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Abstract

This paper presents a new Smooth Particle Hydrodynamics (SPH) computational frame-
work for explicit fast solid dynamics. The proposed methodology explores the use of the
Streamline Upwind Petrov Galerkin (SUPG) stabilisation methodology as an alternative to
the Jameson-Schmidt-Turkel (JST) stabilisation recently presented by the authors in [1] in
the context of a conservation law formulation of fast solid dynamics. The work introduced
in this paper puts forward three advantageous features over the recent JST-SPH framework.
First, the variationally consistent nature of the SUPG stabilisation allows for the introduc-
tion of a locally preserving angular momentum procedure which can be solved in a monolithic
manner in conjunction with the rest of the system equations. This differs from the JST-SPH
framework, where an a posteriori projection procedure was required to ensure global angular
momentum preservation. Second, evaluation of expensive harmonic and bi-harmonic opera-
tors, necessary for the JST stabilisation, is circumvented in the new SUPG-SPH framework.
Third, the SUPG-SPH framework is more accurate (for the same number of degrees of free-
dom) than its JST-SPH counterpart and its accuracy is comparable to that of the robust
(but computationally more demanding) Petrov Galerkin Finite Element Method (PG-FEM)
technique explored by the authors in [2–5], as shown in the numerical examples included. A
series of numerical examples are analysed in order to benchmark and assess the robustness
and effectiveness of the proposed algorithm. The resulting SUPG-SPH framework is therefore
accurate, robust and computationally efficient, three key desired features that will allow the
authors in forthcoming publications to explore its applicability in large scale simulations.

Keywords: Conservation laws, SPH, Instability, SUPG, Fast dynamics, Incompressibility

1. Introduction

Traditionally, the displacement-based Smooth Particle Hydrodynamics (SPH) Lagrangian
formalism [6–12] has suffered from a number of well-known shortcomings, namely the presence
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of numerical errors near boundaries due to a reduced compact support [13, 14]; the presence
of tensile instability which results in a non-physical clumping of particles [15]; the appearance
of hourglassing due to the rank-deficiency inherent to the use of under-integrated particle
(or nodal) integration [16] and the reduced order of convergence for derived variables (i.e.
stresses and strains) [17–20].

In order to circumvent the above shortcomings, significant effort has been devoted to
enhance the robustness of (displacement-based) SPH algorithms. New sophisticated ker-
nels and gradient corrections have been used in order to ensure reproducibility (consistency)
of complete polynomial basis in finite domains [7, 21–23]. However, as reported in Refer-
ences [8, 10], the above enhanced SPH methodologies still suffer from persistent artificial
mechanisms similar to hour-glassing when attempting to model problems with predominant
nearly incompressible behaviour. These numerical deficiencies can be partially alleviated
through the use of so-called non-consistent stabilisation strategies (i.e. artificial viscous
fluxes [6, 24, 25] and conservative strain smoothing regularisation [17, 26]).

Some interesting work has been reported in [27–29], where a mixed formulation in con-
junction with a Taylor-Galerkin stabilisation algorithm is employed for the simulation of a
viscoplastic continuum. Unfortunately, the introduction of appropriate numerical viscosity
(leading to a robust framework) through a variationally consistent stabilisation procedure is
still not clear for the latter formulation. Furthermore, its physical interpretation is debatable,
especially in the context of non-dissipative reversible processes.

In a very recent work [1], some of the authors of the present manuscript have successfully
introduced a new SPH computational framework for explicit fast solid dynamics, where the
conservation of linear momentum p is solved along with conservation equations for the de-
formation gradient F , its co-factor H and its Jacobian J . Specifically, SPH discretisation
of the new mixed system of conservation laws {p,F ,H , J} [3, 5] is introduced in conjunc-
tion with a well-established Jameson-Schmidt-Turkel (JST) [30] stabilisation methodology.
The resulting JST-SPH framework was capable of eliminating spurious hourglass-like modes,
tensile instability and spurious oscillations in nearly incompressible scenarios.

The main objective of the present manuscript is to further explore the SPH discretisation
of the mixed based system in [1] by means of an alternative variationally consistent Streamline
Upwind Petrov Galerkin (SUPG) [31] stabilisation methodology. In addition to a higher
computational efficiency to that of the JST-SPH algorithm (e.g. harmoic and bi-harmonic
dissipative operators are not required), the variationally consistent nature of the proposed
SUPG-SPH framework allows for the conservation of linear and angular momenta without the
need to introduce an a posteriori projection algorithm. Crucially, the computational efficiency
and excellent performance of the proposed framework in nearly incompressible scenarios open
up interesting possibilities in terms of its applicability in the field of biomechanics, typically
accompanied with severe mesh distortions that the algorithm proposed (meshless-based) can
efficiently handle.

The paper is organised as follows. Section 2 presents the complete mixed-based {p,F ,H , J}
set of first order conservation laws for solid dynamics. Sections 3 and 4 describe the com-
putational methodology of the SUPG-SPH framework. The variational statement of the
mixed-based {p,F ,H , J} system, the SPH spatial discretisation and a variationally consis-
tent SUPG algorithm are also presented. For clarity, the complete SUPG-SPH flowchart
is summarised in Section 5. Section 6 describes a monolithic projection algorithm used to
locally preserve angular momentum. Section 7 presents the algorithmic description of the
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Figure 1: Motion of a continuum domain

proposed {p,F ,H , J} SUPG-SPH methodology. In Section 8, an extensive set of challeng-
ing numerical examples is presented to assess the performance of the proposed methodology.
Finally, Section 9 presents some concluding remarks and current directions of research.

