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Abstract 

Energy management systems in buildings and their district today use automation systems 

and artificial intelligence (AI) solutions for smart energy management, but they fail to 

achieve the desired results due to the lack of holistic and optimised decision-making. A 

reason for this is the silo-oriented approach to the decision-making failing to consider 

cross-domain data. Ontologies, as a new way of processing domain knowledge, have been 

increasingly applied to different domains using formal and explicit knowledge 

representation to conduct smart decision-making. In this PhD research, Real-time 

Multiscale Smart Energy Management and Optimisation (REMO) ontology was 

developed, as a cross-domain knowledge-base, which consequently can be used to 

support holistic real-time energy management in districts considering both demand and 

supply side optimisation. The ontology here, is also presented as the core of a proposed 

framework which facilitates the running of AI solutions and automation systems, aiming 

to minimise energy use, emissions, and costs, while maintaining comfort for users. The 

state of the art AI solutions for prediction and optimisation were concluded through 

authors involvement in European Union research projects. The AI techniques were 

independently validated through action research and achieved about 30 - 40 % reduction 

in energy demand of the buildings, and 36% reduction in carbon emissions through 

optimisation of the generation mix in the district.  

The research here also concludes a smart way to capture the generic knowledge behind 

AI models in ontologies through rule axiom features, which also meant this knowledge 

can be used to replicate these AI models in future sites. Both semantic and syntactic 

validation were performed on the ontology before demonstrating how the ontology 

supports the various use cases of the framework for holistic energy management. Further 

development of the framework is recommended for the future which is needed for it to 

facilitate real-time energy management and optimisation in buildings and their district. 
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1. Introduction 

1.1. Research Motivation 

One of today’s greatest challenges is to manage and meet the “growing demand for 

secure, affordable energy while addressing climate change and other environmental and 

social issues” due to the rising population and increase in economic growth (British 

Petroleum 2013). Although the global energy demand is expected to increase by 41% 

between 2012 and 2035, the real challenge lies in how to minimise the level of carbon 

emissions, as it is expected to increase by 29% during this period. In December 2015, 195 

countries worked together to set out the first-ever global action plan to limit the level of 

carbon emissions and put an agreement in place to limit global warming to well below 

2 ℃. (European Commission 2015). This event clearly highlights that the increasing 

carbon emissions have become a global threat and that every country needs to play its 

part in containing this issue and help in the reduction of carbon emissions and other 

greenhouse gas emissions.  

Increasing the efficient use of energy can help lower carbon emissions. There is a huge 

potential to reduce emissions by focusing on the built environment – buildings. Figure 1 

below shows that buildings are responsible for almost 35% of the global energy 

consumption, and therefore any country looking to increase energy efficiency and 

minimise CO2 emissions needs first to tackle this problem in the building sector 

(International Energy Agency 2013). In the UK, buildings account for about 37% of total 

greenhouse gas emissions (Committee on Climate Change 2013). An estimated 77% 

reduction in CO2 emissions in the building sector compared to today’s level would be 

needed by the year 2050 to meet the goal of limiting the global temperature rise to 2 ℃

(International Energy Agency 2013).  
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Figure 1. Final energy consumption by sector and buildings energy mix (International Energy 

Agency 2013) 

‘Performance Gap’ and ‘Multi-objective problems’ in Buildings 

In addressing the emissions issue in the building sector, one of the key issues that requires 

attention is the operational management of buildings. It is important to consider 

operational data because buildings spend most of their time in the operational stages and 

therefore they need to be managed well to increase operational efficiency. Building 

management systems (BMSs) are used for this purpose, and they are capable of automatic 

control of some of the energy consuming operations in a building – such as heating, 

ventilation or indoor climate. In Europe, appropriate BMS use can save up to 50% of the 

energy used (Huber et al. 2015). Thus, improving the BMS performance to increase 

energy efficiency is critical. Failing to do this can lead to what is called a ‘performance 

gap,’ where a building is not operating the way it was designed to. One of the reasons for 

this is the lack of adaptation of the control systems within BMS to the real-time data, 

which would include adjusting the performance of building energy systems according to 

the data collected or the user requirements. This process can be costly and hence often is 

neglected by owners/clients. Therefore, an automated and intelligent self-learning system 

built to increase the energy efficiency of buildings based on operational data would be 

ideal in today’s reality. 

