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Abstract 

Stem cell therapy demonstrates much promise for the replacement of damaged 

tissue in several diseases, including spinal cord injury.  However, challenges around 

the control of stem cell fate in situ still hinders effective recovery of the normal tissue 

function.  Stem cell encapsulation permits their immobilization within biocompatible 

scaffolds, allowing for a better control of parameters such as proliferation, 

integration, migration and differentiation within the host tissue.  A customized 

microfluidic device was developed for the production of alginate microcapsules.  The 

diameter of such microcapsules could be easily controlled by the modification of the 

fluids flow rates, allowing for the reproducible production of highly monodisperse 

microcapsules.  This microfluidic method was then successfully applied for the 

encapsulation of two different types of stem cells: (i) Neural Stem Cells and (ii) Dental 

Pulp Stem Cells.  Both cell types demonstrated survival within the alginate 

microcapsules for up to three weeks in culture.  However, an early egress of cells 

from inside to outside of the microcapsules was observed 3 days post-encapsulation.  

In order to delay such cell escape, alginate microcapsules were modified through the 

addition of type I collagen.  The alginate-collagen microcapsules permitted similar 

rates of cell survival and permitted the delay of cell egress until 10 days after 

encapsulation.  Stem cells demonstrated a retention of their stem cell and neuronal 

differentiation properties upon selective release from alginate-collagen 

microcapsules, as demonstrated by high proliferation rates and the production of 

stem cell and neuronal markers.  When cell-laden microcapsules were transplanted 

into an ex vivo SCI model the microcapsules were able to effectively retain the 

transplanted stem cells at the site of implantation.  Transplanted cells survived up to 

10 days in culture after transplantation and demonstrated the production of 

neuronal markers within the cord cultures.  The results presented in this thesis 

demonstrate the ability of stem cells to retain their viability and neuronal 

differentiation capacity within alginate-collagen microcapsules, thereby providing a 

promising future therapy for the treatment of spinal cord injury.  

 



 

 
 

 



 

XV 
 

Aims of the Project 

The main objective of this thesis was to attempt to encapsulate stem cells within 

biocompatible scaffolds for further application in regenerative medicine, specifically, 

in spinal cord injury (SCI) repair.  It was hypothesized that the encapsulation of stem 

cells within biocompatible scaffolds would permit a better control of stem cell 

parameters, such as proliferation, migration, integration and differentiation.  Hence, 

the aims of this thesis can be described as follows: 

1) The development of a customized microfluidic device for the production of 

alginate and alginate-collagen microcapsules and the optimisation of 

microfluidic parameters to reproducibly produce polymer microcapsules with 

diameters < 500µm 

2) The application of the microfluidic device for the viable, long-term 

encapsulation of stem cells  

3) To compare the behaviour of encapsulated stem cell types, including cell 

viability and proliferation and the maintenance of stem cell and neuronal 

differentiation potential upon release from microcapsules 

4) To study the behaviour of encapsulated cells within an ex vivo SCI model as a 

precursor to future (outside of this thesis), pre-clinical studies  
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The field of regenerative medicine offers the potential to treat a multitude of 

debilitating and deadly conditions such as myocardial infarction (Bai et al. 2011), 

diabetes (Acarregui et al. 2014) and spinal cord injury (Fan et al. 2017), by replacing 

and regenerating lost or damaged tissue.  Stem cells are ideal candidates to 

regenerate injured tissues, due to their potential to become into different cell 

lineages.  However, the poor control of stem cell fate in situ and the loss of 

transplanted cells due to immune responses limit their clinical application (Li et 

al.2016).  Hence, the immobilization of stem cells within biocompatible scaffolds has 

gained great attention over the last decades in the field of regenerative medicine 

(Asghari et al. 2017).  Immobilized cells within biomaterials permits their protection 

from potential harmful agents at the site of implantation, while allowing for a better 

control of cell parameters, including integration, migration, proliferation and 

differentiation (Banerjee et al. 2009; Jun et al. 2013).  

It has been demonstrated that the physico-chemical properties of 

biomaterials have a profound influence in the stem cell behaviour mechanisms.  

Hence, the selection of the biomaterial is of a key importance to guarantee the 

correct performance of the grafted cells.  Alginate is one of the most used scaffolds 

in regenerative medicine due to its biocompatibility, low toxicity, relatively low cost 

and mild gelation conditions (Lee & Mooney 2012).  Its versatility permits the 

modification of its mechanical properties depending on the desired application.  

However, despite these advantageous features, alginate itself may not be an ideal 

material, since it is unable to specifically interact with mammalian cells (Rowley et al. 

1999).  Cell anchorage is critical in many cellular functions including migration, 

proliferation and differentiation.  Hence, alginate has been usually combined with 
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other biomaterials, such as collagen.  Because collagen is the main component of the 

extracellular matrix, it is also one of the most used biomaterials for cell 

immobilization.  The high content of amino acids, makes collagen a biologically active 

material which promotes excellent cell adhesion and growth.  Furthermore, collagen 

is biodegradable and so allow immobilized cells, over time, to produce their own 

extracellular matrix and replace the degraded scaffold. 

Among the biomaterials geometry, microcapsules are often the preferred 

format for cell immobilization due to their high surface area to volume ratio, which 

enhances mass transfer through the polymer membrane (Liu et al. 2014).  Because 

the reproducibility of the size of microcapsules is critical in clinical application, 

microfluidics has gained the attention of researches to produce cell-laden 

microcapsules (Jang et al. 2016).  This technology offers a tight control of the 

parameters governing the formation of microcapsules and allows to work in a sealed 

environment, thereby avoiding potential cross-contamination.   

Thus, previous research has reported that the therapeutic delivery of 

encapsulated stem cells is a promising approach for increasing cell survival in tissue 

regeneration.  Therefore, the overall aims of this thesis were to develop a customized 

microfluidic device for stem cell encapsulation within alginate or alginate-collagen 

microcapsules, and further application into an ex vivo SCI model. 
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1.1 Spinal Cord Injury 

Spinal cord injury (SCI) involves devastating neurological deficits resulting in 

permanent functional motor and sensory loss.  The lack of effective treatments to 

overcome this condition explains the increasing interest among the scientific 

community to investigate and develop novel therapies (Zeb et al. 2016; Karsy & 

Hawryluk 2017).  

There are different causes of SCI, generally grouped into (i) non-traumatic and 

(ii) traumatic causes.  Non-traumatic causes include arthritis, cancer, inflammation, 

infections or disk degeneration (Prasad & Schiff 2005; Ward et al. 2015).  These 

conditions provoke a compression on the spinal cord leading to the loss of its normal 

function.  Traumatic causes involve the physical disruption of the spine due to traffic 

accidents, acts of violence, falls and sports injuries, amongst others (Chen et al. 2013).  

 

1.1.1 Anatomy and Physiology of the Spinal Cord 

The spinal cord (SC) is a bundle of nerves that extends from the brain down to 

the lumbar region of the vertebral column.  The interior of the cord is made of grey 

matter, forming a butterfly-shaped cross-sectional area that is mainly composed of 

cell bodies.  It is surrounded by white matter, which is formed by myelinated axons, 

named tracts.  The spinal cord is covered by the meninges, a group of fibrous 

membranes including the dura mater, arachnoid and the innermost pia mater, that 

give support and protection to the spinal cord (O’Rahilly et al. 2004) (Figure 1.1A).  

Along with the brain, the spinal cord forms the Central Nervous System (CNS), and it 
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enables the transmission of information between the brain and the peripheral 

nervous system (PNS), controlling both somatic and autonomic reflexes (Figure 1.1B).  
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Figure 1.1.  Schematic representation of the spinal cord anatomy and function.  A) The SC is 

made of grey matter, mainly composed of cell bodies.  This is surrounded by white matter, 

which is formed by myelinated axons (tracts).  SC is protected by the meninges (dura mater, 

arachnoid and pia mater).  B) SC enables the transmission of information between the brain 

and the PNS, controlling both somatic and autonomic reflexes.  Adapted from Mescher 

(2016) 

A

B
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Among the different types of neuronal cells in the spinal cord, neurons are 

responsible for the transmission of electrical signals between the CNS and the PNS 

through a highly connected neuronal network.  Neurons are identified by the 

expression of β-III tubulin, microtubule associated protein 2 (Map2) (Caceres et al. 

1986) and diverse types of neurofilaments (NF) (Lee & Cleveland 1996).  Their 

multipolar morphology allows neurons to receive chemical signals from other 

neurons and transmit them via axonal projections (synapses) over long distances.  

There are several types of neurons and each of them plays a different role in the 

transmission of an electrical signal.  Sensory neurons bring information from the 

receptor to the spinal cord and link, through the interneurons, with the motor 

neurons that carry impulses out to the effector, such as muscles or glands (Sheerin 

2004).  

Neurons have a characteristic electrically excitable membrane that allows the 

generation of action potentials and therefore, the transmission of information along 

the spinal cord.  At resting state, neurons contain high intracellular concentration of 

K+ and low concentration of Na+ and their neuronal membranes are held at a low 

potential.  Chemical stimulation provokes the membrane depolarization to its 

threshold potential, which in turn leads to the opening of voltage-activated ion 

channels and the entrance of Na+ ions into the cell, starting an action potential.  The 

action potential travels along the neuron as Na+ channels open.  As soon as 

depolarization is complete (peak action potential), Na+ channels inactivate and K+ 

channels open, allowing K+ to leave the cell, bringing the membrane potential to 

more negative values than the cell's normal resting potential (hyperpolarization).  
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Passive diffusion of the extra K+ ions out of the cell through the potassium leakage 

channels, allows the cell to return to its resting membrane potential (Figure 1.2). 

In order to achieve an efficient action potential transmission over long 

distances, axons are covered by myelin sheaths.  Myelin acts as an insulator 

preventing current loss from the axons and increasing the speed of the axon potential 

conduction.  There are specific areas in the axon uncovered by myelin, called nodes 

of Ranvier (Tasaki & Mizuguchi 1948).  These myelin sheath gaps are highly rich in Na+ 

and K+ channels, allowing the regeneration of the action potential repeatedly along 

the axon, accelerating the action potential transmission.  Since action potentials 

"jump" from one node to the next, this process is known as saltatory conduction 

(Purger et al. 2016) (Figure 1.3).  
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Figure 1.2.  Action potential transmission along the axon.  (1) A chemical stimulus causes the 

neuronal membrane depolarization toward the threshold potential.  (2) When the threshold 

of excitation is reached, Na+ channels open and the membrane depolarizes.  (3) At the peak 

action potential, K+ channels open and there is an efflux of K+ out of the cell.  Simultaneously, 

Na+ channels close. (4) The membrane becomes hyperpolarized as K+ ions continue to leave 

the cell.  (5) The K+ channels close and K+ leaves the cell by passive diffusion through 

potassium leakage channels.   

 

Figure 1.3.  Schematic representation of the action potential propagation through saltatory 

conduction.  The transmission of action potentials over long distances is enabled by axons 

myelination.  Nodes of Ranvier allow the regeneration of action potentials repeatedly, 

“jumping” from one node to the next (saltatory conduction).  Adapted from Siddique & 

Thakor 2013. 

Neuron

Node of Ranvier

Myelin sheath

Oligodendrocytes

Saltatory conduction of 
action potential
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Oligodendrocytes synthesize myelin providing insulation to axons, but also, 

they provide trophic support to neurons by the production of glial cell line-derived 

neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and insulin-

like growth factor-1 (IGF-1) (Bradl & Lassmann 2010).  Numerous processes extend 

from the body of oligodendrocytes, allowing one single cell to myelinate multiple 

axons (Watkins et al. 2008).  Oligodendrocytes are identified by the expression of 

myelin-associated proteins such as myelin basic protein (MBP), 

myelin/oligodendrocyte specific protein (MOSP) or galactocerebroside (GalC) 

(Buchet & Baron-Van Evercooren 2009). 

The CNS possesses its own set of immune cells, called the microglia.  These 

cells are identified by the expression of cell surface markers such as CD11b, CD45 and 

ionized calcium binding adaptor molecule 1 (IBA-1) (Sedgwick et al. 1991).  Microglia 

form a network of cells distributed throughout the central nervous system.  They act 

as macrophages, phagocytosing and scavenging the CNS for damaged or unnecessary 

neurons and infectious agents (Gehrmann et al. 1995).  Furthermore, microglia play 

a key role in inflammation, releasing active molecules that activate a cascade of 

inflammation events as a response after damage or infection (Aloisi 2001). 

Homeostatic support to neuronal cells is provided by astrocytes.  These star-

shaped cells are identified by the expression of glial fibrillary acidic protein (GFAP) 

and S100b calcium-binding protein (Nolte et al. 2001; Ogata & Kosaka 2002).  As part 

of their supporting role in the CNS, they provide biochemical support to endothelial 

cells that form the blood–brain barrier, supply nutrients to the nervous tissue and 

maintain the extracellular ion balance.  They are also responsible for the scarring 
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process following SCI (Kimelberg & Nedergaard 2010).  Hence, a highly controlled 

coordination of all the neuronal cell types is of a key importance in the maintenance 

of the proper function of the spinal cord. 

 

1.1.2 Pathophysiology 

Spinal cord injuries can cause the permanent loss of motor and sensory 

function.  Depending on the location and severity of the damage, injury can be 

complete, leading to a total loss of function, or incomplete, where some motor and 

sensory function remains in the organism.  SCI creates a highly complex inhibitory 

environment with a multitude of obstacles that limit the recovery.  When the spinal 

cord is injured, there is a physical disruption of axons, cell membranes and blood 

vessels, which occurs as the direct result of the mechanical trauma.  This primary 

injury provokes a cascade of cellular and biochemical reactions that leads to further 

damage and the significant expansion of the injury site, known as secondary injury 

(Fleming et al. 2006). 

Primary injury occurs as a result of blunt impact, compression or penetrating 

trauma.  Blunt impact leads to concussion, contusion, laceration, transection or 

intraparenchymal haemorrhage, whereas hyperflexion, hyperextension, axial 

loading, and severe rotation might be caused by cord compression.  Penetrating 

trauma can occur as a result of gunshots and stab wounds.  Immediately after 

mechanical trauma, cell membranes become disrupted leading to cell necrosis at the 

point of impact (Hulsebosch 2002).  The physical insult of the cord also leads to the 
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disruption of the blood-spinal cord barrier, allowing immediate neutrophil invasion 

into the neural tissue and activation of resident microglia (Fleming et al. 2006). 

In a secondary injury, activated microglia release pro-inflammatory molecules 

attracting blood monocytes to the lesion site and hence, increasing the inflammation 

(Donnelly & Popovich 2008).  The release of proteolytic and oxidative enzymes by 

activated microglia leads to DNA and protein damage, which subsequently drives cell 

death and disruption of neuronal signalling (Fleming et al. 2006).  Activated microglia 

also release neurotransmitters, such as glutamate, causing their accumulation and 

the loss of homeostasis, thereby provoking cell death via excitotoxic mechanisms 

(Yanase et al. 1995).  Oligodendrocytes are damaged by macrophages at the lesion 

site after the injury and continue to undergo apoptosis in the neural tissue for many 

weeks after SCI (Comalada et al. 2012).  The result of the loss of oligodendrocytes is 

the demyelination of axons (Hains et al. 2003).  During the process of demyelination, 

axons are directly exposed to damaging effects such as inflammatory cytokines and 

free radicals, leading to neuronal loss.  As a result, demyelination leads to delays in 

conduction or even its total disruption (McTigue 2008).  

Activation of an inflammatory response contributes to the formation of axonal 

growth-inhibitory glial scar and the production of pro-inflammatory radicals, leading 

to a harsh environment at site of injury which is responsible for the limited 

regeneration capacity of the injured spinal cord (Rolls et al. 2008).  Several days after 

the primary injury, astrocytes migrate towards the injury site and proliferate forming 

a tight interwoven called the glial scar (Kawano et al. 2012).  The glial scar is regarded 

as a mechanically obstructive barrier, preventing the infiltration of immune cells and 
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inflammatory molecules to restrict the damage area (Cregg et al. 2014).  The 

expression of inhibitory molecules, such as chondroitin sulphate proteoglycans, 

contributes to the glial scar inhibiting axonal regrowth (McKeon et al. 1991).  

However, recent studies have demonstrated that astrocytes express multiple axon-

growth-supporting molecules suggesting that, contrary to the widely stablished 

consideration, astrocyte scar formation might aid rather than prevent axon 

regeneration in the central nervous system (Anderson et al. 2016).   

 

1.1.3 Tissue engineering approaches for SCI 

Microglia activation following SCI is maximal between 3 and 7 days post-injury, 

causing widespread cell damage and deterioration of the extracellular matrix 

(Sinescu et al. 2010).  These inflammatory events in the first week after SCI create a 

hostile environment, which is lethal to transplanted cells.  This explains the low 

effectivity of cell replacement therapies during this period of time (Okano et al. 2003; 

Coyne et al. 2006).  Hence, researches have attempted different strategies for the 

successful grafting of transplanted cells.  Most of these therapies centre on cell 

injection following the acute phase of SCI, when the release of inhibitory and lethal 

molecules has ceased.  However, the already formed glial scar hinders the integration 

of the transplanted cells within the host tissue, preventing regeneration of damaged 

tissue (Coyne et al. 2006; Cregg et al. 2014). 

The variety of processes inhibitory to axonal regeneration caused by SCI 

creates a multitude of obstacles limiting recovery, which together hinder the 

effectiveness of single therapeutic interventions.  This challenge has encouraged the 
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development of combination strategies that work together synergistically to improve 

recovery.  Seemingly, the most effective approach should incorporate the integration 

of scaffolds along with therapeutic molecules and/or cells into the site of injury.  

Scaffolds help direct and organize the grafted cells providing a bridge through which 

the regenerating axons can be properly guided through the injury gap, at the same 

time that grafted cells and therapeutic molecules provide trophic support to 

regenerating axons.  This increases the healing effects of the scaffold.  Several 

scaffolds have been successfully utilized as support for transplanted cells, including 

matrigel (Pinzon et al. 2001), fibrin (Meijs et al. 2004) and poly(α-hydroxy acids) (Teng 

et al. 2002).  However, only collagen and alginate constructs will be introduced in 

detail in this section, since these are the hydrogels utilized in this thesis.  

Due to the versatility of alginate, this hydrogel has been utilized for the 

immobilization of numerous cell types in different construct shapes.  Alginate 

sponges supported the migration, differentiation and integration of foetal rat 

hippocampus neurospheres into the injured spinal cord (Wu et al. 2001).  In another 

study, alginate microcapsules containing BDNF promoted the growth of regenerating 

axons through the implanted microcapsules, leading to functional improvement of 

the affected limbs in a rat in vivo SCI model (Tobias et al. 2005).  In a different 

approach, NSCs immobilized within alginate fibres migrated into injured spinal cord 

of mice and they differentiated towards the three neural cell types, neurons, 

oligodendrocytes, and astrocytes (Sugai et al. 2015). 

Like alginate, the ease of manipulation of collagen into various 

shapes/structures has permitted its application to fill the gap invoked after SCI, 
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thereby providing support to wound healing cells.  Application of cross-linked 

collagen and collagen filaments has been studied in animal models of SCI and 

demonstrated to increase regenerative activity in the spinal cord with a subsequent 

improvement in the functional disability (Yoshii et al. 2004).  The use of collagen gels 

as vehicles to transplant neonatal astroglial cells into the injured spinal cord of the 

adult rat allowed the precise application of these cells into the lesion gap (Joosten et 

al. 2004).  The presence of transplanted neonatal astroglial cells demonstrated a 

significant increase in the number of ingrowing neurofilament-positive fibres, 

resulting in a modest but temporary improvement of locomotor recovery.  More 

recently, a collagen construct bound to epidermal growth factor receptor (EGF) 

antibody Fab fragment was transplanted into an acute rat SCI model (Fan et al. 2017).  

By neutralization of the myelin inhibitory molecules, the construct promoted 

neurogenesis of endogenous injury-activated neural stem cells (NSCs).  NSCs 

differentiated into mature functional neurons that were able to reconnect the injured 

gap.  
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1.2 Stem Cells 

Stem cells are unspecialized cells with an enhanced renewal capacity and the 

potential to differentiate towards multiple lineages, depending on external stimuli 

controlled by the stem cell niche (Moore & Lemischka 2006).  These unique features 

make stem cells ideal candidates for use as a renewable source for cell therapy in 

regenerative medicine, repairing or replacing damaged tissues.  Depending on the 

tissue of origin, stem cells are classified as embryonic or adult stem cells.  

 

1.2.1 Embryonic Stem Cells 

Embryonic stem cells (ESCs) are isolated from the inner cell mass of the 

blastocyst, an early stage embryo produced about 5 days after fertilization (Evans & 

Kaufman 1981; Martin 1981).  These cells have the potential to differentiate into any 

cell type within the three germ layers: ectoderm, mesoderm and endoderm, and 

thus, they are pluripotent stem cells.  This pluripotent state is conserved through 

regulatory networks composed of transcription factors and signalling cascades, 

where Oct4, Nanog and Sox2 have essential roles in maintaining ESCs self-renewal 

capacity.  Alterations in these signals promote differentiation towards specific cell 

types (Boyer et al. 2005).   

Oct4 expression is restricted to pluripotent cells and thus, a loss of 

pluripotency in ESCs is often accompanied by Oct4 downregulation (Thomson et al. 

2011).  Oct4 must be present at appropriate levels to maintain pluripotency, since an 

increase causes differentiation towards endoderm and mesoderm lineages, and a 
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decrease leads to the formation of the outer cell mass of the blastocyst, the 

trophectoderm (Niwa et al. 2000).  Nanog is another key regulator of pluripotency.  

Like Oct4, its expression is restricted to pluripotent cells and is downregulated upon 

differentiation.  It plays a critical role in regulating the cell fate of pluripotent ESCs, 

preventing differentiation (Chambers et al. 2003).  High levels of Nanog can maintain 

mouse ESCs self-renewal capacity independent of extrinsic signals (Chambers et al. 

2003) and enables human ESCs grow in feeder-free conditions (Darr et al. 2006).  

Together with Oct4 and Nanog, regulation of Sox2 expression levels is essential in the 

maintenance of ESCs pluripotency.  Adachi and co-workers reported that both 

upregulation and downregulation of Sox2 led to a decrease in Nanog and Oct4 

expression, causing trophectoderm differentiation (Adachi et al. 2010).  

During embryonic development, the blastocyst is reorganized into a laminar 

structure called gastrula in a process known as gastrulation.  The gastrula contains 

the three primary germ layers: ectoderm, mesoderm, and endoderm that further 

differentiate into different tissues.  Endoderm, the most internal germ layer, forms 

the lining of digestive system and respiratory system.  Ectoderm, the most exterior 

germ layer forms the epidermis, and the neural crest, which later forms the nervous 

system.  Mesoderm, the middle germ layer, forms muscle, the skeletal system, and 

the circulatory system.  As the embryo develops, stem cells capacity to differentiate 

into more specialized cells becomes more restricted towards the tissue of origin 

(Nichols & Smith 2012).  

Mouse embryonic stem cells can be isolated and propagated indefinitely 

without undergoing cell senescence in vitro when cultured in the presence of 
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leukaemia inhibitory factor (LIF) (Smith et al. 1992).  Upon removal of LIF, mouse ESCs 

spontaneously differentiate towards progenitor cells of the three embryonic germ 

layers: mesoderm, endoderm, and ectoderm (Keller 2005).  These findings highlight 

the enormous potential of ESCs for the treatment of a variety of diseases due to their 

ability to differentiate into any cell type within the three germ layers.  However, the 

therapeutic application of human ESCs is still debated due to ethical concerns derived 

from the fact that their isolation involves the destruction of the embryo.  Also, their 

application in human therapy is controversial due to problems of allogeneic rejection 

and concerns about uncontrolled development of malignancies (Hentze et al. 2007).   

 

1.2.1.1 Neural Stem Cells 

NSCs are present in both embryonic and adult tissues.  Isolation of NSCs from 

the adult mammalian central nervous system was first described by Reynolds & Weiss 

in 1992 using a novel serum‐free culture system, the neurosphere assay (NSA).  The 

same procedure can be applied for the isolation of embryonic NSCs (Azari et al. 2011).  

After isolation, NSCs can be cultured in vitro in the presence of EGF and/or basic 

fibroblast growth factor (bFGF).  Cells proliferate giving rise to neurospheres which 

can be passaged over extended periods of time, demonstrating long-term self-

renewal and multipotency capacities (Zhao et al. 2005).  However, upon removal of 

growth factors, neurosphere-derived cells are induced to differentiate towards the 

three neuronal phenotypes: neurons, astrocytes and oligodendrocytes (Pagano et al. 

2000; Guo et al. 2012).   
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NSCs are typically characterised by the expression of nestin and musashi.  

Nestin is an intermediate filament protein expressed by NSCs (Morshead et al. 1994).  

Upon differentiation, nestin becomes downregulated and is replaced by tissue-

specific intermediate filament proteins (Michalczyk & Ziman 2005).  Musashi is an 

RNA-binding protein that regulates the translation of target mRNAs during neural 

development.  This marker contributes to the maintenance of mammalian adult 

neural stem cell populations (Sakakibara et al. 2002).   

 

1.2.2 Adult Stem Cells 

Most of the differentiated cells in adult tissues have a relatively short life span 

and are continuously replaced by new cells generated from stem/progenitor cells.  In 

the adult mammalian organism, stem cells are found in almost all tissues and play a 

key role in maintaining cell genesis and renewal in different tissues and organs during 

the life span of the animal as part of the natural aging process, or after cell loss due 

to injury or disease (Pessina & Gribaldo 2006).   

One of the main differences between embryonic and adult stem cells (ASCs) is 

their ability to differentiate into different cell types; that is, their potency.  Whilst 

ESCs are pluripotent, ASCs are multipotent or unipotent, in that their differentiation 

potential is more restricted and depends on their tissue of origin (Wagers & 

Weissman 2004).  However, several observations proved that these tissue-specific 

stem cells are able, under suitable conditions, to “transdifferentiate” towards a wider 

range of cell types, regardless whether these tissues are derived from the same germ 

layer or not (Anderson et al. 2001).  This observation opens a new spectrum of 
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possibilities for adult stem cells to be used in regenerative medicine.  In fact, a 

relatively new source of ASCs with pluripotency capacity was discovered in 2006, 

referred to as Induced Pluripotent Stem Cells (iPSCs) (Takahashi & Yamanaka 2006).  

These cells were reprogrammed from adult fibroblasts through the addition of 

defined factors and demonstrated to have the primary properties of ESCs.  Thus, 

iPSCs can be developed from autologous somatic cells, avoiding ethical and immune 

problems.   

As outlined at the beginning of this section, ASCs can be found in the majority 

of tissues within the organism.  Amongst these tissues, the bone marrow is the most 

widely used source for the isolation of stem cells (Soleimani & Nadri 2009; Huang et 

al. 2015).  There are two stem cell types derived from the bone marrow: 

Hematopoietic Stem Cells (HSCs), that give rise to all blood cell types (Eaves 2015) 

and Mesenchymal Stem Cells (MSCs; also known as Mesenchymal Stromal Cells), 

which are the source of osteocytes, chondrocytes, and adipocytes (Gimble et al. 

2008).  However, the painful and invasive procedures involved in the isolation of 

BMSCs from bone marrow have encouraged researches to seek alternative sources 

of stem cells (Pendleton et al. 2013).   

 

1.2.2.1 Dental Pulp Stem Cells 

The dental pulp is the soft tissue found in the inner part of the tooth, which is 

mainly formed of connective tissue, blood capillaries, nerves and several cell types, 

including fibroblasts, odontoblasts and immune cells (Liu et al. 2006).  The dental pulp 

acts as a sensory organ through nerves that perceive changes in temperature and 
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pressure.  It constitutes a protectant part of the tooth, triggering immune responses 

against oral pathogens (Jontell et al. 1998).  During tooth development, dental pulp 

is the responsible for the formation of primary dentin through the production of 

odontoblasts.  After completion of root development, secondary dentin is produced 

through life at a slower rate.  In cases of mild injury, odontoblasts produce 

reactionary dentin (Smith et al. 1995).  However, after severe trauma, such as caries 

or fracture, odontoblasts are damaged and subsequently die.  Hence, newly 

produced odontoblast-like cells migrate towards the injured dentine surface and 

secrete reparative dentin, providing a protective barrier to the dental pulp (Liu et al. 

2006). 

The ability to create new odontoblasts throughout life in response to damage 

suggested the existence of a source of stem cells within the dental pulp.  Gronthos et 

al. in 2000 isolated a clonogenic, rapidly proliferative population of cells from adult 

human dental pulp, which were termed Dental Pulp Stem Cells (DPSCs).  After 

comparison with BMSCs, both cell types shared a similar immunophenotype in vitro 

but they showed different cell fate in vivo.  When DPSCs were first described, it was 

suggested that their differentiation potential was restricted towards odontoblast-like 

cells, as demonstrated by the ability to form a dentin-like structure in vivo (Gronthos 

et al. 2000).  However, further studies showed their potential to differentiate into 

adipocytes and neuronal-like cells, suggesting that DPSCs are an easily accessible 

source of multipotent stem cells (Gronthos et al. 2002).   

More recently, a set of markers has been described which characterise DPSCs 

(Kawashima 2012).  These markers include STRO-1, CD29, CD44, CD73, CD90, CD105, 
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CD146, CD166 and CD271, which are typically expressed by MSCs.  Hence, DPSCs are 

generally classified under this cell type.  However, DPSCs represent a heterogeneous 

population of cells, and their marker expression profile vary depending on their 

isolation source (Graziano et al. 2008; Karaöz et al. 2010).  This can be explained due 

to the existence of two different origins for these stem cells, the neural crest and the 

mesoderm (Komada et al. 2012).  In fact, DPSCs can be isolated from different stem 

cell niches within the pulp, giving rise to stem cell populations with different 

proliferative and differentiation potentials (Shi & Gronthos 2003; Løvschall et al. 

2005; Lizier et al. 2012).  This heterogeneity has been investigated in our lab in 

respect of their potential for neuronal differentiation (Young et al. 2016).  These 

results led to the conclusion that the expression of nestin by some clonogenic 

populations of DPSCs could be used as a marker to identity cell populations with 

neuronal differentiation potential. 

Due to the expression of mesenchymal (Ponnaiyan & Jegadeesan 2014) and 

ESC markers (Kerkis et al. 2007), various studies have been performed to evaluate 

the differentiation potential of DPSCs, revealing that they have the ability to produce 

many kinds of cell populations and tissues (Tatullo et al. 2015).  However, due to the 

wide repertoire of possibilities of DPSCs in regenerative medicine, only the potential 

for neuronal differentiation and repair will be considered in this thesis.  
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1.2.2.1.1 Neuronal Regenerative potential of DPSCs 

Several protocols have been developed for in vitro differentiation of DPSCs 

into neuronal cells, based on the differentiation mechanisms of NSCs in vitro.  NSCs 

are maintained as multipotent cells in culture in the presence of mitogens such as 

bFGF and EGF.  However, removal of these growth factors from the culture medium 

leads to the differentiation of NSCs towards neuronal cells (Pagano et al. 2000; Guo 

et al. 2012).  Based on this method, DPSCs have been differentiated into neuronal-

like cells (Hisham et al. 2013).  When cultured in serum and growth factor free 

medium, DPSCs ceased proliferation and differentiated into neuronal-like cells as 

demonstrated by the development of multiple neurites and the expression of 

neuronal markers such as nestin, map2 and β-III tubulin.   

