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Abstract 

 
Cancer is one the on the leading causes of mortality in world, causing 8.2 million 

deaths in 2012. In light of these statistics, the battle against cancer is ongoing. 

Nucleoside analogues are a major force in cancer chemotherapy. However, one 

problem accompanying nucleoside-based therapy is drug resistance, due to the 

abrogation of mechanisms that are crucial to their transformation to their bioactive 

metabolites (nucleoside phosphates). The ProTide technology was designed to 

overcome the limitations associated with nucleoside analogues. The technology 

enables the delivery of the nucleoside monophosphate into the cell by passive 

diffusion. Work in this thesis details the application of the aryloxyphosphoramidate 

and phosphorodiamidate pronucleotide approaches on potent anticancer purine and 

pyrimidine nucleoside analogues.  

 

The work presented in this thesis shows that: I. ProTides of 5-fluorouracil-

2’deoxyuridine (FUDR), the deoxyribonucleoside derivative of 5-fluorouracil (5-

FU), were able to overcome several important cancer resistance mechanisms, 

including active transport and nucleoside kinase mediated activation, illustrated by a 

potent cytotoxic action in different cancer cell lines. Eight potential candidates were 

synthesised in large-scale and underwent a comprehensive lead selection, identifying 

NUC3373 for clinical trials, to start in 2015; II. The successful application of 

ProTide and phosphorodiamidate technologies to 6-thioinosine and 6-thioguanosine 

did not improve their activity nor did it help in clarifying their mechanism of action. 

6-S-Methyl-thioinosine and its ProTides exhibited far greater efficacy compared to 

6-thioinosine; III. Application of the ProTide technology on cladribine provided 
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proof of the enhanced potencies of 3’-ProTide derivatives over their 5’-counterparts; 

IV. 2’-deoxy-5-azacytidine (Decitabine) ProTides did not exhibit an improvement in 

activity compared to the parent nucleoside in different cell models of cancer; V. The 

bioactivation mechanisms of ProTides using enzymatic assays were successful. 

 

Based on these findings, potential avenues to further explore are the cladribine and 

6-S-methyl-thioinosine ProTide families, with the hope to identify new clinical 

candidates. 
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1 Introduction 

Cancer is one of the leading causes of mortality in the world and according to the 

world health organisation 8.2 million deaths were attributed to cancer in 2012.1 By 

2030, death by cancer has been projected to rise above 11 million globally.1 Cancer 

causes 25% of all deaths in the United Kingdom (UK), and within this 

subpopulation, 75% of these deaths occur in people aged 65 and over.2 In order to 

reduce mortality, there is an urgent need for the development of new highly 

efficacious and minimally toxic treatments for all cancer types. 

 

1.1 Cancer 

Cancer is a disease caused by abnormal cells that undergo uncontrollable mitosis and 

are able to invade tissue either in situ or in remote areas of the body forming 

secondary focal proliferative lesions (malignant neoplasms) by a processes called 

metastasis.3 Some neoplasms do not form a solid mass and this is true in the case of 

leukaemia4-5 and a form of cancer known as carcinoma in situ.6-8 The word tumour is 

often used to describe the physical appearance of a neoplasm and in general, can 

either be solid or cystic.9-11  

 

1.1.1 Cancer classification 

Cancer is classified according to the presumed origin of the neoplasm for example, 

carcinomas are epithelial of origin, the most common cancers such as those that form 

in vital organs and breast tissue, fall under this category.12-13 Cancers arising from 

haematopoietic cells are called leukaemia or lymphoma depending on whether they 
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matured in blood or lymph nodes.14-16 Other classes include, blastoma, sarcoma and 

germ cell tumours.17-20 

1.1.2 Factors that cause cancer 

There are many causes and risk factors for cancer, agents that cause cancer are 

referred to as carcinogens, and are usually categorised as biological, chemical or 

physical.21-22 Carcinogens are highly capable of disrupting genetic homeostasis, 

these include biological entities such as bacteria, viruses and parasites, ionising 

radiation, and chemical entities that have the ability to destabilise DNA replication 

and repair mechanisms causing genetic mutations. Prolonged hormone stimulation, 

inherited and inborn genetic events and aneuploidy can cause cancer.21-22 Of all 

cancer-related deaths, infectious agents cause approximately 15-20% of these deaths, 

25-30% are due to tobacco use, 30-35% are related to diet, 10% are related to 

environmental carcinogens including radiation, and 5-10% are due to genetic 

aberrations.23-26 Everyday lifestyle choices can be risk factors for cancer, with 

smoking, poor diet and alcohol misuse being major risk factors amongst many 

others.3, 21, 23 

 

1.1.3 Cancer development and progression 

Cancer is a heterogeneous disease capable of changing overtime.21, 27 Cancer 

progression at the macroscopic level is shown in figure 1.1. The genetic paradigm 

features heavily in cancer research supported by many papers analysing the genetics 

of neoplastic cells destined to exhibit a malignant phenotype.21, 27 Cancer progression 

is driven by chromosomal defects, mutations in proto-oncogenes and tumour 

suppressor genes.3 Mutations in the coding or promoter region of a gene can render it 

non-functional and lead to a reduction in its expression, respectively. An imbalance 
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in normally functioning proto-oncogenes that are responsible for coding proteins that 

are responsible for regulating cell growth and division, and tumour suppressor genes 

that code proteins that repress the cell cycle, can lead to cancer.28 The concept of 

cancer cell heterogeneity was first identified using histology where changes in cell 

morphology and phenotypic appearance were described moreover, cancer cell 

heterogeneity also extends to cell-to-cell genetic diversity, and diversity in 

biochemical and molecular biology properties.3, 12, 21, 29 Cellular heterogeneity is not 

exclusive to abnormally dividing cells destined to form neoplasia, but is ever present 

in normally dividing cells too.30-33 Cells with amassing chromosomal alterations, 

unregulated mitotic potential and mutational rates contributing to progressive 

genomic instability, have been identified in advanced cancer malignancies such as 

granulocyte leukaemia and Burkitt’s lymphoma.34-36 

 

Figure 1.1 The process of cancer progression from its early precursor state to its advance 
metastatic phenotype. Figure adapted from Clark.3 
 

1.1.3.1 Features of cancer 

The Hallmarks of cancer is a series of reviews authored by Douglas Hanahan and 

Robert Weinberg, where they describe six distinctive and complimentary feature that 

favours neoplasm growth and metastatic potential.21 The six hallmarks of cancer are: 

the ability to sustain proliferation; the ability to bypass growth suppressors such as 

the protein p53; the ability to invade local tissue and to metastasise; characteristic 
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unlimited replicative potential by upregulating the enzyme telomerase, thus 

stabilising the genome during repeated cell cycles; the ability to induce new blood 

vessel growth (angiogenesis); the ability to resist cell death processes such as 

apoptosis, autophagy and necrosis.37-40 The six hallmarks of cancer are common to 

neoplasms undergoing malignant transformation and growth, and although some of 

the features stated are also phenotypic of benign masses, benign neoplasms do not 

have the capacity to invade local tissue and metastasise.41-43  

              

Figure 1.2 The hallmarks of cancer: processes that underly neoplastic cell proliferation. 

Figure by Hanahan and Weinberg’s seminal review.21 

 

An important feature that is common to malignant neoplastic masses is that they are 

highly glycolytic. A high rate adenosine 5’-triphosphate (ATP) turnover does not 
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occur exclusively in malignancies, as the need to utilise ATP derived from glycolysis 

and mitochondrial oxidative phosphorylation, is required by all cells.44 However it is 

the high rate of glycolysis derived from lactate production, which is unique to cancer 

cells.45 By nature, glycolysis is an inefficient route for ATP synthesis therefore in 

order to maintain ATP levels to satisfy the metabolic demand of neoplastic mass, the 

rate of glycolysis must surpass that normally observed in normal healthy tissues; 

glycolysis generates two moles of ATP for every mole of glucose whereas oxidative 

phosphorylation by comparison, produces 36 mol of ATP per mole of glucose.46-47  

 

1.1.4 Thymidine kinase and cancer 

Thymidine kinase (TK) is a highly conserved and ubiquitous enzyme in the 

pyrimidine salvage pathway that is present in organisms and viruses, and has a 

crucial role in DNA synthesis and cellular mitosis.48-52 TK essentially functions as its 

names suggest, as a phosphotransferase enzyme that converts thymidine nucleoside 

to (deoxy)thymidine monophosphate, which is an essential nucleotide found in 2’-

deoxyribonucleic acid (DNA).48-52 The triphosphate component of deoxythymidine 

that is formed by the enzymatic action of nucleoside 5’-diphosphate kinase (NDK or 

UDP) is incorporated into DNA.53-55 In higher organisms, TK exists as two distinct 

isoforms, type-1 (TK1) and type-2 (TK2) localised in different cellular 

compartments.48, 50-52, 56-59 Taylor and colleagues provided comprehensive evidence 

to suggest there are two molecular forms of thymidine kinase with differing relative 

expression in human fetal and adult cells. Fetal thymidine kinase commonly referred 

to now as TK1 was shown to be more sensitive to high incubation temperature, and 

pH and exhibited different electrophoretic properties, compared to so-called adult 

thymidine kinase (TK2).56 Work done by Hideo Masui and Leornard Garren on the 
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mechanism of action of adrenocorticotropic hormone and work done by Arnold J 

Berk and fellow scientists identified the subcellular location of different forms of 

TK.48, 57, 60 Although both groups when discussing their contributions to 

understanding the distribution of TK in mammalian cells did not provide specific 

comment or use the term ‘isoforms,’ their research provided the first evidence for 

there being two distinct forms of TK. This work was later supported by Elsevier and 

coworkers and Willecke and colleagues, respectively they identified chromosomes 

17 and 16 as the stores of the genetic information that encodes human cytoplasmic 

TK1 and human mitochondrial specific TK2.61-62 The human TK1 gene was 

successfully cloned by Harvey D. Bradshaw in 1983.49 

 

TK not only plays a key role in DNA synthesis but also plays a primary role in 

regulating thymidine pools during the cell cycle.58-59, 63 TK activity although 

inconsistent is marked in proliferating cells particularly at the S-phase of the cell 

cycle, but stalls at daughter cell formation due to presumed enzymatic degradation 

(M phase; cytokinesis).59 Kauffman and Kelly’s data suggests the existence of TK 

degradation processes during specific phases of the cell cycle.58-59 The upregulation 

of TK1 is prevalent in cells that are in S-phase, and this factor makes TK1 an 

attractive diagnostic marker in many human malignancies.64-67 TK1 activity is 

elevated in the serum of patients presenting with different types of cancer ranging 

from acute forms of leukaemia, lymphoma, breast cancer and others, and is highly 

indicative of disease progression and severity especially when measured in 

conjunction with other cancer specific markers such as progesterone receptor 

(breast) and folate receptor over-expression (cervical).65-74 TK2 is involved in the 

synthesis of mitochondrial DNA precursors, however it plays no role nor does its 
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activity correlate well with cell proliferation therefore making it an unsuitable 

diagnostic tool for cancer.75-76   

 

1.1.5 Modelling cancer using immortalised cell lines 

Human and rodent immortalised cell lines have significantly enhanced our 

understanding of how cancer develops and progresses, and have given us insights 

into the receptor-mediated and intracellular metabolic signalling pathways that allow 

cancer cells to increase metabolic demand and adapt to environmental changes in 

order thrive.77-82 Furthermore, they have allowed us to identify the molecular 

genetics involved in many different types of cancer.77-82 These immortalised cells not 

only provide us with invaluable information about human cancer biology but all 

represent excellent models for characterising the pharmacology of old and new 

chemical compounds that could have considerable therapeutic potential.  

 

1.2 Treating cancer 

Cancer is often treated by multiple strategies. Mainstay treatment still involves 

surgical removal of solid malignant neoplasm, however non-solid malignancies 

require alternative treatment.83 Radiation therapy and chemotherapy are gold 

standard methods for stalling malignant cell proliferation or inducing cell death, 

combining both therapies can markedly improve clinical outcomes over that of 

mono-therapy.84 Other approaches such as photodynamic therapy, radiofrequency 

ablation therapy, cryotherapy, monoclonal antibody therapy, inhibition of 

angiogenesis, kinase inhibition, vaccine related methods and gene therapy are all 

being investigated or utilised.84 The induction of drug resistance is a major issue in 
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cancer chemotherapy since up to 50% of all malignant neoplasms have either de 

novo drug resistance or develop resistance after first treatment.85-86 Radiation therapy 

and chemotherapy are discussed below. 

 

1.2.1 Radiotherapy 

Radiotherapy is one of the most important treatment modalities in the treatment of 

cancer malignancies with approximately 50% of all cancer patients receiving this 

form of cancer therapy.87 Cancers exhibit different sensitivities to radiotherapy and 

the response of the neoplastic mass to radiation dose is inversely proportional to size 

thus large neoplasms respond less well than small neoplasms.87 Most solid 

neoplasms excluding renal cell carcinoma and melanoma, respond moderately to 

radiotherapy characterised by a reduction in mass size.87 Although blood-borne 

cancers are often highly sensitive to radiotherapy treatment using this method for 

these types of cancer is difficult and often not employed unless the cancer is 

localised to an area of the body.87 Standard radiotherapy uses rectangular treatment 

fields however technological advances have led to the development of conformal 

radiotherapy, which improves dose delivery to the target neoplasm and markedly 

reduces the risk of damaging healthy tissue in close proximity.88-89 Intensity 

modulated radiotherapy, image guided radiotherapy, three-dimensional conformal 

radiotherapy and charged particle radiotherapy are new advances. These inventions 

have improved neoplasm targeting, dose delivery and cumulative exposure, thus 

reducing toxicity to the patient and as consequence improving clinical outlook.88-89 
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1.2.2 Chemotherapy 

Chemotherapy involves using chemical compounds to treat cancer that is at risk of 

metastasising or has metastasised.90 Chemotherapy can either be curative, controlling 

or palliative (in advance malignancies) to improve symptoms and quality of life.90 

Chemotherapy is a variably effective treatment for a variety of cancers and these 

include testicular cancer, pre- and postmenopausal breast cancer, ovarian cancer, 

gastric cancer, trophoblastic disease, acute myeloid and lymphoblastic leukaemia, 

Hodgkin’s and non-Hodgkin’s lymphoma and paediatric solid neoplasms.91-99 Low 

molecular weight compounds are often used in chemotherapy for the treatment of 

cancer.84 The advantage of such an approach is that low molecular weight 

compounds can circulate around the body and gain easy access to almost all tissues, 

so therefore can kill neoplastic cells at primary local and sites in other regions of the 

body.84 Anti-cancer chemical agents are subcategorised as cytotoxic agents under the 

main category “malignant disease and immunosuppression” in the British National 

Formulary.100 The BNF lists chemotherapy agents under the following classes: 

alkylating drugs; anthracyclines and cytotoxic antibiotics; antimetabolites; vinca 

alkaloids and etoposides; other antineoplastic drugs.100 Examples of these agents 

amongst others are given in Table 1.1, while Table 1.2 summarise some of the 

recently approved cancer therapies. 
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Table 1.1 Anticancer drug classes 

Drug classes 
DNA interactive agents 

• Alkylating agents 
• Cross linking agents 

 
• Intercalating agents 
• Topoisomerase inhibitors 
• DNA cleaving agents 
• Other alkylating agents 

Dacarbazine,Temozolomide 
Nitrogen mustards, nitrosoureas,  
platinum complexes 
Anthracyclines: Doxorubicin, Daunorubicin, 
Topotecan, Irinotecan 
Etoposide, Teniposide 
Bleomycins, Enediynes 
Procarbazine, Dacarbazine Altretamine, 
Cisplatin 

Antimetabolites 

• DHFR inhibitors 
• Purine antagonists  

 
 
 
 

• Pyrimidine antagonists 
 
 

• Thymidylate synthase 
inhibition 

• Adenosine Deaminase 
inhibition 

• Ribonucleotide 
Reductase inhibition 

Methotrexate  
Mercaptopurine (6-MP)  
Thioguanine (6-TG)  
Fludarabine Phosphate 
Cladribine 
Pentostatin 
Fluorouracil (5-FU)  
Cytarabine (ARA-C)  
Azacitidine  
Gemcitabine  
Capecitabin 
Tegafur 
Raltitrexed 
Pentostatin 
Hydroxycarbamide 

Antitubulin agents 

• Vinca alkaloids 
  
 

• The Taxanes 
 

Vinblastine (Velban)  
Vincristine (Oncovin) 
 
Paclitaxel (Taxol)  
Docetaxel (Taxotere) 

Hormonal agents 

  Tamoxifen (Nolvadex) Flutamide (Eulexin) 
Gonadotropin-Releasing Hormone Agonists  

(Leuprolide and Goserelin (Zoladex))  
Aromatase Inhibitors 

Miscellaneous anticancer drugs 

 Amsacrine  
Hydroxyurea  
Asparaginase 
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Table 1.2 Recently approved cancer therapies	  

Generic Name Trade 
Name 

Type  Class Target 

Tipiracil Lonsurf Small 
Molecule 

Antineoplastic DNA Synthesis 
(colorectal cancer) 

Rituximab Mabthera Monoclonal 
antibody 

Biologics CD20 antigen on B 
cells (non-Hodgkin’s 
lymphoma) 

Trastuzumab Herceptin Monoclonal 
antibody 

Biologics HER-2 (Breast 
cancer) 

Gemtuzumab Myolotarg Monoclonal 
antibody 

Biologics CD33 (Myeloid 
Leukaemia 

Brentuximab 
vedotin 

Adcetris Monoclonal 
antibody 

Biologics CD30 (Hodgkin 
lymphoma; 
anaplastic large cell 
lymphoma) 

Bevacizumab  

 

Avastin Monoclonal 
Antibody 

Biologics Vascular Endothelial 
Growth Factor A  
Angiogenesis 

Ramucirumab 
 

Cyramza Monoclonal 
Antibody 

Biologics Vascular Endothelial 
Growth Factor 
Receptor 2 (gastric 
adenocarcinoma) 

Resminostat  Small 
Molecule 

Histone 
deacetylase 
inhibitor 

HDAC (cutaneous 
T-cell lymphoma) 

NV1020 
 

 Oncolytic 
virus 

Biologics 
(oncolytic 
virus) 

Tumour cells 
(metastatic 
colorectal cancer) 

Cabozantinib Cabometyx Small 
Molecule 

Tyrosine 
Kinase inhibitor 

Receptor Tyrosine 
Kinase (renal cell 
carcinoma)  

Nivolumab Opdivo Monoclonal 
Antibody 

Biologics PD-1 receptor on T 
cells (Hodgkin 
lymphoma) 

Atezolizumab Tecentriq Small 
molecule 

Programmed 
death inducer 

Programmed death-
ligand (PD-L1) 
(urothelial 
carcinoma) 

Venetoclax Venclexta Small 
molecule 

BCL-2 inhibitor BCL-2 inhibition 
and caspase 
activation 
(lymphocytic 
leukaemia) 

Talimogene 
laherparepvec 

Imlygic Oncolytic 
virus 

Biologics Induce the 
production of the 
immune stimulatory 
protein GM-CSF 
(Unresectable 
recurrent melanoma) 
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Chemotherapy kills cancer cells by directly or indirectly targeting ribonucleic acid 

(RNA) and 2’-deoxyribonucleic acid (DNA), perturbing synthesis and damage 

response mechanisms and as a consequence, blunts uncontrolled cell division and 

induces cell death.101 The propensity for chemotherapeutic agents to target nucleic 

acid synthesis underpins the unwanted toxicity associated with these agents even at 

therapeutic doses.102 Common acute toxicities associated with cancer chemotherapy 

are cardio- and pulmonary toxicity, nephrotoxicity and haemorrhagic cystitis, 

hepatoxicity, gastrointestinal toxicity and dermatologic toxicity.102 Subsequent 

sections will focus on a specific class of nucleic acid perturbing agents known as the 

antimetabolites, which over many decades have shown some therapeutic success. 

Despite this, efforts have been made over the years to improve the delivery, efficacy 

and unwanted toxic side effect profile associated with antimetabolite driven 

chemotherapy.103-104 

 

1.3 Nucleotides 

Nucleotides are the building blocks for nucleic acid synthesis, monomers that are 

comprised of a sugar moiety either ribose (in RNA) or 2’-deoxyribose (in DNA), a 

hetrocyclic nucleobase (nitrogenous base) attached to the 1’ position on the sugar, 

and at least one phosphate group attached to the 5’ position on the sugar.105 The 

phosphate on the 5’carbon attaches to the 3’ carbon on the next sugar as the nucleic 

acid chain grows.105 In the absence of a phosphate group, the unit is known as a 

nucleoside.105 There are five common nucleobases used in the construction of 

nucleotides: the purines adenine (A) and guanine (G) and the pyrimidines cytosine 

(C), thymine (T) and uracil (U), with the latter forming a base pair with adenine in 
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RNA.106-108 Nucleotides exist in mono-, di- and triphosphate forms, with the 

triphosphate having an important role in enzymatic reactions and cellular 

metabolism. Nucleotide triphosphates form the repeating units of DNA and RNA, 

and are important second messengers in many intracellular signalling processes and 

examples of these molecules are adenosine- and guanosine 3’,5’-cyclic 

monophosphate (cAMP and cGMP).109  

 

1.3.1 Ribonucleic acid (RNA)   

RNA is involved in coding, decoding and regulating gene and protein expression in 

mammalian cells and some viruses use an RNA genome to encode their genetic 

information.110-111 The hydrogen bond pairing of ribose containing nucleotides 

(Watson-Crick canonical base-pairs) harbouring the bases, guanine, cytosine, 

adenine and uracil forms RNA.105, 108 Non-canonical base pairing can occur in nature 

forming bulges and hairpin loops and these for example can feature in ribosomal 

(rRNA) and telomerase RNA (TERC) due to adenine-adenine and adenine-guanine 

base pairing.112-114 RNA mostly functions as a single stranded molecule however its 

form can change by complementary intra-strand base pairing forming a double helix 

(TERC).115 RNA is less stable than DNA as it contains ribose that has a hydroxyl 

group on the 2’carbon of the sugar making it more susceptible to backbone breakage 

because the hydroxyl group can act as a nucleophile and chemically attack the 

adjacent phosphodiester bond.116 The hydroxyl group in the 2’ position also ensures 

that RNA adopts the A-form geometry and not the B-form geometrical form 

commonly seen in DNA.117 See figure 1.3 for the structural constituents of RNA 
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Figure 1.3 Nucleotide base pairing in RNA: Guanine (G); Cytosine (C); Adenine (A); 
Uracil (U) 
 

There are different forms of RNA, messenger RNA (mRNA) that carries the genetic 

information from DNA to the ribosomes to translate the amino-acid sequence for 

protein synthesis, transfer RNA (tRNA) that transfers specific amino acids into the 

growing polypeptide chain, rRNA the catalytic component of ribosomes catalysing 

peptide bond formation, small nuclear RNA  (snRNA) that is responsible for 

processing pre-mRNA and non-coding RNA (ncRNA).118 

 

RNA is synthesised (transcription) by an enzyme called RNA polymerase that 

transcribes RNA using a DNA derived template. Transcription begins when RNA 

polymerase binds to the promoter sequence of DNA, and following unwinding of the 

double helix by DNA helicase, proceeds along (3’ to 5’) the template strand 

synthesising a complimentary RNA strand with extension occurring in the 5’ to 3’ 

direction.119-122 Termination of RNA synthesis is dictated by the DNA sequence.119-

122  
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1.3.2 2’-Deoxyribonucleic acid (DNA) 

DNA is the main constituent of chromosomes and carries genetic information that is 

important for the function of all living organisms and viruses (excluding RNA 

viruses) however in humans only 2% of DNA carries genetic information.123-124 

Friedrich Meischer first isolated DNA in 1871, and then Watson and Crick 

description of the double helical structure of DNA was published in 1953.105, 125-126 

DNA is formed by nucleotides containing the nucleobases adenine, guanine, 

cytosine and thymine attached at the 1’ position of the sugar 2’-deoxyribose and 

phosphate group at the 5’ position. Unlike ribose, 2’-deoxyribose does not harbour a 

hydroxyl group at the 2’-carbon thus the backbone of DNA is not susceptible to 

nucleophilic attack, making it a very stable molecule furthermore nucleobase 

stacking ensures DNA integrity.105 DNA in mammalian cells exists as a double helix 

formed from nucleotide repeats held together by hydrogen bonds and phosphodiester 

bonds along its backbone.105 The asymmetric ends of DNA, 5’ (terminal phosphate) 

and 3’ (terminal hydroxyl), run antiparallel as the two DNA strands entwine.105 

Mitochondrial DNA and telomere repeats form displacement loop triple stranded and 

quadruple stranded DNA respectively.127-131 See figure 1.4 for the structural 

constituents of DNA. 
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Figure 1.4 Nucleotide base pairing in DNA: Guanine (G); Cytosine (C); Adenine (A); 
Thymine (T) 
 
DNA must be replicated in order to pass on genetic information during each cell 

cycle, the precision of the genetic material being passed on is crucial in ensuring that 

abnormalities are not inherited which can lead to disease and cell death.132 During 

the S-phase of the cell cycle DNA is unwound by helicase and topoisomerase 

revealing two strands, complimentary DNA sequences are then synthesised by DNA 

polymerases (5’ to 3’ direction) called a leading- and lagging strand copy. The 

leading strand DNA replication proceeds continuously whereas lagging strand DNA 

replication continues in a stepwise manner with the addition of short discontinuous 

nucleotide sequences called Okazaki fragments that are joined together to form a 

complete strand by DNA ligase.132  

 

1.4 Targeting polynucleotide synthesis: anticancer purine 

and pyrimidine nucleobase and nucleoside analogues 

The halogenated pyrimidines 5-bromo, 5-chloro and 5-iodouracil were synthesised 

as antimalarial agents however, with the realisation that nucleic acid replication is 
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pivotal in neoplastic cell proliferation these compounds were targeted towards 

treating malignant neoplasms, with the hope that they would be incorporated into 

growing RNA and DNA chain, cause strand breaks and as a consequence cause 

genome rearrangement and cell death.133-136 2’, 3’-dideoxynucleosides were 

developed as natural competitors to endogenous 2’-deoxynucleosides and 2’-

deoxynucleoside-5’-triphosphates. 2’,3’-dideoxynucleosides are phosphorylated to 

their corresponding 5’-triphosphate and incorporated in DNA by DNA polymerase 

causing DNA chain termination.137 Well-known pyrimidine cytotoxic analogues are 

5-fluorouracil, cytosine arabinoside, 5-azacytidine and 2’, 2’-difluoro-2’-

deoxycytidine.138 The development of pyrimidine analogues of uracil was fuelled by 

the observation that uracil was more rapidly incorporated into preneoplastic rat liver 

than healthy liver, which encouraged Dushinsky and Heidelberger to synthesise 5-

fluorouracil and its related fluorinated pyrimidine analogues.138 The synthesis of 

purine analogues centred on the replacement of oxygen, nitrogen or carbon in the 

purine ring, with carbon-nitrogen or oxygen-nitrogen substitutions producing 8-

azaguanine and 2,6-diaminopurine.139 6-Mercaptopurine is a clinically useful agent 

particularly in the treatment of leukaemia furthermore the purine analogues acyclovir 

and ganciclovir are used routinely to treat infections caused by herpes simplex virus, 

varicella zoster virus and cytomegalovirus.140-142 According to the BNF, there are 13 

purine and pyrimidine analogues used as antimetabolites in the treatment of solid 

and non-solid malignant neoplasms in the United Kingdom.100 Purine and 

pyrimidine analogues relevant to this present work are analysed in far greater detail 

in Chapters 3, 4, 5 and 6. See Figure 1.5 for the structures of different purine and 

pyrimidine analogues. 
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Figure 1.5 The structures of different anticancer purine and pyrimidine analogues 
 

1.4.1 Membrane permeation of nucleobases and nucleosides 

Cells rely on extracellular nucleosides and nucleobases to build nucleotides because 

de novo synthesis of purine and pyrimidine nucleotides is inefficient and high energy 

phosphate consuming.143-147 Due to the hydrophilic nature of these molecules their 

movement across the membrane needs to be facilitated by specialised transporter 

proteins.143-147 There are different specialised proteins that allow nucleosides to 

permeate biological membranes and these include equilibrium nucleoside transporter 

(ENT), concentrating nucleoside transporter (CNT), organic anionic transporter 

(OAT), organic cationic transporter (OCT) and ATP-binding cassette (ABC) 

transporter.148-150 Antiviral nucleoside analogues can cross biological membranes via 

the ENT, CNT, OAT and OCT.148-150 Anticancer nucleoside analogues appear to 

mainly enter cells through ENT and CNT.151-152 ABC transporter and MRP are 

involved in antimetabolite drug resistance (see section 1.4.2). ENTs allow passive 

diffusion of nucleosides and their analogues.153 There are four human ENTs encoded 

by the SLC29 gene designated hENT1, hENT2, hENT3 and hENT4. hENT is more 
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abundant in the cell membrane however, it is also found in the membranes of 

subcellular organelles such as the endoplasmic reticulum and mitochondrion.154-155 

hENT1 and hENT2 are responsible for transporting most purine and pyrimidine 

nucleosbases and nucleosides and their analogues. CNT allows the unidirectional 

passage of nucleosides across the plasma membrane against the concentration 

gradient, in a sodium dependent manner thus distinguishing it from ENT.153 The 

SLC28 gene encodes the CNT and there are five human forms, hCNT1, hCNT2, 

hCNT3, hCNT4 and hCNT5.156 hCNT1-3 are distributed in similar fashion to 

hENT.156 The characterisation of hCNT4 and hCNT5 is still in its infancy so their 

ability to transport nucleosides and nucleoside analogues is currently not known.150 

hCNT1 has a high affinity for pyrimidine nucleosides whereas purine nucleosides 

and uridine are transported by hCNT2. hCNT3 non-selectively transports both purine 

and pyrimidine nucleosides and respective synthetic analogues.156 There are 10 

OATs encoded by the SLC22 gene, and their ability to transport a specific nucleoside 

is heavily dependent on the nucleoside’s structure.157-159 Many antiviral nucleoside 

analogues are substrates for OAT1 and OAT3 and these include acyclovir, 

didanosine, tenofovir, zidovudine and others.160 OCT is a plasma membrane 

spanning protein encoded by the SLC22 gene, which transports synthetic nucleosides 

(lamivudine and zalcitabine) but is incapable of transporting naturally occurring 

nucleosides.161 There are three members of the OCT family; OCT1 and OCT2 are 

expressed in the liver and kidney, and OCT3 is expressed throughout the body.161 
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1.4.2 Nucleoside transport resistance mechanisms 

Neoplastic cells can acquire resistance to nucleoside-based therapy due to the action 

of export transporters.162The ABC transporter family form the largest family of 

proteins in the body that mediate the bidirectional ATP-dependent transport of 

compounds.162 They are important clearing compounds in alleviating unwanted 

toxicity in healthy tissue furthermore, they also have a central role in making 

malignant neoplasms resistant to nucleoside-based chemotherapy.162 Multidrug 

resistance proteins (MRP1-9) are ABC transporters involved in drug efflux. These 

transporters can only clear monophosphorylated nucleosides from the intracellular 

environment. The ABCC4 gene that encodes MRP4 is selectively amplified in 

human T-lymphoblastic leukaemia cells (CEM) conferring resistance to nucleoside 

analogues such as adefovir and azidothymidine.163 Adenoviral induced 

overexpression of MRP4 in CEM cells induces resistance to thiopurine therapy (see 

section 1.5.1).164 These studies prove that MRP4 is a genuine drug resistance protein. 

MRP5 has been shown to export the monophosphate metabolite of 5-

fluorodeoxyuridine.165 Cells engineered to overexpress MRP5, MRP7 and MRP8, 

have been shown to extrude thiopurine, gemcitabine, and fluoropyrimidine 

metabolites.165-170 
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1.5 Purine nucleobases relevant to the present work 

1.5.1 6-Mercaptopurine and 6-Thioguanine 

Azathioprine (AZA; Imuran; prodrug), 6-mercaptopurine (6-MP) and 6-thioguanine 

(6-TG) (see figure 1.6 for structures) collectively comprise a family of molecules 

known as thiopurines, which have been shown historically to exhibit remarkable 

anti-cancer, and anti-inflammatory properties.140, 171-173 The immunosuppressant 

properties of AZA have improved post-operative graft survival and reduced solid-

organ transplant rejection in the clinic, moreover both 6-MP and 6-TG not only have 

been shown to exert powerful dampening effects against the ensuing inflammation 

seen in disease states such as ulcerative colitis and Crohn’s disease, psoriasis and 

rheumatoid arthritis, but have been shown in early studies by Clarke and others as 

potent inhibitors of neoplastic proliferation.174-185 Following on from bench success, 

6-MP was rapidly entered into clinical trials for the treatment of acute lymphoblastic 

leukaemia, the most common malignancy seen in children, which resulted in drastic 

improvement in survival from a cancer that otherwise had extremely poor 

prognosis.186-188 6-MP and its prodrug AZP were granted approval for use in clinical 

practice in 1953 and 1968 respectively by the US Food and Drug administration 

(FDA).140  

                                     

Figure 1.6 Structures of 6-mercaptopurine and 6-thioguanine 
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1.5.1.1 6-Mercaptopurine and 6-Thioguanine metabolism 

Thiopurines require conversion to active compounds to produce their desired 

therapeutic effects, however according to Peter Karran the precise roles of different 

active metabolites generated through various chemical reactions and/or due to the 

actions of local enzymes have not been fully elucidated.140 The metabolism of AZA 

alongside 6-MP and 6-TG will now be discussed. In brief, the prodrug AZA is 

activated by a non-enzymatic reaction involving glutathione that allows the removal 

of the substituted imidazole ring causing the release of active 6-MP.189 6-MP in turn 

is rapidly transported across the cell membrane where it enters the purine salvage 

pathway.189 The first enzymatic step in the purine salvage pathway involves 

hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1), which catalyses the 

addition of a ribose 5-phosphate generating thioguanosine monophosphate (TGMP) 

and thioinosine monophosphate (TIMP) from 6-TG and 6-MP respectively.140 

Thiopurine S-methyltransferase (TPMT) converts TIMP to methylated TIMP, which 

is a potent inhibitor of purine synthesis, a property not exhibited by the methylated 

form of TGMP.140 The methylation of thiopurines is a process of degradation and 

inactivation, and therefore an important process of regulating thioguanine nucleotide 

synthesis.190-191  
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Figure 1.7 Thiopurines and their metabolism.  
HPRT: hypoxanthine-guanine phosphoribosyltransferase; TIMP: thioinosine 
monophosphate; TGMP: thioguanosine monophosphate; TPMT: thiopurine S-
methyltransferase; XO: xanthine oxidase; MeTIMP: methylated TIMP; IMPDH: inosine 
monophosphate dehydrogenase; GMPS: guanine monophosphate synthetase; Thio-dGTP; 
2’-deoxy-6-thioguanosine triphosphate 
 

1.5.1.2 6-Mercaptopurine and 6-Thioguanine and cell death 

The dual action of deoxynucleoside kinase (dNK) and reductase enzymes on TGMP 

produces the metabolite thio deoxyguanosine triphosphate that is incorporated into 

RNA and DNA by their respective polymerase enzymes.192-193 Under normal 

circumstances low level DNA substitution by 6-TG (approx 0.01-0.1% of guanine 

bases are replaced by TG) does not impact greatly on cellular genomics, however the 

generation of much higher levels induces chromosomal damage and apoptosis.173, 194-

197 A single mutation in the gene coding for HPRT1 can result in neoplastic cell 

populations that are resistant to 6-TG, allowing them to escape cell death during 
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thiopurine therapy.140 Another mechanism or contributing factor that is thought to 

kill cancer cells during regimented thiopurine therapy is purine starvation, a process 

that is dependent on 6-MP formation from AZP.140, 198-202 Methylated TIMP as 

mentioned earlier potently inhibits phosphoribosyl pyrophosphate amidotransferase 

(PPAT), the initial enzyme in de novo purine biosynthesis providing the building 

blocks for RNA, DNA, high-energy phosphate (ATP) and other phosphate 

species.140, 198-202 

 

1.5.1.3 Human polymorphisms limiting therapeutic use of thiopurines 

Polymorphisms of TMPT can result an enzyme that is less efficient at purine 

breakdown. One in every three hundred patients are homozygous for the sub-

functional TPMT alleles, TPMT*3A and 3C, resulting in reduced thiopurine 

methylation.140, 198-202 Excessive free purine in the body can lead to haematologic 

toxicity that involves myelosuppression and accompanied by massive decreases in 

white blood cell counts.201, 203 Pre-therapy screening is therefore required to identify 

individual patients that are at risk of serious bone marrow toxicity before proceeding 

with any course of thiopurine therapy.203 

 

1.6 Purine nucleosides relevant to the present work 

1.6.1 Cladribine 

Adenosine deaminase (ADA) deficiency causes lymphospecific cytoxicity and 

accumulation of deoxypurine nucleotides.204 ADA is a key effector of purine 

metabolism.204 There are two isoforms, ADA1 and ADA2, of which the former is 

ubiquitously expressed in the body.205 Although ADA2 is moderately expressed in 
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the body, its activity is increased in breast cancer and leukaemia.205-207 For this 

reason adenosine analogues that are highly susceptible to deamination are not useful 

for treating cancer unless used in combination therapy with an ADA inhibitor such 

as pentostatin.208 2-chloro-2’-deoxyadenosine (cladribine; see figure 1.7 for 

structure) is a potent anticancer and immunosuppresive adenosine deaminase-

resistant nucleoside analogue, indicated for the treatment of symptomatic hairy cell 

leukaemia.209-210 Cladribine is resistant to deamination-induced inactivation, due to 

its chlorinated purine ring.211-212 Cladribine was synthesised alongside several other 

halogenated deoxyadenosine derivatives in the late 70s and early 80s.213-214 Beutler 

and collegues first used cladribine in 1981 to treat acute myeloid leukaemia.215 

Cladribine is used in combination therapy with pentostatin and rituximab for the 

treatment of hairy cell leukaemia after disease recurrence.216-217  

Merck withdrew cladribine (in tablet form), from the market in 2011 for the 

treatment of multiple sclerosis following failure to get the drug approved by the FDA 

and the European medicines agency.218 

 

 

  

 
 

Figure 1.8 The structure of 2-chloro-2’-deoxyadenosine (Cladribine) 
 
 

1.6.1.1 Cladribine metabolism and resistance mechanisms 

Cladribine is transported into cells by hENT1 and hENT2 where it is acted on by 

deoxycytidine kinase and converted to its 5’-monophosphate derivative.211-212 

Further phosphorylation steps by adenosine monophosphate kinase and nucleoside 
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diphosphate kinase produce the diphosphate and triphosphate metabolites 

respectively.189-190 The latter is incorporated into DNA, causing inhibition of DNA 

methylation and synthesis. Cladribine depletes nucleoside triphosphate pools and 

also induces sustained expression of the cellular tumour suppressor antigen p53, thus 

inhibiting cancer progression.219  

 

 
Figure 1.9 Intracellular metabolism of Cladribine 
ADA: adenosine deaminase; 5’-NT: 5’ nucleotidase, dCK: deoxycytidine kinase; AMPK: 
adenosinemonophosphate kinase; NDPK: nucleoside diphosphate kinase; P: phosphate. 

 
5’-Nucleotidase dephosphorylates the 5’-monophosphate metabolite of cladribine 

preventing the accumulation of the cytotoxic cladribine-triphosphate metabolite, and 

this may present as a mechanism of resistance; the cytostatic action of cladribine is 

heavily dependent on the relative ratio between deoxycytidine kinase and 5’-

nucleotidase.220 Other reported mechanisms of resistance are decreased nucleoside 
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transport and the down regulation of programmed death pathways like apoptosis.211-

212, 221 

 

1.6.1.2 Cladribine toxicity 

Lymphocytes have high levels of deoxcytidine kinase making them very susceptible 

to cladribine toxicity.222 In the clinic, the most common serious toxicity associated 

with cladribine therapy is myelosupression.223-225 

 

1.7 Pyrimidine nucleobases relevant to the present work 

1.7.1 5-fluorouracil and 5-fluoro-2’-deoxyuridine 

5-Fluorouracil (5-FU) was synthesised and patented by Charles Heidelberger in 

1957.138 5-FU was shown to have potent anti-neoplastic effects particularly against 

colorectal and pancreatic cancer.226 5-FU and its cytotoxic metabolite 5-fluoro-2’-

deoxyuridine (FUDR) (see figure 1.8 for structures) as part of the FOLFIRI regimen 

with leucovorin and irinotecan, are used in second line chemotherapy for patients 

with advanced small bowel adenocarcinoma.227  

                                        

Figure 1.10 The structures of 5-Fluorouracil (5-FU) and 5-fluoro-2’-deoxyuridine (FUDR)  
 
 
1.7.1.1 5-Fluorouracil metabolism 

	5-FU is trafficked across the cell membrane by facilitated transport systems, where 

it is converted by thymidine phosphorylase (TP) to FUDR.228 Phosphorylation of the 

NH

O

ON

O

OH

HO

FNH

O

ON
H

F

5-FU

FUDR



Blanka Gönczy         Chapter 1 
____________________________________________________________________ 

	 28 

deoxynucleoside by the phosphorotransferase TK generates the cytotoxic nucleotide 

5’-fluoro-2’deoxy-monophosphate (5-FdUMP).229 5-FdUMP inhibits thymidylate 

synthase (TS) in the presence of a reduced folate (5, 10-methylenetetrahydrofolate), 

which reduces the ability of TS to remove fluorine from the five position on the 

molecule, therefore depleting (deoxythimidine triphosphate) dTTP which is a unit 

required for DNA synthesis. 5-FdUMP forms a dead end complex with TS reducing 

the synthesis of dTTP.228-229 Another route for 5-FdUMP synthesis, is the conversion 

of 5-FUDP by ribonucleotide reductase (RNR) to fluorodeoxyuridine diphosphate 

(5-FdUDP).230 Fluoropyrimidines compete with both biological substrates causing 

inhibition of RNR therefore augmenting DNA and RNA damage.231-233 Other routes 

of DNA and RNA damage are the conversion of FUDR to 5-FdUTP and the 

conversion of 5FU to FUTP, perturbing DNA and RNA synthesis respectively.231-233 

This damaging effect on nucleic acid synthesis causes inhibition of the cell cycle at 

s-phase, and induces apoptotic cell death.36 



Blanka Gönczy         Chapter 1 
____________________________________________________________________ 

	 29 

 

Figure 1.11 Metabolic pathway of Capecitabine, 5-FU and 5-FUDR 
FdUMP: fluorodeoxyuridine monophosphate; FdUTP: fluorodeoxyuridine triphosphate; 
FUMP: fluorouridine monophosphate; FUTP: fluorouridine triphosphate; OPRT: orotate 
phosphoribosyltransferase; RNR: ribonucleotide reductase; TK: thymidine kinase; 5’NT: 5’ 
nucleotidase; TS: thymidylate synthase; 5’-d5-FUrd: 5’deoxy-5-fluorouridine; 5’-dFCR: 
5’deoxy-5-fluorocytidine. 
   

 

1.7.1.2 Resistance associated with 5-fluorouracil therapy 

Prolonged treatment with 5-FU compounds can generate a resistance phenotype in 

cancer forming cells, due to mass upregulation of TS, and this could be a reason for 

resistance to these types of drug in patients presenting with different 

malignancies.234-236 Other postulated factors that can cause resistance: deletion of 5-

FU transport mechanisms; deletion of TK; overproduction of TS; rapid 

phosphorolytic cleavage of FUDR to 5-FU by TP.237-238 There are various 
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disadvantages associated with 5-FU therapy for example, toxicity due to lack of 

selectivity of the drug, most notably cardio- and neurotoxicity.239-240 

 

1.7.1.3 5-Fluoro-2’-deoxyuridine therapy 

FUDR, the prodrug of 5-FU, was approved by the FDA 1970, and has been used 

since to treat different malignant neoplasms of the breast, gastrointestinal tract and 

the ovaries.241-251 The prodrug is particularly useful in the treatment of hepatic 

arterial metastasis over that of 5-FU because it is metablised in the liver more 

efficiently.243 Furthermore, in cell models of cancer, FUDR exhibited remarkable 

anti-proliferation effects that far exceed 5-FU.252 As its monophosphate FUDR is 

one of the potent TS inhibitors, however more accurately it is enzymatic production 

of 5-FdUMP from FUDR that is responsible for TS inhibition.229 TS is involved in 

the de novo synthesis of thymidine. The conversion of 2’-deoxyuridine-

5’monophosphate (dUMP) to thymidine-5’ monophosphate (dTMP) by reductive 

methylation is catalysed by TS. Due to the loss of tumour suppressor gene function, 

many cancer cells can show resistance against fluorouracil metabolite chemotherapy, 

due to supraphysiological levels of TS.253 

 

1.8 Pyrimidine nucleosides relevant to the present work 

1.8.1 Decitabine and 5-azacytidine 

5-Aza-2’-deoxycytidine (decitabine) and 5-azacytidine are pyrimidine nucleoside 

analogues that were first synthesised in the 1960s (see figure 1.9 for structures).254-

255 Decitabine is an analogue of 2’-deoxycytidine whereby the fifth carbon is 

exchanged for nitrogen in the pyrimidine ring.254-255 5-Azacytidine differs from 
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decitabine by having a hydroxyl group at the 2’ position on the furanose254-255.  Sorm 

and Vesely first demonstrated the anti leukaemia action of decitabine in AKR mice, 

which suffer from spontaneous lymphocytic leukaemia.256 Decitabine was noted to 

have a more potent anti-leukaemia action than structurally similar pyrimidine 

analogue cytarabine.257-258 Historically 5-azacytidine was demonstrated to have a 

potent anti-leukaemia action however since 2004 it is used in the treatment of 

myelodysplastic syndromes (MDS) a blood disorder characterised by a significant 

drop in the number of healthy erythrocytes, leukocytes and platelets.256, 259-260 MDS 

disorders include refractory anaemia, refractory cytopenia and refractory anaemia 

with excess myoblasts in the bone marrow.260 The FDA approved decitabine in 2006 

for the treatment of MDS.261 The national institute for health and care excellence 

(NICE, UK), recommended 5-azacytidine for the treatment of adult patients 

presenting with MDS, chronic myelomoncytic leukaemia and acute myeloid 

leukaemia in 2011.262  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.12 The structures of 5-azacytidine and 5-aza-2’-deoxycytidine (decitabine)  
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1.8.2 Metabolism of decitabine and 5-azacytidine  

 

Following transporter-mediated uptake into cells, decitabine is acted on by the 

phosphotransferase enzyme deoxycytidine kinase leading to the formation of 5-aza-

2’-deoxycitidine-5’-monophosphate (rate limiting step).263  

 

Figure 1.13 The uptake and intracellular anabolism of 5-azaC and 5-aza-dC (decitabine) 
hENT1: human equilibrative transporter 1; NMP: nucleoside monophosphate; NDP: 
nucleoside diphosphate. 
 

Diphosphate and triphosphate forms are produced in subsequent steps by the actions 

of deoxcytidine monophosphate kinase and nucleoside diphosphate kinase.263 5-aza-

2’-deoxycitidine-5’-triphosphate is then incorporated into the growing DNA chain, 

causing inhibition of DNA methylation.263-264 In malignant neoplastic cells, the 

promoter region of DNA is hypermethylated, and as a consequence causes gene 

silencing aiding the progression of cancer.265 5-Azacytidine is phosphorylated by 
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uridine-cytidine kinase leading to the formation of 5-azacytidine monophosphate 

(rate limiting step).263 Pyrimidine monophosphate kinase and Pyrimidine 

diphosphate kinase convert 5-azacytidine monophosphate into its di- and 

triphosphate derivative respectively.263 5-azacytidine-triphosphate is incorporated 

into RNA causing disassembly of ribosomes and inhibition of protein synthesis. 5-

Azacytidine diphosphate can be converted to 5-aza-2’-deoxycytidine-5’-diphosphate 

by ribonuclease reductase, thus 5-azacytidine is capable of inhibiting DNA 

methylation. 5-Azacytidine covalently binds DNA methyl-transferase 1 causing 

inhibition of the enzyme. Consequently DNA is left in a hypomethylated state and 

this favours the re-expression genes that were once silent.266-267  

 

1.8.3 Mechanisms of resistance: decitabine and 5-azacytidine therapy 

Cytosine nucleoside analogues like decitabine and 5-azacytidine are transported 

across the plasma membrane by the hENT1 and hENT2, where they are processed 

by kinase enzymes (see section 1.8.2). The phosphorylated metabolites of decitabine 

and 5-azacytidine are potential substrates for the enzyme cytidine deaminase, which 

inactivates cytidine and uridine and their deoxy-derivatives. A deficit in functional 

deoxycytidine kinase due to DCK gene mutation is a major mechanism of resistant to 

cytidine and related nucleoside analogues, and this mechanism has been reported in 

mice with gemcitabine sensitive and -resistant solid neoplasms, in patients with 

acute myeloid leukaemia that is resistant to cytarabine therapy and other cytidine 

nucleoside resistant malignancies.268-273 Interestingly, cytidine deaminase activity 

was markedly enhanced in males with MDS treated with decitabine and 5-

azacytidine compared to females.274 Overall clinical outcomes and survival were 

worse as a result.274 This studies shows that upregulated cytidine deaminase activity 
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is a major mechanism that is responsible for compromising the efficacy of 

nucleoside analogues in the clinic. 

 

1.8.4 Toxicity associated with decitabine and 5-azacytidine  

Despite decitabine and 5-azacytidine improving clinical remissions and increasing 

overall survival in patients with MDS, severe adverse effects are associated with this 

therapy.275-276 Patients receiving decitabine therapy for MDS frequently present with 

myelosuppression and haematological toxicities including neutropenia (low 

neutrophil granulocytes), thrombocytopenia (low platelet levels), neutropenia, febrile 

neutropenia and anaemia.275-276 Due to its nature, MDS itself is likely to be 

responsible for some of the adverse drug toxicity affects seen with decitabine and 5-

azacytidine.277 5-azacytidine produces the same adverse drug reactions to decitabine 

and as already mentioned, and these are the serious adverse effects that lead to 

discontinuation of this line of therapy.278  
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1.9 Drug discovery process 

The drug discovery process starts with establishing the need for new therapies for a 

particular disease, and examining the therapeutic effectiveness of existing therapies. 

Using all the information collated using current knowledge about the target disease, 

hypotheses can established aimed at finding ways of improving current therapy or 

novel modes of talking the disease. Moreover, many factors need to be considered 

also and these include drug delivery, efficacy and safety or how mechanistically 

novel improvements will advance drug treatment in patients with the disease of 

interest. Following the establishment of a hypothesis specific aims and objectives are 

set for the task at hand. Chemical candidates can be selected from chemical libraries 

or novel analogues of appropriate established therapeutic agents can undergo testing 

in relevant biological assays in order to find biological activity (a hit) that helps 

support the initial hypothesis. The process involves in vitro and in vivo testing to 

characterize the biological efficacy of the chosen compounds. This is followed by 

process of producing structural analogues to see if chemical modification can 

enhance efficacy and limit any non-specific toxicities. Eventually a single is 

compound is chosen as a ‘candidate’ drug for further development, and testing in 

preclinical (in vivo studies) and eventually clinical investigation in human subjects, 

whilst adhering to ethical standards and government laws. Clinical investigations are 

done in normal human volunteers to establish toleration to drug treatment (Phase I), 

efficacy and dose range (Phase II), and large trials in thousands of criteria selected 

patients to gather a large database efficacy and safety profiles. All new drugs are 

assessed through an expert paneled government body (for example NICE, FDA) 

prior to be granted approval. Once approval is given the drug can be offered to 
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doctors and their patients to treat the disease at hand. The Drug discovery process is 

illustrated in Figure 1.14.  

 

 

Figure 1.14 Drug discovery process 

 

1.10 The advantages and shortcomings of 2D immortalised 

cell lines 

  

Cancer cell lines used as models of experimental cancer have many advantages. In 

general they are easy to manipulate providing they are kept under optimal incubator 

conditions that allow them to replicate and grow moreover, their genetics can be 

easily manipulated chemically using demethylating and cytostatic agents, and 

biologically using small interfering RNA and expression vectors. Cancer cell lines 

have bypassed cellular senescence and thus can undergo continuous cell division, 



Blanka Gönczy         Chapter 1 
____________________________________________________________________ 

	 37 

making them ideal for modelling cancer progression experimentally, and amenable 

for the testing of anti-cancer agents. However, following each culture passage, the 

potential for the genetic makeup of these cells to change overtime increases. Tumour 

heterogeneity and ever changing morphological and phenotypic profiles of cells 

comprising a cancer tumour can be difficulty to model in-vitro, unless co-culture 

systems are used. Nevertheless, in cancer cell lines that are highly homogeneous can 

provide insights to the origin of cancers by the presence of precursor cells or cancer 

stem cells, can be used to examine established and putative biological signalling 

pathways that are crucial for cancer development and progression (until metastasis), 

and can be used to biologically screen a variety of drugs (anti-cancer drug testing) in 

relatively quick fashion using multi-well plates and microarrays. Table 1.3, outlines 

the advantages and disadvantages of the use of cancer cell lines to model cancer. 

 

Table 1.3 Advantages and shortcomings of using cancer cell lines as a model for cancer 
study 
 

Advantages of the use of cancer  
cell lines 

Disadvantages of the use of cancer 
cell lines 

Easy to handle and manipulate Cross contamination with HeLa cells 

High homogeneity Loss of heterogeneity 

High degree of similarity with the 
initial tumor 

Genomic instability 

High variety available Possibility of modifying the 
caracteristics of the cells 

Immediate asseccibility Mycoplasma infection 

Unlimited auto-replicative source Difficulty in the establishment of long-
term cancer cell lines 

Easy substitution Different tumor environment 

Offers the reproducibility of results  
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2 Nucleoside and nucleotide prodrugs 

A prodrug is any compound that undergoes biotransformation before exhibiting its 

pharmacological effects.1 Prodrugs are often developed to improve the absorption, 

distribution, metabolism, excretion (ADME) and the bioavailability of the parent 

compound and increase the selectivity of the compound for its intended target thus 

reducing undesirable side effects.1 Prodrugs are precursor molecules containing 

specialised non-toxic protective groups used to alter or eliminate undesirable 

properties (poor ADME) in the parent molecule, which can affect its passage across 

the cell membrane.2-3 Once transported across the cell membrane, the prodrug is 

metabolised usually during a series of chemical or enzymatic steps, forming an 

active metabolite. These types of compounds are categorised as type 1 prodrugs 

because they are bioactivated intracellularly.4-8 A good prodrug should meet the 

following criteria: be less toxic than the parent drug; devoid of any activity until 

converted to the intended active drug; conversion to the active drug should be 

efficient and effective; any intermediary metabolites released upon conversion to the 

active drug should be non-toxic; markedly improved ADME and bioavailability.9 

 

2.1 Delivering nucleoside monophosphates  

The successful delivery of a nucleoside 5’-monophosphate is advantageous 

especially in cancer chemotherapy because nucleoside transporters (see chapter 1) 

responsible for facilitating the movement of nucleosides analogues into neoplastic 

cells, and enzymes like dCK, HPRT1, TK and UCK that are involved in the first 

phosphorylation step in the bioactivation of purine and pyrimidine nucleoside 

analogues may be significantly downregulated.10-12 Then again, the highly charged 
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and lipophilic nature of nucleoside 5’-monophosphates under physiological 

conditions means they are not able to efficiently penetrate the cell membrane, which 

can limit their therapeutic potential.9 Montgomery and co-workers in 1961 devised a 

solution in order to overcome the poor cell penetration of a nucleoside 5’-

monophosphate, one could synthesise an ester of the nucleotide.13 A nucleoside 5’-

monophosphate prodrug will allow direct delivery of a nucleoside monophosphate, 

bypassing nucleoside transporter mechanisms and rate-limiting phosphorylation 

(first step).12 A nucleoside monophosphate prodrug may be achieved by masking the 

negative charges on the phosphate group and as a consequence, this will potentially 

enable passive diffusion of the drug into the cell.9, 12 Furthermore, this will 

potentially allow the prodrug to pass the gastrointestinal barrier more efficiently than 

the parent compound, which will lead to improved bioavailability and hopefully 

reduced toxicity.12 Interest has been generated around ProTide technology that 

allows 5’-monophosphate nucleosides to efficiently cross biological membranes, 

which could have positive implications for cancer chemotherapy.12 See table 2.1 for 

experimental anticancer prodrugs and are currently in clinical trials. 
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Table 2.1 Anticancer prodrugs 

Prodrug name Structure Status and 
cancer 
indication 

Fludara 
Fludarabine 
phosphate 

 

2008 
Chronic 
lymphocytic 
leukaemia 

Acelarin 
Gemcitabine 
phosphoramidate 
ester 

 

Phase 2/3. 
broad range 
of solid 
neoplasms  

NUC-3373 
FUDR 
phosphoramidate 
ester 

 

Phase 1.  
broad range 
of solid 
neoplasms 

H-gemcitabine 
extracellular DNA 
binding moiety 
(Hoechst) attached 
to the cytosine 
base  

 

Due to enter 
Phase 1. 
experimental 
colon cancer  

LY2334737 
orally active 
prodrug  

 

Phase 1. 
broad range 
of solid 
neoplasms 
including: 
pancreas, 
colon and 
ovarian 

CO-101 
Gemcitabine 
elaidate  

 

Phase 1. 
Solid tumor, 
non-small-
cell-lung 
cancer, 
lung cancer 
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2.2 Nucleotide prodrug technologies 

There is a range of nucleotide prodrug strategies that allow masking of the 

hydrophilic charges on the parent compound using lipophilic moieties.12 This may 

facilitate oral administration and improve cellular uptake. More complicated 

strategies involve enzymatic conversion or pH modification. Strategies involving 

enzymatic conversion and activation are usually more successful than those based on 

chemical conversion.12 Different pronucleotide strategies that rely on enzymatic 

steps to release the active nucleoside 5’-monophosphate metabolite from the prodrug 

are given below. 

 

2.2.1 Cyclosaligenyl (cycloSal) technology 

The cyclosaligenyl (cycloSal) phosphotriester approach was employed for the 

potential delivery of clinically relevant anticancer and antiviral nucleoside 

analogues, including 5-FUDR, acyclovir, dideoxyadenosine, inosine and their 

fluorinated derivatives.14-15 The cycloSal approach allows for the pronucleotide to be 

cleaved by selective hydrolysis of the phenolic ester bond, releasing the nucleotide 

metabolite. The following nucleotides can be released using the cycloSal approach: 

nucleoside 5’-di- and triphosphates; nucleoside mono- and diphosphate sugars; 

dinucleoside polyphosphates.14-15 There are four generations of cycloSal 

pronucleotide compounds: 1. cycloSal pronucleotides, which break down into a 

highly reactive intermediate following chemical hydrolysis of the P-O bond ; 2. 

‘lock-in concept,’ cycloSal pronucleotides, which contain an ester moiety attached 

the aromatic ring but is separated by a C2-spacer to avoid chemical hydrolysis; 3. 

Enzymatically activated cycloSal pronucleotides, that contain lipophilic substituents 
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with electron donating or weak electron withdrawing properties attached to the 

cycloSal masking group; 4. ‘high-loaded’ pronucleotides (see Figure 2.1 and 2.2).14-

15 The first generation cycloSal approach used bis(phenyl) and bis(benzyl) esters in 

combination as part of a cyclic bifunctional masking unit of the pronucleotide.14-15 

Salicyl alcohol, another component of the pronucleotide is attached through the 

phenyl and the benzyl ester bond and the nucleoside is attached through an alkyl 

ester bond; this allows for good discrimination during the hydrolysis process.  

CycloSal technology was applied to 2’,3’-dideoxy-2’,3’-didihydrothymidine (d4T) 

5’-monophosphate (MP; d4TMP).14-15 CycloSal- d4TMP is synthesised by reacting 

salicyl alcohol with phosphorus trichloride to give a chlorophosphite, which is then 

treated with d4T in the presence of diisopropylethylamine (Hünig’s base) to give rise 

to the cyclic phosphite triester.14-15 The triester is then oxidised with tert-

butylhydroperoxide or dimethyldioxirane in a one-pot reaction to give a mixture of 

cycloSal- d4TMP stereoisomers (See Figure 2.1). 

The mechanism of d4TMP release from cycloSal- d4TMP is as follows (first 

generation): following the nucleophilic attack of hydroxide at the phosphorous atom, 

displacement of the phenolate occurs in a SNP reaction that leads to the formation of 

a 2-hydroxybenzylphosphate diester.14-15 As a consequence, the ortho substituent of 

the benzyl ester switches from a weak electron-donating group to a strong electron-

donating group.14-15 This change, activates the remaining masking group and causes 

spontaneous C-O bond cleavage and splitting of the diester, to give d4TMP and 

salicyl alcohol (see Figure 2.1). Another route to releasing d4TMP could begin with 

the cleavage of the benzyl ester bond by an SN1-type Cbenzyl-O bond break, which 

leads to formation of an intermediate with a benzyl cation and an anionic phosphate 

ester group (see Figure 2.1).14-15 A phenylphosphate diester is formed by the addition 
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of water. The step that allows the release of free d4TMP is unknown, although it has 

been postulated to be enzyme-mediated.14-15 

 

Figure 2.1 Mechanism of activation of first generation cycloSal nucleotide prodrugs 
 

 

 
Figure 2.2 General structures of second, third and fourth generation of cycloSal nucleotide 
prodrugs 
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The SATE approach was first described by Përigaud and colleagues, and led to the 
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(biolable protecting group).16 This technology has been applied to aryl 

phosphotriesters and phosphoramidate diester analogues of common antivirals. 
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of pivaloyl chloride catalyst to yield a phosphite intermediate, which is then 

oxidised.16 In strategy three, the nucleoside is condensed with the phosphoramidite 

agent in tetrahydrofuran and in the presence of tetrazole.16 Oxidation of the 

phosphite intermediate yields the bis(SATE) phosphotriester.16   

The decomposition pathway of bis(SATE) triesters is triggered by carboxyesterase 

mediated hydrolysis of the thioester on the SATE group to form an unstable O-2-

mercaptoethylphosphotriester intermediate.17 The thiol produced, attacks the 

methylene carbon atom, releasing ethylene sulphide and the monoSATE 

phosphodiester. Phosphodiesterase mediated hydrolysis releases the nucleoside 

monophosphate and S-acyl-thioethanol.17 Another route involves carboxyesterase 

thioester hydrolysis and an ethylene sulphide step to produce the nucleoside 5’-

monophosphate (see Figure 2.3).17  

 

Figure 2.3 Mechanism of activation of bis(SATE) nucleotide prodrugs 
 
 
2.2.3 Pivaloyloxymethyl (POM) technology 

The pivaloyloxymethyl (POM) phosphoester approach (see Figure 2.4) has been 

used to generate bis(POM) triesters of 5-FUDR, 2’,3’dideoxyuridine (ddU) and 

O P
O

ONucO

S

O

RCOOH

O

S O P
O

HS

S

O

S O P
O

ONucO

O P
O

ONucO

RCOOH
O P
O

ONucO

HS

S
2

O

ONuc
1, chemical hydrolysis

2, H2O

3, nucleophile

S

O
1

2

3

1



Blanka Gönczy         Chapter 2 
____________________________________________________________________ 

	 73 

zidovudine (AZT). Farquhar and co-workers found that mono-, di- and triphosphate 

metabolites of ddU and AZT were markedly increased in thymidine kinase deficient 

CEM cells following treatment with bis(POM) triesters of these nucleosides.18-19 

Bis(POM) triesters of AZT are less active than AZT in treating HIV-1 infections.19 

Bis(POM) triesters of nucleoside monophosphates, can be prepared by reacting the 

nucleoside 5-monophosphate (bis(triethyl or tributyl) ammonium salt) in anhydrous 

N-methylpyrrolidinone and triethylamine, with chloromethylpivalate. Subsequent 

steps with ethyl acetate and column chromatography isolates the desired bis(POM) 

phosphotriester.20  

The breakdown of bis(POM) phosphotriester derivatives involves carboxyesterase-

mediated hydrolysis which produces the unstable O-2-hydroxyethyl phosphotriester 

intermediate (see Figure 2.4). The O-2-hydroxyethyl phosphotriester then undergoes 

nucleophilic displacement to produce the monoPOM phosphodiester and 

formaldehyde as a by-product (see Figure 2.4).21 The monoPOM phosphodiester is 

acted on by a carboxyesterase or phosphodiesterase to liberate the nucleoside 

monophosphate (see Figure 2.4).21 

 

Figure 2.4 Mechanism of activation of bis(POM) nucleotide prodrugs 
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2.2.4 Para-acyloxybenzyl (PAOB) technology 

The para-acyloxybenzyl (PAOB) approach is another route to the development of 

phosphotriester prodrugs of nucleoside analogues. Bis(PAOB) phosphotriesters of 

AZT, including phosphotriester homodimers and heterodimers have been 

investigated.22-24 The bis(PAOB) phosphotriester requires esterase-mediated 

hydrolysis to generate the unstable p-hydroxybenzyl phosphotriester metabolite. 

Following p-hydroxybenzyl carbonium ion formation, the monoPAOB 

phosphodiester forms, which upon esterase mediated hydrolysis releases the 

nucleoside monophosphate (see Figure 2.5).25 The p-hydroxybenzyl carbonium ion 

has been hypothesised to interact with DNA, proteins and cellular nucleophiles, thus 

highlighting potential toxicity issues associated with this form of nucleoside 

monophosphate delivery system.25 

 

Figure 2.5 Mechanism of activation of bis(PAOB) nucleotide prodrugs 
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2.2.5 Phosphorodiamidates 

Phosphorodiamidate prodrugs were looked into by McGuigan and co-workers over 

20 years ago, focused on delivering diamidate derivatives of AZT 5’-

monophosphate. These compounds had a marked inhibitory effect on human 

immunodeficiency virus type 1 (HIV-1) replication in a human lymphoblastoid cell 

line, compared to the parent AZT.26 The major advantage of this approach is that the 

phosphorus in the symmetrical diamidate is achiral, thus negating the forming of 

diastereoisomer mixtures that commonly occur with other ProTides.27 Another 

feature of this approach is that two amino groups are attached to the phosphate 

moiety to mask the negative charges.27 This technology has been successfully 

applied to 2’-C-methylguanosine and related analogues, with some candidates 

exhibiting a promising inhibitory action against hepatitis C virus (HCV) 

replication.28 Moreover this approach has been used to develop the fructose 1,6 

biphosphatase inhibitor CS-917, which is a potential candidate to treat type-2 

diabetes.29-30  

 

 

 

 

 
 
Figure 2.6 Structure of phosphonic diamidate prodrug against type 2 diabetes 
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2.2.6 Aryloxy and alkyloxy phosphoramidate (ProTide) technology 

Aryloxy and alkyloxy phosphoramidates (ProTides) are a class of nucleotide 

prodrugs designed and synthesised to deliver the nucleoside monophosphate to the 

cell without the need for active uptake or phosphorylation by specific kinases.12, 31 

The technology has been utilised to generate different antiviral and anticancer 

compounds that have been introduced into preclinical development and or have 

entered clinic trials.32-33 

 

2.2.6.1 Phosphoramidate monoesters and diesters 

McGuigan and colleagues first developed bioactive phosphoramidate based prodrugs 

of AZT in 1992.34-36 These derivatives were synthesised using phosphochloridate 

chemistry.34-36 First generation ProTides were the alkyl and haloalkyl 

phosphotriesters, the incorporation of an amino acid ester in place of the alkyl and 

haloalkyl chain led to the development of alkyloxy phosphoramidates (ProTide 

technology).34-36 There are several examples of ProTides being more active than the 

parent nucleoside; this technology has transformed once inactive nucleosides into 

highly potent compounds.37-38 ProTide technology has been applied to different 

anticancer and antiviral nucleoside analogues with good success, and these include 

AZT, d4T, ddU, 2’,3’dideoxyuridine (ddA), 9-(2-phosphonylmethoxyethyl) adenine 

(PMEA), (R)-9-(2-phosphonylmethoxyethyl) adenine (PMPA), gemcitabine, FUDR 

and more.27-28, 32-37, 39  

 

The initial step in the activation of an aryloxyphosphoramidate (see Figure 2.7) 

involves hydrolysis of the amino acid moiety by a carboxyesterase or 
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carboxypeptidase A (cathepsin A), which hydrolyses the ester of the amino acid 

moiety.32, 39-40 Interestingly carboxypeptidase A is upregulated in malignant 

neoplastic cells compared to normal proliferating cells, therefore ProTides are likely 

to be more efficacious than the parent nucleoside in killing cancer cells.41 The 

nucleophilic carboxylic acid moiety is then thought to attack (intramolecularly) the 

phosphorus atom leading to the formation of an unstable cyclic intermediate 

following the release of the aryloxy moiety (see Figure 2.7). This unstable 

intermediate then undergoes further hydrolysis by a phosphoramidase-type enzyme, 

which results in the cleavage of the P-N bond and release of the nucleoside 5’-

monophosphate (see Figure 2.7).28, 32-33, 39-40 Histidine triad-nucleotide binding 

protein 1 (Hint-1) phosphoramidase, which belongs to the histidine triad (HIT) 

superfamily of proteins, is thought to be the enzyme responsible for releasing the 

nucleoside 5’-monophosphate.42 Purine analogues have a higher affinity for the 

catalytic domain on Hint-1 although pyrimidine-derived phosphoramidates are also 

accepted as lower affinity substrates.43 

 

Figure 2.7 Putative mechanism of action of aryloxyphosphoramidates (ProTides) 
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Phosphoramidate monoesters contains an amino ester that masks one of the charges 

on the phosphate, and as result eliminates the chirality problem at the phosphate 

centre.44 Phosphoramidate monoesters exhibit good water solubility and are stable in 

human plasma.44 The nucleoside monophosphate is liberated in sequential steps, 

where the final step involves phosphoramidase-mediated P-N bond cleavage and 

release of the nucleoside monophosphate.44 

 

2.2.6.2 Comparison of nucleotide prodrug approaches 

Table 2.2 reports the summary of the different nucleotide prodrug approaches 

discussed in this chapter, highlighting their main attributes such the formed by-

products during the their bioactivation. From the above mentioned technologies 

Bis(POM), HepDirect, ProTide and phosphorodiamidate technologies reached 

clinical trials in human. 

Table 2.2 Comparison of nucleotide prodrug technologies 
 

Prodrug 

approach 

Prodrug class Bioactivation By-product 

Phosphotriester Bis (POM) 

Bis(SATE)/Bis(DTE) 

HepDirect 

Cyclosal 

Esterase 

Esterase 

Cytochrome P450 

Chemical 

Formaldehyde 

Episulfide 

Aryl vinyl ketone 

Quinone methide 

Phosphoramidate Aryloxyphosphorami

date (ProTide) 

Phosphoramidate 

monoester (Wagner) 

Esterase, amidase 

 

Amidase 

Phenol, naphtol,  

amino acid 

Amino acid 

Phosphorodiamidate Phosphorodiamidate Esterase, amidase Amino acid 
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2.2.6.2 Structure activity relationships 

The three main components making up the phosphoramidate determine its 

lipophilicity and pharmacokinetic properties, and these are the aryl ring, the amino 

acid and the ester (Figure 2.8). A study performed on 4’-azidouridine triphosphate 

phosphoramidate and other nucleotide analogues, allowed the optimisation of 

techniques that could be employed to modify the aforementioned moieties.12, 32-33, 37-

40 Since then the ProTide approach was successfully applied on a wide range of 

nucleoside analogs, showing significant improvement in the biological effect of the 

parent nucleoside due to increased lipophilicity, therefore enabling passive diffusion. 

A wide ranging structure activity relationship study took place in order to pursue the 

three most preferred, most effective masking moieties, namely the amino acid, the 

ester and the aryl groups. 

                                                  

Figure 2.8 The three main modification sites of the phosphoramidate moiety, the amino acid 
(R1, R2), the ester (R3) and the aryl ring (Ar) 
 

Amino acid (R1, R2) 

L-alanine aryloxy phosphoramidates commonly exhibits the best potencies regarding 

the majority of the ProTide projects carried out in the McGuigan group. Swapping 

L-alanine for the unnatural D-alanine form led to significant decrease in both 

anticancer and antiviral activity. Lacking substitutions at the α carbon (e.g. glycine) 

in general resulted in significant decrease in efficacy with the exception of the 8-
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chloro adenosine ProTide project, where the lead compound was identified as the 

glycine-benzyl ester. Disubstitution at the α carbon in the contrary (e.g. 

dimethylglycine) retained the potency. The bulky L-phenylalanine, L-leucine, L-

isoleucine and L-valine containing ProTides often exhibit poor potencies, due to 

impairment of an enzymatic cleavage step, thus affecting bioactivation of the 

prodrug. In contradiction regarding the FUDR ProTide project the L-leucine-pentyl 

derivative 3.1q was considered as one of the main lead analogue, until the final 

decision of the clinical candidate. 

 

Ester (R3) 

Ester lability greatly alters the biological activity of ProTides. Primary, secondary 

tertiary, alkyl and benzyl, linear and branch chain esters were evaluated. Amongst all 

benzyl ester demonstrated the most outstanding activity, whereas t-butyl ester 

reduced potency, mainly due to its probable poor susceptibility to esterase enzyme. 

 

Aryl 

The aryl moiety is considered as an essential leaving group. The phenyl group as an 

aryl masking moiety, has been given a lot of attention. Weak electron withdrawing 

substituents (e.g. p-Cl, p-COOMe) on the phenyl ring have been shown to improve 

the potency of the parent derivatives.45-47 Recent evaluation of BVDU 

phosphoramidates by Congiato revealed, that derivatives bearing 1-naphthol aryl 

masking moieties are more potent upon compared to their phenyl counterparts, 

owing to their possibly better ability as a leaving group or their increased ClogP 

value.  
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2.2.6.3 Stereochemistry of aryloxyphosphoramidates 

 

Due to the chirality of the phosphorus center Protide analogues were isolated as a 

mixture of two diastereoisomers, which fact is considered as a limitation of 

approach. Chirality is one of the big challenges in medicinal chemistry. Since 

cellular targets are chiral for instance a receptor or an enzyme, one diastereoisomer 

may fit to the target, while the other isomer may not.48  

The diastereoisomeric ratio is usually 1:1, however due to the extensive purification 

this ratio can be altered. In some cases when the two phosphorus isomers can be 

separated a difference in activity has been observed. One diastereoisomer can be 

effectively processed while the cleavage is the other can be slow.49 As phosphorus 

chirality is lost in the process of bioactivation even diastereoisomeric mixtures of 

ProTides can be highly potent and further progress into clinical trials like the anti-

HCV Protide BMS-986094, previously synthesised in the McGuigan group.50 

Separation of the two diastereoisomers may not be essential. 
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2.3 Synthesis  

Phosphoramidates were synthesised in a coupling reaction between the nucleoside 

analogue and the appropriate aryl amino acid phosphorochloridate following the 

synthetic procedure, developed in the McGuigan group utilising the nucleoside 

phosphorylation procedure reported by van Boom and colleagues. 51 The three-step 

synthetic pathway initiates with the preparation of the appropriate amino acid esters 

2.2 from the amino acid and the appropriate alcohol, followed by its coupling with 

the appropriate aryl phosphorodichloridate resulting in the formation of the 

phosphorochloridate 2.3, which used in the final coupling step with the choosen 

nucleoside analogue to provide the final phosphoramidate. Based on the nucleoside 

and base used during the final coupling step three different regioisomers can be 

isolated: the 3’, the 5’ and the 3’5’-bis-phosphoramidate species. Each ProTide 

appears as a mixture of diastereoisomers, due to their chiral phosphate centre. 

 
 
Figure 2.9 General synthetic pathway of aryloxyphosphoramidates 
Reagents and Conditions: i,POCl3, Et3N, Et2O, -78oC to rt, 2 hrs; ii, Et3N, DCM, -78oC to rt, 
1.5 hrs; iii, tBuMgCl or NMI, THF, rt, 16 hrs 
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2.3.1 Synthesis of amino acid esters 

There are three synthetic routes available for the esterification reaction of those 

amino acid esters, which are not commercially available, depending of the nature of 

the chosen alcohol. In case of low boiling alcohols the thionyl chloride method was 

applied, where the amino acid and the appropriate alcohol were heated in the 

presence of thionyl chloride at 75°C overnight (see Figure 2.10). The pure amino 

acid esters were obtained as chloride salts.  

 

 

Figure 2.10 Amino acid ester synthesis using thionyl chloride method 
Reagents and conditions: i, alcohol, SOCl2, 75oC, 16 hours 

 

For the synthesis of amino acid esters derived from high boiling alcohols the second 

method was applied, where the amino acid and the appropriate alcohol were 

suspended in toluene and heated at reflux overnight in the presence of para-toluene 

sulfonic acid monohydrate (pTSA), using Dean Stark apparatus (see Figure 2.11). 

The pure amino acid esters were obtained as tosylate salts. 

 

 

 

Figure 2.11 amino acid ester synthesis using pTSA method 
Reagents and conditions: i, alcohol, pTSA, toluene, reflux, 16 hours 

 
In case of the third method developed for the synthesis of sterically demanding 
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appropriate alcohol was allowed to stir at ambient temperature overnight.52 Boc-

deprotection was carried out on the formed Boc-protected amino acid ester in the 

presence of pTSA in ethyl acetate (see Figure 2.12). The pure amino acid esters were 

obtained as tosylate salts. 

 
Figure 2.12 Amino acid ester synthesis using Boc protected amino acids 

Reagents and conditions: i, alcohol, DCC, DMAP, rt, 16 hours; ii, pTSA, EtOAc, 65oC, 16 
hours 

 
 
Table 2.3 The list of amino acid esters synthesised, stating the isolated yields and the    
methods used.*Yields over two synthetic steps.  
 

 
 
 
 

 

 

Cpd Amino acid Ester Salt Yield % Method 
2.2a L-Ala CH2tBu Ts 83 2 
2.2b L-Ala Pnt HCl 82 1 
2.2c L-Ala Hex Ts 79* 3 
2.2d L-Ala cHex Ts 95 2 
2.2e L-Ala CH2CH2tBu Ts 62* 3 
2.2f Me2Gly Bn HCl 67 1 
2.2g Me2Gly CH2tBu Ts 66 2 
2.2h L-Ile Pnt HCl 53 1 
2.2i L-Leu Pnt HCl 94 1 
2.2j L-Met Bn Ts 87 3 
2.2k L-Met iPr HCl 81 1 
2.2l L-Phe Pnt HCl 85 1 
2.2m L-Val Pnt Ts 69 2 
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2.3.2 Synthesis of phosphorochloridates 

2.3.2.1 Synthesis of aryl phosphorodichloridate  

Phenyl phosphorodichloridate is commercially available, however the naphtyl 

analogue needs to be prepared from 1-naphthol and phosphorus oxychloride in the 

presence of anhydrous triethylamine. The quick reaction easily purified from the 

forming triethylamine hydrochloride salt by filtration, producing therefore the 

dichloridate 2.1 as a thick yellowish oil, indicated as a single isomer around 3.60 

ppm in the 31P NMR spectrum.53 

 

2.3.2.2 Synthesis of phosphorochloridates  

Phosphorochloridates were synthesised in a coupling reaction between either the 

amino acid ester hydrochlorides or tosylate salts and the appropriate 

phosphorodichloridates in the presence of triethylamine at low temperature (-78oC) 

(see Figure 2.9 step i and ii). Completion of reaction was monitored by 31P-NMR, 

and this was indicated by the disappearance of the POCl3 signal. Purification of the 

phosphorochloridates derived from amino acid ester hydrochlorides required only 

quick filtration, while the phosphorochloridate analogues derived from tosylate salts 

were purified by column chromatography. Phosphorochloridates, which were 

prepared from chiral amino acids appeared as two peaks at the 31P NMR spectrum, 

corresponding to the presence of two different diastereoisomers. Phosphochloridates 

of achiral amino acids such as 2,2-dimethylglycine or glycine were obtained as 

mixture of enantiomers, hence gave a single peak in the 31P NMR spectrum. For 

instance the 2,2 dimethylglycine-benzyl ester phosphochloridate derivative 2.3j 

indicated as a single peak at 5.86 ppm, while similarly the glycine cyclohexyl 
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naphthyl derivative 2.3n, appeared as one peak at 8.99 ppm in the 31P NMR 

spectrum. 

 
Table 2.4 The list of phosphorochloridates synthesised for the present work, stating the 31P 
NMR chemical shifts and the isolated yields 

Cpd Amino acid Ester Aryl 31P NMR Yield % 
2.3a L-Ala Me Ph 7.88, 7.54 55 
2.3b L-Ala Bn Ph 7.85, 7.51 73 
2.3c L-Ala Bn 1-Naph 8.13, 7.85 65 
2.3d L-Ala Bu 1-Naph 8.41, 8.24 87 
2.3e L-Ala CH2tBu Ph 8.17, 7.75 65 
2.3f L-Ala CH2tBu 1-Naph 8.23, 7.93 58 
2.3g L-Ala Hex 1-Naph 8.21, 7.88 68 
2.3h L-Ala cHex 1-Naph 8.30, 7.94 89 
2.3i L-Ala CH2CH2tBu 1-Naph 8.24, 7.92 87 
2.3j Me2Gly Bn 1-Naph 5.86* 85 
2.3k Me2Gly Me 1-Naph 5.84* 94 
2.3l Me2Gly Et 1-Naph 5.90* 73 

2.3m Me2Gly CH2tBu 1-Naph 5.49* 58 
2.3n Gly cHex 1-Naph 8.99* 59 
2.3o Gly iPr 1-Naph 9.04* 54 
2.3p L-Ile Pnt 1-Naph 9.46, 9.05 76 
2.3q L-Leu Bn Ph 8.29, 8.06 83 
2.3r L-Leu Bn 1-Naph 8.76, 8.40 72 
2.3s L-Leu Pnt 1-Naph 8.78, 8.50 77 
2.3t L-Met Bn Ph 8.15, 8.08 56 
2.3u L-Met Bn 1-Naph 8.71, 8.59 61 
2.3v L-Val Et Ph 9.51, 9.03 75 
2.3w L-Val Pnt Ph 9.78, 9.34 73 
2.3x L-Val Pnt 1-Naph 9.78, 9.33 67 

* No diastereomeric splitting present as the compound is a mixture of enantiomers. 
 

 

2.3.2.3 Synthesis of phosphoramidates 

Phosphoramidates were obtained by coupling of the nucleoside analogues with 

phosphochloridates in the presence of either the tert-butylmagnesium chloride 

(tBuMgCl, Grignard reagent) or N-methylimidazole (NMI) at room temperature in 

anhydrous tetrahydrofuran. The Grignard reagent was first revealed by Uchiyama 
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and colleagues as a good activator for O-selective phosphorylation of nucleosides.54 

Grignard reagent is a very strong base and does not show selectivity towards primary 

hydroxyl groups. It has the propensity to attack hindered 2’ and 3’ hydroxyl groups 

beside the primary hydroxyl group in the 5’ position. Therefore treating nucleoside 

analogues with Grignard reagents bearing more than one hydroxyl group often result 

in the undesired phosphoramidate isomers like the 3’, 5’ and the 3’, 5’-bis ProTide 

species. Upon deprotonation, the 5’-alkoxide, which is much more nucleophilic than 

the 5’-hydroxy group attacks the phosphorochloridate in order to form the nucleoside 

phosphoramidate (Figure 2.13). However the Grignard method has its own 

advantages, so is favoured regardless of the lack of selectivity. Coupling reactions 

mediated by Grignard reagent are reasonably yielding, therefore making the 

purification steps easier.  

 

Figure 2.13 ProTide synthesis using tert-butyl magnesium chloride as a strong base 
R1 = alkyl; R2, R3 = H, alkyl; R4 = H or protecting group; R5 = H, OH or O-protecting group; 
Ar = aryl. 
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The NMI procedure shows selectivity towards primary hydroxyl groups, therefore in 

cases where only one free hydroxyl group of the nucleoside is present, the weak base 

NMI is preferred.55 The pKA of the conjugated acid of NMI is 7, while the pKA of 

the nucleoside hydroxyls are around 15, therefore the base is not strong enough to 

deprotonate the hydroxyl groups. As NMI being a good nucleophile it can attack the 

phosphorochloridate, thereby displacing the chloride. The positively charged moiety 

is a good leaving group, hence the reactivity towards nucleophiles is increased. 

Furthermore steric hindrance of the phosphorus atom provided by the NMI moiety  

maybe one reason why reaction with the less hindered 5’-hydroxyl group is 

preferred. The main disadvantage of the procedure is that the obtained crude mixture 

requires acidic extraction to abolish the excess reagent. Despite its selectivity, the 

coupling reactions are poor yielding, making the purification process extremely 

problematic. 

 
Figure 2.14 ProTide synthesis using N-methylimidazole to activate the phosphochloridate 
R1 = alkyl; R2, R3 = H, alkyl; R4 = H or protecting group; R5 = H, OH or O-protecting group; 
Ar = aryl. 
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2.4 Aims and scope of thesis 

Nucleoside analogues are used in treatment of cancer by perturbing nucleic acid and 

protein synthesis and consequently, limiting the proliferative potential of malignant 

neoplastic cells and cancer progression. However, nucleoside analogues have low 

aqueous solubility, their activity heavily depends on their metabolism to the 5’-

monophosphate and they may be poor substrates for specific enzymes involved in 

their bioactivation, and this often limits their clinical response.  

The focus of this thesis has been limited to the synthesis of pronucleotide (ProTide) 

derivatives of different purine and pyrimidine nucleoside analogues (see below) 

using phosphoramidate and phosphorodiamidate technology (Chapter 3-6). The 

cytostatic potential of each ProTide compared to the parent nucleoside was assessed 

in different wild-type and mutant cell lines, used to model different pathologies such 

as leukaemia, lymphoma, colorectal and pancreatic cancer (Chapter 3-6). Further 

experimental methods used to disseminate the identity, purity, bioactivation and 

efficacy of each ProTide are stated below. 

 

2.4.1 Major aims of the thesis 

• To synthesise ProTide derivatives of different anticancer nucleoside 

analogues such as 5-fluoro-2’-deoxyuridine, 6-thioinosine, 6-thioguanine, 6-

S-methyl-thioinosine, cladribine and decitabine using phosphoramidate and 

phosphorodiamidate technology   

• By varying the three main masking moieties and the nucleobase another aim 

is to develop ProTides that have efficacy and potency that exceeds that of the 

parent nucleoside 
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• To employ NMR spectroscopy, mass spectrometry and HPLC to identify and 

prove the purity of each compound  

• To do molecular modeling and enzymatic studies to characterise the 

bioactivation of ProTides 

• To test these compounds in different cancer cell lines to assess their ability to 

kill or significantly reduce cancer cell proliferation and to further progress 

them for clinical candidate selection. 

 

2.4.2 Overarching hypothesis 

The application of phosphoramidate and phosphorodiamidate technology will help 

overcome the limiting resistance mechanisms associated with nucleoside therapy in 

the treatment of cancer. 
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3 Clinical candidate selection of 5-FUDR ProTides 

5-Fluoro-2'-deoxyuridine (5-FUDR) is an organofluorine containing antimetabolite 

pyrimidine analogue, which is in major use for the chemotherapeutic treatment of 

many solid tumours including colon, gastric, breast and ovarian carcinoma.1-4 The 

mechanism of action of 5-FUDR is shown in chapter 1 (Chapter 1.7.1.1). 

 

 

 

 

 

 

 

 

 

Figure 3.1 Fluorinated pyrimidines 
 

3.1 5-FUDR Phosphoramidates 

Application of the ProTide approach to 5-FUDR can bypass the resistance 

mechanisms associated with 5-FUDR therapy and these include: reduced levels of 

the enzyme thymidine kinase, which is important in the bioactivation of 5-FUDR; 

overexpression of thymidylate synthase, which results in off-targeting and toxicity; 

increased degradative cleavage by thymidine phosphorylase; reduced transporter 

mediated uptake into cells (Chapter 1.7.1.1.).5 
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Preliminary studies were performed by Paola Murziani and Magdalena Slusarczyk 

on 5-FUDR ProTides. The main leads discovered, were the L-alanine benzyl 

naphthyl 3.1b and L-alanine pentyl naphthyl 3.1e derivatives (Figure 3.2). 

 
 
 
 
 
 
 

 
 

Figure 3.2 Two lead compounds identified at preliminary stage 
 

Table 3.1 Cytostatic activity of 5-FU, 5-FUDR, and prodrugs 3.1b and 3.1e against wild 
type L1210/0, TK-deficient L1210, CEM/0, TK-deficient CEM, HeLa/0, TK-deficient HeLa 
cells. Data by Prof Balzarini, Rega Institute. 
IC50 (µM): 50% inhibitory concentration or compound concentration required to reduce cell 
proliferation by 50%. 
 
Cpd L1210 L1210/TK- CEM CEM/TK- HeLa HeLa/TK- 

5-Fu 0.33 0.32 18 12 0.54 0.23 

5-FUDR 0.0011 3.0 0.022 3.0 0.050 1.4 

3.1b 0.0011 0.045 0.068 0.31 0.065 2.5 

3.1e 0.0028 0.13 0.015 0.28 0.029 0.44 

 
5-FU, 5-FUDR and FUDR 5’ Protides were evaluated against a panel of thymidine 

kinase (TK) competent and TK-deficient leukaemia cell lines. The cytostatic assays 

were determined in L1210 murine lymphoblast cell line, derived from mouse 

lymphocytic leukaemia, human T-lymphoblast CEM cell line, derived from the 

blood of a patient suffering from acute lymphoblastic leukaemia and HeLa cell line 

as a model of human epithelial cervical adenocarninoma cell line. 
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At the preliminary stage mainly L-alanine amino acid ester derivatives were 

prepared by varying the aryl masking moiety between phenyl and 1-naphthyl aryl 

units (Figure 3.3).6-9 Based on this fundamental study, naphthyl derivatives showed 

improved potency compared to phenyl derivatives in different wild type and 

thymidine kinase deficient mutant leukaemia cell lines.9 The in vitro biological data 

showed that 5-FUDR phosphoramidate derivatives did not improve the cytostatic 

activity of the parent nucleoside, however while 5-FUDR lost 28 - 2727 fold (IC50 = 

1.4 - 3 µM) activity against the TK-deficient tumor cells tested, ProTide 3.1b (IC50 = 

0.045 – 2.5 µM) and 3.1e (IC50 = 0.13 – 0.44 µM) partially bypass the high 

dependence of the parent nucleoside on kinase-mediated activation. 

 
Figure 3.3 Design of 5-FUDR 5’ProTides 

 

The design of the second generation of 5-FUDR ProTides study focused on the 

investigation of new amino acid esters with modified aryl masking moieties, with the 

aim to explore the potential of a structure activity relationship. Previously 3’, 5’ bis-, 

and 3’-phosphoramidates, isolated as by-products, showed negligible efficacy in 
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leukaemia and solid tumor cell lines, therefore isolation of these derivatives was not 

part of my research focus.9  

 

3.2 Synthesis of 5-FUDR ProTides 
 
To overcome the biological disadvantages of 5-Fu and 5-FUDR described in Chapter 

1.7.1.1, the ProTide technology has been applied to 5-FUDR (Figure 3.3). In this 

thesis the second generation of 5-FUDR ProTides as potential anticancer agents are 

reported. The main objectives of this study were to build the SAR with the 5-FUDR 

phosphoramidates 3.1a - 3.1y and enhance the cytostatic potential of previously 

synthesised lead compounds 3.1b and 3.1e (Table 3.1). Design of the 5-FUDR 

ProTides centered mainly around the use of L-alanine amino acid core due as its 

often appers to be beneficial. Besides a great variety of other amino acids were 

introduced namely dimethylglycine, L-Phenylalanine, L-Glycine, L-Leucine, L-

Isoleucine, L-Methionine, L-Valine. In our SAR studies a wide range of esters of 

amino acids were introduced to investigate their lability towards the esterase and to 

improve their biological activity. The use of linear methyl, ethyl, propyl, butyl, 

pentyl, branched as isopropyl, neopentyl and cyclised cyclohexyl ester groups were 

considered besides the highly preferred benzyl ester. The aryl esters of the phosphate 

unit investigated included phenyl and 1-naphthyl. 

 

Based on previous work done in the McGuigan group, 5-FUDR ProTides were 

synthesised following the Grignard reagent-based method using 1.1 equivalent of 

tBuMgCl.10 Application of the NMI method resulted in poor yielding final products, 

and this was due to the acidic conditions of the workup, which was required for the 

removal of the reagent excess. 3’, 5’ bis-, and 3’-ProTides were not isolated based on 
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the results of the previous in vitro biological evaluation, where these derivatives 

greatly reduced the potency of the 5’-derivatives. The general synthetic scheme is 

shown in Figure 3.4. 

 

Figure 3.4 Synthesis of 5-FUDR 5’-ProTides 
Reagents and Conditions: i, POCl3, Et3N, anhydrous Et2O, -78 oC, 1hr, to rt, 1hr; 
ii, phenyl or 1-naphthyl phosphorodichloridate, Et3N, anhydrous DCM, -78 oC, 1-2 hrs; iii, 
tBuMgCl or NMI, anhydrous THF, rt, overnight. 
 

Conversion of the nucleoside 5-FUDR into 5’ phosphate ProTides 3.1a-3.1y was 

carried out by coupling of 2 (commercially available) with a range of aryl 

phosphorochloridates 2.3 in the presence of a strong base such as the Grignard 

reagent (tBuMgCl) or alternatively 1-methylimidazole (NMI) (Figure 3.4). The 

purification of 5’ ProTides was extensive, they all required a second preparative 

purification by preparative TLC. Coupling reactions were low yielding in all cases 

mainly due to the formation of the dominant 3’, 5’ bis-phosphoramidate by-product 

alongside the 3’-phosphoramidate derivatives. All products were obtained as a 
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mixture of diastoisomers, confirmed by the presence of two peaks by 31P NMR, 

generally in a ratio of 1:1. Final compounds were isolated in very low yields (1-7%) 

due to the repeated purification process. All 5’ phosphoramidates prepared are 

reported in Table 3.2. 

