied for premixed ammonia-based fuel combustion.  

 
2 METHODOLOGY 
In order to have a comparison point, experimental tests were used from relevant 

literature. The experimental conditions and data used in this study are shown in Table 1. 

 
2.1 Freely Propagating Flame Modelling 

Laminar flame speed is one of the most important characteristics for premixed 

combustion flames. It is also used as an essential parameter for detailed chemical 

mechanisms’ verification. In this study, numerical simulations were performed using the 

computational code of premixed flame from Cantera [28] for the one dimensional 
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modelling of freely propagating laminar premixed flat flame of ammonia/hydrogen 

mixtures. As used in previous studies in literature [29], this model can provide analysis 

of unstretched flame speed, reaction rates, radical concentrations, sensitivity analyses, 

etc. In the model, flame speed is defined as the flame front velocity relative to the flow 

into the unburnt mixture [30]. Since the composition of the mixture, pressure and 

unburnt gas temperature will all have an effect on the laminar speed, different 

ammonia/hydrogen flames were modelled to comprehensively validate the 

performance of the existing chemical mechanisms. The numerical simulations were 

conducted similarly to the experimental conditions in Li et al.  [31] and Hayakawa et al. 

[17] for the comparison of unstretched laminar flame speed values, in which different 

ammonia/hydrogen ratios, equivalence ratios and pressure conditions were studied.  

2.2 Burner Stabilized Premixed Flame Modelling  

Burner-stabilized premixed flames were assumed to be one-dimensional and can 

be steady enough for accurate detailed experimental measurements of species profiles, 

temperature, flame speed, etc. As used in [18], simulation of this kind of flame can 

effectively model the chemical kinetics of ammonia/hydrogen combustion process and 

help to interpret flame experiments. In this study, the computational code for burner-

stabilized laminar premixed flame model in the Cantera software was used to predict 

combustion products and emissions by different kinetics mechanisms. The simulation 

was carried out under low pressure conditions with different ammonia/hydrogen ratios 

and equivalence ratios to simulate the experimental results of premixed 
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ammonia/hydrogen combustion provided by Duynslaegher et al. [18]. The experimental 

conditions are exactly performed in the simulation as shown in Table 2. 

2.3 Ignition Delay Times Modelling 

The ignition delay time is the time interval needed for a certain mixture to be 

ignited without external energy supply. Ignition delay is mainly affected by a mixture’s 

composition, temperature and pressure. Numerical prediction of ignition delay times is 

helpful in understanding autoignition parameters, detailed kinetics and reduction of 

detailed mechanisms. In fact, as an important well-known validation technology, 

computational prediction of ignition delay times is usually compared with shock-tube 

experiments [32-34]. In this study, ignition delay times were modelled with a closed 

homogeneous reactor in Cantera. In this model, the ignition delay time can be defined 

based on different criteria such as the time at which a certain species reaches the 

maximum concentration or the time at which an inflection point appears in pressure or 

temperature profiles [14, 32, 34].  

In this study, ignition delay times are extracted as the time corresponding to the 

steepest rate of the OH generation [14]. The model is calculated at constant volume and 

adiabatic conditions. In the simulation, the ammonia and oxidizer mixtures are highly 

diluted (98.0-99.0%) to minimize effects of viscosity, heat transfer and non-equilibrium 

as performed in shock-tube experimental conditions [35]. The numerical work was 

carried out under a wide range of pressures, temperatures and equivalence ratios to 

simulate the experimental results provided by Mathieu and Petersen [14]. The 
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mechanisms mentioned above were tested to validate their accuracy in predicting the 

ignition delay times. 

3 RESULTS AND DISCUSSION 
3.1 Flame Speed Calculation 

To examine the performance of existing NH3 combustion mechanisms for the 

unstretched flame speed calculation of premixed NH3/H2 flames, different initial NH3 

concentrations(40%~61.5%) in the fuel gas and different equivalence ratios (0.80-1.25) 

were simulated to compare them with results produced by Li et al.[31]. It should be 

noticed that the experimental data provided in the literature have not included heat 

losses, which should be taken into consideration for effects on flame speed predictions. 

However, as examined in the study performed by Kumar and Meyer [13], the effects of 

heat transfer to the boundaries were relatively small within most of the ranges (percent 

of NH3 by energy in the fuel blends <20%) in this study especially under fuel lean 

conditions [31]. Thus, adiabatic conditions are assumed in the present work. 