2. Reversible elastodynamics

Consider the three dimensional deformation of an elastic body of material density ρ0

moving from its undeformed configuration occupying a volume V , of boundary ∂V , to a
deformed configuration at time t occupying a volume v, of boundary ∂v (see Figure 1). The
motion is defined through a deformation mapping x = φ(X, t) which satisfies the following
mixed set of Total Lagrangian conservation laws [1, 2, 32–36]:

∂p

∂t
−DIVP = f 0; (1a)

∂F

∂t
−∇0v = 0; (1b)

∂H

∂t
− CURL (v F ) = 0; (1c)

∂J

∂t
−DIV

(
HTv

)
= 0, (1d)

where v is the velocity field (with p := ρ0v the linear momentum per unit of undeformed
volume), F is the deformation gradient (or fibre map), H is the co-factor of the deformation
(or area map), J is the Jacobian of the deformation (or volume map), P is the first Piola-
Kirchhoff stress tensor and f 0 is a body force term per unit of undeformed volume. The
symbol represents the tensor cross product between vectors and/or second order tensors
in the sense of [4, 5, 37, 38], DIV and CURL represent the material divergence and curl
operators as defined in (5) and (7) of Reference [5], respectively, and ∇0 represents the
material gradient operator defined as ∇0 := ∂

∂X
.
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Above equation (1a) represents the conservation of linear momentum whilst equations
(1b)-(1d) represent a set of compatibility equations for the strain measures {F ,H , J}. As
already shown in [1, 3], appropriate geometric involutions must be satisfied by the strain
measures F and H [39] as

CURLF = 0; DIVH = 0. (2)

Notice that, if necessary, the use of these involutions enables the conservation equations
for the area and volume maps in (1c) and (1d), respectively, to be re-written as [1]

∂H

∂t
− F ∇0

(
p

ρ0

)
= 0;

∂J

∂t
−H : ∇0

(
p

ρ0

)
= 0. (3)

The above system of conservation laws (1) can alternatively be summarised in a concise
manner as

∂U
∂t

+
∂F I

∂XI

= S; ∀I = 1, 2, 3, (4)

where U denotes the set of conservation variables, S the source term and F I the flux vector
in the Cartesian direction I, as follows

U =


p
F
H
J

 ; F I = −


PEI

1
ρ0
p⊗EI

F
(

1
ρ0
p⊗EI

)
H :

(
1
ρ0
p⊗EI

)
 ; S =


f 0

0
0
0

 , (5)

with EI is the I-th unit vector of the Cartesian basis defined as

E1 =

 1
0
0

 ; E2 =

 0
1
0

 ; E3 =

 0
0
1

 . (6)

For the particular case of a reversible process, the closure of the system of conservation
laws in (1) (or (4)) requires the introduction of an appropriate constitutive law relating the
stress tensor P and the strain measures {F ,H , J}. Finally, for the complete definition of
the Initial Boundary Value Problem (IBVP), initial and boundary (essential and natural)
conditions must also be specified as appropriate.

2.1. Constitutive model: nearly incompressible polyconvexity

In this work, and without loss of generality, a hyperelastic polyconvex nearly incompress-
ible constitutive model has been considered3, where the strain energy density is defined as a
convex multi-variable function W of the strain measures {F ,H , J} as

W = Ŵ + U ; Ŵ = ςJ−2/3(I1) + ξJ−2(I2)3/2; U =
κ

2
(J − 1)2, (7)

3A detailed discussion of this model can be found in Section 2.1 of Reference [1] on pg. 75.
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where I1 = F : F , I2 = H : H and ς, ξ and κ (bulk modulus) are positive material
parameters. The so-called conjugate stresses {ΣF ,ΣH ,ΣJ} [4] (see Section 3 on pg. 149)
are defined by

ΣF :=
∂W

∂F
= 2ςJ−2/3F ;

ΣH :=
∂W

∂H
= 3ξJ−2(I2)1/2H ;

ΣJ :=
∂W

∂J
= −2ς

3
J−5/3(I1)− 2ξJ−3(I2)3/2 + κ(J − 1),

(8)

where, following References [4, 37], it is then possible to express the first Piola-Kirchhoff stress
tensor P in terms of the geometric strains {F ,H , J} and conjugate stresses {ΣF ,ΣH ,ΣJ}
in (8) as

P = ΣF + ΣH F + ΣJH . (9)

Finally, the symmetric positive semidefinite Hessian operator [HW ] of the strain energy
density W (7) with respect to the strain measures {F ,H , J} is computed as

[HW ] :=


∂2W
∂F ∂F

∂2W
∂F ∂H

∂2W
∂F ∂J

∂2W
∂H∂F

∂2W
∂H∂H

∂2W
∂H∂J

∂2W
∂J∂F

∂2W
∂J∂H

∂2W
∂J∂J

 =


WFF 0 WFJ

0 WHH WHJ

WJF WJH WJJ

 , (10)

with non-zero components

WFF = 2ςJ−2/3I; WHH = 3ξJ−2(I2)1/2
[
(I2)−1H ⊗H + I

]
; WJJ = γ + κ;

WFJ = −4ς

3
J−5/3F ; WHJ = −6ξJ−3(I2)1/2H ; WJF = WFJ ; WJH = WHJ ,

(11)

where I represents the fourth order identity tensor defined in indicial notation as [I]iIjJ =

δijδIJ
4 and

γ =
10ς

9
J−8/3(I1) + 6ξJ−4(I2)3/2. (12)

By comparison of the tangent elasticity operator at the initial undeformed configuration
with that of the classic linearised elasticity operator [4], appropriate values for the material
parameters ς and ξ can be defined in terms of the linearised Lamé coefficient (shear modulus)
µ, that is, 2ς + 3

√
3ξ = µ.

2.2. Conservation of angular momentum

The geometry x can be recovered through time integration of the linear momentum p as

∂x

∂t
=
p

ρ0

. (13)

4Capital letters are used to identify Cartesian directions in the initial undeformed configuration and lower
case letters are used to identify Cartesian directions in the final configuration [40].
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An additional conservation law can be established for the conservation of angular mo-
mentum A = x× p, given by

∂A

∂t
−DIV (x P ) = x× f 0. (14)

In previous publications by the authors [1–5, 32, 33, 36, 41, 42], a posteriori global pro-
jection procedure was used to ensure the satisfaction of (14). In this paper, an alternative
local projection is used. Indeed, substitution of equations (1a) and (13) into (14) yields

E :
(
PFx

T
)

= 0, (15)

where Fx := ∇0x and E represents the third order Levi-Civita (or alternating) tensor.
Satisfaction of the constraint (15) will be incorporated into the time integration algorithm
(refer to Section 6).

3. Streamline Upwind Petrov Galerkin (SUPG) algorithm

The set of local conservation equations described in (1) has been spatially discretised by
the authors using a wide variety of stabilised mesh-based techniques (e.g. Finite Element
and Finite Volume) [2–5, 32, 33, 36, 41, 42] and, recently, via a new mesh-free method,
namely Jameson-Schmidt-Turkel Smooth Particle Hydrodynamics (JST-SPH) algorithm [1].
In the following section, a novel variationally consistent (residual-based) Streamline Upwind
Petrov Galerkin Smooth Particle Hydrodynamics (SUPG-SPH) framework, tailor-made for
the mixed-based set U = {p,F ,H , J} in (1), is presented.