Nonetheless, expression of neuronal markers is only a pre-requisite for 

neuronal differentiation.  In order to successfully apply DPSCs for the treatment of 

CNS diseases, differentiated cells must be proven functionally active.  Patch-clamp 

electrophysiology recording techniques have been applied to assess the functionality 

of neuronal-like cells differentiated from DPSCs (Arthur et al. 2008; Király et al. 2009; 

Gervois et al. 2015).  Among the protocols developed for neuronal differentiation of 

DPSCs, only a few have demonstrated the production of functionally active neurons.  

Kanafi et al. (2014) demonstrated for the first time that it was possible to produce 

functional dopaminergic neurons from DPSCs when the cells were cultured under the 

presence of midbrain cues, including sonic hedgehog (SHH), fibroblast growth factor 

8 (FGF8) and bFGF.  Functional activity of differentiated DPSCs was demonstrated by 

the secretion of dopamine upon stimulation with KCl and ATP, and the intracellular 

Ca2+ influx in the presence of KCl. 
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The differentiation of DPSCs towards functionally active neuronal cells has 

been also achieved following a two-step protocol (Gervois et al. 2015).  Neuronal 

induction was acquired through the formation of neurospheres when DPSCs were 

cultured with mitogenic growth factors in low-adherence plates.  In a second step, 

cells underwent neuronal maturation based on cAMP and neurotrophin-3 (NT-3) 

signalling after seeding on poly-l-ornithine (PLO)/laminin coated plates.  Patch-clamp 

assessment showed that differentiated cells were able to set a single action potential, 

demonstrating functional activity. 

In addition to the ability of neuronal lineage differentiation, DPSCs have the 

potential for secretion of trophic factors, affecting the behaviour of neighbouring 

cells.  Nosrat et al. (2004) compared the behaviour of dopaminergic neurons cultured 

in vitro with and without DPSCs in the absence of exogenous neurotrophic factors.  

Results revealed that neurons developed elaborate neurites only when they were co-

cultured with DPSCs, suggesting the key role of DPSCs in the growth and maintenance 

of neurons in vitro by the release of growth factors.  Also, the release of 

neurotrophins by DPSCs promoted the neuronal differentiation of stem cells in a 3D 

culture system (Soria et al. 2011).  These findings suggest new criteria for the design 

of cell therapy experiments in animal models to assist the repair of lesions in the CNS, 

based not only on the direct cellular replacement, but also on the application of 

DPSCs as trophic support for regenerating cells.   

The promising results obtained in vitro have encouraged researches to assess 

the regeneration potential of DPSCs within the CNS in vivo.  The capacity of DPSCs to 

promote growth and differentiation of stem cells through the release of growth 
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factors has been observed after injection in the mouse hippocampus (Huang et al. 

2008).  The grafted DPSCs promoted proliferation, cell recruitment and maturation 

of endogenous stem cells through modulation of the local microenvironment by 

promoting growth factor signalling.  A similar behaviour was observed in a rodent 

stroke model (Leong et al. 2012).  The intracerebral transplantation of human DPSCs 

resulted in significant improvement in forelimb sensorimotor function several weeks 

after treatment.  However, a low percentage of the grafted cells survived, suggesting 

that functional improvement was more likely to be mediated through DPSC-

dependent paracrine effects than direct cellular replacement.  However, when DPSCs 

were transplanted into rats’ spinal cords after complete transection, they promoted 

the regeneration of transected axons through three major neuroregenerative 

mechanisms, including cellular replacement (Sakai et al. 2012).  It was observed that 

transplanted DPSCs differentiated into mature oligodendrocytes, replacing lost cells 

after SCI.  But also, the grafted cells prevented apoptosis of endogenous neural cells 

and inhibited multiple axon growth inhibitors, improving the preservation of 

neuronal filaments and myelin sheaths.   

DPSCs provide an easily available source of stem cells with promising potential 

for the treatment of neurodegenerative diseases.  Their isolation through a minimally 

invasive procedure, offers some benefits when compared with BMSCs.  Unlike the 

use of ESCs, DPSCs also provides benefits in that their use does not raise ethical 

concerns.  Finally, these ASCs can be isolated from patients for autologous 

transplantation without risk of immunological rejection, avoiding the use of 

immunosuppressants and hence, preventing damage to vital organs due to the use 
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of these drugs (Halloran 2004).  Hence, all the benefits mentioned above justify the 

increasing interest for clinical use of DPSCs in the treatment of a number of diseases.   
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1.3 Cell encapsulation  

As outlined in the previous section, stem cells are potent therapeutic tools to 

treat several diseases based on their ability to differentiate towards a desired lineage, 

or, by providing trophic support to regenerating tissues.  However, it is difficult to 

control the behaviour and cell fate within an organism.  It is also necessary to find a 

suitable stem cell delivery system in order to control cell parameters in situ, such as 

proliferation, migration, integration and differentiation.  To this end, cell 

encapsulation technology has arisen as a method for cell immobilization within a 

biocompatible and semipermeable scaffold, protecting the encapsulated cells from 

an adverse environment post-grafting.  

The first reported attempt of cell immunoisolation was made in the early 

1930s (Bisceglie 1933).  Bisceglie filled a gelatine membrane with tumour cells 

harvested from a mouse carcinoma, which was then inserted into the peritoneal 

cavity of a guinea pig.  Upon removal of the graft 12 days after implantation, it was 

observed that the cells within the membrane were still alive.  Although the focus of 

the experiment was to investigate tumour immunology, this observation led to the 

discovery of a new methodology for cell implantation.  

Cell encapsulation has been the focus of many researchers in order to protect 

the enclosed biological material from potential hazardous processes (Freimark et al. 

2010).  Specifically, cell microencapsulation represents a strategy that aims to 

overcome the present difficulties related to whole organ graft rejection, and 

consequently, the requirements for use of immunosuppressive drugs.  In the case of 

autologous transplantation, where the patient receives cells from themselves, 
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cellular rejection is not an issue.  However, grafted cells might still need protection 

from the adverse environment created at the damaged site, as in SCI (Fleming et al. 

2006).  Also, cell encapsulation has been demonstrated to be useful in directing the 

cell fate of immobilized cells, suggesting that cell fate can be controlled by the 

composition/structure of the encapsulation matrix (Ghasemi-Mobarakeh 2015).  

 

1.3.1 Requirements of cell encapsulation systems 

The microcapsule system must meet some distinct requirements in order to 

guarantee both the survival of the encapsulated cells and a successful clinical 

outcome.  These requisites include capsule stability, permeability and diffusion.  

 

1.3.1.1 Stability 

The mechanical stability of the microcapsules needs to be such that it can 

withstand the shear stress induced during production, handling and application 

during a surgical procedure.  The desired mechanical properties of microcapsules 

depend on their application.  For example, applications such as bone and cartilage 

grafts, or, sustained release of therapeutic molecules over extended periods of time, 

requires a long-term stability of the polymer microcapsules (Zhu & Marchant 2011; 

Tiwari et al. 2012).  In these cases, degradation of capsules due to chemical changes 

is undesirable, since capsules will quickly lose integrity, the graft will be lost and 

hence, the therapeutic effect will be interrupted.  In other applications, 

microcapsules are utilized as vehicles for cell and/or drug delivery (Santoro et al. 
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2014).  Under these conditions capsules should provide protection from the immune 

response but they should progressively degrade as inflammation decreases to allow 

for the delivery of the encapsulated material.  The mechanical strength can be 

controlled by changing the polymer concentration, polymerization conditions, or by 

introducing various functional groups (Coutinho et al. 2010).   

 

1.3.1.2 Permeability 

In the situation whereby the application involves the transplantation of 

encapsulated cells, the capsule membrane should be impermeable to antibodies and 

immune cells, thereby providing protection for the encapsulated cells from the 

immune response after grafting.  However, this will depend upon the type of 

transplantation.  Autografts should not trigger any immune response since the 

transplanted biological material derives from the same patient.  In the case of 

allografts, where cells from an individual are transplanted to a different individual, it 

is potentially enough to prevent contact between immune cells of the host and the 

donor cells through a physical barrier, such as that provided by the capsule 

membrane (Duvivier-Kali et al. 2001).  However, simple systems are not effective in 

the case of xenografts (cross species transplantation), where biological material from 

one specie is transplanted into a patient of a different specie, i.e. from animals to 

humans.  Transplants across different species barriers are subject to strong 

immunologic rejection, hindering the success of xenogeneic transplantation (Yang & 

Sykes 2007).  Xenogeneic cells contain pathogen-associated molecular patterns 

(PAMPs) that are recognized by the host and activate the innate immune cell system 
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that, in turn, activates the classical complement pathway.  This activation leads to the 

production of antibodies that accumulate on the surface of the implanted capsules, 

triggering the mobilization of cells and producing inflammatory mediators towards 

the implantation site (Wang & Yang 2012).  During these responses, many cytokines 

that are small enough to pass through the capsule membrane are produced, further 

contributing to the failure of the encapsulated cells (Juste et al. 2005).  The final result 

of this cascade is the envelopment of the capsules by inflammatory cells and 

fibroblasts that scavenge almost all oxygen and nutrients and lead to ischemic 

compromise of the surviving cells in the capsules.  Under ischemia conditions, cells 

produce specific factors that lead to a progressive fibrosis, and gives rise to a further 

loss of cell functionality (Sun et al. 2009).   

As a consequence of the vigorous immunological responses triggered in 

xenogeneic transplantation, stricter encapsulation requirements should be 

considered.  In these cases, additional coating of the capsule membrane is then 

required to block the entrance of cytokines. The xenotransplantation of rat islets in 

diabetic minipigs without immunosuppressive therapy was successfully achieved by 

means of cell encapsulation in a membrane system that included an additional barrier 

between the capsule membrane and the interface with the recipients (Neufeld et al. 

2013).  In a different approach, a multifunctional hydrogel-based scaffold consisting 

of murine cell-loaded alginate-poly-l-lysine-alginate (APA) microcapsules and 

dexamethasone (DXM)-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres 

embedded in alginate hydrogel was injected in an in vivo rat model (Acarregui et al. 

2014).  The system did not trigger inflammation responses and it allowed for the 

continuous and localized release of DXM.  
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1.3.1.3 Diffusion 

Another parameter that should be controlled in order to increase the survival 

chance of the encapsulated cells is the diffusion of molecules in and out of the 

capsule.  The encapsulation material should permit the bidirectional diffusion of 

oxygen and nutrients inside the capsule and the efflux of waste products and 

therapeutic molecules, such as growth factors.  In this sense, membrane permeability 

can be tailored depending on the polymer composition.  Thus, by controlling the 

molecular weight and degree of cross-linking of the polymer, the pore size can be 

modified in order to allow the bidirectional diffusion of molecules (Vaithilingam & 

Tuch 2011).  The diffusion rate of a molecule through a membrane is determined by 

its size and charge, and the charge of the polymer membrane (Danysh et al. 2010).  

Hence, these are factors to consider when selecting the appropriate encapsulation 

material.  In order to ensure the survival of encapsulated cells, oxygen and nutrients 

not only have to pass through the polymer membrane, but also need to reach the 

centre of the capsule to provide nutrition to every cell.  Hence, capsules of 

appropriate diameter must be produced in order to guarantee an effective 

oxygenation and nutritional regime for the encapsulated cells (Ogbonna et al. 1991).  

Also, it has been demonstrated that the diameter of the capsule could influence the 

immune response against the grafting.  Sakai et al. (2006) observed that 

inflammatory reaction was much lower when employing smaller microcapsules 

(100µm), in comparison to larger sized microcapsules (300 – 1000µm).  In this 

respect, the selection of the encapsulation technology is crucial to achieve 

monodisperse microcapsules with a controllable diameter. 
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1.3.2 Applications of cell encapsulation 

Advances in the fields of cell therapy and biomaterials have triggered the 

increased interest and progress of cell encapsulation technology (Burdick et al. 2016).  

This technique was first utilised to overcome the problems related to organ graft 

rejection and the need to use immunosuppressive drugs.  However, the versatility of 

this technique, born from the great number of biomaterials and cell types that can 

be combined, has allowed its application in other fields, such as in vitro culture (Mei 

et al. 2014; Chen et al. 2015) or controlled release of drugs and growth factors 

(Qutachi et al. 2013; Nam et al. 2016). 

 

1.3.2.1 Immunoisolation in transplantation therapy 

Cell encapsulation has been widely applied for the immobilization of 

allogeneic or xenogeneic cells in a semipermeable but immunoprotective membrane 

to suppress immune rejection after grafting (Lee & Bae 2000; Emerich & Winn 2001; 

Hao et al. 2005).  Pancreatic islet transplantation has shown improved graft function 

in the treatment of type I diabetes.  However, adequate long-term therapeutic effect 

has not yet been demonstrated, and patients still require immunosuppression to 

prevent rejection (Van Belle & Von Herrath 2008).  Cell encapsulation offers a 

transplantation means to avoid the need for toxic immunosuppressives, while 

increasing the chances of graft function and survival.  Thus, islet encapsulation has 

proven to be effective in many studies, including allogeneic and xenogeneic 

transplantation (Duvivier-Kali et al. 2001; Neufeld et al. 2013).  Microencapsulation 
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of therapeutic cells also represents a promising therapy for the treatment of other 

diseases, such as haemophilia B.  Immunoisolation of myoblasts secreting factor IX 

(FIX) and further transplantation into mice permitted the improvement of FIX plasma 

levels without the activation of the immune response (Wen et al. 2007). 

 

1.3.2.2 Local and systemic controlled release of drugs and growth factors 

Living cellular systems can provide unlimited release of active compounds.  

Hence, encapsulation of therapeutic cells offers a tuneable method for an effective 

and controlled drug delivery.  Encapsulated delivery systems present numerous 

advantages compared to conventional dosage forms, including improved efficacy, 

reduced toxicity and improved patient convenience (Singh et al. 2010).  

Microcapsules offer an effective protection of the encapsulated active agent against 

degradation.  Also, by controlling the degradation rate of the polymer membrane it 

is possible to accurately control the release rate of the active compound (Kamaly et 

al. 2016).  Furthermore, the small size of microcapsules offers an easy and minimally 

invasive administration methodology.  For example, the systemic delivery of 

therapeutic factors represents an issue in the treatment of CNS conditions, where 

the blood/brain barrier hinders their administration (Pardridge 2005).  In this case, 

immunoisolated cellular implants that produce therapeutic drugs could be directly 

implanted into the region of interest, providing continuous drug delivery (Emerich & 

Thanos 2006).  The application of this technology has led to the establishment of 

some patented works.  For example, the implantation of encapsulated PC12 cells into 

individuals suffering from Parkinson's disease slowed or prevented the degenerative 
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processes of the disease by releasing dopamine and other factors (Emerich et al. 

1998). 

 

1.3.2.3 3D culture systems 

The viability, renewal and differentiation of stem cells towards a particular 

lineage are dependent on the properties of the cellular microenvironment or niche 

(Discher et al. 2009).  Cell microencapsulation provides the cells with a three 

dimensional structure similar to that found in vivo, which allows for in vitro 

investigation of the influence of microenvironments on cell behaviour and fate.   

Cell proliferation within microcapsules can be controlled by modification of 

the polymer concentration.  This is dependent upon the cell type and the 

encapsulation material.  For example, it was determined that the viability and 

proliferation of ESCs were optimum within 1% (w/v) alginate hydrogels, whereas 

higher or lower concentrations gave rise to a decrease in cell viability and 

proliferation rate (Wang et al. 2009).  The degree of cell attachment can be also 

controlled depending on the polymer composition.  Modification of alginate 

hydrogels with arginine-glycine-aspartic acid (RGD) residues increased cellular 

attachment and elongation, forming a dense network of cells (Markusen et al. 2006).  

A similar effect was observed in encapsulated cardiomyocytes within alginate-

collagen microcapsules, where the cells spread and proliferated giving rise to 

functional multilayer heart-like tissues (Bai et al. 2011).   

Stem cell differentiation can be guided through the interaction of 

encapsulated cells with the encapsulation polymer.  The influence of alginate 



Chapter 1: Introduction 

56 

encapsulation parameters on ESC phenotype has been investigated (Wilson et al. 

2014a).  Results revealed that cell encapsulation delayed the differentiation process, 

regardless of alginate composition.  However, encapsulation within alginates with a 

high content of mannuronic residues promoted differentiation towards a primitive 

endoderm phenotype.  In a different approach, alginate microcapsules were loaded 

with retinoic acid, leading to neural lineage differentiation of the encapsulated ESCs 

(Li et al. 2011).  The differentiation within microcapsules can be also mediated 

through cell-cell interactions.  For instance, ESCs were induced to hepatic 

differentiation through the formation of cell aggregates within alginate/poly-L-lysine 

(PLL) microcapsules, which was controlled by the initial seeding density (Maguire et 

al. 2007).  

 

1.3.3 Cell encapsulation techniques 

Microencapsulation within spherical microparticles offers many benefits over 

other encapsulation geometries, including a high surface area to volume ratio, a high 

resistance to mechanical stress, a relatively short diffusion path length and access to 

a number of implantation sites by injection (De Vos et al. 2006).  However, in order 

to apply cell encapsulation technology in clinical therapies, the production of uniform 

capsules with excellent repeatability and reproducibility is required.  Formation of 

monodisperse droplets is of a great importance in order to accurately estimate the 

cell/drug dosage.  Hence, the development of new technologies aims for the 

continuous production of polymer microcapsules similar in size and morphology.  
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The simplest technique to produce polymer droplets is by conventional 

emulsification.  In this method, an aqueous polymer solution containing cells is 

rapidly stirred with an immiscible phase containing cross-linking agents to form small, 

spherical droplets of one phase within the other (Poncelet et al. 1992).  The method 

does not require the use of sophisticated equipment.  However, one of the main 

problems of this technique is the production of microcapsules with very different size 

and shape, which hinders its application in clinical therapies (Hoesli et al. 2011).   

Interfacial polymerization represents an alternative to conventional 

emulsification methods in which the size of the capsule can be easily controlled.  In 

this method, one phase containing the cell suspension and a reactive monomer is 

dispersed into a second immiscible phase to which is added a second monomer.  Both 

monomers react at the droplet surface (interface) forming a polymeric membrane 

(Neufeld et al. 2014).  However, this technique requires the use of organic solvents 

that are harmful to cells, compromising their viability (Khademhosseini et al. 2005).  

A different approach to obtain high monodispersity droplets is electrostatic 

extrusion.  In this method, a narrow stream of polymer containing cell suspension is 

extruded through a small needle or nozzle, whereupon it breaks up into droplets 

which are collected in a gelling bath.  In order to enhance droplet formation, an 

electrostatic potential is established between the needle and the gelling bath, thus 

attracting the droplets towards the bath.  This method permits the production of 

microcapsules down to 50μm in diameter (Bugarski et al. 1994).  In contrast to 

emulsion techniques, this technology is reproducible, controllable, and produces 

beads that are uniform in size.  Further, the production process is performed under 
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mild stress conditions without the use of any organic solvents that can inhibit cell 

activity and cause serious damaging effects.  However, the use of a high electric field 

might affect cell survival (Vaithilingam & Tuch 2011). 

Amongst the techniques described above, droplet extrusion represents one of 

the most widely used methods for cell encapsulation due to the benefits over other 

conventional techniques.  However, polymer cross-linking takes place in a second 

step upon collection in a gelling bath.  Under these conditions, gelation occurs in an 

uncontrolled manner and only the outer layer of the capsule is cross-linked, leading 

to a capsule with a solid shell and a liquid core, which affects the mechanical stability.  

Hence, although the droplets size can be accurately selected, cross-linking in the 

gelling bath is not precisely controlled, leading to capsules with random uncontrolled 

shapes where the gelation of different capsules from the same batch may vary 

(Capretto et al. 2008).  

Microfluidic technology overcomes the limitations mentioned above.  This 

technique generates cell-laden microcapsules offering the capability for high-

throughput variation in their diameter and mechanical properties by supplying 

multiple flows of precursor fluids at varying relative flow rates and concentrations 

(Velasco et al. 2012).  Microfluidic platforms allow work in a sealed environment 

protected from the atmosphere, thereby eliminating the risk of cross-contamination 

from bacteria or small molecules.  In addition, microfluidic cell encapsulation can be 

easily carried out in inexpensive, sterile, dust-free, and disposable devices (Morgan 

et al. 2016).  The principles and biomedical applications of microfluidic technology 

will be further explained in Section 1.5.  
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1.4 Biomaterials 

A biomaterial is defined as a material intended to interface with biological 

systems to evaluate, treat, augment or replace any tissue, organ or function within 

the body (Williams 1999).  In order for it to be used as scaffold for tissue engineering, 

a biomaterial should be biocompatible, that is, the biomaterial should not interact 

with biological systems in the host leading to inflammation or any adverse response 

(Williams 2015).  Depending on the application, the material should have specific 

mechanical properties and a controllable degradation rate, as well as an appropriate 

microstructure to allow for the performance of the biological function of the 

encapsulated system, for example cells or macromolecules (Lee & Mooney 2001).   

Several categories of biomaterials have been developed and tested for tissue 

engineering purposes over the last few decades (O’Brien 2011).  However, only 

alginate and collagen will be discussed in relation to this thesis. 

 

1.4.1 Alginate 

Alginate is one of the most used biomaterials in biomedical applications such 

as drug delivery, wound healing and tissue engineering (Lee & Mooney 2012).  This is 

due to its favourable properties, which include biocompatibility, mild gelling 

conditions, easy manipulation, low toxicity, relatively low cost and a three-

dimensional structure in vitro which is similar to that found in vivo.  The wide variety 

of patterns in which alginate can be prepared, such as microcapsules 
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(Zhang & He 2009), sponges (Shapiro & Cohen 1997), foams (Andersen et al. 2012) 

and fibres (Xu et al. 2017) explains its numerous applications. 

 

1.4.1.1 General properties 

Alginate is a naturally occurring anionic and hydrophilic polysaccharide 

typically extracted from brown algae (Hirst 1965).  It is a linear block copolymer 

formed by (1, 4) linked β-d-mannuronate (M) and α-l-guluronate (G) residues (Figure 

1.4).  The G/M ratio, the length of each block, and the molecular weight are 

dependent on the initial source of the material . 

 

 

Figure 1.4. Chemical structure of alginate.  Alginate is a linear block copolymer formed by (1, 

4) linked β-d-mannuronate (M) and α-l-guluronate (G) residues.  Adapted from Wallace et al. 

2010.   

 

Only the G-blocks are believed to participate in ion cross-linking with divalent 

cations.  Therefore, the G/M ratio and sequence are key factors affecting the physical 

properties of alginate and its hydrogels.  Alginates with high ratios of G blocks provide 

stiffer hydrogels with high viscosities.  On the other hand, alginates with a high 

content in M blocks have a better long-term stability, since M blocks decrease the 

M G
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number of reactive positions available for hydrolysis degradation (Sun & Tan 2013).  

Molecular weight also plays a key role in the physical properties of alginate hydrogels.  

High molecular weight alginates provide gels with greater mechanical properties 

(Kong et al. 2004). 

The factors affecting alginate biocompatibility are still unclear.  It has been 

reported that biocompatibility depends on the G/M ratio, suggesting that high M 

content alginates are immunogenic (Otterlei et al. 1991).  However, more recent 

studies demonstrated no host cell adhesion on high M content alginates after 

implantation in the peritoneal cavity of mice (Tam et al. 2011).  Since alginate is 

isolated from natural sources, its toxicity might be due to the impurities that may 

remain after alginate purification, such as heavy metals, endotoxins, proteins and 

polyphenolic compounds (Dusseault et al. 2006).  The reduction of protein content in 

alginate hydrogels induced significantly less pericapsular cell adhesion when 

implanted into mouse peritoneum (Ménard et al. 2010), suggesting that purification 

methods are crucial in order to eliminate any potential cytotoxic agent 

 

1.4.1.2 Hydrogel formation and biodegradation 

A hydrogel is a three-dimensional network of cross-linked hydrophilic polymer 

chains with a high water content.  The physicochemical properties of hydrogels 

depends upon the precise cross-linking method employed, the degree of cross-

linking, the molecular weight, and chemical composition of the polymers (Lee & 

Mooney 2012).  Whilst alginate hydrogels can be prepared by using different cross-

linking methods, covalent cross-linking involves permanently bonded alginate chains.  



Chapter 1: Introduction 

62 

Ionic cross-linking allows the reversion of the process, which is desirable in numerous 

biomedical applications.  

 

1.4.1.2.1 Ionic cross-linking 

Ionic cross-linking is the most commonly used strategy to produce alginate 

hydrogels.  The method involves the combination of an alginate solution with divalent 

cations (Sun & Tan 2013).  These ions are believed to specifically bind G blocks of the 

alginate chains, since their spatial disposition allows a greater degree of coordination 

(Draget et al. 1997).  Coordinated alginate chains overlay on adjacent chains, forming 

an “egg-box” structure (Grant et al. 1973) (Figure 1.5). 

 

Figure 1.5.  Representation of alginate ion cross-linking into an “egg-box” structure.  Divalent 

cations specifically bind G blocks.  Coordinated alginate chains overlay on adjacent chains 

forming an “egg-box” structure.  

 

The most common cation used to form alginate hydrogels is Ca2+.  This cation, 

in the form of CaCl2, has been extensively used for alginate external gelation (Yang et 

al. 2000; Knezevic et al. 2002; Shintaku et al. 2007).  In this approach, calcium salt is 

dissolved in an aqueous phase and brought into contact with alginate solution.  

Ca2+ Ca2+

Alginate solution Cross-linked alginate chains

“Egg-box” structure

Overlaid alginate chains
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Calcium chloride is highly soluble in water, giving rise to very quick, but poorly 

controlled gelation (Liu et al. 2006; Shintaku et al. 2007).  In order to delay gelation, 

and therefore have a better control over the gelation rate, researchers have utilised 

an internal gelation strategy.  Low soluble calcium salts, such as CaSO4 and CaCO3, are 

dispersed in the alginate solution and, upon reduction of the pH, calcium ions are 

released, provoking alginate cross-linking and formation of the gel structure in a more 

controlled manner (Branco da Cunha et al. 2014; Schmitt et al. 2015).  Slower gelation 

times, involving a more controlled cross-linking, leads to hydrogels with a greater 

degree of uniformity with enhanced mechanical properties (Kuo & Ma 2001).  

The main feature of ionically cross-linked alginate hydrogels is their limited 

long-term stability.  However, whilst this could be considered as a drawback for some 

applications, it might actually be beneficial for others.  Alginate hydrogels have been 

utilised as vehicles to protect transplanted cells from an adverse immune response, 

and to control cell parameters such us cell migration, proliferation and differentiation 

at the site of implantation (Banerjee et al. 2009; Jun et al. 2013).  Therefore, alginate 

hydrogels can provide therapeutic effects while degrading as the cellular system 

replaces the artificial matrix.  Ionically cross-linked alginate gels can be easily 

dissolved by ionic interchange reactions with monovalent ions.  This situation 

naturally occurs in vivo, where calcium ions are interchanged with sodium ions 

(Guarino et al. 2015).  However, a tight control of alginate degradation is required for 

this type of application, to control cell viability and therapeutic effect after 

implantation. 
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1.4.1.2.2 Covalent cross-linking 

The need for improving the long-term stability of alginate hydrogels for some 

applications in tissue engineering gave rise to the development of new methods for 

cross-linking.  Covalent cross-linking with poly(ethylene glycol)-diamines provides 

alginate hydrogels with improved mechanical properties due to permanent bonds in 

carboxylic groups from the G blocks.   

The stress applied on alginate hydrogels has different effects depending on 

the cross-linking method.  The bonds in an ionic cross-linked alginate are dissociated, 

which can provoke a plastic deformation, leading to the loss of its water content and 

the re-formation of random bonds.  By contrast, covalently cross-linked hydrogels do 

not experience any bond dissociation, and the stress relaxes mainly through 

migration of water, giving rise to elastic deformation (Zhao et al. 2010).  The 

mechanical properties of covalently cross-linked alginate hydrogels depend on the 

number of cross-linking molecules.  It has been reported that the use of bifunctional 

molecules, such as poly(acrylamide-co-hydrazide) or adipic acid dihydrazide, provides 

multiple attachment points in the gel, thereby enhancing its mechanical properties 

and delaying the degradation rates (Lee et al. 2004).  However, the main drawback 

of covalent cross-linking is the potential toxic effect of unreacted molecules, involving 

a necessary washing step after gel formation (Chan et al. 2015).   

As an alternative to chemical cross-linking, photo cross-linking has been also 

applied as a covalent method for alginate gelation (Bruchet & Melman 2015).  

However, the technique has some limitations when applied to the production of 

scaffolds for tissue engineering.  Cells are exposed to ultraviolet light, the 
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photoinitiators used may be cytotoxic and the use of organic solvents is often 

required to dissolve these photo initiators (Bruchet & Melman 2015).  Nonetheless, 

alternative methods that minimize the exposure to UV light and the use of organic 

solvent have been investigated, allowing the application of photo cross-linking 

hydrogels for cell immobilization (Rouillard et al. 2011). 

 

1.4.1.2.3 Alginate biodegradation  

Alginate is non-degradable in mammals since they lack the enzymes 

responsible for cleavage of the polymer chains (alginate lyases).  But, as mentioned 

above, ionically cross-linked alginate hydrogels can be dissolved by diffusion of 

calcium ions to the surrounding medium and interchange with other monovalent 

cations.  However, although hydrogels can dissolve, the average molecular weight of 

released alginate strands is typically above the renal clearance threshold, and 

therefore, they are not completely removed from the organism (Al-Shamkhani & 

Duncan 1995).  In vivo degradation of alginate hydrogels is desirable in some 

applications including drug delivery and cell transplantation.  This has contributed to 

the modification of alginate chemistry in order to render it as a biodegradable 

material (Yang et al. 2011).  One such approach consists of the partial oxidation of 

alginate chains with sodium periodate, leading to a water degradable polymer 

(Boontheekul et al. 2005).  
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1.4.1.3 Alginate applications in biomedical science 

The favourable properties of alginate hydrogels have allowed for their 

numerous applications in different areas within the biomedical field, such as wound 

healing, drug delivery, tissue engineering, and cell culture.  Unlike traditional 

dressings, alginate hydrogels maintain a moist microenvironment and minimize 

bacterial infection at the wound site, promoting wound healing by rapid 

epithelialization (Suzuki et al. 1998; Wang et al. 2015; Babavalian et al. 2015).  

Alginate hydrogels have the ability to adjust to the shape of the wound, which 

permits their implantation into the body in a minimally invasive manner, and filling 

irregularly shaped cavities (Thornton et al. 2004).  The incorporation of cells and 

bioactive molecules within the hydrogels permits their application in tissue 

engineering therapies, providing restoration of damaged tissues (Fragonas et al. 

2000; Di et al. 2016).   

Alginate hydrogels have been also used in 3D cell culture systems (Andersen 

et al. 2015).  Since alginate does not promote cell adhesion by itself, due to the lack 

of mammalian cell receptors and its low protein adsorption, alginate hydrogels have 

been modified to include molecules to promote cell attachment (i.e., cell-interactive 

alginates), for example, RGD sequences (Alsberg et al. 2001).  Sequences can be 

introduced in alginate chains by water-soluble carbodiimide chemistry (Rowley et al. 

1999).  Such modifications have been demonstrated to promote cell proliferation and 

differentiation (Alsberg et al. 2001; Rowley & Mooney 2002; Markusen et al. 2006;). 
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1.4.2 Collagen 

Along with alginate, collagen is one of the most widely reported biomaterials 

(Parenteau-Bareil et al. 2010).  The main advantage of collagen over other synthetic 

biomaterials is its tolerance within the organism.  Its application in the biomedical 

field is due to its characteristics such as weak antigenicity, cell attachment ability, 

biodegradability and biocompatibility (Silvipriya et al. 2015). 