 

The L-leucine pentyl naphthyl phosphoramidate derivative 3.1q gave two peaks at 

4.48 ppm and 4.97 ppm in the 31P NMR spectrum, corresponding to two 

diastereoisomers. The desired 5’-phosphoramidate regioisomer was determined by 

13C NMR spectrum, where C-5’ gave two doublets, one for each diastereoisomers, 

due to their coupling to the phosphorus centre at 67.90 ppm (2JC-P = 4.45 Hz) and 

67.86 ppm (2JC-P = 4.45 Hz). Regarding the distance between the C-3’ and the 

phosphorus atom, coupling to phosphorus could not be seen, therefore C-3’ appeared 

as two peaks at 72.23 and 72.20 ppm indicating the presence of two diastoisomers.  

HPLC analysis showed only one peak indicating the presence the two 

diastereoisomers, with an elution time of 12.52 minutes; which merging could be 

due to small size of the HPLC column used during the analysis. Structures, yields 

and key spectral a data of 5-FUDR ProTides are summarised in Table 3.2. 
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Table 3.2 Structures, calculated lipophilicity, 31P chemical shifts and yields of 5-FUDR 5’ 
ProTides. ClogP values generated algorithmically by computer-based predictive program 
Chem Office ultra 11.0. 
Ala: L-alanine; Me2Gly: 2,2-Dimethylglycine; Gly: L-glycine; Val: L-valine; Phe: L-
phenylalanine; Met: L-methionine; Leu: L-leucine; Ile: L-isoleucine 
 

Cpd AA Ester Aryl ClogP 31P NMR Yields 
% 

3.1a L-Ala Me Ph -0.47 3.79, 4.09 2 
3.1b L-Ala Bn 1-Naph 2.40 4.58, 4.25 5 
3.1c L-Ala Bu 1-Naph 2.28 4.52, 4.35 1 
3.1d L-Ala CH2tBu 1-Naph 2.55 4.56, 4.33 1 
3.1e L-Ala Pnt 1-Naph 2.81 4.43, 4.29 3 
3.1f L-Ala Hex 1-Naph 3.34 4.43, 4.28 7 
3.1g L-Ala CH2CH2tBu 1-Naph 3.08 4.18, 3.86 4 
3.1h Me2Gly Bn 1-Naph 2.71 2.89, 3.05 4 
3.1i Me2Gly Me 1-Naph 1.00 2.98, 2.87 1 
3.1j Me2Gly Et 1-Naph 1.53 2.97, 2.85 2 
3.1k Me2Gly CH2tBu 1-Naph 2.86 2.94, 2.82 2 
3.1l Gly cHex 1-Naph 2.60 5.71, 5.60 2 

3.1m Gly iPr 1-Naph 1.41 5.75, 5.63 2 
3.1n L-Ile Pnt 1-Naph 4.26 5.32, 5.06 2 
3.1o L-Leu Bn Ph 2.69 4.43, 3.91 3 
3.1p L-Leu Bn 1-Naph 3.86 4.40 2 
3.1q L-Leu Pnt 1-Naph 4.26 4.48, 4.97 2 
3.1r L-Met Bn Ph 1.38 4.34, 3.94 1 
3.1s L-Met Bn 1-Naph 2.55 4.95, 4.39 2 
3.1t L-Met iPr 1-Naph 1.68 4.93, 4.56 2 
3.1u L-Phe Bn 1-Naph 3.82 4.27, 4.14 1 
3.1v L-Phe Pnt 1-Naph 4.23 4.39, 4.07 2 
3.1w L-Val Et Ph 0.97 4.96, 4.69 1 
3.1x L-Val Pnt Ph 2.56 4.95, 4.65 1 
3.1y L-Val Pnt 1-Naph 3.74 5.39, 5.28 2 

 

Twenty-two novel ProTides of 5-FUDR were prepared, some of which comprise a 

list of 39 new analogues that were published in 2011.5 Eight compounds listed in 

Table 3.2. were scaled-up for clinical candidate selection. They have all been 

characterised by multinuclear 19F, 31P, 1H, 13C NMR spectroscopy, HPLC and mass 

spectrometry. Each ProTide was tested in different cancer cell lines to determine 



Blanka Gönczy         Chapter 3   
____________________________________________________________________ 
 

	 104 

their in vitro activity, and six derivatives were selected for in vivo biological 

evaluation.  

3.2.1 Scale-up synthesis of 5-FUDR lead phosphoramidates 
 
Six lead derivatives 3.1b, 3.1e, 3.1f, 3.1g, 3.1h and 3.1q has been resynthesized for 

in vivo testing according in order to isolate the final compounds in a 300 – 500 mg 

scale. To meet the tight time schedule of the shipments of these lead derivatives the 

best temporary solution seem to be using the well established Grignard method 

starting the synthetic method from 1200-1500mg starting material FUDR. 

Purification of the ProTide derivatives required repeated column prurification and it 

was also found that dividing the big batch of reaction mixture into two or three 

smaller batches increased the isolated yield of these derivatives (Table 3.3). 

 

             Table 3.3 Scaled-up FUDR lead Protides for clinical candidate selection  
 
 
 
 
 
 
 
 
 
              Compounds with * were first synthesised by Slusarczyk and Murziani. 

 

In the meantime although in order to improve the overall yield of synthesis of 5-

FUDR ProTide lead analogues an alternative synthetic methodology was 

investigated based on protection-deprotection strategy, which besides having the 

advantage of leading only towards the 5’-phosphorylated ProTide analogues it might 

Cpd Amino acid Ester Aryl 
3.1h* Me2Gly OBn 1-Naph 
3.1q L-leu OPnt 1-Naph 
3.1g* L-Ala OCH2CH2tBu 1-Naph 
3.1f* L-Ala OHex 1-Naph 
3.1e* L-Ala Pnt 1-Naph 
3.1b* L-Ala Bn 1-Naph 
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allow the separation of the two diastereoisomers Rp and Sp at the level of the 

silylated phosphoramidate mixtures (Figure 3.4). 

 

To a stirred solution of 5-FUDR, imidazole and DMAP in anhydrous DMF 

TBDMSCl (2.2 mmol) was added at 0oC and the mixture was allowed to reach 

ambient temperature and was allowed to stirr for six hours. The reaction mixture was 

quenched with saturated aqueous solution of ammonium chloride, and the mixture 

was extracted with ethyl acetate. The combined organic layers were dried over 

Na2SO4 and the solvent was removed under vacuum to give a crude product 3’,5’-

disilylated 5-FUDR (1) as an oil, which was used for the second step without further 

purification (Figure 3.4).  

 
 
 
 
 
 
 
 
Figure 3.4 Selective 5’-desylilation of 3’, 5’-di-O-TBDMS-5-FUDR performed by 
Slusarczyk. 
Reagents and Conditions: i, imidazole, TBDMS, DMAP, DMF, rt. to 50oC, 12 hours, 98%; 
ii, 80% acetic acid/THF 4:1, 60oC, 12 hours, 31%. 
 
 
The selective deprotection step with acetic acid performed by Slusarczyk suffered 

from long reaction time and it also required high temperature of 60oC furthermore it 

was low yielding (31%). Therefore it was decided to further investigate the selective 

deprotection conditions in order to improve the yield. It is well known that primary 

silyloxy groups are cleaved under acidic conditions more easily than secondary ones, 

therefore we aim to different acidic conditions were applied onto the 3’, 5’-di-O-
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TBDMS-5-FUDR. An efficient method using TFA/H2O/THF in a ratio of 1:1:4 at 

0oC were reported to be optimal for the selective removal of 5’ TBDMS analogues 

by Zhu et al.11 was first applied to the 3’, 5’-di-O-TBDMS-5-FUDR (1) and the 

formation of the desired compound 2 was monitored by TLC plate. 

 

3’,5’-disilylated 5-FUDR (1) was dissolved in the 1 : 1 : 4 ratio of TFA/H2O/THF at 

-5oC, then was stirred for 4 hrs at -20oC. After this period only the disubstituted 5-

FUDR derivative, was present in the reaction mixture. Therefore the temperature 

was increased to -10oC, and allowed to stir for two additional hours. At this 

timepoint the 3’,5’-disilylated 5-FUDR, the 5’ and the 3’ monosilylated 5-FUDR 

derivative and 5-FUDR were present on the TLC plate in the following ratio: 

2:1:1:0.5. In fact treating compound 1 under these conditions, there was no 

selectivity observed towards the formation of the desired 3’ monosilylated 5-FUDR 

furthermore degradation of the starting material 1 to 5-FUDR could be also observed 

(Figure 3.5). 

 
 
 
 
 
 
 
 
 
Figure 3.5 Selective 5’-desylilation of 3’, 5’-di-O-TBDMS-5-FUDR monitored by TLC 
plate. Reagents and Conditions: i, TFA/H2O/THF (1:1:4), -20oC to -10oC, 6 hrs. 
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Table 3.4 Acidic conditions to try for further investigation 

 

 

 

 

 

 

 

Due to the lack of time remaining did not allow to further explore other acidic 

conditions. Table 3.4 summarise alternative acidic conditions, which are awaiting for 

further investigation. 

 
 
3.3 Biological evaluation of 5-FUDR ProTides 

3.3.1 Examining the role of TK 

The 5-FUDR ProTides described above were tested for their cytostatic activity 

against some established tumor cell lines as presented in Table 3.5a and Table 3.5b. 

Compounds 1 and 2 were included as positive controls. In particular we studied the 

compounds in wild type murine leukaemia L1210, T lymphocyte CEM and the 

human cervical adenocarninoma cell line HeLa cells. In each case the thymidine 

kinase deficient (TK-) mutant of the parent cell lines were also added in order to 

study the efficacy of compounds in thymidine kinase deficiency and their degree to 

bypass their dependence. 

 

If was found that in two out three cell lines L1210 and HeLa, that 5-FU exhibited an 

IC50 of approximately 30-0.60 µM furthermore, 5-FU was found to be poorly active 

Reagent Solvent 

p-Toluenesulfonic acid (0.5 – 1 eq.)12 MeOH/CH2Cl2 

10-camphorsulfonic acid (0.5 – 1 eq.)13 MeOH/CH2Cl2 

Oxalic acid (1 eq.)13 MeOH 

Dichloroacetic acid (DCA) (1 eq.) MeOH 
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against CEM cells (IC50 = 18 µM), although it did retain activity in the case of the 

TK- cell lines tested. This is probably due to phosphoribosylation by the enzyme 

orotate phosphoribosyl transferase (OPRT). 5-FUDR was more potent in the wild 

type cell lines with IC50 = 1.1 - 50 nM, therefore having a 10-800 fold potency boost 

over 5-FU. On the other hand 5-FUDR proved to be extremely dependent on the 

expression of TK, in fact its cytostatic activity was almost 4000 fold lower in TK 

deficient L1210 and CEM and 30 fold lower in TK deficient HeLa tumor cell lines. 

This assay could be considered to mirror the clinical circumstance of kinase-

deficiency leading to poor activity of nucleosides. 

 

The effect of 5-FUDR ProTides on L1210, CEM and HeLa cell proliferation is 

shown in Table 3.5a and 3.5b.14-18 Variability in efficacy and potency is seen 

amongst the ProTide family, which appears to be dependent on TK (Chapter 1.1.4). 

The concentration of ProTides excluding the lead compounds that caused 50% 

reduction in cancer cell proliferation significantly increased in the absence of TK. 

Not one of the ProTides shown in Table 3.5a and 3.5b exhibited potency that 

exceeded that of the parent nucleoside 5-FUDR, however the L-alanine pentyl 

naphthyl 3.1e, L-alanine hexyl naphthyl 3.1f and dimethylglycine benzyl naphthyl 

3.1h motifs potency was comparably closest to 5-FUDR’s in all three cell lines with 

intact TK and they retained reasonable activity in TK deficient cell lines with the 

exception of 3.1f (80 fold activity loss in CEM/TK- and almost 50 fold decrease in 

cytostatic activity against HeLa/TK- ).  
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Table 3.5a The effect of 5-FUDR ProTides on inhibiting the proliferation of L1210 and 
CEM cells with or devoid of TK. Data shown are concentrations (µM) of compounds that 
caused 50% inhibition of cell proliferation (IC50). Data are Mean ± SEM (n ≥ 3). Data were 
done in Prof Jan Balzarini’s lab, Leuven, Belgium. 
 
Cpd L1210 L1210/ 

TK- 
CEM CEM/ 

TK- 
5-FU 0.33 ± 0.17 0.32 ± 0.31 18 ± 5 12 ± 1 
FUDR 0.0011 ± 0.0002 3.0 ± 0.1 0.022 ± 0.006 3.0 ± 0.4 
3.1a 0.022 ± 0.007 41 ± 3 0.70 ± 0.37 35 ± 12 
3.1b* 0.011 ± 0.007 0.045 ± 0.027 0.068 ± 0.035 0.31 ± 0.06 
3.1c 0.022 ± 0.004 0.11 ± 0.06 0.064 ± 0.007 0.84 ± 0.60 
3.1d 0.27 ± 0.11 1.2 ± 0.7 0.49 ± 0.05 6.7 ± 1.0 
3.1e 0.0028 ± 0.0010 0.13 ± 0.13 0.015 ± 0.006 0.28 ± 0.04 
3.1f 0.0072 ± 0.0000 0.076 ± 

0.0015 
0.0080 ± 
0.0020 

0.65 ± 0.34 

3.1g 0.016 ± 0.006 0.0062 ± 
0.009 

0.053 ± 0.021 0.19 ± 0.04 

3.1h 0.011 ± 0.005 0.13 ± 0.04 0.16 ± 0.02 2.4 ± 0.8 
3.1n 0.22 ± 0.12 12 ± 2 0.46 ± 0.11 17 ± 1 
3.1o 0.044 ± 0.025 2.0 ± 0.3 0.24 ± 0.04 16 ± 1 
3.1p 0.028 ± 0.004 1.5 ± 0.6 0.13 ± 0.00 30 ± 6 
3.1q 0.017 ± 0.001 1.2 ± 0.4 0.071 ± 0.008 15 ± 4 
3.1r 0.073 ± 0.035 4.1 ± 1.2 0.28 ± 0.03 25 ± 0 
3.1s 0.072 ± 0.001 1.9 ± 0.2 0.19 ± 0.10 11 ± 1 
3.1u 0.012 ± 0.007 5.6 ± 1.3 0.10 ± 0.03 7.2 ± 0.1 
3.1v 0.026 ± 0.001 2.9 ± 1.2 0.10 ± 0.00 8.3 ± 1.0 
3.1w 0.16 ± 0.05 42 ± 2 1.0 ± 0.1 > 250 

 

The L-alanine benzyl naphthyl 3.1b and L-alanine pentyl naphthyl 3.1f were 

amongst the most potent derivatives exhibiting IC50 = 1.1 and 2.8 nM, therefore 2.5 

and 6.5 fold less active than the parent nucleoside and 30 and 100 times more potent 

than 5-FU. Notably 3.1b retained significant cytostatic potency in L1210/TK- (IC50 = 

0.045 µM) versus wild type L1210/0 cells (IC50 = 0.011 µM) with approximately 70-

fold increase over the cytostatic activity of the parent nucleoside.  
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Table 3.5b The effect of 5-FUDR ProTides on inhibiting the proliferation of HeLa cells 
with or devoid of TK. Data shown are concentrations (µM) of compounds that caused 50% 
inhibition of cell proliferation (IC50). Data are Mean ± SEM (n ≥ 3). Data were done in Prof 
Jan Balzarini’s lab, Leuven, Belgium. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Wild type HeLa cell line confirmed a lower cytostatic activity for ProTide 3.1b (IC50 

= 0.065 µM) and shown to be more dependent of TK for its cytostatic activity (IC50 

= 2.5 µM) in Hela/TK- cell line with an almost 40 fold loss of activity. Overall, it 

appears that TK is important in bioactivation of 5-FUDR ProTides, although some 

motifs are able to display a significant retention of activity in TK deficient cell lines.  

 
 
3.3.2 Biological results on Mycoplasma hyorhinis infection 
 
Several cancer cells were reported to be associated with Mycoplasma infections as 

Mycoplasma has the potential to cause chromosomal changes in normally dividing 

mammalian cell populations, promoting malignant transformation and 

Cpd HeLa HeLa/ 
TK- 

5-Fu 0.54 ± 0.12 0.23 ± 0.01 
FUDR 0.050 ± 0.011 1.4 ± 0.4 

3.1a 0.28 ± 0.14 4.7 ± 0.4 
3.1b 0.065 ± 0.013 2.5 ± 1.3 
3.1c 0.12 ± 0.02 2.7 ± 1.5 
3.1d 0.70 ± 0.11 32 ± 26 
3.1e 0.029 ± 0.023 0.44 ± 0.35 
3.1f 0.039 ± 0.018 1.8 ± 0.1 
3.1g 0.078 ± 0.018 1.3 ± 0.9 
3.1h 0.078 ± 0.020 3.1 ± 0.6 
3.1n 0.30 ± 0.02 11 ± 1 
3.1o 0.067 ± 0.042 5.6 ± 0.3 
3.1p 0.080 ± 0.022 9.4 ± 1.4 
3.1q 0.039 ± 0.014 7.5 ± 0.4 
3.1r 0.15 ± 0.02 11 ± 7 
3.1s 0.087 ± 0.017 8.3 ± 0.0 
3.1u 0.16 ± 0.08 6.8 ± 1.5 
3.1v 0.040 ± 0.000 6.6 ± 0.5 
3.1w 1.2 ± 0.3 27 ± 7 



Blanka Gönczy         Chapter 3   
____________________________________________________________________ 
 

	 111 

oncogenesis.19-20 Furthermore through the expression of mycoplasma derived 

enzymes such as thymidine phosphorylase, the bacteria is able to greatly decrease 

the accumulated active metabolites of pyrimidine nucleoside analogues causing 

dramatic loss of their activity. FUDR is well known for being a subject to TP-

mediated deactivation. In Mycoplasma hyorhinis infected MCF-7 breast cancer cell 

line (MCF/HYOR) 5-FUDR showed 20-150 fold activity loss due to mycoplasma-

induced catabolic degradation.21-22 A study on mycoplasma infection in human 

carcinomas reported that 40–56% of gastric, colon, oesophageal, lung and breast 

cancers were infected with mycoplasma compared to non-tumourigenic tissue.19  

 

The biological assay was performed to evaluate the cytostatic activity of the 

compounds presented within this thesis, were conducted by Prof Jan Balzarini, Rega 

Institute. The cytostatic activity of 5-FUDR and 15 FUDR ProTide derivative was 

investigated in wild type murine leukaemia cell line L1210/0 and its Mycoplasma 

Hyorhinis infected mutant. The parent compound displayed a remarkable decrease in 

cytostatic activity by 378 fold (IC50 = 0.34 µM), while in contrast the ProTide 

analogues kept a significant cytostatic activity under the same experimental 

conditions losing 2-4 fold antiproliferative activity with the exeption of 3.1r. (13 

fold activity loss) in Mycoplasma infected L1210 cell line. 
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Table 3.6 The effect of 5-FUDR ProTides on inhibiting mycoplasma hyorhinis infected 
L1210 cell proliferation. Preliminary data shown are concentrations (µM) of compounds that 
caused 50% inhibition of cell proliferation (IC50). This study was done in Prof. Jan 
Balzarini’s lab. Data are mean ± SD. 
 
Cpd L1210 L1210/hyor IC50L1210: 

IC50L1210/hyor 

FUDR 0.0009 ± 0.0003 0.34 ± 0.13 378 
3.1n 0.42 ± 0.021 0.70 ± 0.074 1.67 

3.1p 0.029 ± 0.0021 0.048 ± 0.020 1.7 

3.1q 0.031 ± 0.0020 0.035 ± 0.010 1.13 
3.1r 0.058 ± 0.035 0.76 ± 0.18 13 

3.1o 0.054 ± 0.021 0.17 ± 0.047 3.2 

3.1u 0.021 ± 0.0061 0.021 ± 0.078 11 

3.1s 0.054 ± 0.013 0.020 ± 0.098 3.7 
3.1v 0.030 ± 0.0039 0.14 ± 0.007 4.67 

3.1c 0.0095 ±0.0021 0.0210 ± 0.0071 2.2 

3.1b 0.011 ± 0.009 0.025 ± 0.01 2.27 
3.1f 0.0032 ± 0.00035 0.0022 ± 0.00028 0.69 

3.1g 0.012 ± 0.0018 0.032 ± 0.0088 2.7 

3.1h 0.019 ± 0.004 0.045 ± 0.004 2.4 

3.1e 0.0021 ± 0.00007 0.006 ± 0.0014 2.9 

 

The data demonstrate that 5-FUDR ProTides are resistant to mycoplasma encoded 

phosphorolytic activity of thymidine phophorylase, which may result in a therapeutic 

benefit as tumors often show an increased TPase activity allowing therefore better 

angiogenesis in the tumor tissue23. The parent nucleoside is a known substrate for 

TPase and based on this study the majority of the synthesised prodrugs are resistant 

for this phosphorolytic cleavage. Figure 3.6 visually illustrates the most potent 

prodrug motifs of this family, highlighting their remarkably retained cytostatic 

activity compared to the parent nucleoside in Mycoplasma infected L1210 cell line.  
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Figure 3.6 Cytostaic activity of 5-FUDR and 5-FUDR prodrugs: 3.1b, 3.1h, 3.1e, 3.1g, 3.1f, 
3.1q against wild type L1210 and Mycoplasma hyorhinis infected L1210 cell line 
 

 

3.3.3 Xenograft study  

Numerous murine models are available to study human cancer investigating the 

invasion, metastasis and the response to therapy. One of the most widely used 

transplantation model is the human tumor xenograft, which propagates tumor tissues 

for in vivo studies. In this method human cancer cells transplanted into the host 

immune-compromised mice, therefore rejection of the foreign cells can likely be 

excluded. The main advantage of the study, that the cancerous tissue carries human 

genetic information, although on the other hand due to host’s impaired immune 

system may not be a good model of human cancer.  

 

The biological study performed to evaluate the effect of 5-FU and 5-FUDR 

ProTides: 3.1b, 3.1q, 3.1h, 3.1f, 3.1g, 3.1e in the presence of vehicle control on 

body weight and tumor volume (mm3), carried out by WuXiAppTec, China. 



Blanka Gönczy         Chapter 3   
____________________________________________________________________ 
 

	 114 

HT29 colorectal adenocarcinoma cell lines were injected into nude immune-

compromised mice. Mice were treated with vehicle, 5-FU or 5-FUDR ProTides: 

3.1b, 3.1q, 3.1h, 3.1f, 3.1g, 3.1e every three days intraperitoneally. Over 17 days, 

tumor volume was lower in mice treated with 5-FUDR ProTides and 5-FU compared 

to vehicle control. 5-FUDR ProTides were more effective at inhibiting tumour 

growth compared to the parent nucleobase 5-FU and amongst these, 3.1q (147mg/kg 

IP) showed the greatest activity. However, despite 3.1q having the best inhibitory 

effect on reducing the tumour volume, it exhibited the greatest toxicity illustrated by 

a significant reduction in the body weight of mice over 17 days (12% reduction in 

the body weight). Notably 3.1b the L-alanine benzyl phenyl Protide motif also 

performed well in this assay by inhibiting tumor growth with (140mg/kg IP) slightly 

lower than of 3.1q, but proved to be less toxic compared to 3.1q, causing 

approximately 5% reduction in body weight (Figure 3.7a, 3.7b). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7a The effect of vehicle, 5-FU and 5-FUDR ProTides: 3.1b, 3.1q, 3.1h, 
3.1f, 3.1g, 3.1e on tumor volume (mm3, % change). Data are Mean ± SEM (n ≥ 3). 
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Figure 3.7b The effect of vehicle, 5-FU and 5-FUDR ProTides: 3.1b, 3.1q, 3.1h, 
3.1f, 3.1g, 3.1e on body weight (% change). Data are Mean ± SEM (n ≥ 3). 
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3.4 5-FUDR ProTides and the acute myeloid leukaemia (AML) stem 

cell model 

A pilot study of gemcitabine ProTides indicated some unexpected selectivity for the 

leukaemic stem cell compartment, which led us to look into the potential of 5-FUDR 

ProTides whether they are able to preferentially target leukaemic stem cells (LSC). 

To show this, KG1a acute myeloid leukaemia cell line was used as it manifests a 

minor stem cell like compartment with a specific immunophenotype (CD34+/CD38-

/CD123+). In order to compare the cytotoxicity and the stem cell targeting properties 

of the ProTide analogues, 5-FUDR ProTides were evaluated for their LD50 value and 

their effect was investigated on the leukaemic stem cell compartment (CD34+/CD38-

/CD123+). 

 

3.4.1. Identification of leukaemic stem cell compartment and biological 

evaluation 

KG1a cells were grown in the presence of the LD50 concentration of each 5-FUDR 

ProTide for 72hrs. Cells were then sampled and labeled with the antibodies CD34-

FITC, CD38-PE and CD123 PERCP-cy5. The subpopulation (CD34+/CD38-

/CD123+) of each culture was expressed as a proportion of the total culture. The 

effect of each FUDR ProTide on the stem cell compartment was examined and 

compared with untreated cultures labelled with the same antibodies.  

 

A total of five 5-FUDR phosphoramidate besides 5-FU and 5-FUDR as positive 

controls were evaluated. 5-FU (LD50 = 2.08 µM) and 5-FUDR (LD50 = 1.34 µM) 

displayed low micromolar cytotoxic activity in KG1-a cell line, however 5-FUDR 
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ProTides showed a stricking 2 – 57 fold enhanced in vitro cytotoxity (LD50 = 0.036 – 

0.92 µM) when compared 5-FU (LD50 = 2.08 µM) and 1.5 – 37 fold increase in 

cytotoxic efficacy when compared to their parental nucleoside 5-FUDR (LD50 = 1.34 

µM). In terms of stem cell targeting 5-FU and 5-FUDR did not target the specified 

stem cell compartment (stem cell selectivity = 4.3 and 4.6 %, control = 4%), while 

the L-alanine benzyl naphthyl derivative 3.1b (stem cell selectivity = 2.2%, control = 

4%), and 3.1e (stem cell selectivity = 2.0%, control = 4%) showed increased 

selectivity towards this stem cell like compartment, suggesting stem cell specific 

action (Table 3.8). The rest of the 5-FUDR phosphoramidate analogues 3.f, 3.1g and 

3.1q did not display any selectivity towards the leukaemic stem cell compartment. 

 
 
Table 3.8 Comparative cytotoxicity of 5-FUDR lead ProTides, 5-FU and their respective 
parental nucleoside 5-FUDR in KG1a cell line.  
LD50: concentration of compound required to kill 50% of test polulation in µM.  
LD50 values are the mean of 3 separate experiments. Study was performed by Prof. Pepper. 
 
 
 
 
 

 

  

 

 

 

 
 
 
 

 

Cpd LD50 value 
(µM) 

Stem cell% 
Control: 4% 

5-FU 2.08  4.3 
5-FUDR 1.34  4.6 

3.1f 0.094  4.0 
3.1e 0.036 2.0 
3.1b 0.063 2.2 
3.1q 0.70 5.2 
3.1g 0.92 4.4 
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3.5 Putative metabolism mechanism assays 

The putative mechanism of activation of phosphoramidate prodrugs requires an 

initial hydrolysis of the ester unit by esterase or carboxypeptidase type enzyme. 

Subsequently the nucleophilic attack of the carbonyl group on the phosphorus centre 

resulting in the spontaneous cyclisation and elimination of the aryloxy masking 

moiety. The presumably formed five membered ring, is very unstable and undergoes 

opening to give the diacid metabolite. The last step in the bioactivation pathway 

involves the hydrolysis of the P-N bond mediated by phosphoramidase type enzyme 

relying on the activity of the human histidine triad nucleotide binding protein HINT1 

in order to obtain the desired monophosphate. The resulting monophosphate then 

undergoes subsequent phosphorylation by specific kinases to form di- and 

triphosphates. Birkus et al.24 discovered that one of the lysosomal associated 

enzymes namely carboxypeptidase A (cathepsin A) is responsible for the ester 

cleavage of the nucleotide amidate prodrugs. It is a multifunctional enzyme with 

esterase, deaminase and carboxypeptidase catalytic activity furthermore shows high 

affinity for hydrophobic and basic amino acids25 and demonstrate high level of 

enzyme expression in kidney, liver and lung tissues.25, 26 

 

To establish the influence of different esters on potency and anticancer activity of 5-

FUDR aryloxyphosphoramidates, due to being better substrate for the activating 

enzymes, Carboxypeptidase Y assay was utilized to demonstrate the rate of the ester 

hydrolysis as they share high degree of structural homology.  
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3.5.1 Carboxypeptidase Y study 

Human Cathepsin A (human Carboxypeptidase Y) is not commercially available, 

however yeast derived Carboxypeptidase Y is available on the market, and has 

similar sequence homology around the catalytic unit (Ser146, Asp338 and His397). 

Carboxypeptidase Y cleaves the amino acid esters of the ProTides at physiological 

conditions (pH= 7.6) at room temperature.27-28 Enzymatic studies have been carried 

out using carboxypeptidase Y assay to evidently show the putative mechanism of 

activation of the 5-FUDR phosphoramidates.27 The first activation step is critical in 

conferring potency of our ProTides. The enzymatic assay was developed within the 

McGuigan group and run at ambient temperature optimal for the hydrolytic activity 

of Carboxypeptidase Y at pH = 7.6 followed by 31P NMR. 

 

The L-alanine pentyl naphthyl derivative 3.1e was dissolved in deuterated acetone-

d6, Trizma buffer and the blank 31P NMR recorded. Thereafter compound 3.1e was 

incubated with Carboxypeptidase Y enzyme and monitored at seven minutes 

intervals (128 scans) overnight. The 31P NMR spectrum showed rapid hydrolysis of 

the phosphoramidate 3.1e represented as two signals indicating the presence of two 

diastereoisomers at δ 4.03 and 4.31 ppm to the first rate limiting metabolite 3.1ei 

lacking the ester moiety at δ 4.99 - 5.13 ppm. At the seven minute time point a single 

peak formed corresponding to the final aminoacyl derivative at δ 6.82 ppm. The 

half-life of the compound is approximately three minutes (the compound is well 

processed), which is consistent with the good activity found for this compound (see 

Table 3.1 and Figure 3.9). 
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 Figure 3.8 Carboxypeptidase Y mediated activation of compound 3.1e, monitored by 31P 
NMR. Enzymatic experiment performed by Slusarczyk. 
 
 

3.5.2 Stability in human serum assay 

The stability towards hydrolysis in human serum was investigated using in situ 31P 

NMR. The aim of the experiment was to identify the formation of any metabolites of 

the ProTide derivative used. The assay was carried out on the L-alanine ethyl 

naphthyl derivative compound 3.1z synthesized by Slusarczyk. ProTide 3.1z 

dissolved in DMSO-d6 and D2O and the blank 31P NMR was recorded at 37oC. The 

NMR sample was incubated with human serum (0.3 ml) and subjected to further 31P 

NMR experiment at 37oC, acquiring scans at regular intervals of 15 minutes over 14 

hours. In order to improve visualization of the results due to the the excess noise and 

poor shimming profiles raising from the presence of the biological media, these 

spectras needed further processing by Lorentz-Gauss deconvolution method (Figure 

3.10).  
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Figure 3.9 Human serum assay applied on L-Alanine ethyl naphtyl ProTide 3.1z,  
monitored by 31P NMR at 37oC. Human serum experiment were carried out by Slusarczyk. 
 

Human serum was represented as a single peak at δ 2 ppm next to compound 3.1z, 

where two signals indicative of two diastereoisomers at δ 4.59 and 4.84 ppm are 

present. After 7 hours in the presence of the human serum intermediate, 3.1zi 

appeared at δ 4.59 ppm, which partly hydrolysed to a singlet peak downfield at δ 

7.09 ppm arising from the achiral phosphate metabolite 3.1zii after 11 hours. At the 

end of the experiment, the enzymatic mixture contained the parent ProTide 3.1z with 

intermediates 3.1zi and 3.1zii in a ratio of 96:3:1%. The hydrolysis proceeded slowly 

until the end of the experiment, which demonstrated that phosphoramidate is highly 

stable in human serum, with approximately 96% recovery after 14 hours. 
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3.5.3. Computational docking of FUDR phosphoramidate monoester with Hint1 

enzyme 

Preliminary information on ProTide mechanism, stability and their activation in 

different environments, together with biological results, suggested us to conduct 

molecular modeling studies using docking techniques. This tool was applied in order 

to understand if 5-fluoro-2’deoxyuridine L-alanine phosphate, as the aminoacyl 

derivative intermediate obtained during the enzymatic experiment, could be a good 

substrate for the human Hint1 enzyme in order to generate the free monophosphate. 

As mentioned in Chapter 2.2.7.1, Figure 2.7 the last step of the bioactivation of our 

ProTides involves hydrolysis of the P-N bond by a phosphoramidase-type enzyme 29-

30. Human Hint1 enzyme, which belongs to the HIT superfamily, could be 

responsible for the cleavage of the phosphorus-nitrogen bond. The proposed 

mechanism of action of Hint1 enzyme is showed in Figure 3.10.29  

 

 

 

 

 

 

 

 

Figure 3.10 The proposed mechanism of action of Hint1 enzyme 

 

The attack of the histidine (red) to the phosphorus centre would release the amino 

acid through the cleavage of the N-P bond, which was mediated by the proton 
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transfer from the Serine 107 (green). Subsequently a molecule of water could attack 

the phosphorus centre with the release of the AMP, histidine (red) and regenerating 

the Hint1 active site.  

 

Preliminary docking studies were performed using co-crystallised structure of 

adenosine monophosphate (AMP) with the enzyme Hint1 in order to identify the 

catalytic site (Figure 3.11). 

 

 

 

 

 

 

 

 

 

Figure 3.11 Co-crystallised structure of adenosine monophosphate (AMP) in the active site 

of Hint1 enzyme. 

 

The phosphate group of adenosine monophosphate (AMP) is positioned in the small 

pocket between the serine (Ser 107) and histidine (His 112 and His 114) residues of 

the active site of Hint1 enzyme. The hydroxyl groups of the sugar moiety are 

involved in the hydrogen bonding with an aspartic residue (Asp). Furthermore the 

purine base fits in the narrow hydrophobic pocket generated by the side chains of 

different residues. 
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In the following docking studies of FUDR L-alanine phosphate was investigated in 

order to investigate whether it is a possible pubstrate for the Hint1 enzyme.  

 

Figure 3.12 illustrates the interaction between 5 FUDR L-alanine phosphate and the 

amino acid residues involved in the hydrolysis of the P-N bond. The phosphate 

centre is involved in bonding with Ser 107 and both, His 112 His 114 residues of the 

active site, while the hydroxyl groups of the sugar moiety interacts with the aspartic 

residue. 

 

 

 

 

 

 

 

 

Figure 3.12 Interaction of FUDR L-alanine phosphate within the catalytic site of human 

Hint1 enzyme. 

 

Molecular docking studies were carried out using a co-crystallised structure of 

adenosine monophosphate (AMP), which was serving as a template with the 

phosphoramidase type enzyme Hint1 in order to identify the catalytic site. Two lead 

derivatives 3.1ei (FUDR L-alanine phosphate) and 3.1qi (FUDR L-leucine 

phosphate), with the most promising biological data, were docked within the active 

site of human Hint1 enzyme in order to investigate their binding properties to the 

active site of the enzyme (Figure 3.13). From the studies, it appears that the 
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phosphate moiety of 3.1ei, indicated in pink, fits well with the enzyme pocket, the 

phosphorus lies in a suitable position for the P-N bond cleavage in comparison with 

AMP. The sugar unit of derivative 3.1ei, showed similar orientation of AMP sugar 

moiety. However the pyrimidine base displayed poor level of interaction with the 

hydrophobic pocket and a disfavoured spatial orientation. Consequently the 

pyrimidine base was pushed outside of the hydrophobic pocket in comparison with 

the AMP purine moiety. While in case of docking 3.1qi, it appears, that the FUDR 

L-leucine phosphate derivative is not able to interact with the catalytic site of the 

enzyme, in fact the phosphate moiety did not lie in the best position for the P-N bond 

cleavage. This outcome suggests that the last step of the bioactivation of FUDR 

ProTides in particular L-alanine derivatives, may proceed well, supporting the 

anticancer activity found for compound 3.1ei. 

 

Figure 3.13 Docking of compound 3.1ei (in yellow) and 3.1qi (in grey) with human Hint-1 

enzyme.  
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3.6 Conclusion 
 
These series of studies demonstrate that 5-FUDR ProTides are able to overcome 

several of the resistance mechanisms associated with 5-FUDR anticancer therapy in 

the clinic. Several ProTides were able to retain the high potency of 5-FUDR in vitro 

and partially bypass the high dependence of the parent nucleoside on TK rate-

limiting phosphorylation and TP mediated degradation. 

 

The lead analogues displayed similar efficacy to the parent nucleoside, and do not 

show significant loss of activity upon Mycoplasma infection as displayed by the 

parent. Furthermore, in vivo xenograft data suggests that the lead compounds 

inhibited tumour growth with marginal treatment associated toxicity.  

 

5-FUDR ProTide analogues were found to be stable in plasma and activated by 

intracellular carboxypeptidase. Molecular modeling showed that the moderate 

activity of 3.1q in comparison with 3.1b could emerge from the inefficient cleavage 

of the P-N bond in the last step of the bioactivation to release the 5-FUDR 

monophosphate inside the cell. 5-FUDR phosphoramidates 3.1b and 3.1e exhibited 

selectivity towards KG1a stem-like cell compartment, which results may be 

clinically relevant, as cancer stem cells have the potential to form new neoplasms 

following metastasis. Furthermore relapse from conventional chemotherapy that 

targets differentiating or differentiated cells, may be prevented by targeting the 

cancer stem cell compartments of solid neoplasms.31-32  

 

The final selection for the lead candidates 3.1b, 3.1e, 3.1f, 3.1g, 3.1h and 3.1q was 
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made based on data collated from all in vitro, in vivo experiments and depending of 

their ability of selectivity targeting the KG1a stem cell compartment  

 

On this basis 5-FUDR ProTides proved to be potential anticancer drugs. In particular 

compound 3.1b was emerged as top candidate and this is not surprising considering 

that the Acelarin ProTide of gemcitabine that entered phase 2/3 clinical trials in 

2014, synthesized in the McGuigan group, also harbours the same L-alanine benzyl 

ester moiety.33   
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4 ProTides of Thiopurine analogues 

The principal therapeutic targets of thiopurines are cancer, autoimmune disorders 

(Crohn's disease and Rheumatoid Arthritis) and immunosuppression.1 The 

pioneering use of 6-mercaptopurine is most common in childhood acute 

lymphoblastic leukaemia, which has contributed to considerable improvements in 

therapy.1-2 One of the biggest achievements of 6-mercaptopurine as an 

immunosupressant is the increased survival rate after unrelated organ transplant.1-2 

Their pharmacological mode of action is described in detail in Chapter 1.5. The 

successful application of the research ideas of collaborating pharmaceutical 

chemists, later Nobel Laureates (1988), Gertrude Belle Elion and George Hitchings 

was exemplified in 1950 by 6-thioguanine, the purine analogue, which could treat 

leukemia by stopping cancerous white blood cells from proliferating.3 During 1950-

51 their research culminated in the development of the highly active 

immunosuppressive drug 6-mercaptopurine.1, 4-6 An important part of their 

discovery, was that sulphonamides were capable of enhancing the chemotherapeutic 

effect of other antileukaemic agents. They are highly valued drugs in combination 

therapy to this day.7-9 for an illustration of the metabolism of thiopurines1 (Chapter 1, 

Figure 1.7). 

 

4.1 The first series 

A new series of 6-thioinosine and 6-thioguanosine ProTides were designed with the 

application of both phosphoramidate and phosphorodiamidate technologies for the 

first time in the McGuigan group, in order to investigate their true therapeutic 

potential using in vitro models of leukaemia and non-Hodgkin’s lymphoma.6, 10-13 
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The series consisted of ten ProTide analogues and six diamidates for each 

nucleoside. In the case of the ProTides, eight analogues contained L-alanine as 

natural amino acid and two contained the unnatural L-leucine, with variation of the 

ester functionality through linear, branched and cyclic esters, together with the 

variation of the aryl moiety from phenyl to naphthyl. In the case of the diamidate 

series, four out of five analogues contained L-Alanine amino acid and one L-leucine.  

It was hypothesised that the application of phosphoramidate and phosphorodiamidate 

technologies will help overcome the rate limiting and resistance mechanisms 

associated with thiopurine therapy in the treatment of blood borne cancers. 

 

4.2 Synthesis 

4.2.1 The first synthetic route towards 6-thioinosine 

6-Mercaptopurine riboside was first synthesizsed by Elion and Hitchings in 1951 by 

condensing the silver salt of 6-benzylmercaptopurine with tetraacetylglucopyranosyl 

chloride followed by deacetylation then debenzylation.14 There were many 

subsequent approaches developed in order to optimise the conditions leading 

towards the formation of the desired compound.15-16 Some of the synthetic pathways 

involved the reaction between chloromercurie derivatives of 6-chloropurine and 

triacetyl ribofuranosyl chloride, followed by deacetylation then further reaction with 

sodium hydrogen sulphide in methanol to gave rise to the final product.17 The 

reaction between 2’,3’,5’-tribenzoylated inosine and phosphorus pentasulphide, 

followed by deprotection and the reaction of 6-chloro-9-O-acetyl inosine with 

nucleophilic thiating agent, where the chlorine atom is replaced by a mercapto 

group.18 The nucleoside is now commercially available, although expensive. The 
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first attempt towards the synthesis of 6-thioinosine was done according to Gupte and 

Buolamwini (Figure 4.1)19. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 The first synthetic route towards 6-thioinosine 
Reagents and Conditions: i, TBDMSCl, imidazole, DMF, rt., 16 hours; ii, Lawesson’s 
reagent, toluene, reflux, 110oC, 2 hours; iii, TBAF, THF, 16 hours 
 
 
In the first step of the synthesis inosine was subjected to TBDMS protection. To a 

solution of inosine and imidazole in anhydrous DMF TBDMSCl was added and 

stirred at room temperature under inert gas for 24 hrs. The reaction mixture was 

poured into a one to one ratio of ethyl acetate-water mixture then the organic layer 

was separated, and dried over MgSO4 then evaporated. After purification on flash 

column chromatography, the desired compound 4.1 was isolated in 85% yield. 
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The second step of the synthetic route converted 2’, 3’, 5’-O-(tert-

butyldimethylsilyloxy) inosine to the triprotected 6-thioinosine, by treatment with 

Lawesson’s reagent (Figure 4.1).19-20 Lawesson’s reagent was added to the dry 

solution of 4.1 in toluene, and the mixture was stirred at 110°C for 2-2.5 hours until 

the starting material was consumed. It was found that the reaction did not succeed in 

all cases owing to the degradative nature of the reagent itself. After numerous 

attempts to remove the excess Lawesson’s reagent, including multiple column 

chromatographies, this synthetic route was abandoned. Lawesson’s reagent is the 

most widely used reagent for the transformation of a carbonyl functional group into a 

thio-carbonyl, although it has disadvantages when used in particular reactions. As 

the usual method of thionation (Figure 4.2) was performed in refluxing toluene or 

xylene; under these conditions the reagent could undergo dissociation equilibriums, 

and the formed decomposition products could then interact with carbonyl functional 

groups forming four-membered rings, which decompose to form thioketones (Figure 

4.3). Many research groups have isolated p-methoxy phenyl metathiophosphonate, a 

side product of the Lawesson’s reagent giving evidence for the mechanism. 

 

 

 

 
Figure 4.2 Dissociation mechanism of Lawesson’s reagent  
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Figure 4.3 Thionation mechanism and formation of the side product   
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4.2.2 The second synthetic route towards 6-thioinosine 

Acetylation of inosine was accomplished in anhydrous acetonitrile by added 

triethylamine in the presence of DMAP (Figure 4.4). To the stirred mixture acetic 

anhydride was added dropwise and was allowed to stir at room temperature 

overnight. Reaction was quenched with MeOH, then diethyl ether was added, and 

the mixture was left on ice for 1 hour. The desired product 4.4, as white precipitate 

was filtered off and used without further purification resulting in 68% yield.  

 

Figure 4.4 The second synthetic route towards 6-thioinosine 
Reagents and Conditions: i, TEA, DMAP, acetic anhydride, rt, 16 hours; ii, BTEA-Cl, N,N-
dimethylaniline, POCl3, acetonitrile, reflux, 3 hours; iii, thiourea or sodium thiosulphate 
pentahydrate, EtOH, reflux, 2-6 hours; iv, NaOMe, MeOH, 2-3 hours 
 

The following chlorination of the 2’, 3’, 5’-O-acetylated inosine was accomplished 

by refluxing the protected nucleoside with benzyltriethylammonium chloride 

(BTEA-Cl), N,N-dimethylaniline and phosphorus oxychloride (POCl3) in anhydrous 

acetonitrile at 95°C for 2-3 hrs. The resulting mixture was carefully evaporated and 

stirred in the presence of crushed ice for 30 minutes, before the two interface were 
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separated. The organic layer was separated and washed with ice-cold water and 

neutralised with 5% NaHCO3. The combined organic layer was dried over MgSO4 

and was evaporated to give a yellow oil 4.5, in approximately 89% yield.  

 

The third step was the rapid formation of thiocarbonyl group from the fully 

acetylated 6-chloropurine riboside in refluxing ethanol with thiourea at 90°C. After 

stirring for 10 minutes a white precipitate started to form and allowed to reflux for 1-

2 hours. After cooling the white precipitate was collected and washed with hot water 

resulting 4.6 in 55% yield.21 Formation of the thiocarbonyl group was also achieved 

by refluxing aqueous solution of sodium thiosulphate pentahydrate in hot ethanol. 

Although the transformation was not as rapid as in the case of thiourea, it required 6-

7 hours to complete and resulted in the unprotected 6-thioguanosine in low yield (15-

20%).22  

 

In the final step the intermediate was subjected to deprotection of the acetyl 

protecting groups with sodium methoxide in anhydrous methanol. The solution was 

stirred for 2-3 hours, until TLC monitoring showed the consumption of the starting 

material. The mixture was neutralised with amberlite and subjected to column 

purification in order to give the desired compound 4.3 in a 23% yield.  
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4.2.3 The third synthetic route towards 6-thioinosine  

Following the establishment of a successful although poor yielding and multiple step 

synthetic route, a new path was explored aiming for improved yields and possibly 

fewer chemical steps, in order to aid the scaling up process of 6-thioinosine. In this 

new synthetic pathway the only difference was that acetyl group was used as a 

protecting group instead of tert butyl dimethylsilyl (Figure 4.5). Using this method, 

the first synthetic route towards the thiopurine riboside was revisited. Acetyl 

protection of inosine was accomplished based on the procedure described in Section 

4.2.2. Lawesson’s reagent was added to the dry solution of 4.4 in toluene, and the 

mixture was stirred at 110°C for 2 - 2.5 hours until the consumption of the starting 

material.  

 

 

 

 

 

 

 

 

 
 
 
Figure 4.5 The third synthetic route leading to the formation of 6-thioinosine 
Reagents and Conditions: i, TEA, DMAP, acetic anhydride, rt, 16 hours; ii, LR, toluene, 
reflux, 2 hours; iii, 36% NH4OH, CH3COOH 
 

After this period of time the reaction mixture was allowed to slowly cool down, thus 

allowing the majority of reagent to crystallise and to be removed easily 
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therefore, facilitating the purification process. The reaction mixture was evaporated 

and subjected to column chromatography. The pure fractions were evaporated and 

dissolved in a tiny volume of 36% ammonia solution then adjusted to neutral pH 

with acetic acid and left at -5 to 0°C for 3-5 days, until the appearance of yellowish 

crystals as the desired compound 4.3 isolated at an overall 48% yield. The crystals 

were filtered off and used in the next step without further purification.  

 

4.2.4 Synthesis of phosphoramidates  

Ten 6-thioinosine ProTides were synthesised from 2’,3’-O-isopropylidene-6-

thioinosine 4.10 prepared by dissolving the nucleoside in dry acetone with catalytic 

amounts of aqueous perchloric acid (Figure 4.6). After two hours, the reaction was 

quenched with saturated solution of NH4OH and evaporated, then subjected to quick 

column purification and isolated with 78% yield.  

  

Figure 4.6 General synthetic pathway of 6-thioinosine phosphoramidates. 
Reagents and Conditions: i, HClO4, acetone, rt, 16 hours; ii, tBuMgCl, THF, rt, 16 hours; iii, 
60% acetic acid, 65oC, 10-16 hours  
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All ProTides was synthesized from using a small excess of tBuMgCl (1.2 

equivalent) as described in Chapter 2.3.2.3. The coupling reaction between the 

appropriate phosphorochloridate and 2’,3’-O-isopropylidene-6-thioinosine was low 

yielding although easy to purify reaching a general 25-64% yield after column 

chromatography with CHCl3/MeOH (98:2-92:8). The deprotection of the 2’,3’ 

hydroxy groups were carried out in 60% aqueous acetic acid at 65°C and was 

complete after being stirred overnight, with a slight breakdown evident as a baseline 

spot on the TLC plate. All the final compounds 4.12a - 4.12j were purified by 

column chromatography and isolated with 3-36% yield. ProTides were characterised 

by most or all of the following techniques: 31P NMR, 1H NMR, 13C NMR, MS and 

HPLC (Table 4.1). 

Table 4.1 Summary of synthesised 6-thioinosine ProTides, structures, their calculated 

lipophilicity and key spectral data. ClogP values generated algorithmically by computer-

based predictive program Chem Office ultra 11.0 

 

Cpd AA Ester Aryl ClogP 31P NMR 
4.3 - - - -3.54 - 
4.12a L-Ala cHex Naph 0.58 4.18, 4.14 
4.12b L-Ala OCH2CH2tBu Naph 0.93 4.07, 4.05 
4.12c Me2Gly Bn Naph 0.57 2.61, 2.56 
4.12d L-Ala Bn Naph 0.26 4.19, 4.02 
4.12e L-Leu Pnt Naph 2.12 4.45, 4.23 
4.12f L-Ala CH2tBu Naph 0.40 4.19, 4.09 
4.12g L-Ala Pnt Naph 0.66 4.12, 4.09 
4.12h L-Ala Bn Ph -0.90 3.94, 3.66 
4.12i L-Ala cHex Ph -0.58 3.98, 3.81 
4.12j L-Ala Hex Naph 1.19 4.17, 4.13 
4.17a L-Ala OBn - 1.06 13.71 
4.17b L-Ala OcPnt - 0.58 13.86 
4.17c L-Ala OCH2tBu - 1.35 13.84 
4.17d L-Ala OcHexyl - 1.70 13.87 
4.17e L-Ala OCH2CH2tBu - 2.41 13.82 
4.17f L-Ala OPnt - 1.87 13.81 
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4.2.5 Synthesis of 6-thioinosine phosphorodiamidates 

Six 6-thioinosine diamidates were synthesized in a one pot reaction from the free 

nucleoside 4.3 prepared by suspending the nucleoside in anhydrous 

trimethylphosphate at -5oC followed by the dropwise addition of phosphorus 

oxychloride to give the 5’-phosphorylated intermediate 4.16 (Figure 4.7). The 

disappearance of the POCl3 
31P signal and the formation of the new peak ~ 7 ppm, 

indicating the formed phosphorylated intermediate 4.16 was followed by 31P NMR. 

The phosphorylation step found to be critical for the formation of 

phosphorodiamidates. Formation of the new intermediate took place in the 4-5 hours, 

if the reaction time was prolonged degradation or hydrolysis of 4.16 could be 

observed. After the appearance of the intermediate 4.16 the next component of the 

reaction could be added at -78oC in the form of the solution of the appropriate amino 

acid in anhydrous dichloromethane followed by the dropwise addition of 

diisopropylethylamine.  

 

Figure 4.7 General synthetic pathway of 6-thioinosine symmetrical phosphorodiamidates. 
Reagents and Conditions: i, POCl3, TMP, -5oC to rt. 4-5 hrs; ii, appropriate amino acid ester, 
DIPEA, CHCl3, -78oC to rt., 16 hours. 
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The reaction mixture was left to stir for 30 minutes at -78oC, then allowed to reach 

room temperature and stirred overnight and the progress of the reaction was 

monitored by phosphorus NMR. Depending on the amino acid ester used the 

appearance of the single peak at ~13-17 ppm indicated the formation of the final 

product 4.17. The purification carried out by column chromatography and followed 

by preparative TLC plates resulted in the final phosphorodiamidates 4.17a-4.17f in 

moderate to good yields (12-26%). 
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4.3. Biological evaluation 

4.3.1 Evaluation of 6-mercaptopurine and 6-thioguanine in a KG1a cell line 

model of acute myeloid leukaemia 

6-Mercaptopurine and 6-Thioguanine purine nucleobase analogues alongside with 

the nucleoside 6-thioinosine (4.3) were selected for analysis based on two criteria: 1. 

Potency compared to the parent nucleoside; 2. Selectively targets leukaemic stem 

cells (LSCs) (Chapter 3.4.1). 

 6-Mercaptopurine and 6-Thioguanine both displayed LD50 values in the low 

micromolar range (LD50 = 28 µM and 36 µM) respectively, both exhibited 

comparable cytotoxic effect in KG1a cell line. It can also be stated, that 6-

Mercaptopurine and its parent nucleoside 6-thioinosine displayed similar killing 

effect effect (LD50 = 28 µM and 40 µM), with the latter 4.3 loosing a fold in 

cytotoxic affect compared to its parent nucleobase. The stem cell compartment was 

identified as Lin-/CD34+/CD38-/CD123+ cells that comprised approximately 3.4% of 

the entire KG1-a cell population. From the data it is clear, that none of the thiopurine 

analogues targeted selectively the specified KG1a stem cell compartment, thus are 

not selectively lethal to KG1a stem cells. (Table 4.2). 

 
Table 4.2 Evaluation of 6-mercaptopurine, 6-thioguanine and 6-thioinosine in KG1a cell 
line model of acute myeloid leukaemia 
LD50: concentration of compound required to kill 50% of test polulation in µM. 
Data by Prof. Pepper. 

 

 

 

 

Cpd LD50 (µM) Stem cell % 
Control: 3.4 % 

6-mercaptopurine 28 5.5 

6-thioguanosine 36 3.4 

6-thioinosine 40 5.2 
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4.3.2 Evaluation of 6-thioinosine ProTides in a KG1a cell line model of acute 

myeloid leukaemia 

 6-thioinosine 4.3 and four new ProTide analogues 4.12d, 4.12f, 4.12h, 4.12i of the 

parent nucleoside were evaluated for their potency and selectivity towards leukaemic 

stem cells (Chapter 3.4.1). (Table 4.3) 

 
Table 4.3 Evaluation of 6-thioninoisne ProTides in KG1a cells 
LD50: concentration of compound required to kill 50% of test polulation in µM 
Data by Prof. Pepper. ClogP values generated algorithmically by computer-based predictive 
program Chem Office ultra 11.0 
 

 
6-thioinosine 4.3 found to be active in a low micromolar scale and displayed 1.4 fold 

reduction in potency upon compared to its parent nucleobase 6-mercaptopurine 

(LD50 = 40 µM). Moreover 6-thioinosine ProTide analogues exhibited 5 to 55-fold 

decreases in activity (LD50 = 210 µM and 2200 µM) when compared to their parent 

nucleoside 4.3 (Table 4.3). The L-alanine benzyl naphthyl 4.12d emerged as the best 

analogue of this series, while loosing 5 fold activity compared to the parent (LD50 = 

210), it gained a 7-fold potency boost over its phenyl counterpart 4.12h (LD50 =  

1500 µM). This effect could not be explained with the higher lipophilic value. The 

naphthyl derivative 4.12f bearing L-alanine neopentyl ester lost 55-fold cytotoxic 

activity compared to the parent nucleoside. Moreover no stem selectivity was 

observed either in the case of the parent nucleoside or its ProTide derivatives (Table 

Cpd ClogP Aryl Ester AA LD50 (µM) Stem cell% 
Control:3.3% 

4.3 -3.54 - - - 40 5.2 

4.12d 0.26 Naph Bn L-Ala 210 4.3 

4.12f 0.40 Naph CH2tBu L-Ala 2200 5 

4.12h -0.90 Ph Bn L-Ala 1500 4.6 

4.12i -0.58 Ph cHex L-Ala 600 4.6 
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4.3). These data suggested that this family is poorly active against this cell line. 

Following the common trend concerning the findings of the McGuigan group, the 

best ProTide motif was the L-Ala Bn derivative.   
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4.3.3 Evaluation of 6-thioinosine ProTides in blood-borne cancer cell lines  

Nine out of ten ProTide derivatives 4.12a-4.12h and two out of six diamidate 

analogues 4.17a, 4.17c alongside with the parent nucleoside 6-thioinosine were 

tested in two human blood borne cancer cell lines, CCRF-CEM as a model of acute 

lymphoblastic leukaemia and MOLT-4 as a model of acute T lymphoblastic 

leukaemia. 6-thioinosine exhibited submicromolar activity in the case of both cell 

lines (IC50 = 0.638 and 0.851µM). 

 

Table 4.4 Evaluation of 6-thioinosine and 6-thioinosine ProTides in CCRF-CEM and 
MOLT-4 cell lines and their calculated lipophilicity. IC50 (µM): 50% inhibitory 
concentration or compound concentration required to reduce cell proliferation by 50%. 
ClogP values generated algorithmically by computer-based predictive program Chem Office 
ultra 11.0 
 

 

Amongst 6-thioinosine ProTides and diamidates tested, 4.12g bearing the L-alanine 

pentyl naphthyl masking moieties stood out according to its efficacy as it retained 

Cpd AA Ester Aryl ClogP CCRF-CEM MOLT-4 

   4.3 - - - -1.19 0.638 0.851 

4.12a L-Ala cHex Naph 0.58 13.919 14.278 

4.12b L-Ala OCH2CH2tBu Naph 0.93 3.129 3.082 

4.12c Me2Gly Bn Naph 0.57 35.777 43.434 

4.12d L-Ala Bn Naph 0.26 1.852 2.118 

4.12e L-Leu Pnt Naph 2.12 12.668 7.887 

4.12f L-Ala OCH2tBu Naph 0.40 16.859 13.878 

4.12g L-Ala Pnt Naph 0.66 0.476 0.531 

4.12h L-Ala Bn Ph -0.90 1.858 2.391 

4.12i L-Ala cHex Ph -0.58 12.874 20.608 

4.17a L-Ala Bn - 1.06 1.867 2.691 

4.17c L-Ala OCH2tBu - 1.35 24.081 36.968 
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the activity of the parent nucleoside in both cell lines (IC50 = 0.476 and 0.531 µM). 

Remarkably 4.12d, 4.12h bearing L-alanine benzyl naphthyl and phenyl moieties 

and the diamidate 4.17a containing the L-alanine benzyl masking group all had 

similar potencies, with only a 3-fold loss in activity compared to 6-thioinosine (IC50 

= 1.852-1.867 µM in CCRF-CEM cell line and IC50 = 2.118 - 2.691 µM in MOLT-4 

cell lines). Furthermore it can be concluded from this preliminary assay that the 

naphthyl derivatives did not show any improvement in the cytostatic activity as 

4.12d, 4.12h, 4.17a showed comparable potencies across the two cell lines tested. 

None of the other ProTides in this series showed activity or comparable potency to 

the parent nucleoside in CCRF-CEM and in MOLT-4 cell line with similar pattern in 

term of activity loss. Interestingly the L-alanine cyclohexyl naphthyl derivative 

4.12a and its phenyl analogue 4.12i also exhibited comparable cytostatic affect in 

CCRF-CEM and MOLT-4 cell lines (IC50 = 13.919 and 12.874 µM), while loosing 

20-fold in activity compared to the parent. Upon lengthening the branched ester 

moiety from neopentyl to neohexyl ester found to be a favourable modification as 

compound 4.12b, bearing L-alanine neohexyl ester showed a 5 fold improvement in 

efficacy compaired to the L-alanine neopentyl naphthyl derivative 4.12f (IC50 = 

3.129 and 16.859 µM). (Table 4.4) 
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4.4 ProTides of 6-thioguanosine  

4.4.1 Series one 

A new series of 6-thioguanosine ProTides were designed with the application of both 

phosphoramidate and phosphorodiamidate technologies for the first time in the 

McGuigan group as described in chapter 4.1 in order to investigate their therapeutic 

potential compared to the 6-thioinosine series using in vitro models of leukaemia and 

non-Hodgkin lymphoma.  

4.4.2 Synthesis of 6-thioguanosine  

After the establishment of the successful synthetic route towards 6-thioinosine the 

same synthetic strategy was applied on guanosine (Chapter 4.2.3). The free hydroxyl 

groups of the nucleoside was fully acetylated to give compound 4.7 in 56% yield, 

then it was subjected the thiocarbonylation with Lawesson’s reagent, resulted in the 

isolation of 4.8 with 48% yield (Figure 4.8).  

Figure 4.8 The general synthetic pathway of 6-thioguanosine 
Reagents and Conditions: i, TEA, DMAP, acetic anhydride, rt, 16 hours; ii, LR, toluene, 
reflux, 2 hours; iii, 36% NH4OH, CH3COOH 
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In the final step of the synthesis the fully acetylated 6-thioguanosine was subjected 

to deprotection in the presence of 36% ammonia solution and acetic acid in order to 

give the desired compound 6-thioguanosine 4.9, in 51 % yield.  

 

4.4.3 Synthesis of 6-thioguanosine phosphoramidates 
 

 

Figure 4.9  General synthetic method of 6-thioinosine phosphoramidates. 

Reagents and Conditions: i, HClO4, acetone, rt, 16 hours; ii, tBuMgCl, THF, rt, 16 hours; iii, 

60% acetic acid, 65 oC, 10-16 hours. 

Ten 6-thioguanosine ProTide derivatives were synthesised from 2’,3’-O-

isopropylidene-6-thioguanosine 4.13 with approximately 23-45% yield, then 

subjected to deprotection from the isopropylidene protecting groups and purified by 

column chromatography with 5-18 % yield over the second step (Figure 4.9) as 

described in Chapter 4.2.4. All 6-thioguanosine ProTides were characterised by the 

following techniques: 31P NMR, 1H NMR, 13C NMR, MS, HPLC. The structures, 

yields and key spectral data of the ProTides are shown below. 
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Table 4.5 Summary of 6-thioguanosine ProTides, their calculated lipophilicity and 31P 
chemical shifts. ClogP values generated algorithmically by computer-based predictive 
program Chem Office ultra 11.0 

 
 
 

4.4.4 Synthesis of 6-thioguanosine phosphorodiamidates 

Five 6-thioinosine diamidates were synthesized in a one pot reaction as previously 

described regarding the 6-thioinosine phosphorodiamidates (4.2.5). The free 

nucleoside 4.9 suspended in anhydrous trimethylphosphate at -5oC followed by the 

dropwise addition of phosphorus oxychloride to give the 5’-phosphorylated 

intermediate 4.18 (Figure 4.10). The disappearance of the POCl3 
31P signal and the 

formation of the new peak ~ 7 ppm, indicated the formation of the phosphorylated 

Cpd AA Ester Aryl ClogP 31P NMR 

4.9 - - - -1.11 - 

4.15a L-Ala Bn Naph 0.17 4.41, 4.22 

4.15b L-Ala CH2CH2tBu Naph 0.84 4.33, 4.30 

4.15c L-Ala CH2tBu Naph 0.31 4.11, 4.08 

4.15d L-Leu Pnt Naph 2.03 4.68, 4.41 

4.15e L-Ala cHex Naph 0.49 4.34, 4.29 

4.15f Me2Gly Bn Naph 0.48 4.34, 4.29 

4.15g L-Ala Pnt Naph 0.57 4.33, 4.27 

4.15h L-Ala Bn Ph -0.99 4.09, 3.81 

4.15i L-Ala cHex Ph -0.67 4.08, 3.91 

4.15j L-Ala Hex Naph 1.10 4.34, 4.28 

4.19a L-Ala Bn - 0.97 13.92 

4.19b L-Ala cHex - 1.61 13.94 

4.19c L-Ala CH2tBu - 1.26 13.83 

4.19d L-Ala Hex - 2.84 13.87 

4.19e L-Leu Pnt - 4.70 13.88 
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intermediate 4.18 monitored by 31P NMR. Formation of the new intermediate took 

place in 4-5 hours and found to be the critical stage in the phosphorodiamiate 

synthesis. After the appearance of the intermediate 4.18 the next component of the 

reaction was added at -78oC as the solution of the appropriate amino acid in 

anhydrous chloroform followed by the dropwise addition of diisopropylethylamine.  

 

 

Figure 4.10. General synthetic pathway of 6-thioguanosine symmetrical 
phosphorodiamidates. Reagents and Conditions: i, POCl3, TMP, -5oC to rt. 4-5 hrs; ii, 
appropriate amino acid ester, DIPEA, CHCl3, -78oC to rt., 16 hours. 
 
 

The reaction mixture was left to stir for 30 minutes at -78oC, then left to reach room 

temperature and stirred overnight as the progress of the reaction was monitored by 

phosphorus NMR. Depending on the amino acid ester used the appearance of the 

single peak at ~13-17 ppm indicated the formation of the final product 4.19. The 

purification step was carried out by column chromatography, followed by 

preparative TLC, which resulted in the isolation of the final phosphorodiamidates 

4.19a - 4.19e in moderate to good yields (1-21%). 
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4.5 Biological evaluation 

4.5.1 Evaluation of 6-thioguanosine ProTides in a KG1a cell line model of acute 

myeloid leukaemia 

6-thioguanosine and four of its ProTide derivatives was analysed in the leukaemic 

stem cell compartment (LSCs) (Chapter 3.4.1).  

 

As shown in Table 4.6 the parent nucleoside 6-thioguanosine exhibited LD50 = 1µM 

cytotoxic activity in KG1-a cell lines, 4.15a the L-Alanine benzyl naphthyl 

derivative was equipotent with the parent nucleoside (LD50 = 1.1 µM), while 4.15h 

its phenyl partner, found to be slightly more active than both (LD50 = 0.81 µM). 

However the L-alanine neopentyl naphthyl 4.15c and L-alanine cyclohexyl phenyl 

4.15i motifs exhibited far less potencies, they lost cytotoxic activity on 14 to 500-

fold scale (LD50 = 14 and 500 µM). Amongst this small family of compounds slight 

stem cell selectivity could be observed. The most potent compound of this series 

4.15h not only exhibited the lowest LD50 in KG1-a cell line, but targeted the 

previously defined stem cell compartment in the most selective way (4.15h = 2.3%, 

6-thioguanosine = 3.5%, control: 4%) amongst the ProTide motifs. 

 

 

 

 

 

 



Blanka Gönczy         Chapter 4 
____________________________________________________________________ 

	 154 

Table 4.6 Biological evaluations of 6-thioguanosine ProTides in a KG1a cell line model of 
acute myeloid leukaemia. LD50: concentration of compound required to kill 50% of test 
polulation in µM. Data by Prof. Pepper. 
 

 

Nine ProTide derivatives and two diamidate analogues of the 6-thioguanosine series 

were tested in HL-60 human promyelocytic leukaemia, KG-1 bone marrow 

myelogenous leukaemia and K562 as chronic mylogenous leukaemia cell lines.23-27 

In case of HL-60 cell line the nucleoside exhibited submicromolar IC50 (IC50 = 0.489 

µM), while none of the ProTides retained the activity of the parent, moreover from 

7- to 156-fold higher concentrations of compounds were needed to produce the same 

cytostatic effect as the parent control (IC50 = 3.261 and 76.56 µM). The L-alanine 

benzyl motif showed the best potencies amongst this family of ProTides. The 

phosphorodiamidate derivative 4.19a exhibited the highest cytostatic activity against 

HL-60 cell line with (IC50 = 3.261 µM), although displayed approximately 7-fold 

activity loss compared to the parent nucleoside. ProTides 4.15a and 4.15h did not 

show any improvement of activity compared to the parent, however the L-alanine 

benzyl naphythyl derivative 4.15a (IC50 = 3.889 µM), found to be almost 3-fold more 

active, than its phenyl counterpart 4.15h (IC50 = 5.493 µM), which can be explained 

with its slightly increased ClogP value of 0.17 over its phenyl derivative 4.15h 

(ClogP = -0.99), therefore enhancing its cellular permeability. 

Cpd Aryl Ester AA LD50 (µM) Stem cell  % 
Control 4 % 

4.9 - - - 1 3.5 

4.15a Naph Bn L-Ala 1.1 3 

4.15c Naph Neopnt L-Ala 14 2.5 

4.15h Ph Bn L-Ala 0.81 2.3 

4.15i Ph cHexyl L-Ala 500 3.5 
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In case of the KG-1 cell line, 6-thioguanosine exhibited cytostatic activity (IC50 = 

0.981 µM). Regarding other myelogenous leukaemia cell lines this family were 

slightly more active, ProTide derivatives were about 1-26 fold less active than the 

parent 4.9 (IC50 = 1.001 – 24.28 µM). 4.15h bearing L-Alanine benzyl phenyl 

masking moiety in parallel with the findings of the Pepper report (Table 4.6) retained 

the activity of 4.9 (IC50 = 1.001 µM), while 4.19a the diamidate bearing L-Alanine 

benzyl motif was even slightly more potent, required slightly lower concentration to 

produce the same cytostatic effect as the parent control (IC50 = 0.793 µM). No 

relationship between lipophilicity and activity were found for these compounds. 

 
Table 4.7 Biological evaluation of 6-thioguanosine ProTides in HL-60, KG-1, K562 cell 
line models of acute myeloid leukaemia. IC50 (µM): 50% inhibitory concentration or 
compound concentration required to reduce cell proliferation by 50%. ClogP values 
generated algorithmically by computer-based predictive program Chem Office ultra 11.0. 
 

 

Cpd AA Ester Aryl ClogP HL-60 KG-1 K 562 
4.9 - - - -1.11 0.489 0.938 1.052 

4.15a L-Ala OBn ONaph 0.17 3.889 2.299 9.044 

4.15b L-Ala OCH2CH2tBu ONaph 0.84 12.039 2.997 25.44 

4.15c L-Ala OCH2tBu ONaph 0.31 27.529 24.28 37.628 

4.15d L-Leu Pnt ONaph 2.03 76.56 19.657 88.297 

4.15e L-Ala cHex ONaph 0.49 26.142 5.625 40.104 

4.15f DMG Bn ONaph 0.48 16.495 7.652 32.645 

4.15g L-Ala Pnt ONaph 0.57 11.487 4.09 0.064 

4.15h L-Ala Bn OPh -0.99 5.493 1.001 8.85 

4.15i L-Ala cHex OPh -0.67 32.395 6.682 99.542 

4.19a L-Ala Bn - 0.97 3.261 0.793 9.795 

4.19b L-Ala CH2tBu  1.26 29.614 6.999 95.856 
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In the K562 cell line none of the compounds retained the low micromolar activity of 

the parent nucleoside (IC50 = 1.052 µM), 8 to 95-fold higher concentration of the 

phosphoramidate and phosphorodiamidate derivatives were needed in order to 

exhibit the same cytostatic effect as the parent 4.9 respectively (IC50 = 8.85 – 95.856) 

µM). Suprisingly 4.15g, bearing L-Alanine pentyl naphthyl masking groups 

exhibited submicromolar activity (IC50 = 0.064 µM) and 16-fold lower concentration 

was required to produce show the same cytostatic effect as the parent nucleoside. 

This marked enhancement cannot be explained with the increased ClogP value of 

4.15g (ClogP = 0.57) as the L-alanine cyclohexyl naphthyl derivative 4.15e had 

markedly reduced cytostatic activity (approximately 40-fold higher concentration; 

IC50 = 40.104 µM) compared to the parent while having comparable ClogP value 

(0.57) to that of compound 4.15g. 

 

4.6 6-S-methyl-thioinosine ProTides 

4.6.1 The second series 

Based on the previous biological result of the thiopurine ProTide and diamidate 

series our attention turned towards new potential modifications of these nucleosides 

hoping for pharmacologically more active analogues. Karran stated, that methylated 

6-S-methyl-thioinosine monophosphate is an effective inhibitor of de novo purine 

biosynthesis.1 6-thioinosine that escapes catabolism by thiopurine S-methyl 

transferase can be metabolised to thioguanosine monophosphate, via the sequential 

actions of deoxynucleoside kinases and reductases leading to the formation of 6-thio 

2’-deoxyguanosine triphosphate, which is a replicative DNA polymerase substrate.1 

The nucleoside 6-S-methyl mercaptopurine was synthesised and a small family of 4 
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ProTide analogues were designed in order to enhance the biological activity of the 

nucleoside 6-thioinosine and its ProTide analogues. In the first instance L-alanine 

motif was retained with varied ester functionality between the highly preferred 

benzyl, the branched neopentyl ester alongside with the L-leucine pentyl naphthyl 

derivative. Regarding the L-alanine benzyl derivatives the phenyl unit was replaced 

by 1-naphthyl, while in the case of the L-alanine neopentyl ester only the more 

lipophilic naphthyl group was utilised. 

 

4.7 Synthesis 

4.7.1 Synthesis of 6-S-methyl-thioinosine 

The influence of thiomethoxy substitution of the oxygen atom at the 6-position of 

the guanine base was investigated. The synthetic route consisted of 1,2,3,5-tetra-O-

benzoyl-β-D-ribofuranose 4.20 synthesis followed by the glycosylation step with 6-

chloropurine. The coupling reaction was carried out in dry acetonitrile in the 

presence of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and TMS triflate at 70oC for 

5-6 hours (Figure 4.11). The pure compound 4.21 was obtained by crystallization 

from methanol with 43% yield. Replacement of the oxygen atom to the 6-position of 

the hypoxanthine base by thiomethoxy group proved to produce clinically effective 

agents. In the presence of 15% aqueous solution of sodium methanothiolate in 

anhydrous dimethylformamide 2,3,5-tetra-O-benzoyl-6-chloro-9-β-D-ribofuranosyl 

purine 4.21 was converted to 6-S-methyl-thioinosine 4.22, while deprotection of the 

benzoyl protecting groups took place under reaction conditions. The reaction mixture 

was stirred for 2-3 hours at ambient temperature, then diluted with water and 
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extracted with ethyl acetate. Column chromatography provided the desired 

compound in 38% yield. 

 

Figure 4.11 General synthetic pathway of 6-S-methyl-thioinosine  
Reagents and Conditions: i, DBU, TMSOTf, dry ACN, 70oC, 5-6 hours ii, NaSMe/H2O, 
DMF, rt, 2 hours. 
 

4.7.2 Synthesis of 6-S-methyl-thioinosine phosphoramidates 

Four 6-S-methyl-thioinosine ProTide derivatives were prepared by suspending the 

nucleoside in dry tetrahydrofuran using a small excess of tBuMgCl (1.1 eq) as 

shown in Figure 4.12. The coupling reaction between the appropriate 

phosphorochloridate was very low yielding, however easy to purify by coloumn 

chromatography reaching a general 1-2% yield. ProTides were characterised by 31P 

NMR, 1H NMR, 13C NMR, MS, HPLC. The structures, yields and key spectral data 

of 6-S-methyl-ProTides are shown in (Table 4.8). The variation of amino acid, ester 

and aryl moieties lead to the formation of compounds with a ClogP values between 

1.63 and 4.40 (Table 4.8). 
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Figure 4.12 General method for the synthesis of 6-S-methyl-thioinosine phosphoramidates, 
Reagents and conditions: i, tBuMgCl, THF, rt, 16 hours. 

 

Table 4.8 Summary of the synthesised 6-S-methyl-thioinosine phosphoramidates, 
their calculated lipophilicity, 31P chemical shifts and isolated yields. ClogP values 
generated algorithmically by computer-based predictive program Chem Office ultra 11.0. 

 

 

4.8 Biological evaluation 

4.8.1 Evaluation of 6-S-methyl-thioinosine ProTides in a KG1a cell line model 

of acute myeloid leukaemia 

6-S-methyl-thioinosine 4.22 and four of its ProTide derivatives were studied in a 

leukaemic stem cell model (LSCs) (Chapter 3.4.1). 

 

Cpd AA Ester Aryl ClogP 31P NMR Yields 

4.22 - - - -1.00 - 38% 

4.23a L-Ala OBn ONaph 2.80 4.16, 3.99 1% 

4.23b L-Ala OBn OPh 1.63 3.89, 3.63 2% 

4.23c L-Ala OCH2tBu ONaph 2.94 4.16, 4.03 2% 

4.23d L-Leu OPnt ONaph 4.40 4.46, 4.24 1% 
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As is evident in Table 4.9 6-S-methyl thioinosine 4.22 exhibited low micromolar 

activity and it showed 11-fold enhancement in cytotoxic efficacy (LD50 = 3.8 µM), 

compared to 6-thioinosine (LD50 = 40 µM, Table 4.3), thus the replacement of the 

sulphur atom to thiomethoxy group greatly increased the potency. Although the 

synthesised nucleoside 4.22 and ProTide analogues 4.23a – 4.23d did not show any 

evidence of stem cell selectivity in this model (Stem cell selectivity = 4.5 - 6%, 

control = 4%), according to their displayed LD50 values, they are considered as the 

most promising compounds synthesised for the thiopurine project.  

 
Table 4.9 Biological evaluations of 6-S-methyl-thioinosine ProTides in a KG1-a 
cell line model of acute myeloid leukaemia. LD50: concentration of compound required to 
kill 50% of test polulation in µM. Data by Pepper. ClogP values generated algorithmically 
by computer-based predictive program Chem Office ultra 11.0. 

 

Three out of four compounds 4.23a, 4.23b and 4.23c, retained the activity of the 

parent nucleoside with an approximate 1.5 to 2 fold increased lethal activity over the 

parent 4.22 (LD50 = 1.7 -2.5 µM). While the 6-thioinosine family lost its lethal 

activity on a 5-55 scale (LD50 = 210 - 2200 µM, Table 4.3), compounds of the 6-S-

methyl-thioinosine series maintained their overall efficacy and displayed only 2-fold 

activity loss in case of the L-leucine pentyl naphthyl derivative 4.23d (LD50 = 7.4 

µM). 

 

Cpd ClogP Aryl Ester AA LD50 (µM) Stem cell % 
Control: 4% 

   4.22 -1.00 - - - 3.8 4 

4.23a 2.80 Naph Bn L-Ala 2.5 6 

4.23b 1.63 Ph Bn L-Ala 1.7 5.5 

4.23c 2.94 Naph Neopnt L-Ala 1.9 4.5 

4.23d 4.40 Naph Pent L-Leu 7.4 5 
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4.8.2 In vitro results of 6-S-methyl-thioinosine ProTides in leukaemia cell line 

Based on the WuxiAppTec data (Table 4.10), which was generated in MOLT-4 

leukaemia cell line 6-S-methyl-thioinosine 4.22 showed 37-fold potency boost (IC50 

= 0.023 µM) over 6-thioinosine 4.3 (IC50 = 0.851 µM) and although none of the 6-S-

methyl-thioinosine derivatives 4.23a – 4.23c retained the cytostatic efficacy of the 

parent nucleoside 4.22, they all displayed low submicromolar activity in MOLT-4 

cell line (IC50 = 0.102 – 0.249 µM). In the case of the L-alanine benzyl naphthyl 

derived ProTides of both nucleosides 4.3 and 4.22, it can be concluded, that 4.23a 

(IC50 = 0.102 µM) had an 18-fold potency boost over 4.12d (IC50 = 2.118 µM).  

 
Table 4.10 Biological evaluations of 6-S-methyl-thioinosine ProTides in a MOLT-4 
 cell line model of acute myeloid leukaemia. LD50: concentration of compound required to 
kill 50% of test polulation in µM. Data by Pepper.  
 

 

In terms of its phenyl motif with similar pattern 4.23b (IC50 = 0.249 µM) had 10-fold 

potency boost over 4.12h (IC50 = 2.391 µM) in MOLT-4 cells (Table 4.4 and Table 

4.10). Therefore 6-S-methyl-thioinosine phosphoramidate analogues present as an 

important family for future development. 

 
 

 

 

CPF ClogP AA Ester Aryl MOLT-4 

4.22 -1.00 - - - 0.023 

4.23a 2.80 L-Ala OBn ONaph 0.102 

4.23b 1.63 L-Ala OBn OPh 0.249 

4.23c 2.94 L-Ala OCH2tBu ONaph 0.23 



Blanka Gönczy         Chapter 4 
____________________________________________________________________ 

	 162 

4.9. 2’-deoxy-6-thioguanosine 

4.9.1 Synthesis of 2’ deoxy-6-thioguanosine 

Oligonucleotides containing a thio-substituted base, such as 6-thioguanine and 4-

thiouracil have been widely used for various biological purposes. The synthesis of 

2’-deoxy-6-thioguanosine was already reported, both approaches utilized protecting 

groups, which are easy to remove under mild basic conditions in order to protect the 

6-thiocarbonyl group such as cyanoethyl or the 2,4-dinitrophenyl groups another 

approach reported the 6-carbonyl group transformation into a labile halide or 

arylsulfonyloxy leaving group followed by final displacement with 2-

cyanoethanethiol. In order to eradicate the downside of both approaches using highly 

odorous agents, such as 2-cyanoethanethiol or hydrogen sulfide, another synthetic 

route was chosen.  

 

Synthesis of 2’-deoxy-6-thioguanosine was carried out based on a new odorless way 

reported by K. Onizuka et al. 2’-deoxy-guanosine was protected with tert-

butyldimethylsilyl groups with 89% yields (Figure 4.13). The protected deoxy-

guanosine 4.24 was subjected to a one-flask, two-step synthetic procedure, where it 

was reacted with 2-mesitylenesulfonyl chloride, so the formed intermediate could 

activate the 6-position of guanine, which was treated with 2-ethylhexyl 3-

mercaptopropionate afterwards in the presence of N-methylpyrrolidine to give the 

desired compound 4.25 with moderate yields of 39% after purification by column 

chromatography. The reaction could also be easily performed on a large-scale 

synthesis.  
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Figure 4.13 Synthetic scheme for 2’ deoxy-6-thioguanosine 
Reagents and Conditions: i, TBDMSCl, imidazole, DMF, rt, 5-6 hours; ii, 2-
mesitylenesulfonylchloride, TEA, DMAP, CH2Cl2, 0◦C - rt, N-methylpyrrolidine, 2-
ethylhexyl-3-mercaptopropionate, 0oC - rt; iii, 1M DBU, ACN iv, TBAF, THF, rt, v, dry 
THF : TFA : H2O (4:1:1), rt., 2hrs. 
 

6-S-2-((2-ethylhexyl)oxycarbonyl)ethyl))-3’,5’-O-bis(tert-butyldimethylsilyl)-2’-

deoxy-6-thioguanosine 4.25 was subjected to deprotection from the 2-

ethylhexylpropionate group in the presence of 1M DBU in anhydrous acetonitrile to 

provide the 2’-deoxy-3’,5’-O-bis(tert-butyldimethylsilyl)-6-thioguanosine 4.26 after 

coloumn purification in 74% yield. 
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One attempt was made to fully deprotect the 3’,5’-O-bis(tert-butyldimethylsilyl-

protected nucleoside 4.26 in the presence of TBAF in anhydrous THF. Due to the 

low scale of the reaction, the desired product could not be isolated and the scaling up 

of the above mentioned synthetic route could not be completed during the timescale 

of the this work in order to reattempt the isolation of the desired product 4.28 (Figure 

4.13). 

 

In the final step intermediate 4.26 was dissolved in anhydrous THF and treated with 

50% TFA in water at 0oC for 2 hours. After neutralization and column purification 

3’-O-(tert-butyldimethylsilyl)-2’-deoxy-6-thioguanosine 4.28 was isolated in 31% 

yield (Figure 4.13). 

 

4.9.2 Synthesis of 2’-deoxy-6-thioguanosine phosphoramidates 

The first attempt to synthesise 2’-deoxy-6-thioguanosine ProTides was performed by 

coupling the 3’-O-(tert-butyldimethylsilyl)-2’-deoxy-6-thioguanosine 4.28 in the 

presence of tBuMgCl in anhydrous tetrahydrofuran. The reaction was stirred at room 

temperature overnight. Unfortunately, the desired product was not detected by 31P 

NMR, which could be partially due to the low amount of starting material available. 

Due to the lack of time remaining did not allow to perform further studies on the 

reaction conditions (Figure 4.14). 
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Figure 4.14 Proposed synthetic scheme for 2’-deoxy-6-thioguanosine phosphoramidates 
Reagents and Conditions: i, anhydrous THF, tBuMgCl (1.1 eq), rt., 16 hrs; ii, dry THF : 
TFA : H2O (4:1:1), rt., 2-3hrs. 
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4.10 Mechanistic studies 

4.10.1 Putative mechanism of activation of symmetrical diamidates 

 

Figure 4.15 Putative mechanism of activation of phosphorodiamidate 4.17a 
 

The proposed mechanism of activation of phosphorodiamidate prodrugs involves the 

ester cleavage of one of the masking units (Figure 4.15), which is followed by the 

intramolecular attack of the amino acid carboxylate anion onto the phosphorus centre 

with a subsequent cyclisation and elimination of the second amino acid. It is unclear 
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whether both esters arehydrolysed in the same time or only one of them. Thereafter 

the unstable five-membered ring would undergo hydrolysis resulting in the 

formation of the final aminoacyl intermediate 4.17aii. Release of the monophosphate 

is believed to rely on human Hint enzyme and it could undergo further 

phosphorylation in order to be converted to its 5’ triphosphate form. 

 

4.10.2 Carboxypeptidase Y study on symmetrical diamidate 4.17a  

The suggested initial step of activation of diamidates involves an enzyme-mediated 

hydrolysis of the amino acid ester moiety. Therefore to demonstrate this activation 

pathway an enzymatic assay were performed in the presence of Carboxypeptidase Y 

enzyme, well known of being capable of the in vitro ester cleavage were performed 

and monitored by 31P NMR. The assay was conducted on the L-alanine benzyl ester 

derivative 4.17a. 

 

In the blank 31P spectrum a single peak at 14.06 ppm stands for the 6-thioinosine 

symmetrical phosphorodiamidate 4.17a. After addition of the enzyme slow 

hydrolysis of the ester unit was observed within three hours, without the 

disappearance of the starting material. 

 

The chemical structures depicted in Figure 4.16 represent the possible pathways 

leading towards the aminoacyl derivative 4.17aii. The appearance of intermediate 

4.17ai after 3 hours incubation, with a 31P chemical shift more downfield at 14.35 

ppm could correspond to the structure lacking one ester moiety or both ester groups 

being cleaved. During the simultaneous formation of 4.17ai the final metabolite 

4.17aii appeared at 6.71 ppm. After 24 hours the parent diamidate prodrug 4.17a has 
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been transformed to the free diacid intermediate 4.17aii. In this case could be 

concluded, that the slow rate of carboxypeptidase Y processing could correlate 

directly with the anticancer potency, however other steps, besides initial esterase 

activation, are also necessary for eventual biological activity. 

 

Figure 4.16 Carboxypeptidase Y mediated hydrolysis of 4.17a, followed by 31P NMR with 
the proposed metabolite structures 4.17ai and 4.17aii. 
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4.10.3 Carboxypeptidase Y study on 6-thioguanosine phosphoramidate 4.15a  

The enzymatic experiment was performed with the L-alanine benzyl naphthyl 

phosphoramidate derivative of 6-thioguanosine 4.15a. In the blank 31P NMR, two 

diastoisomers (1:1 ratio) signals were observed at 4.41 and 4.22 ppm. Once the 

enzyme was added 4.15a was slowly hydrolysed to the intermediate 4.15ai within 

two and a half hours, which appeared in a 1:1 ratio at 4.87 and 5.01 ppm and 

simultaneously transformed to the peak corresponding to the final aminoacyl 

derivative 4.15aii at 6.99 ppm. 

 

 

Figure 4.17 Carboxypeptidase Y mediated cleavage of 4.15a, followed by 31P NMR with 
the proposed metabolites 4.15ai and 4.15aii.  
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4.11 Conclusion 

A series of thiopurine ProTides were synthesised to examine their lethality and 

cellular proliferation inhibitory action on human leukaemia cell lines. By applying 

ProTide technology to different purine nucleobase analogues, 6-thioinosine, 6-

thioguanosine and 6-S-methyl-mercaptopurine, the aim of these studies was to 

examine whether ProTide technology could enhance the anticancer activity of the 

aforementioned nucleoside analogues. The first series of studies examined the 

lethality of thiopurine ProTide, in a leukaemia stem cell model of cancer, using the 

KG1-a cell line. The mean lethal dose (LD50) of thiopurine ProTides, and KG1-a 

stem population percentages, were determined by Pepper. The L-alanine benzyl 

phenyl ProTide analogue of 6-thioguanosine (4.15h) retained the activity of the 

parent nucleoside (LD50 = 1.1 µM), furthermore 6-S-methyl-mercaptopurine 

phosphoramidate analogues bearing L-alanine benzyl phenyl 4.23b, L-alanine 

neopentyl naphthyl 4.23c and L-alanine benzyl naphthyl 4.23a maskings groups 

were more active than their corresponding parent nucleoside (LD50 = 1.7, 1.9 and 2.5 

µM). 6-Thioinosine ProTides were poorly active, comparatively. Only 6-

thioguanosine ProTides had the ability to target KG1-a stem cells, no selectivity was 

seen with 6-thioinosine or 6-S-methyl-mercaptopurine ProTides. Structural activity 

relationships were examined through the modification of ester, aryl and amino acid 

moieties. In general, L-alanine benzyl ester motif of thiopurine ProTides were the 

most lethal exhibiting low or sub-micromolar LD50s. In a second series of 

experiments done in collaboration with WuxiChemApp, the ability of thiopurine 

ProTides and diamidates to inhibit leukaemia cell proliferation was examined. In 

nearly all cases, ProTides of 6-thionosine, 6-thioguanosine and 6-S-methyl-
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mercaptopurine were poorly active exhibiting medium to high micromolar IC50s, 

which was in marked contrast to parent control (sub micromolar IC50s). Amongst the 

6-thioinosine Protides and diamidates tested 4.12g, bearing L-alanine benzyl 

naphthyl derivative stood out, exhibiting activity that exceeded that of the parent, in 

CCRF-CEM and MOLT4 cells (IC50 = 0.476 and 0.531 µM). In the 6-thioguanosine 

prodrug family phosphoramidate 4.15g, bearing L-alanine pentyl naphthyl derivative 

displayed submicromolar activity in K 562 cell line (IC50 = 0.064 µM), while the L-

alanine benzyl phenyl derivative 4.15h and diamidate 4.19a bearing L-alanine 

benzyl ester groups retained the activity of the parent nucleoside in KG-1 cell line. 

Although none of the phosphoramidates synthesised in the 6-S-methyl ProTide 

family was able to retain the activity of the parent nucleoside, they all displayed low 

submicromolar activites in MOLT-4 cell line. 
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5 ProTides of Cladribine analogues 

Cladribine or as known by its chemical name 2-chloro-2’-deoxyadenosine, was 

reported to induce long lasting complete remission in patients with Hairy cell 

leukemia (HCL) by investigators at Scripps Clinic.1 It was used to treat multiple 

sclerosis until Merck withdrew all its marketing applications from Russia and 

Australia in 2011.2-4 Furthermore, Cladribine showed impressive activity among 

lymphoproliferative disorders.5 Its specific biochemical interactions are given in 

chapter 1.6.1. (Figure 1.9) 

 

5.1 Phosphoramidates of Cladribine 

Cladribine phosphoramidates were specifically designed in order to overcome the 

two main points of resistance to cladribine, namely the hENT 1/2 nucleoside 

transporter and dCK deficiency.6-7 The monophosphate of cladribine maybe used to 

treat malignancies of other cellular lineages that have low dCK activity but may 

suffer from poor cell permeability and stability.8 The synthesis and mechanism of 

action of cladribine ProTides was first characterised by Costantino Congiatu and 

Rocco Valente in the McGuigan laboratory.6-7 Following the synthesis of different 

Cladribine ProTide derivatives the L-alanine benzyl ester motifs with phenyl or L-

naphthyl aromatic groups were shown to exhibit the best potencies. In addition, L-

leucine, 2,2-dimethylglycine and glycine derivatives displayed good activity in vitro. 

Due to the inferiority of the phenyl motif compared to the 1-naphthyl, the latter was 

solely used to prepare ProTides containing L-Alanine amino acids.6-7, 9 The 

surprising activity of the 3’-regioisomer being more potent in leukaemia based 

assays than the 5’-regioisomer, warranted further investigation. 
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5.2 Synthesis 

5.2.1 Synthesis of Cladribine 

Cladribine was first isolated as a byproduct of Fischer-Helferich 2’-deoxyinosine 

synthesis by Harry Venner in 1960 upon the coupling reaction between 2,8-

dicholoroadenosine and 1,3,5-triacetyl-2-deoxy-B-D-ribofuranose.10 Robins has 

driven research into discovering efficient routes for the synthesis of this clinical 

agent, which led to a three step synthetic route using the starting material 3’,5’-O-

diacetyl or benzoyl-2’-deoxyguanosine.11 Upon gaining the protected 6-O-

arylsulfonyl derivative, diazotisation with chloro dediazoniation in the presence of 

benzyltriethylammonium nitrite and acetyl chloride, gave rise to the 2-chloropurine 

derivative. The final step involved the selective ammonolysis and concomitant 

deprotection of the sugar moiety. This synthetic route was slightly modified in the 

McGuigan group by utilising tetrabutylammonium nitrite instead of 

benzyltriethylammonium nitrite.7 Following on from the work done by Congiatu, 

Valente, Murziani and Thomson, focus was only given to synthesising prodrugs of 

cladribine in order to corroborate the striking and unprecedented potency of the 3’- 

regioisomer over the 5’-regioisomer.  

