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A B S T R A C T

Current urban water research involves intelligent sensing, systems integration, proactive users and data-
driven management through advanced analytics. The convergence of building information modeling with
the smart water field provides an opportunity to transcend existing operational barriers. Such research
would pave the way for demand-side management, active consumers, and demand-optimized networks,
through interoperability and a system of systems approach. This paper presents a semantic knowledge man-
agement service and domain ontology which support a novel cloud-edge solution, by unifying domestic
socio-technical water systems with clean and waste networks at an urban scale, to deliver value-added ser-
vices for consumers and network operators. The web service integrates state of the art sensing, data analytics
and middleware components. We propose an ontology for the domain which describes smart homes, smart
metering, telemetry, and geographic information systems, alongside social concepts. This integrates previ-
ously isolated systems as well as supply and demand-side interventions, to improve system performance.
A use case of demand-optimized management is introduced, and smart home application interoperability
is demonstrated, before the performance of the semantic web service is presented and compared to alter-
natives. Our findings suggest that semantic web technologies and IoT can merge to bring together large
data models with dynamic data streams, to support powerful applications in the operational phase of built
environment systems.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Building information modeling (BIM) is increasingly being
researched in operational buildings, alongside technologies such
as energy simulation and building automation [5,32]. Also, smart
approaches such as systemic optimization [45], and load forecast-
ing [14] are demonstrating improvements in the efficacy, longevity
and efficiency of water networks [25,37]. Smart water networks
are touted to deliver leakage reduction, energy savings, water qual-
ity assurance, improved customer experience and operational opti-
mization, amongst other key performance benefits [21,22,31,43].
Research is now looking to improve water demand profiles at the
building level through adaptive pricing feasibility studies, consumer
feedback interfaces, gamification, and smart appliances. Hence, a
new research field is emerging from the union of BIM, smart appli-
ances, intelligent sensing, and cybernetics.
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However, this complex ‘system of cyber-physical systems’ faces
similar interoperability challenges to those being faced by smart
grids and smart cities, where the value derived from ICT penetra-
tion is tied to the ability to share knowledge. This has been stated
by authoritative bodies to occur due to i) lack of machine commu-
nication protocols, ii) lack of common data formats, and iii) lack of
common meaning of exchanged content [19]. The need for com-
mon protocols and resource discoverability is being addressed by
the Internet of Things (IoT), such as through the recent Hypercat
standard [17]. However, this still leaves semantic aspects unresolved.

In the smart grid and smart city domains, research is actively
pursuing data models which facilitate data exchange, the integra-
tion of legacy systems, and promote system security and perfor-
mance [7,19]. Given the growth of smart metering in the water
industry [6,33], and recent interest in smart water [22,31], it is per-
tinent for smart water research to learn from smart grid research.
Further, many similar key ICT features are required in the water
domain, so interest in a similar approach is growing [18,36].

Significant advances have been made in the field of water seman-
tic modeling, but primarily from an earth science perspective, and
primarily at the catchment scale [28,46–48]. Very little modeling
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of water consumption at the utility or building level is evident,
although BIM, smart appliance and intelligent sensing models are
relevant to this domain. An integrated modeling approach would be
highly beneficial to promote the effective interoperation of software
i) with a feedback loop at the building level, ii) which optimizes
and implements demand-side management (DSM), and iii) which
uses dynamic consumption data to better inform clean and waste
network management decisions. This should include a detailed and
consistent vocabulary and semantic model across the building and
network scales. It would also be beneficial to reuse the domain inde-
pendent aspects of models from the power and smart city domains,
and to adopt a similar modeling approach. Applied knowledge man-
agment work is therefore required both directly and at a meta level,
to support smart water systems as well as the sharing of knowledge
between smart domains.

Semantic interoperability in smart water networks is therefore
a literature gap, which this paper takes a step towards addressing.
The work was conducted within a European research project, which
aims to integrate data and software across domestic and water util-
ity resources. The project, ‘Water analytics and Intelligent Sensing
for Demand Optimised Management’ (WISDOM), is utilizing seman-
tics and web-enabled sensors to integrate business operations across
the water value chain. A water value chain is defined as the arti-
facts, agents, and processes involved in delivering potable water to
consumers from natural water sources and safely disposing of foul
and runoff waste water. This paper proposes a smart domain water
ontology, and a software platform which uses this to integrate ser-
vices. This extends the state of the art of both the BIM and IoT fields
towards meaningful interoperability of things and software in smart
water networks.

The next section presents related work observed in the litera-
ture, Section 3 presents the use case driven methodology adopted,
Section 4 then presents the main contribution; the semantic water
modeling, and Section 5 presents a platform which uses the models
to deliver interoperability. Ontology validation and platform exper-
iments are presented in Section 6, and the findings are discussed
along with concluding remarks in Section 7.

2. Related work

This section provides a state of the art overview of research
on semantics and applications in the water domain. As such, it is
structured into three sub-sections focusing on (a) the foundations

of semantic modeling, (b) water modeling at the catchment and
network levels, and (c) the modeling of cyber-physical systems at the
building level.

2.1. Introduction to semantic modeling and ontologies

Semantic models, such as ontologies, promote interoperability
as shared data formats and domain knowledge models, and play a
prominent role in the World Wide Web Consortium (W3C) ‘semantic
web stack’ [39]. They also play a role in the IoT and linked data fields,
where they assist data contextualization, resource discovery, consis-
tency and scalability [1]. Ontologies have been defined as explicit
specifications of a conceptualization [49]. Therefore, an ontology
describes the concepts, relationships, data properties and restric-
tions within a domain, in a machine-readable manner, and is often
instantiated for a target system.

In use, ontologies typically support application back ends through
a triple store, by capturing meaning, contextualizing data, standard-
izing terminology, facilitating rule application and producing new
knowledge beyond that which is inputted. This assists the devel-
opment of knowledge-driven applications which integrate hetero-
geneous resources. Critically, ontologies are vendor-neutral, which
promotes extensibility, accessibility, and knowledge reuse. The fol-
lowing subsections describe existing semantic models in the target
domains, which are summarized in Table 1.