Energy management in buildings should minimise the energy demand and emissions 

while keeping the costs low. This process is becoming more complex than before, 

especially for contemporary buildings, due to the multi-domain and multi-objective 

nature of the problem. Therefore, a large amount of relevant information (from different 

data silos) needs to be considered and processed (Schellong 2012) for optimum control 

and decision-making. Holistic decision-making requires the consideration of more inter-
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linked data and information (Irani et al. 2015). For example, providing weather 

information will help forecasting tools to predict the demand accurately. This demand 

can be further reduced by optimising the performance of energy using systems. Holistic 

and intelligent energy management systems are needed today that ensure the highest 

operational efficiency while satisfying the various objectives. ‘Holistic’ here means 

considering not just the objectives within the building domain but also their interactions 

in a larger context, as explained below. 

The need for energy management at a district level 

Looking at buildings alone cannot achieve holistic and efficient energy management. One 

of the reasons for this is that, today, decentralised systems (Distributed Energy Resources 

(DERs)) are increasingly adopted as an alternative to centralised energy sources or as an 

additional energy supply to the main grid. These systems provide distributed energy at a 

smaller scale, such as cities and districts (Bazmi and Zahedi 2011). Today, cities and 

districts stand at the forefront of the sustainability agenda because they are major 

consumers of energy and resources (Wang and Prominski 2016). Thus, buildings and their 

interactions in a wider context should be considered for holistic energy management 

(Allegrini et al. 2015). A new integrated approach of interconnectivity between buildings, 

DERs, grids and other networks at a district level is required. This thesis defines a district 

using the following two criteria: (1) Has two or more buildings as energy consumers in 

the vicinity; (2) Relies on decentralised energy systems or local sources of energy (heat 

and electricity). In certain cases, the district can depend on a central source as well to 

meet a part of its energy demand.  

Current decentralised systems include co-generation technologies such as combined heat 

and power (CHP), using biomass power, solar PV power, wind power, and so forth at a 

local or regional level. District heating and cooling (DHC)  systems are increasingly being 

used in districts today (Euroheat and Power 2014); they produce steam and hot/chilled 

water in a central plant and distribute this to individual buildings (residential and 

commercial) in their vicinity through a network of pipelines. DHC systems have been 

widely utilised in hospitals, industrial parks, office complexes, large campuses 

(universities), housing estates and small districts, which can also have a mix of the above 

buildings due to the benefits of saving energy, consumer space and inhibiting air-

pollution (Sakawa et al. 2001). DHC systems using CHP are increasingly becoming a 

popular choice not just in Europe, but in many other countries such as the United States, 

China, Russia, and India. They are very effective in reducing greenhouse gas emissions 
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(GHG) and increasing economic benefits (Jamot and Olsson 2013). DHC networks are 

also a long-term asset, according to the International Energy Agency, as they are a bridge 

towards the future low carbon energy technologies (International Energy Agency 2009). 

For example, they are capable of taking heat from any source including renewable heat 

sources, hence offering flexibility to integrate new low-carbon sources when made 

available in the future (Jamot and Olsson 2013). However, the development of district 

energy systems – in particular, Renewable Energy Sources (RES) – requires new business 

and technology platforms to manage the increased level of complexity and diversity of 

global energy management.  

Managing and improving operational energy efficiency in buildings and their district can 

be challenging due to the following factors:  

(1) The integration of renewables and the use of co-generation plants in today’s energy 

mix making the problem more dynamic, uncertain, and complex; and  

(2) Many different constraints need to be factored in at each stage of the optimisation, 

and this requires high computational power to provide near real-time results.  

The above need to be addressed to achieve maximum energy efficiency during the 

complex and dynamic operation stage. Moreover, existing district energy systems can be 

further improved to achieve better efficiency while using primary energy resources 

further to reduce their environmental impact (Gadd and Werner 2014). However, 

achieving this can be a complex task because there can be many energy resources within 

a district and the decision on which source to use at what time depends on factors such as 

climate, energy market, user preferences, system efficiencies, maintenance and so forth. 

Hence Lund et al. (2014) believe that smart energy management techniques which can 

take these factors into account are needed today. Information and communication 

technologies can provide solutions which address some of these complex challenges 

related to energy management (Irani et al. 2015). In summary, what is needed today is a 

holistic energy management approach considering both demand side (buildings) and 

supply side (districts) operations which is capable of solving complex multi-objective 

problems in these domains. 

Energy management today and the need for semantic models 

Figure 2 below shows the hierarchy of solutions adopted today for energy management. 

The hierarchy here represents the order in which energy management solutions are 
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implemented today. The most basic solutions available today is the implementation of 

BMS/EMS systems. 