 

5.2.2 Synthesis of Cladribine phosphoramidates 

In order to overcome the biological disadvantages of Cladribine described in Section 

1.6.1.1, the ProTide technology has been applied to commercially available 2-

chloro-2’-deoxyadenosine (Figure 5.1). In this thesis the fourth generation of 

Cladribine ProTides as potential anticancer agents is reported. The main objectives 

of this chapter were to build a family of Protides to enhance the cytostatic potency of 
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previous generations, investigate the SAR of the newly synthesised Cladribine 

phosphoramidates 5.1a,b – 5.7a,b and to confirm, whether the enhanced potency 

boost of the 3’-ProTides over their 5’-counterparts is still present in the study 

therefore corroborates with the previous findings. 

 

Design of the Cladribine ProTides centred mainly on the use of L-alanine as amino 

acid core due to its potent activity as reported previously by Murziani and Thomsen. 

The new series also contained one example of the L-leucine amino acid unit. As 

esters of amino acids benzyl, pentyl, neopentyl, cyclohexyl groups were introduced 

to investigate their lability towards the esterase, and for each amino acid ester 

derivative, both phenyl and 1-naphthyl aryl esters were applied. 

 

Cladribine aryloxyphosphoramidates were synthesised by coupling the unprotected 

commercially available nucleoside 2-chloro-2’-deoxyadenosine with a range of aryl 

phosphorochloridates (2.3b, 2.3c, 2.3e, 2.3f, 2.3h, 2.3s) following the Grignard-

reagent based method using 0.9 - 1.1 equivalent tBuMgCl. (Figure 5.1). The design 

of the synthesis focused on the isolation of both 3’- and 5’-regioisomer ProTides, 

which was successfully achieved in all cases with the only exeption of the L-alanine 

hexyl naphthyl derivative, in which case the 3’-regioisomer due to the extremely low 

yielding reaction conditions and extensive purification process, could not be isolated 

and therefore compared to its 5’-counterpart. 
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Figure 5.1 A general method for the synthesis of 3’- and 5’-aryloxyphosphoramidates of 

Cladribine using tBuMgCl. Reagents and Conditions: i, appropriate phosphorochloridate, 

tBuMgCl, dry THF, -20 oC, 5-6 hours, to rt, overnight. Phosphorochloridate available from 

the laboratory: phenyl-(cyclohexoxy-L-alaninyl). 
 

In order to successfully isolate both the 3’- and 5’-regioisomer ProTide pairs in the 

highest possible yield, the reaction temperature needed to be reduced to -20 oC and 

kept for five – six hours. Furthermore it was also found that minimal amount (0.9 - 

1.1 equivalent) of tBuMgCl reagent reduced the formation of the possible 

sideproducts, therefore allowing better separation of the species in slightly better 

yields without using preparative HPLC. Using this method to synthesise each 

ProTide, it was possible to obtain both regioisomers in almost all cases. 5’ phosphate 

and 3’ phosphate cladribine phosphoramidates were obtained as mixtures of two 

diastereoisomers, showed a total diastomeric ratio of 1:1 by 31P NMR. Purification 

of these compounds was done by column chromatography, followed by preparative 

TLC in order to ensure the high degree of purity (<95%).  
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All the phosphoramidates prepared are reported in Table 5.1. Despite their low yield 

(1-3%), which was not critical at this stage, sufficient quantities of these compounds 

were obtained in order to evaluate and ensure their biological activity.  

 
Table 5.1 Structures and specific spectral information of Cladribine ProTides  
AA: amino acid; ClogP values generated algorithmically by computer-based predictive 
program Chem Office ultra 11.0.  

 

The 3’ phosphoramidates 5.1a,b – 5.7a,b could not be distinguished from the 5’ 

phosphoramidates by either mass spectroscopy or 1H NMR integration. Although 

they showed significant chemical shift changes on the basis of 31P NMR and 1H 

NMR spectras, these data could not provide sufficient confirmation of their 

structures.13C NMR splitting patterns due to the carbon-phosphorus interactions 

were a useful tool in order to identify the 3’- and 5’-phosphorylated derivatives. The 

13C NMR spectrum derived from the 3’- and 5’-phosphoramidate structure is able to 

specify whether the splitting of the phosphoramidate structure occur to the carbon, 

linked to the phosphate with a two-bond coupling constant (2JC-P) or to the vicinal 

Cpd position AA Ester Aryl ClogP 31P NMR 
Cld - - - - -0.90 - 
5.1a 3’ L-Ala OBn ONaph 3.09 3.32, 2.58 
5.1b 5’ L-Ala OBn ONaph 2.90 3.89, 3.58 
5.2a 3’ L-Ala OBn OPh 1.92 3.67, 3.09 
5.2b 5’ L-Ala OBn OPh 1.73 4.24, 4.00 
5.3a 3’ L-Ala OCH2tBu ONaph 3.24 3.68, 3.27 
5.3b 5’ L-Ala OCH2tBu ONaph 3.05 4.25, 4.10 
5.4a 3’ L-Leu OPnt ONaph 4.76 4.02, 3.48 
5.4b 5’ L-Leu OPnt ONaph 4.76 4.58, 4.25 
5.5b 5’ L-Ala OcHex ONaph 3.22 4.26, 4.12 
5.6a 3’ L-Ala OcHex OPh 2.24 3.34, 2.80 
5.6b 5’ L-Ala OcHex OPh 2.05 3.92, 3.67 
5.7a 3’ L-Ala OCH2tBu OPh 2.06 3.30, 2.76 
5.7b 5’ L-Ala OCH2tBu OPh 1.87 3.89, 3.64 
5.8 - L-Ala OCH2tBu - 3.70 13.77 
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carbons with a three-bond constant (3JC-P). The effect of the P-C coupling in case of 

the synthesised derivatives was clearly observed (Table 5.2). 

 

The 3’ phosphoramidate derivative 5.2a appeared as four peaks, two for each 

diastereoisomers for C-3’ (2JC-P = 5.50 Hz and 5.50 Hz) at 78.64 and 78.43 ppm, C-4’ 

(3JC-P = 5.0 Hz, 6.1 Hz) at 88.82 and 88.62 ppm and C-2’ (3JC-P = 3.8 Hz, 3.8 Hz), at 

38.66 and 38.33 ppm, while the remaining carbons of the sugar C-1’ (two signals) 

and C-5’ (two signals) did not show any multiplicity due to the C-P coupling (Table 

5.2). 

 

The 5’ phosphoramidate derivative 5.2b appeared as four peaks, two for each 

diastereoisomer for 5’ (2JC-P = 5.0 Hz and 5.0 Hz) at 66.50 and 66.28 ppm and for the 

vicinal C-4’ (3JC-P = 7.90 Hz, the second P-C coupling constant was not calculated 

due to the partial overlapping of the signals rised from C-1’) at 85.49 and 85.44, 

while the remaining carbons of the sugars C-1’, C-2’ and C-3’appeared as two peaks 

regarding the presence of two diastoisomers. Each compound was analysed by 31P, 

1H, 13C NMR.  

 

Taking as an example of the L-alanine neopentyl naphthyl derivative 5.3b appears as 

two peaks in the 31P NMR spectrum (4.25, 4.10 ppm), which is indicative of the 

presence of diastereoisomers. The two diastereoisomers generated signals at 70.89 

and 70.80 ppm in the 13C NMR, corresponding to the C of the 3’- postion of the 

sugar moiety, while approximately 4 ppm upfield at 66.55 and 66.42 ppm there were 

two doublets due to the coupling of the phosphorus atom, confirming the presence of 

the 5’-derivative with the splitting value of J = 5.0 Hz and 6.3 Hz. The 31P NMR 
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spectra corresponding to the 3’-regioisomer 5.3a gave two peaks at 3.68 and 3.27 

ppm, further upfield compared to the 5’-derivative 5.3b. 

  

Table 5.2 Key spectral data and yields of 3’- and 5’-aryloxyphosphoramidates of Cladribine.  

 

H-3’ and H-5’ protons of compounds 5.1a and 5.1b looked at together in order to 

distinguish the species. In the case of the H-3’ protons 5.1a (a multiplet at 5.31 - 

5.27 ppm) was significantly deshielded compared to 5.1b (a multiplet at 4.60 - 4.56 

ppm), while the opposite pattern was observed in the case of the H-5’ protons, where 

 
Cpd 

 
P 

 

31P NMR 
 

13C-NMR 
(C-3’) 

 

13C-NMR 
(C-5’) 

 
Yield 
(%) 

5.1a 3’ 3.32, 2.58 80.12, 79.91 
(2xd, J =5.0Hz) 

63.22, 63.15 1 

5.1b 5’ 3.89, 3.58 72.35 67.93 1 

5.2a 3’ 3.67, 3.09 78.64, 78.43 
(2xd, J =5.5Hz) 

63.23, 63.17 2 

5.2b 5’ 4.24, 4.00 78.05 66.50, 66.28 
(2xd, J = 5.0Hz) 

3 

5.3a 3’ 3.68, 3.27 78.61, 78.42 
(2xd, J = 5.0Hz) 

61.80, 61.60 1 

5.3b 5’ 4.25, 4.10 70.89, 70.80 66.55, 66.42 
(2xd, J = 5.0, 6.3Hz) 

2 

5.4a 3’ 4.02, 3.48 80.20, 79.86 
(2xd, J = 5.25Hz) 

63.24, 63.12 1 

5.4b 5’ 4.58, 4.25 72.42, 72.27 68.07, 67.93 
(2xd, J = 5.5Hz) 

3 

5.5b 5’ 4.26, 4.12 72.29, 72.26 68.00, 67.79 
(2xd, J = 5.25Hz) 

3 

5.6a 3’ 3.34, 2.80 79.88, 79.61 
(2xd, J = 5.5Hz) 

63.27, 63.17 2 

5.6b 5’ 3.92, 3.67 74.94, 74.92 67.75, 67.43 
(2xd, J = 5.5Hz) 

3 

5.7a 3’ 3.30, 2.76 79.87, 79.65 
(2xd, J = 5.0Hz) 

63.28, 63.14 2 

5.7b 5’ 3.89, 3.64 72.32, 72.25 67.80, 67.54 
(2xd, J = 5.0Hz) 

3 
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5.1a appeared more shielded (a multiplet at 3.84 – 3.73 ppm) compared to 5.1b (a 

multiplet at 4.35 – 4.25 ppm) (Table 5.2). 

 

5.2.3 Synthesis of Cladribine symmetrical phosphorodiamidate 

 

The L-alanine neopentyl diamidate analogue of Cladribine were synthesized in a one 

pot reaction from the free nucleoside prepared by suspending the nucleoside in 

anhydrous trimethylphosphate at -5oC followed by the dropwise addition of 

phosphorus oxychloride to give the 5’-phosphorylated intermediate 5.8ai (Figure 

4.8). The disappearance of the POCl3 
31P signal and the formation of the new peak ~ 

7 ppm, indicating the formed phosphorylated intermediate 5.8ai was followed by 31P 

NMR. The phosphorylation step found to be critical for the formation of 

phosphorodiamidates. Formation of the new intermediate took place in the 4-5 hours, 

if the reaction time was prolonged degradation or hydrolysis of 5.8ai could be 

observed. After the appearance of the intermediate 5.8ai the next component of the 

reaction could be added at -78oC in the form of the solution of the appropriate amino 

acid in anhydrous dichloromethane followed by the dropwise addition of 

diisopropylethylamine. The appearance of a new signal at 13.77 ppm in the 31P NMR 

spectrum confirmed the formation of the desired product. The crude mixture was 

purified by column chromatography underwent second purification by preparative 

TLC in order to give 5.8a with 6% yield (Figure 5.2). 
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Figure 5.2 General synthetic pathway of Cladribine symmetrical phosphorodiamidates 5.8. 
Reagents and Conditions: i, POCl3, TMP, -5oC to rt. 4-5 hrs; ii, L-alanine neopentyl ester, 
DIPEA, CHCl3, -78oC to rt., 16 hours. 

 

5.3 Biological evaluation 

5.3.1 Cladribine ProTides in solid tumor cell lines 

Cladribine ProTides were previously tested in cell lines derived from solid tumors of 

major organs. The following human cancer cell lines were used: LoVo (colon); 

MCF7 (breast); PC-3 (prostate); A549 (lung). LoVo cells were taken from a 

metastatic tumor in the left supraclavicular lymphnode from a 56 year old male 

patient with adenocarcinoma of the colon.12-14 MCF7 is a human Caucasian breast 

adenocarcinoma cell line established from a 69 year old female.15-16 PC-3 is a human 

Caucasian prostate adenocarcinoma derived from a 62 year old male.17-18 A549 is a 

human Caucasian lung carcinoma taken from a 58 year old male patient.19 Cladribine 

showed good cytostatic activity against the panel of solid tumor cell lines tested 

(Table 5.3) with an IC50 = 0.01 – 0.5 µM, excluding MCF7 cell line. Whereas the 

Cladribine ProTides displayed low micromolar potency in Lovo cells, they were 

poorly active in MCF7, PC3 and A549 cells. Expect from MCF7 cell line, all cell 

lines showed selectivity to the lead ProTide derivatives, furthermore there was no 

significant difference in potency between the 5’-ProTide 5.1b and its 3’-counterpart 

5.1a. 
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Table 5.3 Cytostatic activity of Cladribine and prodrugs 5’ lead 5.1b and 3’ lead Protide 
derivatives 5.1a, 5.2a against LoVo, MCF7, PC3 and A549 cell lines.  
Data by Guy, Cardiff University. IC50 data in µM = 50% inhibitory concentration or 
compound concentration required to inhibit tumor cell proliferation by 50%. 

 

 

 

 

 

 

 

5.3.2 Cladribine ProTides in leukaemia cell lines 

 

Four generations of ProTide families produced by Congiatu, Valente, Murziani and 

Thomsen were tested against a panel of leukaemia cell lines by Walsby, leading to 

the unexpected identification of the main leads for the project. Six leukaemia cell 

lines were chosen for the pharmacological assessment and these include: KG-1 

(acute myelogenous leukaemia), U937 (histiocytic lymphoma), K562 (chronic 

myelogenous leukaemia), NB4 (acute promyelocytic leukaemia), NB4R2 (an all 

trans retinoic acid insensitive subline derived from NB4 cells), HL60 (promyelotic 

leukaemia).20-26  

Table 5.4 In vitro data from Leukaemia cell lines. IC50 data in µM of 5’- and 3’-ProTide 
pairs as identified leads from four generations of Cladribine ProTides, originally synthesised 
by Murziani and Thomsen. Data by Walsby, Cardiff University. ClogP values generated 
algorithmically by computer-based predictive program Chem Office ultra 11.0 
 

 
 
 
 

 

 

Cpd Regio 
isomer 

ClogP LoVo MCF7 PC3 A549 

Cld - -0.90 0.01 >100 0.05 0.5 
5.1a 3’ 3.00 0.6 50 0.8 2 
5.1b 5’ 2.90 0.6 >10 1 5 
5.2a 3’ 1.92 <1 >100 0.9 57 

Cpd Regio 
isomer 

ClogP KG1 U937 K562 NB4R2 NB4 HL60 

5.1a 3’ 3.09 0.3 0.01 5 1 0.1 0.4 
5.1b 5’ 2.90 2 0.2 2 1 0.2 0.7 
5.2a 3’ 1.92 0.4 0.03 >10 0.1 0.2 0.1 
5.2b 5’ 1.73 0.7 0.1 8 0.6 0.2 2 
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The previously obtained lead compounds 5.1a, 5.1b, 5.2a, 5.2b were compared in 

order to establish how superior potency of the 3’-ProTide was compared to its 5’ 

analogue (Table 5.4). 

 

Unlike what was observed with previous biological evaluations of ProTides in solid 

tumor cell lines, 3’-ProTides were more potent than their corresponding 5’- 

derivatives in various leukaemia cell lines (Table 5.4).  

 

In the acute myelogenous leukaemia cell line KG1 5.1a (IC50 = 0.3 µM) has an almost 

7 fold potency boost over its 5’-derivative 5.1b (IC50 = 2.0 µM), however its potency 

found to be more striking in case of the U937 histiocytic lymphoma cell line, where 

5.1a (IC50 = 0.1 µM) exhibited approximately 20-fold potency boost over 5.1b (IC50 = 

2.0 µM). ProTides did not show much activity in the chronic myelogenous leukaemia 

cell line K562. 5.2a maintained similar activity in most cell lines tested compared to 

its 5’-derivative. However 5.2a (IC50 = 0.3 µM) exhibited an approximate 20-fold 

activity boost over 5.2b (IC50 = 2.0 µM) in HL-60 promyelotic leukaemia cell line 

(Table 5.4). 

This is a surprising tendency because one would not expect the 3’-ProTide to have 

superior biologically activity, as 5’-nucleotides are naturally incorporated into DNA 

chains. In order to exclude confusion surrounding these data, it was decided to 

extend this study to corroborate these findings. Therefore the previous lead 

derivatives were resynthesized and a small ProTide family was introduced 

containing both of 5’- and 3’-derivatives and evaluated to assess their biological 

activity.  
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Table 5.5 In vitro data from Leukaemia cell lines. IC50 data in µM of Cladribine (Cld) and 
5’- and 3’-Cladribine ProTide pairs. Experiments were conducted and data collated by Wuxi 
AppTec, China. ClogP values generated algorithmically by computer-based predictive 
program Chem Office ultra 11.0 
 

 

Four new leukaemia cell lines in addition to the KG-1 linaege were used: Hel92.1.7 

(erythroleukaemia); MV4-11 (myelomonocytic leukaemia); RL (non-Hodgkin 

lymphoma); Z138 (mantle cell lymphoma, identified as a very rare form of B 

lymphoma) (Table 5.5).27-31  

 

The nucleoside Cladribine showed good ability to reach the 50% inhibition with 

submicromolar activity in KG1, Hel92.1.7, MV-4-11 and RL cell lines IC50 (0.009-

0.068 µM) and demonstrated IC50 (1.313 µM) against Z138 cell line. None of the 

lead ProTides 5.1a, 5.1b, 5.2a, 5.2b exhibited potency that exceeded that of the 

parent nucleoside Cladribine. The Protides were approximately 5-30 fold less active 

then the parent nucleoside in KG1, 16-44 fold less active in Hel92.1.7 cell lines. 

Furthermore 6-fold activity loss could be seen in the MV-4-11 and 10-fold activity 

loss in RL cell lines. Regarding the Z-138 cell line, all lead derivatives displayed a 

marked retention of activity, whereas 5.2a (IC50 = 0.014 µM) was found to be 

approximately 94-fold more active than Cladribine (IC50 = 1.313 µM). Furthermore 

Cpd Regio 
isomer 

ClogP KG-1 Hel92.1.7 MV-
4-11 

RL Z138 

Cld - -0.90 0.068 0.009 0.011 0.044 1.313 
5.1a 3’ 3.09 0.606 0.19 0.07 0.46 0.595 

<2.20 
5.1b 5’ 2.90 1.938 0.371<2 0.064 0.357 0.734 

<1.79 
5.2a 3’ 1.92 0.405 0.151 0.074 0.408 0.014 

<93.78 
5.2b 5’ 1.73 1.867 0.396<3 0.069 0.471 2.013 
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the 3’ ProTide derivatives were shown to have a slight increase (2-3 fold) in activity 

against their 5’ counterparts in the KG1 and Hel92.1.7 cell lines. In case of MV-4-11 

and RL cell lines, 3’-ProTides did not show distinct advantage over the 5’-ProTides. 

In Z138 cell lines however 5.2a exhibited a striking 143-fold activity enhancement in 

activity compared to its 5’-derivative (Table 5.5). 

 

In order to optimize the Cladribine ProTide motif 9 new ProTide derivate were 

synthesised. In the first instance alongside with the phenyl and naphthyl unit, the L-

alanine motif was retained and L-leucine pentyl motif was also designed as it 

appeared to be a highly preferred ProTide motif in the FUDR project. The ester 

moiety was branched to neopentyl, cyclized to cyclohexyl and lengthened to pentyl. 

The newly synthesised compounds were tested for their biological evaluation against 

a panel of leukaemia cell lines. Six leukaemia cell lines were chosen, two of which 

were new, the HL-60 (human promyelocytic leukaemia cell line) and MCF-7 

(human breast adenocarcinoma cell line) alongside with KG1, Hel92.1.7, Rl and Z-

138 cell lines for the pharmacological assessment. The nucleoside Cladribine 

showed submicromolar activity in HL-60 cell line (IC50 = 0.043 µM) and an IC50 of 

1.27 µM in MCF-7 cell line. In fact the new series of Cladribine ProTides displayed 

a lower cytostatic activity than the parent nucleoside in HL-60 and KG-1 cell lines. 

In case of the Z-138 and Hel.92.1.7 cell lines 5.6a the 3’-L-alanine cyclohexyl 

phenyl and 5.7a 3’-L-alanine neopentyl derivatives showed similar activity that of 

Cladribine (Table 5.6). 

 

Remarkably 5.6 (IC50 = 0.7 µM) lead to an approximately 7 fold enhancement in 

activity when compared to the their 5’-counterpart 5.6b (IC50 = 4.8 µM), while 5.7a 
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(IC50 = 0.59 µM) exhibited cytostatic potency 10 fold greater than 5.7b (IC50 = 5.8 

µM) in KG-1 cell line. The new ProTide motifs did not deliver any improvement in 

potency in the MCF-7 cell lines, MCF-7 cells are proved to be resistant to The 

ProTide family. There was somewhat similar profile observed, when compared the 

phenyl derivatives with their naphthyl analogues, furthermore 5.4a and 5.4b 

exhibited lower cytostatic activity then the L-alanine derivatives (Table 5.6). 

Table 5.6 In vitro data from leukaemia and lymphoma cell lines. IC50 data in µM of 
cladribine (Cld) and 5’- and 3’-Cladribine ProTide pairs. Experiments were conducted and 
data collated by Wuxi AppTec, China. 
 
Cpd ClogP HL-60 KG-1 Z-138 HEL92.1.7 RL MCF-7 
Cld -0.90 0.043 0.12 0.031 0.039 0.93 1.27 
5.3a 3.24 0.18 1.05 1.75 0.07 0.25 6.55 
5.3b 3.05 0.18 1.60 0.19 0.11 0.21 8.41 
5.4a 4.76 0.26 1.36 1.03 0.07 0.41 4.9 
5.4b 4.76 0.39 2.1 0.23 0.13 0.35 5.87 
5.5b 3.22 0.62 4.4 0.38 0.18 0.57 27 
5.6a 2.24 0.11 0.7 0.071 0.046 0.12 19 
5.6b 2.05 0.39 4.8 0.21 0.14 0.34 31 
5.7a 2.06 0.11 0.59 0.07 0.043 0.12 20 
5.7b 1.87 0.67 5.8 0.34 0.32 0.35 26 
ClogP values generated algorithmically by computer-based predictive program Chem Office 

ultra 11.0 
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5.3.3 Evaluation of Cladribine ProTides in a KG1a cell line model of acute 

myeloid leukaemia 

The most promising Cladribine ProTide candidates were selected for analysis based 

on two criteria: 1. A potency boost compared to the parent nucleoside; 2. Their 

selective action against leukaemic stem cells (LSCs). In order to establish stem cell 

selectivity, acute myeloid leukaemic cell line KG1a was used as it harbours a minor 

stem cell-like compartment with a specific immunophenotype Lin-/CD34+/CD38-

/CD123+. The effect of the four ProTide derivatives of cladribine were evaluated 

over an extended dose range (0.01-10µM) and the effect of each ProTide on the stem 

cell compartment were evaluated across the whole dose range.  

 

KG1a cell culture, apoptosis assessments (Annexin V/propidium iodide) and 

leukaemic stem cell compartment identification, were all performed in the laboratory 

of Professor Chris Pepper, Cardiff University.  

 

KG1a cells were cultured in the presence of ProTides 5.1a, 5.1b, 5.2a, 5.2b for 72 

hours. Cells were then harvested and probed with a mixture of anti-lineage 

antibodies (PE-cy7), anti-CD34 (FITC), anti- CD38 (PE) and anti-CD123 (PERCP 

cy5) in order to visually identify the stem cell compartment. Leukaemic stem cell 

populations were identified and expressed as a percentage of all living cells in the 

culture. The percentages of stems cells remaining were then plotted on a dose-

response graph and the effect of the cladribine ProTides were compared with the 

parent. Data are expressed as mean +/- the standard deviation (SD). Raw data were 

compared for statistical significance using one-way analysis of variance (ANOVA). 
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Differences between means, were considered when P<0.05. Statistical analyses were 

done using Graphpad Prism 6.0 software. 

 

The stem cell compartment identified as Lin-/CD34+/CD38-/CD123+ comprised 

approximately 4.2% of the entire KG1a cell population. The median lethal dose, 

LD50 (lethal dose, 50%), is a measure of the dose required to kill half the members 

of a tested population after a specified, test duration. Although the lead derivatives 

displayed 2- to 10-fold lower lethal activity (LD50 = 0.27 – 1.7 µM) than the parent 

nucleoside  (LD50 = 0.18 µM), all ProTides selectively targeted the KG1a stem cell 

compartment. 5.1a (4.5%), 5.1b (3.5%), 5.2a (3.3%) and 5.2b (2.4%) at the 

concentrations tested, caused a reduction in the stem cell compartment compared to 

cladribine control (5.9%) (Table 5.7 and Figure 5.2). In particular 5.2b is outstanding 

in this regard as although it exhibited the lowest LD50 values it displayed the highest 

stem cell selectivity. In agreement with earlier data, the stem cell data also confirmed 

that the 3’-derivatives were more potent than the 5’ regioisomers. Intriguingly, 5’- 

regioisomers were more stem cell selective than their 3’ counterpart.  

Table 5.7 Cladribine ProTide stem cell selectivity. Experiments were conducted and data 
collated in the laboratory of Professor Chris Pepper, Cardiff University.  
LD50 is a measure of the lethal dose required to kill half the members of a tested population 
after a specified, test duration. (µM)  

 

Cpd Regio 
isomer 

AA Ester Aryl LD50  
(µM) 

Stem cell% 
Control: 4.2% 

Cld - - - - 0.18 5.9 

5.1a 3’ L-Ala Bn Naph 0.27 4.5 

5.1b 5’ L-Ala Bn Naph 0.82 3.5 

5.2a 3’ L-Ala Bn Ph 0.83 3.3 

5.2b 5’ L-Ala Bn Ph 1.7 2.4 
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There is a growing belief that cancers are dependent on a small population of stem 

cells in order to grow and maintain viability. The leukaemia stem cell was the first 

kind of cancer stem cell to be discovered.32 Stem cells are considered to play an 

important role in cancer survival due to their ability to regenerate and differentiate. 

So in cases where targeted anticancer treatment kills the differentiated cancer cell 

population, the elusive cancer stem cell population remains intact and is therefore 

able to re-establish cancer growth and progression.32-34 These notions form part of 

the of the cancer stem cell hypothesis.35-36 The cancer stem cell compartment appears 

to represents an attractive target in anticancer therapy. 

 

 

Figure 5.2 A gating strategy to define the LSC sub-population in the KG1a cell line. 
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5.4 The 3’-ProTide conundrum 

According to convention the 5’-ProTides are anticipated to deliver the 5’-

monophosphate, which subsequently undergoes further phosphorylation to the 

diphosphate and eventually the bioactive 5’-triphosphate form. Therefore it is 

puzzling that 3’-ProTides that are expected to deliver the 3’-monophosphate into 

cells in many cases exhibit better potency than the comparative 5’-derivative. 

Valente, who then synthesised 5’-deoxycladribine and its 3’-ProTide to find a 

solution to this puzzle, first addressed these unusual findings. Both compounds 

tested negative towards NB4 and HL60 cell lines, suggesting that the active species 

is a 5’-phosphate. Moreover, this indicates that 3’-cladribine ProTide may undergo 

some of molecular rearrangement, which leads to the formation of a 5’-phosphate. 

Speculatively, the 3’-ProTide could potentially be processed in different pathway to 

that of the 5’-ProTide, which could potentially favour the greater membrane 

penetration and intracellular metabolism, which may lead to more active 5’-

triphosphate metabolite produced (Figure 5.3). Finally, the possibility of the ProTide 

breakdown to cladribine at any point is unlikely, as proved by the Carboxypeptidase 

Y and lysate processing assays previously performed by Thomsen. The reasons for 

this surprising activity of 3’-ProTide derivatives are yet to be determined. 
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Figure 5.3 Postulated molecular rearrangement of a cladribine 3’-ProTide
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5.5 Conclusion 
 
The fifth generation of Cladribine ProTides, described in this chapter were designed 

in order to confirm the previously observed tendency of the 3’-ProTide regioisomers 

to being more potent than the 5’-regioisomer analogues, identified in the first and 

second generation of Cladribine ProTides. The whole project covers a range of 

ProTide motifs, but the original lead compounds the phenyl 5.2a, 5.2b and naphthyl 

L-alanine benzyl ester derivatives 5.1a, 5.1b remained as the most potent of all 

tested. However they do not show increased potency compared to their parent 

nucleoside. Enzymatic ester hydrolysis assay were performed by Thomsen to 

investigate this unique phenomenon, showing apparently small differences in 

hydrolysis rate. Furthermore it would be interesting to perform wide spectrum 

phosphodiesterase or lysate based enzymatic studies in order to find proof of the 

assumed molecular rearrangement of the phosphoramidate or phosphate moiety 

between from the 3’ position to 5’. In vivo metabolic evaluation could be 

informative, as it could lead to some interesting findings about the different 

behaviour of these unique 3’ and 5’ ProTide derivatives. 
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6 ProTides of Decitabine analogues 
 
Epigenetic modifications such as DNA methylation are very important in gene 

expression both in normal developing processes and in carcinogenesis too.1-2 

Abnormal DNA hypermethylation of the promoter regions of tumor-suppressor 

genes are distinctive to AML and chronic leukaemias.1-2 The genetic changes 

associated with carcinogenesis representing such aberrant reversible epigenetic 

modifications, hypermethylations, led to the clinical development of the 

hypomethylating agent azacytidine and decitabine.3-4 The first DNA methylation 

inhibitor approved by the US FDA in May 2004 was azacytidine (Vidaza, 

Pharmion), its 2’ deoxy derivative 5-aza-2’-deoxycytidine (decitabine) also 

purported to exert good therapeutic potency (Dacogen, MGI Pharma) was approved 

in 2006 for the treatment of myelodysplastic syndromes.5 (Chapter 1.8.) 

 

As previously described in Chapter 1.8, Decitabine causes hypomethylation in the 

promoter region of the tumour suppressor gene p15 in MDS patients.6 

Hypermethylation and critical silencing of p15 encoded genes have a leading role in 

cancer cell proliferation, differentiation and disease progression.2, 6-9  

 

 
 
 
 
 
 
 
Figure 6.1 DNA methyltransferase inhibitors 5-azacitidine and 5-aza-
2’deoxycitidine (Decitabine).5  
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Decitabine is a cytidine analogue that was first synthesised in the early 1960s by 

Pliml and Sorm.10 Although similar in structure to cytidine it contains a nitrogen 

atom that replaces the carbon atom at the 5 position of the pyrimidine ring.10 This 

natural nucleoside 2’-deoxycytidine analogue is cytotoxic at high doses just as many 

cytidine analogues, but it also has the ability to inhibit DNA methyltransferase 

following phosphorylation and direct incorporation into the DNA.11-13 Overall in 

term of haematological improvement azacitidine and decitabine represent the most 

active single agents for AML patients, causing haematological improvement and 

enhancing quality of life.14-16 

 

6.1 Decitabine phosphoramidates 

Three ProTide analogues of decitabine have been previously prepared in the 

McGuigan group by Congiatu and tested for their anticancer activity (Figure 6.2 and 

Table 6.1) against a small selection of leukaemia cell lines.17 

 
Figure 6.2 Decitabine aryloxyphosphoramidates 6.8, 6.8ai, 6.8aii have previously 

been synthesized by Congiatu in the McGuigan group. 
 
The first generation of Decitabine ProTides 6.8, 6.8ai, 6.8aii were tested for their 

cytostatic activity across a panel of leukaemia cell lines including acute 

promyelocytic leakaemia cell lines NB4 and NB4R2, acute promyelotic leukaemia 
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cell line HL60, chronic myelogenous leukaemia cell line K562, acute myeloid 

leukaemia cell line KG1 and finally histiocytic lymphoma cell line U937.18-24 (Table 

6.1) 

 
Table 6.1 Evaluation of decitabine and ProTide 6.8, 6.8ai, 6.8aii in leukaemia cell lines. 
Data are IC50 (µM). Experiments done by Mills. 

 

The parent nucleoside exhibited moderate or poor activity against this panel of blood 

borne cancer cell lines (IC50  = 0.5 µM - 83 µM). Compounds 6.8, 6.8ai, 6.8aii 

displayed low cytostatic activity, however 6.8, 6.8ai showed reasonable potency in 

two out of six cell lines (NB4 and NB4R2 cells). Compound 6.8a and 6.8ai (IC50  = 

88 µM and 80 µM), the 3’ and 5’-ProTide L-alanine benzyl naphthyl derivatives 

retained the activity of the parent nucleoside (IC50  = 116 µM) in the K562 cell line. 

However the biggest highlight from these sets of data is the activity of compound 

6.8aii, the 3’,5’-bisProTide in the HL-60, K562 and U937 cell lines. In terms of 

acute myeloid leukaemia K562 cell line all analogues show improvement in potency, 

moreover 6.8aii, the most lipophilic derivative, increased its potency by over 7 fold 

(IC50  = 16 µM). In the histiocytic lymphoma cell line U937 compound 6.8aii 

retained the activity of the parent as it showed a 2-fold enhancement in activity over 

the nucleoside (IC50  = 39 µM). The potency of 6.8aii may correlate with its marked 

enhancement in lipophilicity, although other factors cannot be ruled out.  

Cpd ClogP NB4 HL60 NB4R2 K562 KG1 U937 

Decitabine -1.9 0.3 35 0.4 116 2 83 

6.8a 1.9 3 96 9 88 53 85 

6.8ai 2.1 8 96 6 80 >100 135 

6.8aii 6.6 3  33 3  16 15 39 
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Furthermore these ProTide analogues have been tested against a broad spectrum of 

solid tumour cell lines including MCF7 breast cancer, Lovo and HT29 colon cancer, 

PC3 prostate, MIA-Pa-Ca2 pancreatic and A2780 and A2780R ovarian cancer cell 

lines.25-34 (Table 6.2). 

 
Table 6.2 Evaluation of Decitabine and Decitabine ProTide analogues 6.8, 6.8ai, 6.8aii in 
solid tumour cell lines. Data are IC50 (µM). Experiments done by Mills. 
 

Cpd ClogP MCF7 Lovo PC3 HT29 MIA-
Pa-
Ca2 

A2780 A2780R 

Decitabine -1.9 0.2 0.3 0.3 28 53 0.4 0.7 

6.8a 1.9 4 3 4 57 47 2 7 

6.8ai 2.1 23 11 38 >100 >100 6 32 

6.8aii 6.6 8 5 9 37 42 4 12 

 

Despite the parent nucleoside exhibiting higher IC50 in the HT29 and MIA-Pa-Ca2 

cell lines, which may be indicative of nucleoside resistance, none of the ProTides 

were more potent than decitabine. 6.8ai (IC50  = 23 - >100 µM) lost 15 to greater than 

a 100-fold potency across the spectrum of cell lines. In comparison compounds 6.8a 

(IC50  = 3 - 57 µM) and 6.8aii (IC50  = 4 - 37 µM) were 5 to greater than 20-fold less 

active compared to the parent control. Therefore it seems that based on Table 6.1 and 

6.2, decitabine ProTide analogues perform better in blood borne cancer cell lines 

compare to cell lines representative of solid tumours. 

 

Studies centred on applying the ProTide approach to decitabine, having a primary 

insight into their activity in various cancer cell lines were further continued. 
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6.1.1 New series 

A new series of decitabine ProTides were designed in order to truly establish the 

efficacy of this ProTide family and to establish SARs. The series consists of four 

analogues; two of those bearing L-alanine-benzyl ester, replacing the phenyl unit 

with 1-naphthyl as aryl functionality and two with the L-leucine pentyl ester 

moieties. In the case of L-leucine analogues both a 3’- and 5’-regioisomers were 

isolated.  

 

6.2. Synthesis 

6.2.1. Synthesis of decitabine 

The FDA approved the use of decitabine for the treatment of myelodysplastic 

syndromes, in May 2006.35-36 The first route to d5azaC from 5azaC for L-

nucleosides was described by Gaubert and colleagues in 2000, with the overall yield 

of 42%.37 The long synthetic route involving four steps, was previously applied to 

decitabine in the McGuigan group by Contagiou with the overall yield falling to 

18%, primarily because of the introduction of the phenoxy thiocarbonyl protecting 

group.17 Decitabine was patented by Ionescu and Blumbergs in 2004, where they 

described a method for synthesising the nucleoside utilising a Vorbrüggen coupling 

method between silylated 5-azacytosine and peracetylated ribose.38 

 

6.2.2 Markiewicz protection of 5-azacytidine 

The published route, which is based on the classic Barton McCombie deoxygenation 

reaction, was followed with a couple of small modifications (Figure 6.3). In order to 

deoxygenate the 2’-position of 5-azacytidine, simultaneous protection of 3′-OH and 
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5′-OH groups is required, which was accomplished with the suitable bidentate 1,3-

dichloro-1,1,3,3-tetraalkyldisiloxane protecting group (TIPDSCl), introduced by 

Markiewicz in 1979, in the presence of anhydrous pyridine at 0°C.39 To purify the 

crude product from that large amount of excess silane the combination of aqueous 

workup and column chromatography did not prove to be efficient. The crude mixture 

was purified by flash column chromatography with 89 % yield (Figure 6.3). 

 

6.2.3 Barton McCombie elimination 

 

For the reduction of the 2’-OH group the classic Barton-McCombie elimination has 

been applied onto the silylated nucleoside as described by Gaubert et al. (Figure 

6.4). The free hydroxyl group acts as a radical leaving group by the reaction with 

phenyl chlorothionoformate.37 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3 General synthetic route leading to the formation of decitabine (6.4) from 5-
azacytidine  
Reagents and Conditions: i, dry pyridine, 1,3-dichloro-1,1,3,3-tetra-isopropyldisiloxane, 0oC 
to rt., 16 hrs; ii, dry acetonitrile, phenoxythiocarbonyl chloride, rt., 4hrs; iii, dry toluene, 
tributyltin hydride, AIBN, 100oC, 2hrs; iv, dry THF, TBAF 1.0M in THF, rt, 16 hrs. 
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The 2’-hydroxy group is reduced in a subsequent radical reaction upon reacting with 

phenyl chlorothionoformate in the presence of DMAP and acetonitrile. The 

nucleoside was synthesised beforehand by Congiatu in the McGuigan lab based on a 

published procedure by Gaubert et al.37 The disclosed method obtained the desired 

compound after aqueous work-up, whereas Congiatu’s method required purification 

on flash chromatography with a disappointing yield (27%) compared to the 

published method.17 Several attempts of slightly modified methods have been made 

by Thomsen in order to improve the yield of the reaction based on the findings of 

Chu and co-workers in the case of thymidine.40-41 Phenyl chlorothionoformate was 

added to a cooled and extremely anhydrous solution of TIPS protected nucleoside 

and a mixture of DCM and pyridine yielding the desired product with a convincing 

but still moderate yield of 39% followed by aqueous work up and flash column 

chromatography. According to Thomsen, flushing of the column with pure ethyl 

acetate during the purification process improved the yield to 79%, however this yield 

was not always reproducible during my synthetic work (60-65% yield). On a larger 

scale of 3-4 g, the average best yield achieved was 27%. One possible explanation 

for the low yielding step could be due to the interaction between the thionoformate 

group and the slightly acidic nature of the silica gel. This suspected interaction could 

lead to the compound being retained on the column during the purification process. 

The binding ability of the thionoformate group towards protons is evident also in the 

case of the H-4’, which is deshielded with an appearance of a singlet in the 1H NMR 

spectrum. (5.78 ppm for 6.2 compared to 4.01 ppm for 6.1).  

 

The third step of the elimination process involves the reduction of the 2’OH of the 
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nucleoside in the presence of tributyltin hydride and azobisisobutyronitrile (AIBN). 

The reaction requires extremely anhydrous conditions, which was achieved by 

bubbling argon through the reaction mixture for 30 minutes. The desired 2’-deoxy-

analogue was purified by a quick flash column chromatography in order to obtain the 

pure product in 85% yield. (Figure 6.4). 

 

Figure 6.4 Barton-McCombie deoxygenation reaction mechanism 

 

6.2.4 Desilylation 

 

The final and most challenging step of the synthetic route towards decitabine is the 

removal of the Markiewicz protecting group. Removal of the silyl protecting group 

via fluoride addition is the most common approach based on the strong and selective 

silane-fluorine bond formation. Removal of the TIPS protecting group offers a wide 
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tetrabutylammonium fluoride (TBAF). Following on the procedure by Gaubert et 

al., the protected nucleoside was treated with 1M TBAF in dry tetrahydrofuran and 

was stirred at room temperature for 8 hours.37 Monitoring the reaction progress by 

TLC during this period of time, there was no sign of the desired product, therefore it 

the mixture was left to stir overnight. After this time, several new polar side-products 

appeared without a significant change in the amount of starting material. The desired 

nucleoside was expected to crystallise out after evaporation from the oily material in 

a small amount of methanol. Although the purification step was successful, it 

required a longer progression time of 24-48 hours at 0°C and only provided the 

desired nucleoside at yield of 3%. Analysing the residue over by 1H NMR, it was 

found that the majority of the mixture was TBAF residue with traces of the 

deoxygenated nucleoside. Therefore a slightly modified deprotection method with 

solid supported TBAF has been applied onto the protected nucleoside. The potential 

advantages of using solid supported TBAF is excluding the need of excessive 

amount of reagent, required for the deprotection step and easier purification. Using 

TBAF on solid support also negates the repelling property of the deprotected 

compound being highly water soluble, whilst the removal of the reagent required 

aqueous phase extraction. However despite all these known benefits, the use of this 

reagent was found to be very demanding. The nucleoside, in its purest state is very 

polar, with a calculated ClogP value of -1.9, therefore making it very difficult to 

filter off from the solid support without actually dissolving some of the TBAF 

residue from the support or the tetrabutylammonium salt. Regardless of the choice of 

solvents (tetrahydrofuran or methanol) used at cold or ambient temperature, or on a 

small or on large scale, is was not possible to isolate the pure compound in 

comparable fashion to Gaubert and colleagues.37 
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6.2.5 Selective 5’-end cleavage of 3’,5’-TIPDS protected decitabine 

 

Investigating alternative approaches to solve the case of the problematic last step led 

to the design and preparation of the selective 5’ end deprotected 3’ TIPDS protected 

d5AzaC. This increases the solubilty of the nucleoside allowing positive impact on 

the coupling reaction with phosphorochloridates and providing improved yields of 

the final ProTides. A paramount feature of this elegant protecting group is its ability 

to be partially cleaved at the less sterically hindered site upon being hydrolysed 

under acidic conditions. Previous pursuits were done over the last two decades in 

order to find the right conditions avoiding the 3’ end cleavage just as well as the full 

deprotection of TIPDS. Conventional methods with mineral acidic conditions like 

0.2 M HCl in dioxane-water mixture in the ratio of 4:1, 1 M HCl in dioxane or HF- 

pyridine complexes found to achieve this goal only with partial selectivity, which 

resulted in the desired 5’-desilylated products in very low yields. Xue-Feng Zhu et 

al. demonstrated that the mixture of TFA-H2O-THF in the ratio of 1:1:4 could lead 

to an efficient 5’-desilylation of multisilylated nucleoside derivatives with 

quantitative transformation (Figure 6.5).42 Such a deprotecting system was applied 

multiple times as a successful selective desilylation method for TBDMS protecting 

groups in the McGuigan group and was investigated for the first time in the case of 

the partial cleavage of TIPDS (Figure 6.5). 
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Figure 6.5 Selective 5’ and 3’ desilylation method from 3’, 5’ TIPDS protected decitabine 
by of Xue-Feng Zhu et al.42  
Reagents and Conditions: i, THF, TFA-H2O (1:1), 2 hours, rt. 
 

The intention of the experimental method was to find the optimal time point to stop 

the reaction and isolate the desired derivative with the best yields possible. To the 

cooled solution of 3’, 5’-TIPDS protected decitabine in THF, an aqueous solution of 

TFA was added dropwise and allowed to stir for 50-90 minutes at 0oC under 

rigorous monitoring. After this time interval, the formation of the 3’-desilylated 

derivative started to appear alongside the desired 5’ desilylated compound, which 

gave rise about 85-89% of the latter. Based on previous experiences related to the 

cladribine ProTide project, whereas the 3’-ProTide derivative showed unexpected 

activity improvement over the 5’-derivative, it was highly desirable to collect the 3’-

desilylated nucleoside from consecutive reactions. The reaction mixture was 

neutralised with saturated solution of NaHCO3, diluted with ethyl acetate and 

washed with water and brine, dried over NaSO4 and evaporated under reduced 

pressure. The residue was purified by flash column chromatography and followed by 

preparative TLC to provide the pure 5’-desilylated and 3’-desilylated products as 

white crystals in 67% and 31% yields. 
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Figure 6.6 1H NMR spectrum of 3’, 5’ TIPDS protected decitabine  

 

6.3 Synthesis of decitabine phosphoramidates			 

Decitabine ProTides have been synthesized via the Grignard method. The 3’-TIPDS 

protected decitabine was dissolved in dry THF followed by the dropwise addition of 

1.1 equivalent of tBuMgCl reagent and the appropriate phosphorochloridate and 

allowed to stir overnight at room temperature. The reaction mixture was evaporated 

and subjected to flash column chromatography. The pure compound was present as 

white crystals with a conversion of an average 44-67% yield. Thereafter the 

protected ProTide derivatives were subjected to deprotection. The deprotection of 3’ 

TIPDS protected ProTides were carried out in 3 ml of dry THF then the solution was 

cooled down to -5-0oC and 1.5 ml of TFA-H2O mixture in a ratio of 1:1 was added 

dropwise and allowed to stir at the same temperature under rigorous monitoring. 

After allowing the reaction to proceed for 18 hours at -5 - 0oC, no product formation 

or degradation of the starting material were observed according to TLC and LC MS. 
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It was decided to let the reaction continue at room temperature, where after 28 hours 

the formation of the product was in 1:1 ratio with the starting material. The reaction 

mixture was evaporated without neutralisation, which led to the cleavage of the 

glycosidic bond of the ProTide. A new batch of the product was progressed to 

deprotection using the same reaction conditions, but instead allowing the reaction to 

stir for 48 hours at room temperature followed by the neutralisation of the reaction 

by saturated NaHCO3 and evaporation, followed by extraction in EtOAc from H2O. 

In regards to the small-scale reaction, the final purification took place on preparative 

TLC plates. The overall yield over two steps for the entire series was an average of 

40-43%. ProTides were characterised by 31P NMR, 1H NMR, 13C NMR, MS and 

HPLC.  

 

Figure 6.7 A general synthetic pathway towards decitabine 5’ and 3’-ProTides 
Reagents and Conditions: i, appropriate phosphorochloridate: 2.3b, 2.3c, 2.3s; tBuMgCl, 
dry THF, rt., 16 hours.; ii, THF, TFA-H2O (1:1), 2 hours, rt. 
 

The 5’TIPDS protected decitabine was collected from three consecutive reactions 

done previously and the same ProTide approach was applied, followed by 
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deprotection in order to isolate a 3’-ProTide. Figure 6.7 shows the general synthetic 

scheme of the decitabine ProTide approach, while Table 6.3 contains the newest 

ProTide derivatives. 

 
 
Table 6.3 Second generation Decitabine ProTides, their structures, yields, calculated 
lipophilicity and key spectral data. 
 

Cpd Regio 
isomer 

ClogP AA Ester Aryl 31P NMR 
 

Yields 
% 

6.4 - -2.03 - - - -  
6.8a 5’ 1.91 L-Ala Bn Naph 4.63, 4.24 12 
6.8b 5’ 0.73 L-Ala Bn Ph 4.16, 3.71 5 
6.8c 5’ 3.77 L-Leu Pnt Naph 5.02, 4.55 23 

6.10a 3’ 3.77 L-Leu Pnt Naph 4.17, 3.47 19 
ClogP values generated algorithmically by computer-based predictive program Chem Office 
ultra 11.0 
 
 
 
6.4 Biological evaluation 
 
6.4.1 Evaluation of decitabine ProTides in a KG1-a leukaemic stem cell model  

The new family of decitabine ProTide candidates were selected for analysis based on 

two criteria, an improvement in potency and selective targeting of leukaemic stem 

cells (LSCs). (Chapter 3.4.1).  

 

The stem cell compartment identified as Lin-/CD34+/CD38-/CD123+ comprised 

approximately 3.4% of the entire KG1-a cell population. Decitabine ProTides were 

far less potent (LD50 = 1.2 – 19 µM) then the parent nucleoside (LD50 = 0.085 µM), 

they required 14-223 fold higher concentration then decitabine control to produce the 

same cytotoxic effect (Table 6.4). Furthermore decitabine prodrugs 6.8a, 6.8b, 6.8c 
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did not target selectively the KG1-a stem cell compartment either, while the parent 

nucleoside decitabine showed stem cell insensitivity (stem cell selectivity = 5% 

compared; control = 3.4%) compared to its ProTide analogues (stem cell selectivity 

= 3.45 – 3.6%, control = 3.4%). The 3’ -L-leucine pentyl naphthyl derivative 6.10a 

appeared to be 4-fold more potent (LD50 = 5.1 µM), than the 5’-derivative 6.8c (LD50 

= 19 µM), although it still displayed a 60-fold loss in cytotoxic activity compared to 

decitabine (Table 6.4).  

 

The L-alanine benzyl phenyl motif 6.8a performed better in this assay compared to 

its phenyl pair 6.8b, comparatively, 6.8b (LD50 = 4.3 µM) required 3.6-fold higher 

concentration of compound, than its naphthyl pair 6.8a (LD50 = 1.2 µM). The 

cytotoxic effect does not seem to correlate with the lipophilicity of the ProTides, 

because 6.8c, being the most lipophilic compound of the series required considerably 

higher concentration in order to produce the same pharmacological effect and found 

to be 223 fold less active (LD50 = 19 µM), than any other members of this small 

series (Table 6.4). 

 

5-azacytidine nucleoside, 6.xa and 6.xb was evaluated in this assay in order to 

compare the efficacy of the nucleoside and the prodrug analogues, with the only 

difference in structure of bearing 2’ hydroxyl group on the sugar moiety, to 5aza-2’-

deoxycytidine and their equal motifs. 5-azacytidine performed poorly in this study, it 

exhibited approximately 32-fold loss (LD50 = 2.7 µM) in activity upon compared to 

decitabine (LD50 = 0.085 µM).  The L-alanine benzyl naphthyl derivative 6.xa (LD50 

= 33 µM) and the L-alanine benzyl phenyl motif 6.xb (LD50 = 3500 µM) of 5-

azacytidine compared to the analogues of decitabine were found to be far less potent 
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also. 6.xa presented a 27-fold loss in cytotoxic activity compared to 6.8a, while 6.xb 

activity significantly reduced upon compared to 6.8b, by approximately 820-fold. 

Effective concentrations were exhibited from high micromolar to low millimolar, 

thus highlighting their poor activity (Table 6.5). 

 

Table 6.4 Evaluation of decitabine and ProTides in KG1a cells 

ClogP values generated algorithmically by computer-based predictive program Chem Office 
ultra 11.0 
 

 

Table 6.5 Comparative evaluation of decitabine, 5-azacytidine and their ProTide derivatives 
in KG1a cell line 
 

Cpd LD50 µM stem cell % 
Control: 3.3 

Cpd LD50 µM stem cell % 
Control: 3.3 

Dectiabine 0.085 5 Azacytidine 2.7 4 

6.8a 1.2 3.5 6.xa 33 4.2 

6.8b 4.3 3.6 6.xb 3500 4 

 
 
 

 

 

Cpd ClogP Regio- 
isomer 

Amino 
acid 

Ester Aryl LD50 
µM 

Stem cell% 
Control: 3.4% 

Decitabine -2.03 - - - - 0.085 5 

6.8a 1.91 5’ L-Ala OBn ONaph 1.2 3.45 

6.8b 0.73 5’ L-Ala OBn OPh 4.3 3.6 

6.8c 3.77 5’ L-Leu OPnt ONaph 19 3.6 

6.10a 3.77 3’ L-Leu OPnt ONaph 5.1 3.5 
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6.4.2 Evaluation of decitabine ProTides in leukaemia cell lines 

Five new leukaemia cell lines in addition to the KG-1 linaege were used: THP-1 

(acute monocytic leukaemia); RL (non-Hodgkin lymphoma); NCI-H929 (Myeloma); 

MV4-11 (acute myelocytic leukaemia); K 562 (myelogenous leukaemia); HL-60 

(promyelocytic leukaemia); HEL92.1.7 (erythroleukaemia).27, 43-46  

 

Decitabine (6.4) showed poor ability to reach 50% cytotoxic effect on a high 

micromolar scale (LD50 = 10 - 46 µM). The efficacy of L-alanine benzyl naphthyl 

6.8a and phenyl 6.8b derivatives on causing 50% killing effect was comparable 

across the whole panel of cell lines (LD50 = 7.26 - 28 µM). 

 

Surprisingly, decitabine was less potent than 6.8a and 6.8b in six out of seven cell 

lines, and this could relate to solubility issues resulting from the precipitation of the 

parent nucleoside in the solvent media reported by Wuxi AppTec, China. Only in the 

case of the myelogenous leukaemia cell line K 562, where the nucleoside and its 

prodrug derivatives exhibited comparable potencies (LD50 = 28 µM). 

 
Table 6.6 Evaluation of d5AzaC (6.4) and ProTides in leukaemia cell lines  
 

Cpd ClogP THP-1 RL NCI-
H929 

MV4-
11 

K 562 HL-60 Hel92.1.7 

6.4 -2.03 68 10 46 55 28 17 30 

6.8a 1.91 27 7.88 27 8.96 28 11 14 

6.8b 0.73 27 7.26 26 6.06 22 9.11 11 
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6.5 Mechanistic studies 

6.5.1 Carboxypeptidase Y ester hydrolysis study 

An enzymatic assay using carboxypeptidase Y was performed in order to investigate 

the relative ease of hydrolysis of decitabine ProTides. The analysis was applied to 

the L-leucine pentyl naphthyl 5’ phosphoramidate 6.8c. Carboxypeptidase Y, Trizma 

buffer  (pH= 7.6) was dissolved in acetone-d6 and the enzymatic analysis followed 

by 31P NMR with spectra acquired at regular intervals at 25oC over 14 hours. (Figure 

6.8). The spectra showed that the parent compound 6.8c displayed as two 

diastoisomers with chemical shifts at δ 5.02 and 4.55 ppm was rapidly metabolised 

to intermediate 6.8ciii at δ 7.00 ppm, with completion within 35 minutes. After 

seven minutes the spectrum showed the chiral phosphorus species 6.8cii as two 

signals appeared at δ 5.73 and 4.16, which therefore shown to be consistant with the 

proposed activation pathway and confirms that the initial activation step of 

compound 6.8 is sufficiently efficient. As far as it can be observed, both 

diastereoisomers appear to be metabolised at similar rates in this assay with a half-

life of less than seven minutes. 

 

As no other enzyme existed in this assay, it was surprising to observe further 

degradation of the phosphoramidate monoester. Following compound 6.8’s complete 

conversion to the phosphoramidate monoester after 11 hours of monitoring an 

unknown species started to appear with similar 31P chemical shift and after 24 hours 

the breakdown species presented as the main species in the solution (Section 6.5.2). 



Blanka Gönczy         Chapter 6 
____________________________________________________________________ 

	 217 

 

Figure 6.8 Carboxypeptidase Y mediated assay applied on 6.8c monitored by 31P NMR. 

The enzymatic mixture also contained the breakdown species 6.8ciii, confirmed by LC-MS. 

 

 

6.5.2 Unmasking of the breakdown species 

The breakdown compound of 5-azacytidine nucleoside level was first studied and 

confirmed by Thomsen. 5-azacytidine and 5-aza-2’deoxycytidine is known to be 

unstable in aqueous solution therefore it could be possible that the phosphoramidate 

monoester would further increase the instability of the nucleoside structure. The 

double bond between N5 and C6 in d5AzaC makes C6 very electrophilic and hence 

prone to attack by nucleophiles such as water. In neutral or basic aqueous solution, 

the main route of degradation is by ring-opening of the nucleobase to give the 

highlighted compound in Figure 6.9, while under acidic conditions the main 

breakdown route of decitabine is the glycosidic bond cleavage and deamination. 
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Figure 6.9 Proposed mechanism of ring opening of decitabine ProTides in neutral or 
basic conditions 
 

Based on the 31P chemical shift of the breakdown product it was assumed, that the 

forming compound could not be the phosphoramidate monoester, as the 31P NMR 

peaks appear around 1 ppm, but instead, a change in the nucleoside structure could 

relate to the similar chemical shift of the phosphorus atom. To further study the 

stability of decitabine, ProTide 6.8a was tested without Carboxypeptidase Y under 

the same conditions used in the assay, then monitored over time using 31P NMR.  

The L-alanine benzyl naphthyl derivative 6.8a appeared with chemical shifts δ 4.63, 

and 4.24 ppm in the blank assay. A new compound was formed as a broad peak with 

a chemical shift of δ 6.43 ppm after 15 hours and the ratio between the parent 

compound 6.8a and the breakdown derivative 6.8aii increased after 48 hours. The 

mixture of the enzymatic assay was analysed by LC-MS and confirmed the presence 

of the breakdown compound in the mixture (m/z = 586.20). Due to the fact, that only 

a small amount of ProTide 6.8a was available, and as its conversion was also 
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partially done by preparative HPLC, separation of compounds 6.8a and 6.8aiii was 

not possible at this stage. 

Figure 6.10 Enzymatic assay of 6.8a in Trizma buffer (pH= 7.6) and acetone-d6 followed 

by 31P NMR at 25oC over 48 hours. 
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6.6 Conclusion 

A new series of decitabine ProTides was considered. The use of L-alanine as amino 

acid was probed in combination with the phenyl and naphthyl moieties as masking 

groups. A new series was designed to have higher lipophilicity therefore L-leucine 

pentyl naphthyl motif was included in this series both as 3’ and 5’ phophoramidate 

analogues, as during the synthesis of the nucleoside the Markiewicz protection could 

be selectively cleaved from the 3’ and 5’ hydroxyl groups of the sugar moiety 

therefore resulting in the isolation of decitabine ProTides of the 3’ and 5’ 

phosphates. All decitabine Protides performed better across the panel of leukaemia 

cell lines tested, then the nucleoside itself. However they exhibited IC50 values on a 

high micromolar to millimolar scale, which is suprising as only the L-alanine benzyl 

naphthyl derivative 6.8a exhibited comparable cytotoxic potency to decitabine, while 

ProTide motifs 6.8b, 6.8c, 6.10a required 14-223 fold higher concentration then 

decitabine control to produce the same cytotoxic effect. Decitabine prodrugs did not 

show stem cell selectively towards the KG1-a stem cell compartment.  

 

Interestingly the 3’ L-leucine pentyl naphthyl derivative 6.10a appeared to be 4-fold 

more potent than the 5’-derivative therefore the synthesis of new 3’-ProTide 

derivatives is highly considered as they might help optimizing the ProTide motif. 

Unfortunately due to the lack of time remaining did not allow further studies on the 

isolation of the breakdown compound, which could include the resynthesis of 6.8a 

on a larger scale, therefore the separation of the species could be performed by 

preparative HPLC. 
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7 Main conclusion and perspectives 

Each project was concluded in the relevant chapter. In the following, the main 

conclusions are summarised. 

 

Design, synthesis and biological evaluation of 5-FUDR ProTides proved that the 

application of the ProTide technology to 5-FUDR could lead to the isolation of 

potent anticancer compounds, suitable for further preclinical development. Several 

compounds retained the high potency of 5-FUDR in vitro, and their action was 

partially independent of TK, the activating enzyme required to phosphorylate 5-

FUDR. These compounds were shown to be substrates for carboxypeptidase Y and 

were stable in human plasma. Moreover most of the compounds retained their 

activities in mycoplasma infected cancer cell cultures. Based on these early results 

six lead compounds were selected for large scale synthesis and their activities were 

evaluated in a mouse in vivo model of colorectal cancer and tested in the KG1a stem 

cell model of cancer. All data from these experiments were considered when 

identifying the 5-fluoro-2'-deoxyuridine 1-naphthyl-L-alanine-O-benzyl derivative 

as the clinical candidate NUC-3373. NUC-3373 is currently in the phase I clinical 

development. 

 

A novel series of thiopurine aryloxyphosphoramidate and diamidate prodrugs were 

synthesised, however neither of these approaches produced analogues that were able 

to enhance the anticancer activity of the parent, but instead these compounds had 

markedly lower ability to inhibit leukaemia cell proliferation compared to their 

moderately potent parent nucleosides, 6-thioinosine and 6-thioguanosine. ProTide 
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derivatives were evaluated for their biological activities in blood borne cancer cell 

lines, and results from these experiments showed that they were less potent then their 

corresponding parent nucleosides, with concentrations ranging in the moderate to 

high micromolar range. Thiopurine phosphoramidates and symmetrical 

phosphorodiamidate analogues were both activated by carboxypeptidase Y. The 

replacement of the sulphur atom to thiomethoxy group in case of the 6-S-methyl 

thioinosine greatly increased its potency by 11-fold compared to 6-thioinosine. 

Furthermore 6-S-methyl thioinosine ProTides also displayed cytotoxic activities 

comparable to their corresponding nucleoside. Based on the promising preliminary 

biological data on the 6-S-methyl-thioinosine series, investigation exploring this 

particular family should be carried out alongside with the application of the ProTide 

technology to 2’deoxy-6-thioguanosine.  

 

The fifth generation of Cladribine ProTides was evaluated in order to confirm the 

previously observed tendency of 3’-ProTide regioisomers to be more active than 

their 5’-regioisomer analogues. Biological data clearly showed, that the 3’-isomers 

were either more active in various leukaemia cell lines, than their 5’counterparts or 

retained their activity, while 5’-regioisomers were found to be slightly more stem 

cell selective in in the KG1a stem cell model. Further investigation of this family of 

compounds would be required in order to understand the assumed molecular 

rearrangements.  

 

Additionally a novel family of 2’-deoxy-5-azacytidine (Decitabine) ProTides were 

synthesised including both the 3’ and 5’ phosphoramidate analogues. The performed 



Blanka Gönczy         Chapter 7 
____________________________________________________________________ 
	

	 228	

enzymatic and lysate studies clearly showed evidence for the great lack of activity 

due to the enhanced aqueous instability of the phosphoramidate monoester.  
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CHAPTER 8 

EXPERIMENTAL PROCEDURES 

8.1. General Experimental Details 

Solvents and reagents 

All solvents and reagents commercially available were used without any further 

purification.  

Thin layer chromatography 

The reactions were analysed on Thin Layer Chromatography (TLC) on 

commercially available Merck Kieselgel plates. The separated components were 

visualized using ultraviolet light (245 and 366 nm). 

Column chromatography (CC) 

Column chromatography was performed using Silica gel 35-70 µm, 60 A8 Fluka) as 

stationery phase. Glass columns were packed in the appropriate eluent system under 

gravity. Samples were applied as a concentrated solution in the same eluent or pre-

absorbed onto silica gel. The fractions, which containined the product were analised 

by TLC, then combined together and the solvent removed under vacuum. 

Nuclear magnetic resonance (NMR) 

1H, 13C, 31 P were recorded on a Brucker Avance 500 spectrometer (500, 125, 202 

MHz ). 31 P-NMRs are reported in units of δ relative to 85% phosphoric acid as 

external standard. In 13 C-NMR, ppm shifts rounded to one decimal place. 
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The following abbreviations are used in the NMR signals assignment: s (singlet), d 

(doublet), t (triplet), q (quartet), m (multiplet). Coupling constants (J) are measured 

in Hertz. 

High Performance Liquid Chromatography (HPLC) 

Analytical and semi preparative experiments were ran on a Varian ProStar (LC 

Work Station – Varian Prostar 335LC detector, Varian fraction collector – model 

701, Prostar 201 delivery system, using Varian Pursuit XRs 5C18 (150 × 4.6 mm) as 

an analytical column and Varian Pursuit XRs 5C18 (150 × 4.6 mm) as semi 

preparative column. Used software was Galaxie Chromatography Data System. 

Elution was performed using mobile phase water/acetonitrile in gradient  

System 1 = (H2O/ACN : 0% to 100% of ACN in 45 minutes). 

System 2 = (H2O/ACN : 0% to 100% of ACN in 30 minutes). 

 

Mass Spectroscopy (MS) 

Low resolution mass spectroscopy was performed on my compounds as a service by 

Cardiff University using electrospray. 

Enzymatic assays 

Carboxypeptidase Y assay 

5mg of the appropriate phosphoramidate was dissolved in 150 µl of deuterated 

acetone and 300 µl of TRIZMA buffer (pH=7.6) was added thereto. 31P-NMR was 

recorded as a reference. 0.1mg of Carboxypeptidase Y enzyme (purchased from 

Sigma, > 50 unit/mg EC 3.4.16.1) was dissolved in 150 µl of TRIZMA buffer and 
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added to the latter mixture. 31P-NMR was conducted of the reaction mixture every 7 

minutes for 14 hours at room temperature. 

31P NMR stability experiments in human serum 

 

The stability has been studied towards hydrolysis by human serum using in situ 31P 

NMR (202 MHz). Each experiment was carried out by dissolving the appropriate 

phosphoramidate (2.5 - 5mg) in DMSO (0.05 ml) and D2O (0.15 ml). Thereafter the 

sample was inserted into the NMR chamber, which was warmed up to 37 °C and 

blank spectrum was recorded. Thereafter 0.3 ml human serum was added to the 

sample and NMR experiments were monitored every 15 min for 14 hours. Because 

of excess noise and poorshimming profiles individual spectras were deconvoluted 

(Lorentz-Gauss deconvolution) to improve visualization of the results. Data recorded 

were processed and analysed with BrukerTopspin 2.1 program. Human serum is 

commercially available and was purchased from Sigma-Aldrich. 

 

Biological testing 

Biological testing was carried out by Prof Jan Balzarini‘s group, Rega Institute 

Katholieke Universiteit; WuXi AppTec, China and by Prof Chris Pepper’s lab, 

School of Medicine, Cardiff University
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8.2. Standard Procedures 

 

Standard procedure 1 a : Preparation of amino acid ester hydrochloride salts 

To a stirred solution of the appropriate alcohol (15.0 mol eq) at 0°C under nitrogen 

atmosphere, thionyl chloride (2.0 mol eq) was added. The reaction mixture was 

stirred at 0°C for 30 minutes and after that time slowly allowed to warm up to room 

temperature. The appropriate amino acid (1.0 mol eq) was added and the mixture 

was heated at 70 °C overnight. The solvents were removed under vacuum and the 

last traces of solvents were removed by co–evaporation. After precipitation from 

diethyl ether, product was obtained as the white solid of hydrochloride salt. 

 

Standard procedure 1 b : Preparation of amino acid ester sulfonate  salts 

To the amino acid (1 mol eq) in toluene, was added the alcohol ( 5 to 15 mol eq) and 

para-toluene sulfonic acid (1.1 mol eq). The mixture was heated at reflux overnight 

using Dean Stark apparatus. After the solvent was removed under reduced pressure, 

the amino acid ester was precipitated  either from diethyl ether or ethyl acetate 

forming the white solid of p- toluene sulfonate salt. 

 

Standard procedure 1 c : Preparation of Boc amino acid esters 

To the Boc-protected amino acid (1 mol eq) in DCM ( 20ml/g of amino acid) the 

alcohol (1.2 to 2 eq) DCC (1 mol eq) and DMAP (0.1 mol e.q.) were added at room 

temperature. After being stirred  overnight, the solvent was removed under reduce 
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pressure and the residue was purified on silica gel (Hexane /AcOEt 9:1) to afford the 

pure Boc amino acid ester. 

 

Standard procedure 1 d : Deprotection of Boc amino acid esters 

To the Boc amino acid ester (1 mol eq) in AcOEt (35 ml/ g of Boc amino acid ester), 

pTSA (1 mol eq) was added. The mixture was stirred for 2 hours at 65°C and the 

solvent was removed under reduce pressure to afford the pure amino ester pTSA salt. 

The latter can crystallize in AcOEt at 0°C or from MeOH / Et2O. 

 

Standard procedure 2 : Synthesis of aryl phosphorodichloridate  

Phophorus oxychloride (6.46 ml, 1.0 mol eq) was added to a stirred solution of the 

appropriate phenol or naphthol (10 g, 69.39 mmol, 1.0 mol eq) in dry ether (100 

mL). Then the solution was stirred at -78°and anhydrous triethylamine (9.67 ml, 1.0 

eq) was added dropwise. After 1 hr the reaction was left to rise to room temperature 

and stirred for another 2 hours, monitoring the formation of the desired compound  

by 31P-NMR. The triethylamine hydrochloride salt was filtered off and the filtrate 

reduced to dryness to give a crude oil that was used without further purification for 

the next step. 
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Standard procedure 3: Synthesis of aryl phosphorochloridate 

Anhydrous triethylamine (2.0 mol eq) was added dropwise at -78° to a stirred 

solution of the appropriate phosphorodichloridate (1.0 eq) and the appropriate amino 

acid salt (1.0 mol eq) in anhydrous dichloromethane (10 ml). After 1 hour the 

reaction was allowed to slowly warm to room temperature. The formation of the 

desired compound was monitored by 31P-NMR. After 1 hour the solvent was 

removed under reduced pressure and the crude residue was purified by a short 

coloumn (hexane ethyl acetate/ hexane 7/3 in the case of tosylate salt. The HCl salt 

was dissolved in diethyl ether and removed by filtration. After being purified, the 

crude gave the product as an oil. 

 

Standard procedure 4: Synthesis of phosphoramidates (tBuMgCl method) 

Tert-butylmagnesium chloride (1M solution THF, 1.1 mol eq) was added to a 

stirring suspension of the appropriate nucleoside (1.0 mol eq) in dry THF (10 ml) 

under Argon atmosphere. The appropriate phosphorochloridate (1.2 mol eq) 

dissolved in dry THF (3-5 ml)  was added dropwise and the reaction was left stirring 

overnight volatiles were evaporated under vacuum and the residue was purified by 

flash chromatography (CH2Cl2/CH3OH) to give the desired product. 

 

Standard procedure 5: Synthesis of aryl phosphoroamidates (NMI method) 

N-Methylimidazole (5.0 mol eq) was added to a stirring suspension of the 

appropriate nucleoside (1.0 mol eq) in dry THF (10 ml), ander Argon atmosphere. 
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The appropriate phosphochloridate (3 mol eq) dissolved in THF (3-5 ml) was added 

dropwise and the reaction left stiring overnight. Volatiles were evaporated under 

vacuum the residue was dissolved in CH2Cl2 and washed with aqueous HCL 0.5M. 

the organic layer was dried over MgSO4, filtered, reduced to dryness and purified by 

flash chromatography ( CH2Cl2 /CH3OH). 

 

Standard procedure 6a: Synthesis of 2’, 3’-isopropylidene protected 6-

thioinosine ProTides 

To a solution of 6-thioinosine (0.95g, 3.34 mmol) in anhydrous acetone (50 ml), at 

room temperature, a catalytic amount of perchloric acid (60 % in aqueous solution, 

0.50 ml) was added dropwise under Argon atmosphere and stirred for 2 hrs. Then a 

saturated solution of NH4OH was added drop by drop to achieve a neutral pH. The 

solvent was removed under reduced pressure and the product was sometimes used as 

a crude, or was purified by coloumn chromatography (CHCl3/ MeOH 95:5) if needed 

to yield the protected nucleoside with 92% average yield. 

 

Standard procedure 6b: Preparation of 2’, 3’- isopropylidene protected 6-

thioguanosine ProTides 

To a solution of 6-thioguanosine (0.50 g, 1.67 mmol) in anhydrous acetone (50 ml), 

at room temperature, a catalytic amount of perchloric acid (60 % in aqueous 

solution, 0.50 ml) was added dropwise under Argon atmosphere and stirred for 2 hrs. 

Then a saturated solution of NH4OH was added drop by drop to achieve a neutral 

pH. The solvent was removed under reduced pressure and the product was 
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sometimes used as a crude, or was purified by coloumn chromatography (CHCl3/ 

MeOH 95:5) if needed to yield the protected nucleoside with 90 % average yield. 

 

Standard procedure 7: Deprotection of 2’, 3’-isopropylidene protected 6-

thioinosine and 6-thioguanosine ProTides   

 

The  appropriate 2’, 3’-isopropylidene protected  phosphoramidates was dissolved in 

60% acetic acid in water(~10ml/ ~ 100mg) and heated at 50-60°C for 24-36 hrs. The 

solvent was removed under reduced pressure and was co-evaporated with toluene. 

The residue was purified by column chromatography using an eluent system 

(DCM/MeOH 9:1) to give the desired compound.  

 

Standard procedure 8: Preparation of symmetrical phosphorodiamidates 

The appropriate nucleoside (1.0 mol equivalent) was suspended in dry 

tetrahydrofuran, then triethylamine (1.0 mol equivalent) was added and was allowed 

to stirr for 30 minutes at ambient temperature. To this mixture phosphorus 

oxychloride was added dropwise at -78oC and was allowed to stirr for 30 minutes, 

before it was slowly allowed to warm up to room temperature. Reaction progress 

was followed by 31P NMR. After reaction completion, anhydrous dichloromethane 

was added, followed by amino acid ester (3-5 equivalent) and triethylamine (5-10 

mol equivalent) at -78oC. The reaction mixture was allowed to stirr at room 

temperature for 16-20 hours, then evaporated to dryness and the resulting residue 
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was purified by silica gel coloumn chromatography. Using as eluent a gradient of 

methanol in chloroform.  
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8.3. Experimental procedures – Chapter 2  

 

Synthesis of 1-naphthyl phosphorodichloridate (2.1). 

Prepared according to standard procedure 1, from α-naphthol 

(69.36 mmol, 10.00 g), phosphorus oxychloride (69.36 mmol, 

6.46 ml) and triethylamine (69.36 mmol, 9.67 ml) in 50 ml 

anhydrous diethyl ether. The triethylamine hydrochloride salt was filtered off and the 

filtrate reduced to dryness to give a crude product as a thick yellow oil (16.2 mg, 

90%). 

31P-NMR (CDCl3, 202 MHz) δ 3.73  
1H-NMR (MeOD, 500 MHz) δ 8.12 (d, J = 8.0 Hz, 1H, H8) 7.92 (d, J = 7.5 Hz, 1H, 

H5), 7.83 (d, J = 8.0 Hz, 1H, H4), 7.65 - 7.57 (m, 3H, H2, H6, H7) 7.43 (t, J = 8.0 Hz, 

1H, H3). 

 

Synthesis of L-alanine 2,2 dimethylpropyl ester p-toluene sulfonate salt (2.2a). 

Prepared according to standard procedure 2b, from 

L-alanine (5.00 g, 56.12 mmol), neopentyl alcohol 

(36.55 ml, 33.66 mol) and pTSA (11.74g, 61.7 

mmol) in 130 ml of toluene. The product was 

obtained as a white powder. (15.43 g, 83%). 

1H-NMR (CDCl3, 500 MHz) δ 8.30 (m, 3H, NH3
+), 7.50 (d, J = 8.0 Hz, 2H, H-Ar), 

7.13 (d, J = 8.0 Hz, 2H, H-Ar), 4.14 (q, J = 7.3 Hz, 1H, CHCH3), 3.92, 3.82 (AB, 

JAB = 10.5 Hz, 2H, OCH2C(CH3)2), 2.28 (s, 3H, CH3, Ts), 1.39 (d, J = 7.5 Hz, 3H, 

CHCH3), 0.92 (s, 9H, OCH2C(CH3)3).  
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Synthesis of L-alanine pentyl ester hydrochloride salt (2.2b). 

Prepared according to standard procedure 2a, from L-alanine 

(8.00 g, 89.78 mmol), pentanol (97 ml, 89.78 mol) and thionyl 

chloride (13.04 ml, 17.95 mmol). The product was obtained as 

white solid. (14.58 g, 83%). 

1H-NMR (CDCl3, 500 MHz) δ 8.20 (bs, 3H, NH3
+), 7.77 (d, J = 8.0 Hz, 2H, H-Ar), 

7.17 (d, J = 8.0 Hz, 2H, H-Ar), 4.11 – 4.04 (m, 2H, OCH2CH2CH2CH2CH3), 4.01 – 

3.97 (m, 1H, CHCH3), 2.37 (s, 3H, CH3-Ts), 1.60 – 1.55 (m, 2H, 

OCH2CH2CH2CH2CH3), 1.48 (d, J = 7.0 Hz, 3H, CHCH3), 1.31 – 1.24 (m, 4H, 

OCH2CH2CH2CH2CH3), 0.88 (t, J = 7.0 Hz, 3H, OCH2CH2CH2CH2CH2CH3). 

 

Synthesis of Boc-L-alanine hexyl ester (2.2c’). 

Prepared according to standard procedure 2c, from Boc-L-

alanine (7 g, 36.99 mmol), hexanol (9.29 ml, 73.98 mmol) 

and DCC (7.63 g, 36.99 mmol), DMAP (0.45 g, 36.99 

mmol) in 80 ml of DCM. The product was obtained as an oil. (8.80 g, 87%). 

1H-NMR (CDCl3, 500 MHz) δ 7.28 (s, 1H, NH), 4.16 – 4.10 (m, 2H, OCH2CH2 

CH2CH2CH2CH3), 3.47 – 3.46 (d, J = 5.5 Hz, 1H, CHCH3), 1.65 – 1.60 (m, 2H, 

OCH2CH2CH2CH2CH2CH3), 1.44 (s, 9H, 3 x CH3-Boc), 1.38 – 1.29 (m, 9H, 

CHCH3, OCH2CH2CH2CH2CH2CH3), 0.88 (t, J = 7.0 Hz, 3H, 

OCH2CH2CH2CH2CH2CH3).
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Synthesis of L-alanine hexyl ester p-toluene sulfonate salt (2.2c). 

Prepared according to standard procedure 2d, from 

Boc-L-alanine hexyl ester (8.80 g, 32.19 mmol) and 

pTSA (6.12 g, 32.19 mmol) in 175 ml of ethyl 

alcohol. The product was obtained as white solid. 

(10.12 g, 91%). 

1H-NMR (CDCl3, 500 MHz) δ 8.18 (bs, 3H, NH3
+), 7.77 (d, J = 8.5 Hz, 2H, H-Ar), 

7.15 (d, J = 8.0 Hz, 2H, H-Ar), 4.10 – 4.07 (m, 1H, CHCH3), 4.03 - 3.98 (m, 2H, 

OCH2CH2CH2CH2CH2CH3), 2.36 (s, 3H, CH3-Ts), 2.19 (s, 3H, CHCH3), 1.56 - 1.53 

(m, 2H, OCH2CH2CH2CH2CH2CH3), 1.45 (m, 2H, OCH2CH2CH2CH2CH2CH3), 

1.30 – 1.23 (m, 4H, OCH2CH2CH2CH2CH2CH3), 0.88 (t, J = 7.0 Hz, 3H, 

OCH2CH2CH2CH2CH2CH3). 

 

Synthesis of L-alanine cyclohexyl ester p-toluene sulfonate salt (2.2d). 

Prepared according to standard procedure 2b, from 

L-alanine (5.00 g, 56.11 mmol), cyclohexanol 

(33.72 ml, 33.66 mol) and pTSA (11.74g, 61.72 

mmol) in 50 ml of toluene. The product was 

obtained as a white powder. (18.30 g, 95%). 

1H-NMR (CDCl3, 500 MHz) δ 8.18 (bs, 3H, NH3
+), 7.78 (d, J = 8.5 Hz, 2H, H-Ar), 

7.15 (d, J = 8.0 Hz, 2H, H-Ar), 4.76 – 4.72 (m, 1H, CHCH3), 5.15 (m, 1H, OCH-

ester), 2.36 (s, 3H, CH3-Ts), 1.76 – 1.65 (m, 4H, 2 x CH2-ester), 1.52– 1.49 (m, 1H, 

CH2-ester), 1.46 (d, J = 7.5 Hz, 3H, CHCH3), 1.52– 1.49 (m, 1H, CH2-ester), 1.41– 

1.21 (m, 5H, CH2-ester).  
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Synthesis of Boc-L-alanine 3,3 dimethyl-1-butyl ester (2.2e’). 

 

Prepared according to standard procedure 2c, from 

Boc-L-alanine (4 g, 21.14 mmol), 2,2 dimethyl-1-

butanol (5.11 ml, 42.28 mmol) and DCC (4.36 g, 

21.14 mmol), DMAP (0.26 g, 2.11 mmol) in 80 ml of DCM. The product was 

obtained as an oil. (5.65 g, 98%). 

1H-NMR (CDCl3, 500 MHz) δ 5.03 (bs, 1H, NH), 4.32 – 4.24 (m, 1H, CHCH3), 4.21 

– 4.15 (m, 2H, OCH2CH2C(CH3)3), 1.59 (t, J = 6.5 Hz, 2H, OCH2CH2C(CH3)3), 1.47 

(s, 9H, 3 x CH3 Boc), 1.36 (d, J = 7.5 Hz, 3H, CHCH3), 0.95 (s, 9H, 

OCH2CH2C(CH3)3). 

 

Synthesis of L-alanine 3,3 dimethyl-1-butyl ester p-toluene sulfonate salt (2.2e). 

 

Prepared according to standard procedure 2d, 

from Boc-L-alanine 3,3 dimethyl-1-butyl ester 

(5.65 g, 20.66 mmol) and pTSA (3.93 g, 20.66 

mmol) in 175 ml of AcOEt. The product was 

obtained as white solid. (5.28 g, 74%). 

1H-NMR (CDCl3, 500 MHz) 8.21 (bs, 3H, NH3
+), 7.79 (d, J = 8.0 Hz, 2H, H-Ar), 

7.17 (d, J = 8.0 Hz, 2H, H-Ar), 4.19 – 4.06 (m, 2H, OCH2CH2C(CH3)3), 4.00 – 3.96 

(m, 1H, CHCH3), 2.37 (s, 3H, CH3-Ts), 1.51 – 1.46 (m, 5H, CHCH3, 

OCH2CH2C(CH3)3), 0.89 (s, 9H, OCH2CH2C(CH3)3).
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Synthesis of dimethylglycine benzyl ester hydrochloride salt (2.2f). 

Prepared according to standard procedure 2a, from 

dimethylglycine (4.00 g, 38.78 mmol), benzyl alcohol 

(60.27 ml, 58.18 mol) and thionyl chloride (5.63 ml, 

77.58 mmol). The product was obtained as white solid. (5.96 g, 67%). 

1H-NMR (CDCl3, 500 MHz) δ 8.32 (bs, 3H, NH3
+), 7.76 (d, J = 8.0 Hz, 2H, H-Ar), 

7.28 (s, 5H, H-Ar), 7.12 (d, J = 8.0 Hz, 2H, H-Ar), 5.15 (s, 2H, OCH2Ph), 2.35 (s, 

3H, CH3-Ts), 1.57 (s, 6H, 2 x CH3). 

 

Synthesis of dimethylglycine 2,2 dimethylpropyl ester p-toluene sulfonate salt 

(2.2g). 

Prepared according to standard procedure 2b, from 

dimethylglycine (4.00 g, 38.78 mmol), neopentyl 

alcohol (63.32 ml, 58.18 mol) and pTSA (8.11g, 

42.66 mmol) in 50 ml of toluene. The product was 

obtained as a white powder. (6.22 g, 66%). 

1H-NMR (CDCl3, 500 MHz) 8.34 (bs, 3H, NH3
+), 7.76 (d, J = 7.5 Hz, 2H, H-Ar), 

7.18 (d, J = 7.5 Hz, 2H, H-Ar), 3.83 (s, 2H, OCH2C(CH3)3), 2.39 (s, 3H, CH3-Ts), 

1.59 (s, 6H, C(CH3)2), 0.92 (s, 9H, CH2C(CH3)3).
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Synthesis of L-isoleucine pentyl ester hydrochloride salt (2.2h). 

Prepared according to standard procedure 2a, from L-

isoleucine (4.00 g, 3.49 mmol), pentanol (49.51 ml, 45.75 mol) 

and thionyl chloride (4.43 ml, 6.98 mmol). The product was 

obtained as white solid. (3.25 g, 53%). 

1H-NMR (CDCl3, 500 MHz) δ 8.74 (bs, 3H, NH3
+), 4.17 – 4.08 (m, 2H, 

OCH2CH2CH2CH2CH3), 3.85 (d, J = 8.0 Hz, CHCH(CH3)CH2CH3), 2.01 – 1.98 (m, 

1H, CHCH(CH3)CH2CH3), 1.63 – 1.57 (m, 2H, CHCH(CH3)CH2CH3), 1.49 – 1.42 

(m, 2H, OCH2CH2CH2CH2CH3), 1.34 – 1.26 (m, 4H, OCH2CH2CH2CH2CH3), 0.91 

– 0.86 (m, 9H, CHCH(CH3)CH2CH3), OCH2CH2CH2CH2CH3). 

	

Synthesis of L-leucine pentyl ester hydrochloride salt (2.2i). 

Prepared according to standard procedure 2a, from L-leucine 

(4.00 g, 30.49 mmol), pentanol (33.00 ml, 30.49 mol) and 

thionyl chloride (4.43 ml, 6.98 mmol). The product was 

obtained as white solid. (6.69 g, 94%). 

1H-NMR (CDCl3, 500 MHz) δ 8.76 (bs, 3H, NH3
+), 4.22 – 4.21 (m, 1H, 

CHCH2CH(CH3)2), 4.07 – 4.03 (m, 2H, OCH2CH2CH2CH2CH3), 2.00 – 1.95 (m, 

2H, CHCH2CH(CH3)2), 1.75 – 1.73 (m, 3H, CHCH2CH(CH3)2, 

OCH2CH2CH2CH2CH3), 1.37 – 1.34 (m, 2H, OCH2CH2CH2CH2CH3), 1.03 – 1.01 

(m, 2H, OCH2CH2CH2CH2CH3), 0.93 (s, 9H, OCH2CH2CH2CH2CH3, 

CHCH2CH(CH3)2).  
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Synthesis of Boc-L-methionine benzyl ester (2.2j’). 

Prepared according to standard procedure 2c, from 

Boc-L-methionine (4.00 g, 16.04 mmol), benzyl 

alcohol (2.49 ml, 24.00 mmol) and DCC (3.30 g, 

16.04 mmol), DMAP (0.19 g, 16.04 mmol) in 100 ml 

of DCM. The product was obtained as an oil. (3.49 g, 58%). 

1H-NMR (CDCl3, 500 MHz) δ 7.36 -7.34 (m, 5H, H-Ar), 5.18, 5.11 (AB, JAB = 13.0 

Hz, 2H, OCH2Ph), 4.17 – 4.15 (m, 1H, CHCH2CH2SCH3), 2.51 - 2.48 (m, 2H, 

CHCH2CH2SCH3), 2.01 (s, 3H, CHCH2CH2SCH3), 1.92 – 1.87 (m, 2H, 

CHCH2CH2SCH3), 1.38 (s, 9H, 3 x CH3-Boc). 

 

Synthesis of L-methionine benzyl ester p-toluene sulfonate salt (2.2j).  

Prepared according to standard procedure 2d, 

from Boc-L-methionine methyl ester (3.49 g, 

9.34 mmol) and pTSA (1.77 g, 9.34 mmol) in 

200ml of AcOEt. The product was obtained as 

white solid. (1.69 g, 76%). 

1H-NMR (CDCl3, 500 MHz) δ 8.33 (m, 3H, NH3
+), 7.49 (d, J = 7.5 Hz, 2H, H-Ar), 

7.43 – 7.38 (m, 5H, H-Ar), 7.12 (d, J = 7.5 Hz, 2H, H-Ar), 5.26 (AB, JAB = 13.5 Hz, 

2H, OCH2Ph), 4.21 – 4.20 (t, J = 6.0 Hz, 1H, CHCH2CH2SCH3), 2.62 - 2.36 (m, 1H, 

CHCH2CH2SCH3), 2.52 - 2.49 (m, 1H, CHCH2CH2SCH3), 2.29 (s, 3H, CH3-Ts), 

2.08 – 2.04 (m, 2H, CHCH2CH2SCH3), 2.01 (s, 3H, CHCH2CH2SCH3).
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Synthesis of L-methionine isopropyl ester hydrochloride salt (2.2k).  

 

Prepared according to standard procedure 2a, from L-

methionine (4.00 g, 26.80 mmol), isopropanol (30.74 ml, 40.20 

mol) and thionyl chloride (4.66 ml, 53.60 mmol). The product 

was obtained as white solid. (4.94g, 81%). 

1H-NMR (CDCl3, 500 MHz) δ 8.96 (bs, 3H, NH3
+), 5.18 – 5.13 (m, 1H, 

OCH(CH3)2), 4.24 - 4.22 (m, 1H, CHCH3), 2.86 – 2.74 (2 x m, 2H, 

CHCH2CH2SCH3), 2.39 - 2.36 (m, 2H, CHCH2CH2SCH3), 1.34, 1.33 (dd, J = 3.0 

Hz, 6H, OCH(CH3)2), 0.95 (s, 3H, CHCH2CH2SCH3). 

 

Synthesis of L-phenylalanine pentyl ester hydrochloride salt (2.2l). 

 

Prepared according to standard procedure 2a, from L-

phenylalanine (4.00 g, 24.21 mmol), pentanol (38.96 ml, 36.32 

mol) and thionyl chloride (3.48 ml, 48.42 mmol). The product 

was obtained as white solid. (4.74 g, 85 %). 

1H-NMR (CDCl3, 500 MHz) δ 8.79 (bs, 3H, NH3
+), 7.34 – 7.31 (m, 2H, H-Ar), 7.27- 

7.25 (m, 3H, H-Ar), 4.21 – 4.19 (m, 1H, CHCH3), 4.01 (t, J = 6.5 Hz, 2H, 

OCH2CH2CH2CH2CH3), 3.27, 3.25 (AB, JAB = 8.0 Hz, 1H, CHCH2Ph), 3.08 – 3.03 

(m, 1H, CHCH2Ph), 1.45 – 1.40 (m, 2H, OCH2CH2CH2CH2CH3), 1.24 – 1.20 (m, 

2H, OCH2CH2CH2CH2CH3), 1.15 – 1.10 (m, 2H, OCH2CH2CH2CH2CH3), 0.83 (t, J 

= 7.5 Hz, 3H, OCH2CH2CH2CH2CH3).  
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Synthesis of L-valine pentyl ester p-toluene sulfonate salt (2.2m). 

 

Prepared according to standard procedure 2b, from L 

valine (3.00 g, 25.60 mmol), pentanol (27.71 ml, 

58.18 mmol) and pTSA (5.35 g, 28.16 mol) in 50 ml 

of toluene. The product was obtained as a white 

powder. (6.35 g, 69%). 

1H-NMR (CDCl3, 500 MHz) δ 8.24 (bs, 3H, NH3
+), 7.49 (d, J = 8.0 Hz, 2H, H-Ar), 

7.11 (d, J = 8.0 Hz, 2H, H-Ar), 4.22 – 4.13 (m, 2H, OCH2CH2CH2CH2CH3), 3.92 (d, 

J = 5.5 Hz, 1H, CHCH(CH3)2), 2.29 (s, 3H, CH3-Ts), 2.17 - 2.13 (m, 1H, 

CHCH(CH3)2), 1.62 – 1.61 (m, 2H, OCH2CH2CH2CH2CH3), 1.34 – 1.31 (m, 4H, 

OCH2CH2CH2CH2CH3), 0.98, 0.96 (dd, J = 5.5 Hz, 6H, CHCH(CH3)2), 0.88 (t, J = 

7.0 Hz, 3H, OCH2CH2CH2CH2CH3). 

 

Synthesis of phenyl-(methoxy-L-alaninyl) phosphorochloridate (2.3a). 

 

Prepared according to standard procedure 3, from L-

alanine methyl ester hydrochloride salt (1.50 g, 10.75 

mmol), phenyl phosphorodichloridate (2.27 g, 10.75 

mmol) and Et3N (2.99 ml, 21.50 mmol) in 15 ml of anhydrous DCM. The final 

product isolated as a thick, yellowish oil. (1.58 g, 55%). 

31P NMR (202 MHz, CDCl3) δ 7.88, 7.54 
1H NMR (500 MHz, CDCl3) δ 8.64 (bs, 1H, NH), 7.41 – 7.20 (m, 5H, H-Ar), 3.83, 

3.81 (2 x s, 3H, OCH3), 3.16 – 3.10 (m, 1H, CHCH3), 1.67, 1.54 (2 x d, J = 7.5 Hz, 

3H, CHCH3).  
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Synthesis of phenyl-(benzoxy-L-alaninyl) phosphorochloridate (2.3b). 

 

Prepared according to standard procedure 3, from L-

alanine benzyl ester tosylate salt (2.50 g, 7.11 

mmol), phenyl phosphorodichloridate (1.5 g, 7.11 

mmol) and Et3N (1.98 ml, 14.22 mmol) in 15 ml of 

anhydrous DCM. The final product produced was a thick, yellowish oil. (1.82 g, 

73%). 

31P NMR (202 MHz, CDCl3) δ 7.85, 7.51 
1H NMR (500 MHz, CDCl3) δ 7.40 – 7.36 (m, 6H, H-Ar), 7.26 – 7.24 (m, 4H, H-

Ar), 5.24, 5.23 (2 x s, OCH2Ph), 4.26 – 4.22 (m, 1H, CHCH3), 1.80 (bs, 1H, NH), 

1.55 (2 x d, J = 7.0 Hz, 3H, CHCH3). 

 

 

Synthesis of α-naphthyl-(benzoxy-L-alaninyl) phosphorochloridate (2.3c). 