2.2. Smart water and associated knowledge management issues

Smart water networks aim to improve the management of water
and waste water systems through more intelligent approaches,
such as artificial intelligence (AI) [24] and optimization [45]. Given
the steeply rising number of sensors and volume of big data in
the domain, comprehensive solutions must be available for these
resources to be understood by machines, to support their best use
in AI and advanced applications. Mounce et al. express this by
stating that ontologies are a key technology for the acquisition, struc-
turing and filtering of knowledge [23]. Further, the Smart Water
Networks Forum has emphasized that as well as network inter-
operability, semantic understanding of data is critical to overcome
the interoperability hurdle currently observed [15]. The geospa-
tial community has produced several notable semantic models
such as CityGML and its Utility network extension [28], and the
INSPIRE utility network schemas [20]. This supports the fundamental

Table 1
Summary of relevant semantic models.

Acronym/name Description Owner # entities Date

SWIM Device level IoT semantic model for the water industry. Aquamatix 41 2016
WISDOM Cyber-physical and social ontology of the water value chain. Cardiff University 492 2016
SAREF ‘Common denominator’ of 23 smart appliance domain models. ETSI 154 2015
WaterML2 Common format for hydrological time series data exchange. OGC 131 2014
IFC4 Open format for building information model exchange. buildingSMART 768 2013
Utility network schemas Water and sewer network model; part of a large European directive

for geospatial data exchange.
EC-INSPIRE 65 types 2013

WatERP Lightweight ontology of generic concepts for water sensing and
management.

EURECAT 29 classes 2013

WDTF Format for transferring flood warning and forecasting data to the
governing body. Precursor to WaterML2.

Australian Bureau of Meteorology 337 2013

CityGML UtilityADE Domain extension for modeling utility networks in 3D city models,
based on topology and component descriptions.

OGC 317 2012

SSN ontology Describes sensors and sensor networks, for use in web applications,
independent of any application domain.

W3C 80 2012

SWEET Middle-level ontology for environmental terminology. NASA 6000 2011
Hydrologic Ontology for Discovery Supports the discovery of time series hydrologic data collected at a

fixed point. Precursor to WaterML2.
CUAHSI 4098 2010

HydrOntology Aims to integrate hydrographical data sources: town planning
perspective, top down methodology.

Vilches-Blázquez et al. 250 2009



436 S. Howell et al. / Automation in Construction 81 (2017) 434–448

step of machine understanding of location metadata, but beyond
this, detailed descriptions are needed of aspects such as materials,
IoT device capabilities, sensor metadata, socio-technical concepts,
demand-side concepts, and other cyber-physical aspects. This forms
a core part of the gap being addressed by the current work. By devel-
oping a semantic web solution to these challenges, the plethora of
devices and their data can be more readily discovered, accessed,
and utilized by advanced applications, towards a more open and
progressive ecosystem of innovation.

Typically, when utility companies contract the production or
upgrade of a software solution the domain experts interact with
software developers on per-project basis, resulting in ad-hoc, pro-
prietary, and implicit extensions of data models. This has led to
significant inefficiencies as the domain knowledge which is elicited
during the process is lost rather than being captured in a semantic
model, resulting in greater barriers to further development and lack
of coherency between systems even within one company, but espe-
cially across companies. Standards act as one means of addressing
this challenge by building consensus amongst stakeholders on how
best to capture this domain knowledge, as this can be used as a com-
mon reference point for all further software development. However,
standards face the challenge of heterogeneity amongst themselves,
and of lack of adoption; without which they have little value. Specif-
ically, standards from different communities within the sector have
adopted different domain perspectives and data formats, incompat-
ible scopes and semantics, and different levels of granularity. Also,
without clear business cases or regulation to encourage the adoption
of the standards, companies are unlikely to invest in the upfront task
of adopting or aligning with a new data model. Building an ontology
which aims to integrate these standards towards specific use cases is
a viable way to mitigate the barriers mentioned between standards,
as it abstracts the semantics of each standard away from their ini-
tially intended application, and allows alignment at the knowledge
layer.

As ontologies are the most expressive type of data model avail-
able, they can capture the knowledge expressed in other standards,
and can be converted back into many less expressive formats if
required. This effort to promote the compatibility of standards also
improves the business case of adoption, as utility companies are
likely to experience greater return on investment from being able
to interoperate a range of existing models, and the software devel-
opment will be less time-consuming, and more open to competition
through open standards. Therefore, integrating these fundamentally
heterogeneous standards should make use of high-level conceptual
mapping, abstraction, specialization, reuse, and equivalency, through
an axiomization which is loose enough to allow their communities
autonomy over development but strong enough to guide software
developers, and ideally enable automated processes.

As an early pioneer of ontologies in the water domain, Scholten
et al. defined a best practice for producing conceptual models of
water systems for simulation purposes [34,35], but little work has
considered the broader uses of ontologies in the domain. Whilst
mathematical models serve a critical function, the role of data mod-
eling and semantic modeling is growing as the number and het-
erogeneity of ICT resources in the domain accelerates [18]. This is
especially pertinent considering the growth of the Internet of Things,
which can leverage ontologies and Semantic Web technologies to
interoperate physical devices as well as a broader range of software
than just simulation packages. Despite this, the earlier stages of the
process outlined by Scholten et al. (towards a conceptual model,
independent of its application), are complementary to the work pre-
sented herein, which broadly followed the tasks and order prescribed
by Scholten et al. Whilst the ontology of Scholten et al. aimed to
achieve quality assurance for mathematical models, the current work
aims to achieve deep interoperability between data schemas and
domain conceptualizations.

Examples of semantic models in the smart water field are sparse.
Whilst several mature ontologies were observed in the earth science
field, such as the Hydrologic Ontology for Discovery [10], SWEET [27]
and HydrOntology [38], these were not suitable for the application
of ICT to the water value chain. The main relevant ontology observed
was the WatERP “generic ontology for water supply distribution
chain” [41,42]. However, the Waternomics ‘linked data model’ [40]
contained some useful concepts, and the Infrastructure for Spatial
Information in the European Community (INSPIRE) utility network
model [20] standardizes basic physical water and waste water net-
work models. The WatERP ontology is intended for relatively simple
use cases, so contains only 25 classes and few details of the physi-
cal processes and components involved in water management, and it
doesn’t describe relationships between features of interest, or actors.
The WatERP ontology is split conceptually into a ‘supply and demand
ontology’, ‘observation and measurement ontology’ and an ‘alerts
and actions’ ontology. Further, the WatERP ontology only captures
high level concepts such as physical element types, and a few types
of actors. Further depth is therefore required in the semantic model-
ing of this domain across physical, social and sensory concepts across
the supply and demand parts of the value chain.