 

1.4.2.1 General properties 

Collagen is the most abundant protein in animals constituting 30% of all 

protein found in the body and the main component of the extracellular matrix.  

Collagen plays important cohesion roles in tissues and organs, providing hydration, 

resistance, elasticity and flexibility (Muiznieks & Keeley 2013).  Collagen also affects 

the biological functions of cells such as cell survival, proliferation and differentiation 

(Pickering 2001).  

A collagen molecule is made up of three polypeptide chains arranged in the 

form of a triple helix wrapped around one another in a right-handed helical structure 

(Pauling & Corey 1951; Ramachandran & Kartha 1954).  The high content of the three 

amino acids, glycine, proline, and hydroxyproline, is responsible for the helix 

formation, that maintains the strands by the formation of hydrogen bonds between 

adjacent -CO and -NH groups, and also by covalent bonds (Lodish et al. 2000) .  

Collagen is packed into hexagonal and quasi-hexagonal shapes forming fibrillar 

collagen types.  
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To date more than twenty types of collagen within the organism have been 

discovered (Silvipriya et al. 2015).  Whilst all types of collagen have a characteristic 

triple helix, the length of the helix and the size and nature of non-helical portion 

varies dependant on the type (Miller 1984).  Type I collagen is the most abundant and 

the most utilised collagen type in biomedical applications (Zhang et al. 2011).   

 

1.4.2.2 Isolation, cross-linking and degradation 

1.4.2.2.1 Natural sources of collagen 

Collagen can be found within the tissues of numerous animals.  Bovine skin 

and bone have represented the main industrial source of collagen (Silvipriya et al. 

2015).  However, due to the outbreak of diseases, such as transmissible spongiform 

encephalopathies, and the high costs related to collagen extraction and purification, 

alternative sources of collagen have been considered.  Collagen isolation from rat tail 

is a cost-effective technique and guarantees the isolation of a high reproducible 

concentration of collagen (Rajan et al. 2006).  As such, rat tail collagen (type I) is 

extensively utilized in biomedical engineering research (Chan et al. 2010; Guo & Kong 

2002; Meghezi et al. 2015).  Also, researchers have considered a relatively new source 

of collagen.  It has been demonstrated that marine collagen from fish scales, skin, and 

bone has excellent bioactive properties such as biocompatibility, low antigenicity, 

high biodegradability, and cell growth potential (Phanat et al. 2010; Addad et al. 

2011; Cho et al. 2014).   
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1.4.2.2.2 Collagen cross-linking 

Like alginate, there are two types of cross-linking methods frequently 

employed for improving the mechanical stability of collagen scaffolds: physical 

methods and chemical methods.  Physical methods include the use of photooxidation 

(Choi et al. 2013), dehydrothermal treatments (Haugh et al. 2009) and ultraviolet 

irradiation (Davidenko et al. 2016).  However, the mechanical stability provided by 

physically cross-linked collagens is poor (Ma et al. 2004).  Hence, when higher cross-

linking degrees are required, chemical cross-linking becomes the favoured option.   

Traditionally, glutaraldehyde has been the most used agent for covalent cross-

linking of collagen (Cheung, et al. 1985; Roe et al. 1990; Ruijgrok et al. 1994; Xuemei 

et al. 2007).  At neutral pH, glutaraldehyde reacts with amino groups bridging two 

adjacent polypeptide chains and enhancing the biological stability of collagen.  

However, it has been reported that glutaraldehyde induces cytotoxicity due to 

unreacted residues or the release of monomers and small polymers during enzymatic 

degradation (Gough et al. 2002; Ju et al. 2010).  Therefore, several alternative cross-

linking agents have been used, such as carbodiimides and polyepoxy compounds 

(Tang & Yue 1995; Li et al. 2013).  Alternatively, a naturally occurring cross-linking 

reagent, genipin, has received an increasing interest in biomedical applications due 

to its low cytotoxicity (Mi et al. 2002; Liang et al. 2003; Li et al. 2014).  
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1.4.2.2.3 Collagen biodegradation 

Degradation of collagen in mammals is due to the existence of specific 

enzymes, namely, matrix metalloproteinases (MMPs) (Harrington 1996).  These 

enzymes are produced by fibroblasts, which can be stimulated to synthesize new 

enzyme for release outside of the cell (Wilhelm et al. 1986).  Under several 

inflammatory conditions, such as rheumatoid synovitis or inflammatory arthritis, 

modulation of MMP production is mediated by interactions with surrounding 

inflammatory cells, which trigger an increase in collagenase synthesis, and therefore, 

progressive cartilage degradation can occur (Moore et al. 2000; Vincenti & 

Brinckerhoff 2002).  MMPs have a differential rates of collagen hydrolysis, with 

different MMPS hydrolysing specific types of collagen (Fields 2013).   

These enzymes are also synthesized by some bacteria, such as Clostridium 

histolyticum (MacLennan et al. 1953).  Bacterial collagenase (an example of an MMP) 

has several applications in biotechnology and medicine and it has been widely used 

in laboratories to dissociate tissues and isolate cells (Suggs et al. 1992; Kurup & 

Bhonde 2002; Szot et al. 2009; Numpaisal et al. 2016).  Also, C. histolyticum 

collagenase is used for in vitro degradation of collagen-based scaffolds (Sang et al. 

2011; Perez et al. 2014). 
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1.4.2.3 Collagen applications in biomedical science 

Collagen’s ability to form fibres with enhanced strength and stability through 

its self-aggregation and cross-linking makes it a good candidate to be utilised as 

scaffold in biomedical applications.  Type I collagen has been extensively used as a 

hydrogel in tissue engineering, due to its abundance and tendency to self-assembly 

(Cen et al. 2008).   

Collagen can be loaded with drugs by hydrogen or covalent bonding, or simple 

entrapment in controlled drug release and wound healing applications (Marks et al. 

1991; Lazovic et al. 2005).  Drug-laden collagen films have been used as drug delivery 

systems in the treatment of a range of illnesses and infections, such as corneal 

infection (Bloomfield et al. 1978) and cancer (Sato et al. 1996).  Collagen inserts 

allowed for the delivery of high doses of active molecules at the site of implantation 

in a non-traumatic manner and demonstrated a long-term maintenance of the drug 

at the target site.   

Collagen’s ability to promote cell proliferation and differentiation has also 

been exploited for the construction of 3D scaffolds in tissue engineering (Glowacki 

and Mizuno 2008).  However, collagen has poor mechanical properties and it is 

usually combined with other biomaterials for long-term biomedical applications.  

Calcium phosphate is a common substrate used along with collagen for bone 

regeneration, because it provides the scaffold with the sufficient mechanical strength 

(Al-Munajjed et al. 2008).  Collagen’s porous structure also allows for the 

encapsulation of therapeutic cells and their use as controlled delivery systems to 

induce histogenesis in vivo (Nillesen et al. 2007; Lee et al. 2009). 
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Collagen is also an excellent substrate for cell immobilization and culture due 

to its ability to promote cell attachment.  Hence, collagen has been used for the 

production of scaffolds for 3D cell culture, allowing for more realistic in vitro studies, 

since such 3D scaffolds provide the cells with a similar structure to that found in vivo.  

Unlike standard 2D culture, cells seeded within collagen scaffolds can maintain their 

in vivo morphology and three-dimensional structure, thereby improving their 

function, as shown by in vitro studies (Mei et al. 2014).   
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1.5 Microfluidics 

Microfluidics can be defined as the science or technology that manipulates 

very small volumes of fluids, in the range of micro- to picolitres, flowing in networks 

of channels with micrometric dimensions (Stone et al. 2004).  The drastic reduction 

in length scale involves changes in the physical properties of fluids, giving rise to new 

phenomena that are not observed in the macroscale (Brody et al. 1996).  

Microfluidics aims to understand this behaviour for further application in science and 

technology.  

 

1.5.1 Physics in Microfluidics 

The behaviour of fluids can be described through a dimensionless magnitude 

known as the Reynolds number (Reynolds 1883).  This magnitude defines the flow 

pattern of a fluid under specific conditions by the correlation of inertial forces to 

viscous forces.  The Reynolds number (Re) is defined as follows: 

Re= 
Inertial forces

Viscous forces
 =

𝜌𝜐𝐿

µ
       (Equation 1.1) 

Where ρ is the density of the fluid, υ is the velocity of the fluid with respect to the 

object through which is flowing, L is the cross section area of the object, and μ is the 

dynamic viscosity of the fluid.  Depending on the Re value, the flow pattern of a fluid 

can be defined as turbulent or laminar (Figure 1.6).  In the macroscale, where 

interfacial forces are dominant, Re are high and the fluid flows in a turbulent regime.  

Turbulent regimes are characterized by irregular fluctuations or mixing, and the 
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speed of the fluid at a point is continuously undergoing changes in both magnitude 

and direction.  In contrast, low Re are typical for microsystems, where channel 

dimensions are reduced and viscous forces are predominant.  This leads to fluids 

flowing in a laminar regime, in which the fluid moves in smooth paths or layers, with 

minimal disruption between them.  The transition between the two regimes depends 

on the channel geometry.  In a straight channel it typically occurs at Re = 2300 (Ong 

et al. 2008).  In laminar flow regimes, two or more miscible fluid streams in contact 

with each other, flow side by-side, with mixing occurring via interfacial diffusion 

(Ismagilov et al. 2000).  The velocity of flow varies from zero at the walls to a 

maximum along the cross-sectional centre of the channel, which can permit the 

separation of particles depending on their size and velocities (Weigl & Yager 1999). 

 

 

Figure 1.6.  Graphical representation of turbulent and laminar flow regimes.  Flow regime can 

be predicted through the Re.  The transition between the two regimes depends on the 

channel geometry.  In a straight channel it typically occurs at Re = 2000.  Turbulent flow is 

characterized by irregular fluctuations or mixing.  In laminar flow, fluid flows in parallel layers, 

with no disruption between layers.   

Turbulent flow

Laminar flow
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The reduction in length scales also affects the diffusion rate of the molecules.  

Diffusion is the process by which molecules move from a region of high concentration 

to a region of low concentration.  The diffusion coefficient of a particle is defined by 

the following equation: 

D=
d2

2t
  (Equation 1.2) 

Where D is the diffusion rate and d is the distance a particle moves in a time t.  Since 

distance varies to the square power, diffusion rates are very high on the microscale.  

This reduction in diffusion times can be utilized in order to accelerate 

experimentation times of chemical reactions in microchannels (DeMello 2006).  

Another characteristic of microscale systems is the high surface area to volume ratio 

(SAV), which can lead to unconventional dominant forces.  Thus, large SAVs typically 

make surface forces dominant, while greatly reducing the influence of inertial forces. 

Because interfacial phenomena become dominant in microfluidic systems, 

surface tension forces are also significant when compared to the macroscale.  Surface 

tension is the result of cohesion forces between liquid molecules at the liquid/gas 

interface.  When surface tension forces are dominant, the fluid acquires the minimum 

surface area possible, that is, the total area that the surface of the object occupies.  

Surface tension forces play an important role in droplet-based microfluidics, which 

will be discussed in the next section. 
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1.5.2  Droplet-based microfluidics 

Microfluidic systems can operate within a continuous-flow regime or 

droplet/segmented-flow regime.  In continuous systems, liquid streams flow through 

microchannels with no interruption.  This method is usually acquired for large-scale 

applications, such as chemicals separation (Pamme 2007).  However, issues related 

with fluid interaction with channel walls, cross-contamination and long channel 

lengths, hinders its application in those situations where a high precision of fluid 

manipulation is required (Lignos et al. 2012).  Droplet-based microfluidics overcomes 

the problems mention above.  In this approach, the manipulation of droplets, instead 

of microflows, reduces the volume of sample liquid, providing an additional 

miniaturization step.  In biomedical research, droplets have the potential to become 

important tools for drug delivery and biosensing.  In order for them to function 

properly, correct dosing and manufacturing must be ensured.  Droplet microfluidics 

has been shown to generate highly monodisperse droplets with size variations 

smaller than 1% (Nisisako et al. 2006).  Hence, the precise generation and 

repeatability of droplets, makes droplet-based microfluidics a potent high-

throughput platform for biomedical research.  
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1.5.2.1 Physics involved in droplet formation 

Droplet-based microfluidics consists on the formation and manipulation of 

discrete droplets within an immiscible continuous phase.  Typically, the two phases 

involved are liquid, although the formation of droplets in a liquid/gas system is also 

possible (Jiang et al. 2015).  In liquid-liquid systems, droplets of one phase (dispersed 

phase) are produced as a result of the shear force generated by the continuous phase 

and the surface tension at the fluid-fluid interface (Teh et al. 2008).  Hence, the 

surface tension is a critical parameter that affects the evolution of the interface 

between two phases during the droplet formation.  Surface tension can be defined 

as an energy per unit area, which acts to minimise the total surface area, so as to 

reduce the free energy of the interface.  The minimum area for a given volume is a 

sphere, which is the shape taken by a droplet.  But also, viscous forces are important 

in the droplet formation.  As outlined in the previous section, fluids flowing in 

micrometric dimensions typically have low Re, which means that viscous forces 

become dominant over inertial forces.  In the mechanisms underlying droplet 

formation, surface tension and viscosity compete with each other, since both tend to 

become important at small scales (Baroud et al. 2010).  The relative strength of these 

two forces is expressed by the following equation:  

Ca=
µV

σ
  (Equation 1. 3) 

where Ca is the Capillary number, µ is the viscosity of the continuous phase, V is the 

velocity of the continuous phase, and σ is the surface tension at the interface 

between the two phases.  Above a certain critical capillary number, droplet break off 
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occurs.  However, this number depends on the system (Nisisako et al. 2005; Song et 

al. 2006; Anna & Mayer 2006).   

Droplet formation is also significantly affected by the wetting properties of the 

channel walls.  Wetting can be defined as the ability of a liquid to cover a solid surface, 

and depends on the physico-chemical properties of the surface.  It can be quantified 

through the contact angle (θ), which is the angle, conventionally measured through 

the liquid, where a liquid–vapour interface meets a solid surface (Figure 1.7).  

Controlling the wetting of the channel walls by the dispersed phase is important in 

order to prevent its adhesion to the walls and produce highly spherical droplets.  In 

the case where hydrophilic droplets are generated within a continuous hydrophobic 

phase, namely water in oil (W/O) emulsions, channel walls should be hydrophobic, in 

order to maximize the contact angle between the droplet and the wall surface.  For 

such applications, polydimethylsiloxane (PDMS) devices are frequently used to 

fabricate the microfluidic channels (Friend & Yeo 2010).  However, PDMS undergoes 

swelling and deformation in the presence of strong organic solvents and uncontrolled 

adsorption of substances is a major problem (Uchida et al. 2003).  Hence, other 

materials such as glass (Utada et al. 2005) silicon (Pollack et al. 2002) and 

polytetrafluoroethylene (PTFE), commonly known as Teflon (Walsh et al. 2016), are 

used instead.  
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Figure 1.7.  Contact angle.  High contact angles occur when a hydrophilic droplet gets in 

contact with a hydrophobic surface.  The repulsion forces between the two substrates 

provokes high surface tension at the interface, thereby producing highly spherical droplets. 

 

1.5.2.2 Microfluidic formats for droplet generation 

1.5.2.2.1 Co-flowing 

In co-flowing devices, one fluid flows inside the inner capillary while the other 

fluid flows through the outer capillary in the same direction, resulting in a coaxial flow 

of the two fluids (Cramer et al. 2004) (Figure 1.8).  The breakup of the liquid stream 

into droplets occurs under two different regimes: dripping and jetting.  When the 

fluids flow at low flow rates, monodisperse droplets are formed at the tip of the 

capillary orifice, in a dripping mode.  If the flow rate of either fluid is increased beyond 

a certain critical limit, the result is a jet, a long stream of the inner fluid with drops 

forming downstream.  The transition from dripping to jetting occurs when the 

continuous phase velocity increases above a critical value (Utada et al. 2007).  This 

value decreases as the flow rate of the dispersed phase increases.  It also depends on 

the viscosities of the inner and outer phases, as well as on the interfacial tension. 

θ
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Figure 1.8.  Droplet formation in a co-flowing system.  a) Dispersed phase flows through the 

inner capillary while the continuous phase flows through the outer capillary in the same 

direction, resulting in a coaxial flow of the two fluids.  b) Dripping mode: when the fluids flow 

at low rates, monodisperse droplets are formed at the tip of the capillary orifice c) Jetting 

mode: if the flow rate of either fluid is increased beyond a certain critical limit, the result is a 

jet, a long stream of the inner fluid with drops forming downstream.  Scale bar = 50µm.  

Adapted from Utada et al. 2007.   

 

1.5.2.2.2 T-junction 

In the T-junction format, the two phases flow through two perpendicular 

channels until they meet at the junction (Sivasamy et al. 2011) (Figure 1.9).  There 

are three regimes in this format, which are dripping, squeezing and parallel flowing 

(Garstecki et al. 2006).  At high Ca, droplet formation occurs through dripping mode.  

The disperse phase stream does not enter the continuous phase, and droplet 

formation occurs before the junction due to the action of the shear stress.  

Alternatively, if the capillary number is low, surface tension is dominant and the 

formed droplets obstruct the channel, constricting the continuous phase.  As a 

consequence, there is a dramatic increase in the hydrodynamic pressure upstream of 

(a)

(b)

(c)
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the droplet, which in turn induces the droplet pinch-off.  When the dispersed phase 

flow rate is higher than the continuous flow rate, the squeezing regime develops into 

the formation of parallel flowing streams (Guillot & Colin 2005).  The transition from 

dripping to squeezing modes depends on the balance of the forces involved, including 

dynamic pressure, surface tension, viscous and inertial forces (De menech et al. 

2008). 

 

 

Figure 1.9.  Droplet formation in a T-junction.  a) The two phases flow through two 

perpendicular channels until they meet at the junction.  b) Dripping: the disperse phase 

stream does not enter the continuous phase, and droplet formation occurs before the 

junction due to the action of the shear stress.  c) Squeezing: the formed droplets obstruct the 

channel constricting the continuous phase.  As a consequence, there is a dramatic increase 

in the hydrodynamic pressure upstream of the droplet, which in turn induces the droplet 

pinch-off.  d) Parallel flowing: when the dispersed phase flow rate is higher than the 

continuous flow rate, the squeezing regime develops into the formation of parallel flowing 

streams.  Scale bar = 100µm.  Adapted from De menech et al. 2008.   

 

(a)

(b) (c)

(d)
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1.5.2.2.3 Flow focusing 

In the flow-focusing format, the dispersed and continuous phases are forced 

through a narrow nozzle in the microfluidic device (Dreyfus et al. 2003; Anna et al. 

2003) (Figure 1.10).  This system integrates a symmetric design that provides a 

shearing stress on the dispersed phase by two counter-flowing streams of the 

continuous phase, which enables more controlled and stable generation of droplets.  

Like the previous formats, the droplet formation process depends on the balance of 

the forces involved.  Four different droplet breakup regimes have been identified in 

flow focusing devices: squeezing, dripping, jetting and thread formation.  In 

squeezing mode, the dispersed phase flows through the nozzle and grows until the 

droplet breaks off, which is entirely provoked by the shear force of the continuous 

phase.  Droplets formed in this mode are similar in size to the channel dimensions 

and are highly monodisperse.  In the dripping mode the droplet formation is 

controlled by both the shear force generated by the continuous phase and the 

surface tension at the interface, leading to smaller droplets (Eggers 1993).  In the 

jetting mode, the dispersed stream extends considerably further downstream on the 

channel and droplet generation takes place due to Rayleigh-Plateau instabilities 

(Plateau 1849; Rayleigh 1879).  When the flow rate of the dispersed phase is higher 

than the continuous phase, the shear force is not high enough to produce the stream 

pinch-off and the dispersed phase flows downstream the channel within the 

continuous phase forming a long thread. 
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Figure 1.10.  Droplet generation in a flow focusing device.  a) The dispersed and continuous 

phases are forced through a narrow nozzle.  This system integrates a symmetric design that 

provides a shearing stress on the dispersed phase by two counter-flowing streams of the 

continuous phase.  b) Squeezing: the dispersed phase flows through the nozzle and grows 

until the droplet breaks off due to the shear force of the continuous phase.  c) Dripping: 

droplet formation is controlled by the shear force generated by the continuous phase and 

the surface tension at the interface.  d) Jetting: the dispersed stream extends considerably 

further downstream on the channel and droplet generation takes place due to Rayleigh-

Plateau instability.  e) Threading: when the flow rate of the dispersed phase is higher than 

the continuous phase, the shear force is not high enough to produce the stream pinch-off 

and the dispersed phase flows downstream the channel within the continuous phase forming 

a long thread.  Scale bar = 100µm.  Adapted from Sullivan & Stone 2008.  

  

a
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1.5.3 Microfluidics and Biomedical Research 

The miniaturization process leads to the observation of new phenomena, 

thereby allowing the performance of techniques and experiments not possible on the 

macroscale.  This enables new functionality and experimental paradigms to emerge 

(Beebe et al. 2002).  Microfluidic devices offer the possibility of working with smaller 

reagent volumes and shorter reaction times, thereby reducing experimentation 

costs.  Micrometric dimensions permit a better control of physical and chemical 

properties, which in turn allows the creation of more uniform reaction conditions to 

obtain products with higher grade (Streets & Huang 2013).  The reduction in 

dimensions’ scale permits the integration of an entire laboratory onto a single chip, 

or multichip module (i.e., lab-on- a-chip devices) (Guber et al. 2004) allowing the 

automatization of complex multistep processes.   

Microfluidics based approach allows the high-throughput of small sample 

volumes and ease of automation, thereby reducing experimental costs and times.  

This permits the expansion of point-of-care testing, which is defined as diagnostic 

testing at, or near, the site of patient care, to make the test convenient and 

immediate.  Patients can receive testing results within minutes, by utilizing 

miniaturized and portable devices (e.g., blood glucose meter).  Such devices can be 

used in hospitals, or simply by patients by themselves at home, without any 

professional knowledge or particular skill (Sia & Kricka 2008).  The low volumes of 

sample required by these devices permits sample collection in a minimally invasive 

manner.   
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1.5.3.1 Cell manipulation 

Cell differentiation in vitro is typically achieved by the exposure of cells to 

suitable differentiation cocktails, containing biochemical factors that lead to 

signalling cascades within the cell and determine their phenotype (Ntambi & Kim 

2000; Gao et al. 2014).  However, cell differentiation in living organisms is also 

affected by other external factors, such as mechanical stress induced by surrounding 

extracellular matrix (ECM) (Janmey & Miller 2011).  Microfluidic devices are capable 

of generating highly controlled shear stress gradients in physiological conditions, 

providing a tool for the in vitro differentiation of cells in a more realistic manner (Kim 

et al. 2017).   

Microfluidics has also been used to develop micromolds for cell patterning 

(Tan & Desai 2003; Kuribayashi-Shigetomi et al. 2010).  Such micromolds allows the 

patterning of several hundreds of different cell types and biomaterials, providing a 

simple and fast technique to produce complex tissue constructs or even whole organs 

(organ-on-a-chip) (Bhatia & Ingber 2014).  Cell patterning provides a method for 

studying the functional significance of tissue architecture at the resolution of 

individual cells, and the molecular interactions between cell types underlying 

processes such as embryonic morphogenesis (Suri et al. 2013), the formation of the 

blood–brain barrier (Van der Helm et al. 2016), and tumour angiogenesis (Stroock & 

Fischbach 2010). 

In vitro fertilization (IVF) is another field that takes advantage of microfluidic 

technology.  Conventional IVF technique involves manual manipulation and pipetting, 

therefore requiring the need for highly experienced professionals to achieve 
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satisfactory results.  The use of microfluidic systems for IVF, permits the integration 

of oocyte trapping, fertilization and subsequent embryo culture in a single device, 

thereby simplifying the whole process (Suh et al. 2006; Han et al. 2010). 
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2.1 Introduction 

Microfluidics has been broadly applied over recent years to the production of 

monodispersed, microscopic droplets, specifically for the production of polymer 

microspheres  (Choi et al. 2007; Liu et al. 2013).  However, few authors have 

employed the used of microfluidic devices along with internal gelation for the on-site 

production of such microdroplets (Liu et al. 2013).  Whereas external gelation 

involves two steps for the production and gelation of droplets, internal gelation 

permits the formation and on chip cross-linking of polymer beads, thereby potentially 

enabling the automatization of the entire process (Maeda et al. 2012).  Furthermore, 

the monodispersity of beads is greater, due to the more consistent gelation process 

conditions (Chan et al. 2002). 

Several strategies exist for polymer emulsification in microfluidic devices 

based on the network layout of microfluidic channels (Section 1.5.2.2).  The simplest 

method involves two immiscible fluids co-flowing in the same capillary, giving rise to 

droplet formation due to the shear force generated by the outer phase (Cramer et al. 

2004).  In a different approach, droplets can also be generated within T-junction 

devices, where dispersed and continuous phases meet at an angle of 90 degrees 

(Sivasamy et al. 2011).  Finally, flow focusing devices provides a method in which both 

phases flow in perpendicular directions and are then forced through the same 

channel (Dreyfus et al. 2003).  The large number of geometrical aspect ratios 

characterizing flow-focusing devices permits a better and more accurate control of 

droplet formation.  Hence, this strategy was used to produce alginate microcapsules 

in this thesis. 
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Alginate microcapsules should maintain their integrity for extended periods of 

time, allowing for a long-term protection of the encapsulated cells.  At the same time, 

the porosity of the microcapsules should be high, to guarantee an effective mass 

transfer, thereby providing higher cell survival rates (Smidsrød & Skjåk-Braek 1990).  

Alginates possessing a high guluronic acid content (medium viscosity alginates) 

develop stiffer, more porous gels.  Conversely, alginates rich in mannuronic acid 

residues (low viscosity alginates) produce softer, less porous microcapsules, which 

tend to disintegrate easier after long culture periods (Lee & Mooney 2012).  The 

viscosity of the matrix affects cell survival in that pre-polymer solutions with high 

viscosities need great shear forces to produce droplets, which can damage cell 

membrane (Gray 1997).  

 

2.2 Aims and Objectives 

The aims of this chapter were for the microfluidic production of alginate 

droplets and on chip gelation with a target, average diameter of ~500µm.  To this 

end, a PTFE microfluidic device was fabricated using milling machinery.  Optimization 

of the microfluidic parameters was investigated: namely with respect to droplet 

generation strategy, channel geometry and fluid flow rates.  
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2.3 Materials and Methods 

2.3.1 Microfluidic reagents 

- Medium viscosity alginic acid sodium salt from brown algae, mineral oil 

and glacial acetic acid were purchased from Sigma-Aldrich, UK.   

- Oil Blue N and Oil Red O were used to stain the mineral oil and purchased 

from Sigma-Aldrich, UK.   

- Nanocrystalline precipitated calcium carbonate (average particle size 

70nm) was purchased from Specialty Minerals, Birmingham, UK. 

- Red food dye (Silver Spoon) was used to stain the alginate solution.  
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2.3.2 Preparation of microfluidic reagents  

Nanocrystalline precipitated CaCO3 was dispersed in distilled water.  Sigma 

Medium Viscosity sodium alginate was added to the CaCO3 suspension.  The blend 

was stirred for 2 hours at 37°C.  Concentrations of CaCO3 and alginate are specified 

in Section 2.4.2.  Glacial acetic acid was dissolved in mineral oil at a final 

concentration of 0.3% (v/v). 

 

2.3.3 Chip design and manufacturing 

Microchannels were machined into PTFE discs using a Computer Numerical 

Controlled milling machine (LPKF C30) after being designed using SolidWorks 

software and then exported to CircuitCAM 5.0 (LPKF, Germany) as .DXF files.  The 

software allowed milling procedures to be assigned to cut the appropriate regions of 

the chip.  The file was then exported to BoardMaster (LPKF, Germany) where tools 

were assigned to the milling procedures.  The BoardMaster software controlled the 

micromachining tool.  BoardMaster software controls the tool movement in the X 

and Y planes, whereas the Z plane is controlled by manual adjustment to the desired 

depth.  To ensure a good surface finish within the channels, and to minimise the 

stress placed on the tool, multiple machine passes were used; typically, only 

increasing the depth by a quarter of the tool diameter for each pass.  Milling was 

carried out with a milling drill spin speed of 30,000 rpm.  Inlet and outlet holes were 

drilled at 3.25mm from the edge of the PTFE chip.  These positions lined up with holes 

in a prefabricated metallic manifold.  The chips were polished before and after milling 
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to obtain a smooth and flat surface.  Polishing was performed by hand by rubbing the 

PTFE chip over a series of sandpapers of increasing fineness with a cotton polish as 

the final stage (240-2500 grade SiC grinding paper for metallography, BUEHLER). 

 

2.3.4 Microfluidic device setup 

The microfluidic device used in all experiments consisted of a metallic 

manifold into which HPLC fluid connectors (Sigma-Aldrich, UK) were introduced 

perpendicularly through holes sealed with nitrile rubber O-rings (Sealmasters, 

Cardiff, UK), allowing fluid to flow in the channels of previously machined PTFE disc 

(50mm diameter x 6mm thickness, Good Fellow, Huntingdon, UK) located within the 

manifold.  A fluorinated ethylene propylene (FEP) film (5cm diameter, 0.1mm 

thickness; Good Fellow, Huntingdon, UK) was placed in between the PTFE chip and a 

borosilicate glass disc cover (5cm diameter x 10mm thickness; PI-KEM Ltd, 

Staffordshire, UK).  A metallic clamping piece was screwed to the manifold, allowing 

the entire assembly to be compression sealed.  Fluids were introduced into the 

microfluidic channels through sterile 1/16-inch outer diameter PTFE tubing (Sigma-

Aldrich, UK) using syringe pumps (KD Scientific – Linton Instrumentation, Norfolk, 

UK). 
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2.3.5 Imaging 

Droplet formation movies were recorded with a high-speed camera 

(Megaspeed MS40K) attached to an optical microscope (Nikon MM-800).  

Megaspeed AVI player software permitted the images acquisition of microfluidic 

channels.  Images of alginate microcapsules were acquired with an Eclipse TS100 

inverted phase contrast light microscope (Nikon, Japan) with a camera attachment 

(Canon, Japan). 

  

2.3.6 Statistics 

Data are represented as mean ± SEM.  Statistical significance was determined 

by Student’s t test.  P < 0.05 was considered statistically significant. 
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Figure 2.1.  Microfluidic device.  A) Picture of the whole set up used for the microfluidic 

experiments.  The microfluidic device was connected through HPLC tubing to syringes 

containing the fluids.  Flow rates were controlled by syringe pumps.  B) Detailed diagram 

showing each component of the microfluidic device.  
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2.4 Results 

2.4.1 Development of a customized microfluidic chip to produce 

alginate microcapsules 

PTFE was chosen as the material to fabricate the microfluidic device.  Due to 

its physical properties, PTFE is a hydrophobic material with excellent wetting features 

(Walsh et al. 2016).  Its high contact angle is stable along the surface as a 

consequence of its non-reactivity.  Therefore, it is possible to produce highly stable 

water in oil emulsions without the use of surfactants, hence minimizing cell damage 

and the number of washing steps.  The high melting point of PTFE allowed for its 

heated sterilization prior to any experiment carried out with live mammalian cells.  

Since the ultimate goal of this thesis was the encapsulation of stem cells, flow 

focusing was selected as the strategy to produce polymer micro beads.  In this 

method the dispersed phase is barely stressed and therefore is suitable for the 

encapsulation of cells, with no decrease in their viability (Martín-Banderas et al. 