Fig. 1-3 show flame speed calculation results of different NH3/H2 mixtures using 

different chemical mechanisms. All the three NH3/H2 combustion results have shown 

that the flame speed will increase first and then decrease with the increase of 

equivalence ratio. Almost all the mechanisms have predicted the same trend of the 

flame speed with experimental data. The maximum flame speed is achieved around 

equivalence ratio of 1.1. 

In Fig. 1, 40%NH3/60%H2 blend is simulated for the unstretched laminar flame 

speed investigation. From the results, it can be seen that most of the mechanisms have 

predicted slower flame speed compared to experimental data.  The best predictions are 
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obtained by Lindstedt mechanism, Miller mechanism, Mathieu mechanism, 

Duynslaegher mechanism and Konnov mechanism with average relative errors of 3.99%, 

5.96%, 8.53%, 8.61% and 10.08% respectively. A more detailed analysis of the results 

shows that in different equivalence ratio conditions the accuracy of different 

mechanisms varies. Near stoichiometric area (0.90<ER<1.20), the deviations of all the 

mechanisms are relatively larger than other zones, which indicates mechanisms for this 

range of equivalence ratio still need to be studied. Under fuel lean conditions 

(E.R.<0.90), the best predictions are obtained by Miller mechanism with an average 

relative error of 1.72% while Mathieu mechanism has given the best prediction under 

fuel rich condition(E.R.>1.20) with an average relative error of 1.38%. These results 

indicate that chemical reaction kinetics of this mixture are affected by equivalence ratio.  

Under rich conditions, for the combustion of 40.0% NH3 concentration in fuel, to 

illustrate the difference between different mechanisms, sensitivity analyses were 

conducted. As shown in Figs 4-7, most-sensitive reactions for the flame speed 

calculation of Mathieu mechanism and Miller mechanism are compared, as they 

produced the most accurate prediction under fuel lean and fuel rich conditions 

respectively. For fuel lean conditions, it can be seen from Figs 4 and 5 that the reactions 

H+O2O+OH and H+O2(+M)HO2(+M) have the largest impacts on the predictions of 

flame speed in both mechanisms. The difference between them is that these reactions 

play a more prominent role in Miller mechanism than in Mathieu mechanism. Even 

further, in both mechanisms the reaction H2+OHH+H2O is the second most promoting 

reaction for flame speed. For fuel rich conditions, Figs 6 and 7 show that promoting 
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reaction H+O2O+OH has the largest impacts on the predictions of flame speed in both 

mechanisms while the most inhibiting reactions in the two mechanisms are different, 

N+OHH+NO in Mathieu mechanism and H+O2(+M)H+O2(+M) in Miller mechanism. 

In fact, differences between rate constants of some key reactions produce also a great 

impact on flame speed calculation. For instance, concerning the most inhibiting reaction 

H+O2(+M)HO2(+M), the rate constant is k=4.65×1012·T0.44 in Mathieu mechanism 

while in Miller mechanism the value is k=3.67×1017·T-0.72. This case shows how these 

differences can alter the performance when predicting laminar flame speed. 

Figs 2 and 3 show the flame speed calculation results for 50.0% and 61.5% of 

initial NH3 concentration in the fuel blend respectively. In Fig. 2, the best predictions are 

obtained by Mathieu mechanism, ÅA mechanism, , Miller mechanism, Lindstedt 

mechanism and Dagaut mechanism with average relative errors of 3.36%, 5.38%, 9.51%, 

9.72%, 9.99% respectively.  In Fig. 3, the most accurate calculations are obtained by 

Klippenstein mechanism, Dagaut mechanism and Mathieu mechanism with average 

relative errors of 3.81%, 6.37%, 9.50% respectively. The simulation results from Fig. 1-3 

have shown that Mathieu mechanism has the best performance (all average relative 

errors <10%) within the range of this study, which indicates Mathieu mechanism is 

capable to produce a good prediction for flame speed prediction for different ratios of 

NH3/H2 fuel mixtures. Thus, sensitivity analysis using Mathieu mechanism were 

performed for the combustion of 50.0% and 61.5% of initial NH3 to illustrate the 

difference between combustion kinetics of different fuel mixtures, as shown in Fig. 8 

and Fig. 9. The results show that both H+O2O+OH and N+NH22H+N2 are the most 
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promoting reactions while the most inhibiting reactions are different for the two 

different fuel mixtures. Furthermore, comparing Fig. 8 and Fig. 9 with Fig. 6, it is 

observed that the sensitivity of the sensitive reactions continuously change according to 

the proportion of NH3 in the fuel mixture. For instance, the most sensitive reaction 

H+O2O+OH plays a more prominent role with the increase of NH3 concentration in 

the fuel mixture while H+NH2H2+NH plays the most inhibiting role in combustion 

kinetics of high NH3 concentration mixtures.  