Very little relevant modeling was observed regarding water
consumption at the building level. As mentioned previously, the
similarity of the smart water trajectory to the smart grid trajec-
tory implies that we should pre-empt the smart grid roadblocks
manifesting in the smart water field. This will allow the deliv-
ery of intelligent demand-side management (DSM) through knowl-
edge and software integration across the supply-demand boundary.
This requires the development of semantic models for the water
sector in the same vein as those observed in the energy sector,
and reusing existing modeling and meta-modeling where possible.
Given the importance of the domestic context and smart devices
for demand-optimized management, the next section describes the
modeling of these domains and their overlap with building informa-
tion modeling.

2.3. Building and smart device information modeling

From a knowledge modeling perspective, BIM is the evolution of
computer-aided design to also include semantic information about
entities, processes and actors. The initial role of BIM was exchanging
knowledge between design and construction phases, but research
has increasingly applied BIM artifacts and concepts across lifecycle
phases [13]. The Industry Foundation Classes (IFC) [8] have increas-
ingly been used in operational phase cybernetics, such as in smart
building energy management [44], and in optimizing building energy
consumption through a knowledge-based approach [16].

The use of open data models in BIM prevents vendor tie-in; pro-
moting software package interoperability and development by the
research community. For example, they have been extended for
object-based knowledge exchange [5]. Integrating building descrip-
tions with sensor data supports semantic reasoning and artificial
intelligence (AI) applications. To further this, ifcOWL is being devel-
oped [30], as the original format is not well suited for web appli-
cations. However, no work was observed using BIM in smart water
cybernetics, consumption feedback, or DSM applications. IFC mod-
els only include basic water components, omitting many concepts
needed for cybernetics such as; consumers, behaviors, smart appli-
ances, sensor descriptions, sensor networks, and water billing mech-
anisms. Therefore, aligning ifcOWL with a water ontology would be
valuable in enabling the convergence of these two fields for mutual
benefit.

As well as BIM, the work of the smart appliance reference ontol-
ogy (SAREF) project is highly relevant [12]. This attempts to unify
23 ontologies, by supporting alignments in systems with 3 or more
smart appliance ontologies. The SAREF ontology has been adopted by
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Table 2
Description of demand-optimized management scenario.

Scenario name Demand-optimized management

Value proposition Matching the availability of water to the demand for
water should reduce energy consumption, non-revenue
water (leakage and evaporation), and maintenance costs,
and reduce the number of alarms by reducing the strain
on the network.

Description The integration of smart metering data, predictive
models, optimization algorithms and decision support
tools will allow the suggestion of set point schedules and
resource management schemes for water network
assets. Specifically, simulation and optimization models
will be integrated with demand-side data, and GIS and
telemetry data to suggest options to functional managers
and information regarding the implications of control
strategies. A multi-objective metaheuristic optimization
will reduce the amount of pumping required and the
peak pressures, hence reducing leakage and energy cost.
Reducing the time water resides in reservoirs will also
reduce evaporation through a just-in-time approach.

Independent variables –Reservoir set points and schedules
–Pump set points and schedules
–Pressure reducing valve actuation
–Control valve actuation

Input data From water utility:
–Telemetry data (flow rate, pressure, pH, stage height,
temperature, chlorine residual etc.)
–Valve and pump states
–Sensor and observation metadata
–Asset and pipe locations
–Asset & pipe descriptions (material, type, size, length
etc.)
From consumers:
–Smart metering data
–Household descriptions
From Environment Agency:
–River levels and rainfall gauges

Pilot site Tywyn & Aberdovey

the European Telecommunications Standards Institute (ETSI), giving
significant precedence to its reuse. The semantic sensor network
(SSN) ontology [9] has also been broadly adopted, and should be
leveraged wherever semantics and intelligent sensing are combined.
Reusing these models promotes extensibility and the reuse of the
work presented herein. The next section presents the methodology
followed, before the resultant semantic models and software plat-
form are discussed further.

3. Methodology and use cases

The development of the smart water semantic model was under-
taken within the broader development of a smart water interoperabil-
ity and analytics platform. This allowed a clear scope, requirements
elicitation, and validation to be undertaken, towards real applica-
bility of the modeling in the smart water domain. These processes
were driven by clear use cases, based on consultations with industrial
stakeholders. This process is now elaborated, before two example
use cases are presented.

3.1. Ontology requirements elicitation

The requirements elicitation first involved undertaking a
stakeholder-oriented knowledge gathering process to understand
the business, technical and regulatory contexts of the domain. This
resulted in business process models and a sufficient initial under-
standing of the technological domain and requirements on the
intended contribution. A systems analysis and design task was then
undertaken to specify the functional and non-functional require-
ments of the semantic web service, based on a service-oriented
architecture approach. These emerged from a number of use cases,
sequence diagrams and scenarios, which represented the inter-
actions and added-value mechanisms the platform intended to
support: examples of this work are shown in Table 2, Figs. 1 and 2.
The platform itself is discussed further in Section 5. This foundational
knowledge began to clarify the breadth and depth of the required
modeling, around the central concepts of smart water, demand-
optimized management, and intelligent sensing. This participatory
process used the expertise of water value chain stakeholders to
inform the nature of an integration of large data models which would
be valuable to the sector. The scope was then developed further
through domain expert consultation and ontology expert refinement
into a set of competency questions associated with each scenario,
which marked the start of the ontology’s development process.

The ontology development used an adapted version of the
NeOn methodology [26], and prominently featured reuse, iteration,
abstraction, and domain expertise. Firstly, candidate ontologies were
identified for reuse, and these were analyzed closely against the soft-
ware and knowledge modeling requirements. This found that the
socio-technical system ontology of van Dam [11] and the SSN ontol-
ogy [39] were ideal to produce a meta-model, to be extended with
water specific knowledge from the INSPIRE and CityGML models, as

Fig. 1. Excerpt of UML use case for the knowledge management service in the demand-optimized management scenario.
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Fig. 2. Simplified sequence diagram for the demand-optimized management scenario.

well as concepts from other ontologies and new modeling where
necessary. The curation of the ontology used semantic mechanisms
such as abstraction, specialization, equivalency, and fragment reuse
to integrate knowledge captured by existing large data models. Con-
cepts and axioms were also elicited from the previous knowledge
gathering exercise, as well as automated web crawling and seman-
tic extraction from relevant websites, and further domain expert
consultation. The ontology was then validated as a sufficient and
accurate formalization of the domain vocabulary by experts from
10 companies across the European water sector, and was sepa-
rately analyzed for suitability within the scopes of the platform’s
use cases. Two of the ontology’s use cases are now discussed:
demand-optimized water management, and smart home appliance
interoperability.

