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Abstract—This paper describes the design and implementation
of a control-theoretic model that can be used to model both the
discrete and continuous behavior of a human operator. The hu-
man operator model can be used to compare different device user
interfaces in terms of human performance. The implemented hu-
man operator model combines an ON–OFF control model and a
behavior-based hybrid automaton with three controllers. The con-
trollers, defined as continuous, discrete, and fine-tuning behavior,
simulate the user’s conceptual model of the user interface. The de-
vice model used is that of a commercial syringe pump with chevron
keys, described as a formal specification. Results of the human op-
erator model simulation were generated for 20 different numbers
obtained from syringe pump log files. The simulation results were
compared over 33 trials to a lab study employing a device based on
the formal specification. The result of the simulation shows a signifi-
cant similarity to the result of the lab study for all the numbers used.

Index Terms—Automata, control theory, drug delivery, formal
verification, human computer interaction, safety, simulation.

I. INTRODUCTION

U P–DOWN buttons are a ubiquitous user interface input
method, used in everything from microwave ovens to

safety-critical medical devices. When used to enter numeric
data, like times or rates, up–down buttons and their extended
version, chevron keys, are defined as an incremental number
entry method [1]. This differentiates them from serial digit
entry methods like numeric keypads, where numbers are
entered sequentially from left to right.

A chevron-key interface, as shown in Fig. 1, is commonly
used for entering values on interactive medical devices and con-
sists of four buttons. A “small up” and a “big up” key increases
the displayed value, with the “big up” key causing a larger
change than the “small up” key. The “small down” and “big
down” keys both decrease the displayed value, with the “big
down” key causing a larger change than the “small down” key.
The interface allows for two modes of interaction: The user can
press the button for a discrete change in displayed value, or the
user can press and hold the button to change the displayed value
at a rate dependent on the duration of hold [2].
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Fig. 1. Chevron-key interface, with the “big up” key on the far left, followed
by the “small up” key on the middle-left and the “small down” key on the
middle-right, with the “big down” key on the far right.

Number entry is a very common task in healthcare, and
incorrect drug doses are a significant contributory factor to
unnecessary fatalities [3]. Errors made using incremental num-
ber entry are less severe than numeric keypads [2]. That is, the
difference between the intended number and transcribed number
is lower, which makes them more suitable for safety-critical in-
terfaces. To understand the impact of human erroneous behavior
in interaction with number entry devices, we need to model hu-
man operator behavior. There are a number of well-explored ap-
proaches in human–computer interaction (HCI) to model human
operator behavior based on, for example, device interfaces, cog-
nitive models, and task-analytic models in interaction with nu-
meric keypads. However, incremental number entry presents a
unique problem: entering a number consists of both continuous
and discrete interactions. Pressing the button once (or multi-
ple times) for a short amount of time is a discrete interaction,
while holding the button is a continuous interaction where the
release of the button depends on the displayed value and the
reaction time delay of the user. This continuous interaction can
be modeled using a control-theoretic feedback loop.

Manual control theory offers a powerful and flexible approach
for describing human behavior and analyzing human–machine
systems [4]. Manual control theory is a discipline which cuts
across traditional boundaries between scientific fields of study
and uses the same language for systems of different hardware,
whether physical or biological [5]. It has been applied to mod-
eling human behavior and solving human factors problems for
more than 60 years [4]; however, it has been largely overlooked
outside the engineering arena, e.g., in HCI research. Manual
control theory is a time-domain approach based around differ-
ential equations, which started emerging in the 1960s and has
been widely used for modeling human pilots [6], [7].

Hybrid automata extends control theory to express both dis-
crete and continuous aspects in the same formalism [8]. It has
been used with success in areas like robotics [9] and aviation
[10] to model both the continuous and discrete aspects of a sys-
tem. In this paper, we will show how it can be used to model
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both the continuous and discrete behavior of a human operator,
using a chevron-key interface on a medical device.

The paper is organized as follows: First, we discuss the re-
lated work on user modeling, manual control theory, and hybrid
automata. We then introduce our human operator model using
behavior-based hybrid automata and manual control. A device
model that interacts with the human operator model is then
described. The results of a comparison study, where the human
operator model is compared with a lab study, is shown to validate
the model. This is followed by a discussion and conclusions.

II. RELATED WORK

A. User Models in Human–Computer Interaction

In this section, we consider some of the approaches in HCI
that attempt to model human behavior, i.e., the user. In these ap-
proaches, the human operator’s behavior is determined by device
interface models, cognitive models, or task-analytic models of
human behavior.