                                         

Figure 2. Techniques applied for energy management today 

BMS in a building or EMS in the district are widely used today to control the day-to-day 

actions of actuators or devices in buildings and districts. Facility managers usually 

operate them, but at times operations can be automated by implementing best practice 

knowledge in these systems. These systems help in detailed monitoring of the 

performance of buildings and districts as well by recording data from various sensors, 

meters, and devices. 

Artificial intelligence solutions come next in the hierarchy shown in Figure 2, and they 

are increasingly being used today to add intelligence to the energy management in 

buildings and districts. Artificial intelligence usually works with automation systems for 

real-time implementation wherein it uses optimisation algorithms, prediction algorithms, 

etc., to aid human decision-making. Different types of optimisation techniques have been 

used, which include single objective or multi-objective algorithms. Multi-objective 

optimisation is useful to make decisions when there are two or more conflicting 

objectives. These optimisation algorithms can not only be used to optimise control of 

energy systems, but also help in high-level planning – such as optimisation of schedules 

(both demand side and supply side schedules). More recently, two or more of these AI 

techniques have been combined and used for applications. For example, ANN models 

forecast the energy demand, consequently allowing optimisation applications to use these 

results and plan ahead, making it a proactive approach rather than a reactive one. 
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Both these approaches can lead to an increase in energy efficiency. However, they have 

their shortcomings when it comes to applications for holistic energy management. For 

example, automation systems do implement decisions in real time (during operational 

stages), but they can only deal with data silos and are not supported by cross-domain data 

to consider multi-objectives of the problem. Artificial intelligence, on the other hand, 

deals with the issue of multi-objective problems. However, it fails to increase energy 

efficiency at both demand side (within buildings) and supply side (in district) 

simultaneously. For example, AI applied to optimise the building demand does not 

consider the knock-on effect of this on the supply side for the district. Vice versa, 

applications looking to manage efficiently the energy production in districts (supply side) 

give less importance to building demand optimisation.  

This PhD research therefore investigates the application of semantic models to bridge the 

gaps highlighted above. Figure 3 below represents the basic idea behind semantic models. 

 

Figure 3. Ontology representing knowledge 

The figure shows that processing data can give information, and adding meaning to this 

information gives knowledge. Semantic models are used to capture this knowledge and 

make them machine-readable. Semantic meaning is added to data models for them to 

become semantic models. Ontologies as shown above in figure 3 represent semantic 

models and are usually used to define common vocabulary when researchers need to share 

information in a domain. Moreover, the basic concepts in the domain and their 

relationships can be defined here, which is machine interpretable (Noy and McGuinness 

2001).   
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One of the major reasons for using semantic models in this research is that they “can be 

branched across domains of knowledge automatically” (Linked Data Tools 2015). In 

other words, a semantic model can bring heterogeneous domains together and can be 

consequently used as a knowledge base to support particular applications. Using this 

advantage of ontologies, the author through this research aims to build a knowledge-base 

which links knowledge from the demand and supply sides together. Consequently, the 

author looks to use this knowledge to support the functioning of AI and automation 

systems.  

A large variety of disciplines develop standardised ontologies through which information 

can be shared and annotated by domain experts. The medical field widely uses ontologies, 

where a lot of large, standardised, structured vocabularies have been developed (Noy and 

McGuinness 2001). Broad general-purpose ontologies are also being developed here, for 

example, the UNSPSC (United Nations Standard Products and Services Code) ontology1 

developed provides terminology for products and services.   

In the field of energy management, however, domain-independent applications, software 

agents, or problem-solving methods use ontologies; and at times they are not used merely 

as a means to share a domain model. For example, in buildings, more of these ontologies 

are built as a knowledge-base, which consequently facilitates intelligent energy 

management for rule-based decision-making. Recent years have seen more European 

research projects (under Framework Programme 7 (FP7) research) adopting solutions that 

implement ontology-based systems for decision-making. 

1.2. Problem Statement 

In the case of districts today, demand side management in buildings and supply side 

management at the district level do not work together holistically. Applications looking 

to manage energy production in districts (at the supply side) normally do not include 

details within the buildings (demand side) and the energy management decisions taken 

here. Moreover, energy management in each of this domain are complex in nature which 

needs to consider various data domains and factors. To deal with this issue of holistic 

intelligent energy management, this research develops an ontology taking into account 

the multi-scale (buildings and districts) and multi-objective nature of the problem. 

Ontology developed in this research represent inter-linked knowledge across buildings 

                                                 
1 http://www.ebusiness-unibw.org/ontologies/pcs2owl/ 

http://www.ebusiness-unibw.org/ontologies/pcs2owl/
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and districts, aiming to support the holistic decision-making framework with information 

needed. 