3.2. Demand-optimized management

One of the key analytics services supported by the platform
is the optimization of the operation of water networks based on
contextualized smart metering of dwellings. This scenario of more
dynamically matching supply to demand is presented in Table 2, and
the use case model which describes the required functions of the
knowledge management service to support this is shown in Fig. 1.
An example, simplified, sequence diagram for delivering the sce-
nario is illustrated in Fig. 2, where these represent excerpts of the
requirements engineering process undertaken. As stated in Table 2,
this scenario uses a range of optimization techniques to minimize the
energy and water consumption of the network by providing online
near optimal suggestions for pump, valve and reservoir setpoint
control.

The optimization process includes a set of constraints such as tank
and reservoir operational level ranges and minimum pressure head
requirements, which are intrinsically satisfied as a result of the opti-
mization. Upon receiving a request from the business services layer,
the optimization module is initialized by requesting the current state
of the water network from the ontology service. This then populates
the optimization model with data such as network topology, pipe
dimensions, pump descriptions and current consumption behaviors
in the network. The optimization service then uses this knowledge
within a hydraulic model and an artificial neural network model, and
a range of candidate optimization methods.

The process outputs optimal set points for various key actuators
in the network, so as to provide decision support to the staff of the

water service provider based on the current and predicted demand
on the network. The ontology service plays a key role in facilitating
this optimization of the water network, by integrating data across
domains and scales for use by the optimization module.

The use of contextualized smart meter data here allows greater
reasoning and data mining over the consumption data, as corre-
lations can be found between domestic socio-technical variables
and consumption patterns. Further, the Internet of Things approach
allows the home gateways to be discoverable, whilst the gover-
nance module ensures secure accessibility of the domestic data to
authorized users and services.

3.3. Interoperability for smart home appliances

A use case which highlights the interoperability benefits of the
semantic alignment at the building scale is shown in Fig. 3, which
illustrates the hypothetical case of a consumer with both a water

Fig. 3. Object reuse across smart home applications, through alignment with the
SAREF ontology.
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Fig. 4. Mitigation of mapping task growth with increasing entities through a common
model.

feedback app and an appliance scheduling app interacting with their
devices.

Fig. 3 shows the objects (physical and otherwise) which are rel-
evant to the repositories of both applications, including those which
can be reused from WISDOM by simply aligning with SAREF. If a

third application is introduced, the previous mappings to SAREF
have already been completed, meaning that only one mapping is
required to integrate the application, as opposed to mapping to
both of the other applications. This is illustrated further in Fig. 4
as a means to avoid exponential mapping tasks in the likely future
case of many integrated software artifacts. Also, it is not required
for one single common model to gain universal acceptance for
the premise of Fig. 4 to hold; even with 2 or 3 common models
(each mapped to each other) the mapping task growth is mitigated
significantly.

4. Semantic water modeling

As described previously, the ontology development used an
iterative process, following the recommendations of the NeOn
methodology [26]. A meta-model was developed through reuse of
the W3C semantic senor network (SSN) ontology [9] and the socio-
technical system (STS) ontology of van Dam [11]. This meta-model
was extended to model man-made water system concepts at the

Fig. 5. Excerpt of the domestic water device taxonomy.
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building and network levels of detail, as is described in the following
sections.

4.1. Building scale model

The semantic model was developed using web ontology language
description logic (OWL-DL), and extended the IFC, SSN, and SAREF
ontologies at the building scale. This was achieved by modeling
the water-consuming appliances and their usage patterns, emerging
technologies such as greywater heat recovery systems, the end-users
themselves, their behaviors and perspectives, water-consuming
activities, and the economic aspects of water consumption.

The approach allowed a thorough contextualization of the
dynamic data obtained from water and energy sensors in the
dwellings. This allowed data mining for correlations, such as between
consumer perspectives on water conservation and their actual
actions, thereby improving the accuracy of demand predictions
through profiling or machine learning algorithms. An excerpt of the
device modeling is shown in Fig. 5, and the socio-technical modeling
of consumption patterns is shown in Fig. 6, which are both aligned
with the network-scale model described in the next section.

4.2. Building-network semantic integration

In order to integrate building and network management knowl-
edge, each individual dwelling was modeled as a single physical
node in the overall water value chain, as shown in Fig. 7, and the
consumers were modeled as social nodes, in the interconnected
socio-technical system of water management. This was aligned with
the network level modeling, which was based on an STS meta-model,
and was extended with domain concepts relevant to the social, tech-
nical, and cyber-physical aspects of the system. The main implication
of cross-referencing datasets in this manner is a reduction in the
complexity of building applications across varied sources, as the
complexity is handled at the knowledge layer, so data is coherently
unified and exposed in a rich manner.

The process resulted in an ontology of 384 classes, including
detailed hierarchies of asset types, sensor types, hydraulic variables,
contract types, and stakeholders in the domain. Some of the key
classes involved in managing real-time data from sensors attached
to the physical water network and their relationships are shown in
Fig. 8. The sensory concepts shown in Fig. 8 are aligned with the
W3C SSN ontology, and broad integration was achieved between the
ontology and existing large data models, as discussed in the next
section.

4.3. Alignment with other models

One key goal was to produce an open, vendor-neutral, and exten-
sible common model, for reuse in other applications. This allows the
semantic web to grow organically and in a modular manner, rather

Fig. 6. Modeling pattern for domestic consumption behaviors.

Fig. 7. Topological node class hierarchy showing domestic buildings alongside net-
work level nodes.

than requiring a single monolithic data structure, and so the ontology
was aligned with existing mature models.