2005).  In flow focusing devices, the dispersed and continuous phases are forced 

through a narrow nozzle in the microfluidic device.  The shear force generated by the 

continuous flow provokes the dispersed phase to break off into droplets.  This 

method enabled the production of alginate droplets and gelation in one unique step.  

Flow focusing allows for the production of droplets with greater dynamic size range 

from a given device compared with other strategies, e.g. T-junction (Baroud et al. 

2010). 



Chapter 2: Development of a microfluidic chip to produce alginate microspheres 

97 

To prevent prompt alginate cross-linking (the initial ECM molecule under 

investigation) CaCO3 was utilised as calcium ions source.  This salt has a low solubility 

at neutral pH in aqueous solutions, which allowed for its dispersion into the alginate 

solution (dispersed phase).  A solution of acetic acid in mineral oil (continuous phase) 

was used in order to trigger the release of Ca2+ according to the following chemical 

equation: 

CaCO3 + 2H+  Ca2++ H2O + CO2 (Equation 2. 1) 

 

Preliminary experiments using the chip layout in Figure 2.2 demonstrated that 

almost instantaneous (~<1s) alginate gelation occurred, at location ‘A’, causing the 

formation of a solidified alginate membrane, which eventually (in a matter of 

seconds) blocked the alginate inlet port, leading to a stalling of the syringe pump. 

 

Figure 2.2.  Chip design for the production of alginate microcapsules.  Alginate gelation 

occurred at the junction, provoking the blockage of the channels and therefore the disruption 

of alginate emulsification.  Scale bar = 500µm. 
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In order to prevent an immediate gelation at the site of droplet formation, an 

additional phase containing mineral oil was incorporated in the design (Figure 2.3).  

This new phase worked as a “shielding flow” preventing alginate solidification at the 

junction (Workman et al. 2007).  As mentioned in Section 1.5.1, fluid properties 

dramatically change when they are infused through networks of channels of 

micrometric dimensions.  Under these conditions, fluids flow in a laminar regime, 

where parallel layers of liquid flow with minimal disruption between them and run 

parallel to the channel walls.  However, particles move through different layers by 

diffusion.  This phenomenon allowed the acetic acid present in the continuous phase 

to diffuse through the shielding flow and reach the alginate droplets, provoking their 

controlled gelation.   

 

 

Figure 2.3.  Shielding flow. Alginate gelation on chip can be delayed by adding a “shielding 

phase”.  Due to the laminar flow, the two miscible phases (shielding and proton source) flow 

in parallel layers through the same channel with no disruption between layers.  Protons 

diffuse trough the different layers to finally reach the alginate, provoking its gelation.  Scale 

bar = 800µm. 
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The thickness of each phase could be easily controlled by the modification of 

their flow rates, thereby modifying alginate gelation kineticsl.  At low shielding phase 

flow rates (red) and high acetic acid flow rates (white), the shielding stream was 

narrow and the diffusion of protons towards alginate droplets was faster, allowing 

for quicker gelation times (Figure 2.4 A).  In contrast, when the flow rate of the 

shielding phase was increased, the flow stream was wider and the diffusion of 

protons through the channel was delayed, allowing for slower gelation times (Figure 

2.4 B).  A flow rates ratio of 1:1 was selected for subsequent experiments, in order to 

produce alginate droplets with slow cross-linking rates.  This avoided the blockage of 

microfluidic channels and ensured a uniform gelation through the entire droplet. 

Through the addition of the shielding flow, the premature gelation of alginate 

was prevented and continuous droplet formation was then achieved.  Since alginate 

cross-linking was delayed, chip channels were designed in order to increase the path 

length so that alginate gelation took place before leaving the microfluidic device.  

Towards this end, the main channel was fabricated in a meander-like format (Figure 

2.5 A).  However, an inconsistent droplet flow was observed due to the adhesion of 

alginate on the walls as a consequence of changes in directions.  Therefore, a 

modification on this initial design was required.  To this end, it was considered that a 

straight channel would overcome the issues previously mentioned (Figure 2.5 B).  A 

longer outlet HPLC tubing was used in order to compensate the channel shortening.  

Alginate beads were collected in distilled water, with no further processes needed 

(Figure 2.6).  
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Figure 2.4.  Laminar flow.  Two miscible phases (red corresponding to mineral oil, and 

horizontal white to acetic acid in mineral oil) flowing in parallel layers through the same 

channel.  The thickness of each phase could be modified by the alteration of their flow rates.  

A) Flow ratio 1:10. B) Flow ratio 1:1.  Scale bar = 500µm. 

 

 

Figure 2.5.  Geometry of microfluidic chips.  Both chips were formed by 5 inlets: alginate was 

introduced into the chip through inlet 1; the shielding phase (mineral oil) flowed through 

inlets 2 protecting a prompt alginate gelation.  Acetic acid in mineral oil (protons source 

phase) was injected through inlets 3, flowing in parallel layers with mineral oil.  Cross-linked 

alginate droplets left the device through the outlet (4).  A) Chip design 1: the main channel 

was designed in a meander-like shape to increase the path length of the microfluidic device.  

B) Chip design 2: the main channel was replaced by a straight line, avoiding changes in 

direction and therefore, allowing a consistent flow of alginate beads.  Channels dimensions: 

inlets 1, 2 and 3 were 500µm x 400µm; main channel was 800µm x 700µm.  
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Figure 2.6.  Collection of alginate microcapsules.  Alginate droplets underwent on chip cross-

linking by coordination of Ca2+ with the guluronic blocks of alginate chains.  Beads were 

collected in distilled water.  
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2.4.2 Optimization of the reagents concentration  

Three different alginate concentrations were tested: 1% (w/v) (low 

concentrated), 2% (w/v) (medium concentrated) and 4 % (w/v) (high concentrated).  

Low concentrated alginate gave rise to microspheres with low mechanical stability.  

Alginate droplets were easily deformed by mechanical pressure, thereby providing 

microcapsules with poor consistence.  High concentrated alginate solution had a high 

viscosity, which hindered its manipulation and injection through microchannels due 

to the high hydrodynamic pressure generated by alginate flowing inside the channels.  

Medium concentrated alginate viscosity permitted an easy manipulation and allowed 

for the production of microcapsules with good mechanical stability.  Hence, 2% (w/v) 

alginate was selected as the suitable concentration for further experiments.  Once 

the concentration of alginate was established at 2% (w/v), the appropriate 

concentration of CaCO3 was investigated (Figure 2.7).  Based on the reports of others 

(Workman et al. 2007), the concentration of CaCO3 was generally utilised as 5 mg/ml.  

In order to investigate the effect of a modification of CaCO3 concentration on the 

production of alginate microcapsules, 2% (w/v) alginate solution with 2,5 mg/ml, 

5 mg/ml, and 7,5 mg/ml suspended CaCO3 were tested.  2,5 mg/ml solutions brought 

about partially gelled alginate microbeads, with random shapes and sizes.  On the 

other hand, 7,5 mg/ml solutions produced stable alginate microspheres with 

rounded shapes and even diameters.  However, small deposits of CaCO3 were 

observed within the beads, suggesting that some CaCO3 was not dissociated.  

Microcapsules produced with 5 mg/ml CaCO3 demonstrated spherical shapes of high 
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consistency, as seen by a defined membrane and no CaCO3 deposits.  Therefore, a 

concentration of 5 mg/ml CaCO3 was established for further experiments.  

Based on the reports of others groups (Workman et al. 2007) 0.3% (v/v) acetic 

acid has been used for gelation of 2% (w/v) alginate hydrogels.  In order to minimize 

the potential harmful effect on cells in further applications (Chapter 3), lower 

concentrations of acetic acid were tested, namely 0.1% (v/v) and 0.2% (v/v).  

However, none of these concentrations achieved gelation of alginate microcapsules.  

Hence, for all the subsequent experiments carried out, the following concentrations 

were used: 2% (w/v) alginate solution in distilled water containing 5 mg/ml CaCO3 

and 0.3% (v/v) glacial acetic acid in mineral oil. 

 

 

Figure 2.7.  Optimization of CaCO3 concentration.  The utilization of alginates with 2,5 mg/ml 

CaCO3 gave rise to incomplete gelled beads, as seen by some beads merging with each other.  

When CaCO3 was resuspended in an alginate solution at a concentration of 5 mg/ml, 

microcapsules showed highly spherical shapes.  However, when the concentration of CaCO3 

was increased (7,5 mg/ml), some deposits were visible inside the microcapsules.  Scale 

bar = 100µm. 
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2.4.3 Optimization of flow rates 

One of the main benefits from the use of microfluidics for the production of 

micrometre-sized droplets is that the diameter of such droplets can be easily 

modified by variations in flow rates.  Depending on the flow rate ratios, emulsification 

happens through different modes.  Dripping mode occurs when the continuous phase 

and disperse phase flow rate ratio is high, and therefore, the shear force generated 

by the continuous phase is dominant over the hydrostatic pressure in the dispersed 

phase (Utada et al. 2007).  In this case, the droplet “pinch off” takes place at the 

vicinity of the junction.  On the contrary, when the dispersed phase flow rate is 

greater, and therefore the ratio between both flow rates is lower, the inertial forces 

become dominant over surface tension.  As a result, the dispersed fluid forms a jet 

which breaks into droplets further downstream due to Rayleigh-Plateau instability 

(Plateau 1849; Rayleigh 1879).  In the jetting mode, polydispersity of droplet 

diameters is greater, with higher coefficients of variance.  Since the main purpose of 

this project is the microencapsulation of stem cells, a high monodispersity is a 

fundamental requirement to achieve.  Hence, the droplet formation approach 

utilized in this study was flow focusing in dripping mode.  

Alginate beads of different sizes were produced by modification of the flow 

rates.  To ensure reproducibility of bead formation, each condition was performed 

on three different occasions.  Ten beads per condition, per day (total number of 

beads, n = 30) were utilised for the measurement of their diameters, using 

microscopy and calibrated ImageJ software tools.  In order to calculate bead 



Chapter 2: Development of a microfluidic chip to produce alginate microspheres 

105 

sphericity, the diameter of each bead was measured twice, lengthwise (d1), and 

transversely (d2). 

Sphericity=
d1

d2
  (Equation 1.4) 

 

The coefficient of variation (CV) was calculated as follows:  

CV %= 
Standard Deviation (SD)

Mean Diameter
 x 100 (Equation 1.5) 

 

Firstly, alginate flow rate (fd) was increased from 0.1 ml/h up to 2 ml/h, and a constant 

value of 10 ml/h was established for the continuous phase (combination of the co-

flow shielding phase and proton source phase).  According to the results in Figure 

2.8A, the diameter of the beads increased when the alginate flow rate was 

augmented.  In all cases, coefficients of variance were <2.5%, and the sphericity 

achieved was close to 1,0 (Figure 2.9 A-E). 

For stem cell encapsulation purposes, small bead diameters are preferred in 

order to enhance the diffusion of nutrients and oxygen inside the microcapsule 

(Ogbonna et al. 1991).  Therefore, with the chip design described in Figure 2.2B and 

the conditions tested above, an alginate flow rate of 0.1 ml/h should be used to 

produce the smallest beads.  However, the frequency of bead formation with this 

flow rate was too low, requiring long experimentation times to produce a significant 

amount of alginate beads (e.g. 10 hours to produce 1ml of alginate beads).  Hence, in 

order to produce small beads at a higher frequency, a second set of experiments were 

carried out.  In this case, alginate flow rate was maintained at a constant value of 
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1 ml/h, and the continuous phase flow rate (fc) was modified from 5 ml/h up to 

30 ml/h.  Results in Figure 2.8B show that the size of the beads decreased when the 

continuous phase flow rate was increased.  At 30 ml/h, beads with the smallest 

diameters were produced (440 ± 3 µm) at a greater frequency than in the previous 

experiment.  Photographs of alginate beads at each condition previously described 

were taken (Figure 2.9 F-J).  Hence, the flow rates selected for subsequent 

experiments were 1 ml/h for dispersed phase, and 30 ml/h for continuous phase, in 

order to produce the smallest beads in the shortest experimentation time.  

  



Chapter 2: Development of a microfluidic chip to produce alginate microspheres 

107 

 

Figure 2.8.  Variation of bead diameters with flow rates.  A) The size of the beads increased 

when the alginate flow rate was augmented.  B) the size of the beads decreased when the 

continuous phase flow rate increased.  Data shown as mean ± SEM, are representative of at 

least three independent experiments made in triplicate.  **, P < 0.01; ***, P < 0.001, 

Student’s t test. 
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Figure 2.9.  Alginate microcapsules of different sizes were produced by a combination of 

different flow rates.  In the first experiment, carrier phase flow rate was maintained at 10 

ml/h and alginate flow rate was modified as follows: 0.1 ml/h, 0.2 ml/h, 0.5 ml/h, 1 ml/h and 

2 ml/h (A, B, C, D and E, respectively).  In the second experiment, alginate flow rate was 

maintained at 1 ml/h and carrier phase flow rate was modified: 5 ml/h, 10 ml/h, 15 ml/h, 20 

ml/h and 30 ml/h (F, G, H, I and J, respectively).  Scale bar = 500µm. 
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2.5 Discussion 

A customized microfluidic PTFE device was fabricated for the production and 

on-chip cross-linking of alginate beads by an internal gelation approach.  The 

diameter of the microspheres was selectively modified by the manipulation of the 

flow rates.  

Since interest in the production of droplets arose, polydispersity has been a 

major problem in conventional emulsification methods.  The use of turbine reactors, 

colloid mills and homogenizers, imparts high mechanical forces and do not offer 

sufficient control over the size of the generated droplets (Mollet & Grubenmann 

2001).  The first attempt of internal gelation was made by Poncelet et al. (1992).  An 

alginate solution containing dispersed CaCO3was mixed with canola oil in a turbine 

reactor and emulsified by stirring during 15 minutes.  Polymer gelation was achieved 

by adding acetic acid to the emulsion in a second step.  Alginate beads were then 

filtered through a strainer for their collection and further characterized.  The resulting 

beads demonstrated a size distribution containing several peaks, demonstrating the 

polydispersity of the generated droplets.  The use of microfluidics allows for the 

production of droplets in a physically gentler manner than the conventional methods 

mentioned above, thereby offering a high degree of control over their size and shape 

(Ushikubo et al. 2014).  Indeed, the coefficient of variance obtained in the results of 

this chapter highlights a high monodispersity in the production of alginate 

microcapsules. 

Since the dispersed phase used in this project was hydrophilic (alginate 

aqueous solution) a hydrophobic surface was required for droplet generation in order 
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to produce high spherical droplets (Section 1.5.2.1).  Hence, PTFE was chosen as the 

material for the chip manufacturing.  Channel fabrication strategies on this substrate, 

commonly soft lithography or photolithography, are time-consuming and require 

several steps (Cuchiara et al. 2010).  The majority of the microfluidic devices 

fabricated with PDMS involve inner channels permanently sealed.  For example, 

Shintaku et al. (2007) fabricated a PDMS chip for the encapsulation of cells in alginate 

microcapsules.  The method involved the use of an epoxy-based negative photoresist 

as a mask for PDMS channels manufacturing, requiring 4 hours curing process.  The 

resulting PDMS substrate was then bonded to a previously PDMS coated glass by 

curing for other 4 hours.  In the study presented in this thesis, microchannels were 

effortless fabricated on PTFE discs by a milling process requiring short periods of time, 

generally less than 30 minutes.  The chip was then mounted in a compressed-sealed 

metallic manifold which allowed the assembly and disassembly of the entire 

mounting in an effortless and quick manner.  The use of a compressed-sealed PTFE 

device allowed the formation of alginate droplets and their in situ gelation in one 

step, allowing the automatization of the whole process, thereby reducing 

experimentation times.   

An alginate cross-linking approach is crucial to achieve highly monodisperse 

microcapsules.  Using external gelation, unsolidified alginate droplets are collected in 

a reservoir of divalent cations, acquiring random uncontrolled shapes (Capretto et al. 

2008).  Divalent cations cross-link the surface of the alginate droplet, hindering the 

diffusion of cations through the core of the droplet.  On the contrary, the internal 

gelation strategy used in this thesis permitted the production of highly monodisperse 

alginate microbeads (CV < 3%), by adding an insoluble calcium salt, CaCO3, in the 
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alginate solution.  Droplets were then formed in the microfluidic device and divalent 

cation release was triggered by the action of acetic acid.  This caused cross-linking of 

the alginate droplets in an evenly and controlled manner, giving rise to microcapsules 

with a homogeneous matrix structure.  The gelling times required for alginate cross-

linking using internal gelation are commonly shorter than those needed for external 

gelation, involving brief experimentation times (a few seconds compared to 15-20 

minutes in external gelation).  In fact, the drastic reduction of dimensions from 

macro-scale to micro-scale increases the diffusion rate of the molecules, giving rise 

to faster kinetics of the processes involved, thereby reducing experimentation times 

(DeMello 2006).  

In this chapter, two different strategies for the on chip alginate internal 

gelation were attempted, using a flow-focusing device.  It was hypothesized that the 

use of a proton source in the continuous phase would provoke alginate emulsification 

and gelation in one single step.  The alginate solution containing disperse CaCO3 was 

segmented by an immiscible solution of acetic acid dissolved in mineral oil.  The 

protons in the continuous phase rapidly diffused through the alginate membrane, 

triggering the release of calcium ions, thereby cross-linking the polymer chains.  

Continuous droplet formation and solidification was observed over a short period of 

time, but undesired and prompt solidification of alginate took place at the junction 

after several minutes, blocking the channel and inhibiting a continuous alginate 

emulsification.  Based on the work reported by Workman et al. (2007), the 

microfluidic device was modified to include a new inlet in the continuous phase, 

acting as a “shielding” flow, thereby preventing alginate gelation immediately after 

bead formation.  Due to the laminar flow regime, protons diffused through the 
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shielding phase, inducing the slow release of calcium ions from CaCO3, then leading 

to the alginate cross-linking in a controlled and uniform manner along the path length 

of the channel.  Alginate cross-linking on chip has been attempted through different 

methods.  For example, Zhang et al. (2006) used a Y-shaped microfluidic planar device 

for the production of alginate droplets.  Alginate emulsification was produced by the 

shear force imposed by a parallel stream formed by undecanol.  Polymer gelation was 

achieved by the solubilisation of CaCI2 into the undecanol phase.  However, the 

extrapolation of this strategy for the encapsulation of stem cells would compromise 

their viability due to the effect of undecanol.  In a different approach, Kalyanaraman 

et al. (2009) incorporated an independent channel to introduce the cross-linking 

agent, CaCl2.  This was mixed with the alginate solution on chip prior to emulsification.  

However, the droplets produced were different in shape as a consequence of the 

prompt gelation triggered by the quick dissociation of CaCl2.  In the method 

developed in this thesis, beads were highly monodispersed. 

Upon optimization of emulsification and cross-linking method, two different 

chip designs were tested.  As a first approach, a meander-like network was designed 

in order to increase the path-length of the microfluidic device.  However, an 

inconsistent droplet flow was observed due to the adhesion of alginate on the corner 

walls as a consequence of changes in direction.  The unsteady velocity of the droplets 

could be explained by the changes in flow direction through the meanders.  This 

alginate film led to further undesired interactions between the channel walls and 

passing droplets, occasionally causing their fragmentation.  This led to smaller 

droplets, which flowed at higher velocity than bigger droplets, giving rise to inter-

droplet collisions.  As gelation was delayed by the shielding flow, alginate beads were 
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not completely solidified in the channel and collisions provoked the droplets to 

merge.  Merging beads brought about larger droplets, leading to the production of 

alginate microcapsules with different shapes and sizes, and the blockage of the outlet 

due to the formation of large beads.  This was resolved by modification of the design 

of the main channel.  The meander-like channel was substituted by a straight line 

channel, thereby avoiding directional changes, and hence, minimizing alginate 

adherence on channel walls.   

The concentration of the dispersed phase was another parameter optimized 

in this chapter.  Alginate solution viscosity plays a key role in the mechanism of 

droplet formation.  As explained in Section 1.5.2.2, droplet generation mode 

depends upon the balance between the forces taking place, including surface 

tension, viscosity, hydrodynamic pressure and inertial forces.  Dispersed phases with 

high viscosities give rise to high Capillary numbers (Ca).  As a consequence, the shear 

force required for the generation of the droplet is higher, due to the resistance of the 

dispersed phase to deformations (Nie et al. 2008).  On the other hand, low viscosities 

produce droplets with poor mechanical properties, thereby hindering their further 

application for cell encapsulation purposes.  Thus, three different concentrations of 

alginate were tested, 1%, 2% and 4% (w/v).  Indeed, 1% alginates gave rise to 

inconsistent microcapsules with low mechanical stability.  In contrast, 4% alginates 

produced highly spherical and stable beads but its manipulation due to its high 

viscosity was difficult, requiring higher continuous phase flow rates in order to 

produce alginate emulsification.  Finally, 2% alginates provided highly monodispersed 

beads with good mechanical properties and its manipulation and emulsification was 

simpler than that of 4% alginate.  The suitable concentration of CaCO3 was also 
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investigated.  High concentration (7,5 mg/ml) produced deposits of CaCO3 in the 

produced droplets, which could have a harmful effect for further cell encapsulation 

experiments.  Low concentration (2,5 mg/ml) did not provide enough calcium ions to 

achieve an even and complete alginate cross-linking, as observed by the formation of 

inconsistent and merged beads.  A medium concentration of CaCO3 (5 mg/ml) 

allowed for an adequate alginate cross-linking with no deposits observed within the 

droplets.  Hence, 2% (w/v) alginate solution and 5 mg/ml CaCO3 were selected for 

further experiments. 

Finally, the influence of flow rates on the size and sphericity of droplets was 

investigated.  Dispersed and continuous flow rates were independently modified and 

the diameter of the beads produced at each condition were measured.  When 

alginate flow rate was increased from 0.1 ml/h up to 2 ml/h an increase in the 

diameter of the beads was observed.  On the contrary, when continuous phase flow 

rate was increased from 5 ml/h up to 30 ml/h, a decrease in the size was noticed.  

Changes in diameter of the beads were not linear-dependent on flow rates.  This can 

be explained by the fact that droplet size cannot be entirely attributed to the 

influence of flow velocities, but also to channel geometries, fluid viscosities and 

surface tension (Baroud et al. 2010).  This behaviour has been observed in other 

studies analysing droplet size in flow focusing devices (Ward et al. 2005; Lapierre et 

al. 2011). 

In summary, the production of alginate microdroplets has been achieved by 

numerous groups, using a wide range of different techniques.  However, since the 

main purpose of the research reported here was the encapsulation of stem cells for 
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healthcare therapies, only cell-friendly reagents and techniques were investigated.  

The microfluidic device developed in this chapter provides a simple platform for the 

selective production of alginate droplets of defined diameters depending on the flow 

rates of dispersed and continuous phases. 
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3.1 Introduction 

Cell transplantation is a promising technique in regenerative medicine and 

wound healing.  However, the viability of transplanted cells is often compromised 

due to the harsh environment within damaged tissues and potential immune 

rejection after grafting (Orive et al. 2015).  The result is that the majority of the 

transplanted cells die and their therapeutic effect is then hindered.  To overcome 

these issues, the administration of immunosuppressants is widely utilised alongside 

transplantation therapies.  However, the use of these drugs should be limited due to 

their negative side effects, such as immunodeficiency, hypertension and liver/kidney 

problems (Halloran 2004).  

Cell encapsulation techniques have been applied in clinical trials to overcome 

the problems mentioned above for the treatment of several illnesses including type I 

diabetes (Calafiore et al. 2006) and Huntington´s disease (Bachoud-Lévi et al. 2000).  

Encapsulation of cells in a protective environment helps increase the number of 

viable cells after transplantation, protecting against the negative effects of immune 

cells and antibodies, and avoiding the need of immunosuppressives (Krishnan et al. 

2013).  Furthermore, whereas the control of cell fate within an organism is often 

difficult to achieve/control, the immobilization of cells in a confined environment 

permits a better control of cell-based parameters, such as proliferation, migration 

and differentiation (Barthes et al. 2014).  

It has been well reported that cells can be immobilized within polymers of 

differing formats, e.g. macroscopic hydrogels (Michalopoulos et al. 2012) or fibres 
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(Xu et al. 2017).  However, the microcapsule approach has received much recent 

attention due to the high surface area to volume ratio, which enhances mass transfer 

through the polymer membrane (Liu et al. 2014).  The polymers used for cell 

encapsulation need to be biocompatible and biodegradable.  This is of key 

importance in order to avoid immunoreactivity and toxic effects within the organism.  

Alginate is one of the biopolymers most frequently used for encapsulation due to its 

relatively mild gelling conditions which are compatible with cell viability (Sun & Tan 

2013).  At the same time, alginate cross-linking can be easily reversed in a cell-friendly 

manner, allowing for the controlled release of the encapsulated cells.  Importantly, 

alginate hydrogels provide a porous structure which allows the bidirectional diffusion 

of nutrients and oxygen inside the capsule and the output of therapeutic agents and 

waste products emanating from cell metabolism (Andersen et al. 2015). 

In order to maintain a healthy population of cells within the microcapsules, 

such 3D structures require an appropriate size, so that nutrients/gases can diffuse 

through the polymer membrane and reach every cell at the centre of the capsule.  

Many efforts have been made over the last few decades to obtain micrometre-sized 

beads fit for such a purpose.  It has been subsequently demonstrated that 

microfluidics is one of the most suitable and reproducible techniques to produce 

monodisperse cell-laden polymer microcapsules in a sealed environment, thereby 

avoiding any potential contamination (Pennathur et al. 2008; Velasco et al. 2012).  

Polymer microcapsules produced by microfluidic devices have smaller diameter and 

a narrower distribution size compared to the conventional methods, such as droplet 

extrusion and emulsification (Dulieu et al. 1999; Chan. et al. 2002).  These methods 

typically produce polydisperse droplets with diameters > 500 µm, hindering nutrient 
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diffusion to the centre of the microspheres (Koch et al. 2003).  The difficult 

standardization of cell number per microcapsule, as well as the inability to produce 

large-scale volumes of cell-containing microspheres with conventional methods, 

have delayed the clinical application of encapsulated cells.  In response to this, 

microfluidics offers a powerful method to rapidly produce large-scale volumes of 

monodisperse polymer microdroplets with diameters of up to a few hundred 

micrometres (Tan & Takeuchi 2007; Capretto et al. 2008; Workman et al. 2008; 

Martinez et al. 2012).  Smaller diameters enhance the diffusion of oxygen and 

nutrients, improving cell viability over extended periods of time (Drury & Mooney 

2003; Sugiura et al. 2005) and facilitates bead injection for cell transplantation 

therapies (Yu et al. 2010). 

 

3.2  Aims & Objectives 

The aims of this chapter are: 

 To optimize the parameters for the encapsulation of murine NSCs and DPSCs 

within ECM-based microcapsules. 

 To study the viability and proliferation of the encapsulated cells. 

 To study the ability of cells to retain their multipotency after long-term 

maintenance within the microcapsules. 
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3.3  Materials & Methods 

3.3.1 Cell culture 

To maintain sterility, all tissue culture procedures were performed in a 

Microflow Peroxide Class II advanced biological safety cabinet (Bioquell, UK).  

 

3.3.1.1 Dental pulp stem cell culture 

Murine GFP DPSCs were isolated by others in the group of Prof. Ketan Patel, 

within the School of Biological Sciences (University of Reading).  Cells were cultured 

in α-modification Minimum Essential Medium containing 2 mM glutamine, 

ribonucleosides and deoxyribonucleosides (Life Technologies, UK).  The medium was 

supplemented with 1% (v/v) penicillin/streptomycin, 20% (v/v) heat-inactivated 

foetal bovine serum (FBS) (Life Technologies, UK) and 100µM l-ascorbic acid 

2-phosphate (Sigma-Aldrich, UK).  Medium was changed every 2-3 days until cells 

reached 80-90% confluence. 

 

3.3.1.2 Passaging DPSC Cultures 

Upon reaching confluence, culture medium was removed by aspiration and 

the cells washed with phosphate buffered saline (PBS) (Sigma-Aldrich, UK).  Cells 

were dissociated by adding 0.25% trypsin-EDTA (Sigma-Aldrich, UK) and returning 

them to the incubator for 3 - 5 minutes until they became rounded and detached. 
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Culture medium was then added to neutralise the trypsin.  The resultant solution of 

medium plus cells was transferred to 15ml falcon tubes and centrifuged at 400x g for 

5 minutes.  After discarding the supernatant, pellets were resuspended in medium 

and cell counts performed using a haemocytometer with trypan blue to assess cell 

viability (Section 3.3.2.1).  Cells were reseeded on new culture plastics at a density of 

4000 viable cells/cm2 for continuous culture, or as per experimental requirements. 

 

3.3.1.3 Cryopreservation and re-establishment of DPSCs 

DPSCs were cryopreserved at regular intervals during culture.  Following 

passaging, a minimum of 1x106 cells were resuspended at 1x106 cells/ml in heat-

inactivated FBS + 20% (w/v) dimethyl sulphoxide (DMSO) (Fisher Scientific, UK) and 

transferred to 2ml cryovials (Greiner Bio-one, Germany).  Cryovials were slowly 

cooled to -80°C in a propan-2-ol filled Mr Frosty (Nalgene, USA).  After being stored 

for 24 hours at -80°C, cryopreserved cells were transferred to liquid nitrogen storage. 

As required, DPSCs were re-established from frozen stock by thawing in a 37°C 

water bath.  Thawed cell suspensions were transferred to 15ml conical tubes 

containing culture medium and centrifuged at 400x g for 5 minutes.  Following 

centrifugation, traces of DMSO were removed by discarding the supernatant and 

resuspending the cell pellets in culture medium and then a further 5-minute 

centrifugation.  Cell counts with trypan blue (Section 3.3.2.1) where undertaken and 

cells reseeded in culture plastics at a density of 4000 cells/cm2. 

 



Chapter 3: Optimization of stem cell encapsulation in ECM-based microcapsules 

124 

3.3.1.4 Embryonic neural stem cell culture 

GFP NSCs isolated from the cortex of E14.5 C57Bl/6 mice by others in the 

group of Prof. Ketan Patel, within the School of Biological Sciences (University of 

Reading) were maintained in Dulbecco’s Modified Eagle Medium (DMEM)/Ham’s F12 

(1:1) containing 2.5 mM of L-glutamine and 15mM HEPES buffer (Life Technologies, 

UK).  This was supplemented with 1% (v/v) penicillin/streptomycin, 2% (v/v) B27 

supplement (Life Technologies), 10 μg/mL insulin-transferrin-sodium selenite 

supplement (ITSS) (Roche Life Science, UK), 20 ng/ml bFGF and 20 ng/ml EGF (both 

Peprotech). 

 

3.3.1.5 Subculturing NSC cultures 

NSCs were cultured as floating neurospheres at 37°C with 5% CO2 and half 

medium changes performed every 2 days.  As neurospheres expanded and increased 

in size, the centre of the spheres began to turn dark as cells became deprived of 

nutrients.  Before reaching this stage, spheres were subcultured.  The media and 

floating spheres were aspirated and centrifuged at 100x g for 5 minutes.  1ml of 

accutase was used to dissociate the pellet and left to incubate in the water bath at 

37°C for 5 minutes, dissociating spheres to a single cell suspension.  The action of 

accutase was then stopped by the addition of PBS.  Following a further centrifugation 

at 100x g for 5 minutes, the supernatant was discarded and the cells resuspended in 

medium.  Cells were passed through a 40µm cell strainer (Falcon™) to remove any 

clumps of cells.  Cell counts were performed and the cells resuspended at a density 



Chapter 3: Optimization of stem cell encapsulation in ECM-based microcapsules 

125 

of 100,000 cells/ml for continuous culture, or, seeded on 50 µg/ml poly-D-lysine (PDL) 

and 20 µg/ml laminin coated plates for experiments. 