1.3. Research Aim and Objectives 

The aim of this research is to develop and validate an ontology which supports the 

seamless integration of artificial intelligence (AI) techniques and automation systems, 

dynamically mapping demand side and supply side energy, enabling ‘holistic’ decision-

making taking into account the various objectives involved. The study also investigates 

how best to capture the knowledge behind the artificial intelligent models (such as 

optimisation and prediction models) in the ontology for replication in similar sites for 

future projects. 

 

Figure 4. Solution for holistic energy management 

Figure 4 above, therefore, depicts the transition needed today from the author’s point of 

view when compared to Figure 2 presented earlier. A triple-layered system is needed 

today to achieve holistic real-time energy management. The system represents the shape 

of a pyramid, where the higher the level of implemented solution, the higher the energy 

efficiency. It highlights that automation systems are the foundational requirement for any 

real-time energy management solutions to be applied in buildings or districts. Semantic 

models, on the other hand, in figure 4 is needed to add intelligence to existing methods, 

making it more efficient as it takes a holistic approach. 

 

 



-9- 

 

Research Objectives 

1. To determine the state-of-the-art artificial intelligence techniques for real-time 

energy management for demand side management and supply side management. 

2. To harmonise the real-time energy management solutions developed at demand 

side and supply side. 

3. To develop and validate an ontology which support the use of AI models with 

automation systems. It should also support the harmonisation of demand and 

supply side energy management.  

4. Determine how to capture the knowledge behind the generation of these AI 

models in the ontology developed and reuse it for similar buildings and districts 

in the future. 

1.4. Hypothesis and Research Questions 

Ontologies can be used to support the seamless integration of numerical optimisation 

algorithms and automation systems through a cross-domain knowledge-base, 

consequently, this can be used to aid smart decision making processes autonomously for 

building and district energy management. The knowledge captured in the ontology can 

also further facilitate the autonomous definition of Artificial Intelligence models needed 

for smart decision-making. 

Research questions 

 What are the artificial intelligence techniques applied at a building and district 

level for real-time energy management? 

 What are the various objectives that need to be considered for energy management 

when it comes to building and district energy management? 

 How can building and district energy management techniques be harmonised to 

take a multi-objective approach? 

 Can ontologies help facilitate the harmonisation of demand and supply side 

optimisation? Moreover, how? 

 Can the knowledge behind the optimisation models be captured in the ontology 

so that they can be replicated for similar districts and buildings? 

1.5. Research Contribution 

This thesis presents an ontology which captures the knowledge needed to support the 

running of a smart decision-making framework that can be applied to districts and their 
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buildings, solving multi-objective optimisation problems for energy management in real 

time. The fact that this proposed decision making framework can be applied in the 

operational stages, taking into account the dynamic changes in the supply and demand 

sides, is very innovative. The research also proposes a holistic approach to decreasing the 

energy demand and dynamically mapping the energy production (supply side in districts) 

to this reduced demand, to increase the overall energy efficiency.  

Although the research focusses on the ontology development and its validation, it 

illustrates how the proposed ontology-based framework can capture and orchestrate the 

running of artificial intelligence models, e.g. numerical optimisation, and artificial neural 

networks, together with automation systems. The ontology developed successfully 

captures the knowledge behind the use of optimisation models and energy 

simulation/prediction models, to streamline the reuse of existing knowledge. 

1.6. Structure of the thesis 

Chapter 2 below reviews the literature looking into both artificial intelligence techniques 

applied to buildings and district energy management. It highlights the possible gaps in the 

domain and, following this, Chapter 3 then discusses the research methodology adopted 

to address these gaps. Chapter 4 describes the action research and concludes how this 

knowledge has helped for the system design and implementation. This consequently leads 

on to Chapter 5, describing the overarching system framework and its various modules. 

The ontology design and the various functionalities are discussed in detail, as this is the 

core of the framework. Chapter 6 presents the system implementation and development 

aspects of the framework. Chapter 7 further presents the validation of the ontology and 

finally, Chapter 8 summarises the major conclusions and contributions of the research 

along with the future work. 
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2. Literature Review 

This chapter assesses previous work in the field of real-time energy management in 

buildings and districts. The review covers different techniques, methods, and algorithms 

used for energy management. The chapter is mainly divided into two parts – Section 2.1 

reviews optimisation algorithms and AI solutions applied previously in this domain 

whereas, Section 2.2 looks into ontologies applied previously. 