The main semantic resources identified in the built environment
domain were the IFCs, SAREF, and the SSN ontology, which were
described briefly in Section 2.3 and Table 1.The INSPIRE Utility
schema and WatERP ontology were also deemed highly relevant
from the geospatial and water domain respectively. An excerpt
of the alignments with these models is shown in Fig. 9, and the
specific number of alignments of the ontology with various large
data models is shown in Table 3. A large portion of the SSN ontology
was reused, as it formed the base of the cyber-physical modeling.
The SAREF ontology was aligned at a high level, where the WISDOM
ontology then extended it for the water device domain. Many of
the SAREF classes are example commands, properties, and states,
which were mainly outside of the water domain, so little align-
ment could be found with these, despite the approaches being highly
complementary.

The IFC concepts were aligned with the more generic physical
components of the system, such as ‘pipe’. The WISDOM ontology
loosely constitutes an extension of the IFC water system modeling.
When aligning to the IFC, the concepts of the EXPRESS version
were used rather than the current version of IFC.owl. This was
decided as the EXPRESS version is an international standard, whereas
the OWL version is being developed to follow semantic web best
practice, whilst maintaining direct compliance with the EXPRESS
version [29,30]. This is illustrated in Fig. 10, and future work for the
WISDOM ontology includes aligning with the final IFC.owl ontology.

The SAREF ontology models smart appliance, sensory and control
concepts, which overlaps with the scope of the WISDOM domestic
ontological concepts. It was considered not relevant to control most
domestic water-consuming devices remotely (apart from irrigation
systems, washing machines and dishwashers).

4.4. Ontology instantiation and legacy system integration

The domain ontology constitutes a vocabulary with which to
describe a building’s people, behaviors, and devices, as well as water
and waste distribution networks, and this was utilized to create
semantic model instances for deployment in the system. These also
contain real-time data regarding the current state of the water
network, such as the recent consumption of a district metering
area (DMA). The instantiation of the domain ontology is conducted
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Fig. 8. Main concepts and relationships (inverses not shown) for sensory and physical knowledge integration.

through reuse of legacy data, manual processes at buildings, con-
sumer input through a graphical user interface (GUI), and manual
elicitation of expert knowledge.

The cloud platform aimed to integrate with existing ICT systems,
as a step change towards smart water. The ontology therefore
reuses knowledge available in geographic information systems (GIS)
and sensor databases. This was achieved through a Python con-
version into resource description framework (RDF) triples. Updates
from real-time sensor data, domestic GUIs, and existing supervisory

Fig. 9. Excerpt of alignments with IFC and SAREF concepts.

control and data acquisition (SCADA) systems were performed
automatically after subscribing to the event bus as shown in
Fig. 11. Updating the network description would require an UPDATE
SPARQL query, although future work will aim to mask the SPARQL
complexity.

Given the ontology’s alignment with IFC and SAREF, a partial
instantiation was also conducted from existing IFC.owl and SAREF
data. This conversion was possible bidirectionally through a simple
SPARQL CONSTRUCT query, as shown in Table 4. The resulting model
needed to be completed with data outside the scope of the original
models for the intended use cases. The extra required data would
vary based on whether the original knowledge base fully instantiated
its domain ontology, or only used a subset of it.

5. Data integration and analytics platform

5.1. Integrated demand-side management

The deployed system utilized both cloud and edge processing,
based on the static domestic and network descriptions, and the
dynamic data received from sensors. The hardware installed at con-
sumers’ properties was a smart flow meter, a home gateway, and a
tablet which served as a graphical interface. This allowed an amount
of edge processing, sufficient for consumer monitoring of water
usage and comparison with previous trends and goals. The interface
also allows the users to input rich semantic data regarding the social
entities, consumer behaviors, and smart appliances at the property,
to contextualize the dynamic data and allow greater reasoning over
observations at the property. A subset of this information was then
communicated to the cloud platform, which provided a full descrip-
tion of the building as a consumption node in the overall water

Table 3
Integration between WISDOM ontology and other large data models.

Data model Total # entities Semantic alignments

IFC 768 34
INSPIRE utility schema 65 types 39
SAREF 112 classes 16
WatERP 29 classes 29
SSN 80 65
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Fig. 10. Ongoing development of ifcOWL from the standardized express version.

value chain, for the purposes of utility decision support, and DSM
optimization.

As well as the feedback loop closed at the building level, the work
utilized the building data with network data and weather data to
deliver an optimized demand-side management strategy, including
the sending of targeted interactions, providing users knowledge of
the current load on the network and their impact on it. This inte-
gration of data across domain perspectives and scales was achieved
through the common data and meaning shared between the software
entities at the edge and cloud level, such that the home gateways
used the same syntax and semantics as the cloud software.

In utilizing consumer data in the cloud architecture, it was crit-
ical to preserve privacy and security, and so data sharing between
consumers and the utility was carefully managed. The system there-
fore balanced the benefit of integrating data with the requirement
for data security and privacy by distinguishing between private and
shared objects. This approach is illustrated in Fig. 12. Critically, this
approach of sharing partial world views between agents is well
suited for the application of ontologies, which are regarded as ideal
for storing and inferring over incomplete knowledge sets due to
their use of the open world assumption. The building level concep-
tual modeling of the water value chain ontology was completely

aligned with the broader network and sector-scale model, by mod-
eling both alongside each other. This enabled semantic clarity when
using the ontology at either scale and when sharing messages across
scales.

5.2. Semantic web service implementation

Building level knowledge was mainly exchanged as RDF data,
but also used JavaScript Object Notation (JSON), whilst maintaining
homogeneity with the OWL model. This was fed into the data fusion
and filtering service before updating the knowledge base through the
ontology web service. This allowed the demand management opti-
mization and other intensive services to occur in the cloud, whilst
respecting each consumer’s own desires and agency.

The ontology service consisted of a water value chain domain
ontology common across pilot sites, and instantiations of this ontol-
ogy, to create a separate knowledge base for each pilot site. The types
of classes instantiated included various types of pipe, pump, reser-
voir, valve, domicile, sensor, people, organizations, natural water
bodies, smart meters, appliances, and usage patterns. The domain
ontology was instantiated at each site so as to describe the systems
at the site sufficiently for the use cases, which didn’t require fully

Fig. 11. Functional architecture of the proposed ICT solution.
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Table 4
Example schema conversion (prefix statements omitted).