1) Using Device Interfaces to Define User Models: With
respect to formal modeling in HCI on device response to hu-
man behavior, the existing approaches use formal verification to
determine four logic property categories for human–device in-
terface models, identified by Campos and Harrison [11]: reach-
ability [12], [13], visibility [13], [14], task related [12]–[14],
and reliability [12], [14]. Campos’ and Harrison’s [11] work
has been extended to heuristically assess usability using for-
mal verification, or the output of formal verifications in HCI.
For example, Hussey et al. [15] identified four usability prop-
erties: task efficiency, reuse, robustness, and flexibility. Kamel
and Aı̈t-Ameur [16] showed how four usability properties spe-
cific to multimodal human–device interfaces could be evaluated
formally: complementarity, assignation, redundancy, and equiv-
alence. Kamel et al. [17] also provided temporal logic patterns
for verifying the “adaptability” of a multimodal interface: For
a given initial state (which may encompass a condition where
a particular modality is not available), the human operator will
always be able to eventually find a way to reach a goal state.

Bolton et al. [18] provided a review of formal verification ap-
proaches to evaluate human–automation interaction. They iden-
tified two broad categories of formal verification approaches:
those that focus on the analysis of the user interface of the sys-
tem, and those that focus on the analysis of how the system is
(supposed to be) used. Approaches in the first group typically
use a model of the user interface under analysis, proving proper-
ties of the interface that are relevant to the operation of the sys-
tem. Examples of properties include usability principles, mode
confusion properties, and user-related safety requirements. To
help focus on user relevant issues and behavior, the inclusion of
mental models or knowledge models has been used to augment
the analysis. Approaches in the second group work either with
task models (see Section II-A3) of how the users are supposed
to use the system or with cognitive models (see Section II-A2)
of the mental process that drive that behavior.

Using a formal model of a device–user interface can inform
whether certain situations and certain human behavior may
contribute to a failure in interaction between a device and a user.

Although the verification models are extremely powerful, they
suffer from certain limitations [18]. One of the limitations is
that traditional model checking is applied to systems that can
be modeled with discrete variables. However, systems can
have continuous quantities, and current techniques can handle
systems models with no more than a half-dozen continuous
variables.

Campos et al. [19] presented a systematic formal method for
analyzing interactive systems that was based on resources rather
than prescribed behavior. They argued that a resource-based
approach can help to identify potential usability problems by
exploring what should be available at the interface to support
users. Using two commonly used infusion pumps as examples,
they showed that this approach provides a means of compar-
ing devices designed to support the same activities iteratively.
Campos et al. showed that the presence of resources introduced
a notion of plausibility and a more realistic conception of user
behavior, which was based neither on rigid plan following nor
random behavior.

Another approach is to encode assumptions about the user
directly into the model, that is, joint models of user and de-
vice [20]. The approach could be characterized as embedding
elements of a user model into the device model and thereby
constraining the behaviors of the system being analyzed. In this
case, the separation between device model and user assumptions
is less clear potentially, and this can bias the user assumptions
toward those that are needed to make the system work. By work-
ing with assumptions at a resource level [19], a clear separation
is made between models and assumptions about users as ex-
pressed in terms of resources. These models are also relatively
easy to build and the outputs are straightforward, providing a
way for the HCI expert to contribute to a more rigorous analysis.

The approach we describe in Section II-C, similar to the
resource-based approach, does not “prove” usability of the
system, but rather identifies and investigates plausible and
interesting behaviors to find and to fix usability problems and
to investigate the effectiveness of different user strategies for
achieving goals.

2) Using Cognitive Models to Define User Models: Cog-
nitive models in HCI take into account the user’s capabilities.
Human cognition can be modeled as part of a formal system and
then verified, i.e., what actions the user will use to interact with
the system. These methods let the analyst formally verify that the
system will always allow the operator to achieve their goals with
a set of cognitive behaviors. These methods can also identify
situations where the human operator fails to achieve his desired
goals, or drives the system into dangerous operating conditions.

Programmable user models (PUMs) [21] are cognitive models
that capture the knowledge and cognitively plausible behavior
an operator is able to use when interacting with an interactive
device, and implement them as part of a formal system model
[22], [23]. PUMs take into account the goals of interaction with
the device that the operator wishes to achieve, the operator’s
knowledge of the device, the information available to the oper-
ator through the interface (feedback), and a set of actions the
operator can perform to interact with the device. The operator,
at any moment of interaction with the device, uses knowledge
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about the device and currently available feedback to decide on
the next action(s) to achieve his goals. PUMs have been eval-
uated using formal verification with both theorem provers [24]
and model checkers [25].

These models have at least one advantage over Goals, Op-
erators, Methods, and Selection rules (GOMS), a description
of how to calculate the time to accomplish tasks [26], [27],
where it assumes the participants involved in interaction are
well practiced and make no errors during task execution. With
GOMS models, reliable estimated times must be available for
all components in the task [28].