3.3.2 Viability and proliferation assays 

3.3.2.1 Trypan Blue Exclusion Assay 

Trypan blue is a dye that selectively stains non-viable tissues/cells blue.  Live 

cells with intact membranes do not allow the absorption of this stain.  However, 

trypan blue penetrates the compromised membrane of dead cells.   

To determine the percentage of viable cells, an aliquot of cell suspension was 

mixed with an appropriate volume of trypan blue.  The mix was then placed in the 

haemocytometer chamber and cell counting was performed under phase contrast 

microscopy.  The percentage of viable cells was calculated according to the following 

equation: 

Percentage of cells viability=
Number of unstained cells counted

Total number of cells counted
x100 (Equation 3. 1) 

Cell viability was assessed using the trypan blue exclusion assay prior to 

encapsulation and on days 1, 3, 7, 10, 14 and 21 after encapsulation.  The method 

was slightly modified to be applied on encapsulated cells.  200µl of bead suspension 

were taken and beads left to settle at the bottom of the tube.  Culture medium was 

removed carefully so as not to remove any of the beads.  Beads were dissolved and 

cells released as described in Section 3.3.4.  Cells were centrifuged (100x g for NSCs 

and 400x g for DPSCs), supernatant removed, and the pellet resuspended in 10µl of 

culture medium.  Since NSCs grew in aggregates within the microcapsules, cells were 

accutase treated prior to suspension in culture medium in order to obtain a single 
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cell suspension.  10µl of trypan blue were added, mixed and the cell suspension was 

placed in a haemocytometer for cell counting. 

3.3.2.2 MTT Assay 

MTT assay was used to study cell viability/proliferation based on the cell’s 

metabolic activity.  MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) is reduced to its precipitated formazan product by the action of NAD(P)H-

dependent cellular oxidoreductase enzymes.  As MTT reduction depends on 

NAD(P)H-dependent oxidoreductase enzymes, this reaction is related to the cellular 

metabolic activity due to NAD(P)H flux.  Since rapidly dividing cells exhibit high 

metabolic activity, therefore giving high rates of MTT reduction, this analytical 

method is suitable to study relative cell proliferation. 

MTT (Sigma-Aldrich, UK) aliquots were prepared fresh by dissolving the 

powder in PBS at a concentration of 5 mg/ml, and were then filter sterilized.  Bead 

suspension was mixed to give a dispersed, homogenous distribution.  Cells or beads 

containing cells were seeded in 96-well plates in 200µL of medium.  20µL of MTT 

solution was added to each well, including controls, and incubated for 4 hours at 

37°C/5% CO2.  Culture medium was then removed and 150µL of DMSO was added to 

each well to dissolve any formed formazan crystals.  Plates were incubated for an 

additional 30 minutes to allow the precipitate to dissolve completely.  Absorbance 

was subsequently measured at a wavelength of 540nm (FLUOstar Omega microplate 

reader, BMG Labtech). 

In order to test the potential absorbance due to alginate or alginate-collagen 

microcapsules, empty microcapsules were plated on surfaces in 96-well plates.  MTT 
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reagent was added, incubated and then absorbance measured at 540nm.  

Measurement values were, in both cases, close to the medium only control.  

Therefore, a control including empty microcapsules was not required, and only blanks 

containing culture medium were performed.  

 

3.3.2.3 Live/Dead ® Viability/Cytotoxicity Assay 

The cell-impermeant viability indicator ethidium homodimer-1 (EthD-1) is a 

high-affinity nucleic acid stain that is weakly fluorescent until bound to DNA.  When 

used with GFP cells (488nm excitation max and 509nm emission max), it allows the 

simultaneous determination of live and dead cells.  Co-expression of green and red 

fluorescence permits identification of dead/dying cells.  Dead or damaged-

membrane cells are permeable to EthD-1, which undergoes an increase of 

fluorescence upon binding to nucleic acids, and producing red fluorescence in dead 

cells (528nm excitation max and 617nm emission max).   

Encapsulated cells were rinsed with PBS three times and then stained with a 

PBS solution containing EthD-1 at a final concentration of 2µM.  Cells were incubated 

for 30 minutes at room temperature and then the dye solution was removed and cells 

washed three times with PBS before imaging.  Laser scanning confocal microscope 

imaging of encapsulated cells was performed using a Leica SP5 Confocal Microscope 

and LAS AF imaging software.  An argon 488nm laser was used for excitation of GFP 

and emission light between 505 and 530nm was detected. A HeNe 543nm laser was 

used for excitation of EthD-1 and emission light over 650nm detected (Figure 3.1).  
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Images of encapsulated cells were acquired from confocal Z scans over a depth of 

400μm. 

 

 

Figure 3.1.  Absorption and fluorescence emission spectra of GFP and EthD-1.  Blue lines show 

absorption and fluorescence emission spectra of GFP (488 nm/509 nm).  Orange lines show 

absorption and fluorescence emission spectra of EthD-1 bound to DNA (528nm/617 nm). 

 

3.3.2.4 CellTrace™ Far Red staining for proliferation analysis by Flow 

Cytometry  

A CellTrace™ Far Red Cell Proliferation Kit was used for labelling cells to track 

proliferation by flow cytometry.  The kit contains a cell-permeant, non-fluorescent 

ester of an amine-reactive fluorescent molecule, which enters cells by diffusion 

through the plasma membrane.  Upon entry into the cell, the non-fluorescent 

molecule is converted to a fluorescent derivative by cellular esterases.  The active 

succinimidyl ester covalently binds to amine groups in proteins, resulting in long-term 

dye retention within the cell.  Through subsequent cell divisions, daughter cells 

GFP

EthD-1
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receive approximately half of the fluorescent label of their parent cells, allowing for 

the analysis of the fluorescence intensities of labelled cells.  Analysis of the level of 

fluorescence in the cell populations by flow cytometry permits the determination of 

the number of generations through which a cell has progressed since the label was 

applied. 

Cells were stained with CellTrace™ Far Red Cell Proliferation Kit according to 

manufacturer’s instructions (Life Technologies, UK).  Briefly, cells were dissociated 

with 0.25% trypsin-EDTA.  Culture medium was then added to neutralise the trypsin 

and cells were centrifuged at 400x g for 5 minutes.  After discarding the supernatant, 

pellets were resuspended in PBS at a concentration of 1x106 cells/ml.  A stock solution 

of staining reagent was prepared by dissolving CellTrace™ Far Red in DMSO at a final 

concentration of 1mM.  The appropriate volume of CellTrace stock solution was 

added to cell suspension to give a concentration of 1µM.  Cells were incubated for 20 

minutes at 37 °C protected from light.  Five times the original staining volume of 

culture medium containing at least 20% FBS was added to the cells and incubated for 

5 minutes in order to remove any free dye remaining in the solution.  Cells were then 

centrifuged and resuspended in fresh pre-warmed complete culture medium.  Cells 

were then seeded on flasks or encapsulated for further analysis. 

Cell samples were analysed using a FACSCanto flow cytometer (BD 

Biosciences).  Output data from the flow cytometer was analysed using FACS Diva 

Version 6.1.3 software, which presents data as dot plots and histograms, and permits 

calculation of the mean fluorescent intensity of the cells.  To analyse the stained cells, 

10,000 events were captured for each sample.  Two different lasers were used for 



Chapter 3: Optimization of stem cell encapsulation in ECM-based microcapsules 

130 

excitation: an argon 488nm laser and a HeNe 633nm laser.  Green fluorescence 

emission for GFP expressing cells (530/30 nm bandpass filter) and red fluorescence 

emission for CellTrace™ Far Red (660/20 nm long pass filter) were measured.  The 

data was then analysed with FlowJo Version 10.2 software. 

 

3.3.2.5 Inhibition of cell proliferation with Mitomycin C 

Mitomycin C is an alkylating agent that inhibits DNA synthesis by covalently 

reacting with DNA, forming crosslinks between complementary strands of DNA.  This 

interaction prevents separation of complementary DNA strands, inhibiting DNA 

replication and therefore, cell proliferation. 

DPSCs were treated with mitomycin C according to manufacturer’s 

instructions.  Briefly, mitomycin C (Fisher Scientific, UK) was reconstituted at 

0.5 mg/mL in water.  The appropriate volume of mitomycin C solution was added to 

flasks containing 80‐90% confluent DPSCs and culture medium to achieve a 10 µg/ml 

final concentration.  Cells were then incubated for 3 hours at 37°C in humidified 

incubator with 5% CO2.  Culture medium containing mitomycin C was removed and 

cells were washed twice with PBS.  Cells were then trypsinized and seeded in flasks 

(Section 3.3.1.2).  
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3.3.3 Encapsulation of stem cells 

3.3.3.1 Preparation of encapsulation matrix solutions 

3.3.3.1.1 Alginate matrix 

Nanocrystalline precipitated CaCO3 was dispersed in PBS at a final 

concentration of 5 mg/ml.  Medium Viscosity sodium alginate was added to the 

CaCO3 suspension at a final concentration of 2% (w/v).  The blend was stirred for 2 

hours at 50°C and then autoclaved for sterilization.  

 

3.3.3.1.2 Alginate-collagen matrix 

Alginate scaffold was modified with type I collagen in Section 3.4.3.  Hence, 

an alginate solution of 4% (w/v) in PBS containing 100mM nanocrystalline 

precipitated CaCO3 was prepared as mentioned above.  Ice cold rat tail type I collagen 

(5 mg/ml; First Link, UK) was neutralized with 0.25M NaOH and mixed with the 

4% (w/v) alginate solution, giving rise final concentrations of 2 mg/mL collagen and 

2% (w/v) alginate.  

 

3.3.3.2 Production of cell-laden microspheres 

Each component of the microfluidic device (Figure 2.1) along with PTFE tubing 

and nitrile o-rings were sterilized by autoclaving prior to any encapsulation 

experiment being carried out.  The entire assembly was then assembled within a 

Microflow Peroxide Class II advanced biological safety cabinet (Bioquell, UK) to 
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maintain sterility.  Syringes were loaded with mineral oil and pumped through HPLC 

fluid connectors and microfluidic chip, in order to lubricate the walls and avoid 

alginate adhesion and blockages.   

Cells were trypsinized (DPSCs) or accutase treated (NSCs) and resuspended in 

culture medium for cell counting (Section 3.3.2.1).  The appropriate number of cells 

was taken and centrifuged at 400x g (DPSCs) or 100x g (NSCs) for 5 minutes.  After 

the supernatant was removed, the cells were resuspended in the encapsulating 

matrix solution.  Cell suspension, mineral oil, and 0.3% (v/v) acetic acid in mineral oil 

were introduced in the chip through HPLC tubes (Section 2.3.4).  Their flow rates 

were established at 1 ml/h, 15 ml/ h and 15 ml/h, respectively, and controlled by 

syringe pumps.  Polymer microcapsules containing cells were collected in pre-

warmed culture medium.  Residual mineral oil was removed and microcapsules were 

then washed with PBS before replacement with fresh culture medium.  Encapsulated 

cells were maintained in the incubator under standard conditions (37°C, 5% CO2) until 

further experiments were undertaken. 

 

3.3.4 Cell release from microspheres 

Encapsulated cells were released from microcapsules following a 5 min 

incubation with 55mM sodium citrate (Sigma Aldrich, UK) at 37°C.  Cells were then 

centrifuged (100x g for NSCs and 400x g for DPSCs), supernatant removed and 

resuspended in culture medium.  For alginate-collagen encapsulated cells, an 

additional incubation step with 1% (w/v) type I collagenase (Sigma Aldrich, UK) was 
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performed for 5 minutes at 37°C, following incubation with sodium citrate.  Cells were 

then centrifuged, supernatant removed and resuspended in culture medium. 

 

3.3.5 Estimation of number of cells per bead 

Specific number of beads were taken for each concentration. Cells were 

released from microcapsules as previously mentioned and resuspended in specific 

volumes of culture medium. Cells were counted and the result (total number of cells 

in the specific volume) was divided by the number of beads taken.  

 

3.3.6 Neuronal differentiation 

NSCs isolated from the cortex of E14 C57Bl/6 mice, and DPSCs isolated from 

21-28 day old C57/Bl6 mice, by colleagues in Prof. Bing Song´s laboratory (School of 

Dentistry, Cardiff University) were used in Section 3.4.5.  A nestin expressing 

clonogenic population of DPSCs previously expanded by colleagues in Song´s lab was 

selected to carry out the experiments in this section.  Since DPSCs represents a highly 

heterogeneous population of cells (Section 1.2.2.1), a specific clone with neuronal 

differentiation potential was selected to carry out the neuronal differentiation 

experiments, in order to increase the yield of differentiated cells.  
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3.3.6.1 NSCs neuronal differentiation 

Culture plates were coated with 50 µg/ml PDL (Sigma-Aldrich, UK) and 

incubated overnight at 37°C.  This was removed the day after and the surfaces rinsed 

with PBS.  Laminin (Sigma-Aldrich, UK), diluted to 20 μg/ml in PBS, was then used to 

coat the culture plates at 37°C for 30 minutes.  Laminin solution was removed and 

washed with PBS.  The surfaces were then ready for seeding with cells. 

Encapsulated NSCs were released from beads 21 days after encapsulation and 

seeded at a density of 10,000 cells/cm2 on poly-d-lysine/laminin-coated plates in 

DMEM/F12 (1:1) containing L-glutamine and HEPES buffer, 1% (v/v) 

penicillin/streptomycin, 2% (v/v) B27 supplement, 20 ng/ml bFGF, 20 ng/ml EGF and 

10 μg/mL ITSS.  When cells reached 80-90% confluence, growth factors were 

gradually removed by half media changes every other day for up to 10 days with 

growth factors-free culture medium. 

 

3.3.6.2 DPSCs neuronal differentiation 

Culture plates were coated with 10 µg/ml PLL (Sigma-Aldrich, UK) for 5 

minutes at 37°C. This was removed and rinsed with PBS. Laminin (Sigma-Aldrich, UK), 

diluted to 20 μg/ml in PBS, was then used to coat the culture plates at 37 ºC.  Laminin 

solution was removed the day after and washed with PBS. The surfaces were then 

ready for seeding with cells. 

Encapsulated DPSCs were released from beads 21 days after encapsulation 

and seeded at a density of 10,000 cells/cm2 on PLL/laminin-coated plates in 
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DMEM/F12 (1:1) containing L-glutamine and HEPES buffer, 1% (v/v) 

penicillin/streptomycin, 2% (v/v) B27 supplement, 20 ng/ml bFGF, 20 ng/ml EGF and 

10 μg/mL ITSS.  After 5 days in culture, cells were washed with PBS and medium 

replaced with Neurobasal medium supplemented with 1% (v/v) 

penicillin/streptomycin, 2 mM L-glutamine, 1 x NEAA (Sigma-Aldrich, UK), 10 ng/ml 

nerve growth factor (NGF), 10 ng/ml BDNF and 10 ng/ml NT-3 (all Peprotech).   

 

3.3.7 Immunocytochemistry staining 

After the differentiation protocol and following removal of medium, cells were 

washed with PBS for 3 minutes before being fixed with 4% (w/v) paraformaldehyde 

(PFA) for 30 minutes at room temperature.  Three further washes with PBS were 

performed and the cells were then permeabilized with 0.1% (v/v in PBS) Triton X-100 

for 30 minutes at room temperature.  After three washes, 5% (w/v) bovine serum 

albumin fraction V (BSA; Fisher Scientific, UK) in PBS was applied for one hour in order 

to block non-specific binding groups.  This was removed and replaced with antibodies 

against Nestin, Sox2, Oct4, β-III tubulin and Map2 (Table 1) and the isotype control 

(Table 2) diluted in 5% (w/v) BSA at a concentration of 5 µg/ml and incubated 

overnight in a dark humid chamber at 4°C.  The following day, three PBS washes were 

performed.  Slides were then incubated with complementary fluorophore-

conjugated secondary antibodies (Table 3) diluted in 5% (w/v) BSA at a concentration 

of 4 µg/ml in the dark at room temperature for 1 hour.  Three further washes with 

PBS were performed before the cells were mounted onto glass cover slips using 

mounting medium supplemented with DAPI stain (VectorLabs, UK). bSlides were 
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stored at 4°C in the dark to prevent bleaching, until required for imaging (Section 

3.3.8.2). 

 

3.3.8 Cellular Imaging 

3.3.8.1 Phase contrast imaging 

Phase contrast images of microspheres and cells in culture were captured 

using an Eclipse TS100 inverted phase contrast light microscope (Nikon, Japan) 

equipped with a digital camera (Canon, Japan). 

 

3.3.8.2 Fluorescent imaging 

GFP expressing cells and fixed and fluorescent antibody-stained cells were 

viewed and images acquired using an ultra violet (UV) microscope (Olympus AX70 

with a Digital Eclipse DXM1200 digital camera attachment, Tokyo, Japan).  The images 

were captured using the Automatic Camera Tamer (ACT-1) control software (Nikon 

Digital, Tokyo, Japan). 

 

3.3.8.3 Confocal laser scanning microscopy 

A Leica SP5 Confocal laser scanning microscope and LAS AF imaging software 

were used for all confocal microscopy experiments (Leica Microsystems, Germany).  

An argon 488nm laser was used for excitation of GFP and emission light between 505 
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and 530nm was detected.  A HeNe 543nm laser was used for excitation of EtDh-1 and 

emission light over 650nm detected. 

 

3.3.8.4 Image processing 

Acquired images were processed and overlapping images merged using freely 

available ImageJ version 1.47i software. 

 

3.3.9 Statistics 

Data are represented as mean ± SEM, unless otherwise indicated.  Statistical 

significance was determined by Student’s t test.  P < 0.05 was considered statistically 

significant. 

 

   



Chapter 3: Optimization of stem cell encapsulation in ECM-based microcapsules 

138 

3.4  Results 

3.4.1 Study of the cytotoxicity of the reagents used on stem cells 

The production of alginate microcapsules with a diameter of 440 ± 3 µm was 

achieved utilising a customized PTFE microfluidic device developed in Chapter 2.  

Since the main purpose of this project was the encapsulation and maintenance of 

stem cells within alginate micro beads, a study of the potential toxicity on cells of the 

reagents used was undertaken. 

The technique developed in the previous chapter was based on an internal 

gelation method for the continuous and reproducible production of alginate 

microspheres.  The alginate stream was “broken-off” by the shear force generated by 

the immiscible phase mineral oil.  The mineral oil used for alginate emulsification in 

this project was classified as suitable for cell culture, and, therefore, it was assumed 

that it would not have any toxic effect on cells.  However, as an internal gelation 

approach was used, a source of protons was required to trigger the release of calcium 

ions to cross-link alginate chains.  To this end, acetic acid was dissolved in mineral oil 

at a final concentration of 0.3% (v/v) and hence the effects of an acidic environment 

and its potential detrimental effect on cells was investigated.  

In the microfluidic system developed in this project, alginate droplets were 

collected in pre-warmed culture medium, alongside the continuous phase (mineral 

oil plus acetic acid).  Since mineral oil has a lower density than culture medium, it was 

easily removed with a pipette.  However, the acetic acid present in the mineral oil 

diffused through the interphase between both liquids, which was indicated by a 
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pH/colour change of the culture medium.  Therefore, the effect on cells of the 

addition of acetic acid into the culture medium was also investigated.   

Three similar samples of each cell type suspension were centrifuged and 

supernatant discarded.  Sample 1 was resuspended in mineral oil, sample 2 was 

resuspended in 0.3% (v/v) acetic acid in mineral oil, and sample 3 was resuspended 

in 0.3% (v/v) acetic acid in culture medium.  Cell suspension in culture medium was 

used as a control.  Since mineral oil is immiscible with aqueous solutions, 10µl of 

culture medium were added to samples 1 and 2 and the mixture was pipetted up and 

down in order to force the diffusion of the cells into the aqueous phase (culture 

medium).  10µl of each sample were taken and viability was estimated using trypan 

blue exclusion assay (Section 3.3.2.1). 

The duration between the beginning of the droplet formation and its 

collection in culture medium was approximately 30 seconds.  To ensure this was not 

detrimental, the viability of the samples 1 and 2 were determined one minute after 

resuspension.  As demonstrated in Figure 3.2, cell viability decreased slightly when 

either DPSCs or NSCs were resuspended in mineral oil or in 0.3 % (v/v) acetic acid in 

mineral oil, suggesting a minimal effect on cell viability but not whole scale cell death 

on exposure to the microfluidic reagents (P < 0.05). 

Viability of sample 3 was estimated 1, 10 and 20 minutes after resuspension.  

These time points were chosen as the experimentation times for cell encapsulation 

were fixed at 1 hour, with the collection medium changed every 10-20 minutes.  It 

was clear that the addition of 0.3% (v/v) of acetic acid into the culture medium had 
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no toxic effect on cells over the test period, since no significant difference was 

observed in cell viability throughout the period tested (Figure 3.3; P > 0.05). 

Alginate has been demonstrated to be one of the biocompatible polymers 

most used for cell encapsulation (Lee & Mooney 2012).  However, it was 

hypothesised that the suspension of crystalline CaCO3 nanoparticles may have a 

harmful effect on any cells present within the micro-beads.  It is well stablished that 

variations in cytosolic Ca2+ concentration can affect cellular functions, from the 

secretion to hormones to the regulation of cell death (Pinton et al. 2008).  Hence, the 

study of cell survival within alginate-CaCO3 matrix solution was also required.  The 

viability of the cells resuspended in the encapsulation matrix (2% (w/v) alginate 

solution plus 5 mg/ml precipitated CaCO3) was studied over a period of 5 hours prior 

to any encapsulation procedure being carried out.  As demonstrated in Figure 3.4 the 

viability of the cells over the time course of the experiment was not significantly 

different compared to control (P > 0.05). 
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Figure 3.2.  Viability of DPSCs (green) and NSCs (blue) resuspended in mineral oil or in 0.3 % 

(v/v) acetic acid in mineral oil.  Cell viability was estimated one minute after resuspension.  

Data are shown as mean ± SEM, and are representative of at least three independent 

experiments made in triplicate. *, P < 0.05; ** P < 0.01; ***, P < 0.001, Student’s t test.  

 

Figure 3.3.  Viability of DPSCs (green) and NSCs (blue) resuspended in 0.3% (v/v) acetic acid 

in culture medium (Acid in CM).  Cell viability was determined 1, 10 and 20 minutes after 

resuspension.  Data are shown as mean ± SEM, and are representative of at least three 

independent experiments made in triplicate. 
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Figure 3.4. Viability of DPSCs (green) and NSCs (blue) resuspended in 2% (w/v) alginate 

solution containing 5 mg/ml CaCO3.  Cell viability was investigated over a period of 5 hours 

at intervals of 45 minutes.  Data are shown as mean ± SEM, and are representative of at least 

three independent experiments made in triplicate.  
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3.4.2  Optimization of microcapsule initial cell seeding density 

Since the ultimate goal of this thesis was the transplantation of encapsulated 

cells within an animal model of SCI, a study of the microcapsule seeding density was 

required.  It was ultimately hypothesized that a high population of viable cells would 

have a greater therapeutic effect.  Furthermore, it has been reported that cell density 

plays a crucial role in the cells’ functionality, i.e. their proliferation and differentiation 

(Issa et al. 2011).  Hence, an investigation of the appropriate initial cell seeding 

density was undertaken of whether such stem cells within a confined environment 

would maintain optimal survival. 

Preliminary encapsulation experiments with both cell types demonstrated 

different behaviours (Figure 3.5).  Whereas NSCs exhibited proliferation within the 

microcapsules in form of neurospheres, this was not observed with DPSCs.  

Therefore, it was hypothesized that high NSCs seeding densities would lead to the 

formation of large cell aggregates in a short period of time, potentially provoking 

apoptosis in the centre of the neurospheres since the cells could become deprived of 

nutrients.  Hence, two different cell concentrations were tested, namely 1x105 

cells/ml and 1x106 cells/ml.  In the case of DPSCs, since no signs of cell proliferation 

were observed, greater cell seeding densities were investigated: 1x106 cells/ml, 2x106 

cells/ml, 5x106 cells/ml, and 1x107 cells/ml.  Both cell types and all the concentrations 

mentioned above were encapsulated under the same conditions (Section 3.3.3.2).   

In Figure 3.6, images A, C, E, G, I, K correspond to laser scanning confocal 

microscope images of the encapsulated cells.  The green dots, representing GFP cells, 

were randomly distributed within the alginate microcapsules.  At low concentrations 
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(1x105 cells/ml – 2x106 cells/ml) the majority of the space within the capsules was 

unoccupied, whereas at high concentrations (5x106 cells/ml – 1x107 cells/ml) cells 

filled most of the cavities in the microspheres.  Images B, D, F, H, J, L are bright field 

images. 

 

 

Figure 3.5.  Encapsulated NSCs and DPSCs within alginate microcapsules.  A-B) Encapsulated 

NSCs 0 and 5 days after encapsulation, respectively.  Single NSCs were visible on day 0 (red 

arrows), whereas some cell aggregates (white arrows) were observed 5 days after 

encapsulation.  C-D) Encapsulated DPSCs 0 and 5 days after encapsulation, respectively.  No 

cell number increase nor aggregates were observed within microcapsules, suggesting that 

cells did not proliferate within the beads.  Scale bar = 100µm. 
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Figure 3.6. Encapsulated cells in alginate microcapsules.  Images were taken 1 day after 

encapsulation.  Laser scanning confocal images of encapsulated cells were performed using 

a Leica SP5 Confocal Microscope.  Images of encapsulated cells were acquired from a 

confocal Z scan over a depth of 400μm.  Optical images were taken with an Eclipse TS100 

inverted phase contrast light microscope (Nikon, Japan).  Scale bar = 200µm.   
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In terms of cell transplantation, an accurate estimation of the number of 

transplanted cells is important in respect of eventual clinical application.  Therefore, 

both theoretical and experimental estimation of number of cells per bead were 

carried out for each cell type and condition investigated.  In general, (Table 3.1) there 

was good correlation between the different estimated numbers of cells within each 

bead (P > 0.05). 

 

 

Table 3.1.  Theoretical calculation and experimental estimation of the number of cells per 

bead.  For concentrations greater than 1x106 cells/ml there was good correlation between 

the different estimated numbers of cells within each bead.  Value = mean ± SD (n=9). 

 

3.4.2.1 Study of cell survival within alginate microcapsules using the Trypan 

Blue Exclusion Assay 

The viability of encapsulated cells at each concentration and each cell type 

was studied over a period of 21 days after encapsulation.  Before each measurement, 

cells were released from the capsules (Section 3.3.4) and then viability estimated by 

Trypan Blue exclusion assay (Section 3.3.2.1). 

NSCs
Initial seeding density

(cells / ml)
Cells/bead

(theoretical calculation)
Cells/bead

(experimental estimation)
SD

1,00E+05 5 3 3,4
1,00E+06 45 38 8,6

DPSCs
Initial seeding density

(cells/ml)
Cells/bead

(theoretical calculation)
Cells/bead

(experimenta estimation)
SD

1,00E+06 45 43 11,2
2,00E+06 89 86 13,8
5,00E+06 223 230 30,5
1,00E+07 446 416 42,1
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Results in Figure 3.7 A demonstrated that NSCs viability remained consistent at 

a low seeding density (1x105 cells/ml) over the period tested, with little sign of cell 

proliferation.  On the contrary, an increase in viability was observed when the 

microcapsules were laden with a concentration of 1x106 cells/ml (P < 0.001).  

For the DPSCs (Figure 3.7 B), cell viability remained high and consistent over 

the first three days for all the conditions investigated.  Seven days after 

encapsulation, the number of viable cells reduced to around 70 – 80 %, followed by 

a progressive decrease up to 21 days, regardless the initial cell concentration 

(P < 0.001).  No significant differences were observed between concentrations at the 

same time point (P > 0.05). 

As mentioned above, a high concentration of cells per microcapsule could have 

a greater therapeutic effect when transplanted into the site of injury.  However, this 

concentration should permit the optimal survival of the cells within the confined 

microenvironment.  According to the results obtained above, the seeding densities 

investigated demonstrated little effect on cell survival.  Therefore, the highest 

densities, 1x106 cells/ml for NSCs and 1x107 cells/ml for DPSCs, where used in 

subsequent experiments, unless otherwise stated.  
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Figure 3.7.  Graph showing the influence of initial cell density on cells viability.  Pre-

encapsulation viability was represented as time point 0.  A) Viability of NSCs encapsulated at 

two different seeding densities within alginate microcapsules.  NSCs encapsulated at 

1x106 cells/ml demonstrated proliferation over the period tested.  However, no cell growth 

was observed when cells were encapsulated at a density of 1x105 cells/ml.  B) Viability of 

DPSCs encapsulated at four different seeding densities within alginate microcapsules.  For all 

the concentrations investigated, the viability of encapsulated DPSCs decreased to ~70%.  

Data are shown as mean ± SEM, and are representative of at least three independent 

experiments made in triplicate. ***, P < 0.001, Student’s t test versus first point. 
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3.4.2.2 Live/Dead® Viability Assay and confocal imaging of encapsulated 

cells 

Encapsulated NSCs and DPSCs were stained 1 and 21 days after encapsulation 

with EthD-1 stain as described in Section 3.3.2.3.  Confocal images of the cells were 

taken using a Leica SP5 Confocal Microscope from confocal Z scan over a depth of 

400μm. 

As observed in Figure 3.8, the behaviour of the two cell types within alginate 

microcapsules was different.  NSCs grew within the microspheres in the form of 

aggregates, with these aggregates increasing in size (and hence cell density) over the 

21 days period.  This behaviour was similar to that found when culturing NSCs in the 

form of neurospheres.  However, little sign of proliferation was observed for DPSCs, 

whose viability was slightly compromised over the period tested, as demonstrated by 

an increased in the number of dead cells (red) 3 weeks after encapsulation.  

According to the rounded shape of the cells, neither NSCs nor DPSCs appeared to 

adhere to the alginate scaffold within the beads. 
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Figure 3.8.  Confocal images of encapsulated stem cells within alginate microspheres stained 

with EthD-1.  Green fluorescence was emitted from GFP cells, whereas red fluorescence was 

emitted from EthD-1 binding the nuclei of dead cells.  Encapsulated NSCs 1 and 21 days after 

encapsulation (A-B, respectively) - NSCs grew in aggregates within the microspheres.  

Encapsulated DPSCs 1 day and 21 days after encapsulation (D-E, respectively) – little 

proliferation was observed for DPSCs, with the viability of the cells decreasing over the period 

tested.  Scale bar (A, B, D and E) = 100µm.  Scale bar (C and F) = 10µm. 
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3.4.2.3 Cell proliferation studies within alginate microcapsules 

In order to further investigate cell proliferation within the microspheres, MTT 

assay were performed for each cell type 1, 3, 7 and 10 days after encapsulation. 

MTT solution was added to encapsulated cells and blanks as described in 

Section 3.3.2.2.  Formazan was dissolved with DMSO and absorbance measured at 

540nm.  Results in Figure 3.9 revealed that NSC proliferated significantly within the 

microcapsules between days 1 and 10 (P < 0.001).  However, readings obtained from 

encapsulated DPSCs demonstrated a slight decreased in overall cell numbers over the 

time course (P < 0.01). 