3.1. Variationally consistent SUPG

A SUPG approximation [31] for the above system (1) of conservation variables U =
{p,F ,H , J} can be established through the definition of appropriate stabilised virtual work
conjugates δVst := δV + δP (see Eqn. (95) in Reference [5] on pg. 705). These are
comprised of the virtual work conjugates of U , namely δV = {δv, δΣF , δΣH , δΣJ}, and the
stabilised SUPG contribution δP . As already presented in [4] (see Eqn. (48) on pg. 156),
the stabilisation contribution δP can be defined as

δP := τ TAT
I

∂δV
∂XI

=


− τp
ρ0

(DIVδΣF − F × CURLδΣH +H∇0δΣJ)

−τF (WFF +WFJ ⊗H) : ∇0δv
−τH (WHH F +WHJ ⊗H) : ∇0δv
−τJ (WJF +WJH F +WJJH) : ∇0δv

 , (16)

where AI := ∂FI

∂U represents the flux Jacobian matrix and WAB are Hessian terms defined in
(10). Notice that the SUPG contribution (16) includes the so-called intrinsic time-scale ma-
trix τ , which is key for the success of a stabilised formulation [43]. Specifically, a diagonal ma-
trix τ already presented in [2–5] and comprised in general of the coefficients {τp, τF , τH , τJ},
is used in this paper. Finally, the use of U and δVst yields the following generic (weak)
variational statement [2–4, 31]

AGal(U , δV) +ASUPG(U , δV) = 0, (17)
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where

AGal(U , δV) :=

∫
V

δV • ∂U
∂t

dV −
∫
V

F I •
∂δV
∂XI

dV

+

∫
∂V

δV •F INI dA−
∫
V

δV • S dV ; (18a)

ASUPG(U , δV) := −
∫
V

δP •R dV, (18b)

with the symbol • used to denote the inner (dual) product of work conjugate pairs and NI

the I-th component of the outward unit normal vector N on the boundary ∂V . In addition,
the so-called residual term R of each conservation law in (1), featuring in (18b), can be
expanded as

R =



Rp

RF

RH

RJ


=



DIVP + f 0 − ∂p
∂t

∇0

(
p
ρ0

)
− ∂F

∂t

F ∇0

(
p
ρ0

)
− ∂H

∂t

H : ∇0

(
p
ρ0

)
− ∂J

∂t


. (19)

Notice that in above variational statement (17), the termAGal corresponds to the standard
Bubnov-Galerkin contribution and ASUPG is the SUPG stabilisation contribution, the latter
needed to counterbalance the negative diffusion introduced by the standard Bubnov-Galerkin
approximation [44].

Substitution of expression (16) into (17) enables the (stabilised) weak variational state-
ment for the conservation of linear momentum (1a) to be obtained as

0 =

∫
V

δv · ∂p
∂t

dV +

∫
V

P : ∇0δv dV −
∫
V

δv · f 0 dV −
∫
∂V

δv · tB dA︸ ︷︷ ︸
Ap

Gal

+

∫
V

P fine : ∇0δv dV︸ ︷︷ ︸
Ap

SUPG

,

(20)

where tB represents the (applied) boundary traction vector and P fine is the so-called fine-scale
first Piola-Kirchhoff stress defined as

P fine = τF (WFF +WFJ ⊗H) : RF + τH (WHH F +WHJ ⊗H) : RH

+ τJ (WJF +WJH F +WJJH)RJ ,
(21)

given in terms of the three residual components {RF ,RH ,RJ}, the three stabilisation coef-
ficients {τF , τH , τJ} and some of the Hessian components WAB. It is instructive to re-write
above expression (21) (refer to (9)) as

P fine = Σfine
F + Σfine

H F + Σfine
J H , (22)
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where the fine-scale conjugate stresses {Σfine
F ,Σfine

H ,Σfine
J } are given by

Σfine
F = τFWFF : RF + τJWJFRJ ;

Σfine
H = τHWHH : RH + τJWJHRJ ;

Σfine
J = τFWFJ : RF + τHWHJ : RH + τJWJJRJ ,

(23)

with : denoting the double contraction tensor operation [40]. Choosing τH = 0 and τJ = 0,
the fine-scale stress P fine (21) results in

P fine = τF (WFF +WFJ ⊗H) : RF , (24)

defined in terms of a single stabilisation coefficient τF and the residual component RF

expressing the difference between the time rate of the fibre map and its evaluation in terms
of the material gradient of the velocity (19). An even simpler approach can be postulated
where the Hessian components WAB in (23) are replaced by those of a simplified hyperelastic
model defined by

W̃ (F ) =
γ

2
I1, (25)

where γ is a user-defined material constant, usually taken in the neighbourhood of the bulk
modulus κ of the material. In this case, all Hessian components vanish but W̃FF , which
remains constant throughout the deformation process, namely W̃FF = γI, which upon
substitution into (24) yields

P fine = τF γRF . (26)

For the examples presented in this paper, this alternative stabilisation (26) has been seen
to be as robust (yet computationally more efficient) as (24). Following [2–5] and in order to
reduce the level of implicitness of the formulation, the above fine-scale stress P fine can be
further enhanced by introducing the time integrated residual Rx

F := Fx − F to result in

P fine = τF γRF + ζFαRx
F , (27)

where α is another user-defined material constant (typically in the range of the shear modulus
µ) and ζF is a dimensionless stabilisation parameter in the range of [0, 0.5] [2].

Remark 1:
Notice that combination of the second and fifth terms on the right hand side of equation

(20) enables the definition of the stabilised first Piola-Kirchhoff stress tensor P st, additively
decomposed into a Bubnov-Galerkin (or coarse-scale) contribution P and the SUPG (or
fine-scale) contribution P fine (27), namely P st := P + P fine.

Alternatively, if a Variational Multi-Scale (VMS) approach [2–5, 45–48] is followed, the
stabilised first Piola-Kirchhoff stress tensor P st is obtained as a function of the extended set
of stabilised strains, namely P st := P (F st,Hst, Jst) [2–5], with {F st,Hst, Jst} defined as

F st := F + τFRF + ξFRx
F ; (28a)

Hst := H + τHRH + ξHRx
H ; (28b)

Jst := J + τJRJ + ξJRx
J , (28c)

with the new time integrated residuals Rx
H and Rx

J defined as Rx
H := 1

2
(Fx Fx) −H

and Rx
J := det (Fx) − J , respectively. This alternative VMS approach (28a,b,c) has been
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thoroughly explored by the authors in recent publications [2–5, 33] in the context of Finite
Element formulations.