Prepared according to standard procedure 3, from L-

alanine methyl ester hydrochloride salt (2.00 g, 5.7 

mmol), α-naphthyl phosphorodichloridate (1.48 g, 5.7 

mmol) and Et3N (1.58 ml, 11.38 mmol) in 15 ml of 

anhydrous DCM. The final product produced was a thick, yellowish oil. (1.50 g, 

65%). 

31P NMR (202 MHz, CDCl3) δ 8.13, 7.85 
1H NMR (500 MHz, CDCl3) δ 8.08 (d, J = 8.0 Hz, 1H, H-Ar), 7.86 – 7.83 (m, 1H, 

H-Ar), 7.72 (d, J = 8.0 Hz, 1H, H-Ar), 7.60 – 7.50 (m, 3H, H-Ar), 7.42 - 7.31 (m, 

6H, H-Ar), 5.22 – 5.12 (m, 2H, OCH2Ph), 4.39 (bs, 1H, NH), 4.37 – 4.32 (m, 1H, 

CHCH3), 1.56 – 1.53 (m, 3H, CHCH3). 
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Synthesis of α-naphthyl-(butoxy-L-alaninyl) phosphorochloridate (2.3d). 

Prepared according to standard procedure 3, from L-

alanine buthyl ester hydrochloride salt (3.00 g, 16.51 

mmol), α-naphthyl phosphorodichloridate (4.30 g, 

16.51 mmol) and Et3N (4.6 ml, 33.02 mmol) in 15 

ml of anhydrous DCM. The final product produced was a thick, yellowish oil. (5.31 

g, 87%). 

31P NMR (202 MHz, CDCl3) δ 8.41, 8.24 
1H NMR (500 MHz, CDCl3) δ 8.13, 8.11 (t, J = 8.0 Hz, 1H, H-Ar), 7.86 (d, J = 6.0 

Hz, 1H, H-Ar), 7.71 (d, J = 7.5 Hz, 1H, H-Ar), 7.62 (d, J = 6.0 Hz, 1H, H-Ar), 7.59 

– 7.48 (m, 2H, H-Ar), 7.42 (t, J = 7.0 Hz, 1H, H-Ar), 5.00, 4.30 (2 x bs, 1H, NH), 

4.20, 4.14 (2 x q, J = 7.5 Hz, 2H, OCH2CH2CH2CH3), 3.49 – 3.48 (m, 1H, CHCH3), 

1.65 – 1.61 (m, 2H, OCH2CH2CH2CH3), 1.40 – 1.36 (m, 2H, OCH2CH2CH2CH3), 

1.23, 1.21 (2 x d, J = 7.5 Hz, 3H, CHCH3), 0.94, 0.90 (2 x t, J = 7.5 Hz, 3H, 

OCH2CH2CH2CH3).   

 

 

Synthesis of phenyl-(2,2-dimethylpropoxy -L-alaninyl) phosphorochloridate 

(2.3e). 

Prepared according to standard procedure 3, from 

L-alanine 2,2-dimethylpropyl ester tosylate salt 

(1.00 g, 3.01 mmol), phenyl phosphorodichloridate 

(0.63 g, 3.01 mmol) and Et3N (0.84 ml, 6.03 mmol) in 15 ml of anhydrous DCM. 

The final product produced was a thick, yellowish oil. (0.65 g, 65%). 

31P NMR (202 MHz, CDCl3) δ 8.17, 7.75 
1H NMR (500 MHz, CDCl3) δ 8.13, 8.11 (dt, J = 8.0 Hz, 2H, H-Ar), 7.32 – 7.24 (m, 

3H, H-Ar), 4.28, 4.20, 4.18, 4.13 (2 x AB, JAB = 11.0 Hz, 2H, OCH2C(CH3)3), 3.15 – 

3.09 (m, 1H, CHCH3), 1.52, 1.51 (2 x s, 9H, OCH2C(CH3)3), 1.49,1.47 (2 x d, J = 

6.5 Hz, CHCH3). 
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Synthesis of α-naphthyl-(2,2-dimethylpropoxy -L-alaninyl) 

phosphorochloridate (2.3f). 

Prepared according to standard procedure 3, from 

L-alanine 2,2-dimethylpropyl ester tosylate salt 

(1.00 g, 3.01 mmol), α-naphthyl 

phosphorodichloridate (0.79 g, 3.01 mmol) and 

Et3N (0.84 ml, 6.03 mmol) in 15 ml of anhydrous DCM. The final product produced 

was a thick, yellowish oil. (0.67 g, 58%). 

31P NMR (202 MHz, CDCl3) δ 8.23, 7.93 
1H NMR (500 MHz, CDCl3) δ 8.10 (d, J = 7.5 Hz, 1H, H-Ar), 7.91 – 7.89 (m, 1H, 

H-Ar), 7.76 (d, J = 8.0 Hz, 1H, H-Ar), 7.64 – 7.55 (m, 3H, H-Ar), 7.46 - 7.45 (m, 

1H, H-Ar), 4.38 – 4.32 (m, 1H, CHCH3), 3.97, 3.94, 3.91, 3.86 (2 x AB, JAB = 10.5 

Hz, 2H, OCH2C(CH3)3), 1.61, 1.59 (2 x d, J = 7.0 Hz, 3H, CHCH3), 1.00, 0.98 (2 x 

s, 9H, OCH2C(CH3)3). 

 

Synthesis of α-naphthyl-(pentoxy-L-alaninyl) phosphorochloridate (2.3g). 

Prepared according to standard procedure 3, from L-

alanine pentyl ester tosylate salt (4.00g, 12.00 mmol), 

α-naphthyl phosphorodichloridate (3.15g, 12.00 

mmol) and Et3N (3.36 ml, 24.00 mmol) in 15 ml of 

anhydrous DCM. The final product produced was a thick, yellowish oil. (4.41 g, 

92%). 

31P NMR (202 MHz, CDCl3) δ 8.21, 7.90 
 1H NMR (500 MHz, CDCl3) δ 8.11 (d, J = 8.0 Hz, 1H, H-Ar), 7.91 (m, 1H, H-Ar), 

7.76 (d, J = 8.0 Hz, 1H, H-Ar), 7.62 – 7.41 (m, 4H, H-Ar), 4.36 – 4.30 (m, 1H, 

CHCH3), 4.23 – 4.17 (m, 2H, OCH2CH2CH2CH2CH3), 1.65 – 1.61 (m, 2H, 

OCH2CH2CH2CH2CH3), 1.42 – 1.29 (m, 7H, CHCH3, OCH2CH2CH2CH2CH3), 0.93 

(s, 3H, CHCH3).  
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Synthesis of α-naphthyl-(hexoxy-L-alaninyl) phosphorochloridate (2.3h). 

 

Prepared according to standard procedure 3, from L-

alanine hexyl ester tosylate salt (4.00g, 11.58 mmol), 

α-naphthyl phosphorodichloridate (3.02 g, 11.58 

mmol) and Et3N (3.22 ml, 23.16 mmol) in 15 ml of 

anhydrous DCM. The final product produced was a thick, yellowish oil. (3.12g, 

68%). 

 
31P NMR (202 MHz, CDCl3) δ 8.21, 7.88 
1H NMR (500 MHz, CDCl3) δ 8.12 – 8.08 (m, 1H, H-Ar), 7.91 – 7.84 (m, 1H, H-

Ar), 7.63 – 7.39 (m, 5H, H-Ar), 4.22 – 4.02 (m, 2H, OCH2CH2CH2CH2CH2CH3), 

3.60 – 3.56 (m, 1H, CHCH3), 1.60 – 1.56 (m, 2H, OCH2CH2CH2CH2CH2CH3), 1.44 

– 1.29 (m, 9H, OCH2CH2CH2CH2CH2CH3, CHCH3), 0.90 – 0.88 (m, 3H, 

OCH2CH2CH2CH2CH2CH3). 

 

Synthesis of phenyl-(cyclohexoxy-L-alaninyl) phosphorochloridate (2.3i). 

 

Prepared according to standard procedure 3, from 

L-alanine cyclohexyl ester tosylate salt (3.48 g, 

10.13 mmol), phenyl phosphorodichloridate (2.14 

g, 10.13 mmol) and Et3N (2.82 ml, 20.26 mmol) in 15 ml of anhydrous DCM. The 

final product produced was a thick, yellowish oil. (3.22 g, 92%). 

 
31P NMR (202 MHz, CDCl3) δ 7.77, 8.13 
1H NMR (500 MHz, CDCl3) δ 7.42 – 7.35 (m, 2H, H-Ar), 7.34 - 7.21 (m, 3H, H-Ar), 

4.46 – 4.27 (m, 1H, CH-ester), 4.24 – 4.10 (m, 1H, CHCH3), 1.93-1.69 (m, 4H, 2 x 

CH2-ester), 1.61, 1.57 (2 x d, J = 7.5 Hz, 3H, CHCH3), 1.43 – 1.28 (m, 12H, 6 x 

CH2-ester). 
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Synthesis of α-naphthyl-(cyclohexoxy-L-alaninyl) phosphorochloridate (2.3j). 

 

Prepared according to standard procedure 3, from 

L-alanine cyclohexyl ester tosylate salt (2.00 g, 5.8 

mmol), α-naphthyl phosphorodichloridate (1.50 g, 

5.8 mmol) and Et3N (1.62 ml, 11.64 mmol) in 15 

ml of anhydrous DCM. The final product produced was a thick, yellowish oil. (2.04 

g, 89%). 

 
31P NMR (202 MHz, CDCl3) δ 8.30, 7.94 
1H NMR (500 MHz, CDCl3) δ 8.12, 8.10 (2 x d, J = 6.5 Hz, 1H, H-Ar), 7.92 – 7.89 

(m, 1H, H-Ar), 7.75 (d, J = 8.0 Hz, 1H, H-Ar), 7.65 – 7.55 (m, 3H, H-Ar), 7.46, 7.45 

(m, 1H, H-Ar), 4.92 – 4.84 (m, 1H, CH-ester), 4.34 - 4.22 (m, 2H, NH, CHCH3),  

1.92 - 1.84 (m, 2H, CH2-ester), 1.80 - 1.72 (m, 2H, CH2-ester), 1.57, 1.55 (2 x d, J = 

7.0 Hz, 3H, CHCH3), 1.51 – 1.33 (m, 12H, 6 x CH2-ester). 

	

Synthesis of α-naphthyl-(3,3-dimethyl-1-butoxy-L-alaninyl) 

phosphorochloridate (2.3k). 

Prepared according to standard procedure 3, 

from L-alanine 3,3-dimethyl-1-butyl ester 

tosylate salt (4.35 g, 12.6 mmol), α-naphthyl 

phosphorodichloridate (3.28 g, 12.6 mmol) and 

Et3N (3.51 ml, 25.2 mmol) in 15 ml of anhydrous DCM. The final product produced 

was a thick, yellowish oil. (3.8 g, 87%). 

31P NMR (202 MHz, CDCl3 ): δ 8.21, 7.86 
1H NMR (500 MHz, CDCl3): 8.11, 8.09 (2 x d, J = 7.5 Hz, 1H, H-Ar), 7.90 - 7.89 (d, 

J = 8.0 Hz, 1H, H-Ar), 7.76 (d, J = 8.5 Hz, 1H, H-Ar), 7.63 - 7.57 (m, 3H, H-Ar), 

7.45 (t, J = 7.5 Hz, 1H, H-Ar), 4.44 - 4.40 (m, 1H, NH), 4.32 - 4.27 (m, 2H, 

OCH2CH2C(CH3)3), 4.24 - 4.21 (m, 1H, CHCH3), 1.64 - 1.61 (m, 2H, 
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OCH2CH2C(CH3)3), 1.58, 1.55 (2 x d, J = 7.0 Hz, 3H, CHCH3), 0.98, 0.96 (2 x s, 

9H, OCH2CH2C(CH3)3). 

 

Synthesis of α-naphthyl-(benzoxy-dimethylglicynyl) phosphorochloridate (2.3l). 

 

Prepared according to standard procedure 3, from L-

alanine dimethylglycine benzyl ester tosylate salt 

(2.99 g, 8.18 mmol), α-naphthyl 

phosphorodichloridate (2.13 g, 8.18 mmol) and Et3N 

(2.28 ml, 16.36 mmol) in 15 ml of anhydrous DCM. The final product produced was 

a thick, yellowish oil. (2.90 g, 85%). 

 
31P NMR (202 MHz, CDCl3 ): δ 5.86 
1H NMR (500 MHz, CDCl3): 8.13 (d, J = 7.0 Hz, 1H, H-Ar), 7.89 (d, J = 7.0 Hz, 

1H, H-Ar), 7.74 (d, J = 8.0 Hz, 1H, H-Ar), 7.58 - 7.55 (m, 3H, H-Ar), 7.45 (t, J = 8.0 

Hz, 1H, H-Ar), 7.39 - 7.36 (m, 5H, OCH2Ph), 5.25 (s, 2H, OCH2Ph), 4.89 (bs, 1H, 

NH), 1.79 (s, 3H, CH3-Me2Gly), 1.76 (s, 3H, CH3-Me2Gly). 

 

Synthesis of α-naphthyl-(methoxy-dimethylglicynyl) phosphorochloridate 

(2.3m). 

Prepared according to standard procedure 3, from L-

alanine dimethylglycine methyl ester tosylate salt (1.50 

g, 9.76 mmol), α-naphthyl phosphorodichloridate (2.55 

g, 9.76 mmol) and Et3N (2.72 ml, 19.53 mmol) in 15 ml 

of anhydrous DCM. The final product produced was a thick, yellowish oil. (3.13 g, 

94%). 

 
31P NMR (202 MHz, CDCl3) δ 5.84 
1H NMR (500 MHz, CDCl3) δ 8.13 (d, J = 8.0 Hz, 1H, Ar), 7.88 (d, J = 7.5 Hz, 1H, 

Ar), 7.74 (d, J = 8.5 Hz, 1H, Ar), 7.62 – 7.54 (m, 3H, H-Ar), 7.45 (t, J = 8.0 Hz, 1H, 

H-Ar), 3.83 (s, 3H, CH3-ester), 1.78, 1.73 (2 x s, 6H, CH3-Me2Gly). 
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Synthesis of α-naphthyl-(ethoxy-dimethylglicynyl) phosphorochloridate (2.3n). 

 

Prepared according to standard procedure 3, from L-

alanine dimethylglycine ethyl ester tosylate salt (1.50 

g, 8.95 mmol), α-naphthyl phosphorodichloridate 

(2.33 g, 8.95 mmol) and Et3N (2.49 ml, 17.89 mmol) 

in 15 ml of anhydrous DCM. The final product produced was a thick, yellowish oil. 

(2.32 g, 73%). 

 
31P NMR (202 MHz, CDCl3) δ 5.90 
1H NMR (500 MHz, CDCl3) δ 8.76 (bs, 1H, NH), 8.13 (d, J = 8.0 Hz, 1H, H-Ar), 

7.88 (d, J = 7.5 Hz, 1H, H-Ar), 7.74 (d, J = 8.5 Hz, 1H, H-Ar), 7.62 – 7.54 (m, 3H, 

H-Ar), 7.45 (t, J = 8.0 Hz, 1H, H-Ar), 4.28 (q, 2H, OCH2CH3), 1.77 (s, 3H, CH3-

Me2Gly), 1.73 (s, 3H, CH3-Me2Gly), 1.33 (t, J = 7.5 Hz, 3H, OCH2CH3). 

 

Synthesis of α-naphthyl-(2,2-dimethylpropoxy-dimethylglicynyl) 

phosphorochloridate (2.3o). 

Prepared according to standard procedure 3, from 

L-alanine dimethylglycine ethyl ester tosylate salt 

(1.50 g, 6.16 mmol), α-naphthyl 

phosphorodichloridate (1.60 g, 6.16 mmol) and 

Et3N (1.72 ml, 12.33 mmol) in 15 ml of anhydrous DCM. The final product 

produced was a thick, yellowish oil. (1.41 g, 58%). 

31P NMR (202 MHz, CDCl3) δ 5.49 
1H NMR (500 MHz, CDCl3) δ 7.35 - 7.23 (m, 7H, H-Ar), 4.01 - 3.98 (m, 2H, 

OCH2C(CH3)3), 1.76 (s, 3H, CH3-Me2Gly), 1.72 (s, 3H, CH3-Me2Gly), 0.99 (s, 9H, 

OCH2C(CH3)3). 
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Synthesis of α-naphthyl-(cyclohexoxy-glicynyl) phosphorochloridate (2.3p). 

 

Prepared according to standard procedure 3, from 

glycine cyclohexyl ethyl ester hydrochloride salt 

(1.50 g, 7.99 mmol), α-naphthyl 

phosphorodichloridate (2.08 g, 7.99 mmol) and 

Et3N (2.23 ml, 16.00 mmol) in 15 ml of anhydrous DCM. The final product 

produced was a thick, yellowish oil. (1.79 g, 59%). 

 
31P NMR (202 MHz, CDCl3) δ 8.99 
1H NMR (500 MHz, CDCl3) δ 8.10 (d, J = 8.5 Hz, 1H, H-Ar), 7.90 (d, J = 7.0 Hz, 

1H, H-Ar), 7.76 (d, J = 8.5 Hz, 1H, H-Ar), 7.63 – 7.57 (m, 3H, H-Ar), 7.46 (t, J = 

8.0 Hz, 1H, H-Ar), 4.94 - 4.89 (m, 1H, CH-ester), 4.31 (bs, 1H, NH), 4.02 – 3.98, 

3.86 – 3.83 (2 x m, 2H, CH2-Gly), 1.94 - 1.89 (m, 2H, CH2-ester), 1.80 - 1.73 (m, 

2H, CH2-ester), 1.50 – 1.27 (m, 12H, CH2-ester). 

	

Synthesis of α-naphthyl-(isopropoxy-glicynyl) phosphorochloridate (2.3q). 

 

Prepared according to standard procedure 3, from 

glycine isopropyl ester hydrochloride salt (1.20 g, 

7.81 mmol), α-naphthyl phosphorodichloridate (2.04 

g, 7.81 mmol) and Et3N (2.18 ml, 15.62 mmol) in 15 

ml of anhydrous DCM. The final product produced was a thick, yellowish oil. (1.43 

g, 54%). 

 
31P NMR (202 MHz, CDCl3) δ 9.04 
1H NMR (500 MHz, CDCl3) δ 8.10 (d, J = 8.5 Hz, 1H, H-Ar), 7.90 (d, J = 7.0 Hz, 

1H, H-Ar), 7.77 (d, J = 8.5 Hz, 1H, H-Ar), 7.63 – 7.55 (m, 3H, H-Ar), 7.46 (t, J = 

8.0 Hz, 1H, H-Ar), 5.18 – 5.13 (m, 1H, OCH(CH3)2), 4.37 (bs, 1H, NH), 4.03 – 3.97, 

3.84 – 3.81 (2 x m, 2H, CH2-Gly), 1.31 (d, J = 6.0 Hz, 6H, OCH(CH3)2). 
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Synthesis of α-naphthyl-(pentoxy-L-isoleucinyl) phosphorochloridate (2.3r). 

 

Prepared according to standard procedure 3, from L-

alanine pentyl ester hydrochloride salt (2.00 g, 8.41 

mmol), α-naphthyl phosphorodichloridate (2.19 g, 

8.41 mmol) and Et3N (2.34 ml, 16.82 mmol) in 15 ml 

of anhydrous DCM. The final product produced was a 

thick, yellowish oil. (2.72 g, 76%). 

 
31P NMR (202 MHz, CDCl3) δ 9.46, 9.05 
1H NMR (500 MHz, CDCl3) δ 11.91 (bs, 1H, NH), 8.07 (d, J = 8.5 Hz, 1H, H-Ar), 

7.85 (d, J = 7.0 Hz, 1H, H-Ar), 7.71 (d, J = 8.5 Hz, 1H, H-Ar), 7.59 – 7.48 (m, 3H, 

H-Ar), 7.41 (t, J = 8.0 Hz, 1H, H-Ar), 4.17 – 4.04 (m, 2H, OCH2CH2CH2CH2CH3), 

4.03 – 3.88 (m, 1H, CHCH(CH3)CH2CH3), 1.92 – 1.87 (m, 1H, 

CHCH(CH3)CH2CH3), 1.67 – 1.59 (m, 2H, OCH2CH2CH2CH2CH3), 1.56 -1.45 (m, 

2H, CHCH(CH3)CH2CH3), 1.32 - 1.21 (m, 4H, OCH2CH2CH2CH2CH3), 0.96 (d, J = 

6.5 Hz, 3H, CHCH(CH3)CH2CH3), 0.91 (t, J = 7.5 Hz, 3H, CHCH(CH3)CH2CH3), 

0.88 – 0.82 (m, 3H, OCH2CH2CH2CH2CH3). 

 

Synthesis of phenyl-(benzoxy-L-leucinyl) phosphorochloridate (2.3s). 

  

Prepared according to standard procedure 3, 

from L-leucine benzyl ester tosylate salt (3.00 g, 

7.62 mmol), phenyl phosphorodichloridate (1.60 

g, 7.62 mmol) and Et3N (2.12 ml, 15.24 mmol) 

in 15 ml of anhydrous DCM. The final product produced was a thick, yellowish oil. 

(2.50 g, 83%). 

 
31P NMR (202 MHz, CDCl3) δ 8.29, 8.06 
1H NMR (500 MHz, CDCl3) δ 7.38 – 7.13 (2 x m, 10H, H-Ar), 5.26 – 5.17 (m, 2H, 

OCH2Ph), 4.23 – 4.12 (m, 2H, NH, CHCH2CH(CH3)2), 1.87 - 1.77 (2 x m, 1H, 

CHCH2CH(CH3)2), 1.68 – 1.60 (m, 2H, CHCH2CH(CH3)2), 0.97 – 0.94 (m, 6H, 
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CHCH2CH(CH3)2). 

 

Synthesis of α-naphthyl-(benzoxy-L-leucinyl) phosphorochloridate (2.3t). 

 

Prepared according to standard procedure 3, 

from L-leucine benzyl ester tosylate salt (3.00 g, 

7.62 mmol), α-naphthyl phosphorodichloridate 

(1.99 g, 7.62 mmol) and Et3N (2.12 ml, 15.24 

mmol) in 15 ml of anhydrous DCM. The final 

product produced was a thick, yellowish oil. (2.44 g, 72%). 

 
31P NMR (202 MHz, CDCl3) δ 8.76, 8.40 
1H NMR (500 MHz, CDCl3) δ 8.10 – 7.27 (m, 12H, H-Ar), 5.27 - 5.17 (m, 2H, 

CH2Ph), 4.30 - 4.18 (m, 2H, CHCH2CH(CH3)2), 1.86 - 1.80 (2 × m, 1H, 

CHCH2CH(CH3)2), 1.87 – 1.60 (m, 3H, CHCH2CH(CH3)2, CHCH2CH(CH3)2), 0.99 

- 0.94 (m, 6H, CHCH2CH(CH3)2). 

 

Synthesis of α-naphthyl-(pentoxy-L-leucinyl) phosphorochloridate (2.3u). 

 

Prepared according to standard procedure 3, from L-

leucine pentyl ester hydrochloride salt (4.00 g, 16.8 

mmol), α-naphthyl phosphorodichloridate (4.39 g, 

16.8 mmol) and Et3N (4.68 ml, 33.64 mmol) in 15 ml 

of anhydrous DCM. The final product produced was a 

thick, yellowish oil. (5.51 g, 77%). 

 
31P NMR (202 MHz, CDCl3) δ 8.78, 8.50 
1H NMR (500 MHz, CDCl3) δ 8.11 (d, J = 7.5 Hz, 1H, H-Ar), 7.87 (d, J = 7.0 Hz, 

1H, H-Ar), 7.75 (d, J = 7.5 Hz, 1H, H-Ar), 7.63 -7.52 (m, 3H, H-Ar), 7.46 – 7.37 (m, 

1H, H-Ar), 4.24 - 4.12 (m, 3H, NH, OCH2CH2CH2CH2CH3), 4.04 – 3.84 (m, 1H, 

CHCH2CH(CH3)2), 1.70 – 1.52 (m, 4H, CHCH2CH(CH3)2, OCH2CH2CH2CH2CH3), 
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1.34 – 1.22 (m, 5H, OCH2CH2CH2CH2CH3, CHCH2CH(CH3)2), 0.97 – 0.87 (m, 9H, 

OCH2CH2CH2CH2CH3, CHCH2CH(CH3)2). 

 

Synthesis of phenyl-(benzoxy-L-methioninyl) phosphorochloridate (2.3v). 

 

Prepared according to standard procedure 3, 

from L-methionine benzyl ester tosylate salt 

(1.00 g, 2.43 mmol), phenyl 

phosphorodichloridate (0.36 g, 2.43 mmol) and 

Et3N (0.67 ml, 4.86 mmol) in 15 ml of anhydrous DCM. The final product produced 

was a thick, yellowish oil. (0.56 g, 56%). 

 
31P NMR (202 MHz, CDCl3) δ 8.15, 8.08 
1H NMR (500 MHz, CDCl3) δ 7.40 – 7.37 (m, 6H, H-Ar), 7.30 – 7.25 (m, 4H, H-

Ar), 5.26 – 5.23 (AB, JAB = 9 Hz, 2H, OCH2Ph), 4.37 – 4.31 (m, 1H, 

CHCH2CH2SCH3), 2.65 – 2.51 (m, 2H, CHCH2CH2SCH3), 2.20 – 2.14 (m, 2H, 

CHCH2CH2SCH3), 2.07, 2.06 (2 x s, 3H, CHCH2CH2SCH3). 

 

Synthesis of α-naphthyl-(benzoxy-L-methioninyl) phosphorochloridate (2.3w). 

  

Prepared according to standard procedure 3, 

from L-methionine benzyl ester tosylate salt 

(0.80 g, 2.10 mmol), α-naphthyl 

phosphorodichloridate (0.55 g, 2.10 mmol) and 

Et3N (0.58 ml, 4.21 mmol) in 15 ml of 

anhydrous DCM. The final product produced was a thick, yellowish oil. (0.59 g, 

61%). 

 
31P NMR (202 MHz, CDCl3) δ 8.71, 8.59 
1H NMR (500 MHz, CDCl3) δ 8.12 – 8.08 (m, 1H, H-Ar), 7.91 – 7.88 (m, 1H, H-

Ar), 7.76 (d, J = 8.5 Hz, 1H, H-Ar), 7.63 – 7.55 (m, 3H, H-Ar), 7.42 (t, J = 8.0 Hz, 

1H, H-Ar), 7.39 – 7.28 (m, 5H, H-Ar), 5.25 – 5.23 (AB, JAB = 8.5 Hz, 2H, OCH2Ph), 
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4.48 – 4.44 (m, 1H, CHCH2CH2SCH3), 2.64 – 2.52 (m, 2H, CHCH2CH2SCH3), 2.26 

– 2.20 (m, 2H, CHCH2CH2SCH3), 2.03, 2.01 (2 x s, 3H, CHCH2CH2SCH3). 

 

Synthesis of α-naphthyl-(isopropoxy-L-methioninyl) phosphorochloridate 

(2.3x). 

Prepared according to standard procedure 3, from L-

methionine benzyl ester hydrochloride salt (1.50 g, 

6.58 mmol), α-naphthyl phosphorodichloridate (1.72 

g, 6.58 mmol) and Et3N (1.84 ml, 13.17 mmol) in 15 

ml of anhydrous DCM. The final product produced 

was a thick, yellowish oil. (1.45 g, 53%). 

31P NMR (202 MHz, CDCl3) δ 8.65, 8.60 

 

Synthesis of α-naphthyl-(benzoxy-L-phenylalaninyl) phosphorochloridate 

(2.3y). 

Prepared according to standard procedure 3, 

from L-phenylalanine benzyl ester 

hydrochloride salt (1.20 g, 4.12 mmol), α-

naphthyl phosphorodichloridate (1.07 g, 4.12 

mmol) and Et3N (1.14 ml, 8.24 mmol) in 15 ml 

of anhydrous DCM. The final product produced 

was a thick, yellowish oil. (1.93 g, 98%). 
31P NMR (202 MHz, CDCl3) δ 7.75, 7.64  

 

Synthesis of α-naphthyl-(pentoxy-L-phenylalaninyl) phosphorochloridate (2.3z). 

 

Prepared according to standard procedure 3, from L-

phenylalanine pentyl ester hydrochloride salt (2.50 g, 

9.2 mmol), α-naphthyl phosphorodichloridate (2.40 g, 

4.12 mmol) and Et3N (2.57 ml, 18.42 mmol) in 15 ml 

of anhydrous DCM. The final product produced was a 
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thick, yellowish oil. (4.73 g, 97%). 
31P NMR (202 MHz, CDCl3) δ 8.40, 8.23 

	

Synthesis of phenyl-(ethoxy-L-valinyl) phosphorochloridate (2.4a). 

 

Prepared according to standard procedure 3, from L-

valine ethyl ester hydrochloride salt (1.50 g, 8.26 

mmol), phenyl phosphorodichloridate (1.74 g, 8.26 

mmol) and Et3N (2.30 ml, 16.51 mmol) in 15 ml of anhydrous DCM. The final 

product produced was a thick, yellowish oil. (1.98 g, 75%). 

 
31P NMR (202 MHz, CDCl3) δ 9.51, 9.03 
1H NMR (500 MHz, CDCl3) δ 7.40 – 7.37 (m, 2H, H-Ar), 7.29 – 7.25 (m, 3H, H-

Ar), 4.28 – 4.20 (m, 3H, NH, OCH2CH3), 4.01 – 3.90 (m, 1H, CHCH(CH3)2), 2.22 – 

2.16 (m, 1H, CHCH(CH3)2), 1.33, 1.30 (2 x s, 3H, OCH2CH3), 1.06, 1.03 (2 x d, J = 

6.5 Hz, 3H, CHCH(CH3)2), 0.97, 0.95 (2 x d, J = 6.5 Hz, 3H, CHCH(CH3)2). 

 

Synthesis of phenyl-(pentoxy-L-valinyl) phosphorochloridate (2.4b). 

 

Prepared according to standard procedure 3, from L-

valine pentyl ester hydrochloride salt (1.50 g, 6.7 

mmol), phenyl phosphorodichloridate (0.99 g, 6.7 

mmol) and Et3N (1.86 ml, 13.4 mmol) in 15 ml of anhydrous DCM. The final 

product produced was a thick, yellowish oil. (2.37 g, 73%). 

 
31P NMR (202 MHz, CDCl3) δ 9.78, 9.34 
1H NMR (500 MHz, CDCl3) δ 7.75 – 7.40 (m, 5H, H-Ar), 4.28 – 4.12 (m, 3H, NH, 

OCH2CH2CH2CH2CH3), 4.09 – 3.98 (m, 1H, CHCH(CH3)2), 2.24 – 2.17 (m, 1H, 

CHCH(CH3)2), 1.71 – 1.63 (m, 2H, OCH2CH2CH2CH2CH3), 1.37 – 1.31 (m, 4H, 

OCH2CH2CH2CH2CH3), 1.28, 1.26 (2 x s, 3H, OCH2CH2CH2CH2CH3), 0.99, 0.95 

(2 x d, J = 6.5 Hz, 3H, CHCH2CH(CH3)2), 0.92, 0.89 (2 x d, J = 6.5 Hz, 3H, 

CHCH2CH(CH3)2). 
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Synthesis of α-naphthyl-(pentoxy-L-valinyl) phosphorochloridate (2.4c). 

 

Prepared according to standard procedure 3, from L-

valine pentyl ester hydrochloride salt (1.50 g, 6.7 

mmol), α-naphthyl phosphorodichloridate (1.75 g, 6.7 

mmol) and Et3N (1.86 ml, 13.4 mmol) in 15 ml of 

anhydrous DCM. The final product produced was a thick, yellowish oil. (1.84 g, 

67%). 

 
31P NMR (202 MHz, CDCl3) δ 9.78, 9.33 
1H NMR (500 MHz, CDCl3) δ 8.12 – 8.08 (2 x d, J = 7.5 Hz, 1H, H-Ar), 7.88 (d, J = 

8.0 Hz, 1H, H-Ar), 7.75 (d, J = 8.5 Hz, 1H, H-Ar), 7.64 – 7.54 (m, 3H, H-Ar), 7.45 

(t, J = 8.0 Hz, 1H, H-Ar), 4.33 – 4.25 (m, 1H, NH), 4.25 – 4.04 (m, 2H, 

OCH2CH2CH2CH2CH3), 3.51 – 3.47 (m, 1H, CHCH(CH3)2), 1.70 – 1.64 (m, 2H, 

OCH2CH2CH2CH2CH3), 1.37 – 1.29 (m, 4H, OCH2CH2CH2CH2CH3), 1.23 - 1.21 

(m, 1H, CHCH(CH3)2), 1.08 – 0.88 (m, 9H, OCH2CH2CH2CH2CH3, CHCH(CH3)2). 
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8.4 Experimental  section – Chapter 3 
 

Synthesis of 5-Fluoro-2’-deoxyuridine-5’-O-[Phenyl-(methoxy-L-

alaninyl)]phosphate (3.1a). 

Prepared according to the standard procedure 4 from 

5-Fluoro-2’-deoxyuridine (0.40 g, 1.62 mmol), 

tBuMgCl (1.78 ml, 1.78 mmol) and phenyl-

(methoxy-L-alaninyl)-phosphorochloridate (2.3a, 

0.90 g, 3.25 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an eluent 

system, followed by preparative purification to give the pure product 3.1a as a 

yellowish solid (0.008 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 3.79, 4.09 
19F-NMR (MeOD, 470 MHz) δ -167.78, -167.72 
1H-NMR (MeOD, 500 MHz) δ 7.85 (d, 1H, 3JH-F = 6.4 Hz, H-6), 7.35 – 7.40 (m, 2H, 

H-Ar), 7.18 – 7.28 (m, 3H, H-Ar), 6.20 - 6.29 (m, 1H, H-1’), 4.27 - 4.45 (m, 3H, 

CH2OPh, H-3’), 4.08 – 4.13 (m, 1H, H-4’), 3.93 – 4.02 (m, 1H, CHCH3), 3.70 (s, 

3H, CH3-ester, one diast.), 3.69 (s, 3H, CH3-ester, one diast.), 2.25 - 2.34 (m, 1H, H-

2’), 2.02 - 2.16 (m, 1H, H-2’), 1.36 (d, J  = 7.1 Hz, 3H, CHCH3, one diast.), 1.34 (d, 

J  = 7.1 Hz, 3H, CHCH3, one diast.). 
13C  (MeOD, 125 MHz) δ 175.5 (d, 3JC-F = 3.7 Hz, C=O, ester), 175.2 (d, 3JC-F = 4.8 

Hz, C=O, ester), 159.4 (d, 2JC-F = 26 Hz, C=O, base), 152.2 (d, 2JC-P = 6.8 Hz, C=O, 

base), 152.1 (d, 2JC-P = 6.8 Hz, C-Ar, Ph), 150.6 (d, 4JC-F = 3.6 Hz, C-Ar, Ph), 141.7 

(d, 1JC-F = 233.9 Hz, CF-base), 141.6 (d, 1JC-F = 233.8 Hz, CF-base), 130.9, 130.8, 

126.2 (CH-Ar), 125.9 (d, 5JC-P = 2.9 Hz, CH-Ar), 125.6 (d, 5JC-P = 2.9 Hz, CH-Ar), 

121.4 (d, 3JC-P = 4.7 Hz, CH), 121.2 (d, 3JC-P = 4.5 Hz, CH), 87.02, 86.9 (CH), 86.8 

(d,3JC-P = 8.2 Hz, CH), 86.7 (d, 3JC-P = 8.2 Hz, CH), 72.10, 72.0 (CH), 67.5 (d, 2JC-P = 

5.5 Hz, CH2), 52.8 (CH), 52.7 (CH), 51.6 (CH3), 51.5 (CH3), 40.9 (CH2), 40.8 

(CH2), 20.5 (d, 3JC-P = 6.7 Hz, CH3), 20.2 (d, 3JC-P = 7.5 Hz, CH3). 

HPLC (System 1) tR = 23.14, 24.08 min. 
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(ES+) m/z, found: (M+Na+) 510.12. C19H23N3O9FNaP required: (M+) 487.12. 

 

5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl-(benzoxy-L-alaninyl)]) phosphate 

(3.1b). 

Prepared according to the standard procedure 4 

from 5-Fluoro-2’-deoxyuridine (0.15 g, 0.67 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) and α-

naphthyl-(benzoxy-L-alaninyl)-

phosphorochloridate (2.3c, 0.49 g, 1.22 mmol) in 

THF (10 ml). The crude mixture was purified by 

column chromatography, using CH2Cl2/MeOH (1 

to 5% gradient) as an eluent system, followed by 

preparative purification to give the pure product 3.1b as a yellowish solid (0.018 g, 

5%). 
 
31P-NMR (202 MHz, MeOD) δ 4.61, 4.25 
19F NMR (470 MHz, MeOD) δ -167.45, -167.25 
1H NMR (500 MHz, MeOD) δ 8.18, 8.12 (m, 1H, H-Ar), 7.90 - 7.86 (m, 1H, H-Ar), 

7.72 - 7.67 (m, 2H, H-Ar, H-6), 7.55 - 7.47 (m, 3H, H-Ar), 7.45 - 7.27 (m, 6H, H-

Ar), 6.16 - 6.06 (m, 1H, H-1’), 5.13, 5.08 (2 x AB, JAB = 12.0 Hz, 2H, OCH2Ph), 

4.36 - 4.24 (m, 3H, H-5’, H-5’, H-3’), 4.15 - 4.03 (m, 2H, CHCH3, H-4’), 2.17 - 2.08 

(m, 1H, H-2’), 1.79 - 1.67 (m, 1H, H-2’), 1.38 - 1.34 (m, 3H, CHCH3). 
13C NMR (125 MHz, MeOD) δ 174.9 (d, 3JC-P = 4.3 Hz, C=O, ester), 174.6 (d, 3JC-P 

= 5.0 Hz, C=O, ester), 159.3 (d, 2JC-F = 26.10 Hz, C=O, base), 150.5 (d, 4JC-F = 4.0 

Hz, C=O, base), 147.9 (d, 2JC-P = 7.4 Hz, C-Ar, Naph), 147.8 (d, 2JC-P = 7.7 Hz, C-

Ar, Naph), 141.7, 141.6 (2 x d, 1JC-F = 234.0 Hz, CF-base), 137.2, 137.1, 136.2 (C-

Ar), 129.7, 129.6, 129.5, 129.4, 129.0, 128.9, 128.1, 128.0 (CH-Ar), 127.9, 127.8 

(C-Ar), 127.7, 127.6, 126.6, 126.5, 126.2 (CH-Ar), 125.6, 125.5 (2 x d, 2JC-F = 34.0 

Hz, CH-base), 122.6 (CH-Ar), 116.5, 116.2 (2 x d, 3JC-P = 3.5 Hz, CH-Ar), 87.0, 86.9 

(C-1’), 86.8, 86.7 (2 x d, 3JC-P = 8.1 Hz, C-4’), 72.1, 72.0 (C-3’), 68.1, 68.0 (CH2Ph), 

67.8, 67.6 (2 x d, 2JC-P = 5.2 Hz, C-5’), 51.9, 51.8 (CHCH3), 40.9, 40.8 (C-2’), 20.5 

(d, 3JC-P = 6.5 Hz, CHCH3), 20.3 (d, 3JC-P = 7.6 Hz, CHCH3).  

HPLC (System 1) tR = 34.21, 34.57 min. 
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(ES+) m/z, found: (M+Na+) 636.15. C29H29N3O9FNaP required: (M+) 613.15. 

 

5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl-(butoxy-L-alaninyl)] phosphate 

(3.1c). 

 

Prepared according to the standard procedure 5 

from 5-Fluoro-2’-deoxyuridine (0.25 g, 1.01 

mmol), NMI (0.41 g, 5.07 mmol, 0.40 ml) and α-

naphthyl-(butoxy-L-alaninyl) phosphorochloridate 

(2.3d, 0.75 g, 2.03 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by preparative purification to give the pure 

product 3.1c as a yellowish solid (0.005g, 1%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.52, 4.35 
19F-NMR (MeOD, 470 MHz) δ – 167.36, – 167.49  
1H-NMR (MeOD, 500 MHz) δ 8.19 – 8.16 (m, 1H, H-Ar, Naph), 7.93 – 7.89 (m, 

1H, H-Ar, Naph), 7.75 – 7.72 (m, 2H, H-Ar, Naph), 7.58 – 7.51 (m, 3H, 2 x H-Ar, 

H-base), 7.46 – 7.41 (m, 1H, H-Ar), 6.18 – 6.11 (m, 1H, H-1’), 4.42 - 4.40 (m, 1H, 

H-5’), 4.37 - 4.32 (m, 2H, H-5’, H-3’), 4.12 – 4.01 (m, 4H, H-4’, CHCH3, 

OCH2CH2CH2CH3), 2.20 – 2.12 (m, 1H, H-2’), 1.85 – 1.73 (m, 1H, H-2’), 1.61 – 

1.54 (m, 2H, OCH2CH2CH2CH3), 1.39 – 1.31 (m, 5H, OCH2CH2CH2CH3, CHCH3), 

0.93 – 0.89 (m, 3H, OCH2CH2CH2CH3). 

HPLC (System 1) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 602.20 C26H31N3O9FNaP required: (M+), 579.18.
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl-(2,2-dimethylpropoxy-L-alaninyl)] 

phosphate (3.1d). 

 

Prepared according to the standard procedure 5 

from 5-Fluoro-2’-deoxyuridine (0.25 g, 1.01 

mmol), NMI (0.41 g, 5.07 mmol, 0.40 ml) and α-

naphthyl-(2,2-dimethylpropoxy -L-alaninyl) 

phosphorochloridate (2.3f, 0.78 g, 2.03 mmol) in 

THF (10 ml). The crude mixture was purified by 

column chromatography, using CH2Cl2/MeOH (1 to 5% gradient) as an eluent 

system, followed by preparative purification to give the pure product 3.1d as a white 

solid (0.006g, 1%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.56, 4.33 
19F-NMR (MeOD, 470 MHz) δ – 167.32, – 167.43  
1H-NMR (MeOD, 500 MHz) δ 8.19 – 8.16 (m, 1H, H-Ar, Ar), 7.91 – 7.89 (m, 1H, 

H-Ar), 7.74 – 7.71 (m, 2H, H-Ar), 7.57 - 7.51 (m, 3H, 2 x H-Ar, H-base), 7.46 – 

7.41 (m, 1H, H-Ar), 6.17 – 6.10 (m, 1H, H-1’), 4.42 – 4.30 (m, 3H, H-3’, H-5’, H-

5’), 4.13 - 4.07 (m, 2H, H-4’, CHCH3), 3.86, 3.75 (2AB, JAB = 10.50 Hz, 2H, 

CH2C(CH3)3), 2.18 – 2.10 (m, 1H, H-2’), 1.81 – 1.70 (m, 1H, H-2’), 1.41 – 1.38 (m, 

3H, CHCH3), 0.95, 0.94 (2 x s, 9H, CH2C(CH3)3). 

HPLC (System 1) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 616.20 C27H33N3O9FNaP required: (M+) 593.19.
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Synthesis of 5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl (pentoxy-alaninyl)] 

phosphate (3.1e).  

 

Prepared according to the standard procedure 4 

from 5-Fluoro-2’-deoxyuridine (0.30 g, 1.22 

mmol), tBuMgCl (1.46 mmol, 1.46 ml) and α-

naphthyl-(pentoxy-L-alaninyl) phosphorochloridate 

(2.3g, 0.78 g, 2.03 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by preparative purification to give the pure 

product 3.1e as a white solid (0.021g, 3%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.48, 4.32; 
19F-NMR (MeOD, 470 MHz) δ –167.18, –167.29; 

1H-NMR (MeOD, 500 MHz) δ 8.25 – 8.17 (m, 1H, H-Ar), 8.05 – 7.95 (m, 2H, H-

Ar), 7.85 – 7.60 (m, 2H, H-Ar, H-base), 7.65 – 7.48 (m, 3H, H-Ar), 6.30 – 6.18 (m, 

1H, H-1’), 4.60 – 4.37 (m, 3H, H-3’, H-5’, H-5’), 4.28 – 4.00 (m, 4H, H-4’, CHCH3, 

OCH2CH2CH2CH2CH3), 2.32 – 2.12 (m, 1H, H-2’), 1.95 – 1.75 (m, 1H, H-2’), 1.70 

–1.55 (m, 2H, OCH2CH2CH2CH2CH3), 1.50 – 1.28 (m, 7H, OCH2CH2CH2CH2CH3, 

CHCH3), 0.83, 0.82 (2 x d, J = 7.9 Hz, 3H, OCH2CH2CH2CH2CH3). 
13C-NMR (MeOD, 125 MHz) δ 175.22, 174.91 (C=O, ester), 159.5 (C=O, base), 

150.54 (C=O, base), 147.90, 147.88 (C-Ar), 141.75 (d, 1JC-F = 225 Hz, CF-base), 

136.37 (C-Ar), 128.95, 127.90, 127.56, 126.55, 126.19 (CH-Ar), 125.64, 125.53 (2 x 

d, 2JC-F = 34.0 Hz, CH-base), 122.65 (CH-Ar), 116.51, 116.21 (CH-Ar), 87.03, 86.96 

(C-1’), 86.85, 86.74 (C-4’), 72.16, 72.05 (C-3’), 67.87 (d, 2JC-P = 5.0 Hz, C-5’), 

66.54 (OCH2CH2CH2CH2CH3), 51.87, 51.81 (d, 2JC-P = 7.5 Hz, CHCH3), 40.87, 

40.80 (C-2’), 29.35, 29.10 (CH2-ester), 23.33 (CH2-ester), 20.60, 20.43 (2 x d, 3JC-P 

= 6.5 Hz, CHCH3), 14.28 (OCH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 15.57 min. 

(ES+) m/z, found: (M+Na+) 616.20 C27H33N3O9FNaP required: (M+) 593.19. 
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Synthesis of 5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl(hexoxy-L-alaninyl)] 

phosphate-(3.1f). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (1.20 g, 4.87 

mmol), tBuMgCl (5.36ml, 5.46 mmol) and α-

naphthyl-(hexoxy-L-alaninyl) 

phosphorochloridate (2.3h, 3.87 g, 9.75 mmol) 

in THF (15 ml). The crude mixture was purified 

by column chromatography, using 

CH2Cl2/MeOH (1 to 5% gradient) as an eluent system, followed by preparative 

purification to give the pure product 3.1f as a white solid (0.120 g, 7%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.48, 4.33; 
19F-NMR (MeOD, 470 MHz) δ – 167.09, – 167.15; 
1H-NMR (MeOD, 500 MHz) δ 8.19 – 8.16 (m, 1H, H-Ar), 7.89 – 7.87 (m, 1H, H-

Ar), 7.73 – 7.70 (m, 2H, H-Ar), 7.57 – 7.51 (m, 3H, 2 x H-Ar, H-base), 7.45 – 7.40 

(m, 1H, H-Ar), 6.18 – 6.12 (m, 1H, H-1’), 4.41 – 4.31 (m, 3H, 2 x H-5’, H-3’), 4.12 

– 4.00 (m, 4H, H-4’, CHCH3, OCH2CH2CH2CH2CH2CH3), 2.20 – 2.12 (m, 1H, H-

2’), 1.84 – 1.63 (m, 1H, H-2’), 1.60 – 1.54 (m, 2H, OCH2CH2CH2CH2CH2CH3), 

1.36 –1.25 (m, 9H, OCH2CH2CH2CH2CH2CH3, CHCH3), 0.93 – 0.89 (m, 3H, 

OCH2CH2CH2CH2CH2CH3). 
13C-NMR (MeOD, 125 MHz) δ 175.22, 174.90 (2 x d, 3JC-P = 5.0 Hz, C=O, ester), 

159.50 (d, 2J C-F = 26.2 Hz, C=O, base), 150.67 (C=O, base), 148.03, 147.88 (2 x d, 
2J C-P = 7.5 Hz, OC-Ar), 141.81, 141.70 (2 x d, 1JC-F = 232.5 Hz, CF-base), 136.30 

(C-Ar), 128.95 (d, 3JC-P = 3.5 Hz, CH-Ar), 127.91, 127.88, 127.84, 127.80, 127.58, 

127.55, 126.56, 126.55, 126.53, 126.19, 126.15 (CH-Ar), 125.60, 125.50 (2 x d, 2JC-F 

= 33.5 Hz, CH-base), 122.67, 122.63 (CH-Ar), 116.51, 116.22 (2 x d, 4JC-P = 3.7 Hz, 

CH-Ar), 87.04, 86.96 (C-1’), 86.88, 86.70 (2 x d, 3JC-P = 8.7 Hz, C-4’), 72.16, 72.06 

(C-3’), 67.83, 67.78 (2 d, 2JC-P = 5.3 Hz, C-5’), 66.56, 66.53 

(OCH2CH2CH2CH2CH2CH3), 51.85 (d, 2JC-P = 6.3 Hz, CHCH3), 40.90, 40.82 (C-2’), 

32.56, 32.54, 29.69, 29.63, 26.65, 26.61, 23.60, 23.56 (CH2-ester), 20.58, 20.44 (2 x 

d, 3JC-P = 7.5 Hz, CHCH3), 14.35 (OCH2CH2CH2CH2CH2CH3). 

HPLC (System 1) tR = 24.21 min. 
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(ES+) m/z, found: (M+Na+) 630.20, C28H35N3O9FNaP required: : (M+) 607.56 

 

5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl(3,3-dimethyl-1-butoxy-L-alaninyl)] 

phosphate (3.1g).  

 

Prepared according to the standard procedure 

4 from 5-fluoro-2’-deoxyuridine (1.00g, 4.06 

mmol), tBuMgCl (4.46 ml, 4.46 mmol) and α-

naphthyl-(hexoxy-L-alaninyl) 

phosphorochloridate (2.3k, 3.23g, 8.12 mmol) 

in THF (13 ml). The crude mixture was 

purified by column chromatography, using CH2Cl2/MeOH (1 to 5% gradient) as an 

eluent system, followed by preparative purification to give the pure product 3.1g as a 

white solid (0.098 g, 4%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.48, 4.33; 
19F-NMR (MeOD, 470 MHz) δ – 167.30, – 167.47; 
1H-NMR (MeOD, 500 MHz) δ 8.20 – 8.17 (m, 1H, H-Ar), 7.91 – 7.89 (m, 1H, H-

Ar), 7.77 – 7.72 (m, 2H, H-Ar), 7.58 – 7.51 (m, 3H, H-base, 2H-Ar), 7.46 – 7.41 (2 x 

t, 1H, J = 7.8 Hz, H-Ar), 6.19 – 6.13 (m, 1H, H-1’), 4.42 – 4.40 (m, 1H, H-5’), 4.38 -  

4.32 (m, 2H, H-3’, H-5’), 4.14 – 4.00 (m, 4H, H-4’, CHCH3, OCH2CH2(CH3)3), 2.21 

– 2.13 (m, 1H, H-2’), 1.91 – 1.76 (m, 1H, H-2’), 1.52 – 1.48 (m, 2H, 

OCH2CH2(CH3)3), 1.37 – 1.35 (m, 3H, CHCH3), 0.92, 0.91 (2 x s, 9H, 

OCH2CH2(CH3)3). 
13C-NMR (MeOD, 125 MHz) δ 175.16, 174.84 (2 d, 3JC-P = 4.75 Hz, C=O, ester), 

159.56, 159.35 (C=O, base), 150.61 (C=O, base), 148.00, 147.86 (2 x d, 2JC-P = 6.25 

Hz, C-Ar), 141.78, 141.73 (2 x d, 1JC-F = 232 Hz, CF-base), 136.28 (C-Ar), 128.98, 

128.95, 127.92, 127.90, 127.58, 126.57, 126.20, 126.14 (CH-Ar), 125.63, 125.55 (2 

d, 2JC-F = 34 Hz, CH-base), 122.65, 122.63 (CH-Ar), 116.48, 116.15 (2 x d, 3JC-P = 

3.0 Hz, CH-Ar), 87.01, 86.94 (C-1’), 86.73, 86.68 (d, 3JC-P = 7.75 Hz, C-4’), 72.18, 

72.07(C-3’), 67.87, 67.85 (2 x d, 2JC-P = 5.0 Hz, C-5’), 64.08, 64.05 

(OCH2CH2(CH3)3), 51.86 (d, 3JC-P = 5.5 Hz, CHCH3), 42.74 (OCH2CH2(CH3)3), 
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40.91, 40.83 (C-2’), 29.96 (OCH2CH2(CH3)3), 20.50, 20.34 (2 x d, 3JC-P = 6.5 Hz, 

CHCH3).  

HPLC (System 1) tR = 18.89 min 

(ES+) m/z, found: (M+Na+) 630, C28H35N3O9FNaP required: : (M+) 607.56 

 

Synthesis of 5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl (benzoxy-dimethyl-

glycinyl)] phosphate (3.1h). 

 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (1.00g, 4.06 mmol), 

tBuMgCl (4.46 ml, 4.46 mmol) and α-naphthyl-

(benzoxy-dimethylglicynyl) phosphorochloridate 

(2.3l, 3.39 g, 4.80 mmol) in THF (13 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by 

preparative purification to give the pure product 3.1h as a white solid (0.110g, 4%). 
 

31P-NMR (202 MHz, MeOD) δ 2.87, 3.03; 
19F-NMR (470 MHz, MeOD) δ -167.95, -167.13; 
 1H-NMR (500 MHz, MeOD) δ 8.22 – 8.17 (m, 1H, H-Ar), 7.90 – 7.86 (m, 1H, H-

Ar), 7.70, 7.62 (2d, 3JH-F = 6.4 Hz, 1H, H6), 7.55 – 7.48 (m, 3H, H-Ar), 7.40 – 

7.28 (m, 7H, H-Ar), 6.15 – 6.05 (m, 1H, H-1’), 5.19 – 5.13 (m, 2H, OCH2Ph), 4.35 – 

4.19 (m, 3H, H-3’, H-5’, H-5’), 4.04 – 3.98 (m, 1H, H-4’), 2.15 – 2.06 (m, 1H, H-

2’), 1.87 – 1.79, 1.69 – 1.61 (2 x m, 1H, H-2’), 1.42 – 1.37 (m, 6H, C(CH3)2). 
13C-NMR (125 MHz, MeOD) δ 176.6, 176.5 (C=O, ester), 159.6, 159.5 (2 x d, 2JC-F 

= 25.8 Hz, C=O, base), 150.7 (d, 4JC-F = 3.7 Hz, C=O, base), 148.0, 147.9 (2d, 3JC-P 

= 7.7 Hz, OC-Ar), 141.8 (d, 1JC-F = 234.4 Hz, CF-base), 137.3, 136.2 (C-Ar), 129.6, 

129.4, 129.3, 128.9, 128.0, 127.9, 127.8, 127.7, 127.5, 127.4, 126.5, 126.4, 126.1, 

126.0 (CH), 125.6, 125.4 (2 x d, 2JC-F = 25.0 Hz, CH-base), 122.9, 122.8 (CH-Ar), 

116.7, 116.3 (2 x d, 3JC-P = 2.9 Hz, CH-Ar), 86.9 (C-1’), 86.8, 86.6 (2d, 3JC-P = 8.2 

Hz, C-4’), 72.1, 72.0 (C-3’), 68.30 (OCH2Ph), 67.80 (d, 2JC-P = 6.5 Hz, C-5’), 62.2 
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(C(CH3)2), 40.8, 40.7 (C-2’), 28.0, 27.9 (2 x d, 3JC-P = 6.0 Hz, C(CH3)2), 27.5 (d, 3JC-

P = 6.0 Hz, C(CH3)2).  

HPLC (System 1) tR = 20.80, 21.00 min 

(ES+) m/z, found: (M+Na+) 650.17, C30H31N3O9NaPF required: (M+) 627.55 

 

 

5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(metoxy-dimethylglycinyl)phosphate 

(3.1i). 

 

Prepared according to the standard procedure 4 from 

5-fluoro-2’-deoxyuridine (0.15 g, 0.61 mmol), 

tBuMgCl (0.67 ml, 0.67 mmol) and α-naphthyl-

(methoxy-dimethylglicynyl) phosphorochloridate 

(2.3m, 0.42 g, 1.21 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by preparative purification to give the pure 

product 3.1i as a white solid (0.003 g, 1%). 

 
31P-NMR (MeOD, 202 MHz) δ 2.98, 2.87 
19F-NMR (MeOD, 470 MHz) δ -167.99, 167.54 
1H-NMR (MeOD, 500 MHz) δ 8.26 - 8.20 (m, 1H, H-Ar), 7.97- 7.87 (m, 1H, H-Ar), 

7.77-7.67 (m, 2H, H-Ar), 7.58-7.52 (m, 3H, H-Ar), 7.47 - 7.42 (m, 1H, H-Ar), 6.18 -

6.12 (m, 1H, H-1’), 4.42 – 4.28 (m, 3H, H-3’, H-5’, H-5’), 4.11 - 4.08 (m, 1H, H-4’), 

3.75– 3.66 (m, 3H, OCH3), 2.23 – 1.71 (4 × m, 2H, H-2’), 1.56 - 1.48 (m, 6H, 

NH(CH3)2). 

HPLC (System 1) = HPLC data lost 

(ES+) m/z, found: (M+Na+) 574.20, C24H27FN3O9NaPF required: (M+) 551.15
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(etoxy-dimethylglycinyl)]phosphate 

(3.1j). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-naphthyl-

(ethoxy-dimethylglicynyl) phosphorochloridate 

(2.3n, 0.43 g, 1.21 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by preparative purification to give the pure 

product 3.1j as a white solid (0.006 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 2.97, 2.85 
19F-NMR (MeOD, 470 MHz) δ -167.92, 167.61 
1H-NMR (MeOD, 500 MHz) δ 8.25- 8.20 (m, 1H, H-Ar), 7.92 - 7.87 (m, 1H, H-Ar), 

7.76 - 7.66 (m, 2H, H-Ar), 7.59 - 7.51 (m, 3H, H-Ar), 7.46 - 7.41 (m, 1H, H-Ar), 

6.19 – 6.13 (m, 1H, H-1’), 4.41 - 4.28 (m, 3H, H-3’, H-5’, H-5’), 4.19 – 4.13 (m, 2H, 

OCH2CH3 ), 4.10 - 4.07 (m, 1H, H-4’), 2.15 - 1.68 (4 × m, 2H, H-2’), 1.57 - 1.50 (m, 

6H, NH(CH3)2). 
13C (MeOD, 125 MHz) δ 176.88, 176.82 (C=O, ester), 160.12 (2 × d, 2JC-F = 22.46 

Hz, C-F, base), 151.16 (C=O, base), 148.17, 148.01(2 × d, 2JC-F = 20.49Hz, C=O), 

142.76, 140.90 (C-Ar), 127.98, 127.93, 127.90, 127.83, 127.79, 127.45, 127.39, 

126.01, 125.79, 122.95, 122.84 (CH - Ar) 116.67, 116.32 (2 × d, 4JC-P = 2.62 Hz, 

CH-Ar), 86.90, 86.80 (C-1’), 86.69, 86.63 (2 × d, 3JC-P = 7.85 Hz, C-4’), 72.13, 71.06 

(C-3’), 67.90, 67.83 (OCH2CH3), 62.65, 62.64 (CH(CH3)2, 40.80, 40.77 (C-2’), 

27.92, 27.54 (OCH2(CH3). 

HPLC (System 1) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 588.22, C25H29N3O9NaPF required: (M+) 565.16 
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(2,2-dimethylpropoxy-

dimethylglycinyl)] phosphate (3.1k). 

 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-

naphthyl-(2,2-dimethylpropoxy-

dimethylglicynyl) phosphorochloridate (2.3o, 

0.48 g, 1.21 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by preparative purification to give the pure 

product 3.1k as a white solid (0.007 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 2.94, 2.82 

19F-NMR (MeOD, 470 MHz) δ - 167.27 
1H-NMR (MeOD, 500 MHz) δ 8.22 – 8.11 (m, 1H, H-Ar), 7.89 – 7.88 (m, 1H, H-

Ar), 7.75 – 7.67 (m, 2H, H-Ar), 7.57 - 7.53 (m, 3H, H-Ar), 7.45 - 7.41 (m, 1H, H-Ar, 

Ar), 6.16 – 6.13 (m, 1H, H-1’), 4.39 – 4.36 (m, 3H, H-3’, H-5’, H-5’), 4.07 (s, 1H, 

H-4’), 3.83 (s, 2H, OCH2(CH3)3), 2.3 – 2.25, 2.09 – 2.07, 1.92 – 1.89, 1.72 – 1.69 (4 

x m, 2H, H-2’), 1.57 – 1.55 (m, 6H,C(CH3)2), 0.98 – 0.95 (m, 9H, CH2(CH3)3). 
13C (MeOD, 125 MHz) δ 176.31 (C=O, base), 155.65 (C=O, base), 151.03 (C=O, 

base), 147.97, 147.52 (CO-Ar), 141.82 (2 × d, 1JC-F = 245.74 Hz, C-F, base), 136.29 

(CH-Ar), 128.90, 127.84, 127.79, 127.46, 127.40, 126.51, 126.03 (CH-Ar), 125.52 

(d, 2JC-F = 33.58 Hz, C-H, base), 122.91 (CH-Ar), 116.64, 116.30 (CH-Ar), 86.96 (C-

1’), 86.70, 86.64 (C-4’), 75.78 (OCH2(CH3)3), 72.11, 72.04 (C-3’), 67.93, 67.88 (d, 
2JC-P = 6.0 Hz, C-5’), 49.87 (CHCH3), 40.75, 28.00, 27.62 (CH3)2-Me2Gly), 26.78 

(OCH2C(CH3)3). 

HPLC (System 1) tR = 16.28 min 

(ES+) m/z, found: (M+Na+) 630, C28H35N3O9NaPF required: (M+) 607.21 
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(cyclohexoxy-L-glycinyl)] phosphate 

(3.1l). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-

naphthyl-(cyclohexoxy-glycinyl) 

phosphorochloridate (2.3p, 0.46 g, 1.21 mmol) in 

THF (10 ml). The crude mixture was purified by 

column chromatography, using CH2Cl2/MeOH 

(1 to 5% gradient) as an eluent system, followed by preparative purification to give 

the pure product 3.1l as a white solid (0.007 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 5.71, 5.60 
19F-NMR (MeOD, 470 MHz) δ -167.27  
1H-NMR (MeOD, 500 MHz) δ 8.18 - 8.17 (m, 1H, H-Ar), 7.90 – 7.89 (m, 1H, H-

Ar), 7.77 – 7.68 (m, 2H, H-Ar), 7.57 - 7.50 (m, 3H, H-Ar), 7.46 - 7.41 (m, 2H, H-

Ar), 6.18 – 6.15 (m, 1H, H-1’), 4.78 – 4.74 (m, 1H, CH-cHexyl), 4.47 – 4.43 (m, 3H, 

H-3’, H-5’, H-5’), 4.11 – 4.10 (m, 1H, H-4’), 3.85 – 3.80 (m, 2H, 2 × NHCH2), 2.20 

– 2.17, 2.12 – 2.09, 1.87 – 1.82, 1.73 – 1.68, 1.56 – 1.53, 1.45 – 1.33, 1.30 – 1.26 (7 

× m, 12 H, 2 × H-2’, 10H-cHexyl). 
13C (MeOD, 125 MHz) 172.00 (C=O ester), 160.07, 159.87 (2 × d, 2JC-F = 25.8 Hz, 

C=O-base), 151.05 (C=O, base), 147.93, 17.88 (2 × d, 2JC-P = 20.2 Hz, C-F, base), 

141.85, 141.82 (2 × d, 1JC-F = 233 Hz, C-F, base), 136.31(C-Ar), 128.95, 128.94, 

127.94, 127.88, 127.64, 127.56, 126.56, 126.23, 126.19 (CH-Ar), 116.34, 116.31 (2 

× d, 4JC-P= 2.76 Hz, CH-Ar), 87.21, 87.06 (C-1’), 86.88, 86.81 (2 × d, 3JC-P = 9.21, C-

4’), 75.18, 75.16 (C=O, cHexyl), 72.24, 72.18 (C-3’), 67.95, 67.91 (2 × d, 2JC-P= 

11.98, C-5’), 44.2, 44.14 (NHCH2), 40.90, 40.83 (CH2-cHexyl), 32.53, 26.38, 24.69 

(CH2-cHexyl).  

HPLC (System 1) tR = 13.61 min. 

(ES+) m/z, found: (M+H+) 592, C27H31N3O9HPF required: (M+) 591.18  
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(isopropoxy-glycinyl)] phosphate 

(3.1m). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 mmol), 

tBuMgCl (0.67 ml, 0.67 mmol) α-naphthyl-

(isopropoxy-glicynyl) phosphorochloridate (2.3q, 

0.41 g, 1.21 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an 

eluent system, followed by preparative purification to give the pure product 3.1m as 

a white solid (0.006 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 5.75, 5.63 
19F-NMR (MeOD, 470 MHz) δ -167.48 
1H-NMR (MeOD, 500 MHz) δ 8.18 - 8.17 (m, 1H, H-Ar), 7.90 - 7.89 (m, 1H, H-Ar), 

7.78 - 7.70 (m, 2H, H-Ar), 7.55 - 7.49 (m, 3H, H-Ar), 7.45 – 7.43 (m, 1H, H-Ar), 

6.16 – 6.15 (m, 1H, H-1’), 5.03 – 5.00 (m, 2H, CH(CH3)2), 4.44 – 4.38 (m, 3H, H-3’, 

H-5’, H-5’), 4.11 - 4.10 (m, 1H, H-4’), 3.82 – 3.77 (m, 2H, NHCH2) 2.21 – 2.18, 

2.13 – 2.08, 1.89 – 1.84, 1.71 – 1.65 (4 × m, 2H, H-2’), 1.24 – 1.19 (m, 6H, (CH3)2 

iPr). 
13C (MeOD, 125 MHz) δ 172.05 (C=O, base), 159.59 (C=O, base), 150.57 (C=O, 

base), 148.05, 147.87 (CO-Ar), 141.73 (d, 1JC-F = 234.3 Hz, C-F, base), 136.31 (C-

Ar), 128.94, 127.93, 127.87, 127.62, 127.55, 126.55, 126.23, 126.19 (CH-Ar), 

125.72, 125.52 (2 × d, 2JC-F = 33.78 Hz, C-H, base), 122.57 (CH-Ar), 116.35, 116.33 

(2 × d, 4JC-P = 41.27 Hz, CH-Ar), 87.02, 86.84 (C-1’), 86.85, 86.79 (C-4’), 72.24, 

72.18 (C-3’), 70.30 (CH-iPr), 67.99, 67.87 (C-5’), 44.89, 44.81 (d, 2JC-P= 9.82 Hz, 

CH2 - α), 40.89, 40.81 (C-2’), 30.70 (CHCH3)2). 

HPLC (System 2) tR = 11.15 min 

(ES-) m/z, found: (M+Cl-) 586, C24H27FN3O9PClF required: (M+) 551.15  
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(penthoxy-L-isoleucinyl)]phosphate 

(3.1n). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-naphthyl-

(pentoxy-L-isoleucinyl) phosphorochloridate (2.3r, 

0.52 g, 1.21 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an 

eluent system, followed by preparative purification to give the pure product 3.1n as a 

white solid (0.007 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 5.32, 5.06 
19F-NMR (MeOD, 470 MHz) δ -168.16 
1H-NMR (MeOD, 500 MHz) δ 8.27 – 8.18 (m, 1H, H-Ar), 7.90 - 7.88 (m, 1H, H-

Ar), 7.76 - 7.70 (m, 2H, H-Ar), 7.56 – 7.50 (m, 2H, H-Ar), 7.50 - 7.45 (m, 1H, H-

Ar), 7.45 - 7.40 (m, 1H, H-Ar), 6.16 – 6.13 (m, 1H, H-1’), 4.40 – 4.30 (m, 3H, H-3’, 

H-5’, H-5’), 4.10 – 4.06 (m, 1H, H-4’), 4.06 – 3.97 (m, 2H, OCH2CH2CH2CH2CH3) 

3.84 – 3.80 (m, 1H, NHCH), 2.25 – 2.21 (m, 1H, H-2’), 1.85 – 1.66 (m, 1H, H-2’) 

1.59 - 1.54, 1.54 - 1.45, 1.33 – 1.29, 1.22 – 1.14 (m, 18H, (CH2CH(CH3)2), 

(CH2)3CH3 ). 
13C (MeOD, 125 MHz) δ 174.37, 174.02 (C=O, -ester), 150.57 (C=O, -base), 148.99, 

147.93 (OC-Ar), 141.75 (d, 1JC-F = 233Hz, CF-base), 136.30 (C-Ar), 132.37, 128.93, 

127.89, 127.86, 127.83, 127.81, 127.57, 127.49, 126.52, 126.50, 126.17, 126.11 (C-

Ar), 125.69, 125.51 (2 × d, 2JC-F = 34Hz, CH-base), 122.72 (CH-Ar), 116.38, 116.35 

(CH-Ar), 86.96, 86.89 (C-1’), 86.67, 86.61 (C-4’), 72.16, 71.9 (C-3’), 67.94, 67.90 

(2 × d, 2JC-P = 4.45Hz, C-5’), 66.3 (OCH2(CH2)3CH3), 61.08, 60.09 (d, 2JC-P = 

17.5Hz, CHCH3), 40.86, 40.78 (C-2’), 40.05, 39.99 (CH-isoLeu), 29.35, 29.18 (CH2-

ester), 26.04, 25.99 (CH2-isoLeu), 23.30 (CH2-ester), 15.89, 14.25, 11.52 

(NHCHCH(CH3)CH2CH3). 

HPLC (System 2) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 658, C30H39FN3O9PNaF required: (M+) 635.24  
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5-Fluoro-2’-deoxyuridine-5’-O-[phenyl-(benzoxy-L-leucinyl)] phosphate (3.1o). 

 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) phenyl-

(benzoxy-L-leucinyl) phosphorochloridate (2.3s, 

0.48 g, 1.21 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an 

eluent system, followed by preparative purification 

to give the pure product 3.1o as a white solid (0.011 g, 3%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.43, 3.91 
19F-NMR (MeOD, 470 MHz) δ -167.20 
1H-NMR (MeOD, 500 MHz) δ 7.83 – 7.80 (m, 1H, H-Ar), 7.37 – 7.32 (m, 7H, H-

Ar), 7.23 - 7.19 (m, 3H, H-Ar), 6.23– 6.18 (m, 1H, H-1’), 5.21 – 5.19 (m, 2H, 

CH2Ph), 4.37 – 4.20 (m, 3H, H-3’, H-5’, H-5’), 4.06 – 4.05 (m, 1H, H-4’), 3.97 – 

3.94 (m, 1H, NHCHCH2CH(CH3)2), 2.29 – 2.22, 2.04 – 1.96 (2 × m, 2H, H-2’) 1.74-

1.68 NHCHCH2CH(CH3)2), 1.60 – 1.55 (m, 2H, NHCHCH2CH(CH3)2), 0.95 – 0.85 

(m, 6H, 2 × CHCH2CH(CH3)2). 
13C-NMR (MeOD, 125 MHz) δ 175.2, 174.7 (C=O, -ester), 160.0 (d, 2JC-F = 26 Hz, 

C-O, -base), 152.2 (d, 4JC-F = 8.8 Hz, C=O, -base), 152.2, 152.1 (2 × d, 4JC-F = 8.8 

Hz, C=O, base), 141.0 (d, 1JC-F = 230 Hz, C-F, base), 137.2 (C-Ar), 129.7, 129.6, 

129.5, 129.4, 128.3, 128.0, 126.3, 126.2 (CH-Ar), 125.6 (d, 2JC-F = 35.3 Hz, C-H, 

base), 121.5, 121.3 (CH-Ar), 86.9 (C-1’), 86.7 (d, 3JC-P = 8.8 Hz, C-4’), 72.1, 71.9 

(C-3’), 67.9 (CH2Ph), 67.7 (d, 2JC-P = 5.0 Hz, C-5’), 53.5 (CHCH2CH(CH3)2), 45.0 

(CHCH2CH(CH3)2), 41.0 (C-2’), 25.8 (CHCH2CH(CH3)2), 23.2, 22.5 

(CHCH2CH(CH3)2. 

HPLC (System 2) tR = 14.29 min 

(ES+) m/z, found: (M+Na+) 628, C28H33N3O9PNaF required: (M+) 605.19  
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(benzoxy-L-leucinyl)] phosphate 

(3.1p).  

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-naphthyl-

(benzoxy-L-leucinyl) phosphorochloridate (2.3t, 

0.54 g, 1.21 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an 

eluent system, followed by preparative purification 

to give the pure product 3.1o as a white solid (0.007 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.40 
19F-NMR (MeOD, 470 MHz) δ - 167.1, - 167.01 
1H-NMR (MeOD, 500 MHz) δ 8.15 (m, 1H, H-Ar), 7.88 (m, 1H, H-Ar), 7.72 – 7.67 

(m, 2H, H-Ar), 7.54 – 7.47 (m, 3H, H-Ar), 7.41 – 7.36 (m, 1H, H-Ar), 7.34 – 7.27 

(m, 5H, H-Ar), 6.12 – 6.16 (2 × t, J = 6.6 Hz, 1H, H-1’), 5.15 – 5.04 (m, 2H, 

CH2Ph), 4.37 – 4.21 (m, 3H, H-3’, H-5’, H-5’), 4.05 (m, 1H, H-4’), 4.00 (m, 1H, 

CHCH2CH(CH3)2), 2.157 (m, 1H, H-2’), 1.76 (m, 1H, H-2’), 1.63 (m, 1H, 

CHCH2CH(CH3)2), 1.57 - 1.46 (m, 2H, CHCH2CH(CH3)2), 0.82 (d, J = 6.3 Hz, 3H, 

CH3), 0.76 (d, J = 6.6 Hz , 3H, CH3). 
13C  (MeOD, 125 MHz) δ 174.68, 174.66 (C=O, ester), 159.38 (d, 2JC-F = 26.94 Hz, 

C= O, base), 150.53 (C= O, base), 147.92, 147.86 (2 × d, 2JC-P = 7.02 Hz, C-O), 

141.71 (d, 1JC-F = 234.58 Hz, C-F, base), 137.09, 136.30 (C-Ar), 127.82, 127.77, 

129,6, 129.4, 128.97, 127.88, 127.56, 126.55, 126.13 (C-Ar), 125.40 (d, 2JC-F = 34.7 

Hz, C-H, base), 122.70, 122.63 (CH-Ar), 116.35, 116.32 (CH-Ar), 86.9 (C-1’), 

86.63, 86.57 (C-4’), 72.29, 71.93 (C-3’), 67.96 (CH2Ph), 67.85 (d, 2JC-P = 5.6 Hz, C-

5’), 55.0 (CHCH2CH(CH3)2), 44.99 (d, 3JC-P = 7.3 Hz, CHCH2CH(CH3)2), 40.90 (C-

2’), 25.64, 25.38 (CHCH2CH(CH3)2), 23.12, 22.95, 21.94, 14.5 (CHCH2CH(CH3)2). 

HPLC (System 2) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 678, C32H35N3O9PNaF required: (M+) 655.21  

NH

O

ON

O

OH

OPO
NH

F

O

O

O



Blanka Gönczy         Chapter 8 

	

	 277	

5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(penthoxy-L-leucinyl)] phosphate 

(3.1q). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.45 g, 1.83 

mmol), tBuMgCl (2.00 ml, 2.00 mmol) α-naphthyl-

(pentoxy-L-leucinyl) phosphorochloridate (2.3u, 

1.55 g, 3.65 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an 

eluent system, followed by preparative purification to give the pure product 3.1q as a 

white solid (0.034 g, 2%). 
 

31P-NMR (MeOD, 202 MHz) δ 4.48, 4.97 
19F-NMR (MeOD, 470 MHz) δ -167.17 
1H-NMR (MeOD, 500 MHz) δ 8.20 – 8.18 (m, 1H, H-Ar), 7.90 – 7.88 (m, 1H, H-

Ar), 7.75 – 7.70 (m, 2H, H-Ar), 7.55 – 7.51 (m, 3H, H-Ar), 7.44 – 7.40 (m, 1H, H-

Ar), 6.18 – 6.13 (m, 1H, H-1’), 4.41 – 4.30 (m, 3H, H-3’, H-5’, H-5’), 4.12 – 4.04 

(m, 1H, H-4’), 4.04 – 4.02 (m, 2H, OCH2(CH2)3CH3), 3.96 – 3.93 (m, 1H, 

NHCHCH2CH(CH3)2), 2.20 – 2.18 (m, 1H, H-2’), 1.85 – 1.66 (m, 1H, H-2’), 1.67 – 

1.58 (m, 5H, OCH2CH2, CHCH2CHCH3, NHCHCH2CH(CH3)2), 1.31 – 1.28 (m, 4H, 

2 × CH2, ester). 
13C -NMR (MeOD, 125 MHz) 175.04, 174.98 (C=O, ester), 159.2 (C=O, base), 

150.5 (d, 4JC-F = 7.29 Hz, C=O, base), 147.91, 147.90 (OC-Ar), 141.72 (d, 1JC-F = 

236 Hz, C-F, base), 136.37 (C-Ar), 130.8, 128.95, 128.91, 127.87, 127.57, 127.5, 

126.53, 126.19 (CH-Ar), 125.65, 125.56 (2 × d, 2JC-F = 35Hz, C-H, base), 122.70, 

122.68 (CH-Ar), 116.42, 116.30 (CH-Ar), 86.95, 86.91 (C-1’), 86.69, 86.63 (C-4’), 

72.23, 72.00 (C-3’), 67.90, 67.86 (d, 2JC-P = 4.45Hz, C-5’), 66.4 (OCH2(CH2)3CH3), 

54.87, 54.80 (d, 2JC-P = 7.78Hz, CHCH3), 44.16 (NHCHCH2CH(CH3)2), 40.87, 40.80 

(C-2’), 29.34, 29.14 (CH2(CH2)3CH3), 25.60 (CH2-ester), 23.02, 21.82 (CH(CH3)2), 

14.26 (CH2(CH2)3CH3).  

HPLC (System 2) tR = 19.32 min 

(ES+) m/z, found: (M+Na+) 658, C30H39N3O9PNaF required: (M+)  635.24  
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5-Fluoro-2’-deoxyuridine-5’-O-[phenyl-(benzoxy-L-methyonyl)]) phosphate 

(3.1r). 

Prepared according to the standard procedure 

5 from 5-fluoro-2’-deoxyuridine (0.20 g, 0.81 

mmol), NMI (0.32 ml, 4.06 mmol) phenyl-

(benzoxy-L-methioninyl) 

phosphorochloridate (2.3v, 0.67 g, 1.62 

mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an eluent system, followed by preparative 

purification to give the pure product 3.1r as a white solid (0.003 g, 1%).  
 

31P-NMR (MeOD, 202 MHz) δ 4.34, 3.94                                                                                
19F-NMR (MeOD, 470 MHz) δ – 167.40, – 167.69  
1H-NMR (MeOD, 500 MHz) δ 7.83 – 7.80 (m, 1H, H-Ar), 7.74 – 7.72 (m, 1H, H-

Ar), 7.64 – 7.62 (m, 1H, H-Ar), 7.37 – 7.32 (m, 6H, H-Ar, H-base), 7.26 – 7.17 (m, 

2H, H-Ar), 6.25 – 6.17 (m, 1H, H-1’), 5.18, 5.13 (2AB, JAB = 12.0 Hz, 2H, CH2Ph), 

4.40 – 4.35 (m, 1H, H-3’), 4.32 – 4.22 (m, 2H, H-5’), 4.16 – 4.03 (m, 2H, NHCH, H-

4’), 2.44, 2.36 (2 x t, J = 7.50 Hz, CH2S), 2.16 – 2.08 (m, 1H, 1 x H-2’), 1.98 – 1.82 

(m, 6H, 1 x H-2’, NHCHCH2CH2SCH3). 

HPLC (System 2) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 646, C27H31FN3O9PNaS required: (M+)  623.15  
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(benzoxy-L-methyonyl)] phosphate 

(3.1s). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-naphthyl-

(benzoxy-L-methioninyl) phosphorochloridate 

(2.3w, 0.56 g, 1.21 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by 

preparative purification to give the pure product 3.1s as a white solid (0.008 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.95, 4.39 
19F-NMR (MeOD, 470 MHz) δ  -167.28,  
1H-NMR (MeOD, 500 MHz) δ 8.19 – 8.15 (m, 1H, H-Ar), 7.90 – 7.88 (m, 1H, H-

Ar), 7.75 - 7.70 (m, 2H, H-Ar), 7.56 - 7.50 (m, 3H, H-Ar), 7.44 - 7.28 (m, 6H, H-

Ar), 6.15 – 6.10 (m, 1H, H-1’), 5.15 - 5.07 (m, 2H, OCH2Ph), 4.36 - 4.15 (m, 4H, H-

3’, H-5’, H-5’,  CHCH2CH2SCH3), 4.07 - 4.03 (m, 1H, H-4’), 2.45 – 1.64 (m, 9H, 2 

× H-2’, CHCH2CH2SCH3). 
13C-NMR (MeOD, 125 MHz) δ 173.92, 174.89 (C=O, ester), 157.53 (C=O, base), 

150.66 (C=O, base), 147.85 (OC-Ar), 141.72 (d, 1JC-F = 244 Hz, CF-base), 136.76 

(C-Ar), 129.62, 129.50, 129.45, 129.41,128.33, 127.88, 127.79,127.63, 127.56, 

127.52, 126.52, 126.24, 126.19 (CH-Ar), 125.73, 125.46 (2 × d, 2JC-F = 35 Hz, CH-

base), 122.71, 122.63 (CH-Ar), 116.44, 116.41 (CH-Ar), 86.98, 86.92 (C-1’), 86.64, 

86.57 (C-4’), 72.22, 71.96 (C-3’), 68.15 (OCH2Ph), 67.94 (d, 2JC-F = 6.0 Hz, C-5’), 

55.14 (CHCH2CH2SCH3), 40.87 (C-2’), 34.2, 33.79 (CHCH2CH2SCH3), 30.83, 

30.75 (CH2CH2SCH3), 15.05, 14.93 (CH3S). 

HPLC (System 2) tR = 12.13 min 

(ES+) m/z, found: (M+Na+) 696, C31H33FN3O9PNaS required: (M+)  673.17  
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(isopropoxy-L-methyonyl)] 

phosphate (3.1t). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 mmol), 

tBuMgCl (0.67 ml, 0.67 mmol) α-naphthyl-

(isopropoxy-L-methioninyl) phosphorochloridate 

(2.3x, 0.50 g, 1.21 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by preparative purification to give the pure 

product 3.1t as a white solid (0.007 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.93, 4.56 
19F-NMR (MeOD, 470 MHz) δ -167.32 
1H-NMR (MeOD, 500 MHz) δ 8.20 – 8.17 (m, 1H, H-Ar), 7.89 – 7.87 (m, 1H, H-

Ar), 7.76 – 7.69 (m, 2H, H-Ar), 7.56 – 7.52 (m, 3H, H-Ar), 7.45 - 7.40 (m, 1H, H-

Ar), 6.15 – 6.13 (m, 1H, H-1’) 5.01-4.94 (m, 1H, CH(CH3)2 ), 4.49 – 4.31 (m, 3H, H-

3’, H-5’, H-5’), 4.14 – 4.07 (m, 2H, NHCHCH2CH2SCH3), 2.52– 2.37 (m, 2H, 

NHCHCH2CH2SCH3), 2.21 – 2.17, 2.12 – 2.07 (m, 1H, H-2’), 2.16 (s, 3H, 

NHCHCH2CH2SCH3), 1.93 – 1.87, 1.85 – 1.79 (m, 1H, H-2’), 1.23 – 1.19 (m, 6H, 

CH(CH3)2). 
13C (MeOD, 125 MHz) δ 174.12, 173.71 (C=O, ester), 159.66, 159.45 88 (2 × d, 2JC-

F = 27.53 Hz, C=O, base), 150.70 (C=O, base), 147.96, 147.90 (2 × d, 2JC-P =17.58 

Hz, C=O, base), 141.78 (d, 1JC-F =322.5 Hz, C-F, base), 136.30 (C-Ar), 128.98 (CH-

Ar), 127.94, 127.93, 127.65, 127.58, 126.58, 126.27, 126.22 (CH-Ar), 125.66, 

125.60 (2 × d, 2JC-F = 34.71 Hz, C-H, base), 122.74, 122.67 (CH-Ar), 116.45, 116.39 

(d, 4JC-P = 3.7 Hz, CH-Ar), 87.02, 86.96 (C-1’), 86.64, 86.54 (C-4’), 72.28, 71.99 (C-

3’), 70.52, 70.49 (CH(CH3)2), 68.03, 67.94 (C-5’), 55.26, 55.16 

(NHCHCH2CH2SCH3), 40.87, 40.85 (C-2’), 34.35, 33.89 (NHCHCH2CH2SCH3), 

30.98, 30.88 (NHCHCH2CH2SCH3), 22.05, 21.99 (NHCHCH2CH2SCH3), 15.22, 

15.10 (CH(CH3)2). 

HPLC (System 2) tR = 14.36 min 
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(ES+) m/z, found: (M+Na+) 648, C27H33FN3O9PNaS required: (M+) 625.17 

 

 

5-Fluoro-2’-deoxyuridine-5’-O-[1-naphthyl-(benzoxy-L-phenylalaninyl)] 

phosphate (3.1u). 

 

Prepared according to the standard procedure 5 

from 5-fluoro-2’-deoxyuridine (0.25 g, 1.01 

mmol), NMI (0.41 g, 5.07 mmol, 0.40 ml) α-

naphthyl-(benzoxy-L-phenylalaninyl) 

phosphorochloridate (2.3y, 0.45 g, 2.00 mmol) in 

THF (10 ml). The crude mixture was purified by 

column chromatography, using CH2Cl2/MeOH (1 

to 5% gradient) as an eluent system, followed by 

preparative purification to give the pure product 3.1u as a white solid (0.007 g, 1%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.27, 4.14 
19F-NMR (MeOD, 470 MHz) δ – 166.99, – 167.18  
1H-NMR (MeOD, 500 MHz) δ 8.11 – 8.00 (m, 1H, H-Ar), 7.89 – 7.85 (m, 1H, H-

Ar), 7.69 – 7.67 (m, 1H, H-Ar), 7.60 – 7.49 (m, 3H, 2 x H-Ar, H-base), 7.37 – 7.33 

(m, 2H, H-Ar), 7.25 – 7.12 (m, 10H, H-Ar), 6.09 – 6.04 (m, 1H, H-1’), 5.11 – 5.01 

(m, 2H, CH2Bn), 4.29 – 4.18 (m, 1H, NHCHCH2Bn), 4.15 – 4.08 (m, 1H, H-3’), 

4.02 – 3.95 (m, 2H, H-5’), 3.86 – 3.67 (m, 1H, H-4’), 3.14 – 3.10 (m, 1H, 

NHCHCH2Bn), 2.91 – 2.82 (m, 1H, NHCHCH2Bn), 2.12 – 2.06, 2.00 – 1.95 (2 x m, 

1H, H-2’), 1.68 – 1.62, 1.42 – 1.36 (2 x m, 1H, H-2’). 

HPLC (System 2) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 662, C31H31FN3O9PNa required: (M+) 639.18
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(penthoxy-L-

phenylalaninyl)]phosphate (3.1v). 

 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-naphthyl-

(pentoxy-L-phenylalaninyl) phosphorochloridate 

(2.3z, 0.56 g, 1.21 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by 

preparative purification to give the pure product 3.1v as a white solid (0.008 g, 2%). 
 

31P-NMR (MeOD, 202 MHz) δ 4.39, 4.07 
19F-NMR (MeOD, 470 MHz) δ -167.19 
1H-NMR (MeOD, 500 MHz) δ 8.14 – 8.06 (2 × m, 1H, H-Ar), 7.88 – 7.86 (m, 1H, 

H-Ar), 7.69 – 7.68 (m, 2H, H-Ar), 7.56 - 7.51 (m, 3H, H-Ar), 7.41 -  7.35 (m, 2H, H-

Ar), 7.27 – 7.18 (m, 5H, H-Ar), 6.10 – 6.06 (m, 1H, H-1’), 4.25 – 4.11 (2 × m, 3H, 

H-3’, H-5’, H-5’), 4.04 – 3.94 (m, 2H, H-4’,OCH2CH2CH2CH2CH3) 3.89 – 3.86, 

3.69 – 3.66 (2 × m, 1H, NHCHCH2Bn), 3.12 – 3.09, 2.92 – 2.84 (2 × m, 2H, 

NHCHCH2Bn), 2.16 – 2.11, 2.00 – 1.97 (2 × m, 2H, H-2’), 1.73 – 1.67, 1.43 – 1.36 

(2 × m, 2H, H-2’), 1.54 – 1.47, 1.28 – 1.20, 1.84 – 1.82 (3 × m, 9H, 

OCH2CH2CH2CH2CH3). 
13C  (MeOD, 125 MHz) δ 174.21, 174.07 (C=O, ester), 159.38, 159.32 (2 × d, 2JC-F = 

8.16 Hz, C=O), 150.53, 150.45 (C=O, base), 147.91, 147.85 (2 × d, 1JC-F = 233Hz, 

C-F, base), 138.39, 138.22 (C-Ar), 136.27(C-Ar), 130.64, 130.55, 129.69, 129.60, 

128.94, 128.06, 127.98, 127.92, 127.85, 127.81, 127.68, 1272, 127.57, 127.50, 

126.55, 126.17, 126.09 (CH-Ar), 125.54, 125.30 (2 × d, 2JC-F = 34Hz, CH-base), 

122.74, 122.49 (CH-Ar), 116.0, 116.17 (2 × d, 4JC-P = 68Hz, CH-Ar), 86.98, 86.89 

(C-1’), 72.26, 71.09 (C-3’), 67.50, 67.46 (2 × d, 2JC-P = 4.58 Hz, C-5’), 66.59, 66.51 

(OCH2), 58.32, 57.96 (NHCHCH2Bn), 41.07, 41.02 (NHCHCH2Bn), 40.94, 40.80 

(C-2’), 29.32, 29.28, 29.08 (OCH2CH2CH2CH2CH3), 23.31(OCH2CH2CH2CH2CH3), 
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14.25 (OCH2CH2CH2CH2CH3).  

HPLC (System 2) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 692, C33H37FN3O9PNa required: (M+) 669.23 

 

 

5-Fluoro-2’-deoxyuridine-5’-O-[phenyl-(ethoxy-L-valinyl)] phosphate (3.1w). 

 

 Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine (0.25 g, 1.01 

mmol), tBuMgCl (1.34 ml, 1.34 mmol) phenyl-

(ethoxy-L-valinyl) phosphorochloridate (2.4a, 0.65 

g, 2.43 mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography, using 

CH2Cl2/MeOH (1 to 5% gradient) as an eluent system, followed by preparative 

purification to give the pure product 3.1w as a white solid (0.005 g, 1%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.96, 4.69 
19F-NMR (MeOD, 470 MHz) δ -167.54 
1H-NMR (MeOD, 500 MHz) δ 7.86 – 7.80 (m, 1H, H-Ar), 7.39 – 7.32 (m, 2H, H-

Ar), 7.28 – 7.22 (m, 2H, H-Ar), 7.22 – 7.16 (m, 2H, H-Ar), 6.25 – 6.20 (t, J = 6.4 

Hz, 1H, H-1’), 4.43-4.38 (m, 6H, OCH2CH3, H-3’, H-4’, H-5’), 3.73 – 3.63 (t, J = 

8.3 Hz, 1H, NHCHCH(CH3)2), 2.34 – 2.22 (m, 1H, H-2’), 2.15 – 1.97 (m, 2H, H-2’, 

NHCHCH(CH3)2), 1.32 – 1.21 (m, CHCH(CH3)2, OCH2CH3), 1.00 – 0.86 (m, 6H, 

CHCH(CH3)2). 

HPLC (System 2) tR = 11.77 min 

(ES-) m/E, found: (M+Cl-) 564, C22H29FN3O9PNa required: (M+) 529.16  
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5-Fluoro-2’-deoxyuridine-5’-O-[1-phenyl-(pentoxy-valinyl)] phosphate (3.1x). 

 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine  (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) phenyl-

(pentoxy-L-valinyl) phosphorochloridate (2.4b, 

0.44 g, 1.22 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography, 

using CH2Cl2/MeOH (1 to 5% gradient) as an 

eluent system, followed by preparative purification to give the pure product 3.1x as a 

white solid (0.003 g, 1%). 

 
31P-NMR (MeOD, 202 MHz) δ 4.95, 4.65 
19F-NMR (MeOD, 470 MHz) δ -167.40 
1H-NMR (MeOD, 500 MHz) δ 7.87 - 7.80 (m, 1H, H-Ar) , 7.39 - 7.31 (m, 2H, H-

Ar), 7.27 - 7.23 (m, 2H, H-Ar), 7.22 - 7.16 (m, 1H, H-Ar), 6.27 - 6.19 (m, 1H, H-1’),  

4.50 - 4.28 (m, 3H, H-3’,H-5’, H-5’), 4.14 – 4.01(m, 3H, H-4’, 

OCH2CH2CH2CH2CH3), 3.71 - 3.65 (m, 1H, NHCHCH(CH3)2), 2.14-1.98 (m, 2H, 

H-2’), 1.60 - 1.57, 1.40 – 1.26, 1.14 - 1.08 (3 × m, 17H, NHCHCH(CH3)2, 

OCH2CH2CH2CH2CH3,CH(CH3)2. 
13C (MeOD, 125 MHz) δ 174.10, 174.09 (C=O, ester), 152.10 (2 × d, 2JC-F = 7.56 Hz, 

C-F, base), 150.69 (C=O, base), 142.76, 140.91 (2 × d, 2JC-F = 7.68 Hz, C=O), 

130.79 (C-Ar), 126.32, 126.23, 125.94, 125.89, 125.63 (2 × d, 2JC-F = 33.36 Hz, C-

H), 86.96, 86.85 (C-1’), 86.67, 86.60 (2 × d, 2JC-P= 7.33 Hz, C-4’), 72.13, 71.93 (C-

3’), 67.85, 67.57 (2 × d, 2JC-P = 6.11 Hz, C-5’), 66.33 (OCH2CH2CH2CH2CH3), 

62.04 (NHCHCH(CH3)2), 40.93, 40.90 (C-2’), 33.29, 33.24 (NHCHCH(CH3)2), 

29.41, 29.20, 23.33 (OCH2CH2CH2CH2CH3), 19.55, 19.06, 18.40, 18.10, 14.29 

(OCH2CH2CH2CH2CH3, NHCHCH(CH3)2). 