PUMs have been used to model different classes of human
operator (expert versus novice) [29] in order to investigate when
different types of operators may perform different errors when
interacting with an automated teller machine (ATM). Keystroke-
level timing analysis [26], [27] have been added into Curzon
et al.’s [29] framework and used to evaluate timing performance
of a human operator interacting with the ATM [30]. Similar to
GOMS, KLM timing analyses estimate time with the provi-
sion that the sequence of actions required to perform a task is
executed without error.

Cognitive models of users interacting with devices model hu-
man behavior explicitly and represent the cognitive basis for
erroneous behavior, for example, they provide additional in-
sights into safety, usability, skills, cognitive load, and salience.
However, these analyses require each cognitive mechanism to be
incorporated into the model. As such, they are likely to overlook
certain behaviors in interaction.

3) Task Analytic Models of Normative Human Behavior:
Task analytic models are commonly used to model human task
behavior as sequences of activities to fulfill the goals of interac-
tion with an interactive device [31]. Although these models are
not concerned with modeling cognitive concepts such as atten-
tion and memory, they can model abstractions of these in order
to model the user as a simple input–output system, where inputs
can come from the user goals, the environment, or interfaces;
and outputs are user actions [32].

These models have been used in the evaluation of human op-
erator performance for a variety of purposes including usability
evaluation [27], [33], timing analysis of human tasks [27], and
alerting systems [34], [35]. Researchers have shown the usabil-
ity of formal methods in verifying human operator behavior
encompassed by task analytic models accomplishing their de-
sired goals and/or avoiding dangerous system operating modes
[35], [36]. Some models have been extended to incorporate er-
roneous human behavior into task models so that their impact
can be evaluated as part of the formal verification [31], [36].

Task analytic models are computational structures and have
been represented by some researchers as communicating state
charts [37]. For example, Degani and Heymann [38] incorpo-
rated human task models into state chart models of a human–
device interface and used them to explore human operator be-
havior during an irregular engine start on an aircraft. A Petri net-
based formalism has been used in modeling human task behavior
in a waste fuel delivery system to test the system’s safety [39].

Bolton et al. [31] argue that task analytic models, such as
operator function model [40] and enhanced operator function

Fig. 2. Quasi-linear model of the human operator. Y is the linear transfer
function; u(t) is the linear response; n(t) is internal noise (reflected noise in
the perceptual and motor systems of the operator); and o(t) is the quasi-linear
response. The noise is generally presumed to be uncorrelated with any input
signal. Adapted from [45].

model [41], can be represented using discrete graph structures
and that they can include human behavior in formal system mod-
els. A number of researchers have taken this approach forward
[13], [39], [42], [43], and these works show that in the context
of safety for example, the system will always operate safely if
the users adhere to the modeled behavior. This highlights one
of the limitations of these models: The analyses provide little
or no insight into the impact of erroneous human behavior (un-
less manually incorporated into the task behavior model) [31].
Moreover, continuous interaction behavior and even the devices
are not taken into account.

B. Manual Control Theory and Human Operator Models

Manual control is the study of humans as operators of dy-
namic systems. Early research focused on the human element
in vehicular control [44]. In order to predict the stability of
the full system, designers included mathematical descriptions
of the human operators along with the descriptions of the vehi-
cle dynamics. Applications of manual control theory have been
modified and extended to applications in HCI. Humans are reg-
ularly asked to position the cursor on a menu, drag the scrollbar
and other tracking and positioning tasks. Thus, the human op-
erator can be modeled using the tools of manual control theory.
It provides insights into the basic properties of human perfor-
mance and facilitates the ability to predict the performance of
human–machine systems [45].

Human behavior is nonlinear, but linear analysis still provides
important insights into human performance and linear models
may be able to give reasonable predictions for some situations.
Research in manual control theory has led to the development
of a quasi-linear model of the human operator, shown in Fig. 2.
The quasi-linear model is an attempt to represent the human
operator as a linear differential equation with internal noise,
which is assumed to arise from perceptual or motor processes
internal to the human operator [45].

Fig. 3 illustrates a typical 1-D tracking experiment. The hu-
man operator, represented as Y with internal noise n(t), is in-
structed to follow a quasi-random input signal, r(t). The error,
e(t), is displayed in a compensatory tracking task. Control re-
sponses, o(t), are typically made with a joystick or more gen-
erally a controller, C, and these control responses are input to a
plant (e.g., computer) Yp . The output of the system, y(t), is the
response of the computer.
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Fig. 3. Typical 1-D compensatory tracking task. Adapted from [45].