Substitution of (16) into (17) enables the (stabilised) weak statement for the conservation
of the strain measures {F ,H , J} to be obtained as follows∫

V

δΣF :

[
∂F

∂t
−∇0

(
p

ρ0

)]
dV︸ ︷︷ ︸

AF
Gal

+

∫
V

DIVδΣF ·
(
τp
ρ0

Rp

)
dV︸ ︷︷ ︸

AF
SUPG

= 0; (29a)

∫
V

δΣH :

[
∂H

∂t
− F ∇0

(
p

ρ0

)]
dV︸ ︷︷ ︸

AH
Gal

−
∫
V

CURLδΣH :

(
τp
ρ0

Rp F

)
dV︸ ︷︷ ︸

AH
SUPG

= 0; (29b)

∫
V

δΣJ

[
∂J

∂t
−H : ∇0

(
p

ρ0

)]
dV︸ ︷︷ ︸

AJ
Gal

+

∫
V

∇0δΣJ ·
(
τp
ρ0

HTRp

)
dV︸ ︷︷ ︸

AJ
SUPG

= 0. (29c)

Finally, discrete satisfaction of the involutions (2) can be achieved by neglecting the terms
AF

SUPG in (29a) and AH
SUPG in (29b) (see [4, 5] for further details). Thus, only the SUPG

term AJSUPG (and Ap
SUPG in (20)) will be considered henceforth.

4. Smooth Particle Hydrodynamics (SPH) approximation

Before presenting the spatial discretisation of the mixed-based system {p,F ,H , J}, we
very briefly summarise some important concepts of SPH kernel interpolation and derivatives
adopted in this work. Given a set of particles a (b) defined by its material position Xa (Xb),
the same corrected kernel (or smoothing function) W̃ as that reported in [49] (see Section 4.2
on pg. 105-106) is followed in the present manuscript. This ensures zero-th and first order
consistency. Additionally, and contrary to the JST-SPH framework in [1] (see Eqn. (21) on
pg. 77 in Reference [1]), the discrete approximation of the material gradient of any arbitrary
vector function f at position Xa is carried out via the use of the “Corrected Gradient of a
Corrected Kernel ∇̃0W̃” [49] as

∇0f(Xa) ≈
∑
b∈Λb

a

f b ⊗Gb(Xa), (30)

where Gb(Xa) := Vb∇̃0W̃b(Xa) and Vb represents the volume associated with particle b
belonging to the support Λb

a of particle a.

4.1. Bubnov-Galerkin contribution

Following the same procedure employed in any standard SPH spatial approximation [1,

8, 9, 23], the Bubnov-Galerkin contributions A{p,F ,H,J}
Gal in (20) and (29a)-(29c) are (under)

integrated at a primary set of (Galerkin) particles [1, 6, 8, 10, 50, 51]. Using a kernel
interpolation W̃ (see Section 3.2 on pg. 77 in Reference [1]) and its gradient evaluation as in
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(30), terms A{p,F ,H,J}
Gal result in the following (particle) discrete system of equations

dpa
dt

= Ea − T a; (31a)

dF a

dt
=
∑
b∈Λb

a

pb
ρ0

⊗Gb(Xa); (31b)

dHa

dt
= F a

∑
b∈Λb

a

pb
ρ0

⊗Gb(Xa); (31c)

dJa
dt

= Ha :
∑
b∈Λb

a

pb
ρ0

⊗Gb(Xa). (31d)

Here, the nodal external Ea and internal T a force vectors are defined as

Ea =
Aa
Va
ta + fa0; T a =

∑
b∈Λb

a

Vb
Va
P bGa(Xb), (32)

with P b := P (F b,Hb, Jb) and Aa and ta the tributary area and traction vector of those
particles placed at the boundary, the latter being computed directly from the given traction
boundary conditions [32, 41, 42]. It is worth mentioning that, the above internal force repre-
sentation T a (32b) satisfies the global conservation of linear momentum, that is

∑
a VaT a = 0

(see Remark 4 on pg. 79 in Reference [1]).
As it is well known [1–5], the above discrete mixed-based system (31) suffers from severe

numerical instabilities [16, 20, 23, 52], especially in nearly incompressible scenarios. The

additional SUPG contributions A{p,J}SUPG in equations (20) and (29c), crucial to circumvent this
shortcoming, are presented in the following section.

4.2. SUPG contribution

Evaluation of the terms A{p,J}SUPG in (20) and (29c) at the primary set of particles does
not introduce any effect, given the residual-based nature of the SUPG stabilisation (e.g. the
discrete residuals are strictly zero when evaluated at the primary set of particles). Hence, and
taking inspiration from the Dual Particle Method, [25, 53–55], a secondary set of particles is
employed in order to account for the effect of these SUPG terms.

In general, there are several options to define the positions of this secondary set of par-
ticles. One of the most commonly used approaches in mesh-free methods (especially in the
context of Element Free Galerkin method [56, 57]) is to allocate these particles coinciding
with the Gauss quadrature points of an underlying fictitious finite element mesh. Following
this approach, two simple alternative particle arrangements are used in this paper, namely:
SUPG-SPH-H1, where the secondary particles are placed at the centroids of the hexahedral
elements of an underlying hexahedral mesh, and SUPG-SPH-H6, where the secondary parti-
cles are placed at the centroids of tetrahedral elements generated after splitting of an initial
underlying hexahedral mesh (i.e. one hexahedral element leads to six tetrahedral elements)
(refer to Figure 2). The secondary set of particles are only used for the evaluation of the
SUPG terms. It is worth emphasising that, as opposed to Reference [58], stability of the al-
gorithm (Ladyzhenskaya-Babuska-Brezzi (LBB) condition) does not rely upon a specifically
designed particle arrangement. The automated generation of the secondary set of particles,
without resorting to an underlying (fictitious) mesh, is not investigated as part of this paper.
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(a) (b)

Figure 2: The positions of the primary and secondary set of particles in three dimensional
hexahedral fictitious mesh with: (a) 1 Gauss quadrature point; and (b) 6 Gauss quadrature
points. The primary set of particles is placed at the vertices (nodes), whereas the secondary
set of particles coincides with the Gauss quadrature points of the underlying mesh.