HPLC (System 2) tR = HPLC data lost 

(ES+) m/z, found: (M+Na+) 594, C25H35FN3O9PNa required: (M+) 571.21  
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5-Fluoro-2’-deoxyuridine-5’-O-[1-naphtyl-(pentoxy-L-valinyl)] phosphate 

(3.1y). 

Prepared according to the standard procedure 4 

from 5-fluoro-2’-deoxyuridine  (0.15 g, 0.61 

mmol), tBuMgCl (0.67 ml, 0.67 mmol) α-

naphthyl-(pentoxy-L-valinyl) phosphorochloridate 

(2.4c, 0.50 g, 1.22 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CH2Cl2/MeOH (1 to 5% 

gradient) as an eluent system, followed by preparative purification to give the pure 

product 3.1y as a white solid (0.007 g, 2%). 

 
31P-NMR (MeOD, 202 MHz) δ 5.39, 5.20 
19F-NMR (MeOD, 470 MHz) δ -167.21 
1H-NMR (MeOD, 500 MHz) δ 8.20 - 8.18 (m, 1H, H-Ar), 7.87 (m, 1H, H-Ar), 7.75 

– 7.68 (m, 2H, H-Ar), 7.54 - 7.50 (m, 3H, H-Ar), 7.42 - 7.40 (m, 1H, H-Ar), 6.16 – 

6.15 (m, 1H, H-1’) 4.43 – 4.30 (m, 3H, H-3’, H-5’, H-5’), 4.14 – 3.99 (m, 3H, H-4’, 

OCH2CH2CH2CH2CH3), 3.75 – 3.74 (m, 1H, NHCHCH(CH3)2), 2.26 – 1.60 (m, 3H, 

H-2’, NHCHCH(CH3)2), 1.60 – 1.50, 1.42 – 1.21, 1.02– 0.78 (3 × m, 15H, 

OCH2CH2CH2CH2CH3, CH(CH3)2). 
13C (MeOD, 125 MHz) δ 174.45, 174.14 (C=O-ester), 159.51 (2 × d, 2JC-F = 26.78 

Hz, C=O, base), 150.54 (C=O, base), 148.00, 147.94 (2 × d, 2JC-F = 7.30 Hz, C=O), 

136.27 (C-Ar), 128.97, 127.93, 127.89, 127.86, 127.83, 127.76, 127.61, 127.54, 

126.58, 126.19, 126.16 (CH-Ar), 125.70 (d, 2JC-F = 34.09 Hz, CH-base), 122.74, 

122.69 (CH-Ar), 116.40, 116.37 (2 × d, 4JC-P = 2.50 Hz, CH-Ar), 87.02, 86.98 (C-

1’), 86.79, 86.74 (2 × d, 3JC-P = 7.27 Hz, C-4’), 72.19, 71.98 (C-3’), 67.98, 67.94 (2 × 

d, 2JC-P = 5.45 Hz, C-5’), 66.38, 66.23 (OCH2CH2CH2CH2CH3), 62.24, 62.15 (CH-

α), 40.87, 40.80 (C-2’), 33.19, 33.13 (NHCHCH(CH3)2), 29.34, 29.25, 23.35, 

23.33(OCH2CH2CH2CH2CH3), 19.64, 19.20, 18.47, 18.33, 18.08, 14.38, 

(OCH2CH2CH2CH2CH3, NHCHCH(CH3)2). 

HPLC (System 2) tR = 17.04 min 

(ES+) m/z, found: (M+Na+) 644, C29H37FN3O9P required: (M+)  621.23  
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8.5 Experimental  section – Chapter 4 
 

Synthesis of 2’,3’,5’-tri-O-acetyl-inosine (4.4). 

 

To a suspension of commercially available inosine (3.00 

g, 11.18 mmol) DMAP (0.23 g, 1.90 mmol) and Et3N 

(6.23 ml, 44.73 mmol) in anhydrous ACN (115 ml) acetic 

anhydride was added dropwise (3.80 ml, 40.26 mmol). 

The reaction mixture was allowed to stir at ambient 

temperature overnight. Anhydrous MeOH (25 ml) was 

added to quench the reaction and the pure product 4.4 (3.0 g, 68%) precipitated as a 

white solid after the addition of Et2O (300 ml). 

 
1H NMR (500 MHz, MeOD) δ 8.22 (s, 1H, H-8), 8.10 (s, 1H, H-2), 6.24 (d, 1H, J = 

5 Hz, 1H, H-1’), 5.99 (t, 1H, J = 6 Hz, 1H, H-2’), 5.69 (t, 1H, J = 5.5 Hz, 1H, H-3’), 

4.48 – 4.43 (m, 2H, H-4’, H-5’), 4.38 (dd, 1H, J = 11.5 Hz, 4.5 Hz, H-5’), 2.15 (s, 

3H, CH3 - acetyl), 2.09, 2.07 (2 x s, 6H, 2 x CH3 - acetyl). 
13C NMR (125 MHz, MeOD) δ 172.20, 171,37, 171.14 (C=O, acetyl), 158.85 (C=O, 

base), 149.82 (C-4), 147.10 (C-2), 141.01 (C-8), 126.20 (C-5), 88.34 (C-1’), 81.71 

(C-2’), 74.54 (C-3’), 71.95 (C-4’), 64.19 (C-5’), 20.63, 20.43, 20.25 (3 x CH3 - 

acetyl). 

 

Synthesis of 2’,3’,5’-tri-O-acetyl-6-chloro-inosine (4.5). 

 

The suspension of 2’,3’,5’-tri-O-acetyl-inosine (4.4, 1.0 

g, 2.54 mmol), BTEA-Cl (1.15 g, 5.07 mmol), N, N-

dimethylaniline (0.35 ml, 2.79 mmol) and POCl3 (1.18 

ml, 12.68 mmol) in anhydrous ACN (65 ml) were heated 

under reflux at 85oC for 3 hrs. After that time volatiles 

were evaporated under reduced pressure to give the crude mixture as a yellow oil. 

The crude oil was dissolved in CHCl3 and it was allowed to stir in the presence of 

crushed ice at ambient temperature for 30 minutes. The two layers were separated 

and the aqueous layer was extracted with CHCl3. The combined organic layers were  
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 washed with cold water and 5% aqueous solution of NaHCO3, dried over MgSO4  

and evaporated under reduced pressure to give the title compound 4.5 (0.93 g, 89%). 

 
1H NMR (500 MHz, MeOD) δ 8.74 (s, 1H, H-8), 8.66 (s, 1H, H-2), 6.35 (d, 1H, J = 

5 Hz, 1H, H-1’), 6.05 (t, 1H, J = 5.5 Hz, 1H, H-2’), 5.73 (t, 1H, J = 5.5 Hz, 1H, H-

3’), 4.48 (q, J = 3.5 Hz, 1H, H-4’), 4.44 (dd, J = 12.5 Hz, 3.5 Hz, 1H, H-5’), 4.38 

(dd, J = 12.5 Hz, 4.5 Hz, 1H, H-5’), 2.14 (s, 3H, CH3 - acetyl), 2.07, 2.06 (2 x s, 6H, 

2 x CH3 - acetyl). 
13C NMR (125 MHz, MeOD) δ 172.15, 171,37, 171.19 (C=O, acetyl), 153.33 (C-2), 

152.67 (C-4), 151.79 (C-Cl), 146.98 (C-8), 133.15 (C-5), 88.67 (C-1’), 81.85 (C-2’), 

74.40 (C-3’), 71.89 (C-4’), 64.17 (C-5’), 20.86, 20.65, 20.47 (3 x CH3 - acetyl). 

 

Synthesis of 2’,3’,5’-tri-O-acetyl-6-thioinosine (4.6). 

 

The suspension of 2’,3’,5’-tri-O-acetyl-inosine (4.4, 1.0 

g, 2.54 mmol) and Lawesson’s reagent (2.26 g, 5.58 

mmol) in anhydrous toluene (60 ml) were heated under 

reflux at 110oC for 3 hrs until the consumption of the 

starting material. The reaction mixture was allowed to 

slowly cool down and the majority of the precipitated Lawesson’s reagent was 

removed by filtration. The reaction mixture was evaporated under reduced pressure 

and purified by column chromatography, using CHCl3/MeOH (2 to 5% gradient) as 

an eluent system to give 4.6 as a yellow solid (0.57 g, 55%). 

 
1H NMR (500 MHz, MeOD) δ 8.34 (s, 1H, H-2), 8.16 (s, 1H, H-8), 6.25 (d, 1H, J = 

5, 1H, H-1’), 5.99 (t, 1H, J = 5.5, 1H, H-2’), 5.68 (t, 1H, J = 5.5, 1H, H-3’), 4.48 (q, 

J = 3.5, 1H, H-4’), 4.49 – 4.40 (m, 2H, H-4’, H-5’), 4.38 (dd, J =12, 4.5, 1H, H-5’), 

2.15 (s, 3H, CH3 - acetyl), 2.09, 2.08 (2 x s, 6H, 2 x CH3 - acetyl). 
13C NMR (125 MHz, MeOD) δ 178.70 (C=S), 172.19, 171,36, 171.14 (C=O - 

acetyl), 146.65 (C-2), 144.77 (C-4), 142.73 (C-8), 137.30 (C-5), 88.44 (C-1’), 81.79 

(C-2’), 74.50 (C-3’), 71.93 (C-4’), 64.15 (C-5’), 20.63, 20.42, 20.24 (3 x CH3 - 

acetyl).  
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Synthesis of 6-thioinosine (4.3). 

 

2’,3’,5’-tri-O-acetyl-6-thioinosine (4.6, 0.5 g, 1.22 mmol) 

was dissolved in saturated solution of NH4OH (0.1 ml), 

then adjusted to neutral pH with 0.1M acetic acid and kept 

in the fridge at -5oC for 3-5 days until the appearance of 

the yellowish crystals. The crystals were filtered off and 

used in the next step without further purification to give the title compound 4.3 (0.17 

g, 48%). 

 
1H NMR (500 MHz, MeOD) δ 8.49 (s, 1H, H-2), 8.14 (s, 1H, H-8), 6.05 (d, 1H, J = 

5 Hz, 1H, H-1’), 4.63 (t, 1H, J = 5 Hz, 1H, H-2’), 4.35 (t, 1H, J = 3.5 Hz, 1H, H-3’), 

4.16 (q, J = 3.5 Hz, 1H, H-4’), 3.88 (dd, J = 12.5 Hz, 3 Hz, 1H, H-5’), 3.77 (dd, J = 

12.5 Hz, 3 Hz, 1H, H-5’). 
13C NMR (125 MHz, MeOD) δ 178.63 (C=S), 146.49 (C-2), 144.80 (C-4), 142.73 

(C-8), 137.21 (C-5), 90.59 (C-1’), 87.56 (C-2’), 76.22 (C-3’), 72.10 (C-4’), 62.91 

(C-5’). 

 

Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine (4.10). 

 

To the solution of 6-thioinosine (4.3, 1.40 g, 4.92 mmol) 

in anhydrous acetone (50 ml) 60% aqueous solution of 

perchloric acid (0.90 ml) was added dropwise and stirred 

overnight under inert atmosphere at ambient temperature. 

Saturated solution of NH4OH was added dropwise in 

order to reach neutral pH. The reaction mixture was 

evaporated and the resulting white solid was purified by column chromatography 

(CHCl3/MeOH, 7:3) to give the protected nucleoside 4.10 (1.24 g, 78%). 

 
1H NMR (500 MHz, MeOD) δ 8.46 (s, 1H, H-2), 8.14 (s, 1H, H-8), 6.22 (d, 1H, J = 

3 Hz, 1H, H-1’), 5.30 (dd, J = 6 Hz, 2.5 Hz, 1H, H-2’), 5.01 (dd, J = 6 Hz, 2.5 Hz, 

1H, H-3’), 4.37 (q, J = 4 Hz, 1H, H-4’), 3.77 (dd, J = 12 Hz, 4 Hz, 1H, H-5’), 3.72 
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(dd, J = 12 Hz, 4 Hz, 1H, H-5’), 1.62 (s, 3H, CH3 - isopropylidene), 1.40 (s, 3H, CH3 

- isopropylidene). 
13C NMR (125 MHz, MeOD) δ 178.12 (C=S), 146.33 (C-2), 144.40 (C-4), 142.80 

(C-8), 137.04 (C-5), 123.42 (C(CH3)2 - isopropylidene), 92.54 (C-1’), 88.78 (C-2’), 

86.05 (C-3’), 82.93 (C-4’), 63.29 (C-5’), 27.54 (CH3 - isopropylidene), 25.53 (CH3 - 

isopropylidene). 

 

Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine 5’-O-[1-naphthyl-

(cyclohexoxy-L-alaninyl)]-phosphate (4.11a). 

 

Prepared according to standard procedure 6a 

from, 2’,3’-O,O-isopropylidene-6-

thioinosine (0.168 g, 0.518 mmol) tBuMgCl 

(1.0 M in THF, 1.03 ml, 1.03 mmol) and 1-

naphthyl-(cyclohexoxy-L-

alaninyl)phosphorochloridate (2.3j, 0.48 g, 

1.23 mmol). The crude mixture was purified 

by column chromatography, using CHCl3/MeOH (1-3%, gradient) as an eluent 

sytem to give the pure product 4.11a as a yellow foam (0.088 g, 25%). 

 
31P NMR (202 MHz, MeOD) δ 4.24, 3.96 
1H NMR (500 MHz, MeOD) δ 8.27, 8.26 (2 x s, 1H, H-2), 8.11 - 8.09 (m, 0.6H, H-

Ar), 8.03, 7.99 (2 x s, 1H, H-8), 7.97 (d, J = 8 Hz, 0.4H, H-Ar), 7.85 – 7.8 (m, 0.6H, 

H-Ar), 7.81 (d, J = 7.5 Hz, 0.4H, H-Ar), 7.67 – 7.64 (m, 1H, H-Ar), 7.52 – 7.33 (m, 

4H, H-Ar), 6.16, 6.07 (2 x dd, J = 2.5 Hz, 1H, H-1’), 5.17, 5.03 (2 x dd, J = 2.5 Hz, 

1H, H-2’), 4.81, 4.74 (2 x dd, J = 2.5 Hz, 1H, H-3’), 4.70 – 4.65 (m, 1H, CH-ester), 

4.53 – 4.51 (m, 0.4H, H-4’), 4.46 – 4.44 (m, 0.6H, H-4’), 4.41 – 4.28 (m, 2H, H-5’, 

H-5’), 4.01 – 3.93 (m, 1H, CHCH3), 1.77 – 1.66 (m, 4H, 2 x CH2-ester), 1.57, 1.55, 

1.35, 1.34 (4s, 6H, 2 x CH3 isopropylidene), 1.31, 1.29 (2 x d, 3J = 7.0 Hz, 3H, 

CHCH3), 1-28 – 1.21 (m, 6H, 3 x CH2-ester).  
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Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(cyclohexoxy-L-alaninyl)]-

phosphate (4.12a). 

 

Prepared according to standard procedure 7 

from, 2’, 3’-O,O-isopropylidene-6-

thioinosine 5’-O-[1-naphthyl-(cyclohexoxy-

L-alaninyl)]-phosphate (4.11a,  0.088 g,  

0.128 mmol), in 10 ml of 60 % CH3COOH 

in water at 65oC overnight. The crude 

mixture was purified by column 

chromatography CHCl3/MeOH (9:1, gradient) as eluent, to give the pure product 

4.12a as a yellow foam (0.017 g, 21%). 

 
31P NMR (202 MHz, MeOD) δ 4.18, 4.14 
1H NMR (500 MHz, MeOD) δ 8.36, 8.35 (2 x s, 1H, H-2), 8.12 - 8.07 (m, 1H, H-

Ar), 8.08, 8.02 (2 x s, 1H, H-8), 7.84 – 7.80 (m, 1H, H-Ar), 7.66 (t, J = 7.0 Hz, 1H, 

H-Ar), 7.48 – 7.43 (m, 3H, H-Ar), 7.34, 7.33 (dt, J = 8.0 Hz, 1H, H-Ar), 6.16, 6.07 

(2 x d, J = 5.0 Hz, 1H, H-1’), 4.66 (t, J = 5.0 Hz, 1H, H-2’), 4.64 – 4.60 (m, 1H, CH-

ester), 4.51 – 4.42 (m, 3H, H-3’, H-5’, H-5’), 4.31 – 4.29 (m, 1H, H-4’), 4.02 – 3.92 

(m, 1H, CHCH3), 1.70 – 1.65 (m, 4H, 2 x CH2-ester), 1.28, 1.27 (2 x d, 3J = 7.0 Hz, 

3H, CHCH3), 1.24 – 1.19 (m, 6H, 3 x CH2-ester). 
13C NMR (125 MHz, MeOD) δ 178.08, 178.07 (C=S), 174.57, 174.30 (2 x d, 3JC-C-N-

P = 5.25 Hz, 4.37 Hz, C=O), 147.92, 147.87 (C-2), 144.94 (C-Ar), 142.87, 142.78 

(C-4), 140.46, 140.37 (C-8), 137.01, 136.97 (C-5), 128.92, 128.87, 127.80, 127.49, 

126.47, 126.42, 125.99, 122.67, 122.58, 116.16, 116.14 (C-Ar), 90.71, 90.59 (C-1’), 

84.69, 84.57 (d, 3JC-C-O-P = 8.0 Hz, C-4’), 75.28, 75.22 (C-2’), 75.01 (CH-ester), 

71.56, 71.47 (C-3’), 67.78, 67.51 (2 x d, 2JC-O-P =5.25, C-5’), 51.87, 51.82 (CHCH3), 

32.39, 32.33 (CH2-ester), 26.37 (CH2-ester), 24.64, 24.60 (CH2-ester), 20.68, 20.47 

(2 x d, 3JC-C-N-P = 7.5 Hz, CHCH3).  

HPLC (System 2) tR = 17.36, 17.54 min 

(ES+) m/z, found: (M+Na+) 666.20, C29H34N5O8PS required: (M+) 643.19 
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine 5’-O-[1-naphthyl-(3,3-

dimethyl-1-butoxy-L-alaninyl)]-phosphate (4.11b). 

	

Prepared according to standard procedure 

6a from, 2’,3’-O,O-isopropylidene-6-

thioinosine (0.164 g, 0.50 mmol) 

tBuMgCl (1.0 M in THF, 1.01 ml, 1.01 

mmol) and 1-naphthyl-(3,3-dimethyl-1-

butoxy-L-alaninyl)phosphorochloridate 

(2.3k, 0.40 g, 1.01 mmol). The crude 

mixture was purified by column chromatography, using CHCl3/MeOH (1-3%, 

gradient) as an eluent to give the pure product 4.11b as a yellow foam (0.148 g, 

43%). 

 
31P NMR (202 MHz, MeOD) δ 4.19, 3.97 
1H NMR (500 MHz, MeOD) δ 8.52 – 8.48 (m, 0.4H, H-Ar), 8.29, 8.28 (2 x s, 1H, H-

2), 8.11 - 8.09 (m, 0.6H, H-Ar), 8.04, 7.99 (2 x s, 1H, H-8), 7.84 – 7.79 (m, 1H, H-

Ar), 7.65 – 7.59 (m, 1H, H-Ar), 7.51 – 7.33 (m, 4H, H-Ar), 6.16, 6.07 (2 x dd, J = 

2.5 Hz, 1H, H-1’), 5.17, 5.03 (2 x dd, J = 2.5 Hz, 1H, H-2’), 4.84, 4.79 (2 x dd, J = 

2.5 Hz, 1H, H-3’), 4.53 – 4.45 (m, 1H, H-4’), 4.40 – 4.29 (m, 2H, H-5’, H-5’), 4.10 – 

3.95 (m, 3H, CHCH3, OCH2CH2C(CH3)3), 1.57, 1.54, 1.34, 1.33 (4s, 6H, 2 x CH3-

isopropylidene), 1.47 -1.43 (m, 2H, OCH2CH2C(CH3)3), 1.32 – 1.26 (2 x d, J = 7.0 

Hz, 3H, CHCH3), 0.88, 0.87 (2 x s, 9H, OCH2CH2C(CH3)3).  
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Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(3,3-dimethyl-1-butyl-L-alaninyl)]-
phosphate (4.12b). 

 

Prepared according to standard procedure 

7 from, 2’,3’-O,O-isopropylidene-6-

thioinosine 5’-O-[1-naphthyl-(3,3-

dimethyl-1-butyl-L-alaninyl)]-phosphate 

(4.11b, 0.148 g,  0.216 mmol), in 10 ml of 

60 % CH3COOH in water at 65oC 

overnight. The crude mixture was purified by column chromatography 

CHCl3/MeOH (9:1, gradient) as eluent, to give the pure product 4.12b as a yellow 

foam (0.016 g, 12%). 

 
31P NMR (202 MHz, MeOD) δ 4.07, 4.05 
1H NMR (500 MHz, MeOD) δ 8.36 (s, 1 H, H-2), 8.15 - 8.09 (m, 1H, H-Ar), 8.02 (s, 

1H, H-8), 7.89 – 7.85 (m, 1H, H-Ar), 7.68 (t, J = 7.5 Hz, 1H, H-Ar), 7.53 – 7.45 (m, 

3H, H-Ar), 7.39 - 7.35 (m, 1H, H-Ar), 6.02 (t, J = 5.0 Hz, 1H, H-1’), 4.67 – 4.65 (m, 

1H, H-2’), 4.49 – 4.42 (m, 3H, H-3’, H-5’, H-5’), 4.31 – 4.29 (m, 1H, H-4’), 4.07 – 

3.91 (m, 3H, CHCH3, OCH2CH2C(CH3)3), 1.46 – 1.40 (m, 2H, OCH2CH2C(CH3)3), 

1.30, 1.26 (2 x d, J = 7.0 Hz, 3H, CHCH3), 0.88, 0.87 (2 x s, 9H, 

OCH2CH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 178.12 (C=S), 174.57, 174.30 (2 x d, 3JC-C-N-P = 5.37 

Hz, 4 Hz, C=O), 147.93, 147.89 (C-2), 144.92 (C-Ar), 142.86, 142.71 (C-4), 136.25, 

136.21, 128.93, 128.88, 127.80, 127.49, 126.46, 126.42, 125.99, 125.95, 122.66, 

122.60, 116.11, 116.09 (C-Ar), 90.75, 90.57 (C-1’), 84.70, 84.58 (d, 3JC-C-O-P = 8.0 

Hz, C-4’), 75.30, 75.24 (C-2’), 71.58, 71.45 (C-3’), 67.73, 67.42 (2 x d, 2JC-O-P = 5.0 

Hz, C-5’), 64.01, 64.01 (OCH2CH2C(CH3)3), 51.72 (CHCH3), 42.72, 42.68 

(OCH2CH2C(CH3)3), 30.69 (OCH2CH2C(CH3)3), 29.94, 29.91(OCH2CH2C(CH3)3), 

20.48, 20.27 (2 x d, 3JC-C-N-P = 7.5 Hz, CHCH3). 

HPLC (System 2) tR = 17.76, 17.42 min 

(ES+) m/z, found: (M+Na+) 668.10, C29H36N5O8PNaS required: (M+) 645.20  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine 5’-O-[1-naphthyl-(benzoxy-

dimethylglicinyl)]-phosphate (4.11c). 

 

Prepared according to standard procedure 6a 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

(0.20 g, 0.61 mmol) tBuMgCl (1.0 M in THF, 

1.23 ml, 1.23 mmol) and 1-naphthyl-(benzoxy-

dimethylglicinyl)phosphorochloridate (2.3l, 

0.50 g, 1.23 mmol). The crude mixture was 

purified by column chromatography, using 

CHCl3/MeOH (1-3%, gradient) as an eluent to 

give the pure product 4.11c as a yellow foam (0.14 g, 32%). 

 
31P NMR (202 MHz, MeOD) δ 2.70, 2.56 
1H NMR (500 MHz, MeOD) δ 8.26, 8.21 (2 x s, 1H, H-2), 8.01, 7.95 (2 x s, 1H, H-

8), 7.83 – 7.77 (m, 1H, H-Ar), 7.63 – 7.55 (m, 1H, H-Ar), 7.48 – 7.24 (m, 10H, H-

Ar), 6.15, 6.04 (2 x d, J = 2.5 Hz, 1H, H-1’), 5.18 – 4.98 (m, 3H, H-2’, CH2Bn), 4.78 

– 4.76 (m ,1H, H-3’), 4.41 -4.40 (m, 1H, H-4’), 4.29 – 4.27 (m, 2H, H-5’, H-5’), 

1.55, 1.53, 1.33, 1.28 (4s, 6H, 2 x CH3-isopropylidene), 1.51, 1.47 (2 x d, J = 7.0 Hz, 

6H, 2 x CHCH3), 1.46, 1.45 (2 x s, CHCH3).  
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Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(benzoxy-dimethylglicinyl)]-

phosphate (4.12c). 

  

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

5’-O-[1-naphthyl-(benzoxy-dimethylglicinyl)]-

phosphate (4.11c, 0.14 g, 0.197 mmol), in 10 

ml of 60 % CH3COOH in water at 65oC 

overnight. The crude mixture was purified by 

column chromatography CHCl3/MeOH (9:1, 

gradient) as eluent, to give the pure product 4.12c as a yellow foam (0.030 g, 23%). 

 
31P NMR (202 MHz, MeOD) δ 2.61, 2.56 
1H NMR (500 MHz, MeOD) δ 8.33, 8.28 (2 x s, 1H, H-2), 8.14 - 8.10 (m, 1H, H-

Ar), 8.02, 7.95 (2 x s, 1H, H-8), 7.83 – 7.78 (m, 1H, H-Ar), 7.63 – 7.59 (m, 1H, H-

Ar), 7.47 – 7.40 (m, 3H, H-Ar), 7.32 - 7.21 (m, 6H, H-Ar), 6.01, 5.97 (2 x d, J = 5.0 

Hz, 1H, H-1’), 5.13 – 5.05 (m, 2H, CH2Bn), 4.64, 4.60 (2 x t, J = 5.0 Hz, 1H, H-2’), 

4.45 – 4.37 (m, 2H, H-5’, H-5’, 0.5H, H-3’), 4.34 (m, 0.5H, H-3’), 4.28 – 4.24 (m, 

1H, H-4’), 1.47 (s, 6H, CHCH3). 

13C NMR (125 MHz, MeOD) δ 178.14 (C=S), 176.50, 176.43 (2 x d, 3JC-C-N-P = 5.25 

Hz, 4.25 Hz, C=O), 157.81, 153.13, 150.49, 147.96, 147.90, 145.62, 145.58, 137.25, 

137.23, 136.20, 136.15, 133.12, 133.07, 129.52, 129.20, 128.83, 128.78, 127.69, 

127.67, 127.31, 127.28, 126.38, 126.35, 125.84, 125.79, 122.82, 116.30 (C-Ar), 

90.76, 90.66 (C-1’), 84.68, 84.55 (d, 3JC-C-O-P = 8.25 Hz, C-4’), 75.06, 74.95 (C-2’), 

71.61, 71.51 (C-3’), 68.28 (m, CH2Bn), 67.79, 67.67 (2 x d, 2JC-O-P = 5.75 Hz, C-5’), 

58.22 (NHC(CH3)2), 27.77, 27.50 (2 x d, 3JC-C-N-P = 3.6 Hz, NHC(CH3)2). 

HPLC (System 2) tR = 16.83, 17.16 min 

(ES+) m/z, found: (M+Na+) 688.20, C31H32N5O8PNaS required: (M+) 665.17  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine 5’-O-[1-naphthyl-(benzoxy-

L-alaninyl)]-phosphate (4.11d). 

  

Prepared according to standard procedure 6a 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

(0.15 g, 0.46 mmol) tBuMgCl (1.0 M in THF, 

0.92 ml, 0.92 mmol) and 1-naphthyl-(benzoxy-

L-alaninyl)phosphorochloridate (2.3c, 0.36 g, 

0.92 mmol). The crude mixture was purified by 

column chromatography, using CHCl3/MeOH 

(1-3%, gradient) as an eluent to give the pure 

product 4.11d as a yellow foam (0.108 g, 34%). 

 
31P NMR (202 MHz, MeOD) δ 4.19, 3.78 
1H NMR (500 MHz, MeOD) δ 8.24 (s, 1H, H-2), 8.08 – 8.06 (m, 0.6H, H-Ar), 8.04, 

8.00 (2 x s, 1H, H-8), 7.95 – 7.92 (m, 0.4H, H-Ar), 7.79 – 7.75 (m, 1H, H-Ar), 7.60 

– 7.59 (m, 1H, H-Ar), 7.45 – 7.37 (m, 3H, H-Ar), 7.31 – 7.21 (m, 6H, H-Ar), 6.09, 

5.99 (2 x d, J = 2.5 Hz, 1H, H-1’), 5.09 – 4.95 (m, 3H, CH2Bn, H-2’, 0.6H, H-2’), 

4.61, 4.60 (dd, J = 2.5 Hz, 0.4H, H-3’), 4.44 -4.40 (2 x m, 1H, H-4’), 4.35 – 4.22 (2 

x m, 2H, H-5’, H-5’), 4.11 – 4.04 (m, 1H, CHCH3), 1.55, 1.52, 1.30, 1.26 (4s, 6H, 2 

x CH3-isopropylidene), 1.31 (d, J = 7.0 Hz, 3H, CHCH3). 
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Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(benzoxy-L-alaninyl)]-phosphate 
(4.12d). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

5’-O-[1-naphthyl-(benzoxy-L-alaninyl)]-

phosphate (4.11d, 0.108 g, 0.157 mmol), in 10 

ml of 60 % CH3COOH in water at 65oC 

overnight. The crude mixture was purified by 

column chromatography CHCl3/MeOH (9:1, 

gradient) as eluent, to give the pure product 4.12d as a yellow foam (0.026 g, 26%). 

 
31P NMR (202 MHz, MeOD) δ 4.19, 4.02 
1H NMR (500 MHz, MeOD) δ 8.34, 8.28 (d, J = 6.0 Hz, 1H, H-2), 8.10 (t, J = 9.0 

Hz, 1H, H-Ar), 8.05, 8.00 (2 x s, 1H, H-8), 7.86 (t, J = 7.5 Hz, 1H, H-Ar), 7.66 (d, J 

= 8.0 Hz, 1H, H-Ar), 7.51 – 7.42 (m, 3H, H-Ar), 7.35 - 7.23 (m, 6H, H-Ar), 5.99 (d, 

J = 5.0 Hz, 1H, H-1’), 5.08 – 5.00 (m, 2H, CH2Bn), 4.64 - 4.60 (m, 1H, H-2’), 4.46 – 

4.36 (m, 3H, H-3’, H-5’, H-5’), 4.25 – 4.24 (m, 1H, H-4’), 4.07 – 4.00 (m, 1H, 

CHCH3), 1.29, 1.25 (2 x d, J = 7.0 Hz, 3H, CHCH3). 

13C NMR (125 MHz, MeOD) δ 178.13 (C=S), 174.87, 174.58 (2 x d, 3JC-C-N-P = 4.25 

Hz, C=O), 147.88, 147.86 (ipso, C-Naph), 144.88 (C-4), 142.85, 142.71 (C-8), 

137.17, 137.12 (C-5), 136.20, 1136.17 (C-Naph), 129.53, 129.50, 129.27, 129.23, 

128.90, 128.85, 127.79, 127.52, 126.50, 126.43, 126.00, 122.69, 122.55, 116.33, 

116.28, 116.18, 116.16 (C-Ar), 90.69, 90.53 (C-1’), 84.63, 84.53 (d, 3JC-C-O-P = 8.62 

Hz, C-4’), 75.29, 75.22 (C-2’), 71.54, 71.40 (C-3’), 68.01, 67.98 (CH2Bn), 67.76, 

67.38 (2 x d, 2JC-O-P = 5.37 Hz, C-5’), 51.78, 51.72 (CHCH3), 20.50, 20.29 (2 x d, 
3JC-C-N-P = 6.37 Hz, CHCH3). 

HPLC (System 2) tR = 16.11, 16.47 min 

(ES+) m/z, found: (M+Na+) 674.20, C30H30N5O8PNaS required: (M+) 651.16 
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Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(pentoxy-L-leucinyl)]-phosphate 

(4.12e). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

5’-O-[1-naphthyl-(pentoxy-L-leucinyl)]-

phosphate (4.11e, 0.04 g, 0.128 mmol), in 10 

ml of 60 % CH3COOH in water at 65oC 

overnight. The crude mixture was purified by 

column chromatography CHCl3/MeOH (9:1, gradient) as eluent, to give the pure 

product 4.12e as a yellowish foam (0.002 g, 7%). 

 
31P NMR (202 MHz, MeOD) δ 4.45, 4.23 
1H NMR (500 MHz, MeOD) δ 8.57 (d, J = 4.0 Hz, 0.3H, H-2), 8.38 (s, 0.7H, H-2), 

8.15 - 8.10 (2 x d, J = 8.0 Hz, 1H, H-8, 1H, H-Ar), 7.88 – 7.85 (m, 1H, H-Ar), 7.69 – 

7.66 (m, 1H, H-Ar), 7.52 – 7.44 (m, 3H, H-Ar), 7.38 – 7.35 (m, 1H, H-Ar), 7.31 – 

7.21 (m, 6H, H-Ar), 6.11, 6.01 (2 x d, J = 4.5 Hz, 1H, H-1’), 4.73, 4.64 (2 x t, J = 5.0 

Hz, 1H, H-2’), 4.50 – 4.46 (m, 1H, H-5’, 0.3H, H-3’), 4.43 – 4.38 (m, 1H, H-5’, 

0.7H, H-3’), 4.33 - 4.27 (m, 1H, H-4’), 3.97 – 3.88 (m, 3H, OCH2CH2CH2CH2CH2, 

NHCHCH3), 1.66 -1.60 (m, 1H, NHCHCH2CH(CH3)2), 1.52 – 1.46 (m, 4H, 

NHCHCH2CH(CH3)2, OCH2CH2CH2CH2CH3), 1.26 – 1.24 (m, 4H, 

OCH2CH2CH2CH2CH3), 0.86 - 0.76 (m, 9H, NHCHCH2CH(CH3)2, 

OCH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 22.73, 23.11 min 

(ES+) m/z, found: (M+H+) 674.20, C31H40N5O8PS required: (M+)  673.23 
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine 5’-O-[1-naphthyl-(2,2-

dimethylpropoxy-L-alaninyl)]-phosphate (4.11f). 

 

Prepared according to standard procedure 6a 

from, 2’,3’-O,O-isopropylidene-6-

thioinosine (0.130 g, 0.40 mmol) tBuMgCl 

(1.0 M in THF, 0.80 ml, 0.80 mmol) and 1-

naphthyl-(2,2-dimethylpropoxy-L-

alaninyl)phosphorochloridate (2.3f, 0.31 g, 

0.80 mmol). The crude mixture was purified 

by column chromatography, using CHCl3/MeOH (1-3%, gradient) as an eluent to 

give the pure product 4.11f as a yellow foam (0.137 g, 51%). 

 
31P NMR (202 MHz, MeOD) δ 4.22, 3.90 
1H NMR (500 MHz, MeOD) δ 8.29 (d, J = 5.0 Hz, 1H, H-2), 8.10 – 8.09 (m, 0.6H, 

H-Ar), 8.07, 8.03 (2 x s, 1H, H-Ar), 7.96 – 7.94 (m, 0.4H, H-Ar), 7.80 – 7.75 (m, 

1H, H-Ar), 7.62 – 7.60 (m, 1H, H-Ar), 7.47 – 7.40 (m, 3H, H-Ar), 7.34 – 7.30 (m, 

1H, H-Ar), 6.14, 6.05 (2 x d, J = 2.5 Hz, 1H, H-1’), 5.14, 5.01 (2 x dd, J = 2.5 Hz, 

6.0 Hz, 1H, H-2’), 4.81, 4.73 (2 x dd, J = 2.5 Hz, 6.0 Hz, 1H, H-3’), 4.52 – 4.50 (m, 

0.4H, H-4’), 4.46 – 4.43 (m, 0.6H, H-4’), 4.41- 4.29 (m, 2H, H-5’, H-5’), 4.10 – 4.03 

(m, 1H, CHCH3), 5.14, 5.01 (2 x dd, J = 2.5 Hz, 6.0 Hz, 1H, H-2’), 3.82, 3.80, 3.71, 

3.69 (2AB, JAB = 10.5 Hz, OCH2C(CH3)3), 1.55, 1.52, 1.32, 1.28 (4s, 6H, 2 x CH3-

isopropylidene), 1.37, 1.33 (2 x d, J = 7.0 Hz, 3H, CHCH3), 0.89, 0.88 (2 x s, 9H, 

OCH2C(CH3)3). 
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Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(2,2-dimethylpropoxy-L-alaninyl)]-

phosphate (4.12f). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-

thioinosine 5’-O-[1-naphthyl-(2,2-

dimethylpropoxy-L-alaninyl)]-phosphate 

(4.11f, 0.137 g, 0.20 mmol), in 10 ml of 60 

% CH3COOH in water at 65oC overnight. 

The crude mixture was purified by column 

chromatography CHCl3/MeOH (9:1, gradient) as eluent to give the pure product 

4.12f as a yellow foam (0.019 g, 15%). 

 
31P NMR (202 MHz, MeOD) δ 4.19, 4.09 
1H NMR (500 MHz, MeOD) δ 8.36 (s, 1H, H-2), 8.14 – 8.11 (m, 0.7H, H-Ar), 8.10 

(s, 0.3H, H-8), 8.03 (s, 0.3H, H-Ar), 7.88 – 7.84 (m, 1H, H-Ar), 7.67 (t, J = 8.0 Hz, 

1H, H-Ar), 7.51 – 7.44 (m, 3H, H-Ar), 7.38 – 7.33 (m, 1H, H-Ar), 6.01 (t, J = 5.0 

Hz, 1H, H-1’), 4.66 – 4.62 (m, 1H, H-2’), 4.50 - 4.40 (m, 3H, H-5’, H-5’, H-3’), 4.31 

– 4.27 (m, 1H, H-4’), 4.05 – 4.03 (m, 1H, CHCH3), 3.80, 3.78, 3.70, 3.68 (2AB, JAB 

= 10.5 Hz, 4.5 OCH2C(CH3)3), 1.34, 1.31 (2 x d, J = 7.0 Hz, 3H, CHCH3), 0.89 (s, 

9H, OCH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 177.89 (C=S), 175.16, 174.90 (2 x d, 3JC-C-N-P = 4.5 

Hz, C=O), 147.88, 147.82 (ipso, C-Naph), 144.93 (C-4), 136.22, 136.12, 128.94, 

128.87, 127.82, 127.50, 126.50, 126.42, 126.02, 122.65, 122.54, 116.26, 116.22, 

116.19, 116.15 (C-Ar), 90.74, 90.65 (C-1’), 84.78, 84.60 (d, 3JC-C-O-P = 8.0 Hz, C-

4’), 75.50, 75.46 (C-2’), 71.55 (C-3’), 67.83, 67.66 (2 x d, 2JC-O-P = 5.12 Hz, C-5’), 

51.84, 51.74 (CHCH3), 32.30 (OCH2C(CH3)3), 26.75 (OCH2C(CH3)3), 20.80, 20.58 

(2 x d, 3JC-C-N-P = 7.25 Hz, CHCH3). 

HPLC (System 2) tR = 16.87, 17.13 min 

(ES+) m/z, found: (M+H+) 634, C28H34N5O8PS required: (M+) 631.19 
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine 5’-O-[1-naphthyl-(pentoxy-

L-alaninyl)]-phosphate (4.11g). 

 

Prepared according to standard procedure 6a 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

(0.10 g, 0.3 mmol) tBuMgCl (1.0 M in THF, 

0.6 ml, 0.6 mmol) and 1-naphthyl-(pentoxy-L-

alaninyl)phosphorochloridate (provided by 

Slusarczyk, 0.236 g, 0.60 mmol). The crude 

mixture was purified by column 

chromatography, using CHCl3/MeOH (1-3%, gradient) as an eluent to give the pure 

product 4.11g as a yellowish foam (0.132 g, 64%). 

 
31P NMR (202 MHz, MeOD) δ 4.15, 3.88 
1H NMR (500 MHz, MeOD) δ 8.31, 8.30 (2 x s, 1H, H-2), 8.11, 8.07 (2 x s, 1H, H-

8), 8.09 - 8.08 (m, 0.7H, H-Ar), 7.95 – 7.93 (m, 0.3H, H-Ar), 7.76 – 7.73 (m, 1H, H-

Ar), 7.60 – 7.58 (m, 1H, H-Ar), 7.46 – 7.39 (m, 3H, H-Ar), 7.33 – 7.30 (m, 1H, H-

Ar), 6.13, 6.03 (2 x d, J = 2.5 Hz, 1H, H-1’), 5.14, 5.01 (2 x dd, J = 2.5 Hz, 6.0 Hz, 

1H, H-2’), 4.79, 4.68 (2 x dd, J = 2.5 Hz, 6.0 Hz, 1H, H-3’), 4.52 – 4.51 (m, 0.3H, 

H-4’), 4.45 (m, 0.7H, H-4’), 4.41- 4.30 (m, 2H, H-5’, H-5’), 4.05 – 3.94 (m, 3H, 

CHCH3, OCH2CH2CH2CH2CH3), 1.55, 1.52, 1.32, 1.30 (4s, 6H, 2 x CH3-

isopropylidene), 1.50 – 1.48 (m, 2H, OCH2CH2CH2CH2CH3), 1.27 – 1.22 (m, 7H, 

OCH2CH2CH2CH2CH3, CHCH3), 0.83, 0.80 (2 x t, J = 7.5 Hz, 3H, 

OCH2CH2CH2CH2CH3). 
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Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(pentoxy-L-alaninyl)]-phosphate 

(4.12g). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

5’-O-[1-naphthyl-(pentoxy-L-alaninyl)]-

phosphate (4.11g, 0.132 g, 0.19 mmol), in 10 

ml of 60 % CH3COOH in water at 65oC 

overnight. The crude mixture was purified by 

column chromatography using CHCl3/MeOH (9:1, gradient) as eluent, followed by 

preparative purification to give the pure product 4.12g as a yellow foam (0.044 g, 

36%). 

 
31P NMR (202 MHz, MeOD) δ 4.12, 4.09 
1H NMR (500 MHz, MeOD) δ 8.33 (s, 1H, H-2), 8.13 – 8.08 (m, 1H, H-Ar), 8.07, 

8.01 (2 x s, 1H, H-8), 7.84 – 7.80 (m, 1H, H-Ar), 7.65 – 7.62 (m, 1H, H-Ar), 7.49 -

7.44 (m, 3H, H-Ar), 7.36 – 7.33 (m, 1H, H-Ar), 6.02, 6.01 (2 x d, J = 5.0 Hz, 1H, H-

1’), 4.65 (t, J = 5.0 Hz, 1H, H-2’), 4.51 - 4.40 (m, 3H, H-5’, H-5’, H-3’), 4.32 – 4.31 

(m, 1H, H-4’), 4.04 – 3.92 (m, 3H, CHCH3, OCH2CH2CH2CH2CH3), 1.52 – 1.48 (m, 

2H, OCH2CH2CH2CH2CH3), 1.32 – 1.21 (m, 7H, OCH2CH2CH2CH2CH3, CHCH3), 

0.85, 0.82 (2 x t, J = 7.0 Hz, 3H, OCH2CH2CH2CH2CH3). 
13C NMR (125 MHz, MeOD) δ 178.08 (C=S), 175.20, 174.94 (2 x d, 3JC-C-N-P = 5.25 

Hz, C=O), 147.92, 147.86 (ipso, C-Naph), 146.30, 146.24 (C-2), 144.87, 144.84 (C-

4), 142.85, 142.75 (C-8), 137.16, 137.10, 136.19, 136.16, 128.95, 128.91, 127.83, 

127.78, 127.73, 127.55, 126.53, 126.50, 126.05, 122.70, 122.63, 116.25, 116.20, 

116.17 (C-Ar), 90.70, 90.53 (C-1’), 84.62, 84.53 (d, 3JC-C-O-P = 8.12 Hz, C-4’), 

75.42, 75.38 (C-2’), 71.59, 71.47 (C-3’), 67.79, 67.51 (2 x d, 2JC-O-P = 5.25 Hz, C-

5’), 66.62, 66.58 (OCH2CH2CH2CH2CH3), 51.78, 51.73 (CHCH3), 30.98 

(OCH2CH2CH2CH2CH3), 29.35, 29.12 (OCH2CH2CH2CH2CH3), 23.39, 23.36 

(OCH2CH2CH2CH2CH3), 20.88, 20.69 (2 x d, 3JC-C-N-P = 7.37 Hz, CHCH3), 14.47, 

14.44 (OCH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 17.64, 17.91 min 

(ES+) m/z, found: (M+Na+) 654, C28H34N5O8PNaS required: (M+) 631.19  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioinosine 5’-O-[phenyl-(benzoxy-L-

alaninyl)]-phosphate (4.11h). 

 

Prepared according to standard procedure 6a 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

(0.10 g, 0.30 mmol) tBuMgCl (1.0 M in 

THF, 0.61 ml, 0.61 mmol) and phenyl-

(benzoxy-L-alaninyl)phosphorochloridate 

(2.3b, 0.218 g, 0.61 mmol). The crude 

mixture was purified by column 

chromatography, using CHCl3/MeOH (1-3%, gradient) as an eluent to give the pure 

product 4.11h as a yellow foam (0.083 g, 42%). 

 
31P NMR (202 MHz, MeOD) δ 3.77, 3.41 
1H NMR (500 MHz, MeOD) δ 8.58, 8.57 (2 x s, 0.2H, H-2), 8.53 (s, 0.2H, H-8), 

8.33, 8.32 (2 x s, 0.8H, H-2), 8.15 (2 x s, 0.8H, H-8), 7.29 – 7.06 (m, 10H, H-Ar), 

6.26, 6.23 (2 x d, J = 2.5 Hz, 0.2H, H-1’), 6.18, 6.15 (2 x d, J = 2.5 Hz, 0.8H, H-1’), 

5.36, 5.35 (2 x dd, J = 2.0 Hz, 6 Hz, 0.1H, H-2’), 5.29, 5.28 (2 x dd, J = 2.0 Hz, 6.0 

Hz, 0.6H, H-2’), 5.11 – 5.02 (m, 3H, OCH2Bn, H-3’), 4.99, 4.97 (2 x dd, J = 2.0 Hz, 

6.0 Hz, 0.3H, H-2’), 4.50 – 4.42 (2 x m, 1H, H-4’), 4.31- 4.20 (m, 2H, H-5’, H-5’), 

3.99 – 3.93 (m, 1H, CHCH3), 1.58, 1.57, 1.31, 1.29 (4s, 6H, 2 x CH3-

isopropylidene), 1.36 (d, J = 7.0 Hz, 3H, CHCH3). 
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Synthesis of 6-thioinosine 5’-O-[phenyl-(benzoxy-L-alaninyl)]-phosphate 

(4.12h). 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-thioinosine 

5’-O-[phenyl-(benzoxy-L-alaninyl)]-phosphate 

(4.11h, 0.08 g, 0.128 mmol), in 10 ml of 60 % 

CH3COOH in water at 65oC overnight. The 

crude mixture was purified by column 

chromatography using CHCl3/MeOH (9:1, 

gradient) as eluent, followed by preparative 

purification to give the pure product 4.12h as a yellowish foam (0.002 g, 3%). 

 
31P NMR (202 MHz, MeOD) δ 3.94, 3.66 
1H NMR (500 MHz, MeOD) δ 8.38, 8.36 (2 x s, 1H, H-2), 8.14, 8.13 (2 x s, 1H, H-

8), 7.35 – 7.28 (m, 7H, H-Ar), 7.20 – 7.16 (m, 3H, H-Ar), 6.03 (t, J = 5.5 Hz, 1H, H-

1’), 5.13 – 5.08 (m, 2H, OCH2Bn), 4.66, 4.63 (2 x t, J = 5.0 Hz, 1H, H-2’), 4.40 – 

4.29 (m, 3H, H-5’, H-5’, H-3’), 4.27 – 4.23 (m, 1H, H-4’), 4.00 – 3.94 (m, 1H, 

CHCH3), 1.33, 1.28 (2 x d, J = 7.0 Hz, 3H, CHCH3). 

HPLC (System 2) tR = 15.31, 15.57 min 

(ES+) m/z, found: (M+Na+) 624, C26H28N5O8PS required: (M+) 601.14 
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Synthesis of 6-thioinosine 5’-O-[phenyl-(cyclohexoxy-L-alaninyl)]-phosphate 

(4.12i). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-

thioinosine 5’-O-[phenyl-(cyclohexoxy-L-

alaninyl)]-phosphate (4.11i, 0.037 g, 0.058 

mmol), in 10 ml of 60 % CH3COOH in 

water at 65oC overnight. The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH (9:1, gradient) as eluent, followed by preparative purification to 

give the pure product 4.12i as a yellow foam (0.038g, 11%). 

 
31P NMR (202 MHz, MeOD) δ 3.82, 3.58 
1H NMR (500 MHz, MeOD) δ 8.37 (s, 1H, H-8), 8.15, 8.12 (2 x s, 1H, H-2), 7.35 – 

7.30 (m, 2H, H-Ar), 7.24 – 7.16 (m, 3H, H-Ar), 6.04 (t, J = 4.0 Hz, 1H, H-1’), 4.73 – 

4.65 (m, 2H, OCH-ester, H-2’), 4.44 – 4.36 (m, 3H, H-5’, H-5’, H-3’), 4.30 – 4.27 

(m, 1H, H-4’), 3.92 – 3.87 (m, 1H, CHCH3), 1.80 – 1.70 (m, 4H, 2 x CH2-ester), 

1.55 – 1.35 (m, 6H, 3 x CH2-ester), 1.32, 1.29 (2 x d, 3J = 7.0 Hz, 3H, CHCH3). 
13C NMR (125 MHz, MeOD) δ 178.17 (C=S), 175.53, 174.31 (2 x d, 3JC-C-N-P = 6.12 

Hz, C=O), 152.15, 152.08 (ipso, C-Ph), 144.99 (C-2), 142.69 (C-8), 136.98, 130.80, 

130.78, 126.19, 121.44, 121.41, 121.37, (C-Ar), 90.51 (C-1’), 84.70, 84.58 (d, 3JC-C-

O-P = 8.25 Hz, C-4’), 75.51 (CH-ester), 75.00, 74.96 (C-2’), 71.63, 71.58 (C-3’), 

67.55, 67.21 (2 x d, 2JC-O-P = 5.35 Hz, C-5’), 51.84, 51.70 (CHCH3), 32.48, 32.41 

(CH2-ester), 26.41 (CH2-ester), 24.66, 24.60 (CH2-ester), 20.68, 20.47 (2 x d, 3JC-C-N-

P = 6.25 Hz, CHCH3). 

HPLC (System 2) tR = 15.26, 15.50 min 

(ES+) m/z, found: (M+Na+) 616.20, C25H32N5O8PNaS required: (M+) 593.17 

  

NH

N

N
S

N

O

OHOH

OPO
O

NH

O

O



Blanka Gönczy         Chapter 8 

	

	 305	

Synthesis of 6-thioinosine 5’-O-[1-naphthyl-(hexoxy-L-alaninyl)]-phosphate 

(4.12j). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-

thioinosine 5’-O-[phenyl-(cyclohexoxy-L-

alaninyl)]-phosphate (4.11j, 0.041 g, 0.06 

mmol), in 10 ml of 60 % CH3COOH in 

water at 65oC overnight. The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH (9:1, gradient) as eluent, followed by preparative purification to 

give the pure product 4.12j as a yellowish foam (0.03 g, 8%). 

 
31P NMR (202 MHz, MeOD) δ 4.17, 4.13 
1H NMR (500 MHz, MeOD) δ 8.36 (s, 1H, H-2), 8.15 – 8.10 (m, 1H, H-Ar), 8.08, 

8.02 (2 x s, 1H, H-8), 7.89 (t, J = 9.0 Hz, 1H, H-Ar), 7.69 (t, J = 7.0 Hz, 1H, H-Ar), 

7.53 – 7.45 (m, 3H, H-Ar), 7.38, 7.37 (2 x t, J = 8.0 Hz, 1H, H-Ar), 6.01 (t, J = 5.5 

Hz, 1H, H-1’), 4.67 – 4.63 (m, 1H, H-2’), 4.48 – 4.42 (m, 3H, H-5’, H-5’, H-3’), 

4.30 – 4.28 (m, 1H, H-4’), 4.01 - 3.93 (m, 3H, OCH2CH2CH2CH2CH3, CHCH3), 

1.53 – 1.49 (m, 2H, OCH2CH2CH2CH2CH2CH3), 1.31 – 1.22 (m, 9H, 

OCH2CH2CH2CH2CH2CH3), 0.86, 0.85 (d, J = 6.5 Hz, 3H, CHCH3). 
13C NMR (125 MHz, MeOD) δ 178.10, 178.07 (C=S), 175.17, 174.87 (2 x d, 3JC-C-N-

P = 4.6 Hz, C=O), 147.93, 147.88 (C-2), 144.92, 144.89 (C-4), 142.91, 142.75 (C-8), 

136.24, 136.21, 128.92, 128.87, 127.80, 127.49, 126.47, 126.43, 125.99, 122.69, 

122.59, 116.20, 116.18, 116.15, 116.12 (C-Ar), 90.71, 90.52 (C-1’), 84.63, 84.58 (d, 
3JC-C-O-P = 8.12 Hz, C-4’), 75.28, 75.20 (C-2’), 71.56, 71.40 (C-3’), 67.72, 67.35 (2 x 

d, 2JC-O-P = 5.12 Hz, C-5’), 66.50, 66.46 (OCH2CH2CH2CH2CH2CH3), 51.69 

(CHCH3), 32.58 (OCH2CH2CH2CH2CH2CH3), 29.62, 29.60 

(OCH2CH2CH2CH2CH2CH3), 26.60, 26.58 (OCH2CH2CH2CH2CH2CH3), 23.57 

(OCH2CH2CH2CH2CH2CH3), 20.58, 20.38 (2 x d, 3JC-C-N-P = 7.75 Hz, CHCH3), 

14.36 (CHCH3).  

HPLC (System 2) tR = 21.35, 21.63 min 

(ES+) m/z, found: (M+H+) 646, C29H36N5O8PNaS required: (M+) 645.20  
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Synthesis of 6-thioinosine 5’-O-bis(benzoxy-L-alaninyl)-phosphate (4.17a).  

 

Prepared according to standard 

procedure 8 from, 6-thioinosine 

(4.3, 0.150 g, 0.50 mmol) in 

anhydrous TMP, POCl3 (0.50 ml, 

0.53 mmol), L-alanine benzyl ester 

tosylate salt (0.88 g, 2.50 mmol) in 

dry CHCl3 and DIPEA (0.87 ml, 

5.01 mmol). The crude mixture was 

purified by column chromatography (6% MeOH/ CHCl3, gradient) and followed by 

preparative purification to give the pure product 4.17a as a white foam (0.043 g, 

12%). 

 
31P NMR (202 MHz, MeOD) δ 13.71 
1H NMR (500 MHz, MeOD) δ 8.40 (bs, 1H, H-2), 8.15 (bs, 1H, H-8), 7.35 – 7.29 

(m, 10H, H-Ar), 6.01 (d, J = 4.5 Hz, 1H, H-1’), 5.15, 5.13, 5.10, 5.07 (2 x AB, JAB = 

12.5 Hz, 4.5 Hz, 4H, 2 x OCH2Ph), 4.70 (t, J = 5.0 Hz, 1H, H-2’), 4.40 (t, J = 4.5 

Hz, 1H, H-3’), 4.25 – 4.14 (m, 3H, H-4’, H-5’, H-5’), 3.94 – 3.91 (m, 2H, 2 x 

CHCH3), 1.32, 1.29 (2 x d, J = 7.0 Hz, 2 x CHCH3). 
13C NMR (125 MHz, MeOD) δ 178.27 (C=S), 175.44, 175.38 (C=O), 145.03 (C-2), 

142.80 (C-4), 142.80 (C-8), 137.31, 137.27 (ipso C-Ph), 137.05 (C-5), 129.58, 

129.57, 129.31, 129.30, 129.17 (C-Ar), 90.42 (C-1’), 84.74, 84.70 (d, 3JC-C-O-P = 8.2 

Hz, C-4’), 75.53 (C-2’), 71.57 (C-3’), 67.99, 67.96 (OCH2Ph), 66.22, 66.18 (C-5’), 

51.14, 51.10 (d, 2JC-N-P = 6.25 Hz, CHCH3), 20.85, 20.62 (2 x d, 3JC-C-N-P = 6.25 Hz, 

CHCH3). 

HPLC (System 2) tR = 16.71 min 

(ES+) m/z, found: (M+H+) 687, C30H35N6O9PS required: (M+) 686.19 
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Synthesis of 6-thioinosine 5’-O-bis(cyclopentoxy-L-alaninyl)-phosphate (4.17b). 

 

Prepared according to standard 

procedure 8 from, 6-thioinosine (4.3, 

0.150 g, 0.50 mmol) in anhydrous 

TMP, POCl3 (0.05 ml, 0.53 mmol), L-

alanine cyclopentyl ester tosylate salt 

(provided by Madela, 0.86 g, 2.64 

mmol) in dry CHCl3 and DIPEA (0.92 

ml, 5.27 mmol). The crude mixture was purified by column chromatography (6% 

MeOH/ CHCl3, gradient) and followed by preparative purification to give the pure 

product 4.17b as a white foam (0.067 g, 20%). 

 
31P NMR (202 MHz, MeOD) δ 13.86 
1H NMR (500 MHz, MeOD) δ 8.41 (bs, 1H, H-2), 8.19 (bs, 1H, H-8), 6.05 (d, J = 

5.0 Hz, H-1’), 5.15 - 5.10 (m, 2H, 2 x OCH-ester), 4.72 (t, J = 5.5 Hz, 1H, H-2’), 

4.43 (t, J = 5.0 Hz, 1H, H-3’), 4.29 – 4.19 (m, 3H, H-4’, H-5’, H-5’), 3.86 – 3.82 (m, 

2H, 2 x CHCH3), 1.90 – 1.83 (m, 4H, 2 x CH2-ester), 1.74 – 1.60 (m, 12H, 2 x CH2-

ester), 1.32 (d, J = 7.0 Hz, 6H, CHCH3). 
13C NMR (125 MHz, MeOD) δ 178.31 (C=S), 175.47, 175.42 (C=O), 146.32 (C-2), 

144.99 (C-4), 142.84 (C-8), 137.15 (ipso C-Ph), 90.45 (C-1’), 84.84, 84.78 (d, 3JC-C-

O-P = 8.0 Hz, C-4’), 79.47 (OCH-ester), 75.33 (C-2’), 71.62 (C-3’), 66.34, 66.29 (d, 
2JC-O-P = 6.25 Hz, C-5’), 51.15, 51.09 (d, 2JC-N-P = 6.25 Hz, CHCH3), 33.67, 33.49 

(CH2-ester), 24.70 (CH2-ester), 20.96, 20.78 (2 x d, 3JC-C-N-P = 5.6 Hz, CHCH3). 

HPLC (System 2) tR = 15.12 min 

(ES+) m/z, found: (M+H+) 643, C26H39N6O9PS required: (M+) 642.66  
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Synthesis of 6-thioinosine 5’-O-bis(2,2-dimethylpropoxy-L-alaninyl)-phosphate 

(4.17c). 

 

Prepared according to standard 

procedure 8 from, 6-thioinosine (4.3, 

0.150 g, 0.50 mmol) in anhydrous 

TMP, POCl3 (0.05 ml, 0.53 mmol), L-

alanine 2,2-dimethylpropyl ester 

tosylate salt (2.2a, 0.91 g, 2.64 mmol) 

in dry CHCl3 and DIPEA (0.92 ml, 

5.27 mmol).The crude mixture was 

purified by column chromatography (6% MeOH/ CHCl3, gradient) and followed by 

preparative purification to give the pure product 4.17c as a white foam (0.064 g, 

19%). 

 
31P NMR (202 MHz, MeOD) δ 13.84 
1H NMR (500 MHz, MeOD) δ 8.43 (bs, 1H, H-2), 8.19 (bs, 1H, H-8), 6.04 (d, J = 

5.0 Hz, H-1’), 4.72 (t, J = 5.5 Hz, 1H, H-2’), 4.43 (t, J = 5.0 Hz, 1H, H-3’), 4.30 – 

4.21 (m, 3H, H-4’, H-5’, H-5’), 3.97 – 3.93 (m, 2H, 2 x CHCH3), 3.88, 3.86, 3.76, 

3.74  (2AB, JAB = 10.5 Hz, 4.5 Hz, 4H, 2 x CH2C(CH3)3), 1.39 (d, J = 7.0 Hz, 6H, 2 

x CHCH3), 0.95 (s, 18H, 2 x CH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 178.44 (C=S), 175.07, 175.02 (2 x d, 3JC-C-N-P = 6.25 

Hz, 2 x C=O), 146.47 (C-2), 145.03 (C-4), 142.76 (C-8), 137.19 (C-5), 90.44 (C-1’), 

84.82, 84.76 (d, 3JC-C-O-P = 7.75 Hz, C-4’), 79.47 (OCH2C(CH3)3), 74.89 (C-2’), 

71.58 (C-3’), 66.27, 66.23 (d, 2JC-O-P = 5.0 Hz, C-5’), 51.19, 51.09 (d, 2JC-N-P = 6.0 

Hz, CHCH3), 32.53, 32.50, 32.46 (2 x OCH2C(CH3)3), 30.73, 26.44, 24.67 (2 x 

OCH2C(CH3)3), 21.13, 21.89 (2 x d, 3JC-C-N-P = 5.6 Hz, CHCH3). 

HPLC (System 2) tR = 18.48 min 

(ES+) m/z, found: (M+Na+) 669, C26H43N6O9PNaS required: (M+) 646.25 
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Synthesis of 6-thioinosine 5’-O-bis(cyclohexoxy-L-alaninyl)-phosphate (4.17d).  

 

Prepared according to standard 

procedure 8 from, 6-thioinosine (4.3, 

0.150 g, 0.50 mmol) in anhydrous 

TMP, POCl3 (0.05 ml, 0.53 mmol), L-

alanine cyclohexyl ester tosylate salt 

(2.2d, 0.90 g, 2.64 mmol) in dry 

CHCl3 and DIPEA (0.92 ml, 5.27 

mmol). The crude mixture was purified by column chromatography (6% MeOH/ 

CHCl3, gradient) and followed by preparative purification to give the pure product 

4.17d as a white foam (0.081 g, 23%). 

 
31P NMR (202 MHz, MeOD) δ 13.87 
1H NMR (500 MHz, MeOD) δ 8.43 (bs, 1H, H-2), 8.25 (bs, 1H, H-8), 6.06 (d, J = 

4.5 Hz, 1H, H-1’), 4.74 (t, J = 5.0 Hz, 1H, H-2’, 2 x ipso CH-ester), 4.46 (t, J = 4.5 

Hz, 1H, H-3’), 4.31 – 4.22 (m, 3H, H-4’, H-5’, H-5’), 3.89 – 3.86 (m, 2H, 2 x 

CHCH3), 1.82 – 1.81 (m, 4H, 2 x CH2-ester), 1.74 – 1.72 (m, 4H, 2 x CH2-ester), 

1.56 – 1.55 (m, 2H, CH2-ester), 1.46 – 1.30 (m, 16 H, 5 x CH2-ester, 2 x CH(CH3)3). 
13C NMR (125 MHz, MeOD) δ 178.14 (C=S), 175.16, 175.07 (2 x d, 3JC-C-N-P = 6.12 

Hz, 2 x C=O), 145.03 (C-2), 142.85 (C-4), 137.00 (C-8), 90.53 (C-1’), 84.84, 84.75 

(C-4’), 79.50 (2 x ipso CH-ester), 75.34 (C-2’), 71.60 (C-3’), 66.30, 66.26 (d, 2JC-O-P 

= 4.62 Hz, C-5’), 51.19, 51.09 (d, 2JC-N-P = 12.5 Hz, CHCH3), 32.55, 32.52, 32.48 (4 

x CH2-ester), 26.46, 24.74, 24.72 (4 x CH2-ester), 21.14, 21.09 (2 x d, 3JC-C-N-P = 5.5 

Hz, CHCH3). 

HPLC (System 2) tR = 16.22 min 

(ES+) m/z, found: (M+H+) 671, C28H43N6O9PS required: (M+) 670.25 
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6-thioinosine 5’-O-bis(3,3-dimethyl-1-butoxy-L-alaninyl)-phosphate (4.17e). 

 

Prepared according to standard 

procedure 8 from, 6-thioinosine 

(4.3, 0.155 g, 0.54 mmol) in 

anhydrous TMP, POCl3 (0.05 ml, 

0.54 mmol), L-alanine 3,3 dimethyl-

1-butyl ester tosylate salt (2.2e, 0.94 

g, 2.73 mmol) in dry CHCl3 and 

DIPEA (0.95 ml, 5.45 mmol). The 

crude mixture was purified by column chromatography (6% MeOH/ CHCl3, 

gradient) and followed by preparative purification to give the pure product 4.17e as a 

white foam (0.047 g, 13%). 

 
31P NMR (202 MHz, MeOD) δ 13.82 
1H NMR (500 MHz, MeOD) δ 8.48 (bs, 1H, H-2), 8.21 (bs, 1H, H-8), 6.06 (d, J = 

5.0 Hz, 1H, H-1’), 4.72 (t, J = 5.5 Hz, 1H, H-2’), 4.46 (t, J = 5.0 Hz, 1H, H-3’), 4.30 

– 4.11 (m, 7H, H-4’, H-5’, H-5’, 2 x OCH2CH2C(CH3)3), 3.90 (q, J = 7.5 Hz, 2H, 2 x 

CHCH3), 1.58 (t, J = 7.0 Hz, 8H, 2 x OCH2CH2C(CH3)3), 1.34 (d, J = 6.5 Hz, 2H, 2 

x CHCH3), 0.95 (s, 9H, OCH2CH2C(CH3)3), 0.94 (s, 9H, OCH2CH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 178.26 (C=S), 175.16, 175.07 (2 x d, 3JC-C-N-P = 6.25 

Hz, 2 x C=O), 146.41 (C-2), 144.94 (C-4), 142.87 (C-8), 137.11 (C-5), 90.50 (C-1’), 

84.82 (d, 3JC-O-P = 8.0 Hz, C-4’), 79.53 (C-2’), 75.43 (C-3’), 66.15 (d, 2JC-O-P = 5.25 

Hz, C-5’), 65.24 (OCH2CH2C(CH3)3), 64.08 (OCH2CH2C(CH3)3), 51.07 (d, 2JC-N-P = 

8.25 Hz, CHCH3), 42.89 (OCH2CH2C(CH3)3), 42.87 (OCH2CH2C(CH3)3), 30.60 

(OCH2CH2C(CH3)3), 30.07 (2 x OCH2CH2C(CH3)3), 29.97 (OCH2CH2C(CH3)3), 

20.96, 20.73 (2 x d, 3JC-C-N-P = 5.6 Hz, CHCH3). 

HPLC (System 2) tR = 18.85 min 

(ES+) m/z, found: (M+Na+) 697, C28H47N6O9PS required: (M+) 674.29 
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Synthesis of 6-thioinosine 5’-O-bis(pentoxy -L-alaninyl)-phosphate (4.17f). 

 

Prepared according to standard procedure 

8 from, 6-thioinosine (4.3, 0.155 g, 0.54 

mmol) in anhydrous TMP, POCl3 (0.05 

ml, 0.54 mmol), L-alanine pentyl ester 

hydrochloride salt (2.2b, 0.53 g, 2.73 

mmol) in dry CHCl3 and DIPEA (0.95 

ml, 5.45 mmol). The crude mixture was 

purified by column chromatography (6% MeOH/ CHCl3, gradient) and followed by 

preparative purification to give the pure product 4.17f as a white foam (0.091 g, 

26%). 

 
31P NMR (202 MHz, MeOD) δ 13.81 
1H NMR (500 MHz, MeOD) δ 8.69 (bs, 1H, H-2), 8.65 (bs, 1H, H-8), 6.15 (d, J = 

5.0 Hz, 1H, H-1’), 4.56 (t, J = 5.5 Hz, 1H, H-2’), 4.82 (t, J = 5.0 Hz, 1H, H-3’), 4.47 

(t, J = 5.0 Hz, 1H, H-3’), 4.31 – 4.21 (m, 3H, H-4’, H-5’, H-5’), 4.14 – 4.03 (m, 4H, 

2 x OCH2CH2CH2CH2CH3), 3.91 – 3.86 (m, 2H, 2 x CHCH3), 1.65 - 1.62 (m, 4H, 2 

x OCH2CH2CH2CH2CH3), 1.35 – 1.31(m, 14H, 2 x OCH2CH2CH2CH2CH3, 

CHCH3), 0.93 – 0.90 (t, J = 7.0 Hz, 6H, 2 x OCH2CH2CH2CH2CH3). 
13C NMR (125 MHz, MeOD) δ 175.73, 175.69 (2 x d, 3JC-C-N-P = 6.5 Hz, 2 x C=O), 

157.83 (C-2), 153.33 (C-4), 150.68 (C-8), 145.68 (C-5), 90.52 (C-1’), 84.75 (d, 3JC-

O-P = 8.0 Hz, C-4’), 75.11 (C-2’), 71.59 (C-3’), 66.49 (d, 2JC-O-P = 2.75 Hz, C-5’), 

65.21, 66.17 (2 x OCH2CH2CH2CH2CH3), 51.08 (d, 2JC-N-P = 9.5 Hz, CHCH3), 29.40 

(2 x OCH2CH2CH2CH2CH3), 29.20 (2 x OCH2CH2CH2CH2CH3), 23.41 (2 x 

OCH2CH2CH2CH2CH3), 21.08, 20.87 (2 x d, 3JC-C-N-P = 8.0 Hz, CHCH3), 14.39 (2 x 

OCH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 20.47 min 

(ES+) m/z, found: (M+Na+) 669, C26H43N6O9PS required: (M+) 646.25  
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2’,3’,5’-tri-O-acetyl-guanosine (4.7). 

 

To a suspension of commercially available guanosine 

(5.00 g, 17.65 mmol) DMAP (0.37 g, 3.00 mmol) and 

Et3N (9.84 ml, 70.61 mmol) in anhydrous ACN (130 

ml) acetic anhydride was added dropwise (5.90 ml, 

63.5 mmol). The reaction mixture was allowed to stir 

at ambient temperature overnight. Anhydrous MeOH (25 ml) was added to quench 

the reaction and the pure product 4.7 (4.03 g, 56%) precipitated as a white solid after 

the addition of Et2O (300 ml). 

 
1H NMR (500 MHz, MeOD) δ 7.86 (s, 1H, H-8), 6.07 (d, J = 5.0 Hz, 1H, H-1’), 5.95 

(t, J = 6.0 Hz, 1H, H-2’), 5.69 (t, J = 5.5 Hz, 1H, H-3’), 4.47 – 4.37 (m, 3H, H-4’, H-

5’, H-5’), 2.15 (s, 3H, CH3-acetyl), 2.09, 2.08 (2 x s, 6H, 2 x CH3-acetyl). 
13C NMR (125 MHz, MeOD) δ 170.04, 169.39, 169.22 (C=O-acetyl), 156.58 (C=O-

base), 153.85 (C-2), 151.07 (C-4), 135.61 (C-8), 116.83 (C-5), 84.42 (C-1’), 79.53 

(C-2’), 72.04 (C-3’), 70.30 (C-4’), 63.06 (C-5’), 20.50, 20.36, 20.17 (3 x CH3-

acetyl). 

 

2’,3’,5’-tri-O-acetyl-6-chloro-guanosine 

The suspension of 2’,3’,5’-tri-O-acetyl-guanosine 

(4.7, 2.28 g, 5.56 mmol), BTEA-Cl (2.53 g, 11.14 

mmol), N, N-dimethylaniline (0.77 ml, 6.13 mmol) 

and POCl3 (2.59 ml, 27.85 mmol) in anhydrous ACN 

(80 ml) were heated under reflux at 85oC for 3 hrs. 

After that time volatiles were evaporated under 

reduced pressure to give the crude mixture as a yellow oil. The crude oil was 

dissolved in CHCl3 and it was allowed to stir in the presence of crushed ice at 

ambient temperature for 30 minutes. The two layers were separated and the aqueous 

layer was extracted with CHCl3. The combined organic layers were washed with 

cold water and 5% aqueous solution of NaHCO3, dried over MgSO4  and evaporated 

under reduced pressure to give the title compound (1.78 g, 75%).  
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1H NMR (500 MHz, CDCl3) δ 8.35 (s, 1H, H-8), 7.04 (s, 1H, NH2), 6.11 (d, J = 6.0 

Hz, 1H, H-1’), 5.88 (t, J = 6.0 Hz, 1H, H-2’), 5.55 (t, J = 4.5 Hz, 1H, H-3’), 4.40 

(dd, J = 12.0 Hz, 4.0 Hz, 1H, H-5’), 4.36 (q, J = 4.0 Hz, 1H, H-4’), 4.29 (dd, J = 

11.5 Hz, 6.0 Hz, 1H, H-5’), 2.12 (s, 3H, CH3-acetyl), 2.04, 2.03 (2 x s, 6H, 2 x CH3-

acetyl). 
13C NMR (125 MHz, MeOD) δ 170.07, 169.40, 169.24 (C=O-acetyl), 159.85 (C-2), 

153.63 (C-Cl), 149.87 (C-4), 141.26 (C-8), 130.93 (C-5), 84.93 (C-1’), 79.68 (C-2’), 

71.88 (C-3’), 70.22 (C-4’), 62.92 (C-5’), 20.48, 20.34, 20.16 (3 x CH3-acetyl). 

 

2’,3’,5’-tri-O-acetyl-6-thioguanosine (4.8). 

 

The suspension of 2’,3’,5’-tri-O-acetyl-guanosine 

(4.7, 1.0 g, 2.44 mmol) and Lawesson’s reagent (2.17 

g, 5.37 mmol) in anhydrous toluene (60 ml) were 

heated under reflux at 110oC for 3 hrs until the 

consumption of the starting material. The reaction 

mixture was allowed to slowly cool down and the 

majority of the precipitated Lawesson’s reagent was removed by filtration. The 

reaction mixture was evaporated under reduced pressure and purified by column 

chromatography, using CHCl3/MeOH (2 to 5% gradient) as an eluent system to give 

4.8 as a yellow solid (0.49 g, 48%). 

1H NMR (500 MHz, MeOD) δ 8.00 (s, 1H, H-8), 6.06 (d, J = 5.0 Hz, 1H, H-1’), 5.93 

(t, J = 5.5 Hz, 1H, H-2’), 5.66 (t, J = 5.5 Hz, 1H, H-3’), 4.46 – 4.36 (m, 3H, H-4’, H-

5’, H-5’), 2.14 (s, 3H, CH3-acetyl), 2.09, 2.08 (2 x s, 6H, 2 x CH3-acetyl). 

13C NMR (125 MHz, MeOD) δ 177.58 (C=S), 172.34, 171.50, 171.22 (C=O, acetyl), 

154.82 (C-2), 148.58 (C-4), 140.46 (C-8), 130.18 (C-5), 87.98 (C-1’), 81.44 (C-2’), 

74.28 (C-3’), 72.02 (C-4’), 64.25 (C-5’), 20.76, 20.58, 20.42 (3 x CH3, acetyl).  
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6-thioguanosine (4.9). 

2’,3’,5’-tri-O-acetyl-6-thioguanosine (4.8, 0.5 g, 1.67 

mmol) was dissolved in saturated solution of NH4OH 

(0.1 ml), then adjusted to neutral pH with 0.1M acetic 

acid and kept in the fridge at -5oC for 3-5 days until the 

appearance of the yellowish crystals. The crystals were 

filtered off and used in the next step without further 

purification to give the title compound 4.9 (0.18 g, 51%). 

1H NMR (500 MHz, DMSO) δ 11.94 (bs, NH-base), 8.13 (s, 1H, H-8), 6.80 (s, 2H, 

NH2-base), 5.69 (d, J = 5.5 Hz, 1H, H-1’), 5.42 (d, J = 4.5 Hz, 1H, 2’OH), 5.14 (d, J 

= 4.5 Hz, 1H, 3’OH), 5.04 (t, J = 5.5 Hz, 1H, 5’OH), 4.40 (q, J = 5.5 Hz, 1H, H-2’), 

4.10 (q, J = 4.5 Hz, 1H, H-3’), 3.89 (q, J = 4.0 Hz, 1H, H-4’), 3.65 – 3.61 (m, 1H, H-

5’), 3.56 – 3.52 (m, 1H, H-5’). 

13C NMR (125 MHz, MeOD) δ 175.06 (C=S), 153.01 (C-2), 147.86 (C-4), 138.40 

(C-8), 128.30 (C-5), 86.41 (C-1’), 85.26 (C-2’), 73.74 (C-3’), 70.25 (C-4’), 61.23 

(C-5’). 

 

2’,3’-O,O-isopropylidene - 6 – thioguanosine (4.13). 

 

To the solution of 6-thioguanosine (4.9, 0.50 g, 1.67 

mmol) in anhydrous acetone (40 ml) 60% aqueous 

solution of perchloric acid (0.90 ml) was added 

dropwise and stirred overnight under inert atmosphere 

at ambient temperature. Saturated solution of NH4OH 

was added dropwise in order to reach neutral pH. The 

reaction mixture was evaporated and the resulting white solid was purified by 

column chromatography (CHCl3/MeOH, 7:3) to give the protected nucleoside 4.13 

(0.47 g, 83%). 

1H NMR (500 MHz, MeOD) δ 8.09 (s, 1H, H-8), 6.04 (d, J = 3.0 Hz, 1H, H-1’), 5.25 

(dd, J = 6.0 Hz, 2.5 Hz, 1H, H-2’), 5.03 (dd, J = 6.0 Hz, 2.5 Hz, 1H, H-3’),   
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4.31 (q, J = 4.0 Hz, 1H, H-4’), 3.76 (dd, J = 12.0 Hz, 4.0 Hz, 1H, H-5’), 3.71 (dd, J 

= 12.0 Hz, 4.5 Hz, 1H, H-5’), 1.60 (s, 3H, CH3-isopropylidene), 1.39 (s, 3H, CH3-

isopropylidene). 

13C NMR (125 MHz, MeOD) δ 174.52 (C=S), 153.99 (C-2), 148.29 (C-4), 140.72 

(C-8), 130.06 (C-5), 115.19 (C(CH3)2-isopropylidene), 91.92 (C-1’), 88.66 (C-2’), 

85.69 (C-3’), 82.94 (C-4’), 63.40 (C-5’), 27.57 (CH3-isopropylidene), 25.58 (CH3-

isopropylidene). 

 

Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-

(benzoxy-L-alaninyl)]-phosphate (4.14a). 

  

Prepared according to standard procedure 

6b from, 2’,3’-O,O-isopropylidene-6-

thioguanosine ( 0.13 g, 0.38 mmol) 

tBuMgCl (1.0 M in THF, 0.76 ml, 0.76 

mmol) and 1-naphthyl-(benzoxy-L-

alaninyl)phosphorochloridate (2.3c, 0.30 g, 

0.76 mmol). The crude mixture was 

purified by column chromatography, using 

CHCl3/MeOH (1-3%, gradient) as eluent to give the pure product 4.14a as a yellow 

foam (0.091 g, 34%). 

 
31P NMR (202 MHz, MeOD) δ 4.39, 4.19 
1H NMR (500 MHz, MeOD) δ 8.13 – 7.96 (m, 1H, H-Ar), 7.92 (s, 1H, H-8), 7.81 – 

7.82 (m, 1H, H-Ar), 7.68 – 7.64 (m, 1H, H-Ar), 7.51 – 7.39 (m, 3H, H-Ar), 7.36 – 

7.24 (m, 6H, H-Ar), 6.00, 5.91 (2 x s, 1H, H-1’), 5.12 -5.05 (m, 3H, H-2’, OCH2Bn), 

4.89 – 4.87 (m, 0.5H, H-3’), 4.75 – 4.73 (m, 0.5H, H-3’), 4.47 – 4.34 (m, 2H, H-5’, 

H-5’), 4.31 – 4.27 (m, 0.5H, H-4’), 4.20 – 4.16 (m, 0.5H, H-4’), 4.11 – 4.03 (m, 1H, 

CHCH3), 1.54, 1.53, 1.32, 1.30 (4s, 6H, 2 x CH3-isopropylidene), 1.32, 1.30 (2 x d, 
3J = 6.5 Hz, CHCH3).  
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Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(benzoxy-L-alaninyl)]-phosphate 

(4.15a). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-

thioguanosine 5’-O-[1-naphthyl-(benzoxy-

L-alaninyl)]-phosphate (4.14a, 0.091 g,  

0.128 mmol), in 10 ml of 60 % CH3COOH 

in water at 65oC overnight. The crude 

mixture was purified by column 

chromatography CHCl3/MeOH (9:1, 

gradient) as eluent, followed by preparative purification to give the pure product 

4.15a as a yellow foam (0.009 g, 11%). 

 
31P NMR (202 MHz, MeOD) δ 4.41, 4.22 
1H NMR (500 MHz, MeOD) δ 8.14 - 8.07 (m, 1H, H-Ar), 7.98 (s, 1H, H-8), 7.86 – 

7.82 (m, 1H, H-Ar), 7.68 – 7.64 (m, 1H, H-Ar), 7.51 – 7.43 (m, 3H, H-Ar), 7.36 – 

7.25 (m, 6H, H-Ar), 5.84, 5.83 (2 x d, J = 5.0 Hz, 1H, H-1’), 5.07 -5.01 (m, 2H, 

OCH2Bn), 4.61 – 4.56 (m, 1H, H-2’), 4.44 – 4.34 (m, 3H, H-4’, H-5’, H-5’), 4.25 – 

4.22 (m, 1H, H-4’), 4.09 – 4.04 (m, 1H, CHCH3), 1.29 (d, J = 7.0 Hz, CHCH3). 
13C NMR (125 MHz, DMSO) δ 175.16 (C=S), 173.05, 172.93 (2 x d, 3JC-C-N-P = 5.0 

Hz, C=O), 153.08 (C-2), 147.95, 147.90 (C-4), 146.43, 146.38 (ipso C-Naph), 

138.24, 138.18 (C-8), 135,80, 134.22, 134.20, 128.36, 128.35, 127.98, 127.77, 

127.67, 127.63, 126.66, 126.32, 126.26, 126.01, 125.96, 125.63, 125.57, 124.21, 

124.18, 121.56, 121.49, 114.80, 114.77 (C-Ar), 86.58, 86.42 (C-1’), 82.61, 82.51 (d, 
3JC-C-O-P = 8.8 Hz, C-4’), 73.18, 73.08 (C-2’), 70.01, 70.05 (C-3’), 66.31, 66.14 (2 x 

d, 2JC-O-P = 5.0 Hz, C-5’), 65.99 (OCH2Bn), 49.98, 49.89 (d, 2JC-N-P = 6.25 Hz, 

CHCH3), 19.78, 19.66 (2 x d, 3JC-C-N-P = 6.35 Hz, CHCH3). 

HPLC (System 2) tR = 17.72, 18.11 min 

(ES+) m/z, found: (M+H+) 667.20, C30H31N6O8PS required: (M+) 666.17  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-(3,3-

dimethyl-1-butoxy-L-alaninyl)]-phosphate (4.14b). 

 

Prepared according to standard 

procedure 6b from, 2’,3’-O,O-

isopropylidene-6-thioguanosine ( 0.23 

g, 0.67 mmol) tBuMgCl (1.0 M in 

THF, 1.34 ml, 1.34 mmol) and 1-

naphthyl-(3,3-dimethyl-1-butoxy-L-

alaninyl)phosphorochloridate (2.3i, 

0.53 g, 1.34 mmol). The crude mixture was purified by column chromatography, 

using CHCl3/MeOH (1-3%, gradient) as eluent, followed by preparative purification 

to give the pure product 4.14b as a yellow foam (0.21 g, 45%). 

  
31P NMR (202 MHz, MeOD) δ 4.34, 4.22 
1H NMR (500 MHz, MeOD) δ 8.14 – 8.12 (m, 0.5H, H-Ar), 7.98 – 7.97 (m, 0.5H, 

H-Ar), 7.96, 7.95 (2 x s, 1H, H-8), 7.86 -7.81 (m, 1H, H-Ar), 7.68 – 7.64 (m, 1H, H-

Ar), 7.52 – 7.32 (m, 4H, H-Ar), 7.36 – 7.24 (m, 6H, H-Ar), 6.02, 5.94 (2 x d, J = 2.5 

Hz, 1H, H-1’), 5.16 - 5.12 (m, 1H, H-2’), 4.94, 4.92 (dd, J = 2.5 Hz, 0.5H, H-5’), 

4.79, 4.78 (dd, J = 2.5 Hz, 0.5H, H-5’), 4.51 – 4.47 (m, 1H, H-5’, 0.5H, H-3’), 4.42 – 

4.40 (m, 0.5H, H-3’), 4.37 – 4.35 (m, 0.5H, H-4’), 4.29 – 4.24 (m, 0.5H, H-4’), 4.09 

– 3.97 (m, 3H, OCH2CH2C(CH3)3, CHCH3), 1.55, 1.54, 1.35, 1.30 (4s, 6H, 2 x CH3-

isopropylidene), 1.46 -1.43 (m, 2H, OCH2CH2C(CH3)3), 1.35 – 1.30 (2 x d, J = 7.0 

Hz, 3H, CHCH3), 0.87, 0.86 (2 x s, 9H, OCH2CH2C(CH3)3).  
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Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(3,3-dimethyl-1-butyl-L-

alaninyl)]-phosphate (4.15b). 

 

Prepared according to standard 

procedure 7 from, 2’,3’-O,O-

isopropylidene-6-thioguanosine 5’-O-

[1-naphthyl-(3,3-dimethyl-1-butyl-L-

alaninyl)]-phosphate (4.14b, 0.21 g,  

0.30 mmol), in 10 ml of 60 % 

CH3COOH in water at 65oC 

overnight. The crude mixture was purified by column chromatography 

CHCl3/MeOH (9:1, gradient) as eluent, followed by preparative purification to give 

the pure product 4.15b as a yellow foam (0.011 g, 6%). 

 
31P NMR (202 MHz, MeOD) δ 4.31, 4.19 
1H NMR (500 MHz, MeOD) δ 8.15 - 8.13 (m, 0.5H, H-Ar), 8.09 - 8.08 (m, 0.5H, H-

Ar), 7.98, 7.97 (2 x s, 1H, H-8), 7.86 – 7.84 (m, 1H, H-Ar), 7.68 – 7.66 (m, 1H, H-

Ar), 7.52 – 7.43 (m, 3H, H-Ar), 7.39 – 7.29 (m, 1H, H-Ar), 5.85, 5.84 (2 x d, J = 5.0 

Hz, 1H, H-1’), 4.62 – 4.57 (m, 1H, H-2’), 4.50 – 4.47 (m, 1.4H, H-3’, H-5’), 4.42 – 

4.39 (m, 1.6H, H-3’, H-5’), 4.31 – 4.30 (m, 0.4H, H-4’), 4.27 – 4.26 (m, 0.6H, H-4’), 

4.07 – 3.97 (m, 3H, OCH2CH2C(CH3)3, CHCH3), 1.45 – 1.40 (m, 2H, 

OCH2CH2C(CH3)3), 1.31 (d, J = 7.0 Hz, CHCH3), 0.87, 0.86 (2 x s, 9H, 

OCH2CH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 177.21, 177.13 (C=S), 175.22, 174.95 (2 x d, 3JC-C-N-

P = 5.5 Hz, C=O), 154.64, 154.55 (C-2), 148.76, 148.73 (C-4), 147.93, 147.87 (2 x 

d, 2JC-O-P = 3.75 Hz, ipso C-Naph), 140.61, 140.55 (C-8), 136.23, 136.14 (C-5 

NapH), 136.23, 136.14 (C-5), 130.39, 130.32, 128.94, 128.87, 127.81, 127.56, 

127.52, 126.54, 126.40, 126.07, 126.02, 122.73, 122.68, 116.22, 116.19 (C-Ar), 

90.25, 90.16 (C-1’), 84.58, 84.36 (d, 3JC-C-O-P = 8.25 Hz, C-4’), 74.90 (C-2’), 71.30 

(C-3’), 67.91, 67.80 (2 x d, 2JC-O-P = 5.25 Hz, C-5’), 64.19, 64.15 

(OCH2CH2C(CH3)3), 51.80, 51.72 (d, 2JC-N-P = 9.0 Hz, CHCH3), 42.74, 42.71 

(OCH2CH2C(CH3)3), 30.56, 30.53 (OCH2CH2C(CH3)3), 30.12, 30.10 

(OCH2CH2C(CH3)3), 20.79, 20.61 (2 x d, 3JC-C-N-P = 7.25 Hz, CHCH3).  
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HPLC (System 2) tR = 17.83, 18.10 min 

(ES+) m/z, found: (M+H+) 661.30, C29H37N6O8PS required: (M+) 660.21 

 

 

Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-(2,2-

dimethylpropoxy-L-alaninyl)]-phosphate (4.14c). 

 

Prepared according to standard 

procedure 6b from, 2’,3’-O,O-

isopropylidene-6-thioguanosine ( 0.100 

g, 0.29 mmol) tBuMgCl (1.0 M in THF, 

0.59 ml, 0.59 mmol) and 1-naphthyl-

(2,2-dimethylpropoxy-L-

alaninyl)phosphorochloridate (2.3f, 0.225 g, 0.59 mmol). The crude mixture was 

purified by column chromatography, using CHCl3/MeOH (1-3%, gradient) as eluent 

to give the pure product 4.14c as a yellow foam (0.054 g, 27%). 

 
31P NMR (202 MHz, MeOD) δ 4.14, 4.11 
1H NMR (500 MHz, MeOD) δ 8.12 – 8.10 (m, 0.6H, H-Ar), 8.00, 7.98 (2 x s, 1H, H-

8), 7.98 – 7.96 (m, 0.4H, H-Ar), 7.81 - 7.80 (m, 1H, H-Ar), 7.64 – 7.59 (m, 1H, H-

Ar), 7.49 – 7.41 (m, 3H, H-Ar), 7.36 – 7.30 (m, 1H, H-Ar), 5.98, 5.89 (2 x d, J = 2.0 

Hz, 1H, H-1’), 5.12 - 5.09 (m, 1H, H-2’), 4.91, 4.89 (dd, J = 2.5 Hz, 0.5H, H-5’), 

4.72, 4.70 (dd, J = 2.5 Hz, 0.5H, H-5’), 4.54 – 4.47 (m, 1H, H-5’, 0.5H, H-3’), 4.41 – 

4.40 (m, 0.5H, H-3’), 4.38 – 4.37 (m, 0.5H, H-4’), 4.27 – 4.23 (m, 0.5H, H-4’), 4.14 

– 4.05 (m, 1H, CHCH3), 3.81, 3.79, 3.70, 3.68 (2AB, JAB = 10.5 Hz, OCH2C(CH3)3), 

1.53, 1.52, 1.30, 1.28 (4s, 6H, 2 x CH3-isopropylidene), 1.40 -1.36 (2 x d, J = 7.0 Hz, 

3H, CHCH3), 0.88, 0.87 (2 x s, 9H, OCH2CH2C(CH3)3).  

NH

N

N
S

N

O

OO

OPO
O

NH

O

O

NH2



Blanka Gönczy         Chapter 8 

	

	 320	

Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(2,2-dimethylpropoxy-L-

alaninyl)]-phosphate (4.15c). 

 

Prepared according to standard 

procedure 7 from, 2’,3’-O,O-

isopropylidene-6-thioguanosine 5’-O-[1-

naphthyl-(2,2-dimethylpropoxy-L-

alaninyl)]-phosphate (4.14c, 0.054 g,  

0.078 mmol), in 10 ml of 60 % 

CH3COOH in water at 65oC overnight. 

The crude mixture was purified by column chromatography CHCl3/MeOH (9:1, 

gradient) as eluent, followed by preparative purification to give the pure product 

4.15c as a yellowish foam (0.006 g, 12%). 

 
31P NMR (202 MHz, MeOD) δ 4.11, 4.08 
1H NMR (500 MHz, MeOD) δ 8.16 - 8.09 (m, 1H, H-Ar), 7.98, 7.97 (2 x s, 1H, H-

8), 7.97, 7.96 (2 x s, 1H, H-8), 7.84 – 7.83 (m, 1H, H-Ar), 7.70 – 7.65 (m, 1H, H-

Ar), 7.53, 7.31 (2 x t, J = 7.0 Hz, 6.5, 1H, H-Ar), 5.83 (d, J = 5.0 Hz, 1H, H-1’), 4.60 

– 4.57 (m, 1H, H-2’), 4.49 – 4.36 (m, 3H, H-3’, H-5’, H-5’), 4.29, 4.24 (2 x d, 1H, 

H-4’), 4.09 – 4.03 (m, 1H, CHCH3), 3.81, 3.79, 3.71, 3.69 (2AB, JAB = 10.5 Hz, 

OCH2C(CH3)3), 1.35 (d, J = 7.0 Hz, CHCH3), 0.90, 0.89 (2 x s, 9H, 

OCH2CH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 177.32, 177.22 (C=S), 175.16, 174.86 (2 x d, 3JC-C-N-

P = 4.5 Hz, C=O), 154.69, 154.58 (C-2), 148.74 (C-4), 147.91, 147.85 (2 x d, 2JC-O-P 

= 3.75 Hz, ipso C-Naph), 140.62, 140.53 (C-8), 136.26, 136.18 (C-5 Naph), 130.35, 

130.27, 128.92, 128.82, 127.80, 127.53, 127.47, 126.50, 126.35, 126.02, 122.72, 

122.65, 116.38, 116.34, 116.24, 116.22 (C-Ar), 90.19, 90.12 (C-1’), 84.68, 84.42 (d, 
3JC-C-O-P = 8.6 Hz, C-4’), 75.51, 75.48 (C-2’), 74.80 (OCH2C(CH3)3), 71.84, 71.73 

(C-3’), 67.97, 67.90 (2 x d, 2JC-O-P = 5.25 Hz, C-5’), 51.76, 51.73 (CHCH3), 42.74, 

42.71 (OCH2CH2C(CH3)3), 32.35 (OCH2C(CH3)3), 26.80 (OCH2C(CH3)3), 20.86, 

20.67 (2 x d, 3JC-C-N-P = 7.12 Hz, CHCH3). 