C. Hybrid Automata and Human Operator Models

Hybrid automata are formal models to describe systems
that contain both continuous dynamics and discrete switch
logic [46]. A hybrid automaton is a finite-state machine with
a set of continuous variables whose values are described by
ordinary differential equations.

In behavior-based robotics, a robot has a library of useful con-
trollers, called behaviors [9]. The robot can switch between these
behaviors based on how its environment changes, for example,
switching from going-to-goal behavior to avoiding obstacles.
These switched systems are modeled as hybrid automata. This
suggests that human operator behavior can also be modeled
using hybrid automata.

Oishi et al. [47] modeled a hybrid system for semiautomated
aircraft landings. It was used to verify that the cockpit inter-
face provides the pilot with enough information to safely decide
between landing a plane or performing a go-around manoeu-
vre. Hybrid automata were used to model the nonlinear aircraft
dynamics, but the pilot as controller did not form part of the
model.

Doherty and Massink [48] explored the use of hybrid au-
tomata for the specification and analysis of interactive systems,
modeling the discrete and continuous aspects of the system it-
self, but only the discrete aspects of the user. They suggested
that dynamic systems theory could be used to describe the com-
plex dynamic behaviors of both the system and the user, using
a combination of hybrid automata and manual control theory.
This is the approach we explore in this paper. Even though au-
tomata theory is commonly used in the field of HCI [49]–[51],
hybrid automata have not yet been explored for its applications
in HCI to model both discrete and continuous interaction.

In this paper, we present a technique based on hybrid automata
where discrete and continuous quantities of an interactive sys-
tem (human operator and device) are taken into account. Our
technique uses well-established controllers in manual control
theory [45], [52] to simulate the user’s conceptual model of the
user interface, i.e., an infusion pump with four chevron keys.
We define these automata as behavior-based hybrid automata,
where each state in the automaton describes a different type of
behavior used by the human operator, defined as continuous,
discrete, and fine-tuning behavior.

In a closed-loop interaction between a user and a device,
when simulating human operator behavior, the device behavior
also needs to be simulated. Device models of infusion pumps
created for software verification purposes can be plugged into
our model. In the remainder of this paper, we discuss the im-
plementation of our human operator model, a device model

Fig. 4. Young and Meiry’s ON–OFF control model for the human operator.

that interacts with the human operator model and the results of
a model validation study, where the human operator model is
compared with a lab study.

III. MODELING THE HUMAN OPERATOR

A. Modeling Continuous Behavior

In conventional human operator models, the operator ob-
serves a continuous output display and controls the device using
a continuous input device like a joystick or a steering wheel.
This makes sense for tasks like piloting an aircraft or driving a
car and is handled well by the quasi-linear model described in
Section II-B. However, a large number of modern tasks consist
of short discrete inputs using buttons that are either ON or OFF.
In the 1960s, Meiry [52] discovered that a human operator using
an ON–OFF control input behaves like an ideal relay, and that
the same theory developed for relays and servos [53] could be
used to describe and analyze discrete human behavior. Young
and Meiry [54] proposed the ON–OFF control model for the
human operator as shown in Fig. 4. The operator has a reaction
time delay (e−τ s) and the ability to generate lead (1 + TLs), but
his/her output is restricted to a three-level switch operation. The
remnant noise term N(s) accounts for uncertainty in the trig-
gering of the switch. The output of the human operator model
(+K, −K or 0) is then fed to the controlled element, that is,
the device input. The device output is fed back to the human
operator, where the error is the difference between the displayed
value and the desired target value.

A delay in a control-theoretic model means there is no re-
sponse for some initial time interval after the control input is
applied, and as such can be used to model reaction time re-
sponses. A lag, on the other hand, means that there is a gradual
response after a control input is applied. All objects in the phys-
ical world exhibit some form of lag or delay [55], as changes
in the world are continuous. Interactive devices do not exhibit
lags, but they do exhibit delays, usually referred to as latency.

The three-level switch component shown in Fig. 4 can be
used to model a single button, but what if there is more than
one button, as is the case with a chevron-key interface? As part
of their work on developing the theory behind relay controllers,
Flügge-Lotz and Taylor [56] created a discontinuous controller
that can switch between four discrete levels, as shown in Fig. 5.
We can use this second-order controller to simulate the hu-
man operator switching between different device inputs, i.e.,
the small up, small down, big up, and big down buttons, where
each device input is mapped to one of the four discrete levels of
the controller.
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Fig. 5. Discontinuous controller with four levels.