Nodal integration of the SUPG term Ap
SUPG (20) at a secondary set of particles q gives

Ap
SUPG := −

∫
V

P fine : ∇0δv dV

≈ −
∑
q

VqP fine(Xq) : ∇0δv(Xq),
(33)

where P fine(Xq) := τF γRF (Xq) + ζFαRx
F (Xq) (refer to (27)). With the aid of the material

gradient evaluation described in (30), equation (33) can equivalently be written in terms of
a dissipative force vector D(pa) as

Ap
SUPG ≈ −

∑
q

VqP fine(Xq) :

∑
a∈Λa

q

δva ⊗Ga(Xq)



=
∑
a

Vaδva ·

−
∑
q∈Λq

a

Vq
Va
P fine(Xq)Ga(Xq)︸ ︷︷ ︸

D(pa)

 .

(34)

Finally, the SUPG contribution AJSUPG (associated with spurious pressure mechanisms)

11



in (29c) yields

AJSUPG := −
∫
V

∇0δΣJ ·
(
τp
ρ0

HTRp

)
dV

≈ −τp
ρ0

∑
q

Vq∇0δΣJ(Xq) ·
(
HT (Xq)Rp(Xq)

)
≈ −τp

ρ0

∑
q

Vq

∑
a∈Λa

q

δΣa
JGa(Xq)

 · (HT (Xq)Rp(Xq)
)

=
∑
a

VaδΣ
a
J

−
τp
ρ0

∑
q∈Λq

a

Vq
Va

(
HT (Xq)Rp(Xq)

)
·Ga(Xq)


︸ ︷︷ ︸

D(Ja)

 .

(35)

Notice that both SUPG stabilising terms, namely D(pa) and D(Ja), are introduced
through a variationally consistent framework. Hence, both naturally satisfy the global con-
servation requirement, that is

∑
a VaD(pa) = 0 and

∑
a VaD(Ja) = 0. This is a crucial

advantage with respect to the JST stabilisation algorithm in Reference [1] (see Eqns. (49a)
and (51) on pg. 83 in Reference [1]), where a posteriori (least-square) projection procedure
was needed for global conservation.

5. Complete SUPG-SPH algorithm

Addition of the discrete variationally consistent SUPG contributions (see (34) and (35)) to
the Bubnov-Galerkin discrete expressions (31a-31d), finally yields the complete semi-discrete
set of governing equations for {p,F ,H , J} as

dpa
dt

= Ea − T a + D(pa); (36a)

dF a

dt
=
∑
b∈Λb

a

pb
ρ0

⊗Gb(Xa); (36b)

dHa

dt
= F a

∑
b∈Λb

a

pb
ρ0

⊗Gb(Xa); (36c)

dJa
dt

= Ha :
∑
b∈Λb

a

pb
ρ0

⊗Gb(Xa) +D(Ja), (36d)

with the stabilising terms {D(pa),D(Ja)} and the internal and external force vectors {T a,Ea}
defined in Section 4. Notice that the SUPG stabilisation is only applied to the linear momen-
tum evolution D(pa) (36a) and the volume map evolution D(Ja) (36d). The former alleviates
the appearance of spurious zero-energy (hourglass-like [10]) modes whereas the latter removes
pressure instabilities in nearly incompressible scenarios [3].

Time integration of the geometry x and the above semi-discrete system (36) is carried out
monolithically via a one-step two-stage Total Variation Diminishing Runge-Kutta (TVD-RK)
method, thoroughly reported by the authors in [1] and references therein.
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Remark 2:
It is interesting to emphasise two appealing features of the proposed SUPG algorithm

with respect to the JST algorithm developed by the authors in [1]. First, the variationally
consistent nature of the SUPG stabilisation eliminates the a posteriori projection procedure
(see Eqns. (49a) and (51) on pg. 83 in Reference [1]) used for global conservation in the
JST algorithm. Second, the SUPG algorithm does not require the computationally intensive
evaluation and the a priori corrections (for consistency purposes) of the harmonic and bi-
harmonic operators, needed in the case of the JST algorithm.

6. Local angular momentum preserving algorithm

As described in Section 2 (refer to (15)), the resulting SUPG-SPH algorithm intrinsically
fulfils conservation of angular momentum provided that PFx

T is a symmetric tensor. This
is automatically satisfied in displacement-based formulations [40]. However, this is generally
not the case in mixed formulations, as that presented in this paper, where the first Piola-
Kirchhoff stress tensor is a function of a set of (weakly related) geometric strains variables,
that is P = P (F ,H , J) (see Section 2.1 on pg. 75 in Reference [1]).

In contrast to the global projection proposed by the authors in previous publications
[1, 2, 32, 36, 41, 42], a locally preserving angular momentum algorithm is adopted in this
paper. For this, constraint (15) is enforced at every particle a at each stage of the one-step
two-stage Runge Kutta time integrator (see Eqn. (43) on pg. 82 in Reference [1]) [42]

E :
(
P χ
aF

T
Xa

)
= 0, ∀χ = {n, ?}; (37)

where

Xa =

{
xna , if χ = n

xn+1
a := xna + ∆t

2ρ0
(pna + p?a) , if χ = ?

. (38)

A least-square minimisation procedure is used to obtain a modified set of particle stresses
P C
a that satisfy above condition (37). This can be achieved by computing the minimum of

the following functional [36, 42] (where time arguments have been ignored for brevity)

Π(P C
a ,λa) =

1

2

(
P C
a − P

)
:
(
P C
a − P a

)
+ λa ·

[
E :
(
P C
a F

T
Xa

)]
, (39)

where P C
a represents the (corrected) projected first Piola-Kirchhoff stress tensor and λa a

Lagrange multiplier vector. The stationary conditions of the above functional (39) with
respect to λa and P C

a render

E :
(
P C
a F

T
Xa

)
= 0; P C

a = P a + λa FXa . (40)

Substitution of expression (40b) into (40a) for P C
a enables the nodal Lagrange multiplier

λa to be evaluated as

λa = L−1
[
E :
(
P aF

T
Xa

)]
; L = (trbXa)I − bXa ; (41)

where bXa = FXaF
T
Xa

. Analogously, the same projection procedure has to be applied for the
evaluation of the projected fine-scale stress tensor P C

fine (27).
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7. Algorithmic description

For ease of understanding, Algorithm 1 summarises the complete algorithmic description
of the Streamline Upwind Petrov Galerkin Smooth Particle Hydrodynamics (SUPG-SPH)
mixed-based {p,F ,H , J} methodology, with all the necessary numerical ingredients. Notice
that simpler {p,F }, {p,F , J} and {p, J} versions of the algorithm can be easily obtained
by neglecting the relevant geometric conservation laws (i.e. (36c) and/or (36d)).