HPLC (System 2) tR = 16.08, 16.41 min 

(ES+) m/z, found: (M+H+) 647, C28H35N6O8PS required: (M+) 646.20  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-

(pentoxy-L-leucinyl)]-phosphate (4.14d). 

 

Prepared according to standard procedure 

6b from, 2’,3’-O,O-isopropylidene-6-

thioguanosine (0.10 g, 0.29 mmol) 

tBuMgCl (1.0 M in THF, 0.59 ml, 0.59 

mmol) and 1-naphthyl-(pentoxy-L-

leucinyl)phosphorochloridate (2.3s, 0.25 g, 

0.59 mmol). The crude mixture was 

purified by column chromatography, using CHCl3/MeOH (1-3%, gradient) as eluent 

to give the pure product 4.14d as a yellow foam (0.072 g, 34%). 

 
31P NMR (202 MHz, MeOD) δ 4.58, 4.42 
1H NMR (500 MHz, MeOD) δ 8.13 – 8.11 (m, 0.5H, H-Ar), 7.99 – 7.98 (m, 0.5H, 

H-Ar), 7.98, 7.96 (2 x s, 1H, H-8), 7.82 – 7.80 (m, 1H, H-Ar), 7.65 – 7.60 (m, 1H, 

H-Ar), 7.49 – 7.41 (m, 3H, H-Ar), 7.37 – 7.29 (m, 1H, H-Ar), 5.99, 5.92 (2 x d, J = 

2.0 Hz, 1H, H-1’), 5.11 (m, 1H, H-2’), 4.94, 4.93 (dd, J = 2.5 Hz, 0.5H, H-5’), 4.79, 

4.78 (dd, J = 2.5 Hz, 0.5H, H-5’), 4.55 – 4.48 (m, 1H, H-5’, 0.5 H, H-3’), 4.40 – 4.34 

(m, 0.5 H, H-3’, 0.5H, H-4’), 4.25 – 4.21 (m, 0.5H, H-4’), 4.00 – 3.93 (m, 3H, 

CHCH3, OCH2CH2CH2CH2CH3), 1.52, 1.51, 1.30, 1.29 (4s, 6H, 2 x CH3-

isopropylidene), 1.50 -1.47 (m, 4H, NHCHCH2CH(CH3)2, OCH2CH2CH2CH2CH3), 

1.26 – 1.22 (m, 5H, OCH2CH2CH2CH2CH3, NHCHCH2CH(CH3)2), 0.83, 0.81 (2 x 

s, 6H, NHCHCH2CH(CH3)2), 0.78 (t, J = 6.0 Hz, 3H, OCH2CH2CH2CH2CH3).  
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Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(pentoxy-L-leucinyl)]-phosphate 

(4.15d). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-

thioguanosine 5’-O-[1-naphthyl-(pentoxy-

L-leucinyl)]-phosphate (4.14d, 0.072 g,  

0.098 mmol), in 10 ml of 60 % CH3COOH 

in water at 65oC overnight. The crude 

mixture was purified by column chromatography CHCl3/MeOH (9:1, gradient) as 

eluent to give the pure product 4.15d as a yellow foam (0.010g, 14%). 

 
31P NMR (202 MHz, MeOD) δ 4.68, 4.41 
1H NMR (500 MHz, MeOD) δ 8.16, 8.12 (2 x d, J = 7.0 Hz, 5.5 Hz, 1H, H-Ar), 

7.98, 7.97 (2 x s, 1H, H-8), 7.90 - 7.85 (m, 1H, H-8), 7.71 – 7.66 (m, 1H, H-Ar), 

7.55 – 7.44 (m, 3H, H-Ar), 7.39, 7.31 (2 x t, J = 8 Hz, 1H, H-Ar), 5.84 (d, J = 5.0 

Hz, 1H, H-1’), 4.61 – 4.58 (m, 1H, H-2’), 4.52 – 4.45 (m, 1H, 0.5H, H-5’), 4.38 – 

4.35 (0.5H, H-5’, 1H, H-3’), 4.30 – 4.22 (m, 1H, H-4’), 4.02 – 3.89 

(OCH2CH2CH2CH2CH3, CHCH3), 1.54 -1.46 (m, 4H, NHCHCH2CH(CH3)2, 

OCH2CH2CH2CH2CH3), 1.28 – 1.25 (m, 5H, OCH2CH2CH2CH2CH3, 

NHCHCH2CH(CH3)2), 0.83, 0.81 (3 x s, 9H, NHCHCH2CH(CH3)2, 

OCH2CH2CH2CH2CH3). 
13C NMR (125 MHz, MeOD) δ 177.40, 177.38 (C=S), 175.16, 174.86 (2 x d, 3JC-C-N-

P = 3.5 Hz, C=O), 148.84, 147.79 (2 x d, 2JC-O-P = 3.75 Hz, 2.5 Hz, ipso C-Naph), 

140.62, 140.53 (C-8), 148.77, 148.73 (C-4), 140.55, 140.47 (C-8), 136.31, 136.21, 

128.90, 128.81, 127.80, 127.76, 127.49, 127.44, 1276.48, 126.31, 126.00, 125.96, 

122.76, 122.67, 116.43, 116.40, 116.04, 116.02 (C-Ar), 90.13, 90.10 (C-1’), 84.73, 

84.40 (d, 3JC-C-O-P = 8.5 Hz, C-4’), 74.80, 74.76 (C-2’), 71.86, 71.71 (C-3’), 67.93, 

67.89 (2 x d, 2JC-O-P = 5.4 Hz, C-5’), 66.39 (OCH2CH2CH2CH2CH3), 54.78, 54.72 

(CHCH3), 42.74, 42.71 (2 x d, 3JC-C-N-P = 8.3 Hz, OCH2CH2C(CH3)3), 29.33, 29.32 

(OCH2CH2CH2CH2CH3), 25.69, 25.49 (OCH2CH2CH2CH2CH3), 23.32 

(NHCHCH2CH(CH3)2), 23.15, 23.00 (OCH2CH2CH2CH2CH3), 22.02, 21.74, 

(NHCHCH2CH(CH3)2), 14.28 (OCH2CH2CH2CH2CH3).
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HPLC (System 2) tR = 18.83, 19.12 min 

(ES+) m/z, found: (M+Na+) 711, C31H41N6O8PS required: (M+) 688.24 

 

Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-

(cyclohexoxy-L-alaninyl)]-phosphate (4.14e). 

 

Prepared according to standard 

procedure 6b from, 2’,3’-O,O-

isopropylidene-6-thioguanosine (0.11 g, 

0.32 mmol) tBuMgCl (1.0 M in THF, 

0.65 ml,  0.65 mmol) and 1-naphthyl-

(cyclohexoxy-L-

alaninyl)phosphorochloridate (2.3h, 0.26 

g, 0.65 mmol). The crude mixture was purified by column chromatography, using 

CHCl3/MeOH (1-3%, gradient) as eluent to give the pure product 4.14e as a yellow 

foam (0.063 g, 28%). 

 
31P NMR (202 MHz, MeOD) δ 4.39, 4.29 
1H NMR (500 MHz, MeOD) δ 8.13 – 8.12 (m, 0.5H, H-Ar), 7.98 – 7.96 (m, 0.5H, 

H-Ar), 7.97, 7.96 (2 x s, 1H, H-8), 7.83 – 7.79 (m, 1H, H-Ar), 7.66 – 7.62 (m, 1H, 

H-Ar), 7.50 – 7.41 (m, 3H, H-Ar), 7.38 – 7.33 (m, 1H, H-Ar), 6.01, 5.92 (2 x d, J = 

2.0 Hz, 1H, H-1’), 5.14 – 5.13 (m, 1H, H-2’), 4.91, 4.90 (dd, J = 2.5 Hz, 0.5H, H-5’), 

4.66 - 4.61 (m, 0.5H, H-5’), 4.53 – 4.48 (m, 1H, H-5’, 0.5H, H-3’), 4.40 (t, J = 6.0 

Hz, 0.5H, H-3’,), 4.36 – 4.34 (m, 0.5H, H-4’), 4.26 – 4.23 (m, 0.5H, H-4’), 4.03 – 

3.96 (m, 1H, CHCH3), 1.71 – 1.64 (m, 4H, 2 x CH2-ester), 1.53, 1.52, 1.36, 1.35 (4s, 

6H, 2 x CH3-isopropylidene), 1.32 - 1.29 (m, 9H, CHCH3, 3 x CH2-ester).   
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Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(cyclohexoxy-L-alaninyl)]-

phosphate (4.15e). 

 

Prepared according to standard 

procedure 7 from, 2’,3’-O,O-

isopropylidene-6-thioguanosine 5’-O-[1-

naphthyl-(cyclohexoxy-L-alaninyl)]-

phosphate (4.14e,  0.063 g, 0.090 mmol), 

in 10 ml of 60 % CH3COOH in water at 

65oC overnight. The crude mixture was 

purified by column chromatography CHCl3/MeOH (9:1, gradient) as eluent, 

followed by preparative purification to give the pure product 4.15e as a yellow foam 

(0.003 g, 9%). 

 
31P NMR (202 MHz, MeOD) δ 4.34, 4.29 
1H NMR (500 MHz, MeOD) δ 8.16 - 8.14 (m, 0.5H, H-Ar), 8.11 - 8.09 (d, J = 7.5 

Hz, 0.5H, H-Ar), 7.98, 7.97 (2 x s, 1H, H-8), 7.88 - 7.83 (m, 1H, H-8), 7.70 – 7.6 (m, 

1H, H-Ar), 7.53 – 7.44 (m, 3H, H-Ar), 7.38, 7.32 ( 2 x t, J = 10.0 Hz, 5.0 Hz, 1H, H-

Ar), 5.84 (d, J = 5.0 Hz, 1H, H-1’), 4.61, 4.58 (2 x t, J = 6.0 Hz, 5.0 Hz, 1H, H-2’), 

4.49 – 4.45 (m, 1H, 0.5H, H-5’), 4.42 – 4.39 (0.5H, H-5’, 1H, H-3’), 4.30 – 4.23 (2 x 

m, 1H, H-4’), 4.02 – 3.96 (m, 1H, CHCH3), 1.75 - 1.65 (m, 4H, 2 x CH2-ester), 1.32 

- 1.30 (m, 9H, CHCH3, 3 x CH2-ester). 

HPLC (System 2) tR = 17.54, 17.72 min 

(ES+) m/z, found: (M+H+) 659.20, C29H35N6O8PS required: (M+) 658.20  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-

(benzoxy-dimethylglicinyl)]-phosphate (4.14f). 

 

Prepared according to standard procedure 

6b from, 2’,3’-O,O-isopropylidene-6-

thioguanosine (0.10 g, 0.29 mmol) 

tBuMgCl (1.0 M in THF, 0.59 ml, 0.59 

mmol) and 1-naphthyl-(benzoxy-

dimethylglicinyl)phosphorochloridate 

(2.3j, 0.24 g, 0.59 mmol). The crude 

mixture was purified by column 

chromatography, using CHCl3/MeOH (1-3%, gradient) as eluent to give the pure 

product 4.14f as a yellow foam (0.074 g, 36 %). 

 
31P NMR (202 MHz, MeOD) δ 2.86, 2.82 
1H NMR (500 MHz, MeOD) δ 8.15 – 8.02 (m, 1H, H-Ar), 7.97, 7.92 (2 x s, 1H, H-

8), 7.83 – 7.79 (m, 1H, H-Ar), 7.82 – 7.77 (m, 1H, H-Ar), 7.64 – 7.59 (m, 1H, H-

Ar), 7.48 – 7.39 (m, 3H, H-Ar), 7.33 – 7.20 (m, 5H, H-Ar), 5.99, 5.89 (2 x d, J = 2.5 

Hz, 2.0 Hz, 1H, H-1’), 5.14 – 5.06 (m, 2H, CH2Bn, 0.5H, H-2’), 4.78, 4.76 (2 x d, J 

= 2.5 Hz, 2.0 Hz, 0.5H, H-2’), 4.45 - 4.34 (m, 3H, H-3’, H-5’, H-5’), 4.27 – 4.24 (m, 

1H, H-4’), 1.51 (s, 6H, 2 x CHCH3), 1.47, 1.44, 1.29, 1.26 (4s, 6H, 2 x CH3-

isopropylidene).  
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Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(benzoxy-dimethylglicinyl)]-

phosphate (4.15f). 

  

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-

thioguanosine 5’-O-[1-naphthyl-(benzoxy-

dimethylglicinyl)]-phosphate (4.14f, 0.074 

g,  0.10 mmol), in 10 ml of 60 % 

CH3COOH in water at 65oC overnight. The 

crude mixture was purified by column 

chromatography CHCl3/MeOH (9:1, gradient) as eluent, followed by preparative 

purification to give the pure product 4.15f as a yellowish foam (0.005 g, 8%). 

 
31P NMR (202 MHz, MeOD) δ 4.34, 4.29 
1H NMR (500 MHz, MeOD) δ 8.17, 8.12 (2 x d, J = 9.5 Hz, 8.5 Hz, 1H, H-Ar), 

7.98, 7.93 (2 x s, 1H, H-8), 7.87, 7.84 (2 x d, J = 7.0 Hz, 8.0 Hz, 1H, H-Ar), 7.69, 

7.64 (2 x d, J = 8.0 Hz, 8.5 Hz, 1H, H-Ar), 7.53 – 7.40 (m, 3H, H-Ar), 7.36 - 7.22 

(m, 6H, H-Ar), 5.84, 5.80 (2 x d, J = 5.0 Hz, 5.5 Hz, 1H, H-1’), 5.17 – 5.07 (m, 2H, 

CH2Bn), 4.61, 4.58 (2 x t, J = 6.0 Hz, 5.0 Hz, 1H, H-2’), 4.44 – 4.32 (m, 2H, H-5’, 

0.5H, H-3’), 4.26 – 4.20 (0.5H, H-3’, 1H, H-4’), 1.51, 1.48 (2 x d, J = 6.5 Hz, 4.0 

Hz, 6H, 2 x C(CH3)2). 
13C NMR (125 MHz, MeOD) δ 177.22, 176.62 (C=S), 148.74, 148.63 (C-Ar), 

148.03, 147.97 (C-4), 140.71, 140.55 (C-8), 137.30, 137.25, 136.25, 136.13, 130.29, 

130.13, 129.56, 129.53, 129.31, 129.27, 129.20, 128.83, 128.77, 127.85, 127.81, 

127.71, 127.66, 127.36, 127.27, 126.45, 126.26, 125.87, 125.81, 122.90, 116.50, 

116.37(C-Ar), 90.21, 90.07 (C-1’), 84.71, 84.42 (d, 3JC-C-O-P = 8.75 Hz, C-4’), 74.76, 

74.59 (C-2’), 71.79 (C-3’), 68.29, 67.83 (2 x d, 2JC-O-P = 4.6 Hz, C-5’), 27.84, 27.77, 

27.58, 27.49 (4 x d, J = 4.5 Hz, C(CH3)2). 

HPLC (System 2) tR = 16.69, 16.95 min 

(ES+) m/z, found: (M+H+) 681.20, C31H33N6O8PS required: (M+) 680.18  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-

(pentoxy-L-alaninyl)]-phosphate (4.14g). 

 

Prepared according to standard procedure 

6b from, 2’,3’-O,O-isopropylidene-6-

thioguanosine (0.213 g, 0.627 mmol) 

tBuMgCl (1.0 M in THF, 1.25 ml, 1.25 

mmol) and 1-naphthyl-(pentoxy-L-

alaninyl)phosphorochloridate (provided by 

Slusarczyk, 0.48 g, 1.25 mmol). The crude 

mixture was purified by column chromatography, using CHCl3/MeOH (1-3%, 

gradient) as an eluent to give the pure product 4.14g as a yellow foam (0.133 g, 

31%). 

 
31P NMR (202 MHz, MeOD) δ 4.40, 4.31 
1H NMR (500 MHz, MeOD) δ 8.14 – 8.12 (m, 0.3H, H-Ar), 7.98 - 7.95 (m, 0.7H, H-

Ar), 7.94, 7.93 (2 x s, 1H, H-8), 7.84 – 7.82 (m, 1H, H-Ar), 7.69 – 7.64 (m, 1H, H-

Ar), 7.54 – 7.33 (m, 4H, H-Ar), 6.02, 5.93 (2 x d, J = 2.5 Hz, 1H, H-1’), 5.14 – 5.13 

(m, 1H, H-5’, 0.4 H, H-2’), 4.91, 4.90 (dd, J = 2.5 Hz, 0.3H, H-2’), 4.73, 4.72 (dd, J 

= 2.5 Hz, 0.3H, H-2’), 4.53 - 4.46 (m, 1H, H-5’, 0.3H, H-3’), 4.40 (t, J = 6.0 Hz, 

0.7H, H-3’), 4.37 -4.32 (m, 0.3H, H-4’), 4.27 – 4.22 (m, 0.7H, H-4’), 4.05 – 3.96 (m, 

3H, CHCH3, OCH2CH2CH2CH2CH3), 1.55, 1.54, 1.33, 1.32 (4s, 6H, 2 x CH3-

isopropylidene), 1.52 – 1.51 (m, 2H, OCH2CH2CH2CH2CH3), 1.37 – 1.24 (m, 7H, 

OCH2CH2CH2CH2CH3, CHCH3), 0.85, 0.84 (2 x t, J = 7.5 Hz, 3H, 

OCH2CH2CH2CH2CH3).  
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Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(pentoxy-L-alaninyl)]-phosphate 

(4.15g). 

 

Prepared according to standard procedure 7 

from, 2’,3’-O,O-isopropylidene-6-

thioguanosine 5’-O-[1-naphthyl-(pentoxy-

L-alaninyl)]-phosphate (4.14g, 0.133 g,  

0.19 mmol), in 10 ml of 60 % CH3COOH 

in water at 65oC overnight. The crude 

mixture was purified by column 

chromatography using CHCl3/MeOH (9:1, gradient) as eluent, followed by 

preparative purification to give the pure product 4.15 g as a yellow foam (0.011 g, 

9%). 

 
31P NMR (202 MHz, MeOD) δ 4.33, 4.27 
1H NMR (500 MHz, MeOD) δ 8.17 - 8.10 (m, 1H, H-Ar), 7.97, 7.96 (2 x s, 1H, H-

8), 7.91 - 7.85 (m, 1H, H-Ar), 7.72 - 7.66 (m, 1H, H-Ar), 7.55 – 7.44 (m, 3H, H-Ar), 

7.40, 7.33 (2 x t, J = 7.5 Hz, 1H, H-Ar), 5.85 (d, J = 5.0 Hz, 1H, H-1’), 4.62 – 4.58 

(m, 1H, H-2’), 4.48 – 4.41 (m, 1H, H-5’, 0.3H, H-3’), 4.41 – 4.35 (m, 1H, H-5’, 

0.7H, H-3’), 4.24 – 4.23 (m, 1H, H-4’), 4.03 - 3.97 (m, 3H, OCH2CH2CH2CH2CH3, 

CHCH3), 1.55 – 1.52 (m, 2H, OCH2CH2CH2CH2CH3), 1.31 – 1.26 (m, 7H, 

OCH2CH2CH2CH2CH3, CHCH3), 0.86, 0.85 (2 x t, J = 7.5 Hz, 3H, 

OCH2CH2CH2CH2CH3). 
13C NMR (125 MHz, MeOD) δ 177.34, 177.31(C=S), 175.20, 174.93 (2 x d, 3JC-C-N-P 

= 4.25 Hz, C=O), 148.73, 148.71 (C-4), 147.96, 147.91 (2 x d, J = 2.5 Hz, ipso 

Naph), 140.52, 140.48 (C-8), 136.29, 136.20, 130.20, 130.18, 128.89, 188.81, 

127.86, 127.81, 127.79, 127.76, 127.50, 127.45, 126.48, 126.35, 126.01, 125.98, 

122.71, 122.65, 116.29, 116.27, 116.22, 116.19 (C-Ar), 90.17, 90.10 (C-1’), 84.62, 

84.43 (d, 3JC-C-O-P = 8.5 Hz, C-4’), 74.77, 74.73 (C-2’), 71.73 (C-3’), 67.84, 67.71 (2 

x d, 2JC-O-P = 5.25 Hz, C-5’), 66.52, 66.48 (OCH2CH2CH2CH2CH3), 51.75, 51.69 

(CHCH3), 29.33 (OCH2CH2CH2CH2CH3), 29.09 (OCH2CH2CH2CH2CH3), 23.34, 

23.33 (OCH2CH2CH2CH2CH3), 20.55, 20.40 (2 x d, 3JC-C-N-P = 7.5 Hz, CHCH3), 

14.28, 14.26 (OCH2CH2CH2CH2CH3).  
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HPLC (System 2) tR = 18.91, 19, 23 min 

(ES+) m/z, found: (M+Na+) 669, C28H35N6O8PS required: (M+) 646.19 

 

Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[phenyl-(benzoxy-

L-alaninyl)]-phosphate (4.14h). 

 

Prepared according to standard procedure 

6b from, 2’,3’-O,O-isopropylidene-6-

thioguanosine (0.100 g, 0.295 mmol) 

tBuMgCl (1.0 M in THF, 0.59 ml, 0.59 

mmol) and phenyl-(benzoxy-L-

alaninyl)phosphorochloridate (2.3b, 0.20 g, 

0.59 mmol). The crude mixture was 

purified by column chromatography, using 

CHCl3/MeOH (1-3%, gradient) as an eluent to give the pure product 4.14h as a 

yellow foam (0.047 g, 24%). 

 
31P NMR (202 MHz, MeOD) δ 3.90, 3.81 
1H NMR (500 MHz, MeOD) δ 8.02, 8.01 (2 x s, 1H, H-8), 7.32 - 7.06 (m, 10H, H-

Ar), 6.03, 5.99 (2 x d, J = 2.0 Hz, 1H, H-1’), 5.22, 5.21 (dd, J = 2.0 Hz, 0.4H, H-2’), 

5.13, 5.11 (dd, J = 2.0 Hz, 0.6H, H-2’), 5.11 (d, J = 2.5 Hz, 1H, H-5’), 5.08 - 5.03 

(m, 2H, CH2Bn), 4.44 – 4.34 (m, 2H, H-5’, H-3’), 4.28 – 4.24 (m, 0.6H, H-4’), 4.18 

– 4.13 (m, 0.4H, H-4’), 4.02 – 3.93 (m, 1H, CHCH3), 1.55, 1.33 (2 x s, 6H, 2 x CH3-

isopropylidene), 1.31, 1.29 (2 x d, J = 4.5 Hz, 3H, CHCH3). 
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Synthesis of 6-thioguanosine 5’-O-[phenyl-(benzoxy-L-alaninyl)]-phosphate 

(4.15h). 

 

Prepared according to standard procedure 

7 from, 2’,3’-O,O-isopropylidene-6-

thioguanosine 5’-O-[phenyl-(benzoxy-L-

alaninyl)]-phosphate (4.14h, 0.047 g,  

0.007 mmol), in 10 ml of 60 % 

CH3COOH in water at 65oC overnight. 

The crude mixture was purified by 

column chromatography using 

CHCl3/MeOH (9:1, gradient) as eluent, followed by preparative purification to give 

the pure product 4.15h as a yellowish foam (0.008 g, 18%). 

 
31P NMR (202 MHz, MeOD) δ 4.09, 3.81 
1H NMR (500 MHz, MeOD) δ 8.02, 8.00 (2 x s, 1H, H-8), 7.34 – 7.25 (m, 7H, H-

Ar), 7.21 - 7.12 (m, 3H, H-Ar), 5.88, 5.86 (2 x d, J = 5.0 Hz, 1H, H-1’), 5.15, 5.13, 

5.10, 5.06 (2AB, JAB = 12.5 Hz, 5.5 Hz, CH2Bn), 4.64 – 4.60 (m, 1H, H-2’), 4.38 – 

4.28 (m, 3H, H-5’, H-5’, H-3’), 4.23 – 4.20 (m, 1H, H-4’), 4.03 – 3.93 (m, 1H, 

CHCH3), 1.31, 1.29 (2 x d, 3J = 7.0 Hz, 3H, CHCH3). 
13C NMR (125 MHz, MeOD) δ 177.31 (C=S), 174.90, 174.63 (2 x d, 3JC-C-N-P = 5.25 

Hz, 4.0 Hz, C=O), 154.78 (CNH2), 152.07, 152.01 (2 x d, J = 6.5 Hz, ipso C-

phenyl), 148.84, 148.79 (C-4), 140.46, 140.37 (C-8), 137.28, 137.20 (ipso C-

benzyl), 130.78, 130.71 (C-5), 129.57, 129.55, 129.33, 129.30, 129.28, 126.18 (C-

Ar), 121.48, 121.40 (2 x d, J = 4.6 Hz, orto C-phenyl), 89.99, 89.88 (C-1’), 84.45, 

84.33 (d, 3JC-C-O-P = 8.5 Hz, C-4’), 70.04, 74.88 (C-2’), 71.73 (C-3’), 68.02 (CH2Bn), 

67.67, 67.34 (2 x d, 2JC-O-P = 5.25 Hz, C-5’), 51.74, 51.57 (CHCH3), 20.39, 20.23 (2 

x d, 3JC-C-N-P = 7.5 Hz, CHCH3).  

HPLC (System 2) tR = 14.55, 14.86 min 

(ES+) m/z, found: (M+Na+) 639.70, C26H29N6O8PS required: (M+) 616.58  
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Synthesis of 6-thioguanosine 5’-O-[phenyl-(cyclohexoxy-L-alaninyl)]-phosphate 

(4.15i). 

 

Prepared according to standard 

procedure 7 from, 2’,3’-O,O-

isopropylidene-6-thioguanosine 5’-O-

[phenyl-(cyclohexoxy-L-alaninyl)]-

phosphate (4.14i, 0.039 g, 0.061 mmol), 

in 10 ml of 60 % CH3COOH in water at 

65oC overnight. The crude mixture was 

purified by column chromatography using CHCl3/MeOH (9:1, gradient) as eluent, 

followed by preparative purification to give the pure product 4.15i as a yellow foam 

(0.002 g, 5%). 

 
31P NMR (202 MHz, MeOD) δ 4.08, 3.91 
1H NMR (500 MHz, MeOD) δ 8.05, 8.03 (2 x s, 1H, H-8), 7.35 – 7.13 (m, 5H, H-

Ar), 5.89, 5.87 (2 x d, J = 5.0 Hz, 1H, H-1’), 4.73 – 4.63 (m, 2H, OCH-ester, H-2’), 

4.45 – 4.33 (m, 3H, H-5’, H-5’, H-3’), 4.28 – 4.24 (m, 1H, H-4’), 3.95 – 3.89 (m, 

1H, CHCH3), 1.77 – 1.69 (m, 4H, 2 x CH2-ester), 1.52 – 1.35 (m, 6H, 3 x CH2-

ester), 1.32, 1.29 (2 x d, 3J = 7.5 Hz, 3H, CHCH3). 

HPLC (System 2) tR = 14.26, 14.50 min 

(ES+) m/z, found: (M+H+) 594.20, C25H32N5O8PS required: (M+) 593.17  
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Synthesis of 2’,3’-O,O-isopropylidene-6-thioguanosine 5’-O-[1-naphthyl-

(hexoxy-L-alaninyl)]-phosphate (4.14j). 

 

Prepared according to standard 

procedure 6b from, 2’,3’-O,O-

isopropylidene-6-thioguanosine (0.133 g, 

0.40 mmol) tBuMgCl (1.0 M in THF, 

0.78 ml, 0.78 mmol) and 1-naphthyl-

(hexoxy-L-alaninyl)phosphorochloridate 

(2.3g, 0.31 g, 0.78 mmol). The crude 

mixture was purified by column chromatography, using CHCl3/MeOH (1-3%, 

gradient) as eluent to give the pure product 4.14j as a yellow foam (0.063g, 23%). 

 
31P NMR (202 MHz, MeOD) δ 3.90, 3.81 
1H NMR (500 MHz, MeOD) δ 8.15 – 8.06 (2 x m, 1H, H-Ar), 7.95, 7.94 (2 x s, 1H, 

H-8), 7.89 – 7.84 (m, 1H, H-Ar), 7.70 – 7.66 (m, 1H, H-Ar), 7.54 – 7.34 (m, 4H, H-

Ar), 6.04, 5.94 (2 x d, J = 2.5 Hz, 1H, H-1’), 5.17 - 5.15 (m, 1H, H-5’), 4.99, 4.95 

(dd, J = 2.0 Hz, 0.4H, H-2’), 4.76, 4.75 (dd, J = 2.5 Hz, 0.6H, H-2’), 4.52 – 4.39 (m, 

2H, H-5’, H-3’), 4.36 – 4.23 (m, 1H, H-4’), 4.05 – 3.98 (m, 3H, CHCH3, 

OCH2CH2CH2CH2CH2CH3), 1.56, 1.55, 1.34, 1.31 (2 x s, 6H, 2 x CH3-

isopropylidene), 1.53 – 1.50 (m, 2H, OCH2CH2CH2CH2CH2CH3), 1.29 - 1.21 (m, 

9H, OCH2CH2CH2CH2CH2CH3), 0.87, 0.86 (2 x t, J = 3.0 Hz, 3H, CHCH3). 
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Synthesis of 6-thioguanosine 5’-O-[1-naphthyl-(hexoxy-L-alaninyl)]-phosphate 

(4.15j). 

 

Prepared according to standard 

procedure 7 from, 2’,3’-O,O-

isopropylidene-6-thioguanosine 5’-O-[1-

naphthyl-(hexoxy-L-alaninyl)]-

phosphate (4.14j, 0.063 g, 0.089 mmol), 

in 10 ml of 60 % CH3COOH in water at 

65oC overnight. The crude mixture was 

purified by column chromatography using CHCl3/MeOH (9:1, gradient) as eluent, 

followed by preparative purification to give the pure product 4.15j as a yellow foam 

(0.013 g, 15%). 

 
31P NMR (202 MHz, MeOD) δ 4.34, 4.28 
1H NMR (500 MHz, MeOD) δ 8.16 - 8.09 (m, 1H, H-Ar), 7.99 (s, 1H, H-8), 7.89 - 

7.84 (m, 1H, H-Ar), 7.71 - 7.66 (m, 1H, H-Ar), 7.54 – 7.31 (m, 4H, H-Ar), 7.39, 

7.32 (2 x t, J = 8.0 Hz, 1H, H-Ar), 5.85 (d, J = 5.0 Hz, 1H, H-1’), 4.61 – 4.58 (m, 

1H, H-2’), 4.48 – 4.44 (m, 1H, H-5’, 0.6H, H-3’), 4.41 – 4.36 (m, 1H, H-5’, 0.4H, H-

3’), 4.29 – 4.27 (m, 0.6H, H-4’), 4.25 – 4.23 (m, 0.4H, H-4’), 4.03 - 3.96 (m, 3H, 

OCH2CH2CH2CH2CH3, CHCH3), 1.55 – 1.52 (m, 2H, OCH2CH2CH2CH2CH3), 1.31 

– 1.26 (m, 7H, OCH2CH2CH2CH2 CH2CH3, CHCH3), 1.53 - 1.50 (m, 2H, 

OCH2CH2CH2CH2CH2CH3), 1.30 - 1.21 (m, 9H, OCH2CH2CH2CH2CH2CH3), 0.87, 

0.85 (2 x t, J = 3.5 Hz, 3H, CHCH3). 
13C NMR (125 MHz, MeOD) δ 177.17, 177.10 (C=S), 175.25, 174.95 (2 x d, 3JC-C-N-

P = 5.0 Hz, C=O), 148.67 (C-4), 147.93 (C-Ar), 140.55, 140.48 (C-8), 136.27, 

136.19, 128.90, 128.82, 127.79, 127.77, 127.51, 127.46, 126.50, 126.36, 26.02, 

125.95, 122.71, 122.65, 116.30, 116.21(C-Ar), 90.18, 90.11 (C-1’), 84.62, 84.44 (d, 
3JC-C-O-P = 8.5 Hz, C-4’), 74.88 (C-2’), 71.74 (C-3’), 67.88, 67.73 (2 x d, 2JC-O-P = 

5.15 Hz, C-5’), 66.55, 66.51 (OCH2CH2CH2CH2CH2CH3), 51.75, 51.69 (CHCH3), 

32.58 (OCH2CH2CH2CH2CH2CH3), 29.62 (OCH2CH2CH2CH2CH2CH3), 26.60 

(OCH2CH2CH2CH2CH2CH3), 23.59 (OCH2CH2CH2CH2CH2CH3), 20.55, 20.40 (2 x 

d, 3JC-C-N-P = 7.5 Hz, CHCH3), 14.38 (CHCH3).   
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HPLC (System 2) tR = 21.02, 21.29 min 

 (ES+) m/z, found: (M+H+) 661.20, C29H37N6O8PS required: 660.68. 

 

Synthesis of 6-thioguanosine 5’-O-bis(benzoxy-L-alaninyl)-phosphate (4.19a). 

 

Prepared according to standard 

procedure 8 from, 6-

thioguanosine (4.9, 0.150 g, 0.50 

mmol) in anhydrous TMP, 

POCl3 (0.047 ml, 0.50 mmol), L-

alanine benzyl ester tosylate salt 

(0.88 g, 2.50 mmol) in dry 

CHCl3 and DIPEA (0.87 ml, 5.01 

mmol). The crude mixture was purified by column chromatography (6% MeOH/ 

CHCl3, gradient) and followed by preparative purification to give the pure product 

4.19a as a white foam (0.049 g, 17%). 

 
31P NMR (202 MHz, MeOD) δ 13.92 
1H NMR (500 MHz, MeOD) δ 8.02 (bs, 1H, H-8), 7.35 – 7.30 (m, 10H, 2 x H-Ar), 

6.01 (d, J = 5.0 Hz, 1H, H-1’), 5.16 – 5.06 (m, 4H, 2 x OCH2Ph), 4.68 (t, J = 5.5 Hz, 

1H, H-2’), 3.68 (t, J = 4.5 Hz, 1H, H-3’), 4.24 – 4.20 (m, 1H, H-5’), 4.16 – 4.14 (m, 

2H, H-4’, H-5’), 3.97 – 3.91 (m, 2H, 2 x CHCH3), 1.32, 1.30 (2 x d, J = 7.0 Hz, 6H, 

2 x CHCH3). 
13C NMR (125 MHz, MeOD) δ 177.12 (C=S), 175.44, 175.38 (2 x d, 3JC-C-N-P = 6.25 

Hz, 2 x C=O), 163.19 (C-2), 161.34 (C-4), 151.47 (C-8), 140.49 (C-5), 137.25, 

137.20 (ipso C-Ph), 129.61, 129.37, 129.34, 129.32 (C-Ar), 90.02 (C-1’), 84.49, 

84.41 (d, 3JC-C-O-P = 10.25 Hz, C-4’), 74.63 (C-2’), 71.69 (C-3’), 68.07 (OCH2Ph), 

66.38, 66.32 (d, 2JC-O-P = 7.5 Hz, C-5’), 51.14, 51.08 (d, 2JC-N-P = 3.75 Hz, CHCH3), 

20.85, 20.62 (2 x d, 3JC-C-N-P = 5.75 Hz, CHCH3). 

HPLC (System 2) tR = 16.60 min 

(ES+) m/z, found: (M+H+) 702.20, C30H36N7O9PS required: (M+) 701.19 
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Synthesis of 6-thioguanosine 5’-O-bis(cyclohexoxy-L-alaninyl)-phosphate 

(4.19b).  

 

Prepared according to standard 

procedure 8 from, 6-thioguanosine 

(4.9, 0.150 g, 0.50 mmol) in 

anhydrous TMP, POCl3 (0.047 ml, 

0.50 mmol), L-alanine cyclohexyl 

ester tosylate salt (2.2d, 0.86 g, 

2.50 mmol) in dry CHCl3 and 

DIPEA (0.87 ml, 5.01 mmol). The crude mixture was purified by column 

chromatography (6% MeOH/ CHCl3, gradient) and followed by preparative 

purification to give the pure product 4.19b as a white foam (0.072 g, 21%). 

 
31P NMR (202 MHz, MeOD) δ 13.94 
1H NMR (500 MHz, MeOD) δ 8.04 (bs, 1H, H-8), 5.86 (d, J = 5.0 Hz, 1H, H-1’), 

4.76 – 4.69 (m, 3H, H-2’, 2 x ipso CH-ester), 4.39 (t, J = 4.5 Hz, 1H, H-3’), 4.31 – 

4.26 (m, 1H, H-5’), 4.23 – 4.18 (m, 2H, H-4’, H-5’), 3.91 – 3.85 (m, 2H, 2 x 

CHCH3), 1.83 – 1.82 (m, 4H, 2 x CH2-ester), 1.75 – 1.73 (m, 4H, 2 x CH2-ester), 

1.57 – 154 (m, 2H, CH2-ester), 1.47 – 1.30 (m, 16 H, 5 x CH2-ester, 2 x CH(CH3)3). 
13C NMR (125 MHz, MeOD) δ 177.33 (C=S), 175.16, 175.07 (2 x d, 3JC-C-N-P = 6.25 

Hz, 2 x C=O), 148.82 (C-4), 142.85 (C-8), 130.24 (C-5), 90.12 (C-1’), 84.66, 84.60 

(d, 3JC-C-O-P = 7.5 Hz, C-4’), 74.90 (2 x ipso CH2-ester), 74.70 (C-2’), 71.77 (C-3’), 

66.45, 66.41 (d, 2JC-O-P = 5.0 Hz, C-5’), 51.19, 51.09 (d, 2JC-N-P = 8.75 Hz, CHCH3), 

32.53, 32.51, 32.48, 32.46 (CH2-ester), 26.45 (CH2-ester), 24.70 (CH2-ester), 21.07, 

20.85 (2 x d, 3JC-C-N-P = 5.8 Hz, CHCH3). 

HPLC (System 2) tR = 16.28 min 

(ES+) m/z, found: (M+Na+) 708.4, C28H44N7O9PS required: (M+) 685.27 
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Synthesis of 6-thioguanosine 5’-O-bis(2,2-dimethylpropoxy-L-alaninyl)-

phosphate (4.19c). 

 

Prepared according to standard 

procedure 8 from, 6-thioguanosine 

(4.9, 0.150 g, 0.50 mmol) in 

anhydrous TMP, POCl3 (0.047 ml, 

0.50 mmol), L-alanine 2,2-

dimethylpropyl ester tosylate salt 

(2.2a, 0.86 g, 2.50 mmol) in dry 

CHCl3 and DIPEA (0.87 ml, 5.01 mmol). The crude mixture was purified by column 

chromatography (6% MeOH/ CHCl3, gradient) and followed by preparative 

purification to give the pure product 4.19c as a white foam (0.029 g, 9%). 

 
31P NMR (202 MHz, MeOD) δ 13.83 
1H NMR (500 MHz, MeOD) δ 8.05 (s, 1H, H-8), 5.87 (d, J = 5.0 Hz, 1H, H-1’), 4.71 

(t, J = 5.0 Hz, 1H, H-2’), 4.41 (t, J = 5.0 Hz, 1H, H-3’), 4.30 – 4.19 (m, 3H, H-4’, H-

5’, H-5’), 4.00 - 3.95 (m, 2H, 2 x CHCH3), 3.88, 3.86, 3.76, 3.71 (2AB, JAB = 10.5 

Hz, 5.5 Hz, 4H, 2 x CH2C(CH3)3), 1.38 (d, J = 7.0 Hz, 6H, 2 x CHCH3), 0.94 (s, 

18H, 2 x CH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 177.31 (C=S), 175.66, 175.58 (2 x d, 3JC-C-N-P = 5.8 

Hz, 2 x C=O), 148.82 (C-4), 140.71 (C-8), 130.28 (C-5), 90.11 (C-1’), 84.70, 84.64 

(d, 3JC-C-O-P = 7.5 Hz, C-4’), 75.44 (OCH2C(CH3)3), 75.41 (C-2’), 74.71 (C-3’), 

66.56, 66.50 (d, 2JC-O-P = 7.75 Hz, C-5’), 51.17, 51.09 (d, 2JC-N-P = 10.5 Hz, CHCH3), 

32.38, 32.35 (2 x OCH2C(CH3)3), 26.79 (OCH2C(CH3)3), 21.12, 21.92 (2 x d, 3JC-C-

N-P = 5.6 Hz,CHCH3). 

HPLC (System 2) tR = 19.83 min 

(ES+) m/z, found: (M+Na+) 684.30, C26H44N7O9PS required: (M+) 661.27 
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Synthesis of 6-thioguanosine 5’-O-bis(hexoxy-L-alaninyl)-phosphate (4.19d). 

 

 

Prepared according to standard 

procedure 8 from, 6-thioguanosine 

(4.9, 0.155 g, 0.52 mmol) in 

anhydrous TMP, POCl3 (0.048 ml, 

0.52 mmol), L-alanine hexyl ester 

hydrochloride salt (provided by 

Madela, 0.53 g, 2.50 mmol) in dry CHCl3 and DIPEA (0.87 ml, 5.01 mmol). The 

crude mixture was purified by column chromatography (6% MeOH/ CHCl3, 

gradient) and followed by preparative purification to give the pure product 4.19d as 

a white foam (0.057 g, 16%). 

 
31P NMR (202 MHz, MeOD) δ 13.87 
1H NMR (500 MHz, MeOD) δ 8.04 (s, 1H, H-8), 5.86 (d, J = 5.0 Hz, 1H, H-1’), 4.70 

(t, J = 5.5 Hz, 1H, H-2’), 4.39 (t, J = 4.5 Hz, 1H, H-3’), 4.28 – 4.18 (m, 3H, H-4’, H-

5’, H-5’), 4.14 - 4.02 (m, 4H, 2 x OCH2CH2CH2CH2CH2CH3), 3.92 – 3.88 (m, 2H, 

CHCH3), 1.66 – 1.61 (m, 4H, 2 x OCH2CH2CH2CH2CH2CH3), 1.36 – 1.33 (m, 18H, 

2 x OCH2CH2CH2CH2CH2CH3, 2 x CHCH3), 0.92, 9.07 (2 x s, 6H, 2 x 

OCH2CH2CH2CH2CH2CH3). 
13C NMR (125 MHz, MeOD) δ 177.33 (C=S), 175.71, 175.67 (2 x d, 3JC-C-N-P = 5.0 

Hz, 2 x C=O), 154.80 (C-2), 148.82 (C-4), 140.71 (C-8), 130.23 (C-5), 90.07 (C-1’), 

84.64, 84.57 (d, 3J C-C-O-P = 8.25 Hz, C-4’), 74.71 (C-2’), 71.73 (C-3’), 66.32, 66.29 

(d, 2JC-O-P = 7.25 Hz, C-5’), 64.05 (OCH2CH2CH2CH2CH2CH3), 51.10, 51.01 (d, 2JC-

N-P = 11.0 Hz, CHCH3), 42.85 (OCH2CH2CH2CH2CH2CH3), 30.75 

(OCH2CH2CH2CH2CH2CH3), 30.57 (OCH2CH2CH2CH2CH2CH3), 30.03 

(OCH2CH2CH2CH2CH2CH3), 20.95, 20.65 (2 x d, 3JC-C-N-P = 5.6 Hz, CHCH3), 15.10 

(OCH2CH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 18.97 min 

(ES+) m/z, found: (M+Na+) 712.30, C28H48N7O9PS required: (M+) 689.30 
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Synthesis of 6-thioguanosine 5’-O-bis(pentoxy-L-leucinyl)-phosphate (4.19e). 

 

Prepared according to standard 

procedure 8 from, 6-thioguanosine 

(4.9, 0.150 g, 0.50 mmol) in 

anhydrous TMP, POCl3 (0.047 ml, 

0.50 mmol), L-leucine pentyl ester 

hydrochloride salt (2.2i, 0.60 g, 2.50 

mmol) in dry CHCl3 and DIPEA (0.87 

ml, 5.01 mmol). The crude mixture was purified by column chromatography (6% 

MeOH/ CHCl3, gradient) and followed by preparative purification to give the pure 

product 4.19e as a white foam (0.003 g, 1%). 

 
31P NMR (202 MHz, MeOD) δ 13.88 
1H NMR (500 MHz, MeOD) δ 8.05 (s, 1H, H-8), 5.85 (d, 1H, J = 5.0 Hz, H-1’), 4.70 

(t, J = 5.0 Hz, 1H, H-2’), 4.38 (t, J = 4.5 Hz, 1H, H-3’), 4.29 – 4.26 (m, 1H, H-5’), 

4.23 – 4.19 (m, 2H, H-4’, H-5’), 4.14 - 4.04 (m, 4H, 2 x OCH2CH2CH2CH2CH3), 

3.89 – 3.80 (m, 2H, CHCH2CH(CH3)2), 1.66 – 1.62 (m, 4H, 2 x 

OCH2CH2CH2CH2CH3), 1.54 - 1.48 (m, 4H, 2 x CHCH2CH(CH3)2), 1.36 – 1.34 (m, 

8H, 2 x OCH2CH2CH2CH2CH3), 0.95 – 0.89 (m, 20H, 2 x CHCH2CH(CH3)2), 2 x 

CHCH2CH(CH3)2), 2 x OCH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 20.60 min 

(ES+) m/z, found: (M+Na+) 768.40, C32H56N7O9PS required: (M+) 745.36 

 

 

Synthesis of 1,2,3,5-Tetra-O-benzoyl-D-ribofuranoside (4.20). 

 

To a cooled solution (0oC) of 1,3,5-Tri-O-benzoyl-α-D-

ribofuranose (2.00 g, 4.32 mmol), 4-dimethylaminopyridine 

(0.05 g, 0.43 mmol) and triethylamine (3.0 ml, 0.11 mmol) 

in anhydrous THF (25 ml), benzoyl chloride (1.0 ml, 8.65mmol) was added 

dropwise and stirred for 16 hrs under inert atmosphere. The reaction mixture was  
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 quenched with ice cold water and saturated aqueous solution of NaHCO3, then THF 

was evaporated under vacuum and the remaining aqueous mixture was extracted 

with EtOAc. The organic layers were combined and washed with water and brine, 

then dried over MgSO4 followed by evaporation resulting in a thick oil. This crude 

mixture was dissolved in the mixture of tert-butyl methyl ether (50 ml), heptane (50 

ml) and water (1ml) and stirred for 2-3 hours to provide white cystalls, which were 

vacuum filtered and dried over high vacuum to give the desired pure product. (2.4 g, 

70 %). 

 
1H NMR (500 MHz, MeOD) δ 8.15 – 8.07 (m, 6H, Bz), 7.89 – 7.88 (m, 2H, Bz), 

7.65 – 7.58 (m, 3H, Bz), 7.54 – 7.50 (m, 3H, Bz), 7.42 – 7.37 (m, 4H, Bz), 7.32 - 

7.30 (m, 2H, Bz), 6.98, 6.97 (2 x s, 1H, H1), 5.94, 5.93 (dd, J = 2.5 Hz, 1H, H3), 

5.94, 5.93 (dd, J = 2.5 Hz, 1H, H2), 4.94 (m, 1H, H4), 4.81, 4.79 (dd, J = 12 Hz, 3.5 

Hz, 1H, H5), 4.71, 4.69 (dd, J = 12 Hz, 3.5 Hz, 1H, H5). 

 

 

Synthesis of 2,3,5-Tri-O-benzoyl-6-chloro-β-D-ribofuranoside (4.21). 

 

To a precooled (0oC) solution of 1,2,3,5-Tetra-O-benzoyl-

D-ribofuranoside (4.20, 1.70 g, 3.00 mmol), 6-

chloropurine (0.51g, 3.3 mmol) 1,8-Diazabicycloundec-7-

ene (1.34 ml, 9.00mmol) in 30ml of anhydrous 

acetonitrile, trimethylsilyl trifluoromethanesulfonate (2.17 

ml, 12.00 mmol) was added and stirred for 6 hours at 

65oC. The crude mixture was allowed to cool down to room temperature then it was 

poured into saturated aqueous solution of NaHCO3 and extracted with CHCl3. The 

organic phase were collected, dried over MgSO4 and purified by column 

chromatography (50% EtOAc/Hexane) to provide the desired compound as white 

crystals (0.77 g, 43%). 

 
1H NMR (500 MHz, MeOD) δ 8.99 (s, 1H, H-8), 8.65 (s, 1H, H-2), 7.98 (t, J = 7.0 

Hz, 4H, Bz), 7.91 (d, J = 8.0 Hz, 2H, Bz), 7.64 – 7.59 (m, 3H, Bz), 7.48 – 7.40 (m,   
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6H, Bz), 6.79 (d, J = 4.5 Hz, 1H, H-1’), 6.57 (t, J = 5.5 Hz, 1H, H-2’), 6.35 (t, J = 

6.0 Hz, 1H, H-3’), 4.98 – 4.96 (m, 1H, H-4’), 4.90, 4.88 (dd, J = 3.5 Hz, 12.5 Hz, 

1H, H-5’), 4.76, 4.74 (dd, J = 3.5 Hz, 12.5 Hz, 1H, H-5’). 
13C NMR (125 MHz, MeOD) δ 165.37 (C=O), 164.66 (C=O), 164.51 (C=O), 151.67 

(C-2), 151.20 (C-6), 149.73 (C-4), 146.60 (C-8), 133.84, 133.76, 133.35, 129.34, 

129.21, 128.62, 128.54 (CH-Bz), 86.95 (C-1’), 79.64 (C-4’), 73.18 (C-3’), 70.71 (C-

2’), 63.13 (C-5’). 

 

Synthesis of 6-S-methyl-thioinosine (4.22). 

 

To the solution of 2,3,5-Tri-O-benzoyl-6-chloro-β-D-

ribofuranoside (4.21, 0.70 g, 1.168 mmol) in 10ml of 

anhydrous DMF, aqueous solution of NaSCH3 (0.70g in 

3.5ml H2O, 10.00 mmol) was added dropwise. The reaction 

mixture was stirred for 2 hours at ambient temperature then 

the reaction was diluted with H2O and extracted with 

EtOAc (3x10ml). The combined organic phases were dried over MgSO4 and 

evaporated to dryness under reduced pressure. The residue was purified by column 

chromatography (3% MeOH/CHCl3) to provide the desired compound as white solid 

(0.132 g, 38%). 

 
1H NMR (500 MHz, MeOD) δ 8.70 (s, 1H, H-2), 8.59 (s, 1H, H-8), 6.09 (d, J = 6.0 

Hz, 1H, H-1’), 4.75 (t, J = 5.5 Hz, 1H, H-2’), 4.38 (q, J = 3.5 Hz, 1H, H-3’), 4.19 (q, 

J = 3.0 Hz, 1H, H-4’), 3.92, 3.90 (dd, J = 3.0 Hz, 12.5 Hz, 1H, H-5’), 3.80, 3.78 (dd, 

J = 3.0 Hz, 12.5 Hz, 1H, H-5’), 2.74 (s, 3H, SCH3). 
13C NMR (125 MHz, MeOD) δ 153.08 (C-6), 144.42 (C-2), 134.41(C-4), 130.53 (C-

8), 129.63 (C-5), 91.12 (C-1’), 83.76 (C-4’), 74.78 (C-3’), 71.87 (C-2’), 64.89 (C-

5’), 11.77 (SCH3). 

HPLC (System 2) tR = 9.76 min 

(ES+) m/z, found: (M+Na+) 321.10, C11H14N4O4S required: 298.07 
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Synthesis of 6-S-methyl-thioinosine 5’-O-[1-naphthyl-(benzoxy-L-alaninyl)]-

phosphate (4.23a). 

 

Prepared according to standard procedure 4 

from, 6-S-methyl-thioinosine (4.22, 0.16 g, 0.54 

mmol), tBuMgCl (1.0 M, 1.07 ml, 1.07 mmol) 

and 1-naphthyl-(benzoxy-L-alaninyl)-

phosphorochloridate (2.3c, 0.43 g, 1.07 mmol) in 

anhydrous THF (10 ml). The crude mixture was 

purified by column chromatography, using 

CHCl3/MeOH (1-4%, gradient) as eluent, followed by preparative purification to 

give the pure product 4.23a as a white solid (0.005 g, 1%). 

 
31P NMR (202 MHz, MeOD) δ 4.16, 3.99 
1H NMR (500 MHz, MeOD) δ 8.63, 8.60 (2 x s, 1H, H-2), 8.43, 8.42 (2 x s, 1H, H-

8), 8.08 (t, J = 7.0 Hz, 1H, H-Ar), 7.87 – 7.84 (m, 1H, H-Ar), 7.68 – 7.66 (m, 1H, H-

Ar), 7.52 – 7.49 (m, 1H, H-Ar), 7.46 – 7.41 (m, 2H, H-Ar), 7.36 – 7.26 (m, 6H, H-

Ar), 6.08 (t, J = 5.0 Hz, 1H, H-1’), 5.06 - 4.99 (m, 2H, CH2Bn), 4.76, 4.72 (2 x t, J = 

5.0 Hz, 1H, H-2’), 4.48 – 4.36 (m, 3H, H-5’, H-5’, H-3’), 4.29 – 4.27 (m, 1H, H-4’), 

4.06 – 3.97 (m, 1H, CHCH3), 2.67 (s, 3H, SCH3), 1.29, 1.22 (2 x d, J = 7.0 Hz, 3H, 

CHCH3). 
13C NMR (125 MHz, MeOD) δ 174.81, 178.57 (2 x d, 3JC-C-N-P = 3.75 Hz, C=O), 

163.01, 162.99 (C-6), 153.14, 153.10 (C-2), 149.15, 149.13 (C-4), 147.85, 147.80 

(ipso C-Naph), 144.13, 144.01 (C-8), 137.18, 137.13, 136.22, 132.59, 132.52, 

129.53, 129.51, 129.27, 129.23, 129.20, 128.88, 128.82, 127.75, 127.45, 126.43, 

125.97, 125.95, 122.71, 122.57, 116.17, 116.10 (C-Ar), 90.54, 90.46 (C-1’), 84.51, 

84.45 (d, 3JC-C-O-P = 7.6 Hz, C-4’), 75.00, 74.91 (C-2’), 71.55, 71.38 (C-3’), 67.95, 

67.89 (CH2Bn), 67.70, 67.30 (2 x d, 2JC-O-P = 5.0 Hz, C-5’), 51.70 (CHCH3), 20.41, 

20.21 (2 x d, 3JC-C-N-P = 6.35 Hz, CHCH3), 11.82 (SCH3). 

HPLC (System 2) tR = 18.12, 18.45 min 

(ES+) m/z, found: (M+Na+) 688.20, C31H32N5O8PS required: (M+) 665.17 
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Synthesis of 6-S-methyl-thioinosine 5’-O-[phenyl-(benzoxy-L-alaninyl)]-

phosphate (4.23b). 

 

Prepared according to standard procedure 4 

from, 6-S-methyl-thioinosine (4.22, 0.16 g, 0.54 

mmol), tBuMgCl (1.0 M, 1.07 ml, 1.07 mmol) 

and phenyl-(benzoxy-L-alaninyl)-

phosphorochloridate (2.3b, 0.38 g, 1.07 mmol).) 

in anhydrous THF (10 ml). The crude mixture 

was purified by column chromatography, using 

CHCl3/MeOH (1-4%, gradient) as eluent, followed by preparative purification to 

give the pure product 4.23b as a white solid (0.007 g, 2%). 

 
31P NMR (202 MHz, MeOD) δ 3.89, 3.63 
1H NMR (500 MHz, MeOD) δ 8.68, 8.67 (2 x s, 1H, H-2), 8.47, 8.45 (2 x s, 1H, H-

8), 7.32 – 7.28 (m, 7H, H-Ar), 7.19 – 7.15 (m, 3H, H-Ar), 6.11 (t, J = 5.0 Hz, 1H, H-

1’), 5.11 – 5.03 (m, 2H, CH2Bn), 4.76, 4.73 (2 x t, J = 5.0 Hz, 1H, H-2’), 4.46, 4.45 

(dt, J = 5.0 Hz, 2.0 Hz, 1H, H-3’), 4.42 – 4.38 (m, 1H, H-5’), 4.36 – 4.30 (m, 1H, H-

5’), 4.27 – 4.25 (m, 1H, H-4’), 4.00 – 3.91 (m, 1H, CHCH3), 2.70 (s, 3H, SCH3), 

1.31, 1.26 (2 x d, J = 7.0 Hz, 3H, CHCH3). 
13C NMR (125 MHz, MeOD) δ 174.80, 178.56 (2 x d, 3JC-C-N-P = 3.5 Hz, C=O), 

163.03, 163.01 (C-6), 153.21, 153.17 (C-2), 143.95, 143.91 (C-8), 137.27, 130.74, 

129.56, 129.54, 129.29, 129.25, 126.18, 121.45, 121.41, 121.39, 121.35 (C-Ar), 

90.35, 90.34 (C-1’), 84.55, 84.42 (d, 3JC-C-O-P = 8.5 Hz, C-4’), 75.21, 75.18 (C-2’), 

71.60, 71.48 (C-3’), 67.94 (CH2Bn), 67.51, 67.06 (2 x d, 2JC-O-P = 5.12 Hz, C-5’), 

51.68, 51.56 (CHCH3), 20.38, 20.21 (2 x d, 3JC-C-N-P = 6.6 Hz, CHCH3), 11.80 

(SCH3). 

HPLC (System 2) tR = 16.52, 16.91min 

(ES+) m/z, found: (M+Na+) 638.10, C27H30N5O8PS required: (M+) 615.16 
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Synthesis of 6-S-methyl-thioinosine 5’-O-[1-naphthyl-(2,2-dimethylpropoxy-L-

alaninyl)]-phosphate (4.23c). 

 

Prepared according to standard procedure 4 

from, 6-S-methyl-thioinosine (4.22, 0.16 g, 

0.54 mmol), tBuMgCl (1.0 M, 1.07 mL, 1.07 

mmol) and 1-naphthyl-(2,2-dimethylpropoxy-

L-alaninyl)-phosphorochloridate (2.3f, 0.41 g, 

1.07 mmol) in anhydrous THF (10 ml). The 

crude mixture was purified by column 

chromatography, using CHCl3/MeOH (1-4%, gradient) as eluent, followed by 

preparative purification to give the pure product 4.23c as a white solid (0.006 g, 2%). 

 
31P NMR (202 MHz, MeOD) δ 4.16, 4.03 
1H NMR (500 MHz, MeOD) δ 8.65, 8.61 (2 x s, 1H, H-2), 8.46, 8.45 (2 x s, 1H, H-

8), 8.10 (t, J = 9.0 Hz, 1H, H-Ar), 7.81 (t, J = 6.5 Hz, 1H, H-Ar), 7.69 – 7.67 (m, 1H, 

H-Ar), 7.52 – 7.44 (m, 3H, H-Ar), 7.38 – 7.34 (m, 1H, H-Ar), 6.10, 6.09 (2 x d, J = 

2.5 Hz, 1H, H-1’), 5.11 – 5.03 (m, 2H, CH2Bn), 4.77, 4.73 (2 x t, J = 5.0 Hz, 1H, H-

2’), 4.52 - 4.40 (m, 3H, H-3’, H-5’, H-5’), 4.33 – 4.28 (m, 1H, H-4’), 4.05 – 3.99 (m, 

1H, CHCH3), 3.79, 3.77, 3.68, 3.65 (2AB, JAB = 10.5 Hz, OCH2C(CH3)3), 2.69 (s, 

3H, SCH3), 1.32, 1.28 (2 x d, J = 7.5 Hz, 3H, CHCH3), 0.89, 0.88 (2 x s, 9H, 

OCH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 175.03, 174.80 (2 x d, 3JC-C-N-P = 4.62 Hz, C=O), 

163.05, 162.99 (C-6), 153.17, 153.11 (C-2), 149.19, 149.16 (C-4), 147.89, 147.83 

(ipso C-Naph), 144.12, 144.07 (C-8), 136.24, 132.60, 132.55, 128.88, 128.83, 

127.74, 127.43, 126.42, 125.95, 122.67, 122.58, 116.12, 116.10, (C-Ar), 90.50, 

90.48 (C-1’), 84.67, 84.52 (d, 3JC-C-O-P = 8.0 Hz, C-4’), 75.40, 75.35 

(OCH2C(CH3)3), 75.01, 74.93 (C-2’), 71.57, 71.53 (C-3’), 67.77, 67.53 (2 x d, 2JC-O-P 

= 5.35 Hz, C-5’), 51.76, 51.71 (CHCH3), 32.30 (OCH2C(CH3)3), 26.70 

(OCH2C(CH3)3), 20.70, 20.50 (2 x d, 3JC-C-N-P = 6.5 Hz, CHCH3), 11.80 (SCH3). 

HPLC (System 2) tR = 17.64, 17.93 min 

(ES+) m/z, found: (M+Na+) 668.20, C29H36N5O8PS required: (M+) 645.20  
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Synthesis of 6-S-methyl-thioinosine 5’-O-[1-naphthyl-(pentoxy-L-leucinyl)]-

phosphate (4.23d). 

 

Prepared according to standard procedure 4 

from, 6-S-methyl-thioinosine (4.22, 0.16 g, 0.54 

mmol), tBuMgCl (1.0 M, 1.07 ml, 1.07 mmol) 

and 1-naphthyl-(pentoxy-L-leucinyl)-

phosphorochloridate (2.3s, 0.46 g, 1.07 mmol) in 

anhydrous THF (10 ml). The crude mixture was 

purified by column chromatography, using 

CHCl3/MeOH (1-4%, gradient) as eluent, followed by preparative purification to 

give the pure product 4.23d as a white solid (0.003g, 1%). 

 
31P NMR (202 MHz, MeOD) δ 4.46, 4.24 
1H NMR (500 MHz, MeOD) δ 8.64, 8.60 (2 x s, 1H, H-2), 8.48, 8.46 (2 x s, 1H, H-

8), 8.12 – 8.08 (m, 1H, H-Ar), 7.87 – 7.84 (m, 1H, H-Ar), 7.68 – 7.66 (m, 1H, H-

Ar), 7.53 – 7.44 (m, 3H, H-Ar), 7.36 (t, J = 8.0 Hz, 1H, H-Ar), 6.11, 6.10 (d, J = 5.0 

Hz, 1H, H-1’), 4.79, 4.74 (2 x t, J = 5.0 Hz, 1H, H-2’), 4.53 - 4.43 (m, 2H, H-5’, H-

5’, 0.3H, H-3’), 4.43 – 4.39 (m, 0.7H, H-3’), 4.36 – 4.34 (m, 0.3H, H-4’), 4.32 – 

4.29 (m, 0.7H, H-4’), 3.96 – 3.85 (m, 3H, OCH2CH2CH2CH2CH2, NHCHCH3), 2.68 

(s, 3H, SCH3), 1.65 -1.59 (m, 1H, NHCHCH2CH(CH3)2), 1.50 – 1.40 (m, 4H, 

NHCHCH2CH(CH3)2, OCH2CH2CH2CH2CH3), 1.25 – 1.23 (m, 4H, 

OCH2CH2CH2CH2CH3), 0.86 - 0.76 (m, 9H, NHCHCH2CH(CH3)2, 

OCH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 21.03, 21.45 min 

(ES+) m/z, found: (M+Na+) 710.30, C32H42N5O8PS required: (M+) 687.25  
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Synthesis of 3’,5’-O-bis(tert-butyldimethylsilyl)-2-deoxy-guanosine (4.24). 

 

To a cooled (0oC) suspension of 2’-

deoxyguanosine (5.00g, 18.70 mmol) in 

anhydrous dimethylformamide (150 ml) tert-

Butyldimethylsilyl chloride (9.30 g, 61.74 mmol) 

and imidazole (8.40 g, 0.123 mol) were added 

and was allowed to stir overnight at ambient 

temperature. The reaction mixture was evaporated and dissolved in EtOAc then 

washed with H2O, saturated aqueous solution of NaHCO3 and saturated aquous 

solution of NH4Cl. The organic phase were collected and dried over MgSO4. The 

residue was purified by column chromatography (5% MeOH, CHCl3) to give the 

pure product as white crystalls (8.25 g, 89%). 

 
1H NMR (500 MHz, MeOD) δ 15.48 (bs, 1H, NH), 11.27 (s, 1H, H-8), 9.72 (t, J = 

6.5 Hz, 1H, H-1’), 9.57 (bs, 2H, NH2), 8.07 – 8.04 (m, 1H, H-3’), 8.07 – 8.04 (m, 

1H, H-3’), 7.46 – 7.43 (m, 1H, H-4’), 7.29, 7.26 (dd, J = 3.5 Hz, 1H, H-5’), 7.25, 

7.23 (dd, J = 3.0 Hz, 1H, H-5’), 6.02 – 5.97 (m, 1H, H-2’), 5.86 – 5.81 (m, 1H, H-

2’), 4.39 (s, 18H, 2 x SiC(CH3)3), 3.58, 3.56 (2 x s, 12H, Si(CH3)2). 
13C NMR (125 MHz, MeOD) δ 159.25 (C=O), 153.47 (C-2), 151.50 (C-4), 135.82 

(C-8), 117.48 (C-5), 87.73 (C-1’), 83.63 (C-4’), 71.83 (C-3’), 62.79 (C-5’), 41.11 

(C-2’), 26.00, 25.80 (2 x Si(CH3)2), 18.46, 18.04 (2 x SiC(CH3)3). 
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Synthesis of 6-S-(2-(2-ethylhexyl)oxycarbonyl]ethyl))-3’,5’-O-bis(tert - 

butyldimethylsilyl)-2-deoxy-6-thioguanosine (4.25). 

 

To the cooled suspension of 3’,5’-O-bis(tert-

butyldimethylsilyl)-2-deoxy-6-guanosine (4.24, 

1.00 g, 2.0 mmol) in anhydrous CH2Cl2 (60 ml) 

under inert atmosphere, Et3N (1.1 ml, 7.9 mmol), 

2-mesitylenesulfonyl chloride (530 mg, 2.4 

mmol), and DMAP (12.3 mg, 0.010 mmol) were 

added dropwise and it was allowed to stir for 12 

hours at room temperature. Thereafter the 

reaction mixture was cooled to 0oC and N-

methylpyrrolidine (2.1 ml, 20 mmol) and 2-

ethylhexyl-3-mercaptopropionate (4.6 mL, 20 mmol) were added and stirred for 

further 6 hours at ambient temperature. The crude mixture was diluted with CH2Cl2 

(40 ml) and washed with 1M KH2PO4 (3 x 30 ml), then the combined organic layers 

were dried over MgSO4 and evaporated. The crude residue was purified by column 

chromatography (20% EtOAc/ Hexane) to give the pure product 4.25 as a yellow 

solid (0.54 g, 39%). 

 
1H NMR (500 MHz, CDCl3) δ 7.93 (s, 1H, H-8), 6.32 (t, J = 6.5 Hz, 1H, H-1’), 4.92 

(bs, 2H, NH2), 4.61 - 4.59 (m, 1H, H-4’), 4.06 - 4.05 (m, 2H, 

SCH2CH2(C=O)OCH2CHCH2CH3), 4.00 – 3.98 (q, J = 3.5 Hz, 1H, H-3’), 3.81 (dd, 

1H, J = 11 Hz, 4.5 Hz, H-5’), 3.76 (dd, 1H, J = 11.5 Hz, 4.0 Hz, H-5’), 3.54 (t, J = 

7.0 Hz, 2H, SCH2CH2(C=O)OCH2CHCH2CH3), 2.84 (t, J = 7.5 Hz, 

SCH2CH2(C=O)OCH2CHCH2CH3), 2.59 (ddd, J = 13.0 Hz, 6.0 Hz, 3.5 Hz, 1H, H-

2’), 2.36 (ddd, J = 13.0 Hz, 6.0 Hz, 3.5 Hz, 1H, H-2’), 1.57 - 1.52 (m, 1H, 

SCH2CH2(C=O)OCH2CHCH2CH3), 1.33 (q, 2H, J = 7.3 Hz, 

SCH2CH2(C=O)OCH2CHCH2CH3), 1.30 - 1.20 (m, 6H, 

SCH2CH2(C=O)OCH2CHCH2CH2CH2CH3), 0.93 (s, 9H, SiC(CH3)3), 0.92 (s, 9H, 

SiC(CH3)3), 0.89 (t, J = 7.5 Hz, 6H, SCH2CH2(C=O)OCH2CHCH2CH3, 

SCH2CH2(C=O)OCH2CHCH2CH2CH2CH3), 0.12 (s, 6H, Si(CH3)2), 0.09 (s, 6H, 

Si(CH3)2).  

N

N

N

N

O

OTBDMS

TBDMSO NH2

S

O

O



Blanka Gönczy         Chapter 8 

	

	 347	

(ES+) m/z, found: (M+Na+) 718.30, C33H61N5O5SSi2 required: (M+) 695.39 

 

Synthesis of 3’,5’-O-bis(tert-butyldimethylsilyl)-2-deoxy-6-thioguanosine (4.26). 

 

To the cooled solution of 6-S-[2-((2-

ethylhexyl)oxycarbonyl]ethyl)]-3’,5’-O-bis(tert-

butyldimethylsilyl)-2-deoxy-6-thioguanosine 

(4.25, 0.28g, 0.4mmol) in anhydrous acetonitrile 

(8.5 ml), 1,8-diazabicycloundec-7-ene (1M, 1.5 

ml) was added dropwise and let it stir for 30 

minutes before it was slowly allowed to reach room temperature and stirred for 

additional 5 hours. The crude mixture was evaporated to dryness and purified by 

column chromatography to give the pure product 4.26 as a yellow solid (0.083g, 

74%). 

 
1H NMR (500 MHz, CDCl3) δ 8.55 (s, 1H, H-8), 6.43 (bs, 2H, NH2), 6.27 (t, J = 6.5 

Hz, 1H, H-1’), 4.59 (q, J = 3.5 Hz, 1H, H-3’), 4.00 (m, 1H, H-4’), 3.77 (dt, J = 3.5 

Hz, 1H, H-5’), 3.61 – 2.56 (m, 1H, H-2’), 2.42 – 2.37 (m, 1H, H-2’), 0.92 (s, 9H, 

SiC(CH3)3), 0.87 (s, 9H, SiC(CH3)3), 0.12 (s, 6H, SiC(CH3)2), 0.07 (s, 6H, 

Si(CH3)2). 
13C NMR (125 MHz, MeOD) δ 175.01 (C=S), 152.98 (C-2), 147.54 (C-4), 140.13 

(C-8), 129.39 (C-5), 87.98 (C-1’), 83.67 (C-4’), 72.10 (C-3’), 63.05 (C-5’), 40.47 

(C-2’), 29.40, 29.02 (2 x SiC(CH3)3), 18.42, 18.01 (2 x SiC(CH3)3), -4.60, -4.69, -

5.27, -5.37 (2 x Si(CH3)2). 
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Synthesis of 3’-O-(tert-butyldimethylsilyl)-2-deoxy-6-thioguanosine (4.28). 

 

To the cooled solution of 3’,5’-O-bis(tert-

butyldimethylsilyl)-2-deoxy-6-thioguanosine (4.26, 

0.083 g, 1.62 mmol) in anhydrous tetrahydrofuran (4 

ml), 2 ml of 50% TFA in water was added dropwise 

and stirred for 2 hours at 0oC. The reaction mixture 

was neutralized with saturated aqueous solution of NaHCO3 and diluted with EtOAc. 

After separation of the layers, the organic phase was washed with H2O (10 ml) and 

brine (10 ml), then dried over MgSO4 and purified by column chromatography (4% 

MeOH/ CHCl3) to give the pure compound 4.28 as a white foam (0.019g, 31%). 

 
1H NMR (500 MHz, MeOD) δ 8.13 (s, 1H, H-8), 6.27 (t, J = 6.5 Hz, 1H, H-1’), 4.64 

– 4.62 (m, 1H, H-3’), 3.99 (q, J = 4.0 Hz, 1H, H-4’), 3.77 (dd, 1H, J = 12 Hz, 4 Hz, 

H-5’), 3.72 (dd, 1H, J = 12.0 Hz, 4.0 Hz, H-5’), 2.68 (ddd, J =13.5 Hz, 8.0 Hz, 6.0 

Hz, 1H, H-2’), 2.34 (ddd, J = 13.5 Hz, 6.5 Hz, 3.0 Hz, 1H, H-2’), 0.96 (s, 9H, 

SiC(CH3)3), 0.16 (s, 6H, SiC(CH3)2). 
13C NMR (125 MHz, MeOD) δ 175.00 (C=S), 151.92 (C-2), 145.32 (C-4), 141.63 

(C-8), 129.73 (C-5), 89.95 (C-1’), 85.74 (C-4’), 74.10 (C-3’), 63.05 (C-5’), 41.93 

(C-2’), 30.71 (SiC(CH3)3), 26.27 (SiC(CH3)3), -1.88 (SiC(CH3)2). 
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8.6 Experimental  section – Chapter 5 

 

Synthesis of Cladribine 3’-O-[1-naphthyl-(benzoxy-L-alaninyl)] phosphate 

(5.1a). 

 

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 0.70 

mmol), tBuMgCl (0.84 ml, 0.84 mmol) 

and 1-naphthyl(benzoxy-L-alaninyl)-

phosphorochloridate (2.3c, 0.56 g, 1.40 

mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH eluent system (1 to 

5% slow gradient), which was followed by preparative purification to give the title 

product 5.1a as a white solid (0.003 g, 1%). 

 
31P NMR (202 MHz, MeOD) δ 3.32, 2.58  
1H NMR (500 MHz, MeOD) δ 8.27, 8.22 (2 x s, 1H, H-8), 7.40 – 7.22 (m, 12 H, 

H-Ar), 6.36, 6.25 (2 x dd, JA = 5.8 Hz, 8.6 Hz, JB = 5.9 Hz, 5.8 Hz, 1H, H-1’), 5.31 – 

5.27 (m, 1H, H-3’), 5.22 – 5.16 (m, 2H, CH2Ph), 4.26 – 4.19, 4.14 – 4.07 (2 x m, 2H, 

H-4’, CHCH3), 3.84 – 3.73 (m, 2H, H-5’, H-5’), 2.89 – 2.81 (m, 1H, H-2’), 2.68 - 

2.59 (2 x m, 1H, H-2’), 1.41, 1.39 (2 x d, J = 7.2 Hz, 7.1 Hz, 3H, CHCH3). 
13C NMR (126 MHz, MeOD) δ 174.94, 173.62 (2 x d, JC-P = 4.0 Hz, 4.7 Hz, C=O), 

158.1 (C-6), 153.77 (C-2), 155.2 (C-2), 151.1 (C-4), 147.78 146.48, 146.43 (d, JC-P = 

6.6 Hz, CO(Naph), 141.63 (C-4), 137.23, 137.15, 136.23, 136.21, 129.54, 129.5, 

129.3, 129.2, 129.1, 128.9, 127.9, 127.7, 127.6, 126.65, 126.56, 126.34, 126.25, 

122.7, 122.6, 119.7, 116.7, 116.68, 116.61, 116.56 (C-Ar), 88.3, 88.2 (2 x d, JC-P = 

6.3, C-4’), 86.67, 86.63 (C-1’), 80.12, 79.91 (2 x d, 2JC-P = 5.0 Hz, C-3’), 68.2 (d, JC-

P = 4.0, CH2Bn), 63.22, 63.15 (C-5’), 52.15, 50.10 (CHCH3), 40.01, 40.0 (C-2’), 

19.98,19.93 (2 x d, 3JC-P = 7.5 Hz, CHCH3).  

HPLC (System 2) tR = 18.53, 18.56 min 

MS (ES+): 675 (M+Na+), 653 (M+H+) C30H30ClN6O7P required: (M+) 652.16 
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Synthesis of Cladribine 5’-O-[1-naphthyl(benzoxy-L-alaninyl)] phosphate 
(5.1b). 
 

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 

0.70 mmol), tBuMgCl (0.84 ml, 0.84 

mmol) and 1-naphthyl(benzoxy-L-

alaninyl)-phosphorochloridate (2.3c, 

0.56 g, 1.40 mmol) in THF (10 ml). The 

crude mixture was purified by column chromatography using CHCl3/MeOH eluent 

system (1 to 5% slow gradient), which was followed by preparative purification to 

give the title compound 5.1b as a white solid (0.004 g, 1%). 

 
31P NMR (202 MHz, MeOD) δ 3.89, 3.58  
1H NMR (500 MHz, MeOD) δ 8.22 – 8.19 (d, J = 6.5 Hz, 1H, H-Ar), 7.34 – 7.28 (m, 

6.5H, H-Ar), 7.22 – 7.15 (m, 3.5H, H-Ar), 6.35 (t, J = 6.5 Hz, 1H, H-1’), 5.12 – 5.06 

(m, 2H, CH2Bn), 4.60 - 4.56 (m, 1H, H-3’), 4.35 – 4.25 (m, 2H, H-5’), 4.15 – 4.14 

(m, 1H, H-4’), 4.01 – 3.95 (m, 1H, CHCH3), 2.76 – 2.66 (m, 1H, H-2’), 2.48 – 2.45 

(m, 1H, H-2’), 1.33 – 1.27 (m, 3H, CHCH3). 
13C NMR (126 MHz, MeOD) δ 174.9, 173.6 (C=O), 158.10 (C-6), 157.77, 155.3, 

151.31, 147.82 (C-2, C-4, C-6, C-O (Naph)), 141.1, 140.8 (C-8), 137.13, 137.10, 

136.25, 136.20, 129.64, 129.54, 129.37, 129.20, 128.91, 128.90, 127.91, 127.62, 

127.53, 126.63, 126.50, 126.25, 122.7, 122.6, 119.7, 116.56 (C-Ar), 86.8, 86.7 (C-

4’), 85.9 (C-1’), 72.35 (C-3’), 68.90 (CH2Bn), 67.93 (C-5’), 51.32 (CHCH3), 40.01, 

40.0 (C-2’), 20.40, 20.30 (2 x d, 3JC-P = 6.3, 7.5 Hz, CHCH3). 

HPLC (System 2) tR = 17.16, 17.18 min 

MS (ES+): 675 (M+Na+), 653 (M+H+) C30H30ClN6O7P required: (M+) 652.16 
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Synthesis of Cladribine 3’-O-[phenyl-(benzoxy-L-alaninyl)] phosphate (5.2a). 

 

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 0.70 

mmol), tBuMgCl (0.84 ml, 0.84 mmol) 

and 1-naphthyl(benzoxy-L-alaninyl)-

phosphorochloridate (2.3b, 0.29 g, 1.40 

mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH eluent system (1 to 

5% slow gradient), which was followed by preparative purification to give the title 

product 5.2a as a white solid (0.008 g, 2%). 

 
31P NMR (202 MHz, MeOD) δ 3.67, 3.09  
1H NMR (500 MHz, MeOD) δ 8.25, 8.17 (2 x s, 1H, H-8), 7.58 – 

7.22 (m, 10 H, H-Ar), 6.31, 6.17 (2 x dd, JA = 5.8 Hz, 8.5 Hz, JB = 5.8 Hz, 8.6 Hz, 

1H, H-1’), 5.35,5.29 (2 x m, 1H, H-3’), 5.16, 5.12 (2 x s, 2H, CH2Bn), 4.26 (m, 1H, 

H-4’), 3.82 – 3.67 (m, 2H, H-5’), 2.84, 2.68, 2.53 (3 x m, 2H, H-2’), 1.41, 1.35 (2 x 

dd, 3JH-P = 7.1 Hz, 4JH-P = 0.8 Hz, 3H, CH3). 
13C NMR (126 MHz, MeOD) δ 173.54, 173.26 (2 x d, JC-P = 5.0 Hz, 3.9 Hz, C=O), 

156.77 (C-6), 153.77 (C-2), 149.78 146.48, 146.43 (2 x d, JC-P = 1.6 Hz, 2.5 Hz, 

CO(Ph), 141.73 (C-4), 140.16 (C-8), 135.8, 137.5 (CH2Bn), 130.92, 130.88, 128.16, 

127.82, 127.53, 126.45, 126.22, 125.11, 124.77, 121.41, 121.27 (2 x Ph), 115.2 (C-

5), 88.82, 88.62 (2 x d, 3JC-P = 5.0, 6.3, C-4’), 85.26, 85.17 (C-1’), 78.64, 78.43 (2 x 

d, 2JC-P = 5.0, C-3’), 68.07, 68.05 (CH2Bn), 63.23, 63.17 (C-5’), 50.43, 50.17 

(CHCH3), 38.66, 38.33 (2 x d, 3JC-P = 3.8, C-2’), 19.07,18.84 (2 x d, 3JC-P = 6.5 Hz, 

7.5 Hz, CHCH3). 

HPLC (System 2) tR = 17.43, 17.46 min  

MS (ES+): 625 (M+Na+), 603 (M+H+) C26H28ClN6O7P required: (M+) 602.14 
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Synthesis of Cladribine 5’-O-[phenyl-(benzoxy-L-alaninyl)] phosphate (5.2b). 

 

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 

0.70 mmol), tBuMgCl (0.84 ml, 0.84 

mmol) and 1-naphthyl(benzoxy-L-

alaninyl)-phosphorochloridate (2.3b, 

0.29 g, 1.40 mmol) in THF (10 ml). The 

crude mixture was purified by column chromatography using CHCl3/MeOH eluent 

system (1 to 5% slow gradient), which was followed by preparative purification to 

give the title product 5.2b as a white solid (0.012 g, 3%). 

 
31P NMR (202 MHz, MeOD) δ 4.24, 4.00  
1H NMR (500 MHz, MeOD) δ 8.10 – 8.06 (d, 2H, J = 6.5 Hz, Ar), 7.84 – 7.82 (m, 

1H, H-Ar), 7.67 -7.63 (m, 1H, H-Ar), 7.50 – 7.42 (m, 3H, H-Ar), 7.35 – 7.25 (m, 

4H, H-Ar), 6.31 (t, J = 6.5 Hz, 1H, H-1’), 5.08 – 5.01 (m, 2H,CH2Bn), 4.58 - 4.53 

(m, 1H, H-3’), 4.42 – 4.29 (m, H-5’, H-5’), 4.15 – 4.13 (m, 1H, H-4’), 4.08 – 4.01 

(m, 1H, CHCH3), 2.54 – 2.44 (m, 1H, H-2’), 2.37 – 2.36 (m, 1H, H-2’), 1.32 – 1.27 

(m, 3H, CHCH3). 
13C NMR (126 MHz, MeOD) δ 173.41, 173.14 (C=O), 156.54, 153.87, 149.97, 

146.38 (C-2, C-4, C-6, COPh), 139.56, 139.43 (C-8), 135.67, 134.77, 128.17, 

127.86, 127.41, 127.35, 126.31, 126.04, 125.01, 124.53, 121.17 (C-Ar), 117.98 (C-

5), 114.80 (C-Ar), 85.49, 85.44 (C-4’), 84.42, 84.43 (C-1’), 78.05 (C-3’), 70.77 (CH2 

Bn), 66.50, 66.28 (2 x d, 2JC-P = 5.0 Hz, C-5’), 50.31 (CHCH3), 39.44, 39.37 (C-2’), 

19.05, 18.90 (2 x d, 3JC-P = 6.3, 7.6, CHCH3). 

HPLC (System 2) tR = 15.91, 15.93 min 

MS (ES+): 625 (M+Na+), 603 (M+H+) C26H28ClN6O7P required: (M+) 602.14  
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Synthesis of Cladribine 3’-O-[1-naphthyl-(2,2 dimethylpropoxy -L-alaninyl)] 

phosphate (5.3a). 

 

Prepared according to the standard procedure 

4 from, cladribine (0.20 g, 0.70 mmol), 

tBuMgCl (0.84 ml, 0.84 mmol) and 1-

naphthyl-(2,2 dimethylpropoxy-L-alaninyl)-

phosphorochloridate (2.3f, 0.54 g, 1.40 

mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH eluent system (1 to 5% 

slow gradient), which was followed by preparative purification to give the title 

product 5.3a as a white solid (0.004 g, 1%). 

 
31P NMR (202 MHz, MeOD) δ 3.68, 3.27  
1H NMR (500 MHz, MeOD) δ 8.28 – 8.20 (m, 2H, H-Ar), 7.92 (d, J = 8.0 Hz, 1H, 

H-Ar), 7.75 (d, J = 8.2 Hz, 1H, H-Ar), 7.63 - 7.47 (m, 4H, H-Ar), 6.38 - 6.21 (2 x m, 

1H, H-1’), 5.39 - 5.33 (2 x m, 1H, H-3’), 4.32 - 4.23 (2 x m, 1H, H-4’), 4.17 - 4.11 

(m, 1H, CHCH3), 3.89 – 3.71 (m, 4H, H-5’, H-5’, OCH2C(CH3)3), 2.96 – 2.78, 2.58 

– 2.55 (2 x m, 2H, H-2’), 1.43, 1.38 (2 x d, J = 7.25 Hz, 3H, CHCH3), 0.95, 0.93 (2 x 

s, 9H, OCH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 173.83, 173.47 (2 x d, JC-P = 3.80 Hz, C=O), 156.78, 

153.77, 149.80, (C-2, C-4, C-6), 146.50 (d, JC-P = 7.6 Hz, CONaph), 140.18 (C-8), 

134.93, 127.53, 127.50, 126.46, 126.20, 126.15, 125.20, 125.10, 124.77, 121.41, 

121.30 (C-Ar), 118.24 (C-5), 115.2, 115.1 (2 x d, JC-P = 3.8 Hz, 2.5 Hz, C-Ar), 86.8, 

86.7 (2 x d, 3JC-P = 5.0 Hz, 6.3 Hz, C-4’), 85.26, 85.17 (C-1’), 78.61, 78.42 (2 x d, 
2JC-P = 5.0 Hz, C-3’), 74.0, 73.9 (OCH2C(CH3)3), 61.8, 61.6 (C-5’), 50.5, 50.4 

(CHCH3), 38.66 (d, 3JC-P = 7.6 Hz, C-2’), 25.32, 25.30 (OCH2C(CH3)3), 19.27, 19.05 

(2 x d, 3JC-P = 6.3, 5.0, CHCH3). 

HPLC (System 2) tR = 20.47, 20.50 min 

MS (ES+): 656 (M+Na+), 634 (M+H+) C28H34ClN6O7P required: (M+) 633.03  
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Synthesis of Cladribine 5’-O-[1-naphthyl-(2,2 dimethylpropoxy -L-alaninyl)] 

phosphate (5.3b). 

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 0.70 

mmol), tBuMgCl (0.84 ml, 0.84 mmol) and 

1-naphthyl-(2,2 dimethylpropoxy -L-

alaninyl)-phosphorochloridate (2.3f, 0.54 g, 

1.40 mmol) in THF (10 ml). The crude 

mixture was purified by column chromatography using CHCl3/MeOH eluent system 

(1 to 5% slow gradient), which was followed by preparative purification to give the 

title product 5.3b as a white solid (0.008 g, 2%) 

 
31P NMR (202 MHz, MeOD) δ 4.25, 4.10  
1H NMR (500 MHz, MeOD) δ 8.14 – 8.09 (m, 2H, H-Ar), 7.87 (m, 1H, H-Ar), 7.68 

(m, 1H, H-Ar), 7.51 – 7.46 (m, 3H, H-Ar), 7.39 -7.35 (m, 1H, H-Ar), 6.34 - 6.33 (m, 

1H, H-1’), 4.61, 4.56 (2 x m, 1H, H-3’), 4.43 – 4.36 (m, 2H, H-5’, H-5’), 4.20, 4.17 

(2 x m, 1H, H-4’), 4.10, 4.06 (2 x m, 1H, CHCH3), 3.82, 3.67 (m, 2H, CH2C(CH3)3), 

2.55- 2.53, 2.52 – 2.38 (2 x m, 2H, H-2’, H-2’), 1.37, 1.33 (m, 3H, CHCH3), 0.91 (s, 

9H, CH2C(CH3)3). 
13C NMR (126 MHz, MeOD) δ 173.68, 173.43 (2 x d, JC-P = 5.0 Hz, C=O), 156.58, 

153.91, 153.88, 150.01, 149.95, 147.91, 146.57, 146.49, 146.41, 141.6, 139.68, 

139.54, 134.81, 127.43, 127.38, 126.33, 126.04, 125.04, 124.57, 121.20 (C-2, C-4, 

C-6, H-Ar), 117.96 (C-5), 114.82, 114.77 (H-Ar), 85.60, 85.44 (2 x d, 3JC-P = 7.60 

Hz, C-4’), 84.48, 84.39 (C-1’), 73.98, 73.94 (CH2C(CH3)3), 70.89, 70.80 (C-3’), 

66.55, 66.42 (2 x d, 2JC-P = 5.0 Hz, 6.3 Hz, C-5’), 50.43 (d, 2JC-P = 8.80 Hz, CHCH3), 

39.41, 39.36 (C-2’), 25.28 (CH2C(CH3)3), 19.28, 19.11 (2 x d, 3JC-P = 6.30 Hz, 7.60 

Hz, CHCH3).  

HPLC (System 2) tR = 18.88, 18.91 min 

MS (ES+): 656 (M+Na+), 634 (M+H+) C28H34ClN6O7P required: (M+) 633.03  
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Synthesis of Cladribine 3’-O-[1-naphthyl-(pentoxy -L-leucinyl)] phosphate 

(5.4a). 

Prepared according to the standard procedure 4 

from, cladribine (0.20 g, 0.70 mmol), tBuMgCl 

(0.84 ml, 0.84 mmol) and 1-naphthyl-(pentoxy-L-

leucinyl)-phosphorochloridate (2.3s, 0.59 g, 1.40 

mmol) in THF (10 ml). The crude mixture was 

purified by column chromatography using 

CHCl3/MeOH eluent system (1 to 5% slow 

gradient), which was followed by preparative 

purification to give the title product 5.4a as a white solid (0.003 g, 1%). 

 
31P NMR (202 MHz, MeOD) δ 4.02, 3.48 
1H NMR (500 MHz, MeOD) δ 8.24, 8.21 (2 x s, 1H, H-8), 7.94, 7.92 (2 x s, 1H, H-

Ar), 7.76, 7.53 (2 x s, 1H, H-Ar), 7.63 – 7.55 (m, 3H, H-Ar), 7.52, 7.47 (2 x s, 1H, 

H-Ar), 6.40 – 6.33 (m, 0.2H, H-1’), 6.23 – 6.20 (m, 0.8H, H-1’), 5.40 – 5.38 (m, 

0.2H, H-3’), 5.32 – 5.29 (m, 0.8H, H-3’), 4.34 – 4.33 (m, 0.8H, H-4’), 4.26 – 4.24 

(m, 0.2H, H-4’), 4.08 – 4.05 (m, 2H, H-5’, H-5’), 4.01 – 3.97 (m, 1H, 

CHCH2CH(CH3)2), 3.88 - 3.80 (m, 2H, CHCH2CH(CH3)2), 3.00 – 2.95 (m, 0.2H, H-

2’), 2.89 – 2.79 (m, 1.8H, H-2’), 2.58 – 2.54 (m, 0.8H, H-2’), 1.75 – 1.69 (m, 1H, 

CHCH2CH(CH3)2), 1.63 – 1.55 (m, 4H, CHCH2CH(CH3)2), OCH2CH2CH2CH2CH3), 

1.35 – 1.28 (m, 4H, OCH2CH2CH2CH2CH3), 0.91 – 0.82 (m, 9H, 

OCH2CH2CH2CH2CH3, CHCH2CH(CH3)2). 
13C NMR (125 MHz, MeOD) δ 175.08 (C=O), 158.23 (C-6), 155.24 (C-2), 151.26, 

(C-4), 147.97 (C-O, ipso Naph), 141.64, 141.57 (C-8), 136.55, 136.39, 128.99, 

127.91, 127.63, 126.64, 126.25, 126.16, 122.88, 122.74, 119.70, 119.67, 116.75, 

116.72 (C-Ar), 88.29, 88.17 (2 x d, 3JC-P = 6.25 Hz, C-4’), 86.70, 86.59 (C-1’), 

80.20, 79.86 (2 x d, 2JC-P = 5.25 Hz, C-3’), 66.42 (OCH2CH2CH2CH2CH3), 63.24, 

63.12 (C-5’), 66.36 (OCH2CH2CH2CH2CH3), 54.92, 54.80 (CHCH2CH(CH3)2), 

44.12, 44.05 (2 x d, 2JC-P = 8.25 Hz, CHCH2CH(CH3)2), 40.20, 40.18 (C-2’), 29.40, 

29.19 (OCH2CH2CH2CH2CH3), 25.76, 25.48 (CHCH2CH(CH3)2), 23.36, 23.22 

(OCH2CH2CH2CH2CH3), 23.09 (OCH2CH2CH2CH2CH3), 21.96, 21.66 

(CHCH2CH(CH3)2), 14.29 (OCH2CH2CH2CH2CH3).   

N

N

N

N

O

O

HO Cl

NH2

P ON
H

O

O

O



Blanka Gönczy         Chapter 8 

	

	 356	

HPLC (System 2) tR = 24.41, 24.44 min 

MS (ES+): 697 (M+Na+), 675 (M+H+), C31H40ClN6O7P required: (M+) 674.24 

 

Synthesis of Cladribine 5’-O-[1-naphthyl-(pentoxy -L-leucinyl)] phosphate 

(5.4b). 