TABLE I
STEPWISE SWITCHING FUNCTIONS MAPPED TO CHEVRON-KEY INPUTS

βm βm value Chevron key

β0 −10 “big down”
β1 −1 “small down”
β2 1 “small up”
β3 10 “big up”

In order to represent four discrete values, we make use of
a switching criterion incorporating two signum functions as
defined by Flügge-Lotz and Taylor [56]:

βm = k1sgn(e(t)) − k2sgn (ė(t)) (1)

where k1 and k2 are positive constants, such that β3 = −β0 =
k1 + k2 , β2 = −β1 = k1 − k2 , and ė(t) is the derivative of the
error signal e(t). This switching rule has been shown experi-
mentally [53] to give good performance for a variety of inputs
including step functions, triangular waves, and random inputs.
It switches between levels as to maintain a small instantaneous
error between input and output. That is, if the sign of the instan-
taneous error and the rate of change is the same, small levels
(β1 , β2) will be selected, while a difference in sign will cause
the large levels (β0 , β3) to be selected.

To model the difference in effect that a large chevron key has
in comparison with a small chevron key, we set β3 = 10 and
β2 = 1. Solving for β3 and β2 in (1) gives

k1 =
11
2

, k2 =
9
2
. (2)

This gives us four stepwise switching functions that we map
to the four chevron keys as shown in Table I.

B. Switching Between Continuous and Discrete behavior

We can model both the discrete and continuous behavior of
a human operator using a behavior-based hybrid automaton, as
shown in Fig. 6.

The error signal e(t) is the difference between the displayed
value and the reference value xref . When the system is initial-
ized, the error signal is as large as the set point. Switching be-
tween continuous behavior and discrete behavior depends on the
size of the error signal. We only consider switching at specific
intervals, that is, when t mod τ = 0, as the simulation depends

on the interval period of the device model (see Section IV for
more information).

To prevent oscillations for smaller set points, the point at
which we switch to discrete behavior needs to be proportional to
the size of the set point. For large initial set points, that is, where
xref > 100, we switch from continuous behavior to discrete
behavior when e(t) ≤ 100. For smaller set points, the moment
at which we switch changes proportionately to a specified switch
sensitivity α and the set point, that is we switch from continuous
behavior to discrete behavior when e(t) ≤ αxref .

When operating under continuous behavior, we use the dy-
namics

u(t) = kp

(
k1sgn

(
e(t)

)
− k2sgn

(
ė(t)

))
(3)

where u(t) is the input signal, kp is the controller gain, and the
Flügge–Lotz equation in (1) is used as the stepwise switching
function. As derived in the previous section, we set k1 = 11

2
and k2 = 9

2 . Under these conditions, switching between the four
buttons is equally likely and depends on both the current and
the previous error.

When operating under discrete behavior, we use the dynamics

u(t) = kp

(
k1sgn

(
e(t)

)
− k2sgn

(
ė(t)

))
Π(t − nτ) (4)

where we introduce the term Π(t − nτ). The rectangle function
Π(x), also called the gate function, pulse function or window
function, is defined by

Π(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for |x| >
1
2

1
2
, for |x| =

1
2

1, for |x| <
1
2
.

(5)

Π(x) is 0 outside the interval [− 1
2 , 1

2 ] and unity inside it. We
use a periodic version of Π(x) to generate a pulse train (also
called a pulse wave) that simulates the human operator pressing
and releasing a button in rapid succession. n is incremented for
each iteration of the simulation.

We define c(t) to be the number of times the output y(t)
crosses the set point value xref . If the output value overshoots
the target value three or more times (such that the number of
crossings c(t) > 2), and the error is small (e(t) < 1.0), a third
kind of behavior is simulated which we call fine-tuning. It is
simulated using the dynamics

u(t) = kp(k1 − k2)sgn
(
e(t)

)
Π(t − nτ). (6)

This means only the small chevron buttons are utilized, as
k1 − k2 = β2 = −β1 correspond to the small chevron buttons
in Table I, and corrections are made based only on the current
error. This is to simulate the heuristic used by human operators
to use finer-grained control when overshooting multiple times.

C. Modeling Noise and Delay

Any reasonable mathematical model of the human operator
must include the various psychophysical limitations, or
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Fig. 6. Behavior-based hybrid automaton describing discrete, continuous, and fine-tuning behavior of human operator using a chevron-key interface.

errors, in observing the display output and executing control
inputs [57]. Noise in this context means the random fluctuation
or disturbance in a signal. As described in Section II-B, a noise
signal is used to model the imperfect perceptual processes,
called observation noise, and the imperfect motor processes,
called control noise, that are internal to the human operator.
This noise is assumed to be uncorrelated with the input signal.
Sheridan and Ferrell [58] reported observation noise to be
typically about 3% and control noise to be typically around 1%
of their respective signal variances.