Figs 10-12 show flame speed calculation results under different equivalence ratio 

conditions with detailed chemical mechanisms. As shown in the Figs, the flame speed of 

the NH3/H2 mixtures decreases with the increase of NH3 concentration due to less 

amount of hydrogen atoms in the flame as the H2 addition decreases. For stoichiometric 

condition, the best five performance are obtained by Mathieu mechanism, Dagaut 

mechanism, Miller mechanism, Klippenstein mechanism and Lindstedt mechanism. For 

fuel rich condition, the best agreement with experimental data was obtained by 

Mathieu mechanism, Dagaut mechanism, Mendiara mechanism, Tian mechanism and 

Klippenstein mechanism.  The results show Mathieu mechanism performs with the best 

accuracy for flame speed prediction under stoichiometric and fuel rich cases with 

average relative error of 7.85% and 5.14% respectively. Meanwhile, the performance of 

the mechanisms used in this study for fuel lean condition is relatively poorer, in which 

the best predictions are obtained by Klippenstein mechanism, Dagaut mechanism, 

Miller mechanism, Lindstedt mechanism and Mathieu mechanism with average relative 

errors of 13.21%, 14.12%, 14.15%, 15.29%, 15.90% respectively. This indicates that fuel 
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lean combustion chemistry for NH3/H2 still needs to be better optimized. However, 

generally for all the equivalence ratio conditions in this study Mathieu mechanism 

shows the best and satisfying accuracy among the detailed chemical mechanisms 

tested. 

To further study ammonia’s combustion chemistry for future practical 

applications, elevated pressure conditions are of great significance as usually met in gas 

turbine operation processes. Recently Hayakawa et al. [17] studied the unstretched 

laminar flame speed of premixed ammonia flames at various pressures up to 0.5 MPa 

experimentally. Since the study of Hayakawa et al. has already compared several 

detailed chemical mechanisms and indicates that GRI 3.0 mechanism shows the best 

performance for flame speed prediction under elevated pressure conditions, here in this 

study Mathieu mechanism was tested and compared with GRI 3.0 mechanism under 

elevated pressure conditions, as shown in Fig. 13 and 14. From the results it can be seen 

that flame speed decreases with the increase of pressure. Although both Mathieu and 

GRI 3.0 mechanisms have shown good accuracy for flame speed calculation under 

elevated conditions, Mathieu mechanism has a better performance. Actually, although 

NH3 related reactions are present in the GRI 3.0 mechanism, the ammonia chemistry in 

this mechanism is still not fully developed, as also mentioned in the study of Hayakawa 

et al. Since GRI 3.0 is still very popular in the gas turbine industry, it is necessary to 

notice that GRI 3.0 is not a model suitable for NH3 combustion modeling. Therefore, 

Mathieu mechanism already showed the best capability in simulating 
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ammonia/hydrogen fuel under various conditions. Thus, Mathieu mechanism is 

recommended for ammonia/hydrogen fuels’ flame speed simulations of this study.  

 

3.2 NOx Emission Analysis 

To validate the performance of the existing chemical mechanisms for NH3/H2 

combustion, NOx emissions and some major species concentrations were predicted 

against experimental data from burner-stabilized premixed flames investigated by 

Duynslaegher et al. [18], Figs 15-18. The initial conditions represented by point numbers 

are illustrated in Table 2. As shown in Fig. 15, prediction of N2 is quite satisfying with all 

the mechanisms of which the relative errors are all less than 5%. For the calculation of 

H2, the predictions by most mechanisms are acceptable with relative errors about 10%. 