Algorithm 1: Complete stabilised SUPG-SPH mixed methodology

Input : Un
a where U = [p F H J ]T

Output: Un+1
a , P n+1

a , xn+1
a

(1) ASSIGN old primary variables: Uold
a = Un

a and xold
a = xna

(2) EVALUATE p-wave speed: cp (see References [4, 42])

(3) COMPUTE time increment: ∆t

for TVD-RK time integrator = 1 to 2 do

(4) COMPUTE right-hand-side of the conservation laws:
ṗa (31a), Ḟ a (31b), Ḣa (31c) and J̇a (31d)

(5) PROJECT P a in (32) via (40)

(6) COMPUTE the SUPG contributions {D(pa),D(Ja)}
(7) PROJECT P fine in (34) via (40)

(8) EVOLVE {Ua,xa} via TVD-RK (see Eqn. (43) on pg. 82 in Reference [1])

(9) IMPOSE essential boundary conditions directly on particles pa

end

(10) UPDATE {Un+1
a ,xn+1

a } (see Eqn. (43) on pg. 82 in Reference [1])

(11) COMPUTE first Piola P n+1
a (see Eqn. (12) on pg. 75 in Reference [1])

8. Numerical examples

In this section, a series of numerical examples are presented in order to assess the ro-
bustness, effectiveness and applicability of the framework described above (see Algorithm 1).
The examples presented focus on reversible hyperelastic constitutive models, where physical
dissipation is not present in the problem.

Three stabilised mixed-based SPH methodologies are analysed, namely {p,F }, {p,F , J}
and {p,F ,H , J} SUPG-SPH, in conjunction with the two strategies described in Section
4.2 for the evaluation of the SUPG stabilising contributions, namely SUPG-SPH-H1 and
SUPG-SPH-H6. For comparison purposes, some of the results are benchmarked against
the non-LBB compliant B-bar [59] Hexahedral element and the LBB compliant Taylor-Hood
Hexahedral element [60], as well as additional in-house mixed-based Finite Element [2–5, 33],
Finite Volume [32, 36, 41, 42] and SPH [1] numerical strategies.
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X, x

Y, y

Z, z

(0, 0, 0)

(1, 1, 1)

Figure 3: Swinging cube configuration

8.1. Convergence, consistency and conservation

In the following section, two different numerical examples are considered in order to
assess the performance of the SUPG-SPH algorithm in terms of consistency, convergence and
conservation.

The first example shows a swinging cube (see Figure 3) of unit side length with symmetric
boundary conditions (e.g. restricted normal displacement) at faces X = 0, Y = 0 and Z = 0
and skew-symmetric boundary conditions (i.e. restricted tangential displacement) at faces
X = 1m, Y = 1m and Z = 1m (already presented in References [2–5, 32, 36, 41, 42, 47]).
The main aim of this example is to show the convergence behaviour of the proposed {p,F },
{p,F , J} and {p,F ,H , J} SUPG-SPH methodologies in a three dimensional setting. A
neo-Hookean material with Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.3 is
considered. The density of the material is ρ0 = 1100 kg/m3 and the Courant-Friedrich-Levy
number is αCFL = 0.3. Following Reference [1] (see Section 8.2 on pg. 85 in Reference
[1]), the convergence analysis is carried out by computing the L2 norm of the error between
the analytical solution of this problem and the numerical solution obtained for different
values of the (structured) particle spacing.5 Figure 4 shows the expected equal second order
convergence pattern for both linear momentum and the components of the stress tensor for
all the SUPG-SPH methodologies considered. This shows a clear advantage of the proposed
formulations with respect to the classical displacement-based SPH, which yields first order of
convergence for stresses. More interestingly, the proposed SUPG-SPH method shows better
accuracy than the JST-SPH algorithm previously reported in [1], with the same slope but
with a lower translation error (see Figure 5).

In order to assess the ability of the algorithm to preserve angular momentum over a
long period of computational time, the L-shaped block example, (see Figure 6), originally
proposed by [61] and subsequently studied in References [4, 5, 36, 41, 42], is included. The
motion of a three dimensional block subjected to an initial impulse traction at two of its sides
(refer to [5], Eqn. (139) in Section 6.6 on pg. 721) is analysed. A neo-Hookean material with
Young’s modulus E = 50046 Pa and Poisson’s ratio ν = 0.3 is considered. The density of the

5Nearly identical results have been obtained for an unstructured particle distribution, hence not presented.
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(a) Mixed-based {p,F } SUPG-SPH-H1 (b) Mixed-based {p,F } SUPG-SPH-H6

(c) Mixed-based {p,F , J} SUPG-SPH-H1 (d) Mixed-based {p,F , J} SUPG-SPH-H6

Figure 4: Swinging cube: L2 norm convergence of the components of both linear momentum
and stresses using the proposed SUPG-SPH methodologies. A neo-Hookean material is used
with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.3
and αCFL = 0.3. SUPG parameters used: SUPG-SPH-H6 {τF = ∆t, τp = ξF = 0} and
SUPG-SPH-H1 {τF = ∆t, ξF = 0.1, τp = 0}.

(a) Linear momentum (b) First Piola Kirchhoff stress

Figure 5: Swinging cube: Comparison of L2 norm convergence of the components of both
linear momentum and stresses using {p,F ,H , J} SUPG-SPH and {p,F ,H , J} JST-SPH
methodologies. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s
modulus E = 17 MPa, Poisson’s ratio ν = 0.3 and αCFL = 0.3. SUPG-SPH-H1 {τF = ∆t,

ξF = 0.1, τp = 0}. JST pameters: ε
(2)
p = ε

(2)
J = ε

(4)
J = 0 and ε

(4)
p = 1

8
.
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(6, 0, 0)

(3, 3, 3)

(0, 10, 0)

F1(t)
F2(t)

Figure 6: L-shaped block configuration

material is ρ0 = 1000 kg/m3 and the Courant-Friedrich-Levy number is αCFL = 0.3. Figure
7 illustrates the evolution of the components of both linear and angular momentum for the
{p,F } SUPG-SPH-H6 formulation using a disordered (secondary) particle arrangement. As
it can be observed, the angular momentum of the system remains constant once the external
loads are removed whereas linear momentum is zero up to machine accuracy. In addition, a
sequence of deformed states is depicted in Figure 8, showing a smooth distribution for the
pressure field.