There are various time delays associated with the visual cen-
tral processing and neuromotor pathways of the human operator
[57]. There is a finite time during which information is pro-
cessed, given as the time for the perceived signal to be trans-
formed and communicated to the effector, that is the hand on
the input device [45]. To model this reaction time delay, we
delay u(t) by a variable number of time steps within a specified
range. Sheridan and Ferrell [58] reported the time delay to be
typically around 150 ms, with Kleinman et al. [57] describing
values between 150 and 250 ms.

The implemented human operator model, combining the
ON–OFF control model from Section III with the behavior-
based hybrid automaton from Section III-B, is shown in Fig. 7.
The reference signal, xref , is the target value that the operator
is trying to reach. This target value is usually static, but can
also change over time. The error e(t) is the difference between
the perceived value on the output display and xref . The noise
source described above is added to the error signal, which is
then passed into the hybrid automaton. The value generated by
the hybrid automaton and delayed by the reaction time delay

described above is the control signal that is sent to the device.
The output of the device completes the feedback loop.

IV. MODELING DEVICE BEHAVIOR

When simulating human operator behavior, the device be-
havior also needs to be simulated. We wanted to model user
interaction with medical devices utilizing chevron-key inter-
faces. Fortunately, device models of infusion pumps created for
software verification purposes can be plugged into our model.

Modeling of devices first involves developing a version that
can be analyzed using model checking, and then transformed
systematically into a form that is analyzed using theorem prov-
ing [59]. This second analysis is done using Prototype Veri-
fication System (PVS), a state-of-the-art theorem prover. The
device model, a PVS specification, is then validated against the
physical device using a combination of plausibility properties
and simulation.

PVSio-web [60] is a tool used for the rapid prototyping of
device user interfaces in PVS. It makes use of PVSio, a com-
ponent of PVS that allows for the exploration of the behavior
of a PVS specification. The backend of PVSio-web executes
PVS and PVSio on-demand, type-checking both the PVS spec-
ification of the device interface as well as executing the PVS
specification according to PVSio commands.

To connect the device model to our human operator model, we
use the standardized WebSocket protocol [61], enabling bidirec-
tional communication between the human operator model and
the PVSio-web tool, as shown in Fig. 8. As such, the device
behavior is simulated within PVSio-web and the user behavior
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Fig. 7. Human operator model, combining the ON–OFF control model with a behavior-based hybrid automaton.

Fig. 8. Architecture of device model, showing links to human operator model
using WebSockets.

is simulated within our human operator model. This allows us to
make use of different device models that have been developed
for use with PVSio-web. Key presses from the human operator
model are translated into PVSio commands and used as input to
the device model, with the device display output generated by
the device model used as input to the human operator model.
PVSio-web performs the functionality required by the Device
component in Fig. 7.

V. EXPERIMENTAL SETUP

The model was implemented in the Python programming
language using a minimalistic software framework for feedback
control by Janert [55]. The implementation is made available as
an open-source tool [62].

To initialize the human operator model, we set u = 0 and the
switch sensitivity α = 0.1. We set kp = 1, k1 = 5.5, and k2 =
4.5 using the results from (2). Parameters were selected based
on the experimental results of an arbitrarily chosen number.
The noise follows a normal (Gaussian) distribution with mean
μ = 0 and standard deviation σ = 10. To smooth the noise, a
finite impulse response filter with nine filter coefficients and
a cutoff frequency of 0.1 Hz is used. For setpoints with two
decimal places, this noise level is too high and the standard
deviation is reduced to σsmall = σ

10 = 1. A variable delay of
maximum two time steps was used, and the simulation ran for
a maximum of 160 time steps.

The device model used is that of a commercial syringe pump
with chevron keys described in [60] and derived as a PVS spec-
ification in [63]. Each time step in the device model is assumed
to be 220 ms. The device model was running on an instance of
PVSio-web, on the same computer running the human operator
model simulation.

Fig. 9. Physical prototype used in the lab study.

The numbers used in the experiment were obtained from the
log files of 60 syringe pumps located in the university hospi-
tal. The log files were anonymous and contained no personal
information. Twenty numbers were selected randomly from the
logs, where all numbers had a decimal part and ranged from
0.26 to 83.3.

A. Validation Study

In [2], Oladimeji et al. performed a lab study where the par-
ticipants entered the numbers from the log files on a physical
prototype shown in Fig. 9. It serves as a comparison for the
human operator model. Thirty-three participants (22 female)
took part in the study, with five participants (15%) indicating
that they were familiar with the chevron interface from use in
digital stop watches and alarm clocks. Each participant had a
training session where they tried using the interface by entering
ten numbers. The experiment involved entering 20 numbers,
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Fig. 10. Entering a large set point (56.7) by 33 participants during the lab
study, plotted on same axes.