Source data:
wisdom:washingMachine rdf:type wisdom:ElectricAppliance, owl:NamedIndividual
wisdom:meter_01 rdf:type wisdom:DomesticWaterMeter, owl:NamedIndividual
wisdom:meter_02 rdf:type wisdom:DomesticWaterMeter, owl:NamedIndividual
wisdom:building_01 rdf:type wisdom:DomesticBuilding, owl:NamedIndividual

SPARQL query:
CONSTRUCT { ?individual rdf:type owl:NamedIndividual, ?NewClass}
WHERE{{ ?individual rdf:type owl:NamedIndividual.
?individual rdf:type ?WisdomClass.
?WisdomClass wisdom:alignedWithSaref ?NewClass }
UNION {
?individual rdf:type owl:NamedIndividual.
?individual rdf:type ?WisdomClass.
?WisdomClass wisdom:alignedWithIfc ?NewClass }}

Output data:
wisdom:washingMachine rdf:type saref:Device, owl:NamedIndividual
wisdom:meter_01 rdf:type Saref:Meter, owl:NamedIndividual
wisdom:meter_02 rdf:typeSaref:Meter, owl:NamedIndividual
wisdom:meter_01 rdf:type Ifc:IfcFlowMeter, owl:NamedIndividual
wisdom:meter_02 rdf:type Ifc:IfcFlowMeter, owl:NamedIndividual
wisdom:building_01 rdf:type Ifc:IfcBuilding, owl:NamedIndividual

instantiating the ontology at any one site. The resulting knowledge
bases (instances) were stored as persistent RDF triples on dedicated
virtual machines within a cloud computing framework, using the
Jena TDB triple store within a custom wrapper. The knowledge bases
were queried via a RESTful web service, which offered convenience
GET functions for most common tasks, as well as a SPARQL endpoint,
based on the ARQ package [2].

Apache Jena [3] was used to store and interact with the graph
database, which mandated an RDF-centric approach, written in Java.
The Jena ontology application programming interface (API) and
transactional database (TDB) API allowed rapid deployment of a per-
sistent OWL-DL ontology. Jena stores ontologies using the ontology
model class (OntModel), (an extension of the RDF model class), and
hence views ontologies as more descriptive versions of RDF models.
The built-in Jena reasoner was used to infer new knowledge from
existing knowledge, and hence created RDF triples. Persistence of
the ontology was provided by the Jena TDB layer, meaning that data
isn’t lost if the service is terminated or crashes.A custom web ser-
vice was built instead of using Fuseki, which was found to be time
consuming to extend and integrate with the other components. The
knowledge management service is illustrated in Fig. 13. A custom
API was developed which provided a SPARQL endpoint and a number
of convenience functions for common tasks, such as retrieving the
latest sensor reading by passing its ID. As the knowledge manage-
ment component is primarily a back-end web service, it had no GUI

Fig. 12. Integration of object knowledge across the water value chain to highlight the
capability for data privacy.

and relied on command-line administration. However, given the use
of Jena, which has wide community support and several open source
user interfaces, a GUI could be developed for managing the server
with relatively little effort. A front-end interface was developed to
showcase the system integration function of the approach, which is
discussed in the following section.

The main use cases of the ontology service are requests for infor-
mation from other WISDOM system components, and updates to
the knowledge bases following sensor events or when consumers
change static knowledge about their dwelling, such as register-
ing new appliances or behaviors. The RESTful GET method which
executes a SPARQL SELECT query accepts a URL-encoded SPARQL
request and executes this using the Jena ARQ package. The result
of the semantic web service software is knowledge about the water
network, formatted in either CSV, standard SPARQL JSON response
[50], a simpler but proprietary JSON format, or an RDF graph. As well
as integrating data from sensors and static data, the ontology can
also integrate results from analytics services and other application
layer software by storing their outputted knowledge and providing
discovery capabilities.

The deployment of the ontology as a web service supports the
benefits of a service-oriented architecture [19] and hence allows
plug-and-play capability with other software components of the
WISDOM architecture, and potentially beyond. After development,
the software was deployed in a secure cloud environment.

5.3. Integrated supply-side management

As well as using the building scale data with network-scale data
to deliver DSM functions, the contextualized consumption data was
used to better inform upstream demand-optimized management
decisions. This primarily involved the optimization of pumps and
reservoir levels to minimize energy consumption and water losses,
based on the current and predicted demand profiles, and network
knowledge such as pipe leakages, and weather predictions. Also,
in the waste water network, the consumption data helped to infer
the volumes of waste water entering the network, which was used
alongside weather data to predict combined sewer overflow events.
These applications were delivered through self-contained business
services, which utilized the analytics, storage, and governance, of the
core services of the system.

The system was conceptually arranged into 4 architectural layers:
sensing infrastructure, data acquisition and actuation, core services
and business services, as shown in Fig. 11 previously. The core
services layer contains the system’s semantic integration service,
optimization and analytics services, event bus and governance mod-
ule. These core components utilize data communicated from the
sensing infrastructure to the event bus via the data acquisition layer,
and are delivered to users through the GUIs and edge analytics which
form the business service layer. The key innovation is the use of
the core services to integrate analytics across heterogeneous data
sources by standardizing data syntax and meaning, which is tested
in the following section.

6. Validation and experiments

The validation of the process adopted and the interoperability
artifacts produced was conducted through 2 stages: firstly the val-
idation of the domain model as an accurate, sufficient and shared
conceptualization of the domain. Secondly, the validation of the
ontology instantiation and deployment as a web service, through
software testing, was conducted. This was then reinforced through
experimentation in the scenario of smart home software interoper-
ability.
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Fig. 13. System components of the proposed middleware, showing its role between data sources and analytics.

6.1. Ontology verification and validation

The validity of the domain ontology was checked in an iterative
manner, starting with verification through simple automated con-
sistency checking to ensure correct syntax usage, followed by com-
petency question ‘litmus testing’, and the validation of the ontology
by domain experts within the project. Finally, the ontology was vali-
dated by a range of experts from across the domain, independent to
the project. The results of this process are now briefly outlined.

Preliminary consistency checks were successfully conducted on
the ontology within the Protégé ontology development application.
This shows that the ontology is a valid use of OWL syntax, serialized
in extensible markup language (XML) notation; that the process had
in fact produced a semantic model. The second validation stage was
to test whether the semantic model produced met the criteria it was
intended to meet; the competency questions prescribed in the initial
scoping stages. These covered the breadth and depth of the domain
deemed necessary to be modeled, resulting in 40 questions which
the ontology needed to answer, such as:

• “What devices are present in property X?”
• “What is the consumption profile of device X?”
• “What are the water consumption views of person X?”
• “What is the current water pressure in pipe X?”
• “How much water is currently in reservoir X?”