8.2. Spurious pressure instabilities

A block of 1m × 0.5m × 0.1m, originally proposed in Reference [58], is left free on its
top face and constrained with rollers (i.e. symmetric boundary conditions) on the rest of the
boundaries (see Figure 9). The main objective of this example is to show the capability of
the algorithm in suppressing spurious pressure oscillations in highly constrained problems.
The block is initially compressed with a uniform velocity field v0 = (0, 0,−10)Tm/s applied
on a region of the top face, as described in Reference [1] (see Eqn. (54) on pg. 91). A nearly
incompressible neo-Hookean material is considered with Young’s Modulus E = 1 MPa and
Poisson’s ratio ν = 0.499 (i.e. incompressibility limit κ

µ
≈ 500). The density of the material

is ρ0 = 1000 kg/m3.
For benchmarking purposes, the classical displacement-based SPH and JST-SPH method

are used. As it is well known, the displacement-based SPH shows excessive pressure fluctua-
tions which eventually leads to an incorrect deformation pattern (see Figure 10a). As it can
be observed from Figures (10b) and (10c), severe pressure fluctuations can still be detected
using the proposed {p,F ,H , J} SUPG-SPH if insufficient numerical dissipation (τp = 0) is
introduced. This spurious pressure mechanism can be entirely eliminated with the inclusion
of the appropriate SUPG coefficient τp = 0.1∆t (see Figure (10d)).

Crucially, for the same number of particles (or degrees of freedom), the variationally con-
sistent SUPG-SPH scheme proves more accurate than the JST-SPH methodology presented
in Reference [1]. The latter requires a considerably larger number of particles in order to
capture the correct deformation of the block (see Figures (11a) (11b) and (11c)). As it
can be observed, both SUPG-SPH-H1 and SUPG-SPH-H6 methodologies show very good
agreement in terms of pressure and deformations (see Figures 11c,d), the latter methodol-
ogy (SUPG-SPH-H6) requiring six times more computational effort for the evaluation of the
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(a)

Figure 7: L-shaped block: Time evolution of the components of angular and linear momen-
tum. Results are obtained using the proposed {p,F } SUPG-SPH-H6 with the consideration
of the angular momentun projection algorithm. A neo-Hookean material is used with density
ρ0 = 1000 kg/m3, Young’s modulus E = 50046 Pa, Poisson’s ratio ν = 0.3 and αCFL = 0.3.
Discretisation of 388 disordered material particles. SUPG parameters used: τF = ∆t, ξF = 0.
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t = 2.1424 s t = 4.1553 s t = 4.1553 s

t = 8.1586 s t = 10.1769 s t = 12.2002 s

t = 14.143 s t = 16.2032 s t = 18.2191 s

Pressure (Pa)

Figure 8: L-shaped block: Time evolution of the deformation plotted with pressure distribu-
tion using {p, F } SUPG-SPH-H6. A neo-Hookean material is used with density ρ0 = 1000
kg/m3, Young’s modulus E = 50046 Pa, Poisson’s ratio ν = 0.3 and αCFL = 0.3. Dicretisa-
tion of 388 disordered material particles. SUPG parameters used: τF = ∆t, ξF = 0.
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Figure 9: Punch test configuration

SUPG contributions A{p,J}SUPG in (20) and (29c). It is this reason that leads us to prefer the
use of the SUPG-SPH-H1 methodology.

Finally, Figure 12 shows the excellent performance of the mixed-based {p,F ,H , J}
SUPG-SPH-H1 formulation even when extremely large distortions are involved. Notice that
in this type of scenarios, mesh-based methods such as the Petrov-Galerkin Finite Element
Method (PG-FEM) presented in [2–5] are not suitable unless adaptive mesh refinement is
carried out [62].

8.3. Robustness of the algorithm

In order to examine the robustness and applicability of the algorithm, a more challenging
example (see Figure 13), proposed in References [3–5, 36, 41, 47], is considered in this section.
The problem description and material properties are exactly the same as those presented in
Section 8.9 on pg. 95 in Reference [1].

The results obtained with three different meshes (4× 19× 4, 5× 25× 5 and 6× 31× 6)
using both the mixed-based {p,F ,H , J} SUPG-SPH-H1 and {p,F ,H , J} SUPG-SPH-H6
methodologies are shown in Figure 14, displaying both formulations practically identical
results. This confirms the convenience of the SUPG-SPH-H1 methodology.

For benchmarking purposes, this problem has been solved using a library of in-house
numerical methodologies, namely, JST-SPH [1], PG-FEM [2, 3], Constrained-TOUCH [42],
the non-LBB compliant B-bar (P1-Q0) Hexahedral FEM [59] and the LBB compliant Taylor-
Hood (Q2-Q1) Hexahedral FEM [60] (refer to Figure 15).

As shown in the Figure, the results of the proposed {p,F ,H , J} SUPG-SPH (column
(b)) formulation agree very well with those of the other (benchmarking) techniques. In
addition, the SUPG-SPH formulation has been run with an ultra-fine discretisation (column
(a)) to demonstrate the convergence of the solution. It is interesting to note that the results
obtained with the JST-SPH algorithm (column (c)) [1] have been obtained with a slightly
finer discretisation than those of the SUPG-SPH formulation in column (b). This is due to
the higher numerical dissipation of the JST method [36, 42].