 

Prepared according to the standard procedure 

4 from, cladribine (0.20 g, 0.70 mmol), 

tBuMgCl (0.84 ml, 0.84 mmol) and 1-

naphthyl-(pentoxy-L-leucinyl)-

phosphorochloridate (2.3s, 0.59 g, 1.40 

mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH eluent system (1 to 5% slow gradient), which was followed by 

preparative purification to give the title product 5.4b as a white solid (0.014 g, 3%). 

 
31P NMR (202 MHz, MeOD) δ 4.58, 4.25 
1H NMR (500 MHz, MeOD) δ 8.15 - 8.09 (m, 2H, H-8, H-Ar), 7.85 - 7.84 (m, 1H, 

H-Ar), 7.68 - 7.65 (m, 1H, H-Ar), 7.51 – 7.46 (m, 3H, H-Ar), 7.37 – 7.36 (m, 1H, H-

Ar), 6.35 – 6.32 (m, 1H, H-1’), 4.60 – 4.56 (m, 1H, H-3’), 4.45 – 4.42 (m, 1.3H, H-

5’), 4.36 – 4.33 (m, 0.7H, H-5’), 4.23 – 4.18 (m, 1H, H-4’), 3.99 – 3.90 (m, 3H, 

OCH2CH2CH2CH2CH3, CHCH2CH(CH3)2), 2.56 – 2.48 (m, 1H, H-2’), 2.44 – 2.36 

(m, 1H, H-2’), 1.67 – 1.62 (m, 1H, CHCH2CH(CH3)2), 1.53 – 1.44 (m, 4H, 

CHCH2CH(CH3)2), OCH2CH2CH2CH2CH3), 1.27 – 1.24 (m, 4H, 

OCH2CH2CH2CH2CH3), 0.84 – 0.71 (m, 9H, OCH2CH2CH2CH2CH3, 

CHCH2CH(CH3)2). 
13C NMR (126 MHz, MeOD) δ 175.44, 1745.06 (2 x d, 3JC-P = 4.5 Hz, C=O), 158.02 

(C-6), 155.33 (C-2), 151.44, 151.39 (C-4), 147.93, 147.87 (2 x d, 2JC-P = 7.4 Hz, C-O 

Naph), 141.02, 140.93 (C-8), 136.25, 128.88, 128.82, 127.78, 127.75, 127.46, 

126.49, 126.02, 125.91, 122.67, 122.70, 122.66, 116.33, 116.30, 116.07, 116.05 (C - 

Ar), 87.14, 86.91 (2 x d, 3JC-P = 8.12 Hz, C-4’), 85.93, 85.82 (C-1’), 72.42, 72.27   
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(C-3’), 68.07, 67.93 (2 x d, 2JC-P = 5.5 Hz, C-5’), 66.36 (OCH2CH2CH2CH2CH3), 

54.80, 54.72 (CHCH2CH(CH3)2), 44.20, 44.93 (2 x d, 2JC-P = 8.0 Hz, 

CHCH2CH(CH3)2), 40.93, 40.89 (C-2’), 29.33, 29.13 (OCH2CH2CH2CH2CH3), 
25.69, 25.45 (CHCH2CH(CH3)2), 23.34, 23.32 (OCH2CH2CH2CH2CH3), 23.16, 

23.05 (OCH2CH2CH2CH2CH3),), 22.03, 21.74 (CHCH2CH(CH3)2), 14.31 

(OCH2CH2CH2CH2CH3).  

HPLC (System 2) tR = 21.55, 21.57 min 

MS (ES+): 697 (M+Na+), 675 (M+H+), C31H40ClN6O7P required: (M+) 674.24 

 

Synthesis of Cladribine 5’-O-[1-naphthyl-(cyclohexoxy-L-alaninyl)] phosphate 

(5.5b). 

 

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 0.70 

mmol), tBuMgCl (0.84 ml, 0.84 mmol) 

and 1-naphthyl-(cyclohexoxy-L-alaninyl)-

phosphorochloridate (2.3h, 0.55 g, 1.40 

mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH eluent system (1 to 5% slow gradient), which was followed by 

preparative purification to give the title product 5.5b as a white solid (0.013 g, 3%). 

 
31P NMR (202 MHz, MeOD) δ 4.26, 4.12 
1H NMR (500 MHz, MeOD) δ 8.13 - 8.11 (m, 2H, H-8, H-Ar), 7.86 - 7.83 (m, 1H, 

H-Ar), 7.67 – 7.65 (m, 1H, H-Ar), 7.51 – 7.45 (m, 3H, H-Ar), 7.39 – 7.34 (m, 1H, 

H-Ar), 6.33 (t, J = 6.5 Hz, 1H, H-1’), 4.66 – 4.55 (m, 2H, H-3’, OCH-ester), 4.45 – 

4.36 (m, 2H, H-5’, H-5’), 4.20 – 4.18 (m, 1H, H-4’), 4.01 – 3.93 (m, 1H, CHCH3), 

2.57 – 2.46 (m, 1H, H-2’), 2.43 – 2.35 (m, 1H, H-2’), 1.75 – 1.66 (m, 4H, 2 x CH2-

ester), 1.38 – 1.27 (m, 9H, 3 x CH2-ester, CHCH3).  
13C NMR (125 MHz, MeOD) δ 175.0, 174.7 (2 x d, 3JC-P = 5.0 Hz, C=O), 158.02 (C-

6), 155.35, 155.32 (C-2), 151.44, 151.39 (C-4), 147.94, 147.86 (2 x d, 2JC-P =   
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7.5 Hz, C-O Naph), 141.03, 140.94 (C-8), 136.24, 128.88, 128.86, 128.83, 127.78, 

127.47, 126.50, 125.98, 122.67, 122.64, 119.42, 116.25, 116.23, 116.18, 116.14 (C-

Ar), 86.98, 86.86 (2 x d, 3JC-P = 8.0 Hz, C-4’), 85.91, 85.85 (C-1’), 74.98 (CH-ester), 

72.29, 72.26 (C-3’), 68.00, 67.79 (2 x d, 2JC-P = 5.25 Hz, C-5’), 40.88, 40.78 (C-2’), 

32.42, 32.35 (CH2-ester), 26.39 (CH2-ester), 24.62 (CH2-ester), 20.67, 20.57 (2 x d, 
3JC-P = 6.75 Hz, CHCH3). 

HPLC (System 2) tR = 18.67, 18.71 min 

MS (ES+): 667 (M+Na+), 645 (M+H+), C29H34ClN6O7P required: (M+) 644.19 

 

Synthesis of Cladribine 3’-O-[phenyl-(cyclohexoxy-L-alaninyl)] phosphate 

(5.6a). 

 

Prepared according to the standard procedure 

4 from, cladribine (0.20 g, 0.70 mmol), 

tBuMgCl (0.84 ml, 0.84 mmol) and phenyl-

(cyclohexoxy-L-alaninyl)-

phosphorochloridate (provided by Gibbs, 

0.48 g, 1.40 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography using CHCl3/MeOH eluent 

system (1 to 5% slow gradient), which was followed by preparative purification to 

give the title product 5.6a as a white solid (0.008 g, 2%). 

 
31P NMR (202 MHz, MeOD) δ 3.34, 2.80 
1H NMR (500 MHz, MeOD) δ 8.32 - 8.28 (m, 1H, H-8, H-Ar), 7.43 – 7.37 (m, 2H, 

H-Ar), 7.31 - 7.22 (m, 3H, H-Ar), 6.44 - 6.41 (m, 0.3H, H-1’), 6.36 – 6.29 (m, 0.7H, 

H-1’), 5.37 - 5.34 (m, 0.3H, H-3’), 5.30 – 5.27 (m, 0.7H, H-3’), 4.81 – 4.74 (m, 1H, 

CH-ester), 4.33 – 4.25 (m, 1H, H-4’), 4.01 – 3.92 (m, 1H, CHCH3), 3.87 – 3.79 (m, 

2H, H-5’, H-5’), 3.01 – 2.89 (m, 1H, H-2’), 2.82 – 2.77 (m, 0.7H, H-2’), 2.67 – 2.63   

N

N

N

N

O

O

HO Cl

NH2

P ON
HO

O
O



Blanka Gönczy         Chapter 8 

	

	 359	

(m, 0.3H, H-2’), 1.86 – 1.74 (m, 4H, 2 x CH2-ester), 1.57 – 1.30 (m, 9H, 3 x CH2-

ester, CHCH3).  
13C NMR (126 MHz, MeOD) δ 174.62, 174.38 (2 x d, 3JC-P = 6.0 Hz, C=O), 158.23 

(C-6), 155.22 (C-2), 152.12 (C-4), 147.66, 147.37 (2 x d, 2JC-P = 6.75 Hz, C-O 

Naph), 141.73, 141.41 (C-8), 130.96, 130.93, 130.87, 130.75, 126.32, 126.17, 

121.64, 121.61, 121.56, 121.52 (C-Ar), 88.27, 88.16 (2 x d, 3JC-P = 7.0 Hz, C-4’), 

86.76, 86.64 (C-1’), 79.88, 79.61 (2 x d, 2JC-P = 5.5 Hz, C-3’), 79.51 (CH-ester), 

63.27, 63.17 (C-5’), 51.98, 51.81 (CHCH3), 40.11, 40.05 (2 x d, 3JC-P = 5.0 Hz, C-

2’), 32.54, 32.46 (CH2-ester), 26.45 (CH2-ester), 24.65 (CH2-ester), 20.66, 20.50 (2 x 

d, 3JC-P = 7.0 Hz, CHCH3). 

HPLC (System 2) tR = 19.95, 19.98 min 

MS (ES+): 617 (M+Na+), 595 (M+H+), C25H32ClN6O7P required: (M+) 594.18 

 

Synthesis of Cladribine 5’-O-[phenyl-(cyclohexoxy-L-alaninyl)] phosphate 

(5.6b). 

  

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 0.70 

mmol), tBuMgCl (0.84 ml, 0.84 mmol) 

and phenyl-(cyclohexoxy-L-alaninyl)-

phosphorochloridate (provided by Gibbs, 

0.48 g, 1.40 mmol) in THF (10 ml). The 

crude mixture was purified by column 

chromatography using CHCl3/MeOH eluent system (1 to 5% slow gradient), which 

was followed by preparative purification to give the title product 5.6b as a white 

solid (0.012 g, 3%). 

 
31P NMR (202 MHz, MeOD) δ 3.92, 3.67 
1H NMR (500 MHz, MeOD) δ 8.23, 8.22 (2 x s, 1H, H-8, H-Ar), 7.34 – 7.31 (m, 2H, 

H-Ar), 7.23 – 7.16 (m, 3H, H-Ar), 6.40 – 6.36 (m, 1H, H-1’), 5.37 – 5.34 (m, 0.3H, 

H-3’), 4.72 – 4.67 (m, 1H, CH-ester), 4.63 – 4.61 (m, 1H, H-3’), 4.42 – 4.29 (m, 2H, 

H-5’, H-5’), 4.20 – 4.17 (m, 1H, H-4’), 3.93 – 3.82 (m, 1H, CHCH3), 3.01 – 2.89 (m,  
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1H, H-2’), 2.82 – 2.77 (m, 0.7H, H-2’), 2.74 – 2.69 (m, 0.3H, H-2’), 2.51 – 2.44 (m, 

1H, H-2’), 1.81 – 1.69 (m, 4H, 2 x CH2-ester), 1.43 – 1.27 (m, 9H, 3 x CH2-ester, 

CHCH3).  
13C NMR (126 MHz, MeOD) δ 174.49, 174.28 (2 x d, 3JC-P = 5.25 Hz, C=O), 158.09 

(C-6), 155.40, 155.37 (C-2), 151.54, 151.47 (C-4), 143.49, 143.45, 143.37 (C-Ar), 

141.19, 141.16 (C-8), 130.76, 126.17, 126.14, 121.45, 121.42, 121.40, 121.37, (C - 

Ar), 86.98, 86.85 (2 x d, 3JC-P = 8.5 Hz, C-4’), 85.93, 85.91 (C-1’), 79.50 (CH-ester), 

74.94, 74.92 (C-3’), 67.75, 67.43 (2 x d, 2JC-P = 5.5 Hz, C-5’), 51.80, 51.67 

(CHCH3), 40.87, 40.81 (C-2’), 32.47, 32.40, 30.72, 26.39, 26.41, 24.65, 24.61 (CH2-

ester), 20.63, 20.44 (2 x d, 3JC-P = 6.25 Hz, CHCH3). 

HPLC (System 2) tR = 17.76, 17.79 min 

MS (ES+): 617 (M+Na+), 595 (M+H+), C25H32ClN6O7P required: (M+) 594.18 
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Synthesis of Cladribine 3’-O-[phenyl-(2,2-dimethylpropoxy-L-alaninyl)] 

phosphate (5.7a). 

 

Prepared according to the standard procedure 

4 from, cladribine (0.20 g, 0.70 mmol), 

tBuMgCl (0.84 ml, 0.84 mmol) and phenyl-

(2,2-dimethylpropoxy-L-alaninyl)-

phosphorochloridate (2.3e, 0.46 g, 1.40 

mmol) in THF (10 ml). The crude mixture 

was purified by column chromatography 

using CHCl3/MeOH eluent system (1 to 5% 

slow gradient), which was followed by preparative purification to give the title 

product 5.7a as a white solid (0.008 g, 2%). 

 
31P NMR (202 MHz, MeOD) δ 3.30, 2.76 
1H NMR (500 MHz, MeOD) δ 8.32, 8.27 (2 x s, 0.7H, H-8), 8.23, 8.07 (2 x s, 0.3H, 

H-8), 7.57 - 7.52 (m, 0.3H, H-Ar), 7.43 - 7.38 (m, 2H, H-Ar), 7.31 – 7.22 (m, 2.7H, 

H-Ar), 6.44 – 6.41 (m, 0.3H, H-1’), 6.36 - 6.30 (m, 0.7H, H-1’), 5.38 - 5.36 (m, 

0.3H, H-3’), 5.30 - 5.27 (m, 0.7H, H-3’), 4.32 - 4.30 (m, 0.7H, H-4’), 4.27 - 4.25 (m, 

0.3H, H-4’), 4.15 - 4.12 (m, 0.3H, CHCH3), 4.08 - 4.04 (m, 0.7H, CHCH3), 3.87 - 

3.79 (m, 2H, H-5’, H-5’), 3.92 - 3.80 (m, 1H, H-5’, 0.7H, H-5’, 2H, OCH2C(CH3)3), 

3.68, 3.58 (2 x dd, J = 12.0 Hz, 5.0 Hz, 0.3H, H-5’), 3.01 - 2.89 (m, 0.7H, H-2’), 

2.81 - 2.64 (m, 1H, H-2’), 2.35 - 2.29 (m, 0.3H, H-2’), 1.44, 1.39 (2 x d, J = 7.5 Hz,  

3H, CHCH3), 0.98, 0.96 (2 x s, 9H, OCH2CH(CH3)3). 
13C NMR (125 MHz, MeOD) δ 175.24, 174.95 (2 x d, JC-P = 3.8 Hz, C=O), 158.23, 

155.23, 152.17, 152.14, 152.12, 152.08, 151.28 (C-2, C-4, C-6), 147.9, (d, JC-P = 7.6 

Hz, ipso Naph), 141.72, 141.68 (C-8), 130.93, 130.89, 130.75, 126.34, 126.14, 

121.65, 121.61, 121.57, 121.53, (C-Ar), 88.30, 88.21 (2 x d, 3JC-P = 5.0 Hz, 6.25 Hz, 

C-4’), 86.7, 86.6 (C-1’), 79.87, 79.65 (2 x d, 2JC-P = 5.0 Hz, C-3’), 75.48, 75.44 

(OCH2CH(CH3)3), 63.28, 63.14 (C-5’), 51.88, 51.75 (CHCH3), 40.13 (d, 3JC-P = 8.6 

Hz, C-2’), 26.77, 26.75 (OCH2CH(CH3)3), 20.7, 20.5 (2 x d, 3JC-P = 6.5 Hz, 5.0 Hz, 

CHCH3). 

HPLC (System 2) tR = 19.23, 19.25 min  
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MS (ES+): 605 (M+Na+), 583 (M+H+), C24H32ClN6O7P required: (M+) 582.18 

 

Synthesis of Cladribine 5’-O-[phenyl-(2,2-dimethylpropoxy-L-alaninyl)] 

phosphate (5.7b). 

 

Prepared according to the standard 

procedure 4 from, cladribine (0.20 g, 0.70 

mmol), tBuMgCl (0.84 ml, 0.84 mmol) 

and phenyl-(2,2-dimethylpropoxy-L-

alaninyl)-phosphorochloridate (2.3e, 0.46 

g, 1.40 mmol) in THF (10 ml). The crude 

mixture was purified by column 

chromatography using CHCl3/MeOH eluent system (1 to 5% slow gradient), which 

was followed by preparative purification to give the title product 5.7b as a white 

solid (0.012 g, 3%). 

 
31P NMR (202 MHz, MeOD) δ 3.89, 3.64 
1H NMR (500 MHz, CDCl3) δ 8.23, 8.22 (2 x s, 1H, H-8, H-Ar), 7.34 – 7.31 (m, 2H, 

H-Ar), 7.23 – 7.16 (m, 3H, H-Ar), 6.40 – 6.36 (m, 1H, H-1’), 4.64 – 4.61 (m, 1H, H-

3’), 4.42 – 4.29 (m, 2H, H-5’, H-5’), 4.20 – 4.15 (m, 1H, H-4’), 4.06 – 3.93 (2 x m, 

1H, CHCH3), 3.83, 3.81, 3.77, 3.75 (2AB, JAB= 10 Hz, 2H, OCH2C(CH3)3), 2.73 – 

2.70 (m, 1H, H-2’), 2.51 – 2.44 (m, 1H, H-2’), 1.35, 1.32 (2 x d, J = 7.5 Hz, 

CHCH3), 0.94 , 0.92 (2 x s, 9H, OCH2C(CH3)3). 
13C NMR (125 MHz, MeOD) δ 175.09 (d, JC-C-N-P = 5.10 Hz, C=O), 174.88 (d, JC-C-

N-P = 5.10 Hz, C=O), 158.08 (C-6), 155.40, 155.36 (C-2), 152.15, 152, 09 (C-4), 

141.23, 141.15 (C-8), 130.76, 126.20, 126.15 (C-Ar), 121.46, 121.40 (2 x d, 3JC-C-O-P  

= 4.50 Hz, C2-Ph), 86.76, 86.87 (2 x d, 3JC-C-O-P  = 8.0 Hz, C-4’), 85.94, 85.89 (C-

1’), 75.40 (OCH2C(CH3)3), 72.32, 72.25 (C-3’), 67.80, 67.54 (2 x d, 3JC-O-P  = 5.0 

Hz, C-5’), 51.74, 51.1 (CHCH3), 40.83 (C-2’), 32.36 (OCH2C(CH3)3), 26.74, 26.72 

(OCH2C(CH3)3), 20.71, 20.52 (2 x d, 3JC-O-P  = 6.50 Hz, CHCH3).  
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HPLC (System 2) tR = 17.47, 14.49 min 

MS (ES+): 605 (M+Na+), 583 (M+H+), C24H32ClN6O7P required: 582.18 

 

Synthesis of Cladribine 5’-O-bis(2,2-dimethylpropoxy-L-alaninyl)-phosphate 

(5.8a). 

 

Prepared according to standard procedure 

8, from, cladribine (0.20 g, 0.70 mmol), 

POCl3 (0.065 ml, 0.70 mmol), L-alanine 

2,2-dimethylpropyl ester tosylate salt (2.2a, 

1.16 g, 3.5 mmol) in dry CHCl3 , 

trimethylphosphate and DIPEA (1.22 ml, 

0.70 mmol). The crude mixture was purified by column chromatography in gradient 

(CHCl3/MeOH 0 to 6%) and followed by preparative purification in order to give the 

title product 5.8a as a white solid (0.027 g, 6%).  

 
31P NMR (202 MHz, MeOD) δ 13.77 
1H NMR (500 MHz, MeOD) δ 8.29 (s, 1H, H-8, H-Ar), 4.66 – 4.63 (m, 1H, H-4’), 

4.24 – 4.13 (m, 3H, H-5’, H-5’, H-3’), 3.99 – 3.89 (m, 1H, 2 x CHCH3), 3.87, 3.85, 

3.75, 3.73 (2AB, JAB = 10.0 Hz, 4.0 Hz, 2 x OCH2C(CH3)3), 2.83 - 2.78 (m, 1H, H-

2’), 2.53 - 2.48 (m, 1H, H-2’), 1.37, 1.36 (d, J = 7.5 Hz, 6H, 2 x CHCH3), 0.95, 0.94 

(2 x s, 18H, OCH2C(CH3)3). 
13C NMR (126 MHz, MeOD) δ 175.58 (d, 3JC-C-N-P = 3.8 Hz, C=O), 158.11 (C-6), 

155.41 (C-2), 151.61 (C-4), 141.29 (C-8), 119.45 (C-5) 87.02 (d, 3JC-C-O-P = 8.5 Hz, 

C-4’), 85.60 (C-1’), 75.42 (OCH2C(CH3)3), 72.20 (C-3’), 66.51 (d, 3JC-O-P = 5.0 Hz, 

C-5’), 51.07 (d, 2JC-N-P = 7.5 Hz, CHCH3), 40.76 (C-2’), 32.32 (OCH2C(CH3)3), 

30.72 (OCH2C(CH3)3), 21.13, 20.99 (2 x d, 3JC-C-N-P = 6.25 Hz, CHCH3). 

HPLC (System 2) tR = 17.36 min 

MS (ES-): 682.24 (M+Cl- ), C26H43ClN7O8P required: (M+) 647.26   
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8.7 Experimental  section – Chapter 6 

 

Synthesis of 3’,5’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-5-azacytidine (6.1). 

 

5-Azacytidine (3.00g, 12.28 mmol) was suspended in 

anhydrous pyridine (100 ml) under inert atmosphere and 

cooled down to 0 °C. To this cooled suspension 

TIPDSCl2 (1.2 eq, 4.71 mL, 14.74 mmol) was added 

dropwise and the mixture was stirred at ambient 

temperature for 16 hrs. Thereafter the solvent was 

evaporated in vacuo and the residue was purified by 

column chromatography (5% MeOH/CHCl3) to give the title product 6.1 as a white 

foam (5.32 g, 89%). 

  
1H NMR (500 MHz, DMSO) δ 8.31, 8.27 (2 x s, 1H, H-6), 7.52 (d, J = 15.0 Hz, 

NH2), 5.56 (d, J = 5.0 Hz, 1H, H-1’), 5.52 (s, 2’OH), 4.23 (q, J = 4.5 Hz, 1H, H-2’), 

4.16 - 4.13 (m, 2H, H-3’, H-5’), 4.01, 4.00 (2 x t, J = 2.0 Hz, 1H, H-4’), 3.93, 3.91 (2 

x d, J = 2.5 Hz, 1H, H-5’), 1.06 – 1.01 (m, 28H, 4 x SiCH(CH3)2). 
13C NMR (125 MHz, MeOD) δ 165.95 (C=O), 155.01 (C-6), 152.88 (C-4), 90.96 (C-

1’), 80.74 (C-4’), 73.47 (C-3’), 68.55 (C-2’), 60.07 (C-5’), 17.34, 17.24, 17.17, 

17.14, 16.96, 16.88, 16.84, 16.79 (8 x SiCH(CH3)2), 12.71, 12.36, 12.13, 11.96 (4 x 

SiCH(CH3)2). 

MS (ES+): 509 (M+Na+), 487 (M+H+) C20H38N4O6Si2 required: (M+) 486.71 
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Synthesis of 2’-O-(phenoxythiocarbonyl)-3’,5’-O-(1,1,3,3-Tetraisopropyldisilox-

1,3-diyl)-5-azacytidine (6.2). 

 

The protected nucleoside (6.1, 3.00 g, 6.16 mmol) was 

suspended in anydrous acetonitrile (70 ml) under inert 

atmosphere. To this mixture PhOC(S)Cl (2 eq, 1.70 ml, 

12.33 mmol) was added dropwise in the presence of  

DMAP (5 eq, 3.765 g, 30.82 mmol). The reaction 

mixture was stirred at room temperature for 16-36 hrs. 

The crude residue was dissolved in CHCl3 and washed 

with water, 0.1 M HCl then water. The aqeous phase were extracted with CHCl3 and 

the combined organic phases were dried over MgSO4 and evaporated to dryness. The 

crude mixture was purified by column chromatography (1-3% MeOH/CHCl3) to 

give the title product 6.2 as a white foam (1.03 g, 27%). 

 

1H NMR (500 MHz, CDCl3) δ 8.32 (s, 1H, H-6) 7.68 (bs, 2H, NH2), 7.50 (t, J = 7.5 

Hz, 1H, Ar), 7.35 (t, J = 7.0 Hz, 1H, H-Ar), 7.15 – 7.13 (m, 2H, H-Ar), 6.18 (d, J = 

5.5 Hz, 1H, H-1’), 5.78 (s, 1H, H-4’) 4.09 (dd, J = 9.3 Hz, J = 5 Hz, 1H, H-5’), 3.99 

(dd, J = 9.3 Hz, J = 5.0 Hz, 1H, H-5’), 3.90 – 3.86 (m, 1H, H-3’), 1.08 – 1.03 (m, 

28H, 4 × SiCH(CH3)2). 
13C NMR (125 MHz, MeOD) δ 193.46 (C=S), 166.00 (C=O), 157.13 (C-4), 152.85 

(C-6), 129.83, 126.75, 121.45, 120.79 (C-Ar), 89.63 (C-1’), 83.81 (C-4’), 81.40 (C-

2’), 69.53 (C-3’), 60.81 (C-5’), 17.28, 17.20, 17.12, 17.02, 16.95, 16.89, 16.84 (8 x  

SiCH(CH3)2), 12.65, 12.37, 12.27, 12.08 (4 x SiCH(CH3)2). 

MS (ES+): 645 (M+Na+), 623 (M+H+) C27H42N4O7SSi2 required: (M+) 622.23 
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Synthesis of 3’,5’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-

azacytidine (6.3). 

 

Protected nucleoside (6.2, 0.96 g, 1.54 mmol) was 

dissolved in anhydrous toluene (15 ml) and the solution 

was degassed with argon for 30 mins. Thereafter 0.2 M 

AIBN solution in toluene (1.93 ml, 0.38 mmol) and 

Bu3SnH (0.83 mL, 3.08 mmol) was added dropwise and 

the mixture was heated up for 100 °C and stirred for 2 -

3hrs. The residue was evaporated to dryness and purified 

by column chromatography (1-3% MeOH/CHCl3) to give the product 6.3 as a white 

foam (1.17 g, 85%). 

 
1H NMR (500 MHz, MeOD) δ 8.42 (s, 1H, H-6), 5.96 (dd, J = 7.5 Hz, 2.5 Hz, 1H, 

H-1’), 4.63 (q, J = 8.5 Hz, 1H, H-3’), 4.08 (2 × dd, J = 2.5 Hz, 12.8 Hz, 2H, H-5’), 

3.87 – 3.84 (m, 1H, H-4’), 2.56 – 2.44 (m, 2H, H-2’), 1.14 – 1.06 (m, 28H, 4 × 

SiCH(CH3)2).  
13C NMR (125 MHz, MeOD) δ 168.00 (C=O), 157.04 (C-4), 156.1 (C-6), 87.07 (C-

1’), 86.69 (C-4’), 70.02 (C-3’), 62.32 (C-5’), 40.78 (C-2’), 18.07, 18.02, 17.98, 

17.92, 17.70, 17.59, 17.56, 17.49 (8 × SiCH(CH3)2), 14.68, 14.34, 14.10, 13.84 (4 x 

SiCH(CH3)2). 

MS (ES+): 493 (M+Na+), 471 (M+H+), C20H38N4O5Si2 required: (M+) 470.24  
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Synthesis of 2’-Deoxy-5-azacytidine (d5AzaC) (6.4). 

 

Method 1: 

 

Protected nucleoside (6.3, 0.230 g, 0.48 mmol) was dissolved 

in anhydrous THF (10 ml) and therto solid supported TBAF 

(~1.5 mmol F-/g resin, 0.69 g = 1.05 mmol) was added. The 

mixture was stirred at ambient temperature overnight. The 

yellowish residue was filtered off and the crude mixture was 

evaporated. Only traces of the desired product was observed 

by TLC. 

                                  

Method 2:  

To the solution of 6.3 (0.23g, 0.48 mmol) in anhydrous THF, 1M TBAF in 

anhydrous THF (0.97 mmol, 0.97 ml) was added dropwise. The reaction mixture 

was stirred at room temperature overnight under inert atmosphere. After evaporation 

the yellowish oil was crystallised in the mixture of CHCl3 and MeOH (0.003 g, 3%). 

 
1H NMR (500 MHz, DMSO) δ 8.58 (s, 1H, H-6), 7.52, 7.49 (2 × bs, NH2), 6.03 (t, J 

= 6.5 Hz, 1H, H-1’), 5.25 (bs, 2’OH), 5.06 (t, J = 5.0 Hz, 5’OH), 4.25 – 4.22 (m, 1H, 

3’OH), 3.31 (q, J = 3.5 Hz, 1H, H-4’), 3.61, 3.55 (2 × dd, J = 12.0 Hz, 3.5 Hz, 2H, 

H-5’), 2.22 – 2.18 (m, 1H, H-2’), 2.16 – 2.11 (m, 1H, H-2’). 

MS (ES+): 251 (M+Na+), 229 (M+H+), C8H12N4O4 required: (M+) 228.09  
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Synthesis of 3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-azacytidine 

(6.5). 

   

To the cooled solution of the protected nucleoside (6.3, 

0.10g, 0.21mmol) in anhydrous THF (2ml), a mixture of 

TFA : H2O (1ml) in the ratio of 1:1 was added 

dropwise. After approximately 90 minutes the reaction 

mixture was neutralized with saturated solution of 

NaHCO3 and diluted with EtOAc. Separation the 

organic phase thereafter was washed with H2O (10 ml), 

brine (10 ml) and the residue was dried over MgSO4 (0.061g, 67%). 

 
1H NMR (500 MHz, MeOD) δ 8.64 (s, 1H, H-6), 6.15 (t, J = 3.0 Hz, 1H, H-1’), 6.03 

(q, J = 4.5 Hz, 1H, H-4’), 4.11 – 4.03 (m, 3H, H-3’, H-5’, H-5’), 2.52 – 2.48 (m, 1H, 

H-2’), 2.29 – 2.24 (m, 1H, H-2’), 1.13 – 1.03 (m, 24H, CH(CH3)2), 0.97 – 0.91 (m, 

4H, CH(CH3)2). 
13C NMR (125 MHz, DMSO) δ 167.93 (C=O), 157.00 (C-4), 156.35 (C-6), 89.17 

(C-1’), 87.94 (C-4’), 79.49 (C-3’), 71.47 (C-5’), 63.45 (C-2’). 42.87, 17.93, 17.90, 

17.88, 17.83 (8 x CH(CH3)2), 14.76, 14.73, 14.20, 13.99 (4 x CH(CH3)2). 

MS (ES+): 511 (M+Na+), 489 (M+H+) C20H40N4O6Si2 required: (M+) 488.25 
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Synthesis of 5’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-azacytidine 

(6.6). 

 

To the cooled solution of the protected nucleoside 

(6.3, 0.10g, 0.21mmol) in anhydrous THF (2ml), a 

mixture of TFA : H2O (1ml) in the ratio of 1:1 was 

added dropwise. After approximately 90 minutes 

the reaction mixture was neutralized with saturated 

solution of NaHCO3 and diluted with EtOAc. Separation the organic phase thereafter 

was washed with H2O (10 ml), brine (10 ml) and the residue was dried over MgSO4 

(0.031g, 31%). 

 
1H NMR (500 MHz, MeOD) δ 8.70 (s, 1H, H-6), 6.16 (t, J = 6.0 Hz, 1H, H-1’), 4.74 

- 4.71 (m, 1H, H-4’), 4.06 (q, J = 3.0 Hz, 1H, H-3’), 3.86, 3.83 (2 x dd, J = 12.0 Hz, 

J = 3 Hz, 2H, H-5’, H-5’), 3.39 – 3.32 (m, 1H, H-3’), 2.53 – 2.49 (m, 1H, H-2’), 2.34 

- 2.29 (m, 1H, H-2’), 1.09 - 1.06 (m, 24H, CH(CH)3), 1.00 – 0.91 (m, 4H, CH(CH)3). 

MS (ES+): 511 (M+Na+), 489 (M+H+) C20H40N4O6Si2 required: (M+) 488.25 
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Synthesis of 3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-azacytidine 

5’-O-[1-naphthyl-(2,2-dimethylpropoxy-L-alaninyl) phosphate (6.7d). 

  

Prepared according to standard procedure 4, from 

3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-

deoxy-5-azacytidine (6.5, 0.080 g, 0.16 mmol), 

tBuMgCl (1.0 M, 0.49 mL, 0.49 mmol) and 1-

naphthyl(2,2-dimethylpropoxy-L-alaninyl)-

phosphorochloridate (2.3f, 0.18 g, 0.49 mmol) in 

THF (5 ml). The crude mixture was purified by 

column chromatography using CHCl3/MeOH eluent system (1-3% gradient), 

followed by preparative purification to give the title product 6.7d as a white foam 

(0.060 g, 44%). 

 
31P NMR (202 MHz, MeOD) δ 4.59, 4.30 
1H NMR (500 MHz, MeOD) δ 8.38, 8.33 (2 x bs, 1H, H-6), 8.13 – 8.11 (m, 1H, H-

Ar), 7.89 – 7.87 (m, 1H, H-Ar), 7.72 – 7.70 (m, 1H, H-Ar), 7.54 – 7.49 (m, 3H, H-

Ar), 7.44 – 7.41 (m, 1H, H-Ar), 6.05 – 6.02 (m, 1H, H-1’), 4.56 – 4.55 (m, 1H, H-

3’), 4.43 – 4.41 (m, 2H, H-5’, H-5’), 4.26 – 4.25 (m, 1H, H-4’), 4.14 – 4.08 (m, 1H, 

CHCH3), 3.85 (d, J = 10.5 Hz, 1H, CH2C(CH3)3), 3.72 (d, J = 10.5 Hz, 1H, 

CH2C(CH3)3), 2.29 - 2.25 (m, 1H, H-2’), 1.63 – 1.58 (m, 1H, H-2’), 1.42, 1.40 (dd, J 

= 7.5 Hz, CHCH3), 1.39 – 1.33 (m, 24H, 4 x SiCH(CH3)2), 0.93 (s, 9H, 

CH2C(CH3)3), 0.92 – 0.87 (m, 4H, 4 x SiCH(CH3)2). 
13C NMR (125 MHz, MeOD) δ 175.21, 15.13 (2 x d, 3JC-P = 6.25 Hz, C=O, ester), 

167.92, 167.81 (C=O, base), 156.69, 156.62 (C-4), 156.13, 156.06 (C-6), 148.01, 

147.93, 136.30, 128.96, 127.96, 127.79, 126.59, 126.23, 122.60, 116.39, 116.34 (C-

Ar), 88.35, 88.33 (C-1’), 88.15, 88.09 (2 x d, JC-P = 8.5 Hz, C-4’), 79.51, 79.48 

(CH2C(CH3)3), 73.83, 73.80 (C-3’), 67.81, 67.74 (2 x d, JC-P = 5.25 Hz, C-5’), 52.01, 

51.86 (CH(CH3), 43.04, 42.90 (C-2’), 32.45, 32.38 (CH2C(CH3)3), 26.82, 26.80 

(CH2C(CH3)3), 20.53, 20.37 (CH2C(CH3)3), 20.66, 20.60 (SiCH(CH3)2), 17.99, 

17.86 (2 x d, 3JC-P = 6.25 Hz, CH(CH3), 14.79, 14.77, 14.18 (SiCH(CH3)2). 

MS (ES+): 859 (M+Na+), 836 (M+H+) C38H62N5O10PSi2 required: (M+) 835.38  
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Synthesis of 3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-azacytidine 

5’-O-[1-naphthyl-(benzoxy-L-alaninyl) phosphate (6.7a). 

 

Prepared according to standard procedure 4, 

from 3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-

diyl)-2’-deoxy-5-azacytidine (6.5, 0.16 g, 0.32 

mmol), tBuMgCl (1.0 M, 0.96 ml, 0.96 mmol) 

and 1-naphthyl(benzoxy-L-alaninyl)-

phosphorochloridate (2.3c, 0.26 g, 0.64 mmol) 

in THF (5 ml). The crude mixture was purified 

by column chromatography using CHCl3/MeOH eluent system (1-3% gradient) to 

give the pure product 6.7a as a white foam (0.160 g, 58%). 
 

31P NMR (202 MHz, MeOD) δ 4.62, 4.25 
1H NMR (500 MHz, MeOD) δ 8.38, 8.35 (2 x bs, 1H, H-6), 8.15 – 8.09 (m, 1H, H-

Ar), 7.91 – 7.87 (m, 1H, H-Ar), 7.72 – 7.69 (m, 1H, H-Ar), 7.55 – 7.46 (m, 3H, H-

Ar), 7.42 – 7.29 (m, 6H, H-Ar), 6.01 (t, J = 5.5 Hz, 1H, H-1’), 5.15 – 5.06 (m, 2H, 

CH2Bn), 4.59 – 4.58, 4.53 – 4.52 (2 x m, 1H, H-3’), 4.38 – 4.33 (m, 1.5H, H-4’, H-

5’), 4.30 – 4.26 (m, 0.5H, H-4’), 4.20 – 4.19 (m, 1H, H-5’), 4.16 – 4.08 (m, 1H, 

CH(CH3), 2.34, 2.26 (2 x ddd, J =13.5 Hz, 5.5 Hz, 2.5 Hz, 1H, H-2’), 1.70 – 1.65 

(m, 0.5H, H-2’), 1.59 – 1.53 (m, 0.5H, H-2’), 1.39 – 1.33 (m, 3H, CH(CH3), 1.06 – 

1.03 (m, 24H, 4 x CH(CH3)2), 0.94 – 0.88 (m, 4H, 4 x CH(CH3)2). 
13C NMR (125 MHz, MeOD) δ 174.93, 174.47 (2 x d, 3JC-P = 5.0 Hz, C=O, ester), 

167.86, 167.83 (C=O, base), 156.72, 156.70 (C-4), 156.07, 156.05 (C-6), 147.95, 

147.81 (2 x d, 2JC-P = 6.5 Hz, C-Naph), 137.19, 136.27, 129.60, 129.38, 129.32, 

128.95, 127.90, 127.73, 126.55, 126.21, 122.59, 116.52, 116.38 (C-Ar), 88.31, 88.29 

(C-1’), 88.09, 88.03 (2 x d, 3JC-P = 7.5 Hz, C-4’), 73.76, 73.58 (C-3’), 68.07, 68.04 

(CH2Bn), 67.84, 67.67 (2 x d, 2JC-P = 6.0 Hz, C-5’), 51.98, 51.84 (CHCH3), 42.88, 

42.75 (C-2’), 20.53, 20.37 (2 x d, 3JC-P = 6.25 Hz, CHCH3), 17.94, 17.89 (4 x 

CH(CH3)2), 14.76, 14.73, 14.15, 14.13 (4 x CH(CH3)2). 

MS (ES+): 878 (M+Na+), C40H58N5O10PSi2 required: (M+) 855.35  
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Synthesis of 2’-deoxy-5-azacytidine 5’-O-[1-naphthyl-(benzoxy-L-alaninyl) 

phosphate (6.8a). 

 

To the solution of 3’-O-(1,1,3,3-

Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-

azacytidine 5’-O-[1-naphthyl-(benzoxy-L-

alaninyl) phosphate (6.7a, 0.06 g, 0.07 mmol) 

in anhydrous THF (3ml) at 0oC, 50% aqueous 

solution of TFA (1.5 ml) was added dropwise 

and stirred for 48 to 72 hours at ambient temperature. The crude mixture was 

purified by preparative TLC plate using CHCl3/MeOH (9:1) as eluent, to give the 

pure product 6.8a as a white solid (0.013 g, 12%). 

 
31P NMR (202 MHz, MeOD) δ 4.63, 4.24 
1H NMR (500 MHz, MeOD) δ 8.34, 8.31 (2 x bs, 1H, H-6), 8.16 – 8.11 (m, 1H, H-

Ar), 7.90 – 7.87 (m, 1H, H-Ar), 7.71 – 7.69 (m, 1H, H-Ar), 7.55 – 7.47 (m, 3H, H-

Ar), 7.44 – 7.30 (m, 6H, H-Ar), 6.01 (m, 1H, H-1’), 5.15 – 5.07 (m, 2H, CH2Bn), 

4.59 – 4.58, 4.53 – 4.52 (2 x m, 1H, H-3’), 4.38 – 4.33 (m, 1.5H, H-4’, H-5’), 4.36 – 

4.31 (m, 1.5H, H-3’, H-5’), 4.29 – 4.26 (m, 1H, H-4’), 4.23 – 4.21 (m, 0.5H, 

CH(CH3), 4.14 – 4.10 (m, 2H, H-5’, CHCH3),  2.29 – 2.21 (m, 1H, H-2’), 1.75 – 

1.65 (m, 1H, H-2’), 1.37, 1.36 (d, J = 7.0 Hz, 3H, CH(CH3). 
13C NMR (125 MHz, MeOD) δ 174.95, 174.56 (2 x d, 3JC-P = 5.0 Hz, C=O, ester), 

167.88, 167.85 (C=O, base), 156,79, 156.76 (C-6), 156.09 (C-4), 147.94, 147.78 (2 x 

d, 2JC-P = 7.5 Hz, C-Naph), 137.22, 136.28, 129.61, 129.59, 128.95, 128.90, 127.91, 

127.87, 127.72, 127.64, 126.58, 126.53, 126.19, 122.63, 116.56 (C-Ar), 88.15, 88.13 

(C-1’), 87.31, 87.08 (2 x d, 3JC-P = 8.75 Hz, C-4’), 79.51 (C-3’), 72.20, 72.01 

(CH2Bn), 68.06, 67.76 (2 x d, 2JC-P = 5.25 Hz, C-5’), 51.97, 51.82 (CHCH3), 42.04, 

42.97 (C-2’), 20.43, 20.26 (2 x d, 3JC-P = 6.25 Hz, CHCH3). 

HPLC (System 2) tR = 14.53, 14.58 min 

MS (ES+): 618 (M+Na+), 596 (M+H+), C28H30N5O8P required: (M+) 595.18  
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Synthesis of 3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-azacytidine 

5’-O-[phenyl-(benzoxy-L-alaninyl) phosphate (6.7b). 

 

Prepared according to standard procedure 4, 

from 3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-

diyl)-2’-deoxy-5-azacytidine (6.5, 0.10 g, 0.20 

mmol), tBuMgCl (1.0 M, 0.61 ml, 0.61 mmol) 

and phenyl(benzoxy-L-alaninyl)-

phosphorochloridate (2.3b, 0.22 g, 0.61 mmol) 

in THF (10 ml). The crude mixture was 

purified by column chromatography using CHCl3/MeOH eluent system (1-3% 

gradient) to give the pure product 6.7b as a white foam (0.08 g, 48%). 

 
31P NMR (202 MHz, MeOD) δ 4.14, 3.70 
1H NMR (500 MHz, MeOD) δ 8.44, 8.43 (2 x bs, 1H, H-6), 7.35 – 7.31 (m, 7H, H-

Ar), 7.25 – 7.24 (m, 1H, H-Ar), 7.20– 7.18 (m, 2H, H-Ar), 6.13 – 6.08 (m, 1H, H-

1’), 5.18 – 5.10 (m, 2H, CH2Bn), 4.72 – 4.69 (m, 1H, H-4’), 4.35 – 4.24 (m, 3H, H-

3’, H-5’, H-5’), 4.04 – 3.98 (m, 1H, CHCH3), 2.51 – 2.41 (m, 1H, H-2’), 2.04 – 1.88 

(m, 1H, H-2’), 1.36 (d, J = 7.5 Hz, 3H, CHCH3), 1.08 – 1.07 (m, 24H, 4 x 

CH(CH3)2), 1.01 – 0.90 (m, 4H, 4 x CH(CH3)2). 
13C NMR (125 MHz, MeOD) δ 174.83, 174.44 (2 x d, 3JC-P = 4.5 Hz, C=O, ester), 

167.89 (C=O, base), 156.89, 156.85 (C-4), 156.14, 156.13 (C-6), 152.13, 152.09, 

152.04, 137.28, 137.23, 137.21, 130.85, 129.63, 129.38, 126.34, 126.28, 121.45(C-

Ar), 88.44, 88.36 (C-1’), 88.01, 87.84 (2 x d, 3JC-P = 7.5 Hz, C-4’), 73.79, 73.63 (C-

3’), 68.89 (CH2Bn), 68.01, 67.74 (2 x d, 2JC-P = 8.75 Hz, C-5’), 51.87, 51.65 

(CHCH3), 43.10, 42.98 (C-2’), 20.61, 20.43 (2 x d, 3JC-P = 7.25 Hz, CHCH3), 18.02, 

17.89, 17.86, 17.84 (4 x CH(CH3)2), 14.83, 14.78, 14.27, 14.25 (4 x CH(CH3)2). 

MS (ES+): 828 (M+Na+), 806 (M+H+), C36H56N5O10PSi2 required: (M+) 805.33
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Synthesis of 2’-deoxy-5-azacytidine 5’-O-[1-naphthyl-(benzoxy-L-alaninyl) 

phosphate (6.8b). 

 

To the solution of 3’-O-(1,1,3,3-

Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-

azacytidine 5’-O-[phenyl-(benzoxy-L-alaninyl) 

phosphate (6.7b, 0.08 g, 0.10 mmol) in dry 

THF (4 ml) at 0oC, 50% aqueous solution of 

TFA (2 ml) was added dropwise and stirred for 

for 48 to 72 hours at ambient temperature. The crude mixture was purified by 

preparative TLC plate using CHCl3/MeOH (9:1) as eluent, to give the pure product 

6.8b as a white solid (0.003 g, 5%). 

 
31P NMR (202 MHz, MeOD) δ 4.16, 3.71 
1H NMR (500 MHz, MeOD) δ 8.41, 8.40 (2 x bs, 1H, H-6), 7.36 – 7.32 (m, 7H, H-

Ar), 7.25 – 7.24 (m, 1H, H-Ar), 7.20– 7.19 (m, 2H, H-Ar), 6.11 – 6.06 (m, 1H, H-

1’), 5.18 – 5.11 (m, 2H, CH2Bn), 4.37 – 4.21 (m, 3H, H-3’, H-5’, H-5’), 4.12 – 4.11 

(m, 1H, H-4’), 4.06 – 4.00 (m, 1H, CHCH3), 2.43 – 2.35 (m, 1H, H-2’), 2.07 – 1.93 

(m, 1H, H-2’), 1.37, 1.35 (d, J = 7.0 Hz, 3H, CHCH3). 

HPLC (System 2) tR = 13.67, 13.72 min 

MS (ES+): 568 (M+Na+), 546 (M+H+), C24H28N5O8P required: (M+) 545.15 

  

N N

NH2

ON

O

OH

O
P OO

N
H

O

O



Blanka Gönczy         Chapter 8 

	

	 375	

Synthesis of 3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-azacytidine 

5’-O-[1-naphthyl-(pentoxy-L-leucinyl) phosphate (6.7c). 

 

Prepared according to standard procedure 4, from 

3’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-

deoxy-5-azacytidine (6.5, 0.10 g, 0.20 mmol), 

tBuMgCl (1.0 M, 0.61 mL, 0.61 mmol) and 1-

naphthyl(pentoxy-L-leucinyl)-

phosphorochloridate (2.3s, 0.26 g, 0.61 mmol) in 

THF (10 ml). The crude mixture was purified by 

column chromatography using CHCl3/MeOH eluent system (1-3% gradient) to give 

the pure product as a white foam (0.08 g, 45%). 

 
31P NMR (202 MHz, MeOD) δ 5.07, 4.52 
1H NMR (500 MHz, MeOD) δ 8.42, 8.41 (2 x bs, 1H, H-6), 8.17 – 8.14 (m, 1H, H-

Ar), 7.91 – 7.88 (m, 1H, H-Ar), 7.73 – 7.70 (m, 1H, H-Ar), 7.56 – 7.53 (m, 2H, H-

Ar), 7.51 – 7.49 (2 x bs, 1H, H-Ar), 7.44 – 7.38 (m, 1H, H-Ar), 6.07 – 6.02 (m, 1H, 

H-1’), 4.61 – 4.60 (m, 1H, H-3’), 4.44 – 4.30 (m, 2H, H-5’, H-5’), 4.27 – 4.24 (m, 

1H, H-4’), 4.09 – 3.94 (m, 3H, CHCH2CH(CH3)2, OCH2CH2CH2CH2CH3), 2.36 – 

2.28 (m, 1H, H-2’), 1.72 – 1.65 (m, 2H, H-2’, CHCH2CH(CH3)2), 1.58 - 1.52 (m, 

4H, CHCH2CH(CH3)2, OCH2CH2CH2 CH2CH3), 1.31 - 1.27 ( m, 4H, OCH2CH2CH2 

CH2CH3), 1.06 – 1.03 (m, 24H, 4 x SiCH(CH3)2), 0.90 – 0.86 (m, 9H, 

CHCH2CH(CH3)2), OCH2CH2CH2 CH2CH3, 4 x SiCH(CH3)2) 
13C NMR (125 MHz, MeOD) δ 175.05, 174.95 (2 x d, 3JC-P = 4.0 Hz, C=O, ester), 

167.85, 167.81 (C=O, base), 156.84, 156.73 (C-4), 147.95, 147.82 (2 x d, 2JC-P = 7.5 

Hz, C1-Naph), 136.30, 128.99, 128.93, 127.90, 127.77, 127.63, 126.55, 126.27, 

126.13, 122.72, 122.66, 116.56, 116.36 (C-Ar), 88.35, 88.29 (C-1’), 88.09, 87.87 (2 

x d, 3JC-P = 7.5 Hz, C-4’), 73.89, 73.72 (C-2’), 67.96, 67.78 (2 x d, 2JC-P = 6.25 Hz, 

C-5’), 66.44, 66.41 (C-3’), 54.92, 54.80 (OCH2CH2CH2CH2CH3), 44.18, 43.81 (2 x 

d, 3JC-P = 8.5 Hz, CHCH2CHCH3), 42.92, 42.80 (CHCH2CH(CH3)2), 29.41, 

29.37(OCH2CH2CH2 CH2CH3), 29.18, 29.17 (OCH2CH2CH2CH2CH3), 25.75, 25.52 

(CHCH2CH(CH3)2), 23.36, 23.31, 23.14 (SiCH(CH3)2), 22.12, 21.67 

(CHCH2CH(CH3)2), 17.99, 17.94, 17.83(SiCH(CH3)2), 14.36, 14.17(SiCH(CH3)2).  
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MS (ES+): 878 (M+H+), C41H68N5O10PSi2 required: (M+) 877.48 

 

Synthesis of 2’-deoxy-5-azacytidine 5’-O-[1-naphthyl-(pentoxy-L-leucinyl) 

phosphate (6.8c). 

 

To the solution of 3’-O-(1,1,3,3-

Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-

azacytidine 5’-O-[1-naphthyl-(pentoxy-L-

leucinyl) phosphate (6.7c, 0.08 g, 0.10 mmol) in 

anhydrous THF (4 ml) at 0oC, 50% aqueous 

solution of TFA (2 ml) was added dropwise and 

stirred for 48 to 72 hours at ambient temperature. The crude mixture was purified by 

preparative TLC plate using CHCl3/MeOH (9:1) as eluent, to give the pure product 

6.8c as a white solid (0.013 g, 23%). 
 

31P NMR (202 MHz, MeOD) δ 5.02, 4.55 
1H NMR (500 MHz, MeOD) δ 8.39, 8.35 (2 x bs, 1H, H-6), 8.18 – 8.15 (m, 1H, H-

Ar), 7.90 – 7.89 (m, 1H, H-Ar), 7.74 – 7.70 (m, 1H, H-Ar), 7.59 – 7.54 (m, 2H, H-

Ar), 7.51 – 7.49 (m, 1H, H-Ar), 7.46 – 7.40 (m, 1H, H-Ar), 6.06 – 6.02 (2 x t, J = 6.5 

Hz, 7 Hz, 1H, H-1’), 4.42 – 4.37 (m, 1.5H, H-3’, H-5’), 4.35 – 4.29 (m, 1.5H, H-3’, 

H-5’), 4.18 – 4.13 (m, 1H, H-4’), 4.07 – 3.93 (m, 3H, CHCH2CH(CH3)2), 

OCH2CH2CH2CH2CH3), 2.32 – 2.24 (m, 1H, H-2’), 1.80 – 1.68 (m, 1H, H-2’), 1.60 

– 1.49 (m, 4H, CHCH2CH(CH3)2, OCH2CH2CH2CH2CH3), 1.32 - 1.27 (m, 5H, 

CHCH2CH(CH3)2, OCH2CH2CH2CH2CH3), 0.89 – 0.81 (m, 9H, CHCH2CH(CH3)2). 
13C NMR (125 MHz, MeOD) δ 175.50, 175.03 (2 x d, 3JC-P = 4.5 Hz, C=O, ester), 

167.86 (C=O, base), 156,77 (C-6), 156.09 (C-4), 147.95, 147.82 (2 x d, 2JC-P = 7.0 

Hz, C1-Naph), 136.31, 128.95, 128.90, 127.91, 127.89, 127.87, 127.71, 127.59, 

126.56, 126.52, 126.20, 126.09, 122.69 (C-Ar), 116.51, 116.37 (2 x d, 2JC-P = 3.0 Hz, 

C2-Naph), 88.14, 88.13 (C-1’), 87.32, 87.07 (2 x d, 3JC-P = 8.25 Hz, C-4’), 72.28, 

72.04 (C-3’), 68.82, 67.77 (2 x d, 2JC-P = 5.75 Hz, C-5’), 66.43, 66.39 

(OCH2CH2CH2CH2CH3), 44.16, 43.81 (2 x d, J = 8.75 Hz, CHCH2CH(CH3)2), 

42.07, 42.03(CHCH2CH(CH3)2), 35.82, 35.72 (C-2’), 32.80, 30.20 

(OCH2CH2CH2CH2CH3), 29.37, 29.16 (OCH2CH2CH2CH2CH3), 25.73, 25.48  
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 (CHCH2CH(CH3)2) 23.75, 23.36, 23.25, 23.12 (CHCH2CH(CH3)2), 21.99, 21.63 

(OCH2CH2CH2CH2CH3),14.49, 14.32 (OCH2CH2CH2CH2CH3). 

HPLC (System 2) tR = 19.83, 19.88 min 

MS (ES+): 640 (M+Na+), C29H40N5O8P required: (M+) 617.26 

 

Synthesis of 5’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-azacytidine 

3’-O-[1-naphthyl-(pentoxy-L-leucinyl) phosphate (6.9a). 

 

Prepared according to standard procedure 4, from 

5’-O-(1,1,3,3-Tetraisopropyldisilox-1,3-diyl)-2’-

deoxy-5-azacytidine (6.6, 0.05 g, 0.10 mmol), 

tBuMgCl (1.0 M, 0.30 mL, 0.30 mmol) and 1-

naphthyl(pentoxy-L-leucinyl)-phosphorochloridate 

(2.3s, 0.13 g, 0.30 mmol) in THF (5 ml). The crude 

mixture was purified by column chromatography 

using CHCl3/MeOH eluent system (1-3% gradient) to give the pure product 6.9a as a 

white foam (0.060 g, 67%). 

 
31P NMR (202 MHz, MeOD) δ 4.07, 3.19 
1H NMR (500 MHz, MeOD) δ 8.57, 8.53 (2 x bs, 1H, H-6), 8.18 (m, 1H, H-Ar), 

7.91 – 7.90 (m, 1H, H-Ar), 7.74 – 7.72 (m, 1H, H-Ar), 7.60 – 7.43 (m, 5H, H-Ar), 

6.19 – 6.13 (m, 1H, H-1’), 5.28 - 5.26 (m, 0.3H, H-3’), 5.23 - 5.20 (m, 0.7 H, H-3’), 

4.47 – 4.45 (m, 0.7 H, H-4’), 4.29 – 4.28 (m, 0.3 H, H-4’), 4.1 – 3.91 (m, 

CHCH2CH(CH3)2, OCH2CH2CH2 CH2CH3, H-5’, H-5’), 2.95 – 2.90 (m, 0.3H, H-

2’), 2.79 – 2.75 (m, 0.7H, H-2’), 2.49 – 2.43 (m, 0.3H, H-2’), 2.34 – 2.28 (m, 0.7H, 

H-2’), 1.69 – 1.64 (m, 0.7H, CHCH2CH(CH3)2), 1.58- 1.49 (m, 5.3H, 

CHCH2CH(CH3)2, CHCH2CH(CH3)2, OCH2CH2CH2 CH2CH3, 1.31 - 1.27 ( m, 4H, 

OCH2CH2CH2 CH2CH3), 1.07 – 1.00 (m, 28H, 4 x SiCH(CH3)2, 4 x SiCH(CH3)2), 

0.90 – 0.86 (m, 9H, CHCH2CH(CH3)2), OCH2CH2CH2 CH2CH3). 

MS (ES+): 900 (M+Na+), 878 (M+H+), C41H68N5O10PSi2 required: (M+) 877.42 
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Synthesis of 2’-deoxy-5-azacytidine 3’-O-[1-naphthyl-(pentoxy-L-leucinyl) 

phosphate (6.10a). 

 

To the solution of 5’-O-(1,1,3,3-

Tetraisopropyldisilox-1,3-diyl)-2’-deoxy-5-

azacytidine 5’-O-[1-naphthyl-(pentoxy-L-leucinyl) 

phosphate (6.9a, 0.06 g, 0.07 mmol) in dry THF (4 

ml) at 0oC, 50% aqueous solution of TFA (2ml) was 

added dropwise and stirred for 48 to 72 hours at 

ambient temperature. The crude mixture was purified 

by preparative TLC plate using CHCl3/MeOH (9:1) 

as eluent, to give the pure product 6.10a as a white solid (0.008 g, 19%). 

 
31P NMR (202 MHz, MeOD) δ 4.17, 3.47 
1H NMR (500 MHz, MeOD) δ 8.39, 8.35 (2 x bs, 1H, H-6), 8.18 – 8.15 (m, 1H, H-

Ar), 7.91 – 7.89 (m, 1H, H-Ar), 7.74 – 7.70 (m, 1H, H-Ar), 7.59 – 7.54 (m, 2H, H-

Ar), 7.51 – 7.49 (m, 1H, H-Ar), 7.46 – 7.40 (m, 1H, H-Ar), 6.18 – 6.16 (t, J = 5.0 

Hz, 0.3H, H-1’), 6.14 – 6.11 (t, J = 7.5 Hz, 0.7H, H-1’), 5.26 - 5.23 (m, 0.3H, H-3’), 

5.20 - 5.17 (m, 0.7 H, H-3’), 4.32 (q, J = 3.0 Hz, H-4’), 4.19 (q, J = 3.0 Hz, H-4’), 

4.05 – 4.02 (m, 2H, OCH2CH2CH2 CH2CH3), 3.69 – 3.91 (m, 1H, 

CHCH2CH(CH3)2), 3.83 – 3.68 (m, 2H, H-5’), 2.84 – 2.80 (m, 0.3H, H-2’), 2.69 – 

2.64 (m, 0.7H, H-2’), 2.54 – 2.49 (m, 0.3H, H-2’), 2.43 – 2.38 (m, 0.7H, H-2’), 1.71 

– 1.65 (m, 0.7H, CHCH2CH(CH3)2), 1.59 - 1.48 (m, 4.3H, CHCH2CH(CH3)2, 

OCH2CH2CH2 CH2CH3), 1.32 - 1.28 (m, 5H, CHCH2CH(CH3)2, OCH2CH2CH2 

CH2CH3), 0.89 – 0.80 (m, 9H, CHCH2CH(CH3)2, OCH2CH2CH2 CH2CH3). 

HPLC (System 2) tR = 18.52, 18.56 min 

MS (ES+): 618 (M+H+), Accurate mass: C29H40N5O8P required: (M+) 617.26 
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Appendix I 
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Evangelopoulos, D.; Bhakta, S. ProTides of N-(3-(5-(2'-deoxyuridine))prop-2-
ynyl)octanamide as potential anti-tubercular and anti-viral agents. Bioorg. Med. Chem. 
2014, 22, 2816-2824. 
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Liekens, S.; Balzarini, J. Phosphoramidate ProTides of the anticancer agent FUDR 
successfully deliver the preformed bioactive monophosphate in cells and confer 
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a b s t r a c t

The flavin-dependent thymidylate synthase X (ThyX), rare in eukaryotes and completely absent in
humans, is crucial in the metabolism of thymidine (a DNA precursor) in many microorganisms including
several human pathogens. Conserved in mycobacteria, including Mycobacterium leprae, and Mycobacte-
rium tuberculosis, it represents a prospective anti-mycobacterial therapeutic target. In a M. tuberculosis
ThyX-enzyme inhibition assay, N-(3-(5-(20-deoxyuridine-50-phosphate))prop-2-ynyl)octanamide was
reported to be the most potent and selective 5-substituted 20-deoxyuridine monophosphate analogue.
In this study, we masked the two charges at the phosphate moiety of this compound using our ProTide
technology in order to increase its lipophilicity and then allow permeation through the complex myco-
bacterial cell wall. A series of N-(3-(5-(20-deoxyuridine))prop-2-ynyl)octanamide phosphoroamidates
were chemically synthesized and their biological activity as potential anti-tuberculars was evaluated.
In addition to mycobacteria, several DNA viruses depend on ThyX for their DNA biosynthesis, thus these
prodrugs were also screened for their antiviral properties.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Tuberculosis (TB) is an infectious disease, caused by an extre-
mely slow growing bacterial pathogen belonging to the Mycobacte-
rium tuberculosis complex.1 Among them, M. tuberculosis is
responsible for the majority of human deaths.2 It is estimated that
at least one-third of the world’s population is latently infected with
the bacteria that causes TB, while in 2012, WHO reported 8.6 mil-
lion new cases of the disease and 1.3 million deaths due to it,
worldwide.3 Lengthy treatment regimens have as a consequence,
the rise of drug resistant TB-causing strains. This has set the alarm
for controlling the disease, which necessitates the discovery of new
therapeutic targets and synthesis of novel inhibitors.

In order to specifically inhibit mycobacterial growth, alternative
metabolic pathways, exclusive to the bacteria, need to be targeted
for an efficient anti-TB drug development programme.4 In this
regard, we focused our interest on the genome of M. tuberculosis,
which has been reported to contain a thyX gene (Rv2754c), encod-
ing the ThyX protein, a flavin-dependent thymidylate synthase
responsible for the de novo synthesis of 20-deoxythymidine
50-monophosphate (dTMP), a key precursor of DNA.5 ThyX, present
primarily in prokaryotes and viruses, is rare in eukaryotes and
absent in humans, where the corresponding metabolic function is
carried out by the conventional ThyA protein. Both the enzymes
catalyze the reductive methylation of 20-deoxy-uridine-50-mono-
phosphate (dUMP) to dTMP in the presence of methylenetetrahy-
drofolate; however, based on their structural and catalytic
dissimilarities, different enzymatic mechanisms have been sug-
gested for each.6 In contrast to ThyA, where methylenetetrahydrof-
olate acts both as the carbon donor and reducing agent, ThyX uses
methylenetetrahydrofolate as the one-carbon donor molecule and
reduced flavin adenine dinucleotide (FADH2) as a cofactor that
serves as the hydride donor.7

Micro-organisms contain either ThyA or ThyX; however, myco-
bacteria encode both ThyA and ThyX. However, a sequence similar-
ity search yielded no significant matches between ThyX of
mycobacteria to the ThyA of other eukaryotic cells. Recently,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bmc.2014.02.056&domain=pdf
http://dx.doi.org/10.1016/j.bmc.2014.02.056
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functional studies, devoted to investigate the biological role of both
of these enzymes, showed that ThyX is essential for the survival of M.
tuberculosis even in the presence of ThyA and exogenous thymi-
dine.8,9 M. tuberculosis cannot utilize exogenous thymidine sources
because it lacks thymidine kinase, the essential enzyme for the con-
version of thymidine into dTMP.5 All these factors support the exis-
tence of ThyX enzyme as a prospective therapeutic target for the
development of a new selective anti-tubercular drug treatment.10

The chemical class of C5-alkynyl substituted 20-deoxyuridine-
50-monophosphate (dUMP) has been reported as selective inhibitor
of ThyX in M. tuberculosis.11 In this study, among several com-
pounds, N-(3-(5-(20-deoxyuridine-50-monophosphate))prop-2-
ynyl)octanamide 1 (Fig. 1) was identified as the most potent and
selective analogue with an IC50 value of 0.91 lM versus recombi-
nant ThyX from M. tuberculosis. However, the polarity of this com-
pound constitutes a major obstacle for its penetration through the
complex mycobacterial cell wall. Indeed one of the major chal-
lenges for chemotherapeutic drugs is associated with difficulties
in crossing the thick, lipid-rich cell wall of the mycobacteria, which
prevents their permeation, with a consequential poor biological re-
sponse. In particular, the permeation of hydrophilic compounds is
not very efficient due to the presence of low numbers and the
exceptional length of porins, water-filled open channels, responsi-
ble for mediating the diffusion of hydrophilic nutrients.12 More-
over, the existence of active drug efflux pumps reduces the
concentration of active molecules inside the bacterial cell and their
up-regulation has been suggested to contribute to the emergence
of drug resistance.13 To the contrary more lipophilic drugs are
more likely to diffuse through the lipid-rich environment of the
mycobacterial cell wall. In addition to high polarity, the instability
of 1 in biological media, a well-known drawback for free nucleo-
side phosphates, may also limit its therapeutic potential, with
dephosphorylation likely exceeding cell permeation.

To improve stability, permeability and therefore antibacterial
activity, lipophilic prodrugs of 1 are thus required. Among several
strategies developed to overcome these issues, our phosphorami-
date ProTide approach was selected for this study.14,15 This technol-
ogy consists of masking the negative charges of the phosphate group
with an aromatic moiety and an amino acid ester. To date, this
approach has been widely applied mainly to antiviral16 and
anticancer nucleoside analogues17 and more recently also to
N-acetyl glucosamine to treat osteoarthritis.18 Typically, two
enzymatic cleavages are involved in the cellular bio-activation of
antiviral and anticancer ProTides, either in the viral infected or
human cancer cell.19 Firstly, a carboxypeptidase-type enzyme may
mediate the cleavage of the ester moiety. This step is followed by a
spontaneous intra-molecular cyclisation with the subsequent
release of the aryl moiety and formation of an unstable mixed cyclic
anhydride which undergoes ring-opening mediated by water to re-
lease a mono ester phosphate prodrug. In the last step, a
phosphoramidase-type enzyme, most probably a human Hint-1,
Figure 1. N-(3-(5-(20-Deoxyuridine-50-monophosphate))prop-2-ynyl)octanamide
1.
may be responsible for the cleavage of the phosphorus–nitrogen
bond with the consequent release of the monophosphate.

Since we wanted to investigate whether phosphoramidates of 1
are capable of crossing the cell wall of mycobacteria and to be bio-
converted into the monophosphate once inside, herein we report
the synthesis of several derivatives and their biological evaluation
against the TB vaccine strain, M. bovis BCG and the virulent TB
causing lab strain, M. tuberculosis H37Rv, using HT-SPOTi, a rapid
but gold standard whole-cell phenotypic assay. This is the first
time that the application of the ProTide technology has been re-
ported for improving the antimicrobial activity of inhibitors of a
protein target of M. tuberculosis.

The Prodrugs were prepared by chemical modification of nucle-
oside 2 rather than directly modifying compound 1 (see Scheme 1).
As ThyX proteins are also found in several double-stranded DNA
viruses5 and considering that some 5-alkynyl-20-deoxyuridine ana-
logues, in addition to their anti-TB activity20–22 showed significant
antiviral activity23 we also report the antiviral evaluation of the
parent nucleoside of 2 and its prodrug monophosphate derivatives.

2. Results and discussion

2.1. Chemistry

The phosphoramidates 7a–l described in this study are shown
in Table 1 with the reaction sequence for their synthesis summa-
rized in Scheme 1.

Our synthetic efforts started with the synthesis of the propargy-
loctylamide 4 from propargylamine 3 and octanoyl chloride.11 Then,
Sonogashira cross coupling24 of the commercially available 5-iodo-
20-deoxyuridine 5 with alkyne 4 afforded the desired nucleoside 2,
isolated in excellent yield (91%) without column chromatography
purification. It is noteworthy to mention that our synthetic proce-
dure to the preparation of 2 was made less time-consuming than
the previously reported procedure, with great improvement in
terms of yield achieved.11 Following the general synthetic proce-
dure for compounds 7a–l, nucleoside 2 was reacted with the appro-
priate phosphorochloridate 6a–l using N-methylimidazole as
Scheme 1. Synthetic method to obtain compounds 7a–l. Reagents and conditions:
(a) octanoyl chloride, DIPEA, anhydrous CH2Cl2, 0–20 �C, 2 h; (b) propargyloctana-
mide (3), Pd(Ph3)4, CuI, DIPEA, anhydrous DMF, 20 �C; (c) phosphorochlorides 6a–l
(for R, R0 , R00 and R000 see Table 1), NMI, anhydrous THF, 20 �C, 12 h.



Table 1
Substituent pattern, yields and 31P NMR shifts of phosphoramidates 7a–l

Compounds R R0 R00 AA R000 Yield (%) 31P NMRa (ppm)

7a Naph H CH3 (L)-Ala CH3 20 4.36; 4.07
7b Naph H CH3 (L)-Ala CH2CH3 5 4.36; 4.09
7c Naph H CH3 (L)-Ala CH2CH(CH3)2 39 4.34; 4.07
7d Naph H CH3 (L)-Ala CH2Ph 14 4.36; 3.98
7e Ph H CH3 (L)-Ala CH3 16 3.98; 3.57
7f Ph H CH3 (L)-Ala CH2CH3 29 3.99; 3.58
7g Ph H CH3 (L)-Ala (CH2)2CH3 12 4.00; 3.59
7h Ph H CH3 (L)-Ala CH2Ph 12 4.01; 3.51
7i Ph CH3 H (D)-Ala CH2Ph 16 3.98; 3.50
7j Ph H H Gly CH2Ph 29 5.02; 4.93
7k Ph CH3 CH3 DMG CH2Ph 9 2.39; 2.10
7l Ph H CH(CH3)2 (L)-Val CH2Ph 14 4.95; 4.30

a Recorded at 202 MHz in MeOH-d4 with 85% H3PO4 as reference.
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activator, according to a previously described method.25 The desired
phosphoroamidates 7a–l were obtained from 5% to 39% yield. Yield
optimization was beyond the scope of the work as we were in the
early stages of establishing biological activity and potential lead
molecules.

2.2. Biological activities

2.2.1. Antimycobacterial specificity
All synthesized compounds 7a–l and nucleoside 2 were evalu-

ated in vitro against M. bovis BCG and, M. tuberculosis H37Rv using
the HT-SPOTi assay26 at 1–250 mg/L concentrations. This whole-
cell assay was indicative toward inherent resistance, such as cell
wall impermeability. In order to evaluate a specific endogenous
mechanism of anti-mycobacterial action for these compounds via
ThyX inhibition, we also tested their biological activity against
Escherichia coli, a Gram-ve bacterium where a functional ThyX
homologue is missing from the genome. The minimum inhibitory
concentrations (MIC) of compounds that completely inhibited
growth of both mycobacterial strains are shown in Table 2.

The highly hydrophilic nucleoside 2 (C logP = �0.21) did not ex-
hibit antimycobacterial activity with a MIC >250 mg/L (Table 2).
For the first series of phosphoroamidates bearing a naphthyl group
as an aromatic part (7a–d), a structure–activity relationship (SAR)
was found with the activity depending on the size of the ester
group of the L-alanine amino acid moiety. Methyl and ethyl deriv-
atives (7a C logP = 1.89; 7b C logP = 2.42) showed better inhibitory
activity (7a MIC = 62.5 mg/L; 7b MIC = 125 mg/L), whereas more
hindered and lipophilic benzyl analogue (7d C logP = 3.60) was
found to be significantly less inhibitory (MIC = 250 mg/L). A
Table 2
Antimycobacterial specificity of nucleoside 2 and phosphoroamidates 7a–l

Compounds C logPa MICBCG (mg/L) MICH37Rv (mg/L)

2 �0.21 >250 >250
7a 1.89 62.5 62.5
7b 2.42 125 125
7c 3.74 125 62.5
7d 3.6 250 250
7e 0.71 >250 >250
7f 1.24 250 250
7g 1.77 125 125
7h 2.43 125 125
7i 2.43 62.5 125
7j 2.31 >250 >250
7k 2.73 125 >125
7l 3.35 125 31.25

a C logP values were calculated using CambridgeSoft ChemDraw� software.
MICBCG and MICH37Rv state the minimum inhibitory concentration of the com-
pounds tested against M. bovis BCG and M. tuberculosis H37Rv, respectively.
possible reason for this finding could be due to the higher size of
compound 7d that may prevent its entry inside the bacteria.

The second series of compounds bearing a phenyl aromatic
moiety (7e–l) showed a different SAR. The smallest alkyl esters
(7e C logP = 0.71; 7f C logP = 1.24) did not inhibit mycobacteria
growth, while propyl and benzyl derivatives (7g C logP = 1.77; 7h
C logP = 2.43) were slightly active (MIC = 125 mg/L). Further inves-
tigation on the amino acid part highlighted a certain preference to-
ward alanine with the D-alanine analogue (7i) showing a MIC of
62.5 mg/L.

Glycine derivative 7j, showed no activity against M. bovis BCG,
whereas dimethylglycine or L-valyl derivatives (7k and 7l) in the
same assay were slightly active. (MIC = 125 mg/L). However, re-
sults for 7i and 7l differed in the case of M. tuberculosis H37Rv as
can be inferred from the table.

Therefore, we postulate that the bioactivity against M. bovis BCG
and M. tuberculosis H37Rv of phosphoroamidates 7a, 7b, 7c, 7g, 7h,
7i and 7l might result from better permeation through the myco-
bacterial cell wall due to an improved balance between their
lipophilicity and molecular size. Potencies are moderate in this first
series of compounds and subsequent work is required to optimize
their biological activity; however, there is a clear antimycobacteri-
al effect for some of these molecules. Notably, the parent nucleo-
side 2 was devoid of activity showing the crucial importance of
the ProTide motif.

No homologues with significant sequence similarity with the
protein ThyX of M. tuberculosis were found in E. coli. This could
be a possible explanation for the inactivity of the compounds to-
wards this organism.

2.2.2. Antiviral activity
Parent nucleoside 2 and all synthesized phosphoramidates were

also evaluated for their antiviral activity against varicella zoster
virus (VZV), herpes simplex virus type 1 (HSV-1) and 2 (HSV-2),
and human cytomegalovirus (HCMV), vaccinia virus (VV) accord-
ing to previously described methods.27 Phosphoroamidate 7h
exhibited anti-VZV and anti-HSV activities in the low micromolar
range (Table 3).

However, although quite potent against a thymidine kinase po-
sitive (TK+) strain of VZV, 7h was not active versus the thymidine
kinase-deficient (TK�) strain. This showed the importance of this
enzyme in the bioactivation of this class of molecules to its active
species. Moreover, the lead compound, the L-alanine benzyloxy es-
ter phosphoramidate with a phenyl aromatic group 7h, presented
similar activity (EC50 = 2.0 lM) to acyclovir (EC50 = 2.6 lM) against
VZV. Compound 7h was also found to be active against HSV-1 and
HSV-2 (EC50 of 2 and 4 lM) but not against a TK� strain of HSV-1.
In the case of 7a, 7c, 7d, the antiviral activity observed against VZV
may be rather due to their underlying cytotoxicity. The compounds



Table 3
Antiviral activity and cytotoxicity of phosphoramidates 7a, 7c, 7d and 7h

Compounds EC50
a (lM) CC50

b (lM) MCCc (lM)

VZV HSV–1 HSV–2

TK+ OKA TK� 07-1 TK+ KOS TK�KOS G

2 >100 >100 >100 >100 >100 >100 —
7a 37 46 >100 >100 >100 64 >100
7c 20 >20 >100 >100 >100 15 >100
7d 8.6 >20 >100 >100 >100 39 >100
7h 2.0 >20 2 >100 4 48 >100
Acyclovir 2.6 140 0.2 50 0.1 440 >440

a Effective concentration required to reduce virus plaque formation by 50%. VZV, HSV-1 and HSV-2 represent EC50 values for varicella zoster virus, herpes simplex virus
strains, respectively.

b Cytotoxic concentration required to reduce cell growth by 50%.
c Minimum cytotoxic concentration that causes a microscopically detectable alteration of cell morphology.
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were not active against HCMV and VV (data not shown) in HEL cell
cultures.

3. Conclusions

A phosphoroamidate prodrug (ProTide) approach was used to
seek to deliver the pre-formed bioactive monophosphate of a
new compound recently reported to be a potent and selective
inhibitor of thymidylate synthase X, an enzyme essential for the
survival of M. tuberculosis. The lipophilic ProTide motif was de-
signed to improve permeability trough the mycobacterial cell wall.
We have successfully synthesized twelve phosphoroamidate deriv-
atives of N-(3-(5-(20-deoxyuridine-50-monophosphate))prop-
2-ynyl)octanamide 1, a potent in vitro ThyX inhibitors. Biological
tests of our prodrugs showed antimycobacterial activity against
M. tuberculosis H37Rv and M. bovis BCG in contrast to inactivity
from the parent nucleoside. We considered that the increased lipo-
philicity together with the correct molecular size of phosphoroam-
idate derivatives 7a, 7b, 7c 7g, 7h 7i and 7l allowed them to
penetrate through the mycobacterial cell wall liberating the mono-
phosphate intracellulary and targeting their proposed biological
target, ThyX protein.

Moreover, we found interesting activities against VZV for some
of our compounds, showing the necessity of the pro-moiety to help
transport of the drug into cells. We identified the L-alanine benzyl
ester phosphoramidate with the phenyl aromatic group 7h as a po-
tent antiviral agent, showing similar activity to acyclovir against
VZV in this assay.

The results obtained highlight the possibility that the ProTide
methodology could be used for the development of active mole-
cules against TB and reveal the importance of improving lipophil-
icity to efficiently pass the mycobacteria wall barrier. To the best
of our knowledge this is the first application of the ProTide tech-
nology to anti-mycobacterial agents. Further work is currently
underway to enhance the potency of the new agents we herein re-
port for the first time.

4. Experimental

4.1. Synthesis

Solvents and reagents: The following anhydrous solvents were
purchased from Sigma-Aldrich: dichloromethane (CH2Cl2), tetra-
hydrofuran (THF), dimethylformamide (DMF), and any other re-
agents used. Amino acid esters commercially available were
purchased from Novabiochem. All reagents commercially available
were used without further purification. Propargylamide and octa-
noyl chloride were purchased from Aldrich whereas 5-iodo-20-
deoxyuridine from Berry & Associates.
Thin layer chromatography (TLC): Precoated aluminum backed
plates (60 F254, 0.2 mm thickness, Merck) were visualized under
both short and long wave ultraviolet light (254 and 366 nm) or
by burning using the following TLC indicators: (i) molybdate
ammonium cerium sulfate; (ii) potassium permanganate solution.
Preparative TLC plates (20 cm � 20 cm, 500–2000 lm) were pur-
chased from Merck.

Flash column chromatography: Flash column chromatography
was carried out using silica gel supplied by Fisher (60A,
35–70 lm). Glass columns were slurry packed using the appropri-
ate eluent with the sample being loaded as a concentrated solution
in the same eluent or preadsorbed onto silica gel. Fractions con-
taining the product were identified by TLC, and pooled and the sol-
vent was removed in vacuo.

High performance liquid chromatography (HPLC): The purity of
the final compounds was verified to be >95% by HPLC analysis
using either I) ThermoSCIENTIFIC, SPECTRA SYSTEM P4000, detec-
tor SPECTRA SYSTEM UV2000, Varian Pursuit XRs 5 C18,
150 � 4.6 mm (as an analytic column) or II) Varian Prostar (LC
Workstation-Varian Prostar 335 LC detector), Thermo SCIENTIFIC
Hypersil Gold C18, 5 l, 150 � 4.6 mm (as an analytic column).
For the method of elution see the Section 4.

Nuclear Magnetic Resonance (NMR): 1H NMR (500 MHz), 13C
NMR (125 MHz) and 31P NMR (202 MHz) were recorded on a Bru-
ker Avance 500 MHz spectrometer at 25 �C. Chemical shifts (d) are
quoted in parts per million (ppm) relative to internal MeOH-d4 (d
3.34 1H NMR, d 49.86 13C NMR) and CHCl3-d (d 7.26 1H NMR, d
77.36 13C NMR) or external 85% H3PO4 (d 0.00 31P NMR). Coupling
constants (J) are measured in Hertz. The following abbreviations
are used in the assignment of NMR signals: s (singlet), d (doublet),
t (triplet), q (quartet), m (multiplet), br s (broad singlet), dd
(doublet of doublet), dt (doublet of triplet), app (apparent). The
assignment of the signals in 1H NMR and 13C NMR was done based
on the analysis of coupling constants and additional two-dimen-
sional experiments (COSY, HSQC, HMBC, PENDANT).

Mass spectrometry (MS): Low resolution mass spectra were per-
formed on Bruker Daltonics microTof-LC, (atmospheric pressure
ionization, electron spray mass spectroscopy) in positive mode.

4.1.1. Synthesis of N-(3-(5-(20-deoxyuridine))prop-2-ynyl)
octanamide 2

Propargyloctanamide (4): Propargylamine 3 (2.5 mL, 45.38
mmol) was dissolved in anhydrous CH2Cl2 (113 mL) DIPEA
(10.4 mL, 59.46 mmol) was added and the solution was cooled to
0 �C. Octanoyl chloride (8.52 mL, 49.92 mmol) was added dropwise
and the reaction mixture was stirred at room temperature for 2 h.
The reaction was quenched through dropwise addition of H2O
(5 mL) then diluted with CH2Cl2 and washed with saturated solu-
tion of NaHCO3 and brine, dried over MgSO4 and evaporated to
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obtain 4 as an orange solid (99%, 8.3 g) which was used in the sub-
sequent Sonogashira-coupling step without further purification. 1H
NMR (500 MHz, CHCl3-d): dH 5.68 (br s, 1H, NH) 4.04 (dd, 2H, J = 7.5
and 2.5 Hz, CH2C„C), 2.22 (t, 1H, J = 2.8 Hz, HC„C), 2.20 (t, 2H,
J = 8.0 Hz, CH2CO), 1.69–1.61 (m, 2H, CH2CH2CO), 1.31–1.28 (m,
8H, 4� CH2), 0.88 (t, 3H, J = 6.8 Hz, CH3).

4.1.2. N-(3-(5-(20-Deoxyuridine))prop-2-ynyl)octanamide (2)
A solution of 5-iodo-20-deoxyuridine 5 (4.00 g, 11.29 mmol),

alkyne 4 (6.14 g, 33.89 mmol), tetrakis Pd(PPh3)4 (1.30 g,
1.13 mmol), Cu(I)I (0.43 g, 2.26 mmol) and anhydrous DIPEA
(3.93 mL, 22.58 mmol) in anhydrous DMF (75 mL) was stirred un-
der an argon atmosphere at room temperature overnight. After this
period, the solvent was removed under reduced pressure and the
residue was suspended in CH2Cl2 and stirred at room temperature
for 2 h. The suspension was filtered and the solid was washed with
CH2Cl2 to give the desired compound as a light brown solid (91%,
4.20 g). For biological testing, the compound 2 was purified by pre-
parative TLC using CH2Cl2/MeOH 9:1 as eluent. 1H NMR (500 MHz,
DMSO-d6): dH 11.59 (s, 1H, NH), 8.26 (t, 1H, J = 5.4 Hz, NH amide),
8.15 (s, 1H, H-6), 6.12 (t, 1H, J = 6.7 Hz, H-10), 5.23 (d, 1H, J = 4.3 Hz,
30-OH), 5.07 (t, 1H, J = 5.0 Hz, 50-OH), 4.25–4.22 (m, 1H, H-30), 4.06
(d, 2H, J = 5.5 Hz, NHCH2), 3.80 (q, 1H, J = 3.3 Hz, H-40), 3.62–3.56
(m, 2H, H-50), 2.13–2.07 (m, 4H, H-20, COCH2), 1.52–1.46 (m, 2H,
COCH2CH2), 1.28–1.21 (m, 8H, 4� CH2), 0.86 (t, 3H, J = 6.9 Hz,
CH3). 13C (125 MHz, DMSO-d6): dC 171.83 (CONH), 161.57 (C-4),
149.39 (C-2), 143.57 (C-6), 98.14 (C-5), 89.76 (CH2C„C), 87.61
(C-40), 84.69 (C-10), 74.18 (CH2C„C), 70.23 (C-30), 61.02 (C-50),
40.06 (C-20), 35.06 (COCH2), 31.12, 28.58, 28.47, 28.39, 25.09,
22.01 (6� CH2), 13.89 (CH2CH3). MS (ES�) m/z 442 (M+Cl�,
100%), 406 (M�H+, 39%). Reverse-phase HPLC, eluting with H2O/
MeOH from 90:10 to 0:100 in 40 min, flow = 1 mL/min,
k = 280 nm, tR = 25.71 min.

4.1.3. Synthesis of phosphoramidates 7a–l
General procedure: To a solution of nucleoside 5 (1 mol/equiv)

and the appropriate phosphorochloridate 6a–l (3–5 mol/equiv) in
anhydrous THF, anhydrous NMI (5 mol/equiv) was added dropwise
and the reaction mixture was stirred at room temperature over-
night. After this period, the solvent was removed under reduced
pressure and the residue dissolved in CH2Cl2. The organic phase
was washed with 0.5 M aqueous solution of citric acid, water and
brine. The organic phase was dried over MgSO4, filtered and con-
centrated. The crude was purified by column chromatography
using different eluting systems. Some of the compounds were fur-
ther purified by preparative TLC using different eluting systems. All
the compounds were recovered as a mixture of RP and Sp

diastereoisomers.

4.1.3.1. N-{3-[5-(20-Deoxy-50-O-(1-naphthyl(methyloxy-L-alani-
nyl)phosphate-uridine))]prop-2-ynyl)octanamide (7a). Prepared
according to standard procedure from nucleoside 2 (0.20 g,
0.49 mmol) and naphthyl(methyloxy-L-alaninyl)phosphorochlori-
date 6a (0.80 g, 2.45 mmol) in anhydrous THF (20 mL) and anhy-
drous NMI (0.19 mL, 2.45 mmol). The crude compound was
purified by flash chromatography on silica gel gradient elution of
CH2Cl2/MeOH from 98:2 to 95:5. The residue was further purified
by preparative TLC eluting with CH2Cl2/MeOH 95:5 to give 7a as
a white solid (20%, 0.07 g). 1H NMR (500 MHz, MeOH-d4): dH 8.19
(d J = 7.5 Hz, 1H, Naph), 7.95 (s, 0.5H of one diastereoisomer, H-
6), 7.93 (s, 0.5H of one diastereoisomer, H-6), 7.92–7.89 (m, 1H,
Naph), 7.84 (d, J = 7.5 Hz, 0.5H of one diastereoisomer, Naph),
7.74 (d, J = 7.5 Hz, 0.5H of one diastereoisomer, Naph), 7.60–7.53
(m, 3H, Naph), 7.47–7.43 (m, 1H, Naph), 6.17 (t, J = 5.5 Hz, 0.5H
of one diastereoisomer H-10), 6.15 (t, J = 6.0 Hz, 0.5H of one diaste-
reoisomer H-10), 4.44–4.33 (m, 3H, H-30, H-50), 4.16–4.07 (m, 2H, H-
40 and CHCH3), 3.97, 3.96, 3.93 (3s, 2H, NHCH2C„), 3.68, 3.67 (s,
3H, OCH3), 2.22 (ddd, J = 14.0, 6.5 and 3.0 Hz, 0.5H of one diastereo-
isomer, H-20), 2.16 (ddd, J = 14.0, 6.0 and 3.0 Hz, 0.5H of one
diastereoisomer, H-20), 2.13 (t, J = 7.5 Hz, 1H, COCH2CH2), 2.09 (t,
J = 7.5 Hz, 1H, COCH2CH2), 1.89–1.83 (m, 0.5H of one diastereoiso-
mer, H-20), 1.80–1.76 (m, 0.5 H of one diastereoisomer, H-20)
1.57-.151 (m, 2H, COCH2CH2–), 1.39 (d, J = 8.5 Hz, 1.5H of one
diastereoisomer, CHCH3), 1.38 (d, J = 8.5 Hz, 1.5H of one diastereo-
isomer, CHCH3), 1.31–1.21 (m, 8H, 4� CH2), 0.89 (t J = 7.0 Hz, 3H,
CH3). 13C (125 MHz, MeOH-d4): dC 175.71, 175.68 (CONH), 175.23
(d, 3JC–P = 4.6 Hz, COOCH3), 175.10 (d, 3JC–P = 3.7 Hz, COOCH3),
164.46 (C-4), 151.96, 15141 (C-2), 148.04 (d, 2JC–P = 8.0 Hz, ‘ipso’
PhO), 144.59 (C-6), 136.32, 137.30, 128.98, 128.95, 127.92,
127.72, 127.62, 126.63, 126.56, 126.25, 126.19, 122.72, 122.66
(C-1 ‘ipso’ Naph, C-3 Naph, C-4 Naph, C-4a Naph, C-5 Naph, C-6
Naph, C-7 Naph, C-8 Naph, C-8a Naph), 116.47 (d, 3JC–P = 2.9 Hz,
C-2 Naph), 116.41 (d, 3JC–P = 3.4 Hz, C-2 Naph), 100.26 (C-5),
90.36, 90.32 (CH2C„C), 87.44, 87.36 (C-10), 87.16 (d, 3JC–

P = 8.2 Hz, C-40), 86.95 (d, 3JC–P = 8.2 Hz, C-40), 75.42, 75.37 (CH2-

C„C), 72.24, 72.13 (C-30), 67.85 (d, 2JC–P = 5.5 Hz, C-50), 52.85
(OCH3), 51,80, 51.69 (CHCH3), 41.34, 41.27 (C-20), 36.90, 36.87
(COCH2), 32.91, 30.54, 30.48, 30.26, 30.13, 26.84, 26.82, 23.67 (CH2-

NHCO, 6� CH2), 20.59 (d, 3JC–P = 6.1 Hz, CHCH3), 20.45 (d, 3JC–

P = 7.2 Hz, CHCH3), 14.42 (CH3). 31P NMR (202 MHz, MeOH-d4): dP

4.36, 4.07. MS (ES+) m/z: 721 (M+Na+, 100%). Reverse-phase HPLC,
eluting with H2O/ACN from 90:10 to 0:100 in 30 min, flow = 1 mL/
min, k = 280 nm, tR = 17.86 min.

4.1.3.2. N-{3-[5-(20-Deoxy-50-O-(1-naphthyl(ethyloxy-L-alaninyl)
phosphate-uridine))]prop-2-ynyl)octanamide (7b). Prepared ac-
cording to standard procedure from nucleoside 2 (0.20 g,
0.49 mmol) and naphthyl(ethyloxy-L-alaninyl)phosphorochlori-
date 6b (0.84 g, 2.45 mmol) in anhydrous THF (15 mL) and anhy-
drous NMI (0.19 mL, 2.45 mmol). The crude compound was
purified by flash chromatography on silica gel gradient elution of
ethyl acetate/MeOH = 100:0 to 98:2. The residue was further puri-
fied by preparative TLC eluting with CH2Cl2/MeOH 95:5 to give 7b
as a white solid (5%, 0.02 g). 1H NMR (500 MHz; MeOH-d4): dH

8.20–7.42 (m, 8H, Naph, H-6), 6.17–6.14 (m, 1H, H-10), 4.45–4.32
(m, 3H, H-30, H-50), 4.17–4.07 (m, 4H, H-40, COOCH2CH3, CHCH3),
3.97, 3.93, 3.91 (3s, 2H, NHCH2C„C), 2.23–2.17 (m, 1H, H-20),
2.16–2.08 (m, 2H, COCH2CH2), 1.87–1.74 (m, 1H, H-20), 1.58–1.51
(m, 2H, COCH2CH2), 1.43–1.21 (m, 14H, 4� CH2, COOCH2CH3,
CHCH3), 0.89–0.84 (t, 3H, J = 6.7 Hz, CH2CH2CH3). 13C NMR
(125 MHz, MeOH-d4): dC 175.69, 175.68 (CH2CO), 175.05, 174.73
(COOCH2CH3), 164.36 (C-4), 151.05, 150.93 (C-2), 148.00 (d, 2JC–

P = 7.4 Hz, C-1 ‘ipso’ Naph), 147.97 (d, 2JC–P = 7.2 Hz, C-1 ‘ipso’
Naph), 144.55 (C-6), 136.29, 136.28, 128.95, 128.92, 127.91,
127.90, 127.84, 127.68, 127.58, 126.61, 126.60, 126.53, 126.52,
126.22, 126.17, 126.53, 126.52 (C-3 Naph, C-4 Naph, C-4a Naph,
C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, C-8a Naph), 116.42 (d,
3JC–P = 3.4 Hz, C-2 Naph), 116.37 (d, 3JC–P = 3.2 Hz, C-2 Naph),
100.24 (C-5), 90.33 (CH2C„C), 87.40, 87.37 (C-10), 87.15 (d, 3JC–

P = 8.4 Hz, C-40), 86.91 (d, 3JC–P = 8.1 Hz, C-40), 75.40 (CH2C„C),
72.22, 72.11 (C-30), 67.86 (d, 2JC–P = 5.4 Hz, C-50), 62.47 (COOCH2-

CH3), 51.87, 51.77 (CHCH3), 41.33, 41.25 (C-20), 36.87, 36.84
(COCH2), 32.85, 30.53, 30.44, 30.23, 30.09, 26.80, 23.64 (CH2NHCO,
6� CH2), 20.61 (d, 3JC–P = 6.6 Hz, CHCH3), 20.47 (d, 3JC–P = 7.7 Hz,
CHCH3), 14.46, 14.39 (COOCH2CH3, CH3). 31P NMR (202 MHz;
MeOD-d4): dP 4.36, 4.09. MS (ES+) m/z: 735 (M+Na+, 100%). Re-
verse-phase HPLC, eluting with H2O/ MeOH from 90:10 to 0:100
in 40 min, flow = 1 mL/min, k = 280 nm, tR = 34.49 min (99.05%).