For N2O emissions, Fig. 17 shows the prediction results using different mechanisms. It 

can be seen that only Duynslaegher and GRI 3.0 mechanisms give best agreement with 

experimental data. This is because in Duynslaegher mechanism the N2O chemistry is 

specifically optimized to have better accuracy. It indicates that the N2O chemistry still 

needs to be improved for most of the ammonia combustion mechanisms. However, 

since the final concentration of N2O in exhaust is rather low, NOx will be regarded as the 

main pollutant for NH3/H2 flames. For exhaust NO emissions, all the chemical 

mechanisms tested give acceptable predictions except GRI 3.0 mechanism as shown in 

Fig. 18.  

To develop ammonia as an alternative fuel, NOx emissions are one of the 

essential concerns. Comparing flame test numbers 2, 3 and 4, it can be seen that 
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increase of NH3 concentration in initial fuel leads to higher NO concentration in the 

burnt gas, which is mainly due to the increase of fuel-bond NOx emissions. From flame 

test numbers 3, 5 and 6, it is observed a strong impact of equivalence ratio on NO yield. 

From fuel lean condition to fuel rich condition, a large drop in the NO concentration can 

be observed from ER=0.90 to ER=1.10. This indicates the fuel rich combustion can be 

preferred for practical industrial use of ammonia/hydrogen fuels. A comparison of flame 

test numbers 1, 7 and 8 reveal the effect of pressure on the formation of NO emission. 

From 60-120mbar, an obvious decrease of NO concentration can be observed. It should 

be noticed that the initial conditions in the study of Duynslaegher et al. [18] are still 

different from the high pressure operational conditions of practical gas turbine. As 

mentioned in the study of Duynslaegher et al. [18], the aim was to analyze the 

ammonia/hydrogen combustion chemistry for practical spark ignition engines. 

Nevertheless, the different pressure conditions studied by Duynslaegher have relevance 

to draw some of the effects of pressure that have not been studied in other related 

studies for NH3/H2 combustion. Since there is still no experimental study for 

ammonia/hydrogen emissions under elevated pressure conditions, this comparison can 

still provide essential information for NOx emission predictions. 

For NOx emission predictions, among the mechanisms tested, Tian mechanism, 

Klippenstein mechanism and Mendiara mechanism have performed the best accuracy 

with average relative errors of 5.68%, 5.69% and 5.72% respectively, while the relative 

error of Mathieu mechanism, which shows the best performance in flame speed 

calculation, shows a prediction of 23.98%. Also, relatively old mechanisms such as Miller 
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mechanism and Lindstedt mechanism show rather big deviations for NOx emission 

predictions although they have shown fair performance for flame speed calculations. 

Actually, in previous literature there are studies reporting discrepancies between 

experimental results and these old mechanisms. For instance, Um et al. [36] over-

estimated flame temperatures and NOx emissions for non-premixed NH3/H2 flames, 

while Lee et al. [37] also claimed discrepancies among the predictions and 

measurements for laminar premixed NH3/H2 combustion using Miller mechanism and 

Lindstedt mechanism. This indicates that these mechanism models are not suited for 

future ammonia combustion studies as a great deal of improvements have already been 

made in chemical mechanism developments. More recent mechanisms (e.g. Tian 

mechanism [19] and Mendiara mechanism [25]) have been updated with much more 

extensive reactions for NH3 chemistry. 

To illustrate the difference between mechanisms in NOx emission calculation, 

sensitivity analyses were conducted. For instance, sensitive reactions of Tian and 

Mathieu mechanisms for flame 1 are identified as shown in Figs 19 and 20. It can be 

seen that there is an obvious difference between the two models. In Tian mechanism, 

the most promoting reaction is NH2+OHNO+H while H+O2OH+O and 

NH2+NN2+2H are the most promoting reactions in Mathieu mechanism. In Mathieu 

mechanism the role of N2O species is quite important for the NO formation but not 

quite noticeable for Tian mechanism. These differences shown in the sensitivity analysis 

are mainly responsible for the discrepancy between the NOx prediction performances of 

the two mechanism models. A pathway analysis of NO formation with Tian mechanism 
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is illustrated in Fig. 21. The major source of the NO formation comes from oxidation of 

HNO. As the sensitivity analysis shows, the reaction NH2+OHNO+H plays the key role 

in the NO formation process. When ammonia is consumed initially with O/OH, NH2 is 

produced. Then the NH2 is mainly converted into HNO and NH. The conversion from 

HNO and NH to NO is mainly through the reactions HNO+HNO+H2 and NH+ONO+H.  