These questions could all be answered when formalized as
SPARQL queries, such as shown in Table 5, where the queries were
answered in circa 15 ms. Specifically, the location of nodes, assets,
and sensors in the network were stored (including elevation), as well
as the lengths of utility network pipes, and the network’s topology.
Modeling pipes in buildings was not necessary for the use cases,
although this could be achieved with little difficulty through the
ontology’s alignment with IFC.owl.

The ontology was then tested to determine if it is an accurate,
sufficient and shared conceptualization of the domain. This was con-
ducted initially within the project, through the industrial partners
in Wales and Italy. The high level approach adopted was agreed as
suitable, and the majority of the detailed modeling was also agreed.
Some changes were made based on the feedback received, including
the addition of actuator concepts in parallel to the existing sensor
concepts. The revised ontology was then fully agreed on by these
partners, and the same process was conducted with representatives
from 8 external companies from across the European water industry.
Again, the model was broadly validated and a handful of minor addi-
tions were suggested and incorporated. Some of the comments from
the expert validation session were:

• “The ontology addresses the problem of interacting between
tools, such as GIS, Systems Applications Products (SAP), and
customer data”

• “Include alarms as well as sensors”
• “Governing body is also called ‘regulator”’
• “Include water testing company”

The 2nd comment was addressed by aligning with and extend-
ing the alarm ontology of the WatERP project. The 3rd comment has
been addressed by adding a comment to the class, and the 4th com-
ment was addressed by including a ‘waterTestingCompany’ class.
The majority of the comments were advisory or generic, such as:

• “The work could be considered as a type of enterprise service
bus”

• “An ontology is also called a taxonomy”
• “Sensors could also be ‘social sensors’, which report numbers

of tweets etc. ”
• “Collaboration relationships exist between utilities which

share a water resource”
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Table 5
Example competency questions (prefix statements omitted).

Natural language question:
What is sensor E2000’s current reading?

SPARQL query:
SELECT ?reading
WHERE {
wis:E2000 rdf:type wis:LevelSensor.
wis:E2000 wis:hasLatestOutput ?output.
?output dul:hasDataValue ?reading }

Output (CSV format):
reading
2 .00

Natural language question:
What is Pipe_01’s material?

SPARQL query:
SELECT ?material
WHERE {
wis:Pipe_01 rdf:type wis:Main.
wis:Pipe_01 wis:hasMaterial ?material }

Output (CSV format):
material
wis:PVC

Natural language question:
What is the length of Pipe_01?

SPARQL query:
SELECT ?length ?unit
WHERE {
wis:Pipe_01 rdf:type wis:Main.
wis:Pipe_01 wis:hasLength ?length
wis:Pipe_01 wis:hasLengthUnit ?unit}

Output (CSV format):
length, unit
3, meters

6.2. Software testing

Following the validation of the domain ontology, this was instan-
tiated for a real Welsh pilot site by using survey data from residents
as well reusing GIS data and data from sensor, social and asset
databases, as well as heuristic knowledge, operating manuals and
product specification sheets. This pilot site knowledge base was then
deployed in the cloud based system described previously; with live
data updating the instantiation every 15 min. Testing was conducted
as to the performance of the ontology service within the cloud plat-
form for both retrieval and updating of data, through the RESTful GET
and PUT methods. These utilized the SPARQL SELECT and UPDATE
functions respectively.

The service was deployed on a personal laptop (i5-3317U CPU @
1.7 GHz, 8 GB memory, Windows 7 64-bit) so as to test the service’s

performance, rather than including latency by testing the service in
a cloud environment. The semantic model tested was an instantia-
tion of the water value chain and domestic model, consisting of 1722
named individuals and circa 15k triples. 11 identical GET requests
were issued to the service to retrieve the current sensor reading
at an arbitrary sensor in the network, and this test was repeated
5 times, with the service restarted between each test to reset any
caching which had occurred. A similar testing protocol was con-
ducted for PUT requests to update the sensor reading, and more
realistic testing was conducted by varying the GET request issued,
varying the PUT request issued, and finally alternating between GET
and PUT requests. The results of the GET request testing are shown
in Fig. 14 below, which clearly shows caching, and that the typical
response time which could be expected would be circa 550 ms. The
PUT testing indicated a very similar trend, but with approximately an
additional 100 ms response time across the requests. Changing the
request between subsequent requests didn’t result in any significant
difference in the response time to these results.

The ontology service consumed circa 113MB of memory on start-
up, and following caching, peaked at circa 800MB after 20 requests.
Following start-up, a request consumed on average 81% of the avail-
able processing power, but after 5 requests this reduced and sta-
bilized at circa 11%. Further work will investigate the platform’s
scalability and compare implementation choices, such as alternatives
to Apache Jena.

6.3. Data model integration and schema conversion

One intended benefit of the approach was to integrate existing
data models, which are formalized in different data formats, and
often using heterogeneous domain perspectives. This was achieved
in two ways. Firstly, at the intersection of existing models, equiv-
alency and alignment between them and the WISDOM ontology
meant that the shared data could be interoperated across the mod-
els, an example of which is illustrated in Fig. 15. Note that mappings
were made between the existing models and the developed ontol-
ogy, rather than between the existing models directly, hence pro-
moting interoperability through a common model. Secondly, where
the models described similar or related concepts, semantic methods
such as graph modeling techniques, abstraction, and mereological
relationships were used to express a ‘path’ relating the concepts.
This provided a coherent web of concepts and relationships which
integrates the models that exist or relate to the water domain. One
outcome of this was ease of integrating GIS data with telemetry data,
where the development of a GUI which retrieves data from these tra-
ditionally isolated sources was significantly simplified. This GUI is
shown in Fig. 16.

The benefit of using the semantic web approach to promote inter-
operability across software with different domain perspectives was
tested by performing a schema conversion from a knowledge base of
devices instantiated within the WISDOM ontology into a set of SAREF
individuals. This RDF data could then be used within an UPDATE

Fig. 14. Average response time of the ontology web service across several SELECT queries.
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Fig. 15. Illustration of data integration between existing data models.