It is worth emphasising the accuracy of the results obtained, comparable to those of
the PG-FEM formulation presented in [2–5]. In the latter, a VMS stabilisation strategy
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t = 0.005 s t = 0.01 s t = 0.015 s

(a) Displacement-based formulation

(b) Mixed-based {p,F ,H , J} SPH (τF = τp = ξF = 0)

(c) Mixed-based {p,F ,H , J} SUPG-SPH-H6 (τF = 0.5∆t, τp = ξF = 0)

(d) Mixed-based {p,F ,H , J} SUPG-SPH-H6 (τF = 0.5∆t, τp = 0.1∆t, ξF = 0)

Pressure (Pa)

Figure 10: Nearly incompressible punch test: Time evolution of the deformation plotted
with pressure distribution using (a) Displacement-based formulation; (b) p-F -H-J SPH
(τF = τp = ξF = 0); (c) p-F -H-J SUPG-SPH-H6 (τF = 0.5∆t, τp = ξF = 0); and (d)
p-F -H-J SUPG-SPH-H6 (τF = 0.5∆t, τp = 0.1∆t and ξF = 0). A neo-Hookean material is
used with density ρ0 = 1000 kg/m3, Young’s modulus E = 1 MPa, Poisson’s ratio ν = 0.499
and αCFL = 0.3.
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(a) (b)

(c) (d)

Pressure (Pa)

Figure 11: Nearly incompressible punch test: Comparison of deformation plotted with
pressure distribution at time t = 0.015 s using: (a) Mixed-based {p,F ,H , J} JST-SPH
(21 × 11 × 3 particles); (b) Mixed-based {p,F ,H , J} JST-SPH (41 × 21 × 4 particles); (c)
Mixed-based {p,F ,H , J} SUPG-SPH-H6 (21×11×3 particles with τF = 0.5∆t; τp = 0.1∆t;
ξF = 0); and (d) Mixed-based {p,F ,H , J} SUPG-SPH-H1 (21 × 11 × 3 particles with
τF = 0.5∆t; τp = 0.1∆t; ξF = 0.1). A neo-Hookean material is used with density ρ0 = 1000
kg/m3, Young’s modulus E = 1 MPa, Poisson’s ratio ν = 0.499 and αCFL = 0.3. JST

parameters: ε
(2)
p = ε

(2)
J = 0, ε

(4)
p = 1

8
, ε

(4)
J = 1

32
.

22



t = 0 s t = 0.0118 s t = 0.0203 s

t = 0.0271 s t = 0.0318 s t = 0.0353 s

t = 0.0378 s t = 0.0394 s t = 0.0403 s

Pressure (Pa)

Figure 12: Nearly incompressible punch test: A sequence of deformed states plotted with
pressure distribution using the mixed-based {p,F ,H , J} SUPG-SPH-H1. A neo-Hookean
material is used with density ρ0 = 1000 kg/m3, Young’s modulus E = 1 MPa, Poisson’s ratio
ν = 0.499 and αCFL = 0.3. Discretisation of 21×11×3 material particles. SUPG parameters
used: τF = 0.5∆t, τp = 0.1∆t, ξF = 0.1.
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X, x

Y, y

(−0.5, 0, 0.5)

(0.5, 6,−0.5)

Z, z

ω0 = [0, Ωsin(πY/2L), 0]T

L = 6m

Figure 13: Twisting column configuration

was followed, requiring a higher number of stabilisation parameters than in the SUPG-SPH
framework proposed in this paper (refer to Section 3.1).

9. Conclusions

This paper presents a novel SPH computational framework tailor-made for the system
of first order conservation laws {p,F ,H , J} introduced in [4, 5] in the context of explicit
fast solid dynamics. The proposed methodology explores a new SUPG stabilisation technique
displaying a series of advantages over the recently proposed JST-SPH framework in [1]. First,
the variationally consistent nature of the SUPG stabilisation allows for the introduction of a
locally preserving angular momentum procedure. This differs from the JST-SPH framework,
where an a posteriori projection procedure was required to ensure global angular momentum
preservation. Second, evaluation of expensive harmonic and bi-harmonic operators, neces-
sary for the JST stabilisation, is avoided in the new SUPG-SPH framework. Third, the
SUPG-SPH framework is more accurate (for the same number of degrees of freedom) than
its JST-SPH counterpart and its accuracy is comparable to that of the robust (but compu-
tationally more demanding) Petrov Galerkin Finite Element Method (PG-FEM) technique
explored by the authors in [2–5], which requires a higher number of stabilisation parameters.
The latter formulation, being mesh-based, cannot handle problems involving large distor-
sions, as opposed to the formulation developed. These advantages indicate the potential and
applicability of the proposed formulation in real large scale simulations.

In forthcoming publications, the authors will further explore the formulation proposed
studying three new aspects: first, the use of an entropy-based formulation for nearly and truly
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4× 19× 4 5× 25× 5 6× 31× 6

(a) Mixed-based {p,F ,H , J} SUPG-SPH-H6

(b) Mixed-based {p,F ,H , J} SUPG-SPH-H1

Pressure (Pa)

Figure 14: Twisting column: A sequence of particle refinement analysis at a particular time
t = 0.1 s using: (a) Mixed-based {p,F ,H , J} SUPG-SPH-H6 (τF = ∆t, ξF = 0, τp = 0.1∆t);
and (b) Mixed-based {p,F ,H , J} SUPG-SPH-H1 (τF = ∆t, ξF = 0.2, τp = 0.1∆t). Results
obtained with an angular velocity field ω0 = [0,Ω sin(πY/2L), 0] where Ω = 105 rad/s and
L = 6 m. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus
E = 17 MPa, Poisson’s ratio ν = 0.495 and αCFL = 0.3.
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t = 0.1 s

(a) (b) (c) (d) (e) (f) (g)

Pressure (Pa)

Figure 15: Twisting column: Comparison of deformed shapes plotted with pressures at time
t = 0.1 s using: (a) Mixed-based {p,F ,H , J} SUPG-SPH-H1 with ultra-fine discretisation
(τF = ∆t, ξF = 0.2, τp = 0.1∆t); (b) Mixed-based {p,F ,H , J} SUPG-SPH-H1 (τF =

∆t, ξF = 0.2, τp = 0.1∆t); (c) Mixed-based {p,F } JST-SPH (ε
(2)
p = 0 and ε

(4)
p = 1

8
);

(d) PG-FEM [3]; (e) Constrained-TOUCH [42]; (f) B-bar hexahedral method [59]; and (g)
Taylor-Hood (Q2-Q1) hexahedral FEM [60]. Results obtained with an angular velocity field
ω0 = [0,Ω sin(πY/2L), 0] where Ω = 105 rad/s and L = 6 m. A neo-Hookean material is used
with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.495.
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incompressible elasticity [3, 4]; second, the consideration of thermoelasticity [41]; and third,
the adaptation of the current framework to high strain dynamic fracture and fragmentation
with particle refinement [63].
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