 

Figure 3.9.  Graph of MTT assay on days 1, 3, 7 and 10 after encapsulation.  Mean ± SEM, and 

are representative of at least three independent experiments made in triplicate. **, P < 0.01; 

***, P < 0.001, Student’s t test versus first time point. 

Time (days)

0 2 4 6 8 10

A
b

so
rb

an
ce

 (
5

4
0

 n
m

)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

DPSC

NSC

***

***

***

***

**



Chapter 3: Optimization of stem cell encapsulation in ECM-based microcapsules 

152 

Images of the cells after formazan formation were taken at each time point 

for each cell type (Figure 3.10).  It was observed that formazan formation increased 

in encapsulated NSCs.  Furthermore, NSCs grew forming a branched network over 

the alginate microcapsules.  However, for the DPSCs, it was noted that some cells 

actually escaped from the capsules around day 3, adhered onto the tissue culture 

plastic surface and proliferated.  Therefore, the use of the MTT assay to measure 

relative cell number was deemed to be compromised and not truly reflective of cell 

number within the beads.  

 

 

Figure 3.10.  Bright field images of encapsulated cells after formazan formation in MTT assay.  

(A-D) Encapsulated NSCs 1, 3, 7 and 10 days after encapsulation, respectively.  The number 

of NSC increased over the period tested, as it could be observed by an increase in the 

precipitate formed.  (E-H) Encapsulated DPSCs 1, 3, 7 and 10 days after encapsulation, 

respectively.  Images show cells escaping from microcapsules and proliferating 3 days after 

encapsulation.  Scale bar = 200µm. 
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3.4.3 Modification of the encapsulation matrix 

The main purposes of cell encapsulation process are the protection of the cells 

from the immune response after grafting and the control of cell fate within the 

organism.  The encapsulation matrix should, at the same time, allow for the 

controlled migration/egress of the encapsulated cells at the appropriate time in order 

to integrate within the host organ, replacing lost/damaged tissue, and ultimately lead 

to recovery of normal tissue function.  Therefore, the composition of the scaffold 

needs to ‘entrap’ the cells but also allow their controlled migration in due course. 

Since cell escape from the alginate microcapsules was observed for DPSCs 

3 days after encapsulation, a modification of the encapsulation material was then 

required in order to delay any such migration.  Type I collagen was selected to modify 

the alginate scaffold, since it is the main component of the extracellular matrix and 

promotes cell attachment and cell proliferation (Kleinman et al. 1981).  It was 

postulated that this collagen would retain the cells within the capsules by providing 

cell adhesion sites.   

Both NSCs and DPSCs were encapsulated in alginate-collagen microcapsules 

as described in Section 3.3.3.2.  Viability and proliferation of the cells within the new 

scaffold was investigated and compared with the results obtained in the previous 

section, where only alginate was utilised as the encapsulation matrix.  
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3.4.3.1 Cell viability and proliferation: comparison between alginate and 

alginate-collagen microcapsules 

3.4.3.1.1  Trypan Blue exclusion assay 

The viability of the encapsulated cells within alginate-collagen microcapsules 

was studied by Trypan Blue exclusion assay 1, 3, 7, 10, 14 and 21 days after 

encapsulation.  Alginate-collagen beads were dissolved and cells released as 

described in Section 3.3.4.  Cells were then counted and viability estimated (Section 

3.3.2.1). 

Figure 3.11 demonstrates that the addition of type I collagen had little effect 

on cell viability compared to alginate alone (P > 0.05).  As for NSCs encapsulated in 

alginate beads, their viability within the alginate-collagen microcapsules significantly 

increased up to 21 days (P < 0.001).  Similarly, the behaviour of DPSCs within alginate-

collagen beads did not demonstrate any significant alteration when compared with 

alginate-encapsulated DPSCs (P > 0.05).  However, in both scaffolds, the number of 

viable DPSCs slightly decreased over the period tested (P < 0.001).  
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Figure 3.11.  Graph showing the influence of the encapsulation matrix on cell viability.  Pre-

encapsulation viability was represented as time point 0.  Data are shown as mean ± SEM, and 

are representative of at least three independent experiments made in triplicate. 

***, P < 0.001, Student’s t test versus first point. 
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3.4.3.1.2 Live/Dead ® Viability Assay and confocal imaging 

Samples from both cell types at day 1 and 21 after encapsulation were stained 

with EthD-1 dye as described in Section 3.3.2.3.  As observed in Figure 3.12, NSCs 

maintained in alginate-collagen exhibited a similar behaviour to that in alginate 

microcapsules alone, with cells growing in aggregates within the microspheres.  As in 

alginate alone, DPSCs within alginate-collagen microcapsules did not demonstrate 

any sign of cell adhesion and the viability decreased over the period tested, as 

evidenced by an increase in the number of non-viable cells (red).   
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Figure 3.12.  Confocal images of encapsulated stem cells within alginate-collagen 

microspheres stained with EthD-1.  Green fluorescence is emitted from GFP cells, whereas 

red fluorescence is emitted from EthD-1 binding the nuclei of dead cells. Encapsulated NSCs 

1 day and 21 days after encapsulation (A-B, respectively).  Encapsulated DPSCs 1 day and 21 

days after encapsulation (D-E, respectively).  Scale bar (A, B, D and E) = 100µm.  Scale bar (C 

and F) = 10µm. 
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3.4.3.1.3 MTT proliferation assay 

MTT assay was also performed on encapsulated cells within alginate-collagen 

microspheres.  For the same cell type, results at the same time point could not be 

compared, since the quantity of sample seeded for each condition was different 

(alginate or alginate-collagen microcapsules).  Therefore, an analysis of the trend was 

undertaken.  Results in Figure 3.13 show that over the time course, NSCs proliferated 

in alginate-collagen in a similar manner to how they did in alginate microcapsules 

(P < 0.001).  On the other hand, DPSCs in alginate-collagen demonstrated an overall 

decrease in absorbance 10 days after encapsulation (P < 0.01).  This trend was similar 

to that observed in DPSCs within alginate beads.   

In order to investigate whether cell egress was delayed with the modified 

encapsulation scaffold, pictures of cells after MTT formation were taken at each time 

point, and compared with those taken of alginate microcapsules (Figure 3.14).  NSCs 

grew in aggregates within the microcapsules, regardless of the encapsulation matrix.  

The formation of cell networks on microcapsules was observed on day 10 in both 

scaffolds.  In the case of DPSCs, a different behaviour was observed when compared 

with cells encapsulated in alginate beads.  Cells escaped from alginate microcapsules 

approximately 3 days after encapsulation.  This migration was not noticed until day 

10 in alginate-collagen microspheres.  Therefore, the modification of the 

encapsulation matrix allowed for a delay in cell egress.   
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Figure 3.13.  Graph of MTT assay on days 1, 3, 7 and 10 after encapsulation within alginate 

and alginate-collagen microcapsules.  A) MTT values of NSCs.  B) MTT values of DPSCs.  Data 

are shown as mean ± SEM, and are representative of at least three independent experiments 

made in triplicate. **, P < 0.01; ***, P < 0.001, Student’s t test. 
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Figure 3.14.  Bright field images of encapsulated cells after formazan formation. (A-H) 

Encapsulated NSCs within alginate or alginate-collagen microcapsules after formazan 

formation 1, 3, 7 and 10 days after encapsulation.  (I-P) Encapsulated DPSCs within alginate 

or alginate-collagen microcapsules after formazan formation 1, 3, 7 and 10 days after 

encapsulation.  Images show that DPSCs migration outside the microcapsules is delayed 

within the alginate-collagen scaffold.  Scale bar = 200µm.   
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3.4.4 Study of cell turnover within alginate-collagen 

microcapsules using CellTrace™ staining and flow cytometry 

Based on the results provided by the Trypan Blue exclusion assay, Live/Dead® 

staining and MTT assay, it was demonstrated that NSCs proliferated within the 

microcapsules.  However, since no increase in the total number of cells was observed, 

nor an increase in absorbance after formazan formation by DPSCs, the proliferative 

behaviour of these cells remained unknown.  Whilst the MTT assay is a useful assay 

to give an overall idea of relative cell number within the microcapsules, it does not 

inform on actual cell turnover – i.e. are cells dying and being replaced by new cells, 

or, is the cell number actually relatively static?  To investigate this, DPSCs were 

stained with CellTrace™ Far Red Cell Proliferation Kit and analysed with flow 

cytometry as described in Section 3.3.2.4.  Prior to labelling, one group of cells was 

treated with mitomycin C to inhibit cell proliferation (Section 3.3.2.5) and then 

stained with the CellTrace™ kit (+MC; negative control).  A second group of cells was 

not treated with mitomycin C but labelled with the CellTrace™ kit (-MC; positive 

control).  The third group of cells was stained and encapsulated within alginate-

collagen microcapsules (sample).  Both controls and encapsulated cells were cultured 

at standard conditions for up to 7 days.  Samples were taken at 1, 3, 5 and 7 days 

after labelling and cells were analysed by flow cytometry (Figure 3.15).  Encapsulated 

cells were released from microcapsules prior to analysis.  Untreated monolayer 

cultures of cells (-MC; positive control) demonstrated clear cellular proliferation as 

evidenced by a shift and fall off of the fluorescent signal as the cells divided over a 

period of 7 days, and hence ‘shared’ their fluorescent marker.  Treated monolayer 
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cultures of cells (+MC; negative control) failed to divide, as demonstrated by a 

consistent fluorescent signal.  Pre-stained, encapsulated cells were released from the 

microcapsules (sample) after set periods of time in culture and analysed.  No drop or 

shift in the fluorescence peak indicated that the DPSCs did not proliferate within the 

microcapsules. 

 

 

Figure 3.15.  Study of DPSCs proliferation within alginate-collagen microcapsules.  Both 

controls and samples were stained with CellTrace™ Far Red Cell Proliferation Kit and analysed 

by flow cytometry over a period of 7 days.  Mitomycin C treated cells (+MC) failed to divide, 

since no decrease in fluorescent signal was observed.  No mitomycin C treated cells (-MC) 

demonstrated cellular proliferation as evidenced by a shift and fall off of the fluorescent 

signal over a period of 7 days.  No drop or shift in the fluorescence peak of encapsulated cells 

indicated that the DPSCs did not proliferate within the microcapsules. 
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3.4.5 Cell functionality studies upon release from alginate-

collagen microspheres 

The appropriate encapsulation technology should not affect cell functionality.  

The results described above indicated that cells were successfully encapsulated 

within alginate-collagen microspheres, showing high viability over extended periods 

of time.  However, further investigation of cellular function was required in order to 

study the potential of encapsulated cells for cell replacement therapy.  Stem cells are 

characterized by high proliferation rates in vitro, but also the expression of 

pluripotency markers such as Nanog, Oct-4, Sox2 & SSEA4 (Zhao et al. 2012).  Hence, 

growth rates and expression of stem cells and neuronal markers by NSCs and DPSCs 

were investigated before and after neuronal differentiation, upon release from 

alginate-collagen microcapsules.  

 

3.4.5.1 Cell proliferation potential 

NSCs and DPSCs were released from microcapsules 21 days after 

encapsulation and seeded on 96-well plates at a density of 1,000 cells/well along with 

appropriate controls (no encapsulated NSCs and DPSCs).  Surfaces were pre-coated 

with 50 µg/ml of PDL and 20 µg/ ml of laminin before NSCs seeding to allow cells to 

grow in monolayer.   

MTT proliferation assay was carried out on days 1, 3, 5 and 7 after seeding as 

described in Section 3.3.2.2.  Results in Figure 3.16 demonstrate that released cells 
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preserved high growth rates (day 7 significantly different to day 1; P <0.001), similar 

to those observed for the control cultures (never encapsulated).  

 

Figure 3.16.  NSCs and DPSCs proliferation upon release from alginate-collagen 

microcapsules.  NSCs and DPSCs were released from microcapsules 21 days after 

encapsulation and seeded on 96-well plates.  MTT proliferation assay was carried out on days 

1, 3, 5 and 7 and absorbance measured at 540nm.  Both cell types showed similar growth 

rates to the non-encapsulated controls, suggesting that proliferation of cells was not 

compromised upon release from alginate-collagen microcapsules.  Data are shown as mean 

± SEM, and are representative of at least three independent experiments made in triplicate.  

**, P < 0.01; ***, P < 0.001, Student’s t test. 
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3.4.5.2 Stemness and neuronal differentiation potential  

Neuronal differentiation of DPSCs based on NSCs culture protocols has been 

previously reported in our group (Young et al. 2016).  In this study, the aim was to 

demonstrate that encapsulation of NSCs and DPSCs did not affect their capacity for 

differentiation into neuronal-like cells in vitro after release from microcapsules.   

Nestin is one of the markers used to identify cells with potential for neuronal 

differentiation (Messam et al. 1999).  Hence, expression of this protein along with 

the stem cell pluripotency markers Sox2, Oct4, and the neuronal markers β-III tubulin 

and Map2 (associated with more mature phenotypes), were investigated.  

Both NSCs and DPSCs were released from microcapsules 21 days after 

encapsulation and seeded on pre-coated plates at a density of 10,000 cells/cm2 in 

NSC growth medium (Section 3.3.6).  Undifferentiated NSCs in growth medium 

demonstrated bipolar morphology (Figure 3.17A).  When NSCs reached over 80% 

confluence, growth factors were gradually removed from medium and half-medium 

changes were performed every other day for up to 15 days.  An increased in cell death 

was observed as growth factors were gradually removed.  After 15 days in culture 

with growth factor-free medium, surviving cells developed more projections and 

created connections with adjacent cells (Figure 3.17B).   

Undifferentiated DPSCs were typically bi-/tri-polar, showing fibroblast-like 

shapes (Figure 3.17C).  DPSCs were cultured in NSC growth medium for 5 days to 

stimulate neuralisation and then medium was changed for neurotrophin containing 

medium to promote neurogenic maturation.  This was replaced every 3 - 4 days for a 

10 further days.  Cells cultured in NSCs growth medium adopted neuronal-like 
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phenotypes.  Maturation in neurotrophin containing medium led to cells developing 

rounded bodies with multiple long processes sprouting out and forming neuronal-

like connections (Figure 3.17D).  

Both NSCs and DPSCs were fixed after the differentiation protocol and stained 

with antibodies against Nestin, Sox2, Oct4, β-III tubulin and Map2, along with the 

isotype control (APPENDIX IIAPPENDIX II).  Figure 3.18 shows that NSCs stained 

positively for all markers tested in both undifferentiated and differentiated states, 

suggesting that full neuronal differentiation had not taken place (as they retained 

some pluripotency markers).  However, significant changes in cell morphology were 

observed as the cells developed long axons after the differentiation protocol.  DPSCs 

demonstrated production of Nestin before and after differentiation (Figure 3.19).  

Cells stained positively for Sox2 and Oct4 before differentiation, demonstrating 

retained stem cell properties upon release from the microcapsules, but this was lost 

after differentiation.  DPSCs expressed the mature neuronal markers β-III tubulin and 

Map2 after 15 days in neurotrophin-containing medium and demonstrated a 

neuronal-like morphology.  
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Figure 3.17.  Morphology changes during neuronal differentiation of NSCs and DPSCs.  A) 

Undifferentiated NSCs in growth medium showing bipolar morphology with rounded bodies.  

B) Differentiated NSCs developed cell projections emerging from cell body, creating 

connections with adjacent cells.  C) DPSCs in DPSCs medium, before differentiation.  Cells 

were typically bi-/tri-polar and fibroblast-like.  D)  After the differentiation protocol, DPSCs 

cell bodies adopted rounded morphology with multiple long processes sprouting out forming 

neuronal-like connections.  Scale bars = 100 μm. 
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Figure 3.18.  Immunocytochemical staining of NSCs before and after neuronal differentiation.  

NSCs were stained with antibodies against Nestin, Sox2, Oct4, β-III tubulin and Map2 before 

(A – E) and after differentiation (F – J).  Scale bar = 50µm. 
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Figure 3.19.  Immunocytochemical staining of DPSCs before and after neuronal 

differentiation.  NSCs were stained with antibodies against Nestin, Sox2, Oct4, β-III tubulin 

and Map2 before (A – E) and after differentiation (F – J).  Scale bar = 100µm. 
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3.5 Discussion 

This chapter was concerned with the optimization of the parameters for the 

encapsulation of two types of stem cells, NSCs and DPSCs.  The behaviour within 

microcapsules of the two cell types was compared and their stem cell and neuronal 

differentiation properties were investigated upon release from hydrogel beads. 

 

3.5.1 Cytotoxicity of reagents used on stem cells 

The preliminary study of the potential toxic effect of microfluidic reagents on 

cell viability was required in order to assess the biocompatibility of the method 

developed in Chapter 2.  Whereas some authors have developed successful 

microfluidic techniques for droplet generation, some of these methods might not be 

suitable for the immobilization of living systems due to the use of organic solvents 

(Nie et al. 2008; Liu et al. 2013).  Choi et al. (2007) used hexadecane as continuous 

phase for the microfluidic production of alginate microcapsules containing GFP yeast 

cells.  Although cell fluorescence could be observed after encapsulation, this is not an 

appropriate indicator of cell survival, since GFP can be observed after cell death.  

Hence, the use of organic solvents was avoided in the method developed in this thesis 

in order to prevent detrimental effects on cell viability.   

The cellular cytotoxicity of the reagents used for encapsulation was tested.  

DPSC viability was mildly decreased when resuspended in mineral oil.  The mineral 

oil used was that utilized to prevent dehydration in embryonic cell culture and 

therefore, it was expected to be cell compatible.  It is possible that the slight decrease 
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in viability was actually due to the mechanical stress that the cells were subjected to 

when they were forced to diffuse from the organic phase to the aqueous phase as 

part of the cell counting methodology (i.e. it could damage cell membranes).  When 

cells were resuspended in the reactive phase (0.3% (v/v) acetic acid in mineral oil), 

the decrease in viability was slightly higher.  In this case, not only the mechanical 

stress but also the alteration in pH, could have been factors in this decline in viability.  

It should be noted, however, that during the encapsulation procedure cells were also 

resuspended in alginate solution, and hence a direct/sole contact with either the 

mineral oil or acetic acid was highly unlikely.  Thus, the detrimental effect that these 

reagents were demonstrated to have on the cells when they were directly 

resuspended was a ‘worst case’ scenario.  The potential deleterious effect of 

acidification of culture medium was also investigated.  Results demonstrated that cell 

survival was unaffected when cells were resuspended in a solution of 0.3% (v/v) 

acetic acid in culture medium.  This result is not surprising, as culture medium 

contains buffers to regulate low changes in pH.  Finally, biocompatibility of the 

encapsulation matrix was demonstrated when cells were resuspended in a 2% (w/v) 

alginate solution containing 5 mg/ml resuspended CaCO3.  Although alginate 

biocompatibility was not an issue, potentially the precipitated CaCO3 could have a 

detrimental effect on cell survival.  This hypothesis was unfounded when it was 

observed that the viability of the cells resuspended in the polymer solution was 

practically unaffected over an extended period of 5 hours.  
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3.5.2 Viability and proliferation of encapsulated cells 

Several methods have been used for cell encapsulation.  For example, Aijaz et 

al. 2015 produced encapsulated insulin-producing RIN-m cells by vortexing a cell pre-

polymer suspension with mineral oil, although the size of the capsules obtained was 

highly polydisperse.  Other authors have used interfacial polymerization for the 

encapsulation of mammalian cells (Cruise et al. 1999).  Polymer capsules produced 

by this technique present high strength and mechanical stability, allowing the 

formation of microcapsules ranging from 1 – 30 µm to several mm in diameter 

(Salaön 2013).  However, the method involves several complex steps in which the 

slow kinetics of the reactions involved is a limiting step.  Also, the use of organic 

solvents constitutes a major problem in terms of potential cell viability 

(Khademhosseini et al. 2005).  As an attempt to increase cell survival avoiding the use 

of organic solvents, complex coacervation arose as an alternative method for 

encapsulation (Baracat et al. 2012).  Nonetheless, the polydispersity of the capsules 

produced is a major problem when using this method (Knezevic et al. 2002).  Among 

the numerous methods that have been applied for cell encapsulation, droplet 

extrusion generation is the most widely used (Duvivier-Kali et al. 2001; Murua et al. 

2007; Wikström et al. 2008; Bhujbal et al. 2014).  Cells are resuspended in the 

polymer solution and the suspension is extruded through a needle.  The resulting 

droplets are collected in a stirred CaCl2 solution where they are maintained in 

agitation for about 10 min for complete ionic gelation.   

In this chapter, it was demonstrated that microfluidics represents a highly 

suitable technique for the continuous and consistent production of cell-laden 
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microcapsules in a sealed environment, avoiding any cross-contamination.  The 

formation of highly monodisperse droplets allowed for an accurate theoretical 

estimation of the number of cells per bead, as demonstrated by comparison of these 

results with the corresponding experimental calculations.  This is of a great utility in 

cell transplantation techniques where the monodispersity of droplets allows an 

accurate determination of the number of transplanted cells and hence clinical 

delivery dose (Tan & Takeuchi 2007).  However, these estimations were only accurate 

for seeding densities above 1x106 cells/ml.  Lower cell concentrations gave rise to 

microcapsules containing variable numbers of cells or even, empty capsules.  

Unlike all the conventional methods mentioned above, the microfluidic 

method developed in this thesis permitted the production of stem cell microcapsules 

that were gelled in situ in a matter of seconds.  This is of a great importance in terms 

of cell viability, since it permitted the quick transfer of the encapsulated cells to 

culture medium, minimizing the risk of cell viability loss due to unfavourable 

conditions, such as contact with gelling baths, polymerizing solvents, etc.  Indeed, 

estimation of the number of viable cells after encapsulation showed that the 

microfluidic method was compatible with cell survival, since no significant decrease 

in cell viability was observed for the two cell types studied, regardless the initial 

seeding density.  

Further investigations into the effect on cell viability of initial seeding density 

was carried out over a period of 3 weeks.  In order to establish the highest viable 

initial cell seeding density, different concentrations of cells were encapsulated in 

alginate beads.  Potentially, a high concentration of cells could be detrimental to 



Chapter 3: Optimization of stem cell encapsulation in ECM-based microcapsules 

174 

overall cell survival, as a greater number of cells within the capsules could hinder 

diffusion of nutrients and oxygen throughout the microsphere.  Preliminary studies 

demonstrated that NSCs grew within microcapsules, whereas no increase in total cell 

number was observed for DPSCs.  It was then hypothesized that high NSCs seeding 

densities would give rise to an overgrowth of cells within the capsules, provoking 

apoptosis of cells in the centre of the aggregates.  Hence, only the seeding densities 

1x105 cells/ml and 1x106 cells/ml were investigated for NSCs.  In the case of DPSCs, 

higher cell concentrations were studied, using 1x106 cells/ml, 2x106 cells/ml, 5x106 

cells/ml and 1x107.  Differences were found in the two seeding densities in NSCs.  

Although low seeding density showed a consistent high viability over the period 

tested, high density led to proliferation of cells within the capsules, increasing both 

the total number of cells and the number of viable cells.  This increase in cell viability 

was then confirmed by MTT assay, where the absorbance of the encapsulated cells 

increased over a period of 10 days.  Also, laser scanning confocal microscopy showed 

an increase in the size of NSCs aggregates, supporting the previous observations.  The 

size of the cell aggregates after three weeks in culture was still appropriate to permit 

the diffusion of oxygen and nutrients, since no dead cells were observed in the centre 

of the aggregates when samples were stained with EthD-1 and analysed by confocal 

microscopy.  Neurosphere growth in standard culture conditions occurs at a higher 

rate than that observed in encapsulated NSCs.  Hence, it was assumed that 

encapsulation did not prevent proliferation of NSCs, but it provoked a delay in cell 

growth.  This observation was similar to that found by Wilson et al. 2014.  The 

proliferation rate of non-encapsulated and encapsulated embryonic stem cells were 

compared and results revealed that unencapsulated cells had the highest net growth 
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rate.  Other investigations on the influence of alginate matrix on the proliferation of 

encapsulated NSCs demonstrated that the growth rate of NSCs decreased with an 

increase in the hydrogel stiffness (Banerjee et al. 2009).  Thus, proliferation of cells 

could be directly related to the mechanical resistance of the surrounding 

environment.  

The initial seeding densities investigated for the DPSCs did not show any 

significant difference in cell viability at similar time points.  Unlike NSCs, DPSCs did 

not exhibit any sign of cell proliferation, and actually, a decrease in the number of 

viable cells was observed.  However, cell viability at the different seeding 

concentrations tested was still encouragingly high (more than 60% of viable cells) up 

to 21 days after encapsulation.  Interestingly, both bright field and confocal 

microscopy images of encapsulated cells showed little evidence of adhered cells as 

they remained rounded within the alginate microspheres.  Other studies on DPSCs 

immobilized within alginate hydrogels reported similar results (Umemura et al. 2011; 

Kanafi et al. 2014).  Kanafi et al. 2014 highlighted the different morphology of DPSCs 

depending on the culture conditions.  When these cells were cultured in standard 2D 

culture they acquired fibroblast-like shapes, whereas when the cells were 

encapsulated within alginate microspheres they adopted rounded morphologies.  

The same behaviour has been observed in olfactory ensheathing cells, Schwann cells 

and BMSCs cultured on alginate hydrogels, where the cells acquired atypical spherical 

shapes and their metabolic activities were inhibited (Novikova et al. 2006).  However, 

despite the prolonged period of time that these cells remained rounded within the 

hydrogels, they were still viable. 
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MTT studies of encapsulated DPSCs revealed that cell egress was occurring as 

early as 3 days after encapsulation.  The escaped cells attached on tissue culture 

plates surfaces and proliferated.  Hence, whilst the MTT assay in this situation was 

not a suitable assay (as cells both inside and outside the beads were being measured) 

it did reveal that cells could escape from the beads over the time course of the 

investigation.  

Early cell egress is a non-desirable event in transplantation therapies, since 

one purpose of cell encapsulation is their protection and isolation from the immune 

system to prevent cell death (Lee & Bae 2000; Emerich & Winn 2001; Hao et al. 2005).  

To overcome this, it was hypothesized that type I collagen would prevent cell escape 

by promoting cell attachment and at the same time that would improve cell viability, 

as has been reported by others (Hunt & Grover 2010).  Unlike collagen, alginate does 

not interact with mammalian cells, and therefore, does not promote cell adhesion 

(Rowley et al. 1999).  Hence, the alginate matrix was modified with type I collagen.  

As a result, migration of DPSCs from the beads was delayed with no cells observed to 

escape until day 10 after encapsulation.  However, little cell attachment was again 

observed.  Viability and proliferation were again studied for the two cell types in the 

new encapsulation matrix.  Importantly, no differences were observed compared to 

the results found with alginate alone, with the maintenance of NSCs and DPSCs high 

viabilities over the 3 weeks period and NSCs proliferating within the alginate-collagen 

microcapsules.   

An alternative method was designed in order to elucidate the proliferation 

behaviour of DPSCs within microcapsules.  This consisted on cell labelling prior to 
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encapsulation with a stain whose fluorescence intensity decreases as the cells transit 

through the cell cycle and divide.  This clearly demonstrated that the DPSCs did not 

proliferate within alginate nor alginate-collagen microcapsules.  This finding is 

opposed to that reported by Kanafi et al. (2014), where an increase in cell absorbance 

was observed over a period of 10 days in respect of DPSCs encapsulated within 

alginate beads.  This can be explained by the fact that, in the method developed by 

Kanafi et al. (2014), the MTT reagent was directly added on plates where 

encapsulated cells were cultured.  Some of these cells might have escaped, having 

attached on the surface of the plates and proliferated.  Hence, the MTT absorbance 

measured was the overall value of encapsulated and escaped cells.  However, the 

CellTrace method developed in this thesis overcame the issue related with cell 

escape, and demonstrated that DPSCs did not proliferate within alginate-collagen 

microcapsules.  Studies on human MSCs have also reported that cell proliferation was 

impeded when cells were encapsulated in both alginate and alginate-GRGDY 

hydrogels, although a retained viability of > 80% was observed 15 days after 

encapsulation (Markusen et al. 2006).  These authors postulated that growth 

inhibition might be due to hindered nutrient access in the alginate hydrogel.  

However, the random distribution (some in central area and some in more peripheral 

areas) of dead cells (red) for both cell types observed in this thesis (Figure 3.8 and 

Figure 3.12) suggests that microsphere nutrients and oxygen diffusion inside the 

microcapsules was not an issue.  The accumulation of dead cells in the centre of the 

capsules would be a sign of nutrient deprival due to an ineffective diffusion through 

the entire sphere.  Since this effect was not observed, it can therefore be concluded 

that the size of the microcapsules was such that it enabled bidirectional diffusion of 
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nutrients inside the capsules and the efflux of waste products from cell metabolism 

outside the beads.   

Furthermore, the composition of alginate hydrogel could also influence cell 

behaviour.  It has been reported that an increase in molecular weight and 

concentration of high guluronic acid alginates prolongs the hindrance of glucose 

metabolism, insulin secretion and cell growth of murine insulinoma βTC3 cells 

encapsulated in alginate/PLL/alginate (APA) beads (Stabler et al. 2001).  It is 

documented in the literature that alginates with a high guluronic acid content form a 

more compact network due to the coordination of Ca2+ ions and contiguous guluronic 

acid residues from different alginate chains, strengthening the resultant network 

(Grant et al. 1973; Sikorski et al. 2007) .  Thus, the stronger the network the more 

difficult it is to displace it.  Consequently, cell growth might be inhibited within stiffer 

hydrogels (Stabler et al. 2001). 

As part of preliminary studies, cells were encapsulated in low viscosity alginate 

(high content in mannuronic acid residues).  These microcapsules exhibited low 

mechanical stability, as an inconsistent spherical shape was observed.  Also, the 

efficacy of encapsulation was poor since a great number of cells were observed 

outside the capsules after the encapsulation experiment.  Hence, low viscosity 

alginates were not considered in this thesis.   
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3.5.3 Cell functionality upon release from microcapsules  

One of the initial purposes of this chapter was to test the neuronal 

differentiation potential of stem cells maintained for prolonged periods of time 

within microcapsules.  The majority of the methods developed for in vitro neuronal 

differentiation require pre-coating of surface plates with substrates that promotes 

cell attachment, such as poly-lysine, laminin, ornithine, etc. (Reynolds & Weiss 1992; 

Wang et al. 2006).  However, little cell attachment was observed for both NSCs and 

DPSCs in alginate and alginate-collagen microcapsules.  Since cell attachment is one 

pre-requisite for neuronal differentiation, these scaffolds offer a synthetic 

microenvironment which is able to prevent spontaneous differentiation.  Hence, 

these matrices are good candidates in order to protect the cells from the adverse 

environment after injury and preventing their auto-differentiation before the acute 

phase following SCI has ceased.  

It should be noted that an objective of this thesis was to use ECM hydrogels 

as vehicles to protect transplanted cells from an adverse environment after injury 

and to direct cell location at the site of implantation.  Therefore, ECM hydrogels 

should degrade as the cellular system replaces the ‘artificial’ matrix after 

transplantation.  To this end, it was observed that cells were able to migrate out from 

the capsules and proliferate on plates 10 days after encapsulation.  Therefore, the 

studies moved towards the investigation of the cellular functionality upon release 

from microcapsules 21 days after encapsulation.   

It was observed that proliferation of cells within the microcapsules was slowed 

down in NSCs and inhibited in DPSCs.  However, when cells were released from beads 
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and seeded on plates, they showed growth rates similar to those exhibited by non-

encapsulated cells.  As mentioned in the previous section, NSCs proliferation might 

be hindered within microcapsules due to the mechanical stiffness of the hydrogels.  