Furthermore, to gain an insight into the emission characteristics of NH3/H2 

combustion under practical industrial conditions, simulations were carried out under a 

variety of pressure conditions with the fuel blend of flame test No.1 using Tian 

mechanism which showed the best accuracy for NO emission predictions as shown in 

Fig. 22. An obvious effect on NOx emission reduction can be observed under elevated 

pressure conditions relevant to gas turbines. For instance, under typical pressure of 17 

atm, NOx emission concentration is as low as 0.736ppm. Thus, it indicates that the usage 

of NH3/H2 blends in gas turbines will be improved as NOx emissions will be likely reduced 

under real operation conditions. 

3.3 Ignition Delay Verification 

To comprehensively study the performance of different chemical mechanisms 

for premixed combustion, ignition delay times validation studies were also conducted to 

compare with the experimental data by Mathieu and Petersen [14]. In [14], several up-

to-date mechanisms have been tested for ignition delay time calculations of ammonia. 

From these studies, Mathieu mechanism has been proved to have the best accuracy 

under different pressure conditions. Thus, considering Tian mechanism showed the best 

performance for NOx emission prediction in the previous section and it was not tested in 
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[14], ignition delay time calculations using Tian mechanism were compared with 

Mathieu mechanism as shown in Figs 23-25. Generally, under all the pressure conditions 

studied, both Tian mechanism and Mathieu mechanism have shown quite good 

accuracy for ignition delay times prediction though Mathieu mechanism performs 

slightly better. Specifically, under low and medium pressure conditions (1.4 and 11 atm), 

these two mechanisms show quite close results with each other while under high 

pressure condition (30 atm) Mathieu mechanism shows a better performance than Tian 

mechanism. This indicates that Mathieu mechanism can perform better for ignition 

delay time calculations under high pressure conditions.  

To illustrate the difference between the chemical mechanisms for ignition 

chemistry, sensitivity analyses were also conducted as shown in Figs 26 and 27. Under 

the condition of 30 atm, equivalence ratio of 2, it can be seen that the most inhibiting 

reaction NH3+OHNH2+H2O is the same in both mechanism. Also, promoting reactions 

H+O2O+OH and 2NH2NH3+NH play a prominent role in both mechanisms. A 

noticeable difference is that in Tian mechanism, H+O2O+OH plays as the most 

promoting reaction while NH+O2HNO+O is the most promoting reaction in Mathieu 

mechanism. Another difference is that the N2H2 species plays an important role in Tian 

mechanism. Moreover, several differences are visible between Tian mechanism and 

Mathieu mechanism, with the role of the N2H2 species being very important in Tian 

mechanism. These differences account for the deviation from experimental data. 
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4 CONCLUSION 
 

A comprehensive comparison of different recent detailed ammonia combustion 

mechanisms was performed to study the premixed combustion of ammonia/hydrogen 

fuels. 12 detailed chemical mechanisms tested in previous literature were employed to 

determine their performance for the prediction of laminar flame speed, NOx emission 

and ignition delay times using ammonia/hydrogen blends.  

First, laminar flame speed calculation under atmospheric pressure conditions, 

different initial NH3 concentrations in the ammonia/hydrogen fuel mixtures and 

different equivalence ratios were studied using these mechanisms. Elevated pressure 

conditions of ammonia combustion at different equivalence ratios were also simulated 

with different mechanisms against the results from literature. Results show that 

Mathieu mechanism has the best agreement with the experimental data within the 

range of initial conditions tested. Second, emission analyses of diluted ammonia/ 

hydrogen/ oxygen/ argon flames have been modelled at different initial ammonia 

contents, equivalence ratios and working pressures. The best agreements of NOx 

emission calculation with experimental results were achieved by using Tian mechanism, 

Klippenstein mechanism and Mendiara mechanism.  Sensitivity and pathway analyses 

were also carried out to identify reactions that require more attention in future 

development of combustion models. Simulation prediction using Tian mechanism shows 

industrial high pressure conditions can lead to substantial decrease of NOx emission. 

Finally, ignition delay time predictions for highly diluted ammonia showed that Tian 

mechanism and Mathieu mechanism both yielded quite good performance.  
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Thus, for future practical industrial use of combustion chemistry of ammonia/hydrogen 

fuels, both Mathieu and Tian mechanism are promising. For flame propagation, Mathieu 

mechanism showed the best performance while Tian mechanism can give acceptable 

flame speed predictions especially for fuel-rich and high ammonia concentration flames. 