4.1.3.3. N-{3-[5-(20-Deoxy-50-O-(1-naphthyl(neopentyloxy-L-ala
ninyl)phosphate-uridine))]prop-2-ynyl)octanamide (7c). Pre-
pared according to standard procedure from nucleoside 2 (0.20 g,
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0.49 mmol) and naphthyl(neopentyloxy-L-alaninyl)phosphorochl-
oridate 6c (0.94 g, 2.45 mmol) in anhydrous THF (20 mL) and anhy-
drous NMI (0.19 mL, 2.45 mmol). The crude compound was
purified by flash chromatography on silica gel gradient elution of
CH2Cl2/MeOH from 98:2 to 95:5. The residue was further purified
by preparative TLC eluting with CH2Cl2/MeOH = 95:5 to give 7c
as a white solid (39%, 0.13 g). 1H NMR (500 MHz, MeOH-d4): dH

8.22–8.18 (m, 1H, Naph), 7.93 (s, 0.65H of one diastereoisomer,
H-6), 7.92 (s, 0.35H of one diastereoisomer, H-6), 7.90–7.88 (m,
1H, Naph), 7.72 (d J = 8.5 Hz, 0.35H of one diastereoisomer, Naph)
7.71 (d, J = 8.5 Hz, 0.65H of one diastereoisomer, Naph) 7.58–7.52
(m, 3H, Naph), 7.46–7.42 (m, 1H, Naph), 6.16–6.12 (m, 1H, H-10),
4.45–4.32 (m, 3H, H-30, H-50), 4.16–4.07 (m, 2H, H-40, CHCH3),
3.99, 3.97, 3.95, 3.94 (4s, 2H, NHCH2C„), 3.87, 3.86, 3.76, 3.75
(2� AB, 4H, JAB = 10.5 Hz, 2� OCH2C(CH3)3), 2.21–2.14 (m, 1H, H-
20), 2.13 (t, J = 7.5 Hz, 1H, COCH2CH2), 2.08 (t, J = 7.5 Hz, 1H, COCH2-

CH2), 1.83–1.73 (m, 1H, H-20), 1.56–1.51 (m, 2H, COCH2CH2), 1.43
(d, J = 7.0 Hz, 3H, CHCH3), 1.29–1.19 (m, 8H, 4� CH2), 0.94, 0.93
(2s, 9H, OCH2C(CH3)3), 0.87 (t, J = 6.5 Hz, 3H, CH3). 13C (125 MHz,
MeOH-d4): dC 175.68, 175.64 (CONH), 175.16 (d, 3JC–P = 5.0 Hz, CO2-

CH2C(CH3)3), 174.83 (d, 3JC–P = 4.7 Hz, CO2CH2C(CH3)3), 164.42 (C-
4), 151.00, 150.97 (C-2), 148.00 (d, 2JC–P = 7.3 Hz, C-1 ‘ipso’ Naph),
147.90 (d 2JC–P = 7.2 Hz, C-1 ‘ipso’ Naph), 144.64, 144.60 (C-6),
136.32, 136.30, 128.99, 128.97, 127.93, 127.73, 127.63, 126.67,
126.58, 126.28, 126.21, 122.77, 122.69 (C-3 Naph, C-4 Naph, C-4a
Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, C-8a Naph),
116.48 (d, 3JC–P = 5.7 Hz, C-2 Naph), 100.30, 100.27 (C-5), 90.36,
90.33 (CH2C„C), 87.43, 87.41 (C-10), 87.19, (d, 3JC–P = 8.5 Hz, C-
40), 86.95 (d, 3JC–P = 8.1 Hz, C-40), 75.55 (OCH2C(CH3)3), 75.10 (CH2-

C„C), 72.30, 72.14 (C-30), 67.97 (d, 2JC–P = 5.0 Hz, C-50), 67.92 (d,
2JC–P = 5.0 Hz, C-50), 52.03, 51.89 (CHCH3), 41.36, 41.31 (C-20),
36.94, 36.89 (COCH2), 32.90 (CH2), 32.39 (C(CH3)3), 30.65, 30.55,
30.30, 30.15, 26.86, 26.85 (CH2NHCO, 4� CH2), 26.81 (OCH2-

C(CH3)3), 26.75, 23.69 (CH2), 20.90 (d, 3JC–P = 5.8 Hz, CHCH3),
20.70 (d, 3JC–P = 7.6 Hz, CHCH3), 14.48 (CH3). 31P NMR (202 MHz,
MeOH-d4): dP 4.34, 4.07. MS (ES+) m/z: 777 (M+Na+, 100%). Re-
verse-phase HPLC, eluting with H2O/CH3CN from 90:10 to 0:100
in 30 min, flow = 1 mL/min, k = 280 nm, tR = 22.51, 22.68 min.

4.1.3.4. N-{3-[5-(20-Deoxy-50-O-(1-naphthyl(benzyloxy-L-alani-
nyl)phosphate-uridine))]prop-2-ynyl)octanamide (7d). Prepared
according to standard procedure from nucleoside 2 (0.30 g,
0.75 mmol) and naphthyl(benzyloxy-L-alaninyl)phosphorochlori-
date 6d (0.91 g, 2.25 mmol) in anhydrous THF (25 mL) and anhy-
drous NMI (0.30 mL, 3.80 mmol). The crude compound was
purified by flash chromatography on silica gel gradient elution of
CH2Cl2/MeOH from 98:2 to 95:5. The residue was further purified
by preparative TLC eluting with CH2Cl2/MeOH 95:5 to give 7d as a
white solid (14%, 0.08 g). 1H NMR (500 MHz; MeOD-d4) dH 8.19–
8.17 (m, 1H, Naph), 7.93–7.90 (m, 2H, Naph, H-6), 7.74–7.69 (m,
1H, Naph), 7.58–7.52 (m, 3H, Naph), 7.40–7.30 (m, 6H, Naph, Ph),
6.13–6.10 (m, 1H, H-10), 5.18–5.10 (m, 2H, COOCH2Ph), 4.39–4.32
(m, 1H, H-50), 4.31- 4.25 (m, 2H, H-30, H-50), 4.18–4.07 (m, 2H, H-
40, CHCH3), 3.92 (s, 2H, NHCH2C„), 2.19–2.09 (m, 3H, H-20, COCH2-

CH2), 1.80–1.75 (m, 1H, H-20), 1.59–1.50 (m, 2H, COCH2CH2), 1.40 (d,
J = 7.0 Hz, 3H, CHCH3), 1.36–1.21 (m, 8H, 4� CH2), 0.89–0.87 (m, 3H,
CH3). 13C NMR (125 MHz; MeOH-d4): dC 175.23 (NHCO), 174.57
(COOCH2Ph), 164.32 (C-4), 150.87 (C-2), 148.60 (d, 2JC–P = 7.3 Hz,
C-1 ‘ipso’ Naph), 144.57, 144.52 (C-6), 137.14, 136.29 (‘ipso’ OCH2-

Ph), 129.80, 129.74, 129.64, 129.61, 129.42, 129.37, 128.97,
127.91, 127.72, 127.62, 126.64, 126.55, 126.27, 126.18, 122.74,
122.65 (C-3 Naph, C-4 Naph, C-4a Naph, C-5 Naph, C-6 Naph, C-7
Naph, C-8 Naph, C-8a Naph, COOCH2Ph), 116.43 (d, 3JC–P = 2.5 Hz,
C-2 Naph), 100.26 (C-5), 90.40 (CH2C„C), 87.32, 87.19 (C-10),
86.91 (d, 3JC–P = 8.8 Hz, C-40), 75.43 (CH2C„C), 72.25, 72.07 (C-30),
68.14, 68.11 (CH2OPh), 67.87 (d, 2JC–P = 5.0 Hz, C-50), 52.00, 51.85
(CHCH3), 41.33, 41.29 (C-20), 36.90 (COCH2), 32.86, 30.56, 30.48,
30.25, 30.11, 26.83, 23.66 (CH2NHCO, 6� CH2), 20.55 (d, 3JC–

P = 6.25 Hz, CHCH3), 14.48, 14.41 (CH3). 31P NMR (202 MHz,
MeOD-d4): dP 4.36, 3.98. MS (ES+) m/z: 797 (M+Na+, 100%). Reverse
HPLC, eluting with H2O/CH3CN from 90:10 to 0:100 in 30 min,
flow = 1 mL/min, k = 280 nm, tR = 16.63 min.

4.1.3.5. N-{3-[5-(20-Deoxy-50-O-(phenyl(methoxy-L-alaninyl)
phosphate-uridine))]prop-2-ynyl)octanamide (7e). Prepared ac-
cording to standard procedure from nucleoside 2 (0.20 g,
0.49 mmol) and phenyl(methoxy-L-alaninyl)phosphorochloridate
6e (0.68 g, 2.45 mmol) in anhydrous THF (18 mL) and with NMI
(0.19 mL, 2.45 mmol). The crude compound was purified by flash
chromatography on silica gel gradient elution of CH2Cl2/MeOH
from 98:2 to 94:6 to give 7e as a white solid (16%, 0.05 g). 1H
NMR (500 MHz, MeOH-d4) dH 7.99, 7.96 (2s, 1H, H-6), 7.40–7.36
(m, 2H, Ph), 7.30–7.27 (m, 2H, Ph), 7.23–7.20 (m, 1H, Ph), 6.25–
6.20 (m, 1H, H-10), 4.44–4.41 (m, 1H, H-30), 4.39–4.37 (m, 1H, H-
50), 4.34–4.31 (m, 1H, H-50), 4.15–4.12 (m, 1H, H-40), 4.09 (s, 1H,
NHCH2), 4.06–4.01 (m, 2H, CHCH3, NHCH2), 3.71, 3.69 (2s, 3H,
COOCH3), 2.34 (ddd, J = 13.7, 6.0, 3.1 Hz, 0.5H of one diastereoiso-
mer), H-20, 2.27 (ddd, J = 13.7, 6.0, 2.9 Hz, 0.5H of one diastereoiso-
mer, H-20), 2.19–2.15 (m, 2H, COCH2–), 2.14–2.08 (m, 0.5H of one
diastereoisomer, H-20), 2.01–1.95 (m, 0.5H of one diastereoisomer,
H-20), 1.60–1.56 (m, 2H, COCH2CH2–), 1.38 (d, J = 7.1 Hz, 3H,
CHCH3), 1.34–1.25 (m, 8H, 4� CH2), 0.91 (t, J = 6.9 Hz, 3H, –CH2-

CH3). 13C NMR (125 MHz, MeOH-d4): dC 175.75, 175.55, 175.27,
175.23 (COOCH3, CONH), 164.43 (C-4), 152.15 (C-2), 151.03 (‘ipso’
Ph), 144.72, 144.68 (C-6), 130.91, 130.89, 126.38, 126.32, 121.53,
121.49 (PhO), 100.23 (C-5), 90.46, 90.42 (CH2C„C), 87.47, 87.26
(C-10), 87.13 (d, 3JC–P = 8.1 Hz, C-40), 87.13 (d, 3JC–P = 8.3 Hz, C-40),
75.42, 75.37 (CH2C„C), 72.23, 72.14 (C-30), 67.69 (d, 2JC–

P = 5.5 Hz, C-50), 67.57 (d, 2JC–P = 5.3 Hz, C-50), 51.70, 51.53
(COOCH3), 50.22 (CHCH3), 41.38, 41.32 (C-20), 36.92 (COCH2),
32.89, 30.56, 30.53, 30.27, 30.13, 26.85, 23.67 (NHCH2CO, 6�
CH2), 20.62 (d, 3JC–P = 6.0 Hz, CHCH3), 20.44 (d, 3JC–P = 7.1 Hz,
CHCH3), 14.43 (CH3). 31P NMR (202 MHz, MeOH-d4): dP 3.98,
3.57. MS (EI) m/z: 671 (M+Na+, 100%). Reverse HPLC, eluting with
H2O/CH3CN from 100:0 to 0:100 in 30 min, flow = 1 mL/min,
k = 254 nm, tR = 18.29 min.

4.1.3.6. N-{3-[5-(20-Deoxy-50-O-(phenyl(ethoxy-L-alaninyl)phos-
phate-uridine))]prop-2-ynyl)octanamide (7f). Prepared accord-
ing to standard procedure from nucleoside 2 (0.20 g, 0.49 mmol)
and phenyl(ethoxy-L-alaninyl)phosphorochloridate 6f (0.71 g,
2.45 mmol) in anhydrous THF (15 mL) and anhydrous NMI
(0.19 mL, 2.45 mmol). The crude compound was purified by flash
chromatography on silica gel gradient elution of CH2Cl2/
MeOH = 98:2 to 94:6 to give 7f as a white solid (29%, 0.09 g). 1H
NMR (500 MHz, MeOH-d4) dH 7.99, 7.96 (2s, 1H, H-6), 7.40–7.36
(m, 2H, Ph), 7.30–7.27 (m, 2H, Ph), 7.22–7.19 (m, 1H, Ph), 6.25–
6.20 (m, 1H, H-10), 4.44–4.41 (m, 1H, H-30), 4.39–4.37 (m, 1H, H-
50), 4.35–4.30 (m, 1H, H-50), 4.20–4.12 (m, 3H, H-40, COOCH2CH3),
4.10, 4.05 (2s, 2H, NHCH2), 4.04–3.97 (m, 1H, CHCH3), 2.34 (m,
J = 13.7, 6.0, 3.1 Hz, 0.5H of one diastereoisomer, H-20), 2.27 (m,
J = 13.8, 6.0, 3.0 Hz, 0.5H of one diastereoisomer, H-20), 2.19–2.15
(m, 2H, COCH2–), 2.13–2.07 (m, 0.5H of one diastereoisomer, H-
20), 1.99–1.94 (m, 0.5H of one diastereoisomer, H-20), 1.62–1.56
(m, 2H, COCH2CH2–), 1.38 (d, J = 7.2 Hz, 3H, CHCH3), 1.34–1.24
(m, 11H, 4� CH2, COOCH2CH3), 0.90 (t, J = 6.9 Hz, 3H, –CH2CH3).
13C NMR (125 MHz, MeOH-d4): dC 175.76, 175.11, 175.07 (COOCH2-

CH3, CONH), 164.39 (C-4), 152.20, 152.14 (C-2), 151.02 (‘ipso’ Ph),
144.71, 144.67 (C-6), 130.92, 130.90, 126.40, 126.33, 121.53,
121.50 (PhO), 100.28 (C-5), 90.48, 90.45 (CH2C„C), 87.43, 87.24
(C-10), 87.12 (d, 3JC–P = 8.3 Hz, C-40), 86.94 (d, 3JC–P = 8.2 Hz, C-40),
75.47, 75.43 (CH2C„C), 72.21, 72.12 (C-30), 67.71 (d, 2JC–
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P = 5.5 Hz, C-50), 67.59 (d, 2JC–P = 5.4 Hz, C-50), 62.52, 62.51
(COOCH2CH3), 51.81, 51.63 (CHCH3), 41.42, 41.37 (C-20), 36.96
(COCH2), 32.90, 30.63, 30.59, 30.30, 30.15, 26.87, 23.69 (NHCH2CO,
6� CH2), 20.74 (d, 3JC–P = 6.2 Hz, CHCH3), 20.55 (d, 3JC–P = 7.1 Hz,
CHCH3), 14.57, 14.55, 14.47 (COOCH2CH3, CH3). 31P NMR
(202 MHz, MeOH-d4): dP 3.99, 3.58. MS (EI) m/z: 685 (M+Na+,
100%). Reverse HPLC, eluting with H2O/CH3CN from 100:0 to
0:100 in 30 min, flow = 1 mL/min, k = 254 nm, tR = 19.10 min.

4.1.3.7. N-{3-[5-(20-Deoxy-50-O-(phenyl(propyloxy-L-alaninyl)
phosphate-uridine))]prop-2-ynyl)octanamide (7g). Prepared ac-
cording to standard procedure from nucleoside 2 (0.20 g,
0.49 mmol) and phenyl(propyloxy-L-alaninyl)phosphorochloridate
6g (0.71 g, 2.45 mmol) in anhydrous THF (15 mL) and anhydrous
NMI (0.19 mL, 2.45 mmol). The crude compound was purified by
flash chromatography on silica gel gradient elution of CH2Cl2/
MeOH from 98:2 to 94:6 to give 7g as a white solid. 1H NMR
(500 MHz, MeOH-d4): dH 7.99, 7.97 (2s, 1H, CH-6), 7.40–7.35 (m,
2H, Ph), 7.31–7.26 (m, 2H, Ph), 7.23–7.19 (m, 1H, Ph), 6.24–6.19
(m, 1H, H-10), 4.39–4.35 (m, 1H, H-30), 4.34–4.20 (m, 2H, H-50),
4.15–3.99 (m, 6H, H-40, OCH2, NHCH2C„C, CHCH3), 2.34 (ddd,
J = 14.0, 6.0 and 3.0 Hz, 0.5H of one diastereoisomer, H-20), 2.25
(ddd, J = 13.5, 6.0 and 2.5 Hz, 0.5H of one diastereoisomer, H-20),
2.19–2.14 (m, 2H, H-20, COCH2CH2), 2.12–2.00 (m, 1H of one diaste-
reoisomer, H-20), 199–1.96 (m, 1H of one diastereoisomer, H-20),
1.70–1.63 (m, 2H, OCH2CH2), 1.62–1.56 (m, 2H, COCH2CH2),
1.41–1.37 (d, J = 7.5 Hz, 3H, CHCH3), 1.34–1.26 (m, 8H, 4� CH2),
0.96, 0.95 (2t J = 7.5 Hz, 3H, OCH2CH3), 0.90 (t, J = 7.0 Hz, 3H,
CH3). 13C NMR (125 MHz, MeOH-d4): dC 175.75, 175.72 (CONH),
175.16 (d, 3JC–P = 4.5 Hz, CO2CH2), 174.88 (d, J = 5.4 Hz, CO2CH2),
164.40, 164.42 (C-4), 152.19 (d, 2JC–P = 7.1 Hz ‘ipso’ PhO), 152.19
(d, 2JC–P = 7.1 Hz ‘ipso’ PhO), 152.13 (d, 2JC–P = 6.5 Hz ‘ipso’ PhO),
151.04 (C-2), 144.70, 144.74, (C-6), 130.89, 130.87, 126.36,
126.29, (PhO), 121.52 (d, 2JC–P = 7.1 Hz, PhO), 100.25, 100.28 (C-5),
90.46, 90.44 (CH2C„C), 87.48, 87.37 (C-10), 86.97 (d, 3JC–

P = 8.2 Hz, C-40), 86.16 (d, 3JC–P = 8.1 Hz, C-40), 75.41, 75.34 (CH2-

C„C), 72.21, 72.12 (C-30), 68.06, 68.05 (OCH2), 67.75 (d, 2JC–

P = 5.6 Hz, C-50), 67.63 (d, 2JC–P = 5.5 Hz, C-50), 51.88, 51.72 (CHCO2),
41.38, 41.35 (C-20), 36.96 (COCH2), 32.90, 30.59, 30.56, 30.27,
30.09, 26.87, 23.05, 23.03 (–CH2–), 20.58 (d, 3JC–P = 7.0 Hz, CHCH3),
20.77 (d, 3JC–P = 6.1 Hz, CHCH3), 14.37 (CH3), 10.64 (OCH2CH3); 31P
NMR (202 MHz, MeOH-d4): dP 4.00, 3.59. MS (EI) m/z: 711 (M+Cl�,
100%). Reverse-phase HPLC, eluting with H2O/CH3CN from 90:10 to
0:100 in 35 min, flow = 1 mL/min, k = 280 nm, tR= 17.77 min.

4.1.3.8. N-{3-[5-(20-Deoxy-50-O-(phenyl-(benzyloxy-L-alaninyl)
phosphate-uridine))]prop-2-ynyl)octanamide (7h). Prepared ac-
cording to standard procedure nucleoside 2 (0.30 g, 0.75 mmol)
and phenyl(benzyloxy-L-alaninyl)phosphorochloridate 6h (0.80 g,
2.25 mmol) in anhydrous THF (25 mL) and anhydrous NMI
(0.30 mL, 3.80 mmol). The crude compound was purified by flash
chromatography on silica gel gradient elution of CH2Cl2/
MeOH = 98:2 to 95:5. The residue was further purified by prepara-
tive TLC, eluting with CH2Cl2/MeOH 95:5 to give 7h as a white solid
(11%, 0.06 g). 1H NMR (500 MHz; MeOH-d4) dH 7.97–7.93 (m, 1H,
H-6), 7.91–7.87 (m, 1H, Ph), 7.41–7.32 (m, 6H, Ph), 7.29–7.17 (m,
3H, Ph), 6.23–6.17 (m, 1H, H-10), 5.20–5.11 (m, 2H, OCH2Ph),
4.41–4.34 (m, 1H, H-30), 4.33–4.29 (m, 2H, H-50), 4.11–4.01 (m,
2H, H-40, CHCH3), 3.31 (s, 2H, NHCH2C„), 2.32–2.21 (m, 3H, H-20,
COCH2CH2), 1.93–1.88 (m, 1H, H-20), 1.63–1.51 (m, 2H, COCH2CH2),
1.41 (d, J = 7.0 Hz, 3H, CHCH3), 1.37–1.21 (m, 8H, 4� CH2), 0.92–
0.88 (m, 3H, CH3). 13C NMR (125 MHz; MeOD-d4): dC 174.93
(NHCO), 171.69 (CO2CH2Ph), 164.37 (C-4), 152.25 (d, 3JC–

P = 7.4 Hz ‘ipso’ OPh), 151.17 (C-2), 144.84, 144.70 (C-6), 137.21,
137.18 (‘ipso’ OCH2Ph), 131.25, 130.90, 129.80, 129.76, 129.73,
129.65, 129.64, 129.61, 129.44, 129.40, 129.38, 129.18, 126.99,
126.39, 126.30, 121.55, 121.52, 121.47 (Ph, OCH2Ph), 100.22 (C-
5), 90.50 (CH2C„C), 87.36, 87.32 (C-10), 87.14, 87.07 (d, 3JC–

P = 8.8 Hz, C-40), 75.42 (CH2C„C), 72.24, 72.06 (C-30), 68.13, 68.09
(PhCH2), 67.65 (d, 2JC–P = 5.8 Hz, C-50), 51.89, 51.69 (CHCH3),
41.37, 40.99 (C-20), 36.99, 36.93 (COCH2), 32.89, 30.58, 30.54,
30.45, 30.28, 26.85, 23.67 (NHCH2CO, 6� CH2), 20.61, 20.56
(CHCH3), 14.43 (CH3). 31P NMR (202 MHz, MeOH-d4): dP 4.01,
3.51. MS (ES+) m/z: 747 (M+Na+, 100%). Reverse HPLC, eluting with
H2O/CH3CN from 90:10 to 0:100 in 30 min, flow = 1 mL/min,
k = 280 nm, tR = 16.22 min.

4.1.3.9. N-{3-[5-(20-Deoxy-50-O-(phenyl(benzyloxy-D-alaninyl)
phosphate-uridine))]prop-2-ynyl)octanamide (7i). Prepared acc-
ording to standard procedure from nucleoside 2 (0.25 g,
0.61 mmol) and phenyl(benzyloxy-D-alaninyl)phosphorochlori-
date 6i (1.10 g, 3.05 mmol) in anhydrous THF (20 mL) and anhy-
drous NMI (0.24 mL, 3.05 mmol). The crude compound was
purified by flash chromatography on silica gel gradient elution of
ethyl acetate/MeOH from 100:0 to 98:2. The residue was further
purified by preparative TLC eluting with CH2Cl2/MeOH 90:10 to
give 7i as a white solid (16%, 0.07 g). 1H NMR (500 MHz;
MeOH-d4): dH 7.99, 7.82 (2s, 1H, H-6), 7.38–7.20 (m, 10H, PhO,
COOCH2Ph), 6.21 (dd, J = 7.4 and 6.1 Hz, 0.5H of one diastereoiso-
mer, H-10), 6.16 (dd, J = 7.4 Hz and 6.1 Hz, 0.5H of one diastereoiso-
mer, H-10), 5.15 (2H, m, OCH2Ph), 4.41–4.25 (m, 3H, H-30, H-50),
4.16–4.01 (m, 4H, H-40, NHCH2C„C, CHCH3), 2.29 (ddd, J = 13.7,
6.0, 3.0 Hz, 0.5H of one diastereoisomer, H-20), 2.18–2.06 (m, 3H,
H-20, COCH2CH2), 1.70 (m, 0.5H of one diastereoisomer, H-20),
1.60–1.57 (m, 2H, COCH2CH2), 1.43 (d J = 7.1 Hz, 1.5H of one diaste-
reoisomer, CHCH3), 1.36 (d, J = 7.1 Hz, 1.5H of one diastereoisomer,
CHCH3), 1.35–1.26 (m, 8H, 4� CH2), 0.90 (t, 3H, J = 7.0 Hz, CH3). 13C
NMR (125 MHz; MeOH-d4): dC 175.69 (CH2CO), 174.87 (d, 3JC–

P = 3.9 Hz, COOCH2Ph), 174.80 (d, 3JC–P = 4.3 Hz, COOCH2Ph),
164.37 (C-4), 152.20 (d, 2JC–P = 6.6 Hz, ‘ipso’ PhO), 152.01 (d, 2JC-

P = 6.7 Hz, ‘ipso’ PhO), 150.85 (C-2), 144.79, 144.41 (C-6), 137.18,
137.04 (‘ipso’ COOCH2Ph), 130.93, 130.83, 129.59, 129.56, 129.46,
129.41, 129.37, 129.35, 126.33, 121.60, 121.56, 121.27, 121.23
(PhO, COOCH2Ph), 100.21, 100.12, (C-5), 90.78, 90.26 (CH2C„C),
87.24, 86.94 (C-10), 87.05 (d, 3JC–P = 8.6 Hz, C-40), 86.90 (d, 3JC–

P = 8.7 Hz, C-40), 75.48, 75.44 (CH2C„C), 72.14, 72.03 (C-30),
68.13, 68.07 (OCH2Ph), 67.70 (d, 2JC–P = 5.5 Hz, C-50), 67.10 (d, 2JC–

P = 4.8 Hz, C-50), 51.77, 51.56 (CHCH3), 41.36 (C-20), 36.90 (CH2CO),
32.85, 30.56, 30.47, 30.25, 30.10, 26.82, 23.65 (CH2NHCO, 6� CH2),
20.43 (d, 3JC–P = 6.8 Hz, CHCH3), 20.39 (d, 3JC–P = 7.6 Hz, CHCH3),
14.39 (CH3). 31P NMR (202 MHz; MeOH-d4): dP 3.98, 3.50. MS
(ES+) m/z: 747 (M+Na+, 100%). Reverse-phase HPLC, eluting with
H2O/ACN from 90:10 to 0:100 in 20 min, flow = 1 mL/min,
k = 280 nm, tR = 14.48 min, 14.86 min.

4.1.3.10. N-{3-[5-(20-Deoxy-50-O-(phenyl(benzyloxy-glycinyl)
phosphate-uridine))]prop-2-ynyl)octanamide (7j). Prepared ac-
cording to standard procedure from nucleoside 2 (0.20 g,
0.49 mmol) and phenyl(benzyloxy-glycinyl)phosphorochloridate
6j (0.87 g, 2.45 mmol) in anhydrous THF (20 mL) and anhydrous
NMI (0.19 mL, 2.45 mmol). The crude compound was purified by
flash chromatography on silica gel gradient elution of CH2Cl2/
MeOH from 98:2 to 95:5 to give 7j as a white solid (29%, 0.10 g).
1H NMR (500 MHz, MeOH-d4): dH 8.09, 7.89 (2s, 1H, H-6), 7.38–
7.19 (m, 10H, Ph, OCH2Ph), 6.24–6.18 (m, 1H, H-10), 5.23–5.13
(m, 2H, OCH2Ph), 4.36–4.30 (m, 3H, H-30, H-50), 4.13–4.08 (m, 1H,
H-40), 4.08, 4.07, 4.02 (3s, 2H, NHCH2C„C), 3.91–3.85 (m, 2H, CH2-

CO2Bn), 2.30 (ddd J = 14.0, 6.5 and 3.5 Hz, 0.5H of one diastereoiso-
mer, H-20), 2.18–2.09 (m, 3H, H-20, COCH2CH2), 1.80–1.74 (m, 0.5H
of one diastereoisomer, H-20), 1.59–1.55 (m, 2H, COCH2CH2), 1.30–
1.27 (m, 8H, 4� CH2), 0.91-0.86 (t, J = 6.7 Hz, 3H, CH3). 13C NMR
(125 MHz, MeOH-d4): dC 175.79, 175.77 (CONH), 172.42, 172.38



C. McGuigan et al. / Bioorg. Med. Chem. 22 (2014) 2816–2824 2823
(d, 3JC–P = 4.0 Hz, COOBn), 164.38 (C-4), 152.20 (d 2JC–P = 7.0 Hz,
‘ipso’ PhO), 151.04, 150.97 (C-2), 144.84, 144.60 (C-6), 137.10,
137.14 (‘ipso’ OCH2Ph), 130.97, 130.90, 129.63, 129.60, 129.50,
129.44, 126.43, 126.37 (PhO, OCH2Ph), 121.55 (d, 3JC–P = 4.5 Hz,
PhO), 121.37 (d, 3JC–P = 4.6 Hz, PhO), 100.20, 100.17 (C-5), 90.78,
90.44 (C„C), 87.32 (C-10), 87.20 (d, 3JC–P = 8.2 Hz, C-40) 87.10 (C-
10), 87.03 (d, 3JC–P = 8.2 Hz, C-40), 75.41, 75.34 (CH2C„C), 72.28,
72.20 (C-30), 68.08 (OCH2Ph) 67.79 (d, 2JC–P = 5.7 Hz, C-50), 67.49
(d, 2JC–P = 5.1 Hz, C-50), 44.03, 43.96 (CH2CO2), 41.43, 41.40 (C-20),
36.94 (COCH2), 32.89, 32.88, 30.53, 30.48, 30.29, 30.14, 26.85,
23.68 (CH2NHCO, 6� CH2), 14.43 (CH3). 31P NMR (202 MHz,
MeOH-d4): dP 5.02, 4.93. MS (ES+) m/z: 733 (M+Na+, 100%). Re-
verse-phase HPLC, eluting with H2O/CH3CN from 90:10 to 0:100
in 30 min, flow = 1 mL/min, k = 280 nm, tR = 18.78, 19.15 min.

4.1.3.11. N-{3-[5-(20-Deoxy-50-O-(phenyl(benzyloxy-dimethyl-
glycine)phosphate-uridine))]prop-2-ynyl)octanamide (7k). Pre-
pared according to standard procedure from nucleoside 2 (0.20 g,
0.49 mmol) and phenyl(benzyloxy-L-dimethylglycine)phospho-
rochloridate 6k (0.86 g, 2.45 mmol) in anhydrous THF (15 mL)
and anhydrous NMI (0.19 mL, 2.45 mmol). The crude compound
was purified by flash chromatography on silica gel gradient elution
of CH2Cl2/MeOH from 98:2 to 94:6 to give 7k as a white solid. 1H
NMR (500 MHz, MeOH-d4): dH 7.95 (s, 0.3H of one diastereoisomer,
H-6), 7.86 (s, 0.7H of one diastereoisomer, H-6), 7.40–7.17 (m, 10H,
Ph, OCH2Ph), 6.21–6.15 (m, 1H, H-10), 5.20–5.12 (m, 2H,OCH2Ph),
4.32–4.21(m, 3H, H-30, H-50), 4.09–3.99 (m, 3H, H-40, NHCH2C„),
2.32–2.24 (m, 0.7H of one diastereoisomer, H-20), 2.20–2.15 (m,
2.3H, H-20, one diastereoisomer, NHCOCH2), 2.13–2.05 (m, 0.70H,
H-20), 1.77–1.72 (m, 0.30H of one diastereoisomer, H-20), 1.61–
1.48 (m, 6H, NHCOCH2CH2, C(CH3)2), 1.36–1.23 (m, 8H, 4� CH2),
0.95–0.85 (t, J = 6.0 Hz, 3H, CH2CH3). 13C NMR (125 MHz, MeOH-
d4): dc 176.75 (d, 3JC–P = 2.5 Hz, COCH2), 176.55, 176.53 (CONH),
164.52 (C-4), 152.35 (d, 2JC–P = 6.9 Hz ‘ipso’ PhO), 152.22 (d, 2JC–

P = 6.8 Hz ‘ipso’ PhO), 151.11 (C-2), 144.86, 144.62 (C-6), 137.32
(‘ipso’ OCH2Ph), 130.90, 130.81, 129.63, 129.54, 129.35, 129.30,
129.20, 126.31, 126.22 (PhO, OCH2Ph), 121.70 (d, 3JC–P = 5.0 Hz,
PhO), 121.56 (d, 3JC–P = 4.6 Hz, PhO), 90.75, 90.60 (CH2C„C),
87.00 (d, 3JC–P = 10.6 Hz, C-40), 86.79 (d, 3JC–P = 10.6 Hz, C-40),
86.26 (C-10), 75.49, 75.38 (CH2C„C), 72.07, 71.99 (C-30), 68.36,
68.35 (OCH2), 67.76 (d, 2JC–P = 5.62 Hz, C-50), 67.53 (d, 2JC–

P = 5.78 Hz, C-50), 41.27, 41.24 (C-20), 36.99 (NHCOCH2), 32.92,
30.61, 30.59, 30.17, 30.12 (CH2), 27.93 (d, 3JC–P = 6.4 Hz, CH3),
27.85 (d, 3JC–P = 6.4 Hz, CH3), 27.67 (d, 3JC–P = 4.2 Hz, CH3), 27.57
(d, 3JC–P = 4.2 Hz, CH3), 23.71, 23.69, 26.90 (CH2), 14.37 (CH2CH3);
31P NMR (202 MHz, MeOH-d4): dP 2.39, 2.1. MS (EI) m/z: 773
(M+Cl-, 100%). Reverse-phase HPLC, eluting with H2O/ CH3CN from
90:10 to 0:100 in 35 min, flow = 1 mL/min, k = 280 nm,
tR = 19.24 min.

4.1.3.12. N-{3-[5-(20-Deoxy-50-O-(phenyl(benzyloxy-L-valinyl)
phosphate-uridine))]prop-2-ynyl)octanamide (7l). Prepared acc-
ording to standard procedure from nucleoside 2 (0.20 g,
0.49 mmol) and phenyl(benzyloxy-L-valinyl)phosphorochloridate
6l (0.93 g, 2.45 mmol) in anhydrous THF (20 mL) and anhydrous
NMI (0.19 mL, 2.45 mmol). The crude compound was purified by
flash chromatography on silica gel gradient elution of CH2Cl2/
MeOH from 98:2 to 95:5. The residue was further purified by pre-
parative TLC, eluting with CH2Cl2/MeOH 95:5 to give 7l as a white
solid (14%, 0.05 g). 1H NMR (500 MHz, MeOH-d4): dH 7.95 (s, 0.35H
of one diastereoisomer, H-6), 7.91 (s, 0.65H of one diastereoisomer,
H-6), 7.40–7.18 (m, 10H, Ph, OCH2Ph), 6.21–6.17 (m, 1H, H-10),
5.21–5.09 (m, 2H, OCH2Ph), 4.39–4.37 (m, 1H, H-30), 4.34–4.22
(m, 2H, H-50), 4.11–4.06 (m, 3H, H-40, NHCH2C„), 3.81 (dd,
J = 9.5, 5.5 Hz, 0.65H of one diastereoisomer, CHCH(CH3)2), 3.76
(dd, J = 10.0, 6.0 Hz, 0.35H of one diastereoisomer, CHCH(CH3)2)),
2.30 (ddd, J = 13.5, 6.5 and 3.0 Hz, 0.35H of one diastereoisomer,
H-20), 2.22 (ddd, J = 13.5, 6.0 and 3.0 Hz, 0.65H of one diastereoiso-
mer, H-20), 2.18–2.04 (m, 3.35H, H-20 of one diastereoisomer,
COCH2CH2, CH(CH3)2), 1.90–1.64 (m, 0.65H of one diastereoisomer,
H-20), 1.61–1.65 (m, 2H, COCH2CH2), 1.33–1.29 (m, 8H, 4� CH2),
0.92-0.86 (m, 9H, –CH2CH3, CH(CH3)2). 13C NMR (125 MHz,
MeOH-d4): dC 175.72, 175.69 (CONH), 174.09 (d, 3JC–P = 2.7 Hz, CO2-

Bn), 173.77 (d, 3JC–P = 3.7 Hz, CO2Bn), 164.46 (C-4), 152.25 (d, 2JC–

P = 7.2 Hz, ‘ipso’ PhO), 150.99 (C-2), 144.71, 144.68 (C-6), 137.20,
137.13 (‘ipso’ OCH2Ph), 130.91, 130.87, 129.73, 129.67, 129.65,
129.51, 126.44, 126.29 (Ph, OCH2Ph), 121.68 (d, 3JC–P = 4.5 Hz,
PhO), 121.52 (d, 3JC–P = 5.5 Hz, PhO), 100.28, 100.26 (C-5), 90.54,
90.51 (C„C), 87.42 87.27 (C-10), 87.15, 86.85 (d, 3JC–P = 8.1 Hz, C-
40), 75.59, 75.53 (CH2C„C), 72.28, 72.04 (C-30), 68.04, 67.96 (OCH2-

Ph) 67.87 (d, 2JC–P = 5.7 Hz, C-50), 67.65 (d, 2JC–P = 5.4 Hz, C-50),
58.38 (CHCH(CH3)2), 41.40, 41.38 (C-20), 36.97, 36.96 (CH2CO),
32.91, 30.68, 30.64, 30.32, 30.17, 26.89, 26.87, 23.70 (CH2NHCO,
6� CH2), 19.70, 19,64, 18.49, 18,43, 18.06, 14.46 (CH(CH3)2,
CH3).31P NMR (202 MHz, MeOH-d4): dP 4.95, 4.30. MS (ES+) m/z:
775 (M+Na+, 100%). Reverse-phase HPLC, eluting with H2O/CH3CN
from 90:10 to 0:100 in 30 min, flow = 1 mL/min, k = 280 nm,
tR = 21.23, 21.49 min.

4.2. Biological evaluation

4.2.1. Assay for antimycobacterial activity
M. tuberculosis H37Rv (ATCC27294) was grown in Middlebrook

7H9 broth supplemented with 0.02% (v/v) glycerol, 0.05% (v/v)
tween-80 and 10% oleic acid, albumin, dextrose and catalase (OADC;
BD Biosciences) as a stand culture at 37 �C. M. bovis BCG
(ATCC35734) was grown in Middlebrook 7H9 broth supplemented
with 0.02% (v/v) glycerol, 0.05% (v/v) tween-80 and 10% albumin,
dextrose and catalase (ADC; BD Biosciences) in a roller bottle at
2 rpm at 37 �C. The antimycobacterial activities of the compounds
were tested following the HT-SPOTi.28,29 The high throughput
growth inhibition assay was conducted in a semi-automated 96
well plate format as described previously.26 Briefly, compounds
dissolved in DMSO at a final concentration of 250 mg/L were serially
diluted and dispensed in a volume of 2 lL into each well of a 96 well
plate to which 200 lL of Middlebrook 7H10 agar medium kept at
55 �C supplemented with 0.05% (v/v) glycerol and 10% (v/v) OADC
was added. A well with no compounds (DMSO only) and isoniazid
were used as experimental controls. To all the plates, a drop (2 lL)
of mycobacterial culture containing 2 � 103 colony-forming units
(CFUs) was spotted in the middle of each well and the plates were
incubated at 37 �C for up to two weeks. The minimum inhibitory
concentrations (MICs) were determined as the lowest concentra-
tions of the compound investigated where mycobacterial growth
was completely inhibited by the presence of the compound.

4.2.2. Assay for antibacterial activity
E. coli DH5a (ATCC53868) was grown in Luria–Bertani broth

(Oxoid, Thermoscientific) at 180 rpm as shaking culture with an
incubation temperature of 37 �C. The antibacterial activities of
the compounds were tested using the HT-SPOTi as mentioned ear-
lier, using appropriate culture medium and growth conditions. The
plates were incubated overnight following which observations
were recorded.

4.2.3. Assay for antiviral activity
Cells: Human embryonic lung (HEL) fibroblasts were grown in

minimum essential medium (MEM) supplemented with 10% inac-
tivated fetal calf serum (FCS), 2 mM L-glutamine, and 0.3% sodium
bicarbonate.

Viruses: The laboratory wild-type varicella zoster virus (VZV)
strain Oka, the thymidine kinase-deficient VZV strain 07-1, herpes
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simplex virus (HSV-1, KOS), (HSV-2, G), the thymidine kinase-
deficient (ACVR) HSV-1 strain B-2006, human cytomegalovirus
(HCMV) strains Davis and AD-169, and vaccinia virus (VV) were
used in the virus inhibition assays.

Confluent HEL cell cultures grown in 96-well microtiter plates
were inoculated with VZV at an input of 20 plaque forming units
(PFU) per well or with HCMV at an input of 100 PFU per well. Conflu-
ent HEL cell cultures were inoculated with HSV at 100 CCID50 (50%
cell culture infective dose) per well. After a 1–2 h incubation period,
residual virus was removed and the infected cells were further incu-
bated with MEM (supplemented with 2% inactivated FCS, 2 mM
L-glutamine, and 0.3% sodium bicarbonate) containing varying con-
centrations of the compounds. Antiviral activity was expressed as
EC50 (50% effective concentration), or compound concentration re-
quired to reduce viral plaque formation after 5 days (varicella zoster
virus (VZV)) or virus-induced cytopathicity (HCMV after 7 days and
HSV, VV after 3 days) by 50% compared to the untreated control.

4.2.4. Assay for eukaryotic cell toxicity
Confluent monolayers of HEL cells as well as growing HEL cells

in 96-well microtiter plates were treated with different concentra-
tions of the experimental drugs. Cell cultures were incubated for 3
(growing cells) or 5 (confluent cells) days. At the indicated time,
the cells were trypsinized, and the cell number was determined
using a Coulter counter (Beckman, Analis, Suarlée, Belgium). The
50% cytostatic concentration (CC50) was defined as the compound
concentration required to reduce the cell number by 50%.
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’ INTRODUCTION

Chemotherapeutic agents, based largely on nucleoside ana-
logues, continue to make a major contribution to the current
chemotherapy of cancer. One of the first developed derivatives,
which is still of major use, is the fluorinated pyrimidine 5-fluo-
rouracil 1 (5-FU) (Figure 1). This drug was first introduced in
1957 byHeidelberger1 and remains ofmajor value in the treatment
of ovary, breast, and gastrointestinal tumors in particular.2 Besides
the free base 1 the agent is also used as its 20-deoxynucleoside
FUDR (2) and prodrug capecitabine 3. The 20-deoxynucleoside 2
appears to be of particular value against livermetastases, as it is well
metabolized in the liver.3 Capecitabine has an improved ease of
administration and may cause less systemic toxicity.4

By several metabolic routes each of these agents (1�3) leads
to the generation of the corresponding nucleoside 50-monophos-
phate 4 (FdUMP), which is considered to be the primary
bioactive entity in this class. FdUMP acts as a potent suicide-
type inhibitor of thymidylate synthase, a key enzyme in DNA
synthesis, and this leads to a potent toxic event in the cell.5

Poor activity of this family of agents in vitro, which has
sometimes been observed, and innate or acquired drug resistance
in the clinic have been ascribed to several parameters, including
reduced levels of the activating enzyme (i.e., thymidine kinase),
required to phosphorylate 2 to 4; overexpression of thymidylate
synthase, the target of antitumor action of 4; increased degrada-
tive cleavage of 2 to 1 by thymidine phosphorylase; and reduced
transporter-mediated entry of 1 or 2 into cells.6

One approach to overcoming the imperative dependence of
bioactive nucleoside analogues on kinase-mediated activation is to

consider the preformed nucleotide as a clinical entity. However, in
general this is not a useful solution because such polar nucleotides
are poorly membrane soluble and subject to dephosphorylation.

A more successful approach is to mask the monophosphate
creating a phosphate prodrug. Several methods exist to achieve
this, and they have been reviewed.7

We have reported a phosphate prodrug (“ProTide”) method,
based on aryloxy phosphoramidates.8 We initially applied this
method to the anti-HIV agent d4T9 and then to several other
antivirals including abacavir10 and more recently some anti
hepatitis C virus agents.11 We12 and others13 have also applied
the method to the antiherpetic agent BVDU and revealed the
interesting introduction of anticancer action of this antiviral
compound upon ProTide formation. We have also reported
the application of nucleoside ProTides to the antileukemic agent
cladribine.14

Figure 1. Some fluorinated pyrimidines.
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Thus, it was of interest to apply the ProTide method to the
leading fluorinated pyrimidine family and 2 in particular. On the
basis of prior art, we believed that ProTides of 2 could bypass
their dependence on cell transporters and also upon thymidine
kinase and that the ProTide should be resistant to the degradative
pathway from 2 to 1. We herein report the notable success of this
enterprise.

’CHEMISTRY

The target ProTides of 2 were prepared using phosphoro-
chloridate chemistry, as we have extensively reported.15

One component of the ProTides is an aryl unit, in this case
either phenol or 1-naphthol. In the case of phenol, commercial
phenyl phosphorodichloridate was used and its purity was
checked by 31P NMR prior to use. For the naphthyl analogue,
1-naphthol was allowed to react with phosphoryl chloride in dry
diethyl ether in the presence of triethylamine at low temperature
to give the required dichloridate (Scheme 1). The second
component of the ProTide motif is an esterified amino acid. In
some cases these are commercially available, but in most cases
they are not and were prepared by esterification of the amino
acids using standard methods.16

The key reagent to prepare ProTides is the arylaminoacyl
phosphorochloridate 5. These were prepared by allowing the aryl
phosphorodichloridate to react with the amino acid ester in
dichloromethane at low temperature (Scheme 1). The formation
of the key phosphorochloridate was monitored and confirmed by
31P NMR. In some cases the reagent was used crude, and in
others it was subjected to rapid silica gel chromatography. Each
of the compounds derived from a chiral amino acid was
generated as a pair of diastereoisomers at the phosphate center,
in roughly 1:1 ratio, as revealed by two closely spaced peaks by
31P NMR.

Finally, each of the phosphorochloridates 5 were allowed to
react with FUDR to generate the target ProTides 6a�n (Ar =
Ph) and 7a�y (Ar = 1-Naph) in one step as presented in
Scheme 1. Two sets of conditions were variously used for this
coupling reaction: N-methylimidazole in THF or tert-butylmag-
nesium chloride in THF, both at room temperature for 16�18 h.
In many cases byproducts with dual phosphorylation at the
30- and 50-hydroxyl groups were formed, and in some cases the
30-mono phosphorylated species was also observed. This re-
quired extensive and repeated chromatographic purification of
ProTides (6, 7), leading to modest isolated yields. These were
not optimized in the present report, since the primary goal was to
establish biological activity at this stage.

As noted in Table 1, we varied the aryl unit from phenyl to
1-naphthyl, the amino acid from L-alanine to glycine, valine,
leucine, isoleucine, phenylalanine, methionine, proline, and
α,α-dimethylglycine and the ester rather extensively. In total
39 ProTides were prepared, purified, and fully characterized. In
every case, multiple peaks in 31P and 13C NMR and HPLC
confirmed the presence of phosphate diastereoisomers. These
were not routinely separated in this study and were tested as
mixtures of isomers, since chiral ProTide isomers frequently show
rather similar biological profiles. In the greatmajority of cases, such
ProTides progressed to the clinic as mixed diastereomers.17

’BIOLOGICAL ACTIVITY IN VITRO

The ProTides 6 and 7 described above were tested for their
cytostatic activity against several established tumor cell lines, as
presented in Table 1. Compounds 1 and 2 were included as
positive controls. In particular, we first studied the compounds
versus wild type L1210, CEM, and HeLa cells. In each case we
also included a thymidine kinase deficient (TK�) mutant of the
parent cell line to probe the effect of TK deficiency on the

Scheme 1. General Synthesis of FUDR ProTidesa

aReagent and conditions: (a) POCl3, Et3N, anhydrous Et2O,�78 �C for 1 h, then room temp for 1 h; (b) phenyl or 1-naphthyl phosphorodichloridate,
Et3N, anhydrous DCM, �78 �C, 1�3 h; (c) tert-BuMgCl (or) NMI, anhydrous THF, room temp, 16�18 h.
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cytostatic activity of 1 and 2 and the degree to which the
ProTides could bypass this dependence. Previous examples of
this type of study have revealed ProTides to be highly efficient at
bypassing the dependence on nucleoside kinases.8,9

Thus, in 2 of the 3 cell lines studied (i.e., L1210 andHeLa) 5-FU
showed activity at∼0.5μM, being rather poorly active against CEM
cells (IC50 = 18 μM). Compound 1 largely retained activity in the
TK� cells, indicating that itmust be primarily activated to 4 by other
metabolic routes such as phosphoribosylation. Activation of 5-FU

by phosphoribosylation is catalyzed by the enzyme orotate phos-
phoribosyl transferase (OPRT) responsible for the direct conver-
sion of the nucleobase to the nucleoside monophosphate.18,19 On
the other hand 2 was more active in the wild-type cell lines, being
active at 1�50 nM and thus 10�800 timesmore potent than 5-FU.
But 2 is highly dependent onTK activity, being 30- to 3000-fold less
active in the TK-deficient tumor cells than in the parent cell lines.
The L1210 cells were particularly striking in this regard. These data
clearly show the presence of TK as a prerequisite for 2 to exert

Table 1. Cytostatic Activity of 5-FU, FUDR, and FUDR Prodrugs against Tumor Cell Lines

IC50
a (μM)

compd aryl ester AA L1210/0 L1210/TK� Cem/0 Cem/TK� HeLa HeLa/TK�

1 0.33 ( 0.17 0.32 ( 0.31 18 ( 5 12 ( 1 0.54 ( 0.12 0.23 ( 0.01

2 0.0011 ( 0.0002 3.0 ( 0.1 0.022 ( 0.006 3.0 ( 0.4 0.050 ( 0.011 1.4 ( 0.4

6a Ph Me Ala 0.022 ( 0.007 41 ( 3 0.70 ( 0.37 35 ( 12 0.28 ( 0.14 4.7 ( 0.4

6b Ph Et Ala 0.13 ( 0.04 0.94 ( 0.18 0.92 ( 0.11 14 ( 0 0.48 ( 0.19 9.8 ( 1.4

6c Ph i-Pr Ala 0.076 ( 0.022 1.1 ( 0.1 1.0 ( 0.1 30 ( 10 0.71 ( 0.15 25 ( 11

6d Ph c-Hex Ala 0.039 ( 0.001 0.14 ( 0.02 0.17 ( 0.07 1.2 ( 0.01 0.18 ( 0.05 5.9 ( 0.4

6e Ph Bn Ala 0.028 ( 0.007 13 ( 8 0.18 ( 0.03 22 ( 7 0.13 ( 0.01 19 ( 2

6f Ph Et Val 0.16 ( 0.05 42 ( 2 1.0 ( 0.1 >250 1.2 ( 0.3 27 ( 7

6g Ph Bn Leu 0.044 ( 0.025 2.0 ( 0.3 0.24 ( 0.04 16 ( 1 0.067 ( 0.042 5.6 ( 0.3

6h Ph Bn Ile 0.076 ( 0.022 1.1 ( 0.1 1.0 ( 0.1 30 ( 10 0.71 ( 0.15 25 ( 11

6i Ph Bn Phe 0.036 ( 0.010 39 ( 4 0.25 ( 0.02 11 ( 3 0.014 ( 0.007 12 ( 2

6j Ph Pnt Met 0.11 ( 0.06 2.2 ( 0.5 0.35 ( 0.13 13 ( 1 0.15 ( 0.00 7.1 ( 1.2

6k Ph Bn Met 0.073 ( 0.035 4.1 ( 1.2 0.28 ( 0.03 25 ( 0 0.15 ( 0.02 11 ( 7

6l Ph Bn Pro 0.35 ( 0.07 31 ( 5 0.98 ( 0.40 28 ( 8 1.1 ( 0.4 20 ( 11

6m Ph Et DMG 0.039 ( 0.001 4.6 ( 0.0 0.65 ( 0.16 22 ( 1 0.59 ( 0.09 17 ( 2

6n Ph Bn DMG 0.017 ( 0.003 0.18 ( 0.05 0.23 ( 0.04 4.8 ( 0.7 0.24 ( 0.07 3.7 ( 0.1

7a Nap Et Ala 0.031 ( 0.005 0.36 ( 0.01 0.25 ( 0.04 1.6 ( 0.2 0.22 ( 0.04 2.8 ( 0.0

7b Nap Pr Ala 0.021 ( 0.012 0.16 ( 0.07 0.14 ( 0.01 1.1 ( 0.2 0.11 ( 0.03 2.5 ( 0.1

7c Nap butyl Ala 0.022 ( 0.004 0.11 ( 0.06 0.064 ( 0.007 0.84 ( 0.60 0.12 ( 0.02 2.7 ( 1.5

7d Nap Pnt Ala 0.0028 ( 0.0010 0.13 ( 0.13 0.015 ( 0.006 0.28 ( 0.04 0.029 ( 0.023 0.44 ( 0.35

7e Nap Hex Ala 0.0072 ( 0.0000 0.076 ( 0.015 0.080 ( 0.020 0.65 ( 0.34 0.039 ( 0.018 1.8 ( 0.1

7f Nap c-Bu Ala 0.014 ( 0.003 0.088 ( 0.038 0.073 ( 0.018 1.5 ( 0.3 0.069 ( 0.003 1.5 ( 0.6

7g Nap c-Pnt Ala 0.031 ( 0.010 0.13 ( 0.02 0.035 ( 0.025 0.92 ( 0.007 0.071 ( 0.036 2.2 ( 1.3

7h Nap c-Hex Ala 0.043 ( 0.023 0.15 ( 0.00 0.057 ( 0.055 1.0 ( 0.1 0.090 ( 0.014 ND

7i Nap CH2-t-Bu Ala 0.27 ( 0.11 1.2 ( 0.7 0.49 ( 0.05 6.7 ( 1.0 0.70 ( 0.11 32 ( 26

7j Nap CH2CH2-t-Bu Ala 0.016 ( 0.006 0.062 ( 0.009 0.053 ( 0.021 0.19 ( 0.04 0.078 ( 0.018 1.3 ( 0.9

7k Nap CH2-c-Pr Ala 0.017 ( 0.007 0.12 ( 0.06 0.059 ( 0.017 1.1 ( 0.2 0.068 ( 0.001 1.4 ( 0.4

7l Nap 2-Ind Ala 0.021 ( 0.002 40 ( 0 0.079 ( 0.018 1.0 ( 0.2 0.10 ( 0.06 7.1 ( 2.1

7m Nap Bn Ala 0.011 ( 0.007 0.045 ( 0.027 0.068 ( 0.035 0.31 ( 0.06 0.065 ( 0.013 2.5 ( 1.3

7n Nap THP Ala 0.038 ( 0.014 27 ( 6 0.11 ( 0.02 43 ( 12 0.13 ( 0.04 15 ( 7

7o Nap c-Hex Val 1.1 ( 0.5 35 ( 8 0.80 ( 0.28 46 ( 14 0.67 ( 0.03 27 ( 6

7p Nap Pnt Leu 0.017 ( 0.001 1.2 ( 0.4 0.071 ( 0.008 15 ( 4 0.039 ( 0.014 7.5 ( 0.4

7q Nap Bn Leu 0.028 ( 0.004 1.5 ( 0.6 0.13 ( 0.00 30 ( 6 0.080 ( 0.022 9.4 ( 1.4

7r Nap Pnt Ile 0.22 ( 0.12 12 ( 2 0.46 ( 0.11 17 ( 1 0.30 ( 0.02 11 ( 1

7s Nap Pnt Phe 0.026 ( 0.001 2.9 ( 1.2 0.10 ( 0.00 8.3 ( 1.0 0.040 ( 0.000 6.6 ( 0.5

7t Nap Bn Phe 0.012 ( 0.007 5.6 ( 1.3 0.10 ( 0.03 7.2 ( 0.1 0.16 ( 0.08 6.8 ( 1.5

7u Nap Bn Met 0.072 ( 0.001 1.9 ( 0.2 0.19 ( 0.10 11 ( 1 0.087 ( 0.017 8.3 ( 0.0

7v Nap Bn Pro 0.21 ( 0.08 25 ( 8 0.89 ( 0.35 32 ( 9 1.2 ( 0.0 26 ( 1

7w Nap Et DMG 0.064 ( 0.008 0.82 ( 0.16 0.36 ( 0.05 6.9 ( 1.8 0.20 ( 0.12 3.2 ( 0.0

7x Nap Pnt DMG 0.037 ( 0.010 0.30 ( 0.13 0.14 ( 0.00 5.4 ( 1.1 0.12 ( 0.03 2.3 ( 0.1

7y Nap Bn DMG 0.011 ( 0.005 0.13 ( 0.04 0.16 ( 0.02 2.4 ( 0.8 0.078 ( 0.020 3.1 ( 0.6
a IC50 or compound concentration required to inhibit tumour cell proliferation by 50%. Data are the mean ((SD) of at least two to four independent
experiments.
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cytostatic activity. The first ProTide prepared, the L-Ala-OMe
phenyl derivative 6a, is approximately 5- to 30-fold less active than
the nucleoside 2 against the parent cell lines (Table 1). Moreover
and in notable contrast to our prior ProTide work,8�12 6a was very
significantly reduced in cytostatic activity against the TK-deficient
cells: 2000-fold difference in cytostatic activity against the L1210
wild-type and TK-deficient cells, for example. Although the cyto-
static reduction was less in the HeLa cells, the agent still lost
significant activity in the absence of thymidine kinase (∼15-fold).
These data clearly show that 6a requires TK to exert biological
activity, most probably through efficient liberation of 2 as liberation
of 1 should lead to TK-independence according to the data for 1 in
Table 1. The notable success of the ProTide approach on other
deoxypyrimidine nucleosides such as BVDU12 makes this especially
surprising. However, we have earlier observed the need to optimize
the ProTide motif for each nucleoside we have studied,10,11 and so
we varied the ProTide motifs of 6a. In the first instance we retained
the phenyl unit and the L-alanine motif, as the latter in particular
often appears to be beneficial.8 Thus, the methyl ester in 6a was
lengthened to ethyl (6b), branched to isopropyl (6c), and cyclized
to cyclohexyl (6d). We also prepared the benzyl analogue (6e),
which has often been found by us to be a highly preferred ProTide
motif.8 In general each of these esters maintained similar potency in
the parent cell lines compared to 6a. Compound 6d was also the
compound that retained the highest potency in the TK-deficient
cells, particularly in L1210/TK� where it was only 3-fold reduced
and thus 21-foldmore active than FUDR.Thus, among the family of
phenyl FUDR ProTides, 6d emerged as the most successful
compound in our study to date. Interestingly, the “preferred” benzyl
compound (6e) hardly retained activity in the TK� cells and thus
demonstrated a very low degree of effectiveness as a phosphate
prodrug. This highlights the need to optimize and tune the ProTide
motif for every nucleoside, as already mentioned above.

We next studied amino acid variation. L-Val-OEt (6f), which
showed a somewhat similar profile compared to the L-alanine
analogues (6b), was in general less active as a cytostatic agent.
Also, the L-Leu-OBn (6g) and L-Ile-OBn (6h) were similar to the
L-Ala-OBn analogue (6e). Reasonably similar data were noted for
L-phenylalanine (6i), L-methionine (6j, 6k), and L-proline (6l)
derivatives. In general, the compounds were active at submicro-
molar concentrations in TK-competent cells but significantly less
active in the TK-deficient cells, as FUDR. All of these data

demonstrated a poor degree of effectiveness as ProTides. No-
tably, our generally observed preference for L-alanine was not
apparent in this series, and indeed little amino acid SAR could be
discerned in contrast to our prior work.20 Finally in this series we
prepared analogues of the actual unnatural amino acid α,
α-dimethylglycine as its �OEt (6m) and �OBn (6n) esters,
but these derivatives showed no distinct advantage over earlier
analogues.

We have recently reported that in some cases we can achieve a
modest potency boost for some ProTides on replacing the
phenyl unit by 1-naphthyl.11,21 Thus, we prepared a series of
25 naphthyl ProTides 7a�y with variation in the amino acid and
ester moieties. In general, each of the naphthyl analogues was
more potent than its phenyl equivalent across the range of cell
lines. However, by comparison to the phenyl series 6a�n, the
naphthyl family tended to display a more significant retention of
activity in the TK� panel of tumor cell lines. Compounds
emerging as most potent in L1210/TK�, for example, were the
L-Ala-OHex (7e) and L-Ala-OBn (7m) and also an extended L-
alanine ester (7j). By comparison and in marked contrast to the
phenyl series here, the usual amino acid SARs emerged with L-
alanine strongly preferred. Naphthyl ProTides of other amino
acids were all significantly more dependent on TK for their
cytostatic activity as demonstrated in L1210/TK� cells. Thus, a
number of naphthyl L-Ala ProTides with a variety of esters
emerged as reasonably effective in bypassing the TK dependence
of FUDR. The L-Ala-OBn (7m) and L-Ala-OPnt (7d) derivatives
were among the most potent, being active at an IC50 of 11 and
2.8 nM in L1210, respectively. Thus, compounds 7m and 7d
were only 10-fold and 2.5-fold less active than the parent FUDR
but 30 times and 100 times more active than 5-FU, respectively.
In L1210/TK�, compound 7m retained significant cytostatic
potency, being only 5-fold reduced, versus FUDR which was
3000-fold diminished, whereas compound 7d has shown a 40-
fold reduction of cytostatic activity in L1210/TK�. The data
were less dramatic for CEM/0 versus CEM/TK� cells but
conveyed the same message. These data are in marked contrast
to our prior phenyl/naphthyl comparisons where the re-
placement only caused modest increases in potency.

Although the data on the cytostatic activity of several ProTides
of FUDR against a variety of tumor cell lines look interesting, one
should be aware that all data were obtained from in vitro testing

Figure 2. 19F NMR spectra: (A) FUDR and 5-FU in methanol-d4, 25 �C; (B) FUDR submitted to the thymidine phosphorylase assay, 25 �C, 5 min.
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assays. Whereas the parent drug FUDR has a proven efficacy in
in vivo animal models and in cancer patients, the in vivo efficacy
of the FUDR ProTides need still to be established . In this
respect, phosphoramidate prodrugs of acyclic nucleoside phos-
phonates have been shown to be quite effective in vivo. There-
fore, such types of prodrug may well be efficacious in vivo when
applied on FUDR as well. Experiments to demonstrate efficacy of
the FUDR ProTides in a mouse model are under consideration.

As was previously noted, FUDR can be degraded to its
nucleobase 5-fluorouracil in a phosphorolytic reaction catalyzed
by thymidine phosphorylase (TP). This breakdown has been
suggested to be one of the reasons for the limited therapeutic
effectiveness of FUDR.22 Therefore, in order to investigate the
susceptibility of our FUDR ProTides to phosphorolysis, we have
performed an enzymatic phosphorylase assay. This assaywas carried
out for comparison for both FUDR and one of our first synthesized
model compound 6e, using TP (purified from Escherichia coli)
in the presence of potassium phosphate buffer (300 mM solution,
pH 7.4). A potential phosphorolysis reaction and hence potential
formation of 5-FUweremonitored by in situ 19FNMRexperiments.
Thus, we first recorded the individual 19F NMR spectra of FUDR
and 5-FU (spectra not shown) and the additional 19F NMR spectra
of compounds 2 and 1 together (Figure 2A). The single peak at
δF�165.17 is assigned to the nucleoside 2, whereas the single peak
at δF�169.50 ppm is assigned to the nucleobase 1. The phosphor-
ylase assaywas then carried out by dissolving 2 inmethanol-d4 in the
presence of potassium phosphate buffer and recording the blank 19F
NMR spectrum prior to addition of the enzyme (spectra not
shown). A single peak at δF �165.17 ppm was observed. After 5
min from the addition of thymidine phosphorylase (20.7 UNI), the
19F NMR spectrum (Figure 2B) revealed the appearance of an
additional peak at δF�169.50 ppm due to the release of 5-FU from
the FUDR. Two single peaks with the same chemical shifts as have
been observed for the first experiment were found; therefore, these
data might confirm that the signal at δF �169.50 ppm can be
assigned to 5-FU which was formed upon phosphorolytic action of
the enzyme in the assay.

The 19F NMR spectrum of compound 6e under conditions of
the phosphorolysis assay (Figure 3B) was recorded after 5 min,
14 h, and 72 h and did not show any evidence of phosphorolysis
at these three time points. These experiments confirmed that, in
contrast to nucleoside 2, the ProTide 6e is at best a very poor, if
any, substrate for thymidine phosphorylase.

We have recently reported that mycoplasma infection of cells can
significantly alter the metabolism of nucleoside analogues, partly
through the expression of mycoplasma-derived enzymes such as
TP.23 FUDR is known to be subject toTP-mediateddeactivation, and
we thus expected that 2 would be less cytostatic in the presence of
mycoplasmas. If ProTideswere able to deliver bioactive 4 directly and
were resistant to TP, then they may also be less subject to
mycoplasma-induced catabolic degradation. We present the data
from such a study in Table 2. Interestingly, whereas the cytostatic
activity of FUDR was heavily compromised in mycoplasma infected
cells (a drop of cytostatic activity by 378-fold was observed), the
prodrugs generally kept a significant cytostatic activity under similar
experimental conditions. In general, the 1-naphthyl prodrug deriva-
tives (7) markedly kept their cytostatic potential in the mycoplasma-
infected tumor cell cultures. They often lost only 2- to 3-fold
antiproliferative activity (Table 2).

Thus, we herein demonstrate that the ProTides of FUDR, in
contrast with the parent nucleoside, are resistant to the phos-
phorolytic activity of mycoplasma-encoded thymidine phosphor-
ylase but also cellular phosphorylases. This property may give the
ProTides of FUDR a therapeutic edge when exposed not only to
mycoplasma-infected tumor tissue but also to any TP-expressing
tumor in general. It is indeed well-known that tumors often show
an increased TPase activity to allow a better angiogenesis in the
tumor tissue. Such activity should result in an increased rate of
hydrolysis (inactivation) of parent FUDR that is a known
substrate for TPase23 but should not affect the FUDR ProTides,
shown to be resistant to this phosphorolytic cleavage.

The eventual cytostatic activity of FUDR also highly depends on
its efficient transport into the tumor cells. Both FUDR and FdUMP
show a 60- to 70-fold decreased cytostatic activity against CEM cells
that lack the hENT1 transporter (designated Cem/hEnt-0)
(Table 3). Importantly, the FUDR prodrugs proved to be less
dependent on the presence of the hENT1 transporter, since they
lost only 7- to 15-fold antiproliferative activity against the hENT1-
deficient CEM cells. These observations are in agreement with an
only 2- to 7-fold decreased cytostatic activity of the ProTides in the
presence of transport inhibitors (i.e., dipyridamole and NBMPR),
compared to a 20- to 60-fold loss of antiproliferative activity of
FUDR and FdUMP under similar experimental conditions.

With the aim of investigating the chemical and enzymatic
stability of FUDR ProTides to ester hydrolysis under biologically
relevant conditions, we performed several stability studies at

Figure 3. 19FNMR spectra of compound 6e in phosphorylase assay: (A) 6e in the absence of the enzyme (TP), 25 �C; (B) 6e submitted to the action of
thymidine phosphorylase (TP), spectra recorded after 72 h, 25 �C.
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different pH values, in the presence of human serum and
carboxypeptidase Y.

A chemical hydrolysis of L-Ala-OBn phenyl ProTide 6e was
evaluated under experimental conditions at pH 1 and pH 8 and
monitored by 31P NMR. During the assay (14 h) under acidic
conditions (pH 1) only two peaks representing two diastereo-
isomers of 6ewere recorded (Figure 4). Lack of formation of new
signals in the 31P NMR spectrum indicates that the tested
compound 6e is highly stable in acidic medium. The same result

was observed when the ProTide 6e was subjected to the assay
under mild basic conditions (pH 8; data not shown).

In order to explore whether FUDR ProTides can be activated
via our putative mechanism,24,25 we carried out an enzymatic
study using a carboxypeptidase Y assay following the protocol
already described.26 As depicted in Figure 5, the mechanism of
activation of phosphoramidates begins with the hydrolysis of the
carboxylic ester moiety (a) hypothesized to be mediated by a
carboxyesterase-type enzyme to give the intermediate 8. In the

Table 2. Cytostatic Activity of FUDR and FUDR Prodrugs in Wild Type Murine Leukemia L1210 Cell Cultures (L1210/0) and
L1210 Cell Cultures, Infected with Mycoplasma hyorhinis (L1210.Hyor)

IC50
a (μM)

compd aryl ester AA L1210/0 L1210.Hyor IC50(L1210.Hyor)/IC50(L1210/0)

2 0.0009 ( 0.0003 0.34 ( 0.13 378

6a Ph Me Ala 0.040 ( 0.016 0.87 ( 0.28 22

6b Ph Et Ala 0.11 ( 0.0021 0.54 ( 0.12 5

6c Ph i-Pr Ala 0.050 ( 0.013 0.70 ( 0.10 14

6d Ph c-Hex Ala 0.032 ( 0.0050 0.040 ( 0.016 1.25

6e Ph Bn Ala 0.026 ( 0.008 0.15 ( 0.006 5.8

6f Ph Et Val 0.20 ( 0.033 4.4 ( 1.1 22

6g Ph Bn Leu 0.054 ( 0.0021 0.17 ( 0.047 3.2

6h Ph Bn Ile 0.98 ( 0.39 2.2 ( 0.031 2.2

6i Ph Bn Phe 0.016 ( 0.0014 0.56 ( 0.023 35

6j Ph Pnt Met 0.13 ( 0.0078 0.41 ( 0.21 3.2

6k Ph Bn Met 0.058 ( 0.035 0.76 ( 0.18 13

6l Ph Bn Pro 0.35 ( 0.022 18 ( 0.71 51

6m Ph Et DMG 0.030 ( 0.0005 0.26 ( 0.01 8.7

6n Ph Bn DMG 0.029 ( 0.001 0.02 ( 0.002 0.69

7a Naph Et Ala 0.028 ( 0.0021 0.095 ( 0.0028 3.4

7b Naph Pr Ala 0.030 ( 0.00035 0.036 ( 0.0064 1.2

7c Naph butyl Ala 0.0095 ( 0.0021 0.021 ( 0.0071 2.2

7d Naph Pnt Ala 0.0021 ( 0.00007 0.006 ( 0.0014 2.9

7e Naph Hex Ala 0.0032 ( 0.00035 0.0022 ( 0.00028 0.69

7f Naph c-Bu Ala 0.011 ( 0.0014 0.024 ( 0.00014 2.2

7g Naph c-Pnt Ala 0.016 ( 0.0007 0.024 ( 0.005 1.5

7h Naph c-Hex Ala 0.036 ( 0.017 0.049 ( 0.004 1.4

7i Naph CH2-t-Bu Ala 0.093 ( 0.033 0.18 ( 0.069 1.9

7j Naph CH2CH2-t-Bu Ala 0.012 ( 0.0018 0.032 ( 0.0088 2.7

7k Naph CH2-c-Pr Ala 0.014 ( 0.0042 0.031 ( 0.0064 2.2

7l Naph 2-Ind Ala 0.039 ( 0.019 0.042 ( 0.040 1.08

7m Naph Bn Ala 0.011 ( 0.009 0.025 ( 0.01 2.27

7n Naph THP Ala 0.041 ( 0.0028 0.48 ( 0.11 11.7

7o Naph c-Hex Val 1.2 ( 0.17 1.29 ( 0.29 1.08

7p Naph Pnt Leu 0.031 ( 0.0020 0.035 ( 0.010 1.13

7q Naph Bn Leu 0.029 ( 0.0021 0.048 ( 0.020 1.7

7r Naph Pnt Ile 0.42 ( 0.021 0.70 ( 0.074 1.67

7s Naph Pnt Phe 0.030 ( 0.0039 0.14 ( 0.007 4.67

7t Naph Bn Phe 0.021 ( 0.0061 0.23 ( 0.078 11

7u Naph Bn Met 0.054 ( 0.013 0.20 ( 0.098 3.7

7v Naph Bn Pro 0.26 ( 0.055 0.65 ( 0.070 2.5

7w Naph Et DMG 0.056 ( 0.04 0.17 ( 0.03 3

7x Naph Pnt DMG 0.045 ( 0.0021 0.019 ( 0.0028 0.42

7y Naph Bn DMG 0.019 ( 0.004 0.045 ( 0.004 2.4
a IC50 or compound concentration required to inhibit tumor cell proliferation by 50%. Data are the mean ((SD) of at least two to four independent
experiments.
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second step (b) a spontaneous cyclization occurs through an
internal nucleophilic attack of the carboxylate residue on the
phosphorus center following a displacement of the aryl moiety to
yield 9. The third step (c) is the opening of the unstable cyclic
mixed anhydride mediated by water with the release of the
intermediate 10, which upon the cleavage of the P�N bond (d)
mediated by a hypothesized phosphoramidase-type enzyme gives
the corresponding monophosphate 4. Among our large family of
FUDRProTides, the enzymatic assay was applied to one of our lead
compounds 7d. Thus, the L-Ala-OPnt naphthyl derivative 7d,
carboxypeptidase Y, and Trizma buffer (pH 7.6) were dissolved
in acetone-d6 and

31P NMR (202 MHz) spectra were recorded at
regular intervals (every 7 min) over 14 h (Figure 6). According to
the results, the parent ProTide 7d (represented as two signals at δP
4.03 and 4.31 ppm) was rapidly hydrolyzed to the first metabolite 8
lacking the estermoiety shown in the 31PNMR spectrum at δP 4.99
and 5.13 ppm. Noteworthy, both diastereoisomers of 7d were
processed at roughly similar rate. A further processing of 8 led to
the formation of metabolite 10 shown as a single peak at δP 6.82
ppm. During the enzymatic process, compound 7d was fully
converted to the metabolite 10 within approximately 45 min with
an estimated half-life of less than 5 min. In fact, this assay showed
that the rate of the initial activation step might be considered in

general as one of requirements for good biological activity of
phosphoramidates. In order to support the proposed putative
mechanism and the results from the enzymatic assay, the inter-
mediate 10 was prepared via a synthetic route (Scheme 2).
Therefore, chemical hydrolysis of compound 7m in the presence
of triethylamine andwater was performed. Product 100 obtained as
a diammonium salt was then added to the final assay sample 7m
(containing only the enzymatic metabolite 10 in Trizma). Its 31P
NMR spectrum has exclusively shown one peak at δP 6.85 ppm,
strongly supporting this part of the metabolic pathway and
activation of the ProTides.

The stability of the prodrug 7a in the presence of human serum
was investigated using in situ 31P NMR. The aim of this experiment
was to identify the formation of any metabolites of 7a (Figure 5),
which would appear as new peaks in the 31P NMR spectrum. Thus,
after the first (control) 31P NMR data of 7a in DMSO and D2O
were recorded, the NMR sample was treated with human serum
(0.3 mL) and immediately subjected to further 31P NMR experi-
ments at 37 �C. The 31P NMR data were recorded every 15 min
over 14 h and are reported in Figure 7. In order to improve a
visualization of results, all the spectra were further processed using
the Lorentz�Gauss deconvolutionmethod. The spectra displayed a
single peak inherent to the human serum at∼δP 2.00 ppm and two

Table 3. Cytostatic Activity of FUDR and Several FUDR Prodrugs in CEM Cell Cultures Containing (Cem/hEnt-1) or Lacking
(Cem/hEnt-0) the hEnt1 Transporter

IC50
a (μM)

compd aryl ester AA Cem/hEnt-1 Cem/hEnt-0 Cem/hEnt-1 + dipyridamole Cem/hEnt-1 + NBMPR

5-FdUMP 0.05 ( 0.02 3.6 ( 0.69 1.74 1.06

2 0.04 ( 0.02 2.5 ( 0.65 1.36 0.80

6e Ph Bn Ala 0.13 ( 0.05 1.4 ( 0.65 0.66 0.72

6m Ph Et DMG 0.37 ( 0.14 5.8 ( 0.50 2.35 2.56

6n Ph Bn DMG 0.17 ( 0.06 1.2 ( 0.11 0.26 0.61

7m Naph Bn Ala 0.05 ( 0.02 0.6 ( 0.11 0.13 0.26

7w Naph Et DMG 0.21 ( 0.07 1.4 ( 0.20 0.52 0.62

7y Naph Bn DMG 0.05 ( 0.03 0.4 ( 0.13 0.16 0.28
a IC50 or compound concentration required to inhibit tumor cell proliferation by 50%. Data are the mean ((SD) of at least two to four independent
experiments.

Figure 4. Convoluted and deconvoluted 31P NMR specta of phosphoramidate 6e (buffer, pH 1).
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peaks corresponding to 7a at ∼δP 4.59 and 4.84 ppm. After about
6 h and 45 min the compound was hydrolyzed partly to the
intermediate 8 shown as a single peak at δP 5.79 ppm. After 11 h
and 30 min, the formation of the second metabolite 10 shown as a
single peak at δP 7.09 ppmwas observed. After 13 h and 30 min the
reaction mixture contained 96% of the parent compound 7a
together with the proposed metabolites 8 (3%) and 10 (1%).

’CONCLUSIONS

We herein report the successful application of ProTide technol-
ogy to the anticancer agent FUDR. Several ProTides emerged that

Figure 6. Carboxypeptidase Y assay applied on ProTide 7d and monitored by 31P NMR, 25 �C.

Figure 5. Proposed activation pathway of FUDR ProTides.

Scheme 2. Synthesis of Intermediate 10a

aReagents and conditions: (a) Et3N/H2O (1:1), 35 �C, 16 h.
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retain the high potency of FUDR in vitro and in addition partially
bypass the high dependence of the parent nucleoside on kinase-
mediated activation and on cell transporter-mediated uptake.

The compounds are also resistant to thymidine phosphorylase and
do not show significant loss of activity as displayed by FUDR upon
mycoplasma infection of the tumor cell cultures. The ProTides are
stable in acid and at neutral pH and in plasma but are activated by
intracellular carboxypeptidase. The ability of the ProTides to over-
come several of the sourcesof resistanceofFUDR in the clinic suggests
that these agents should be further progressed to (pre)clinical trials.

’EXPERIMENTAL SECTION

Cell Cultures and Cytostatic Assays.Murine leukemia L1210/
0, human T-lymphocyte CEM/0, and human cervix carcinoma HeLa/0
cells were obtained from the American Type Culture Collection
(ATCC) (Rockville, MD). Thymidine kinase deficient CEM/TK� cells
were a kind gift from Prof. S. Eriksson (currently at Uppsala University,
Uppsala, Sweden) and Prof. A. Karlsson (Karolinska Institute, Stock-
holm, Sweden), and CEM/hENT-0 samples were obtained from Prof.
Cass (Cross Cancer Institute, Edmonton, Alberta, Canada). Thymidine
kinase deficient L1210/TK� and HeLa/TK� cells were derived from
L1210/0 andHeLa/0 cells, respectively, after selection for resistance against
5-bromo-20-dUrd.TheHeLa/TK� cells were kindly provided byProf. Y.-C.
Cheng, Yale University, New Haven, CT. Infection of the cell lines with
Mycoplasma hyorhinis (ATCC) resulted in chronically infected cell lines
further referred to as L1210.Hyor. All cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA) with 10%
fetal bovine serum (FBS) (Biochrom AG, Berlin, Germany), 10 mM
Hepes, and 1mMsodiumpyruvate (Invitrogen). Cells were grown at 37 �C
in a humidified incubator with a gas phase of 5% CO2.

Monolayer cells (HeLa/0 and HeLa/TK�) were seeded in 96-well
microtiter plates (Nunc, Roskilde, Denmark) at 10 000 cells/well. After

24 h, an equal volume of fresh medium containing the test compounds
was added. On day 5, cells were trypsinized and counted in a Coulter
counter (Analis, Suarl�ee, Belgium). Suspension cells (L1210/0, L1210/
TK�, L1210.Hyor, CEM/0, CEM/TK�, CEM/hEnt-1, CEM/hEnt-0)
were seeded in 96-well microtiter plates (Nunc) at 60 000 cells/well in the
presence of a given amount of the test compounds. The cells were allowed to
proliferate for 48 h (L1210) or 72 h (CEM) and were then counted in a
Coulter counter. The 50% inhibitory concentration (IC50) was defined as
the compound concentration required to reduce cell proliferation by 50%.
In the nucleoside transporter inhibition experiments, dipyridamole (10μM)
andNBMPR(10μM)were added to theCEM/hEnt-1 cells in the presence
of different concentrations of the test compounds. The cytostatic activity of
the compounds was determined after 3 days, as outlined above.
Phosphorylase Assay Using Thymidine Phosphorylase

Purified from Escherichia coli. The experiment was carried out
by dissolving FUDR ProTide 6e (6.0 mg) in methanol-d4 (0.05 mL),
followed by addition of 300 mM potassium phosphate buffer (pH 7.4,
0.45 mL). The resulting cloudy solution was submitted to the 19F NMR
experiment at 25 �C, and the data were recorded as a control. Then to
that sample was added thymidine phosphorylase (17 μL). The resulting
sample was submitted for 19F NMR experiment. Additional 19F NMR
experiments for the same sample was repeated after 72 h.

31P NMR Stability Experiments in Acidic and Basic pH. Buffer
pH 1. The stability assay toward hydrolysis by aqueous buffer at pH 1 was
conducted using in situ 31P NMR (202MHz). The experiment was carried
out by dissolving FUDR ProTide 6e (2.6 mg) in methanol-d4 (0.10 mL)
and then adding buffer, pH 1 (prepared from equal parts of 0.2 MHCl and
0.2 M KCl). Next, the sample was subjected to 31P NMR experiments at
37 �C and the spectra were recorded every 12 min over 14 h.

Buffer pH 8.The stability assay toward hydrolysis by aqueous buffer at
pH 8was conducted using in situ 31PNMR (202MHz). The experiment
was carried out by dissolving FUDR ProTide 6e (4.5 mg) in methanol-
d4 (0.10 mL) and then adding buffer, pH 8 (prepared from solution of
0.1 M Na2HPO4 and adjusted to the appropriate pH using 0.1 M HCl).

Figure 7. Human serum assay applied on ProTide 7a and monitored by 31P NMR, 37 �C.
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Next, the sample was subjected to 31P NMR experiments at 37 �C and
the spectra were recorded every 12 min over 14 h.
Carboxypeptidase Y (EC 3.4.16.1) Assay. The experiment was

carried out by dissolving FUDR ProTide 7d (3.0 mg) in acetone-d6
(0.15 mL) and by adding 0.30 mL of Trizma buffer (pH 7.6). After the
31P NMR data were recorded at 25 �C as a control, a previously
defrosted carboxypeptidase Y (0.1 mg dissolved in 0.15 mL of Trizma)
was added to the sample. Next, the sample was submitted to 31P NMR
experiments (at 25 �C) and the spectra were recorded every 7 min over
14 h. 31P NMR recorded data were processed and analyzed with the
Bruker Topspin 2.1 program.
Stability Assay in Human Serum. The experiment was carried

out by dissolving FUDRProTide 7a (5.0 mg) inDMSO (0.050mL) and
D2O (0.15 mL). After the 31P NMR data were recorded at 37 �C as a
control, a previously defrosted human serum (0.30 mL) was added to
the sample. Next, the sample was submitted to 31P NMR experiments at
37 �C and the spectra were recorded every 15 min over 14 h. 31P NMR
recorded data were processed and analyzed with the Bruker Topspin 2.1
program.
Chemistry. General. Anhydrous solvents were obtained from

Aldrich and used without further purification. Amino acid esters were
purchased from Carbosynth. Carboxypeptidase Y, human serum, and
buffers were from Sigma-Aldrich. All reactions were carried out under an
argon atmosphere. Reactions were monitored with analytical TLC on
silica gel 60-F254 precoated aluminum plates and visualized under UV
(254 nm) and/or with 31P NMR spectra. Column chromatography was
performed on silica gel (35�70 μM). Proton (1H), carbon (13C),
phosphorus (31P), and fluorine (19F) NMR spectra were recorded on a
Bruker Avance 500 spectrometer at 25 �C. Spectra were autocalibrated
to the deuterated solvent peak, and all 13C NMR and 31P NMR were
proton-decoupled. The purity of final compounds was verified to be
>95% by HPLC analysis using Varian Polaris C18-A (10 μM) as an
analytic column with a gradient elution of H2O/MeOH from 100/0 to
0/100 in 45 min (method 1) and with a gradient elution of H2O/
CH3CN from 100/0 to 0/100 in 35 min (method 2). The HPLC
analysis was conducted by Varian Prostar (LC Workstation-Varian
prostar 335 LC detector). Low and high resolution mass spectra were
performed as a service by Birmingham University, Birmingham, U.K.,
using electrospray mass spectrometry (ESMS). CHNmicroanalysis was
performed as a service by MEDAC Ltd., Surrey, U.K.
General Method for the Preparation of Phosphorochlori-

dates (5). Anhydrous triethylamine (2.0 mol equiv) was added dropwise
at �78 �C to a stirred solution of the appropriate aryl dichlorophosphate
(1.0 mol equiv) and an appropriate amino acid ester (1.0 mol equiv) in
anhydrous DCM under argon atmosphere. Following the addition, the
reaction mixture was allowed to slowly warm to room temperature and was
stirred for 1�2 h. The formation of desired compound was monitored by
31P NMR. After the reaction was completed, the solvent was evaporated
under reduced pressure and the resulting residue was redissolved in
anhydrous Et2O and filtered. The filtrate was reduced to dryness to give
a crude product as an oil, which was in some cases used without further
purification in the next step.Most of aryl phosphorochloridates, in particular
those obtained from the amino acid tosylate salt, were purified by flash
column chromatography using EtOAc/hexane (7:3) as an eluent.
1-Naphthyl (Benzyl-L-alaninyl)phosphorochloridate (5m).

Yellowish oil; yield, 47% (1.82 g). Rf = 0.90 (hexane�EtOAc, 7:3). 31P
NMR (202 MHz, CDCl3, mixture of diastereoisomers): δP 7.92, 8.14
(int, 1.00:1.00). 1H NMR (500 MHz, CDCl3, mixture of diastereo-
isomers with a ratio of 1:1): δH 8.12�7.97 (m, 1H, ArH), 7.73�7.09 (m,
11H, ArH), 5.09 (s, 2H, OCH2Ph), 4.81�4.78 (m, 1H, NH), 4.23�4.20
(m, 1H, CHCH3), 1.45�1.43 (m, 3H, CHCH3).
General Method for the Preparation of FUDR ProTides

(6a�n and 7a�y). To a solution of 5-fluoro-20-deoxyuridine (0.25 g,
1.01 mmol) in dry THF (10 mL) at 0 �C under argon atmosphere was

added dropwise NMI (0.40 mL, 5.07 mmol). The reaction mixture was
allowed to stir for 30 min, and then a solution of appropriate phosphor-
ochloridate (5) (3.04 mmol) dissolved in anhydrous THF (3 mL) was
added dropwise. The reaction mixture was stirred at room temperature
for 16�18 h and then evaporated in vacuo to give a residue that was
redissolved in CH2Cl2 and washed twice with 0.5 M HCl (2 � 5 mL).
The organic phase was purified by column chromatography on silica gel,
eluting with CH2Cl2�MeOH as a gradient (0�5% MeOH) to afford
the products as white solid.
5-Fluoro-20-deoxyuridine 50-O-[1-Naphthyl(benzyl-L-alaninyl)]

phosphate (7m). 7m was obtained from 5-fluoro-20-deoxyuridine and
5m as a white solid. Yield, 8% (47.0 mg). Rf = 0.19 (CH2Cl2�MeOH,
95:5). (ES+) m/z, found: (M + Na+) 636.1520. C29H29N3O9FNaP
required: (M+), 613.15. Mixture of diastereoisomers (43%, 57%). 31P
NMR (202 MHz, MeOD): δP 4.61, 4.25.

19F NMR (470 MHz, MeOD):
δF �167.45, �167.25. 1H NMR (500 MHz, MeOD): δH 8.18�8.12
(m, 1H, ArH), 7.90�7.86 (m, 1H, ArH), 7.72�7.67 (m, 2H, ArH, H-6),
7.55�7.47(m,3H,ArH), 7.45�7.27(m,6H,ArH), 6.16�6.06 (m,1H,H-10),
5.13, 5.08 (2 � AB system, 2H, J = 12.0 Hz, OCH2Ph), 4.36�4.24 (m,
3H, 2�H-50,H-30), 4.15�4.03 (m, 2H, CHCH3,H-40), 2.17�2.08 (m,
1H, H-20), 1.79�1.67 (m, 1H, H-20), 1.38�1.34 (m, 3H, CHCH3).
13CNMR (125MHz,MeOD):δC 174.9 (d,

3JC�P = 4.3Hz,CdO, ester),
174.6 (d, 3JC�P = 5.0 Hz,CdO, ester), 159.3 (d, 2JC�F = 26.1 Hz,CdO,
base), 150.5 (d, 4JC�F = 4.0 Hz, CdO, base), 147.9 (d, 2JC�P = 7.4 Hz,
C-Ar, Naph), 147.8 (d, 2JC�P = 7.7 Hz, OC-Naph), 141.7, 141.6 (2d,
1JC�F = 234.0 Hz, CF-base), 137.2, 137.1, 136.2 (C-Ar), 129.7, 129.6,
129.5, 129.4, 129.0, 128.9, 128.1, 128.0 (CH-Ar), 127.9, 127.8 (C-Ar),
127.7, 127.6, 126.6, 126.5, 126.2 (CH-Ar), 125.6, 125.5 (2d, 2JC�F = 34.0
Hz, CH-base), 122.6 (CH-Ar), 116.5, 116.2 (2d, 3JC�P = 3.5 Hz, CH-
Ar), 87.0, 86.9 (C-10), 86.8, 86.7 (2d, 3JC�P = 8.1 Hz, C-40), 72.1, 72.0
(C-30), 68.1, 68.0 (CH2Ph), 67.8, 67.6 (2d,

2JC�P = 5.2 Hz, C-50), 51.9,
51.8 (CHCH3), 40.9, 40.8 (C-20), 20.5 (d, 3JC�P = 6.5 Hz, CHCH3),
20.3 (d, 3JC�P = 7.6 Hz, CHCH3). Reverse HPLC, eluting with H2O/
MeOH from 100/0 to 0/100 in 45 min, showed two peaks of the
diastereoisomers with tR = 34.23 min and tR = 34.59 min (47%, 51%).
Anal. Calcd for C29H29FN3O9P: C, 56.77; H, 4.76; N, 6.85. Found: C,
56.57; H, 5.06; N, 6.72. UV (0.05 M phosphate buffer, pH 7.4)
λmax = 271 nm (εmax = 7050). log P measured: 1.74.
5-Fluoro-20deoxyuridine 50-O-[(L-Alaninyl)]phosphate Am-

monium Salt (100). 5-Fluoro-20deoxyuridine 50-O-[1-naphthyl(benzyl-
L-alaninyl)]phosphate (7m) (0.08 g, 0.130 mmol) was dissolved in a
solution of triethylamine (5 mL) and water (5 mL). The reaction mixture
was stirred at 35 �C for 16 h, and then the solvents were removed under
reduced pressure. The residue was treated with water and extracted with
dichloromethane. The aqueous layer was concentrated and evaporated
under reduced pressure. Then the resulting crude material was purified by
column chromatography on silica, eluting with 2-propanol�H2O�NH3

(8:1:1) to afford the title compound 100 as a white solid. Yield, 30% (15.0
mg). Rf = 0.04 (2-propanol�H2O�NH3 (8:1:1)).

31P NMR (202 MHz,
D2O): δP 7.13.

19F NMR (470 MHz, D2O): δF�168.00. 1H NMR (500
MHz, D2O): δH 7.93 (d, 1H, 3JH�F = 6.1 Hz,H-6), 6.30�6.25 (m, 1H,H-
10), 4.49�4.44 (m, 1H, H-30), 4.11�4.06 (m, 1H, H-40), 3.94�3.83 (m,
2H, H-50), 3.53 (q, 1H, J = 7.5 Hz, CHCH3), 2.37�2.28 (m, 2H, H-20),
1.25�1.19 (m, 3H, CHCH3).

13CNMR (125MHz,MeOD):δC 174.8 (d,
3JC�P = 4.6 Hz, CdO), 159.2 (d, 2JC�F = 26.2 Hz, CdO, base), 150.3 (d,
4JC�F = 4.0 Hz, CdO, base), 141.8 (d, 1JC�F = 233.8 Hz, CF-base), 125.6
(d, 2JC�F = 34.0 Hz,CH-base), 87.0 (C-10), 86.7 (d,

3JC�P = 7.5 Hz, C-40),
71.1 (C-30), 67.2 (d, 2JC�P = 5.5 Hz, C-50), 51.0 (CHCH3), 40.2 (C-20),
20.3 (d, 3JC�P = 7.2 Hz, CHCH3).m/z (ES) 396.1 (M� 2 NH4

� +H]�,
100%). Reverse-phase HPLC, eluting with H2O/MeOH from 100/0 to
0/100 in 45 min, 1 mL/min, λ = 275 nm, showed a peak of the
diastereoisomer with tR = 3.65 min (95%).
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