SPARQL query to add the individuals to a SAREF knowledge base. A
similar approach could be used in the more likely case of converting
to an application specific ontology which is also mapped to the
SAREF ontology, by loading both ontologies and the SAREF ontol-
ogy into memory. This could also convert object and data properties
between knowledge bases if appropriate mappings were formalized.
The conversion was conducted through a simple SPARQL CONSTRUCT
query. Excerpts of the source data, SPARQL query and output data

Fig. 16. GUI which illustrates the integration of GIS and telemetry data.

were shown in Table 4. Careful federation of the shared objects
would be required to manage access rights and update priority, for
example whether the application using the target knowledge base
could update properties regarding individuals in the source knowl-
edge base. The implication of this is that software developers could
utilize data from across these domains far more easily, more pow-
erfully, and with more confidence that the data was being correctly
understood and contextualized.

7. Discussion

The proposed system aims to support intelligent water sensing,
analytics, services and interfaces, towards optimization of the water
network at the utility level, as well as in homes, through interop-
erability and demand-side management. A key innovation of the
proposed solution, and the focus of this paper, is the integration of
heterogeneous data sources and varied analytics and visualization
components, through a domain ontology, which has been instanti-
ated and deployed within a dedicated web service. The successful
scoping, creation, alignment, validation, and software testing of the
ontology and web service are the main achievements presented. The
utility of such an approach has been highlighted within the net-
work optimization service, as the ontology web service allows this to
utilize data from across the water value chain at runtime.

It has been discussed that delivering demand-side management
strategies requires the integration of building and network-scale
data. This has been achieved through semantic alignment of the con-
cepts across the demand and supply sides and the development of
software to expose this to applications. Specifically, a coherent data
schema for demand-side appliances, socio-technical concepts, and
smart metering data, as well as supply-side GIS, telemetry, and socio-
technical data, has been produced. The results presented show that
the ontology and its software deployment are sufficient as a concep-
tualization of the water domain for use within a near real-time deci-
sion support system. The validation of the domain ontology displays
that it is agreeable amongst a wide range of stakeholders within the
industry, and that it could contribute significantly to the interna-
tional standards identified by ICT4Water [18] as critical towards the
penetration of ICT within the water domain. Further, the benefit of
the approach of interoperating programs which have heterogeneous
internal data structures and domain perspectives through semantic
alignment has been demonstrated and use cases for this presented.
The software testing conducted indicates that the performance of the
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ontology service and SPARQL endpoint, which represents an exten-
sion of the Apache Jena APIs, was sufficient for the velocity and
volume of requests and updates deemed typical within the target
software platform’s use cases.

The key novelty presented lies in the semantic representation
of the water value chain as a detailed manifestation of a socio-
technical-sensory system, at the network and building scales. By
describing the system of systems in terms of its geospatial com-
ponents and its features from other domain perspectives, this
goes beyond the ontological modeling conducted elsewhere to
offer greater depth and breadth. Specifically, the ‘observation and
measurement ontology’ of the WatERP ontology is similar to the
WISDOM sensor ontology, due to their shared roots in the W3C
SSN ontology [9], although the WatERP ontology’s alignment with
the SSN ontology is shallow; only reusing a few high level con-
cepts. However, the WISDOM sensor ontology thoroughly reuses the
SSN ontology, and extends it directly in order to be relevant to the
water domain. The WatERP ‘supply and demand ontology’ contains
concepts from across the rest of the WISDOM ontology, but again
only captures high level concepts such as physical element types
(storage, transfer, etc.) and a few types of actors (bulk water suppli-
ers, consumers, regulators and water utilities). Hence, the WISDOM
ontology is suited to a different purpose to the WatERP ontology. Fur-
ther, the WISDOM ontology captures domestic knowledge, so as to
allow the integration of consumers within the water value data chain
and hence contextualize smart meter and behavioral data.

As well as a contribution towards the water industry, the pre-
sented alignments with the IFC as well as the use cases and archi-
tecture shown, contribute towards the field of building information
modeling, by allowing the application of the paradigm in the oper-
ational phase of buildings. This was achieved by extending the IFC
with operational concepts in a domain ontology, and by integrat-
ing static data and near-real-time data in a knowledge base, with
historical data in an aligned ‘noSQL’ database.

Smart water systems are emerging as a method of leveraging ICT
and artificial intelligence to improve the key performance indica-
tors of water networks by utilizing existing sensor networks where
available, deploying new sensors, integrating data silos within and
across organizations, and applying artificial intelligence techniques
matured in other domains. This aims to improve the efficiency and
longevity of water networks as well as reducing energy consump-
tion, water losses and costs whilst improving consumption profiles
through demand-side management strategies. Whilst smart water
networks are still an emerging trend, their benefits appear promis-
ing, and despite most water networks not utilizing sensor networks
sufficiently to currently be considered ‘smart’, early adopters of
the approach are paving the way, and the likely future scenario
of water networks enriched with may smart devices will require a
robust, flexible and scalable interoperability solution. Further, with
the BIM paradigm gaining global momentum, utilizing design and
construction data alongside operational data, IoT solutions and sen-
sor descriptions holds the potential to unlock vast cost, resource, and
CO2 emission savings through intelligent management.

Ongoing work includes the development of a custom semantic
inference engine to allow the ontology service to directly contribute
to the analytics functionality of the system through semantic web
rule language (SWRL) rules. Also, to mitigate the scalability chal-
lenges which ontologies represent regarding processing power, the
application of distributed RDF stores is being investigated, to fur-
ther mimic and benefit from the highly distributed nature of the
existing web. It is also important to note that whilst interoperability
benefits are observed without the existence of a single standard-
ized semantic model for the domain, a model which represents a
standardized domain consensus ontology would be highly valuable
to further reduce the number of semantic alignments required to
widely interoperate perspectives and software in the domain.

8. Conclusion

Applying ICT and artificial intelligence to water management
holds similar potential benefits to those in smart grids and smart
cities, especially with the recent growth of BIM. However, semantic
interoperability is a critical obstacle [15,18], and existing ontolo-
gies leave significant gaps in the smart water domain. This paper
has proposed a detailed and expressive ontology, and a semantic
web service, which aim to integrate GIS and topological network
descriptions, telemetry data, BIM, smart metering, and smart appli-
ances, which takes a step towards filling this gap. The ontology was
described and then tested, before example use cases and a software
deployment were discussed. The findings suggest that semantic web
and IoT technologies can merge to bring together large models,
such as in BIM, with dynamic data streams, to support powerful
applications in the operational phase of built environment systems.
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