On the other hand, though Tian mechanism showed the best performance in NOx 

emission prediction, Mathieu mechanism can also give acceptable NOx prediction for 

NH3/H2 fuel mixtures. The choice can depend on the specific conditions to be analyzed 

according to the relative error results provided in this study (Appendix A). In the future, 

experimental studies and optimization of these mechanisms are still needed for a 

deeper insight into the ammonia chemistry under practical gas turbine conditions. There 

will be also a need to reduce detailed ammonia/hydrogen combustion mechanisms to 

apply them to 3D-CFD simulation for gas turbine research.  
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NOMENCLATURE 
 

E.R. equivalence ratio 

T temperature of unburnt mixture 
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Appendix A: Average relative errors with different mechanisms 

Mechanisms 
Figure 

1 

Figure 

2 

Figure 

3 

Figure 

10 

Figure 

11 

Figure 

12 

Figure 

15 

Figure 

16 

Figure 

17 

Figure 

18 

Konnov 10.08% 20.54% 15.57% 22.72% 22.35% 5.14% 2.29% 19.83% 66.51% 22.85% 

Duynslaegher 8.61% 16.55% 3.81% 26.76% 25.43% 9.31% 1.81% 19.37% 12.59% 15.45% 

Klippenstein 25.12% 9.99% 6.37% 13.21% 15.03% 14.46% 1.54% 14.70% 43.04% 5.69% 

Dagaut 16.29% 9.51% 15.52% 14.15% 7.99% 13.39% 2.07% 10.20% 74.68% 26.72% 

Miller 5.96% 9.72% 24.33% 8.23% 14.12% 18.26% 2.29% 12.11% 77.18% 28.90% 

Lindstedt 3.99% 5.38% 16.40% 16.74% 15.29% 12.64% 1.77% 11.44% 71.37% 12.53% 

AA 19.85% 20.23% 15.15% 15.98% 16.39% 31.48% 2.12% 9.46% 72.54% 28.10% 

Mendiara 26.72% 30.31% 20.53% 19.22% 17.62% 34.86% 1.59% 13.15% 50.28% 5.71% 

Mével 37.93% 39.29% 37.87% 25.03% 25.18% 5.14% 1.97% 9.40% 67.64% 20.06% 

GRI 3.0 38.72% 20.54% 15.57% 44.19% 35.66% 26.19% 4.45% 28.70% 16.66% 52.86% 

Tian 27.10% 3.36% 9.50% 19.79% 17.94% 26.19% 1.59% 13.17% 60.95% 5.68% 

Mathieu 8.53% 12.60% 38.22% 15.90% 7.85% 13.00% 2.00% 10.27% 64.51% 23.98% 
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Table 1 Experimental data used in this study  

Fuel/Oxidizer Specified initial conditions Data used in this study Reference 

H2/NH3/air 
STP, 40–66.7% NH3 in H2 , 

E.R.= 0.6–1.4 
Laminar flame speed [31] 

NH3/air 
T=298K, P =1-5 bar, E.R.= 0.7–

1.3 
Laminar flame speed [17] 

NH3/H2/O2/Ar 
T=298K, P = 60–120 mbar, 

E.R.=0.9–1.1 
NOx emissions and 

combustion products 
[18] 

NH3/O2/Ar 
T=1560–2455K, p=1.4-30bar, 

E.R.=0.5-2.0 
Ignition delay time [14] 

 
 
 

Table 2 Flames inlet composition and initial conditions from [18] 

No. NH3 H2 O2 Ar E.R. p(mbar) 

1 0.25 0.05 0.21 0.48 1.00 60 

2 0.24 0.07 0.21 0.47 1.00 50 

3 0.22 0.10 0.21 0.46 1.00 50 

4 0.21 0.13 0.21 0.45 1.00 50 

5 0.22 0.10 0.24 0.43 0.90 50 

6 0.22 0.10 0.20 0.48 1.10 50 

7 0.25 0.05 0.21 0.48 1.00 90 

8 0.25 0.05 0.21 0.48 1.00 120 
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Fig. 1 Flame speed calculation of 40% NH3 flame at normal temperature and 

pressure. Experiments as in [31] 
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Fig. 2 Flame speed calculation of 50% NH3 flame at normal temperature and 

pressure. Experiments as in [31] 
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Fig. 3 Flame speed calculation of 61.5% NH3 flame at normal temperature and 

pressure. Experiments as in [31] 
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Fig. 4 Sensitivity analysis of flame speed by Mathieu mechanism (40.0%NH3, 