On the other hand, DPSCs proliferation only occurred after the release from capsules 

and seeding on plates.  I hypothesized that alginate-collagen microcapsules provide 

an artificial stem cell niche, where DPSCs reside in a quiescent state.  This is like DPSCs 

residing within the dental pulp of living organisms, usually remaining quiescent when 

they are within the dental pulps, but responding quickly after injury (Potdar & 

Jethmalani 2015).  Although similar behaviour has been observed in DPSCs and MSCs 

in several publications (Markusen et al. 2006; Novikova et al. 2006; Umemura et al. 

2011; Kanafi et al. 2014) none of these studies report on the mechanisms underlying 

cell survival despite their lack of attachment and proliferation.  However, research on 

how to extend lifespan in yeast gives a hint of the potential mechanisms involved in 

the behaviour of adherent stem cells encapsulated in low adherence hydrogels.  

Nagarajan et al. 2014 showed that encapsulated yeast cells within calcium alginate 

beads and fed ad libitum ceased to divide but they maintained >95% viability over 

the course of 17 days.  Analysis of gene expression of immobilized yeast cells 

demonstrated decreasing transcription of genes that regulate the cell cycle.  A similar 

mechanism might take place in non-attached DPSCs within alginate-collagen 

microcapsules, where cells go into cell cycle arrest but continue to be metabolically 

active.  Since cell aging is related to how many times a cell divides, controlled 

inhibition of cell division would allow for the temporal extension of stem cell lifespan.  

It has been observed in this chapter that the behaviour of NSCs and DPSCs was 

altered under encapsulation conditions.  However, upon release from the capsules, 
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cells retained stem cell properties, as demonstrated by high growth rates and the 

expression of both stem cell and neuronal markers.  When cells were liberated from 

hydrogels and seeded on coated plates, both NSCs and DPSCs developed neuronal-

like morphologies after application of a neuronal differentiation protocol previously 

developed in our group (Young et al. 2016).   

Analysis of protein production showed that NSCs expressed the neuronal 

markers Nestin, β-III tubulin and Map2 and the stem cell markers Sox2 and Oct4 

before and after differentiation.  Nestin is a marker commonly used to identify early 

stage neural cells (Dahlstrand et al. 1995; Messam et al. 1999).  Nestin expression is 

downregulated when CNS stem/progenitor cells differentiate into neurons or glial 

cells (Frederiksen & McKay 1988; Dahlstrand et al. 1995).  After NSCs differentiate, 

nestin expression is typically replaced by the expression of neuronal or glial specific 

markers, such as NF-I and GFAP (Hendrickson et al. 2011).  Expression of nestin after 

the differentiation protocol suggests that neuronal differentiation was not complete.  

This presumption was supported by the production of the stem cell marker proteins 

Sox2 and Oct4 after 15 days in differentiation medium.  NSCs also expressed the early 

stage neuronal markers β-III tubulin and Map2 at both undifferentiated and 

differentiated state.  Co-expression of Nestin and β-III tubulin has been suggested to 

be involved in the formation of cell processes during the differentiation of NSCs (Liu 

et al. 2013).  Although no variations in proteins production was reported by NSCs, it 

was observed that cells developed long axons and neurites emerging from cell body, 

creating connections with adjacent cells and adopting neuronal morphology. 
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Expression of nestin by DPSCs was also observed both before and after 

differentiation.  However, their behaviour differed from that shown by NSCs in that 

DPSCs produced the stem cell markers Sox2 and Oct4 in the undifferentiated state 

but not after the differentiation protocol.  On the other hand, early stage neuronal 

markers β-III tubulin and Map2 were only visible in the differentiated state.  DPSCs 

exhibited a change in their phenotype towards a neuronal-like morphology.  Cells 

were typically bi-/tri-polar and fibroblast-like before differentiation.  After the 

differentiation protocol, DPSC cell bodies adopted a rounded morphology with 

multiple long processes sprouting out forming neuronal-like connections.  Although 

several protocols for DPSCs neuronal differentiation have been developed (Karaöz et 

al. 2011; Ellis et al. 2014; Gervois et al. 2015), this is the first time that it has been 

demonstrated that DPSCs maintain their stem cell and neuronal properties after 

encapsulation within alginate-collagen microcapsules.   

 

The results presented in this chapter demonstrate that the microfluidic 

technique developed in this thesis allowed for the encapsulation of different types of 

stem cells.  Encapsulation of NSCs and DPSCs within alginate and alginate-collagen 

microcapsules permitted their culture in 3D scaffolds for up to 21 days.  Viability and 

proliferation assays demonstrated that the cells were viable for this 3-week period.  

However, proliferation of NSCs was delayed and inhibited in the case of DPSCs.  This 

effect might permit the use of such scaffolds to ‘extend’ the cell lifespan by 

positioning them within an appropriate niche which supports cell quiescence.  When 

stem cells were released from the microcapsules, both NSCs and DPSCs clearly 
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retained stem cell and neuronal-like differentiation properties, as demonstrated by 

high proliferation rates and the expression of stem cell pluripotency markers and 

neuronal markers.  
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4.1 Introduction 

One of the limitations of in vitro experiments is that they fail to replicate the 

precise cellular conditions of an organism (Staton et al. 2009).  Because of this, in 

vitro studies often lead to results that do not fully correspond to the events occurring 

within a living organism.  For example, intact functional organs or tissues in vivo 

exhibit complex interactions with many different cell types.  These mechanisms are 

difficult to replicate in most in vitro cell culture models (Whitehead et al. 2012).  

Therefore, when extrapolation of in vitro data to the in vivo situation is required, the 

model must try to reflect the complexity of the studied system.  Thus, ex vivo systems 

offer a valuable tool before progressing onto in vivo investigations.  Ex vivo 

experiments include procedures with living tissues or organs isolated from an 

organism and cultivated outside that organism in an artificial environment under 

highly controlled conditions.  As such, an ex vivo model system in which the full 

complexity of the host-associated environment can be eliminated, provides an ideal 

experimental arena in which the underlying cellular and molecular mechanisms 

between the host and grafted cells can be studied. 

Spinal cord explant culture systems preserve partial histological architecture 

of a surgically removed piece of organ, allowing the study of in vivo processes under 

controlled ex vivo conditions (Sypecka et al. 2015).  Different SCI ex vivo models have 

been established for the study of several aspects of neuroscience investigations.  

Okada et al. (2014) developed a laser-induced SCI model to assess the mechanisms 

of axonal degeneration in real time.  The similarity of the model with clinically 

relevant contusion/compression-induced axonal pathologies permitted the 
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differentiation between the primary insult that directly injures axons and secondary 

injury mechanisms.  Ex vivo models have also been utilised to study repair strategies 

after SCI.  These include peripheral nerve graft implants into cultured spinal cords 

(Zhang et al. 2010) and cell transplantation (Kim et al. 2009; Park et al. 2010).   

The promising results obtained with ex vivo models have encouraged 

researchers to apply these findings into in vivo systems.  Indeed, the potential of both 

NSCs and DPSCs for neuronal repair after SCI have been reported (Ogawa et al. 2002; 

Sakai et al. 2012).  Most of the times, neuron survival and regrowth after injury is 

mediated by neurotrophins and growth factors released by the grafted cells rather 

than by direct cell incorporation/replacement (Corti et al. 2010; Rossi et al. 2010; De 

Almeida et al. 2011).  Current therapies that apply cell replacement to promote 

neuronal survival and/or growth have had modest success in allowing injured 

neurons to regrow through the area of the lesion (Pfeifer et al. 2004; Parr et al. 2007).  

This is because of the lack of three-dimensional organization in cellular 

transplantation, resulting in random directions of axonal growth in the lesion site and 

poor bridging beyond the injury (Pires & Pêgo 2015).  Hence, strategies for successful 

regeneration will require an engineering approach that guide regenerating axons in 

the proper direction to create a bridge across the injured area (Geller & Fawcett 

2002).  In fact, when BMSCs were seeded in alginate-based scaffolds with an 

anisotropic capillary structure, enhanced axonal growth oriented parallel to the 

hydrogel channel walls was demonstrated (Günther et al. 2015).  Hence, in this 

investigation, an ex vivo model of SCI and transplantation was utilised to investigate 

the potential of the grafting of stem cells encapsulated within alginate-collagen 

microbeads.   
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4.2 Aims & Objectives 

The objectives of this chapter were to: 

 Develop a method for the transplantation of encapsulated stem cells into 

an ex vivo model of SCI. 

 Study of the behaviour of the transplanted stem cells within the tissue, 

including cell survival and neuronal differentiation. 

 

4.3  Materials & Methods 

4.3.1 Animals  

21-28 day old C57/Bl6 mice were used for tissue harvest and obtained from 

Charles River Laboratories, UK, and maintained at the Joint Biological Services Unit 

(JBIOS) at Cardiff University, Cardiff, Wales.  Mice were sacrificed by CO2 asphyxiation 

in accordance with Schedule 1 of the Animals (Scientific Procedures) Act 1986. 

 

4.3.2 Dissection and preparation of murine spinal cord explants 

Spinal cord slice cultures were prepared as previously described (Meng et al. 

2012).  Briefly, 21-28 day old C57BL/6 mice were sacrificed by CO2 asphyxiation and 

complete spinal cords were dissected on ice.  Meninges were carefully removed, so 

as not to damage the cord, under a dissecting microscope.  Cords were then washed 

twice in PBS supplemented with 1% (v/v) penicillin/streptomycin.  Cords were cut 
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with surgical blades on ice into approximately 1cm long sections.  These were 

transferred to the centres of 35mm tissue culture dishes with the dorsal area facing 

upwards.  An injury was induced on the centre of each section by removing part of 

the tissue with a scalpel.  

 

4.3.3 Transplantation of encapsulated cells 

To allow for easy identification of transplanted cells, a mixed population of 

NSCs and fibronectin-adherent DPSCs were isolated from transgenic mice expressing 

GFP (Section 3.3.1). 

Cells in culture were trypsinized (DPSCs) or accutase-digested (NSCs) and 

encapsulated in alginate-collagen microcapsules as described in Section 3.3.3.2.  

Neuronal-like pre-differentiated DPSCs were cultured in NSC growth medium for 5 

days (Section 3.3.6.2) and also encapsulated.  Microcapsules were then transplanted 

with forceps into the spinal cord sections so as to fill the gap generated after injury 

(2.5mm long and 0.5cm wide, approximately).  Six microcapsules were transplanted 

for each experimental condition and sealed in position with 30μl of Matrigel® (BD 

Biosciences, UK) to avoid the beads becoming released from the tissue.  The plates 

were then transferred to the tissue culture incubator for 1 hour to allow the 

Matrigel® to polymerise.  Pre-warmed DMEM/F-12 medium containing 25mM HEPES 

buffer supplemented with 1% (v/v) penicillin/streptomycin and 20% heat-inactivated 

FBS (all Life Technologies, UK) was then added such that the surface of the spinal cord 

sections was completely covered with culture medium.  Samples were then returned 

to the incubator and culture medium replaced every other day for up to 10 days.  
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4.3.4 Cryosectioning of spinal cord tissue samples  

Spinal cord tissues were removed from culture and fixed overnight at 4°C with 

4% PFA either immediately after transplantation (0 days) or 10 days after 

transplantation.  The following day, samples were washed for 3x 20 minutes in PBS 

and then washed in 30% (w/v) sucrose (Sigma-Aldrich, UK) solution overnight to 

provide cryoprotection.  Spinal cord tissue was then mounted in OCT embedding 

compound (Thermoscientific, UK). 20μm-thick longitudinal sections were cut using a 

Leica CM3050 S cryostat (Leica Microsystems, Germany) and mounted onto glass 

microscope slides (VWR International, UK).  Glass slides were stored at -80°C until 

required for further analysis. 

 

4.3.5 Apoptosis Tunel Assay 

Slides were removed from the -80°C freezer and air dried at room temperature 

for 20 minutes.  Spinal cord slices were permeabilized with 1X Proteinase K solution 

in PBS for 15 minutes.  Samples were washed with PBS twice for 5 min and then post-

fixed with 4% (v/v) paraformaldehyde for 5 min at 37°C.  Slices were immersed in PBS 

twice for 5 minutes and after rinsing with deionized water samples were ready for 

staining.   

To induce DNA strand breaks (positive control, APPENDIX III), tissues were 

fixed and permeabilized with 1 unit of DNase I diluted into 1X DNase I Reaction Buffer 

(20mM Tris-HCl, pH 8.4, 2mM MgCl2, 50mM KCl) for 30 minutes at room temperature 

(both LifeTechnologies, UK).  Positive control and samples were then stained with 
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Click-iT® Plus TUNEL Assay (Life Technologies, UK) according to the manufacturer’s 

instructions.  Briefly, samples were incubated with TdT reaction buffer for 10 minutes 

at 37°C.  Buffer was removed and TdT reaction mixture containing 94% (v/v) TdT 

reaction buffer, 2% (v/v) EdUTP and 4% (v/v) TdT enzyme was then added to tissues 

and incubated for 60 minutes at 37°C.  The reaction mixture was removed and slides 

rinsed with deionized water.  Slides were then washed with 3% BSA and 0.1% Triton® 

X-100 in PBS for 5 minutes before rinsing in PBS.  The reaction cocktail was prepared 

by addition of 87% (v/v) reaction buffer, 2% (v/v) copper protectant, 0.2% (v/v) Alexa 

Fluor® picolyl azide and 10% (v/v) reaction buffer additive.  The mixture was then 

added to samples and incubated for 30 minutes at 37°C, protected from light.  The 

reaction cocktail was removed and slices washed with 3% BSA before washing in PBS 

for 5 minutes.  Samples were mounted onto glass cover slips using mounting media 

supplemented with DAPI stain (VectorLabs, UK).  Fluorescent images were then 

acquired of the stained spinal cord tissues. (Section 3.3.8.2). 

 

4.3.6 Immunohistochemical staining of spinal slice cultures 

Slices were removed from the -80°C freezer and air dried at room temperature 

for 20 minutes.  A ring was created around each slice using a hydrophobic pap pen 

(Sigma-Aldrich, UK) in order to minimise antibody wastage.  Samples were 

permeabilized with 0.1% (v/v in PBS) Triton X-100 for one hour at room temperature.  

After three washes with PBS, 5% (w/v) BSA (Fisher Scientific, UK) in PBS was applied 

for one hour in order to block non-specific binding.  This was removed, washed with 

PBS and replaced with primary antibodies against Nestin, Map2 and GFAP (Table 1) 
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diluted in 5% (w/v) BSA along with the isotype control (Table 2) and incubated 

overnight in a dark humid chamber at 4°C.  The following day, three PBS washes were 

performed before incubation with complementary fluorophore-conjugated 

secondary antibody diluted in 5% (w/v) BSA (Table 3), in the dark at room 

temperature for 2 hours.  Three further washes with PBS were performed before the 

samples were mounted onto glass cover slips using mounting medium supplemented 

with DAPI stain (VectorLabs, UK).  Slides were stored at 4°C in the dark, to prevent 

bleaching, until required for imaging (Section 3.3.8.2). 
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4.4 Results 

4.4.1 Development of a method for the transplantation of 

encapsulated stem cells into an organotypic model of spinal cord 

injury 

Most of the methods developed for transplantation of microcapsules use 

needles to inject the encapsulated cells into the injury site (Sah & Chien 1996; Toso 

et al. 2003; Zhao et al. 2016).  However, the size of the beads produced in this thesis 

was too large to use needle injection.  The narrow internal diameters of the needles 

provoked their blockage and injection was impeded.  The reduction of microcapsules 

diameter would have involved the re-optimization of the encapsulation parameters.  

Hence, a method for implantation of the microcapsules with diameters ~400µm was 

developed in this section.   

The transplantation technique should be reproducible in order to compare the 

behaviour of the transplanted cells.  Also, the technique must permit a precise control 

of graft implantation, which directly affects cell arrangement within the tissue.  

Whilst conventional cell grafting can promote growth of injured axons, they rarely 

extend across the lesion site due to the lack of a proper guidance.  Hence, a precise 

control of cell orientation is of a key importance in SCI in order to assess linear axonal 

regeneration through the injury site (Günther et al. 2015). 

Following CO2 asphyxiation, spinal cords from mice were dissected as 

described in Section 4.3.2.  After the injury was induced, encapsulated cells were 
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transplanted following the steps in Section 4.3.3.  Different strategies were 

considered in order to induce the injury.  Due to the anatomy of the cord (Figure 

4.1A) the injury could not be too deep since beads would escape underneath the 

tissue.  The first approach involved the removal of the tissue on the dorsal part of the 

cord in a “V” shape (Figure 4.1B).  Then beads were implanted to fill the gap 

completely.  However, the number of beads that could be implanted was limited and 

their arrangement difficult to control.  Therefore, a different approach was 

considered in order to maximize the number of transplanted beads per tissue section.  

This consisted of the removal of part of the tissue on the surface of the cord in order 

to induce the injury lengthwise.  This method allowed for the visualization of all the 

beads transplanted in the same section, increasing the number of visible cells (Figure 

4.1). 

 

 

Figure 4.1.  Approaches for injury induction into an ex vivo model of SCI.  A) Schematic 

representation of the anatomy of the spinal cord.  B) Injury induction in a “V” shape.  C) Injury 

induction lengthwise.  
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The main challenge to overcome was to fix the position of the microcapsules 

within the injury during the investigation period otherwise they would float free 

within the culture medium.  Therefore, a cell friendly “glue” was utilised to seal the 

capsules at the injury site.  Matrigel® is a biocompatible matrix rich in ECM proteins 

that mimics in vivo environments.  When added on the top of the beads and cultured 

for 1 hour at 37°C, it became solid, thereby entrapping the beads (Figure 4.2).  In this 

way, it was possible to improve cell engraftment by sealing the microcapsules at the 

transplantation site, avoiding the loss of beads during the culture period and 

preventing any potential spread of the injury.  After Matrigel® solidification, explants 

were fixed, dehydrated and cryosectioned in 20µm thick slices (Section 4.3.4).  

Tissues were then imaged with a fluorescence microscope as described in 

Section 3.3.8.2.  Figure 4.3 shows a longitudinal section of spinal cord tissue after 

transplantation (day 0).  Alginate-collagen capsules containing GFP DPSCs can be 

observed in the middle of the cord, demonstrating the efficacy of Matrigel® to retain 

the capsules at the site of implantation. 
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Figure 4.2.  SCI induction and transplantation of encapsulated cells.  A) Murine spinal cord 

was dissected after CO2 asphyxiation.  Meninges were then removed and an injury was 

induced on the dorsal part of the cord.  Encapsulated cells were transplanted at the site of 

injury and sealed with Matrigel®.  Scale bar = 500mm.  B) Picture of spinal cord after 

transplantation of encapsulated cells.  Scale bar = 500µm.  
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Figure 4.3.  Spinal cord longitudinal section after transplantation of encapsulated cells.  A) 

20µm thick frozen section of spinal cord.  Scale bar = 1mm.  B-C) Detailed images (bright field 

and fluorescence, respectively) showing encapsulated GFP DPSCs within the spinal cord.  

Scale bars = 200µm.   

 

In order to highlight the benefits of this cell encapsulation technique for 

transplantation purposes, a comparison between implantation of unencapsulated 

and encapsulated cells was carried out.  The same number of cells corresponding to 

the transplantation of 6 beads loaded with cells (~ 2700 cells) were pipetted at the 

site of injury resuspended in 2μl of culture medium.  Matrigel® was then added on 

the top to seal the injury and to retain the cells at the site of implantation.  Tissues 

were fixed, dehydrated and sliced into 20µm slices (Section 4.3.4).  

Figure 4.4 demonstrates that cells could be observed after both methods of 

delivery immediately after transplantation.  However, the longer-term localization of 

the cells differed dependent on the implantation method utilised.  After 10 days, no 

GFP-positive cells were found at the injury site when cells were implanted as cell 

suspension (non-encapsulated).  On the other hand, GFP positive encapsulated cells 

were observed within the capsules at the injury site 10 days after transplantation. 

A B C
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Figure 4.4.  Behaviour comparison of non-encapsulated and encapsulated cells transplanted 

in spinal cord slice cultures.  Coexpression of DAPI and GFP.  (A) Few unencapsulated cells 

could be observed within the tissue directly after implantation (white arrows).  (B) Ten days 

post-injection, the injury site remained devoid of any non-encapsulated cells.  (C) 

Encapsulated cells were transplanted and visible at the injury site.  (D) Encapsulated cells 

were still visible 10 days after transplantation.  Scale bar = 100µm.  
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Differentiation of transplanted cells in situ is heavily influenced by the 

surrounding tissue/environment (Kshitiz et al. 2012; Gattazzo et al. 2014; Griffin et 

al. 2015).  In this chapter, the behaviour of different cells types was investigated in 

order to study the influence of the host tissue on the fate of the transplanted cells.  

The three different conditions investigated were the following: (1) undifferentiated 

DPSCs, (2) DPSCs pre-differentiated into neuronal-like cells following the protocol 

described in Section 3.3.6.2 and (3) undifferentiated NSCs (Figure 4.5). 

Cells for the three conditions were encapsulated in alginate-collagen 

microcapsules at an initial density of 1x107 cells/ml.  Whilst the optimized 

concentration for encapsulation of NSCs was stablished at 1x106 cells/ml (Section 

3.4.2), preliminary experiments demonstrated that very few cells were visible after 

cryosectioning.  Hence, it was decided to increase the concentration of initial seeding 

density for NSCs from 1x106 cells/ml to 1x107 cells/ml for this set of experiments.  The 

viability and the neuronal differentiation potential of the encapsulated cells were the 

investigated 1 and 10 days after transplantation into the ex vivo SCI model.  

 

Figure 4.5.  Bright field images of cells at three different conditions before encapsulation and 

transplantation.  A) Condition 1: undifferentiated DPSCs.  B) Condition 2: pre-differentiated 

DPCSs into neuronal-like cells.  C) Condition 3: undifferentiated NSCs.  Scale bar = 100µm.  
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4.4.2 Analysis of cell survival after transplantation 

The survival of cells within the alginate-collagen microcapsules was described 

in the previous chapter.  Both DPSCs and NSCs demonstrated high viabilities after 3 

weeks in culture within tissue flasks (>65% and >85%, respectively).  In order to 

progress towards further applications in the repair of SCI, the suitability of the 

encapsulated cells should be investigated within an ex vivo model of SCI.  

The three different types of encapsulated cells were implanted into spinal cord 

tissues and cell viability was studied immediately and 10 days after transplantation.  

Cells were fixed, dehydrated and cryosectioned before staining with Apoptosis Tunel 

Assay (Section 4.3.5).  For the three cell types studied, microcapsules were easy to 

visualize immediately after transplantation, but no complete capsules were observed 

after the culture period.   

As observed in Figure 4.6, cells of all three types were viable at the time of 

implantation, since no co-expression of DAPI/GFP/AF 594 was observed.  Ten days 

after transplantation, a number of apoptotic nuclei were observed for cell types 1 

and 2, as observed by co-expression of DAPI/AF 594.  However, some encapsulated 

cells were still viable for the three cell types.  Furthermore, NSCs (cell type 3) 

proliferated within the tissue and started to form aggregates.  No signs of cell 

proliferation were observed for either DPSCs population.  This behaviour was similar 

to that observed in standard culture of encapsulated cells, where NSCs grew in the 

form of aggregates but DPSCs did not proliferate (Section 3.4.3.1.2)  
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Figure 4.6.  Apoptosis Tunel Assay of encapsulated cells transplanted into an ex vivo model of SCI.  Co-expression of DAPI-stained nuclei, GFP cells and apoptotic 

nuclei.  Encapsulated cells from the three conditions were transplanted and viability was studied using Apoptosis Tunel Assay 0 (A-C) and 10 (D-F) days after 

transplantation.  Condition 1: undifferentiated DPSCs (A, D); Condition 2: pre-differentiated DPSCs into neuronal-like cells (B, E); Condition 3: undifferentiated 

NSCs (C, F).  Scale bars = 50μm 
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4.4.3 Study of the neuronal marker levels within encapsulated 

stem cells transplanted into ex vivo spinal cord cultures 

All three cell types were encapsulated within alginate-collagen microcapsules, 

implanted into ex vivo spinal cord slices and cultured for 0 or 10 days.  Tissue sections 

were then fixed, dehydrated and stained with antibodies against nestin, map2 and 

GFAP as described in Section 4.3.6, along with the appropriate isotype control 

(APPENDIX IV).  An intense endogenous staining of GFAP was observed in the spinal 

cord cultures, regardless of the cell type or the time point.  However, no endogenous 

staining for nestin and map2 was observed (APPENDIX V).  

Undifferentiated DPSCs (cell type 1) expressed the neuronal marker nestin 

before and after culture within the section of spinal cord (Figure 4.7).  On the other 

hand, none of the neuronal markers associated with more mature neuronal 

phenotypes, map2 and GFAP, were observed immediately after transplantation.  

However, cells did stain positive for these neuronal markers after 10 days in culture. 

Unlike undifferentiated DPSCs, neuralised DPSCs (cell type 2) showed staining 

for both nestin and GFAP before culture, whilst the cells did not stain positive for 

map2 (Figure 4.8).  Ten days after culture, nestin and GFAP staining was evident as 

was positive staining for map2.   

Unlike undifferentiated and neuralised DPSCs, undifferentiated NSCs (cell type 

3) did not show GFAP expression before or after culture.  However, cells stained 

positively for nestin and map2 at both time points (Figure 4.9).   
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Figure 4.7.  Expression of neuronal markers by undifferentiated DPSCs (cell type 1).  Alginate-collagen microcapsules loaded with undifferentiated DPSCs were 

implanted in spinal cord slices and cultured for up to 10 days.  Explants were stained with antibodies against nestin, map2 and GFAP before (A - C) and after 

culture (D - F).  Transplanted cells (green) expressed the neuronal marker nestin before and after culture.  On the other hand, none of the neuronal markers 

associated with more mature phenotypes, map2 and GFAP were observed after transplantation.  However, cells stained positive for these proteins after 10 

days in culture.  Scale bars = 100µm. 
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Figure 4.8.  Expression of neuronal markers by neuralised DPSCs (cell type 2).  Alginate-collagen microcapsules loaded with neuralised DPSCs were implanted 

in spinal cord slices and cultured for up to 10 days.  Explants were stained with antibodies against nestin, map2 and GFAP before (A - C) and after culture 

(D - F).  Neuralised DPSCs (green) showed expression of both nestin and GFAP before culture, while cells did not stain positive for map2.  Ten days after culture, 

cells were positive for all three markers.  Scale bar = 100µm. 
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Figure 4.9.  Expression of neuronal markers by undifferentiated NSCs (cell type 3).  Alginate-collagen microcapsules loaded with undifferentiated NSCs were 

implanted in spinal cord slices and cultured for up to 10 days.  Explants were stained with antibodies against nestin, map2 and GFAP before (A - C) and after 

culture (D - F).  Undifferentiated NSCs (green) did not show GFAP expression before or after culture.  However, cells stained positively for nestin and map2 at 

both time points.  Scale bar = 100µm. 
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4.5 Discussion 

NSCs and DPSCs encapsulated in alginate-collagen microcapsules exhibited 

high viabilities after three weeks in culture and retained stem cell and neuronal 

differentiation potential upon release from microcapsules (Section 3.4.5).  As an 

attempt to apply this technique in a clinically relevant model, the behaviour of the 

encapsulated cells was studied in an ex vivo model of SCI developed in this thesis.  

Organotypic models permit a tight control of the artificial environment, which allows 

for the reliable comparison of the different conditions studied. 

The lack of ECM at the lesion site, that directs and organizes the wound healing 

cells, is one of the mechanisms that interferes with regenerative processes after SCI 

(Gaudet & Popovich 2014).  Thus, the use of biomaterials to replace ECM and support 

axonal growth has gained great attention over the last years as a promising strategy 

for neural tissue engineering.  In this thesis, it was demonstrated that encapsulation 

of cells and further transplantation helps retain the grafted cells at the wound site.  

Comparison between transplantation of non-encapsulated and encapsulated cells 

demonstrated that microcapsules aided retention of transplanted cells at the site of 

injury 10 days after implantation.  However, no cells were found after this period of 

time when cells were implanted as a free cell suspension.  This demonstrates the 

added benefits of using scaffolds as mean of transplantation in cellular therapies.  

These materials not only help to retain grafted cells at the injury site but also allow 

manipulation of the direction of cell transplantation in a three-dimensional manner, 

facilitating the integration of implanted cells within the host tissue (Yoshii et al. 2003; 

Tsai et al. 2006; Günther et al. 2015; Sugai et al. 2015; Fan et al. 2017).  
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After cell transplantation, one of the main challenges is the loss of cellular 

material due to inflammatory responses (Wilson and Chaikof 2009).  Thus, 

immobilization of cells within polymer hydrogels has been useful to protect the 

enclosed cells from the host’s immune response (Zhong et al. 2010; Ye et al. 2011; 

Jun et al. 2013).  The survival of the encapsulated cells after transplantation in the ex 

vivo model of SCI was studied after 10 days in culture.  Encapsulated cells of three 

cell types survived throughout the culture period, as evidenced by limited apoptosis 

staining.  Ex vivo slice cultures are avascular and as such, reduced apoptosis as a result 

of a lack of inflammatory response was expected.  Co-culture of organotypic spinal 

cord slices along with a controlled concentration of pro-inflammatory molecules, 

such as IL-1β, IL-6, and TNF-α (Zhang & An 2007), would provide a more accurate ex 

vivo model to study grafted cell survival under the harsh conditions found in SCI.  For 

instance, the co-culture method has been adapted for the study of insulin-secreting 

cell survival whereby the cells have been encapsulated within anti-inflammatory 

peptide functionalized hydrogels and then cultured in the presence of diffusible pro-

inflammatory cytokines (Su et al. 2010). 

Although encapsulated cells survived within the spinal cord cultures, neither 

undifferentiated, nor neuralised DPSCs showed signs of proliferation, since no 

increased cellular density at the site of grafting could be observed.  This behaviour 

was similar to that observed in vitro, where cells did not proliferate but maintained a 

high percentage of viable cells after 3 weeks in culture.  On the other hand, NSCs 

showed some signs of cell proliferation, as indicated by the observation of small cell 

aggregates after the culture period.  In relation to this it has been demonstrated that 

immobilized neural progenitor cells within microfibers showed high proliferation 
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rates after transplantation into an in vivo mouse model of SCI (Sugai et al. 2015).  On 

the other hand, it has been reported that DPSCs do not proliferate after implantation 

into the mouse hippocampus but they stimulate proliferation of endogenous neural 

cells (Huang et al. 2008).  

Spinal cord slices were analysed in order to elucidate whether transplanted 

cells migrated out from the capsules and integrated within the host tissue.  Since cell 

escaping from alginate-collagen was observed after 10 days in vitro culture (Section 

3.4.3.1.3), migration of cells within the tissue was expected.  However, no cells were 

found outside the site of implantation in any of the sections analysed.  On the 

contrary, when DPSCs were transplanted in the spinal cord of traumatic injured rats, 

transplanted cells were observed in the spinal cord tissue reaching a distance of 

~1 mm from the lesion epicentre 42 days post-injury (Nicola et al. 2016).  Hence, cell 

migration through the host tissue might be a time-dependent factor.  It must be 

borne in mind that the culture periods in the ex vivo experiments carried out in this 

thesis were established at 10 days.  Cells might need longer culture times to migrate 

within this ex vivo system.  Also, the microcapsules composition might play a key role 

in cell migration.  The coating of culture plastics with laminin, a major constituent of 

CNS extracellular matrix, and poly-L-ornithine (PLO) increases the migratory capacity 

in vitro of DPSCs and NSCs, respectively (Howard et al. 2010; Ge et al. 2016).  Hence, 

the modification of microcapsule composition with these proteins could promote cell 

migration within the spinal cord cultures. 