Fig. 11. Entering a large set point (56.7) with 33 iterations of the simulation,
plotted on same axes.

with instructions given to emphasize either speed of entry or
accuracy having no statistically significant effect.

Interactions logged on the interface included button presses
and releases as well as incremental changes of the numeric
value, while a button is being held down. For each interaction
logged, a timestamp, the button receiving the interaction and the
value on the screen were recorded. This allows us to compare
the human operator model with participants over the duration
of entering a number using the chevron-key interface.

VI. RESULTS

In Fig. 10, the results of the lab study for a large set point
(56.7) is shown. Thirty-three participants are plotted on the same
axes, showing a maximum overshoot of 70 and a mean time to
finish of 19.7 ± 5.9 s. For the same set point, a simulation of
33 iterations is shown in Fig. 11, also showing a maximum
overshoot of 70 with a mean time to finish of 21.4 ± 5.5 s.

In Fig. 12, the results of the lab study for a small set point of
6.7 is shown. The maximum overshoot is 8 and the mean time

Fig. 12. Entering a small set point (6.7) by 33 participants during the lab
study, plotted on same axes.

Fig. 13. Entering a small set point (6.7) with 33 iterations of the simulation;
plotted on same axes.

Fig. 14. Entering a large set point (56.7) with 33 iterations of simulation; no
simulated delay or noise.
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Fig. 15. Entering a large set point (56.7) with 33 iterations of simulation; with
delay and no noise.

Fig. 16. Entering a large set point (56.7) with 33 iterations of simulation; with
noise and no delay.

to finish is 18.2 ± 7.7 s. For the same set point, the simulation
run is shown in Fig. 13, with the same maximum overshoot of
8 and a mean time to finish of 16.8 ± 7.5 s.

For a simulation run of 33 iterations and a set point of 56.7,
with no reaction time delay and no noise introduced, the results
are shown in Fig. 14. This simulates an “ideal” operator that
performs with no error and with no reaction time delay and
shows the minimum time and steps required to enter the value,
for the dynamics used. To further demonstrate how the model
works, the results of a simulation run of 33 iterations with only
a delay, as well as only noise, are shown in Figs. 15 and 16,
respectively.

Fig. 17 compares the simulation results to the lab study results
for all 20 numbers, showing the mean time to finish and its
standard deviation over 33 trials in a grouped bar plot.

Table II shows the maximum overshoot range of each number,
which is the maximum value displayed by the device while
entering each number over the range of 33 trials.

VII. DISCUSSION

With black-box validation, the overall behavior of the sim-
ulation model is considered, and validation is performed by
comparing the model to the real world. If confidence is to be
placed in a model, the outputs should be sufficiently similar to
a real-world system when the same inputs are used [64]. When
we compare the output of the model for a specific input, like
the value 56.7, we see that 33 iterations of the simulation (see
Fig. 11) are qualitatively similar to the real-world setup shown
in Fig. 10. This is also the case for the smaller value 6.7, by
comparing Fig. 13 (simulation) with Fig. 12 (real world). To
calculate a confidence interval, we use

XS − XR ± t2n−2,α/2

√
S2

S + S2
R

n
(7)

where XS and XR are the simulation and real-world output
mean, respectively, SS and SR are the standard deviations of the
simulation and real-world output, respectively, n is the number
of observations, and t2n−2,α/2 is the value from the Student’s
t-distribution with 2n − 2 degrees of freedom and a significance
level of α/2 [64]. This gives us a 95% confidence interval of
−1.105 to 4.505 when using time to finish as the metric.

Comparing the mean time to finish of the simulation results
with that of the lab study indicates similarity for the numbers
used. When comparing 33 trials of a single number, both large
numbers such as 56.7 (shown in Figs. 10 and 11), as well as
smaller numbers like 6.7 (shown in Figs. 12 and 13) show very
similar results over the 33 trials.

Looking at the lab study results in isolation, one may consider
that some users are using a strategy of intentionally overshooting
the target value and then reducing the displayed value. As the
simulation model does not have any such programmed behavior
or “intention,” one would expect the amount of overshoot to
be less. For example, one may consider that overshooting to
30.0 and then reducing to 12.5 may be a strategy. However,
Table II shows that for almost half of the numbers, the maximum
overshoot range is the same for both the lab study and the
simulation. Comparing Figs. 10 and 11 for 56.7, as well as
Figs. 12 and 13 for 6.7, shows the same amount of maximum
overshoot for both values (70.0 for 56.7 and around 8.0 for 6.7).
This could indicate a flaw with the design of the user interface
itself, as it looks to be quite common for someone to overshoot
significantly, reaching 8 when the target value is 6.7, or from 50
to 70 instead of 60 when the target value is 56.7.