ER=0.83) 
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Fig. 5 Sensitivity analysis of flame speed by Miller mechanism (40.0%NH3, 

ER=0.83) 
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Fig. 6 Sensitivity analysis of flame speed by Mathieu mechanism (40.0%NH3, 

ER=1.23) 
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Fig. 7 Sensitivity analysis of flame speed by Miller mechanism (40.0%NH3, 

ER=1.23) 

Journal of Engineering for Gas Turbines and Power. Received November 29, 2016; 
Accepted manuscript posted February 6, 2017. doi:10.1115/1.4035911 
Copyright (c) 2017 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://gasturbinespower.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jetpez/0/ on 03/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Journal of Engineering for Gas Turbines and Power 

 

GTP-16-1553 Xiao    31 

 

 

N+OH<=>H+NO

H+O2(+M)<=>HO2(+M)

NH3+M<=>H+NH2+M

NH2+O<=>H+HNO

H+NH2<=>H2+NH

H2+OH<=>H+H2O

H+NH<=>H2+N

H2+O<=>H+OH

N+NH2<=>2H+N2

H+O2<=>O+OH

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Sensitivity coefficient
 

Fig. 8 Sensitivity analysis of flame speed by Mathieu mechanism (50.0%NH3, 

ER=1.23) 
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Fig. 9 Sensitivity analysis of flame speed by Mathieu mechanism (61.5%NH3, 

ER=1.23) 
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Fig. 10 Flame speed calculation of fuel lean condition (ER=0.80) at normal 

temperature and pressure. Experiments as in [31] 
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Fig. 11 Flame speed calculation of stoichiometric condition (ER=1.00) at normal 

temperature and pressure. Experiments as in [31] 
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Fig. 12 Flame speed calculation of fuel rich condition (ER=1.25) at normal temperature 
and pressure. Experiments as in [31] 
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Fig. 13 Flame speed calculation of ammonia (p=0.3MPa). Experiments as in [17] 
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Fig. 14 Flame speed calculation of ammonia (p=0.5MPa). Experiments as in [17] 
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Fig. 15 Mole fraction of N2 in burnt gas. Experiments as in [18] 
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Fig. 16 Mole fraction of H2 in burnt gas. Experiments as in [18] 
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Fig. 17 Mole fraction of highest N2O in burnt gas. Experiments as in [18] 
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Fig. 18 Mole fraction of NO in burnt gas. Experiments as in [18] 
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Fig. 19. Sensitivity analysis of NO by Tian mechanism (flame 1) 
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Fig. 20 Sensitivity analysis of NO by Mathieu mechanism (flame 1) 
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Fig. 21. Pathway of NO formation  

Journal of Engineering for Gas Turbines and Power. Received November 29, 2016; 
Accepted manuscript posted February 6, 2017. doi:10.1115/1.4035911 
Copyright (c) 2017 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://gasturbinespower.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jetpez/0/ on 03/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Journal of Engineering for Gas Turbines and Power 

 

GTP-16-1553 Xiao    45 

 

 

0 3 6 9 12 15 18 21
0

2

4

6

8

1200

1210

1220

 
N

O
x
 e

m
is

s
io

n
 c

o
n

c
e

n
tr

a
ti
o

n
 (

p
p

m
)

p (atm)

 

Fig. 22 NOx emission as a function of pressure 
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Fig. 23 Ignition delay times of NH3 mixtures (0.4%NH3/0.6%O2/99%Ar). 1.4 atm. 

Experiments from [14] 
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Fig. 24 Ignition delay times of NH3 mixtures (0.4%NH3/0.6%O2/99%Ar). 11 atm. 

Experiments from [14] 
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Fig. 25 Ignition delay times of NH3 mixtures (0.4%NH3/0.6%O2/99%Ar). 30 atm. 

Experiments from [14] 
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Fig. 26 Sensitivity analysis of OH by Tian mechanism (0.4%NH3/0.6%O2/99%Ar). 

30 atm 
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Fig. 27 Sensitivity analysis of OH by Mathieu mechanism 

(0.4%NH3/0.6%O2/99%Ar). 30 atm 
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