Whilst it was easy to visualize the microcapsules immediately after 

transplantation, no complete capsules were observed after the culture period.  Also, 
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it was clear that the number of transplanted cells decreased after 10 days in culture.  

The first hypothesis would consider the possibility of alginate-collagen microcapsule 

degradation during the culture period.  Microcapsules showed good mechanical 

properties in that no changes in morphology nor signs of bead degradation were 

observed after three weeks in culture in vitro (Chapter 3).  However, spinal cord 

tissues might release sodium cations that promote alginate degradation by 

monovalent ions interchange.  Shahriari et al. (2016) demonstrated that calcium 

cross-linked alginate hydrogels did not maintain adequate mechanical integrity in 

vivo 14 days after transplantation in rat spinal cord.  Hence, the development of new 

approaches to decrease the degradation rate of alginate should be pursued to make 

it a viable scaffold material for nerve regeneration.  Also, collagen is a biodegradable 

material due to the existence of MMPs within the organism, which are responsible 

for collagen degradation (Harrington 1996).  Hence, the consistence of 

alginate-collagen microcapsules might have been compromised due to the existence 

of such enzymes within the host tissue.  After SCI, activated microglia release 

proteolytic and oxidative enzymes, which might affect the stability of the polymer 

microcapsules (Fleming et al., 2006).  Thus, collagen cross-linking should be 

considered to improve the mechanical stability of the microcapsules to guarantee the 

protection of the encapsulated cells against the inflammatory response.  Another 

possibility might be that microcapsules integrated within the spinal cord tissue, 

thereby reducing the damaged area.  In order to elucidate the fate of alginate-

collagen microcapsules within the spinal cord cultures, microcapsule labelling and 

further visualization under fluorescent microscope would be necessary.  Alginate can 

be fluorescently labelled by covalent binding of the amino groups of fluorescent 
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molecules to the carboxylic groups of the alginate.  A method for alginate labelling 

using fluoresceinamine has been described (Strand et al. 2003).  However, the 

excitation and emission wavelengths are similar to those to visualize GFP-labelled 

cells, which would hinder the detection of transplanted cells.  The last hypothesis 

considers the loss of microcapsules during the culture period, which also would 

explain the decrease in cell number.  Matrigel® would retain the capsules for a short 

period of time, but after several days and medium changes, some capsules might 

have been lost.  Culture medium was examined under the microscope in search of 

floating beads after every medium change but no microcapsules were discovered.  

Hence, the actual fate of alginate-collagen microcapsules within the spinal cord 

tissues after the culture period remains to be determined.   

The expression of neuronal markers by transplanted cells was also 

investigated.  It is well known that the fate of in vivo differentiation of stem cells 

depends on the niche into which they have been transplanted.  When NSCs are 

transplanted into a neurogenic region e.g. dentate gyrus, or subventricular zone, they 

will differentiate into neurons (Fricker et al. 1999; Shihabuddin et al. 2000).  However, 

transplantation into non-neurogenic regions, such as spinal cord, induce neural cells 

to differentiate towards glial lineage (Cao et al. 2001).  This demonstrates the 

importance of environmental cues in directing the differentiation of transplanted 

cells.  Cell differentiation towards undesirable lineages might hinder tissue 

regeneration.  Hence, pre-differentiation of stem cells prior to transplantation is a 

commonly adopted method used to induce a lineage restriction in CNS regeneration 

studies (Abeysinghe et al. 2015; Fortin et al. 2016).  In this thesis, the neuronal marker 

expression of encapsulated cells transplanted of three different types was compared: 
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undifferentiated DPSCs, neuralised DPSCs and undifferentiated NSCs.  At the time of 

implantation, undifferentiated and neuralised DPSCs showed distinct marker profiles.  

Whereas undifferentiated DPSCs only expressed nestin, neuralised cells expressed 

both nestin and GFAP.  None of the cells showed positive staining for Map2.  

However, after 10 days in culture, both cellular conditions stained positive for the 

three neuronal markers nestin, map2 and GFAP.  Expression of map2 and GFAP by 

undifferentiated cells and expression of map2 by neuralised cells after the culture 

period suggests that the local environment provides signals driving the fate of stem 

cells.  Human umbilical cord blood–derived NSCs (HUCB-NSCs) co-cultured with 

different rat brain–specific primary cultures differentiated towards different lineages 

depending on the cellular microenvironment (Markiewicz et al. 2011).  The presence 

of astrocytes and oligodendrocytes promoted neuronal differentiation of HUCB-

NSCs, whereas postmitotic neurons induced oligodendrogliogenesis of these cells.  

Hence, transplanted DPSCs could have received signals from the spinal cord culture 

microenvironment that stimulated their differentiation towards neuronal lineages in 

the absence of external growth factors in the culture medium.  On the other hand, 

the marker profile of NSCs did not change along the culture period.  Cells stained 

positive for nestin and map2, but not for GFAP, before or after culture.  As mentioned 

before, spinal cord cultures with transplanted NSCs showed the presence of cell 

aggregates after several days in culture, suggesting cell proliferation.  As cells 

differentiate, their rate of proliferation usually decreases.  Since NSCs were still 

proliferative within the tissue explants, the cells did not just completely commit to 

the differentiation process.  This highlights the different behaviour of different stem 
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cell types under the same conditions and the need for a cell-dependent methodology 

in order to direct differentiation. 

Nonetheless, the three cell types investigated in this thesis showed poor 

immunofluorescent labelling for the three markers studied.  Because the host tissue 

presented high endogenous fluorescence, it was difficult to elucidate whether the 

positive staining was produced by the transplanted cells or by the spinal cord 

cultures.  Analysis of tissue sections by laser scanning confocal microscopy might 

have provided more evidence about the fluorescence origin.  Also, retrieval of 

transplanted cells from the tissues and further gene analysis expression by 

polymerase chain reaction would provide unequivocal information about the 

neuronal behaviour of the grafted cells.  

Although the results reported in this thesis represent a promising method for 

further application in neuronal tissue restoration, there are still several issues to be 

addressed.  First of all, cells must be able to migrate and proliferate at the site of 

injury to completely bridge the gap and reconnect both sides of the lesion site.  

Although it has been demonstrated that alginate-collagen microcapsules are useful 

to retain cells at the site of injury, the number of transplanted cells might represent 

a limitation in this technique.  Due to the three-dimensional structure of alginate-

collagen microcapsules, the number of cells that can be implanted in the injury site 

is lower than that when cells are transplanted by simple cell injection.  Since it has 

been proven that transplanted DPSCs might direct endogenous repair by the release 

of tropic factors (Huang et al. 2008), the number of cells might influence the degree 

of therapeutic effect in terms of concentration of released growth factors.  Thus, a 
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greater therapeutic effect would be achieved with a higher release of growth factors 

that, in turn, would depend on the number of grafted cells.   

All in all, neuronal replacement after SCI represents a challenging procedure 

due to the harsh environment after damage, which is naturally inhibitive of axonal 

regrowth.  But also, the different cell types involved in the correct function of spinal 

cord makes necessary the implantation of simultaneous therapies to ensure a 

complete recovery.  Cell transplantation has been proven to be ineffective when no 

control of cell orientation can be achieved.  Hence, combination of cellular material 

with appropriate scaffolds that mimic the ECM in the central nervous system and 

directs axon regeneration is, so far, the most attractive approach.  
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The use of cell encapsulation technology has increased over the past decades 

due to the great number of fields in which it can be applied (Acarregui et al. 2013).  

Although it was first intended as a method for immunoisolation of cells in 

transplantation therapies (Freimark et al. 2010), the great variety of encapsulation 

techniques, matrices and cell types that can be combined has contributed to this 

versatility.  Pancreatic islet encapsulation is, by far, the most studied method (Buder 

et al. 2013).  The successful immobilization of islet cells encouraged researches to 

apply this technology in living organisms.  Indeed, promising results allowed the 

establishment of the first clinical trial involving cell encapsulation for the treatment 

of type I diabetes (Soon-Shiong et al. 1994).   

Encapsulation of different cell types, specifically stem cells, has permitted the 

expansion of the applicability of this technique.  Stem cells offer a renewable source 

of cells with the potential to transform into virtually any cell type within the organism.  

Stem cells have been isolated from both embryonic and adult tissues.  It has been 

demonstrated that ESCs can be expanded and differentiated in vitro into any cell type 

within the three germ layers (ectoderm, mesoderm and endoderm).  However, the 

therapeutic application of human ESCs is still debated due to ethical issues and 

problems of allogeneic rejection and uncontrolled development of malignancies 

(Hentze et al. 2007).  These obstacles have attracted the attention of the researches 

towards the study of ASCs.  Although it was first hypothesized that these cells had a 

lineage restricted differentiation potential, further studies have demonstrated that, 

under the appropriate reprogramming mechanisms, ASCs could be manipulated to 

differentiate towards cell lineages different from their tissue of origin in a process 

known as transdifferentiation (Filip et al. 2004).   
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ASCs have been typically isolated from bone marrow but this process involves 

painful and invasive procedures.  Hence, different sources of adult stem cells have 

been investigated, including adipose tissue (Lindroos et al. 2011), skin (Nowak & 

Fuchs 2009) and umbilical cord (Zhang et al. 2008) to name a few.  In 2000, Gronthos 

et al. isolated, for the first time, a stem cell population from the dental pulp.  A similar 

marker profile to that demonstrated for BMSCs was observed for DPSCs, thereby 

these cells were classified as MSCs (Kawashima 2012).  However, further studies 

revealed that DPSCs also expressed embryonic stem cell markers, such as Oct4 and 

Sox2 (Kerkis et al. 2007) and even markers associated with more mature phenotypes, 

including muscle (Patel et al. 2009) and neural cells (Karaöz et al. 2011).  These 

findings have attracted attention of researches towards the application of DPSCs for 

the treatment of CNS diseases and injuries.   

The main benefit of using DPSCs is their isolation procedure.  Cells can be 

easily isolated from the pulp of teeth extracted in routine orthodontic treatments or 

from deciduous teeth naturally shed in childhood (Tatullo et al. 2015).  In vitro 

expansion of these cells could provide a personalized stem cell bank readily available 

to be used in the cure of diverse conditions.  Specifically, the potential of DPSCs to 

differentiate down to neural lineages has been investigated by our group in Cardiff 

(Young et al. 2016).  Since DPSCs represent a highly heterogeneous population of 

stem cells, their marker expression and differentiation potential varies between 

clonogenic populations.  The work presented by Young et al. (2016) provides a 

potential method for the identification of DPSCs populations with neuronal 

differentiation potential, based on the levels of nestin expression.  Furthermore, 

several protocols have been developed for DPSCs neuronal differentiation 
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(Nosrat et al. 2004; Hisham et al. 2013; Young et al. 2016).  The success of these 

protocols along with the ability of these cells to release growth factors and 

neurotrophins involved in the maintenance and development of the CNS, have 

contributed to the application of DPSCs to the CNS in vivo (Huang et al. 2008; Leong 

et al. 2012; Sakai et al. 2012).  

The cellular and molecular mechanisms involved after SCI create an adverse 

environment which is extremely challenging with respect to the application of cell 

replacement therapies.  Although significant progress has been achieved over the last 

years, the application of single therapies does not provide fully recovery after spinal 

cord damage (Pfeifer et al. 2004; Parr et al. 2007).  Whilst cell transplantation 

provides trophic support for regenerating axons (Huang et al. 2008) the loss of ECM 

after injury and the lack of a three-dimensional organization of cellular grafts hinders 

complete recover after damage.  Hence, the combination of cellular replacement 

with appropriate scaffolds that provide support and mimic the ECM conditions, could 

provide an effective alternative for the regeneration of neuronal tissue after SCI. 

In this thesis, a method for the successful encapsulation of DPSCs and NSCs 

was developed.  In order to further apply encapsulated cells in clinical therapies, 

microcapsules should be highly monodisperse.  Microcapsules with narrow size 

distributions allows for an accurate estimation of the number of cells per bead, 

permitting the determination of the clinical dose before transplantation (Tan & 

Takeuchi 2007).  Also, in order to bring this technology towards clinical application, 

large batches of encapsulated cells need to be produced with high reproducibility.  

Most of the conventional methods for cell encapsulation do not provide reproducible 
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results, only producing small batches of encapsulated cells with wide polydispersity 

(Poncelet et al. 1992; Mollet & Grubenmann 2001).  Comparison of theoretical 

calculation and experimental estimation of number of cells per bead demonstrated 

that the microfluidic device developed in this thesis provides a reproducible method 

to produce polymer microcapsules. 

The use of microfluidics for the formation of polymer microcapsules, provides 

several benefits, including a better control of shape and size of the microcapsules and 

the use of small volumes of reagents, leading to a reduction in experimentation costs 

and expenses.  Several strategies have been developed for the formation of polymer 

droplets within microfluidic devices.  The simplest consists on the co-flow of two 

immiscible fluids through concentric capillaries (Cramer et al. 2004).  Different 

approaches utilize a T-junction format for the emulsification of the dispersed phase 

(Sivasamy et al. 2011) or droplets has been achieved utilising flow focusing devices 

(Dreyfus et al. 2003; Anna et al. 2003).  Flow focusing provides the most reproducible 

method, since the formation of droplets depend on several parameters including flow 

rates, channels geometry and fluids viscosities  (Baroud et al. 2010).  The 

manipulation of these parameters allows for a better control of the size of the 

droplets produced, giving rise to a greater dynamic size range from a given device 

compared with other strategies.   

In order to fabricate a flow focusing microfluidic device, PTFE was selected as 

the most suitable material.  PTFE offers several advantages over other materials used, 

such as PDMS.  Firstly, PTFE’s chemical properties means that it is predominantly non-

reactive and therefore has stable wetting properties.  In contrast, PDMS undergoes 
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swelling and deformation in the presence of strong organic solvents and uncontrolled 

adsorption of substances is a major issue (Uchida et al. 2003).  Secondly, PTFE’s high 

hydrophobicity allows for the formation of alginate droplets with high contact angles, 

thereby producing highly spherical microcapsules.  In the study presented in this 

thesis, microchannels were easily fabricated on PTFE discs by a milling process 

requiring short periods of time, generally less than 30 minutes.  They were then 

mounted in a compressed-sealed metallic manifold which allowed the 

assembly/disassembly of the entire mounting in an effortless and quick manner.  

Other methods utilized for the fabrication of microfluidic devices generate 

permanently sealed constructs (hindering their application in cases of blockages) 

which often involve multiple steps in their assembly and hence are time consuming 

to use (Shintaku et al. 2007).   

The flow focusing microfluidic device fabricated in this thesis allowed for the 

production and on-chip cross-linking of alginate-based microcapsules via internal 

gelation.  The design incorporated a continuous phase formed by a laminar flow of 

mineral oil (shielding flow) and acetic acid dissolved in mineral oil (protons source 

phase).  The controlled and smooth diffusion of protons through parallel layers within 

the continuous phase led to the release of calcium ions from CaCO3 dispersed in the 

alginate solution.  Unlike other methods utilized by other authors (Poncelet et al. 

1992; Capretto et al. 2008), the system applied in this investigation permitted the 

emulsification and cross-linking of alginate capsules in one single step, minimizing 

experimentation times.  This is of a key importance in cell encapsulation, where cell 

viability might be compromised due to the cells residing in unfavourable conditions 

for long periods of time.  In conventional external gelation approaches, encapsulated 
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cells are collected in a CaCl2 bath were they reside for 15-20 min in order to achieve 

proper gelation rates (Duvivier-Kali et al. 2001; Murua et al. 2007; Bhujbal et al. 

2014).  In contrast, the method developed in this thesis permitted gelation times 

< 1 min, as observed by the collection of solidified droplets from the outlet of the 

microfluidic chip.  External gelation of alginate microcapsules has been attempted 

within microfluidic devices (Choi et al. 2007).  In this approach, two separate inlets 

containing alginate phase and CaCl2 solution were continuously injected into a flow 

of water-immiscible hexadecane, where they spontaneously separated and broke up 

into stream droplets.  Once the alginate solution was in contact with the Ca2+ ions, it 

immediately transformed into a gel.  A similar approach was utilized by Shintaku et 

al. (2007),  where the incorporation of an additional channel containing CaCl2 solution 

after alginate emulsification permitted the hydrogel cross-linking.  However, the 

alginate microbeads showed random shapes and were highly polydisperse.  

Hence, although the experimentation times of external gelation can be 

reduced using microfluidic devices, poorly controlled gelation kinetics due to the high 

solubility of CaCl2 in aqueous solutions remains an issue.  Therefore, an internal 

gelation approach is the method preferred in order to produce highly monodisperse 

microcapsules.  For example, Liu et al. (2013) produced highly monodisperse alginate 

microcapsules via an internal gelation approach within a glass capillary microfluidic 

device.  However, in order to assess a proper emulsification, the use of surfactants 

was required.  The microfluidic device developed in this thesis allowed for the 

production of highly monodisperse microcapsules without the need of surfactants, 

minimizing the number of washing steps.   
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The encapsulation technology presented in this work permitted the 

immobilization of two different types of stem cells, DPSCs and NSCs.  It is noteworthy 

that the behaviour of these two cell types in vitro is different.  Whereas DPSCs adhere 

on plastic surfaces and grow in monolayers, NSCs proliferate in suspension as 

neurospheres.  However, the same encapsulation procedure and encapsulation 

matrix could be applied for the successful encapsulation of both cell types, 

highlighting the versatility of the method developed in this investigation.  Two 

different encapsulation matrices were tested.  First of all, alginate was selected as 

the encapsulation scaffold due to its biocompatibility, mild gelling conditions and 

good mechanical properties (Lee & Mooney 2012).  Cell viability and proliferation 

were studied and results revealed a different behaviour between DPSCs and NSCs.  

NSCs proliferated within the capsules and their viability increased up to 3 weeks in 

culture.  However, the proliferation rate was delayed when compared with standard 

culture conditions.  On the contrary, no signs of cell proliferation were observed in 

DPSCs, whose viability decreased to ~ 70% after the same culture period.  Cell viability 

and proliferation were studied with three different methods, including trypan blue 

exclusion assay, the MTT assay and Live/Dead staining.  The trypan blue exclusion 

assay provided the only quantitative method between those tested.  Live/Dead 

staining and confocal microscopy allowed for the observation of live and dead cells 

localization and shape within the microcapsules.  The random distribution of dead 

cells (red) suggested that the diameter of the microcapsules was appropriate for the 

survival of the encapsulated cells, since no dead cells accumulation at the centre of 

the capsules were observed, which would be the result of inefficient diffusion of 

oxygen and nutrients through the entire capsule.  However, the MTT assay did not 
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provide conclusive results about the proliferation behaviour of the cells as it was 

observed that DPSCs escaped from the microcapsules as early as 3 days after 

encapsulation.  Hence, the absorbance measured was not only that from the 

encapsulated cells but the overall of encapsulated and plastic bound ‘escaped’ cells.   

Therefore, the encapsulation matrix was modified in order to prevent/delay 

cell egress.  Thus, alginate microcapsules were modified by the addition of type I 

collagen.  Collagen is one of the most widely utilised biomaterials due to its inherent 

compatibility and its ability to induce cell attachment (Parenteau-Bareil et al. 2010).  

This modification delayed cell migration out of the microcapsules until about 10 days 

post-encapsulation.  However, like alginate microcapsules, cells did not attach on this 

scaffold, as observed by the formation of NSCs aggregates and rounded DPSCs.  

Similar behaviour in encapsulated adherent cells has been reported (Markusen et al. 

2006; Novikova et al. 2006; Umemura et al. 2011; Kanafi et al. 2014) but this 

behaviour has not been fully explained.  It was hypothesized in this thesis that 

alginate-based microcapsules provided the cells with an artificial niche in which cells 

reside in a metabolic quiescent state.   

Cell adhesion within alginate-collagen scaffolds has been demonstrated by 

other groups.  Sang et al. (2011) demonstrated that cells attached and proliferated 

within alginate-collagen fibrils.  They observed that the degree of cell proliferation 

was directly related with the concentration of collagen in the scaffolds.  Hence, in 

order to promote cell attachment, an increased concentration of collagen in the 

microcapsules would have been helpful.  However, due to its low mechanical stability 

(Shoulders & Raines 2010), microcapsules with high concentrations of collagen would 
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result in beads with poor mechanical properties.  In order to fabricate 

alginate-collagen hydrogels that promote cell attachment without the loss of 

mechanical stiffness, one approach would involve the formation of collagen-core 

microcapsules with an alginate shell.  Perez et al. (2014) utilized this technique to 

immobilize MSCs.  Cells were able to attach and proliferate within this scaffold, and 

underwent osteogenic differentiation under the appropriate stimuli, providing a 

promising tool in bone tissue regeneration.  Also, alginate has been modified with 

RGD sequences (Alsberg et al. 2001) or fibronectin (Mosaheb et al. 2003) to promote 

cell adherence, thereby improving cell viability and proliferation.  Viability of DPSCs 

immobilized within low adherence biomaterials could also be increased by the 

modification of the culture conditions.  DPSCs culture in NSC growth medium 

transforms these cells into neurospheres-like aggregates that grow in suspension 

culture (Gervois et al. 2015).  Thus, under these conditions, cell attachment is not a 

requisite to maintain high viability.   

The lack of cell adhesion on the alginate-collagen microcapsules produced in 

this thesis permitted the prevention of spontaneous differentiation of cells.  

However, upon release from microcapsules, NSCs and DPSCs exhibited retained stem 

cell and neuronal differentiation properties, as demonstrated by high proliferation 

rates and production of neuronal markers.  Cell phenotypes evolved from an 

undifferentiated state, where NSCs were bipolar and DPSCs were typically bi-/tri-

polar and fibroblast-like shaped, to a more mature phenotype.  NSCs developed 

neurites sprouting out from cell bodies and long axons.  DPSCs developed several 

processes from cell bodies, forming neuronal-like connexions.  Differentiation of 

stem cells into neuronal cells within hydrogel microcapsules have been achieved by 
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different groups.  Pan et al. (2009) showed that hydrogel composition plays a key role 

in directing cell differentiation.  Whereas hyaluronic acid (HA) combined with PLL 

hydrogels support cell viability, attachment and proliferation, modification of HA with 

Nogo receptor antibody (NgR-Ab) induced the differentiation of NSCs into neurons 

and glial cells.  In a different study, ESCs were differentiated towards neuronal 

lineages within alginate-based microcapsules.  The addition of fibronectin to the 

scaffold induced cell attachment and further addition of HA allowed ESCs neuronal 

differentiation under differentiation culture medium (Bozza et al. 2014).  The 

alginate-collagen microcapsules produced in this thesis provided the cells with a 

favourable environment for cell survival, working as an artificial stem cell “niche” 

capable of maintaining the cells in a quiescent state.  Analysis of gene expression of 

cells under encapsulation conditions would provide a better understanding of the 

metabolic state of the encapsulated cells.  Nagarajan et al. (2014) demonstrated that 

immobilized yeast cells within alginate beads exhibited a stable pattern of gene 

expression that differed markedly from growing cells, highly expressing genes in 

glycolysis, cell wall remodelling, and stress resistance, but decreasing transcription of 

genes that regulate the cell cycle.  Hence, investigation of the gene expression profile 

of encapsulated cells would provide a defined correlation of cell behaviour depending 

on the physico-chemical properties of the encapsulating biomaterial. 

In the last stage of the investigation carried out in this thesis, the potential of 

alginate-collagen microcapsules as cell transplantation systems was investigated in 

an ex vivo model of SCI.  The microcapsules were implanted into the dissected tissues 

after partial injury on the dorsal part of the cord.  The effectiveness of hydrogel 

microcapsules as a method to control integration of transplanted cells was 
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demonstrated.  Whereas cells transplanted as a free cell suspension were easily lost 

within the tissue and did not integrate within the large injury cavity, encapsulated 

cells stayed at the site of injury over the culture period.  Indeed, the difficult control 

of cell disposition and fate within an organism is a major challenge in cell 

transplantation therapies (Gaudet & Popovich 2014).  Due to the lack of ECM 

production after SCI, transplanted cells lack a three-dimensional structure with which 

to interact, which hinders their integration within the host.  The combination of 

hydrogel scaffolds to guide axon regeneration has been successfully applied by 

several groups (Yoshii et al. 2003; Tsai et al. 2006; Günther et al. 2015; Fan et al. 

2017)..  However, some of these scaffolds are typically macroscopic and their 

implantation involves surgical procedures.  Polymer microcapsules provide a less 

invasive method for cellular replacement assisted by an artificial ECM.  Nonetheless, 

the diameter of the microcapsules developed in this thesis (~400 µm), was too large 

to permit cell implantation by simple injection.  Hence, in order to further apply this 

technology in in vivo SCI models, the size of the microcapsules should be reduced.  

This might be easily achieved by reduction of dimensions in the microfluidic device, 

along with an increase in the continuous and dispersed flow rates ratio.  Also, the 

formation of injectable microfibers rather than microcapsules would allow for a 

better control of cell guidance parallel to axonal growth. 

The alginate-collagen microcapsules developed in this thesis allowed for the 

retention of the encapsulated cells at the site of injury.  The viability of encapsulated 

NSCs and DPSCs was studied after transplantation.  Results demonstrated that the 

cells remained viable within the tissues, which was most probably assisted by the lack 

of blood vessels and immune response in the ex vivo slices.  DPSCs survival after 
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implantation in the CNS in in vivo models has already been demonstrated (Huang et 

al. 2008; Leong et al. 2012; Sakai et al. 2012).  In fact, DPSCs have been demonstrated 

to possess immunomodulatory properties that could help decrease the risk of cell 

death in cases of allo- or xenotransplantation (Zhao et al. 2012).  The neuronal marker 

expression of the encapsulated cells after transplantation was also studied in this 

thesis.  It was hypothesized that the pre-differentiation of DPSCs into neuronal-like 

cells prior to encapsulation and further implantation could restrict the differentiation 

lineage, thereby avoiding the differentiation towards glial cells.  However, this was 

demonstrated to be limited since the expression of GFAP was observed by this group 

of cells.  However, map2 and nestin was also expressed by both undifferentiated and 

pre-differentiated DPSCs.  In contrast, NSCs stained positive for nestin and map2 but 

no expression of GFAP was observed.  

An emerging idea to control cell differentiation is based on the effect on cells 

of biomaterial behaviour.  As cells acquire information from their environment, (e.g. 

the materials that surround them) the biomaterials in which cells are encapsulated 

can give messages to stem cells in the form of by-products upon degradation, 

swelling, compression, etc. (Place et al. 2009).  Khetan et al. (2013) demonstrated 

that the fate of human MSCs is guided by degradation-mediated cellular-traction.  

Whereas HA hydrogels that permit cell-mediated degradation favoured 

osteogenesis, the switch towards a hydrogel with restricted degradation caused 

adipogenesis.  Hence, the physico-chemical properties of hydrogels can be easily 

adjusted to guide differentiation.  Also, the incorporation of growth factors within 

the scaffolds that are released upon biomaterial degradation is an attractive 

approach for the control of cell behaviour.  In this sense, the co-encapsulation of 
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growth factors promoting neuronal differentiation along with stem cells might 

provide an area of investigation to further develop the work presented in this thesis.  

Because SCI results in the damage of different cell types, one single therapy would 

not provide completely functional recovery.  Hence, implantation of different stem 

cell types encapsulated along with appropriate “sets” of growth factors that promote 

differentiation down to different neuronal cell types, would provide a complete 

recovery after SCI.  It has been demonstrated that DPSCs release growth factors and 

neurotrophins that promotes endogenous axonal regeneration (Sakai et al. 2012).  

However, regenerating axons require remyelination to allow the transmission of 

electrical signals along the spinal cord.  Co-encapsulation of oligodendrocyte 

precursors along with specific growth factors that promotes their maturation would 

provide remyelination of the regenerating axons (Watkins et al. 2008).  Also, the 

replacement of non-activated astrocytes at the injury site would allow for the 

reestablishment of the homeostasis, providing trophic support to the repaired cells.  

Altogether, these wound healing mechanisms would allow for a complete functional 

recovery.  

In summary, the investigations presented in this project demonstrate the 

development of a microfluidic technique for the successful encapsulation of two 

different cell types (examples of adherent and non-adherent cells).  The method 

developed is compatible with cell survival and the maintenance of stem cell 

properties upon encapsulation and subsequent release from the ECM-based 

microcapsules.  Although neuronal differentiation of DPSCs have been extensively 

reported in 2D culture (Nosrat et al. 2004; Hisham et al. 2013; Young et al. 2016), to 

our knowledge, any protocol for the neuronal differentiation of DPSCs within 
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hydrogel microcapsules have been yet described.  Hence, DPSC’s ability for neuronal 

differentiation linked to the successful development of a cell encapsulation 

technique represent an opportunity for further studies beyond the findings of this 

thesis.   
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APPENDIX I : Tables of antibodies 

 

Table 1.  Primary antibodies 

Antibody Manufacturer Cat. No. 
Host 

Species 
Isotype 

Concentration 
(µg/ml) 

Nestin Sigma N5413 Rabbit Polyclonal 10 

Sox2 Abcam ab97959 Rabbit Polyclonal 10 

Oct4 Abcam ab18976 Rabbit Polyclonal 2.5 

GFAP 
Life 

Technologies 
PA5-16291 Rabbit  Polyclonal 2 

β-III tubulin Cell Signalling 5568S Rabbit IgG 5 

Map2 Cell Signalling 8707S Rabbit IgG 5 

 

 

Table 2.  Isotype control 

Antibody Manufacturer Cat. No. 
Concentration 

(µg/ml) 

Normal rabbit 
IgG 

Santa Cruz sc-2027 5 

 

 

Table 3.  Secondary antibodies 

Antibody Manufacturer 
Cat. 
No. 

Host 
Species 

Fluorophore 
Concentration 

(µg/ml) 

Anti-
rabbit 

IgG (H+L) 

Life 
Technologies 

A-
11008 

Goat 
Alexa Fluor 

488 
4 

Anti-
rabbit 

IgG (H+L) 

Life 
Technologies 

A-
11012 

Goat 
Alexa Fluor 

594 
4 
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APPENDIX II : ISOTYPE CONTROL IN MONOLAYER CULTURES 

 

Merged images for rabbit IgG as an isotype control for β-III tubulin and Map2 in DPSCs (A) 

and NSC (B) in monolayer culture.  Scale bars = 50μm.   

A B

DAPI/Isotype control
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APPENDIX III : APOPTOSIS TUNEL ASSAY POSITIVE CONTROL 

 

Merged images of apoptotic nuclei of spinal cord tissue (A) and encapsulated cells 

transplanted into the ex vivo SCI model (B).  Samples were DNAse treated prior to staining 

with Apoptosis Tunel Assay kit.  Scale bar = 50µm. 

   

A D

DAPI/GFP/Apoptotic nucleiDAPI/Apoptotic nuclei

B
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APPENDIX IV : EX VIVO ISOTYPE CONTROL 

 

Ex vivo spinal cord slice cultures from the three cell types investigated ((A) Undifferentiated 

DPSCs, (B) Pre-differentiated DPSCs and (C) Undifferentiated NSCs) were negatively stained 

A

B

C

DAPI/GFP/Isotype control
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with Rabbit IgG isotype, demonstrating specificity for monoclonal antibodies, Map2 and 

GFAP.  Scale bar = 50µm. 
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APPENDIX V : ENDOGENOUS PRODUCTION OF NEURONAL 

MARKERS 

 
Endogenous production of neuronal markers: (A) Nestin, (B) Map2 and (C) GFAP.   

Scale bar = 100µm.
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