The mean maximum number of crossings for all the num-
bers in the lab study is cmax = 2.7 ± 1.2. This was calculated
by counting the largest number of crossings of the 33 trials for
each number. cmax was used to determine the transition condi-
tion c(t) > 2 as the maximum number of crossings before the
simulation goes from discrete behavior to fine-tuning behavior,
as in Fig. 6.

Chevron-key interfaces show a high degree of idiosyncrasy as
implemented in current systems. When holding down a key, the
rate of change or velocity of the displayed value changes quite
abruptly, as can be seen during the first 5 s of the simulation in
Fig. 14. During this time, there are two abrupt changes in how



300 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 46, NO. 2, APRIL 2016

Fig. 17. Comparing simulation to lab study over 33 trials for 20 different numbers. Error bars represent standard deviation.

TABLE II
MAXIMUM OVERSHOOT RANGE FOR EACH NUMBER

Number Lab study Simulation

1.01 3.0 2.0
1.03 3.0 3.0
11.1 20.0 30.0
12.5 30.0 30.0
1.38 4.0 3.0
2.05 3.0 3.0
2.08 6.0 3.0
21.7 40.0 40.0
24.9 50.0 40.0
2.5 5.0 4.0
40.8 70.0 50.0
43.7 60.0 50.0
4.5 6.0 6.0
45.8 90.0 60.0
5.05 6.0 6.0
5.5 7.0 7.0
56.7 70.0 70.0
5.9 10.0 8.0
62.5 70.0 70.0
6.7 8.1 8.0

quickly the display changes, where the internal multiplier first
switches from 0.1× to 1× (around the 2 s mark), and then from
1× to 10× (at the 5 s mark).

Figs. 14–16 reveal how the human operator model is able
to simulate human behavior. With no simulated delay or noise
(see Fig. 14), the model behaves like an “ideal” operator, with
minimal overshoot and quickly settling on the correct value.

When the variable reaction time delay is introduced (see Fig. 15),
there is a larger tendency to overshoot, as is the case with ac-
tual human behavior (see Fig. 10). When noise is simulated
(see Fig. 16), there is a larger variance in how fast the task is
completed, similar to the effects of perceptual and motor noise
inherent in human behavior.

VIII. CONCLUSION

Even a well-designed user study may not be able to capture
all the potential issues with a specific user interface design. Run-
ning user studies for a sufficiently long time to uncover these
issues can be prohibitively time-consuming and expensive. A
combination of user studies and simulations during the design
process could yield better designs. The human operator model
presented here is intended to be used to evaluate the first iter-
ations of a design, when the design space is still quite large,
and there are many design choices to be considered. The model
helps to fine-tune variable parameters on the user interface it-
self, for instance, to reduce the time required to enter numbers
on the interface. Once the poor design choices have been elim-
inated, the best designs can then be evaluated using traditional
user studies.

The human operator model presented in this paper allows for
the modeling of both discrete interaction events, for example,
short button presses, as well as continuous interaction, where
the user exchanges input and output of dynamic information
with the device constantly over a period of time. The human op-
erator model can be used to compare existing interfaces against
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simulations of interfaces that more closely mimic real-world
physics, as these continuous and discrete dynamics can be sim-
ulated in the model.

Chevron-key interfaces as currently implemented have quite
abrupt changes in how quickly the displayed value changes.
These abrupt changes in the velocity at which the value in-
creases does not fit with most users’ conceptual models, where
velocity increases gradually based on real-world physics. Hu-
man operators are well adapted to sensing and predicting phys-
ical changes. Human perception of velocity is enhanced when
a control device has viscous resistance, as viscous resistance is
linearly related to velocity [65]. While this is described in terms
of proprioceptive feedback with input device like joysticks and
computer mice, these concepts can potentially also be applied to
visual or auditory feedback. One simple low-cost solution to the
problems with existing chevron-style medical devices would be
to modify the firmware to use a model that more closely mimics
real-world physics [66], where the increase in velocity is gradual
and fits better with the user’s conceptual model.

Lab studies help in making sure that users understand an in-
teraction design, while simulations help in designing the fine
details of the user interface that are essential in safety-critical
design, such as those of medical devices [3]. The human opera-
tor model presented here combines manual control theory with
behavior-based hybrid automata to simulate both continuous
and discrete interaction, enabling us to simulate aspects of user
interaction at a high resolution that compares well to real-world
data. It can be extended and modified for different use cases and
can be connected to a variety of device models, including ones
based on formal specifications.
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