2.1. Optimisation algorithms and AI applied today 

This section reviews some of the AI solutions applied in the field of energy management 

and optimisation, for both the building and district domain. Background theory on some 

of the most relevant AI techniques are presented below in section 2.1.1, before reviewing 

some its applications in the building and district domain in Section 2.1.2. and Section 

2.1.3. respectively. Section 2.1.4 discusses some of the key findings from this part of the 

review. 

2.1.1. Background Theory 

Optimisation theory 

Optimisation is an iterative process to search for a solution that minimises values of the 

objective function while satisfying the constraints imposed on design variables and the 

system responses. A generic formulation for an optimisation problem is given as follows:  

𝑚𝑖𝑛 → 𝑓0(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, ⋯ , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, ⋯ , 𝑝
 

 vector x ∈ 𝑅𝑛 represents the design variables; 

 the function 𝑓0: 𝑅𝑛 → 𝑅 represents the objective function. The objective function 

can be either mathematical functions of the design variables or even black box 

problems.  

 the functions 𝑓𝑖: 𝑅𝑛 → 𝑅, 𝑖 = 1, ⋯ , 𝑚  represent the inequality constraint 

functions,  

 the functions ℎ𝑗: 𝑅𝑛 → 𝑅, j = 1, ⋯ , 𝑝 represent the equality constraint functions.  

A vector 𝑥∗ can be the optimal solution of the problem, provided it has the least objective 

value among all vectors that satisfy the constraints. The optimisation process is generally 

iterative, which begins with initial values of the design variables, and consequently 

generates a sequence of estimates (estimation design points) for the design variables. The 
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optimisation process ends when a design point reaches a solution or meets the terminate 

criteria.  

Multi-objective optimisation  

A minimisation multi-objective optimisation problem with Q objectives is listed below 

(Konak et al. 2006): 

𝑥 = {𝑥1, 𝑥2 … 𝑥𝑛} 

Here, x is an n-dimensional decision variable vector in the solution space X. A set of Q 

objective functions that needs to be minimised can be defined as: 

z(𝑥∗) = {𝑧1(𝑥∗), 𝑧2(𝑥∗) … 𝑧𝑄(𝑥∗)} 

Here, x* vector is the solution to minimisation of the objective functions. All objectives 

are defined as the minimisation type, and it can be converted to maximisation type by 

multiplying by -1. A series of constraints is possible in this problem: 

𝑔𝑖(𝑥∗) = 𝑏𝑖 for i = 1, … , m. 

There can also be bounds on the decision variables. In most energy-related problems, it 

might be necessary to satisfy more than one objective. These objectives can be 

conflicting, which means finding an optimised solution for x minimising one objective 

can compromise the other objective(s). Therefore, a reasonable solution to the multi-

objective problem would be to find a set of solutions, each of which can satisfy every 

objective to an acceptable level and is non-dominated by any other solution.  

A feasible solution x dominates another feasible solution y (x>y), if 𝑧𝑗(𝑥) ≤

 𝑧𝑗(𝑦) for 𝑗 = 1, … , Q, and 𝑧𝑖(𝑥) <  𝑧𝑖(𝑦) for at least one objective function i.  

A solution that is non-dominated by any other solution in the solution space is called a 

Pareto optimal set. However, each solution is different in the Pareto, which means a gain 

in one objective(s) comes with a sacrifice in the other(s). In this case, the final decision 

lies with the decision-maker, who decides on the trade-off needed, and hence this is a 

very practical way to solve real-world problems.  

Genetic algorithms 

Some of the optimisation algorithms are based on a stochastic search approach, such as 

evolutionary algorithms, simulating annealing, and genetic algorithm. Traditionally, 

genetic algorithms are known to be better at solving problems. They use specialised 
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fitness functions and promote solution diversity, which makes them capable of 

accommodating multi-objective problems. Here, a fitness function is a particular 

objective function that characterises the problem and measures the closeness of a given 

solution to the target, also considering all the problem constraints (Openeering, n.d.). A 

GA is a meta-heuristic algorithm which is inspired by the theory of the origin of species. 

In nature, unfit species within an environment face extinction by natural selection, 

whereas stronger ones survive and, through reproduction, pass on their genes to future 

generations. In the longer run, these strong genes become dominant in their population. 

The genes also evolve through time and, if these changes support them in the challenge 

of survival, they tend to give way to new species, and unsuccessful changes are eliminated 

by natural selection. 

In GA terminology: 

 Each solution vector x is called an individual or chromosome.  

 Genes are discrete units that make up chromosomes. 

 Population is the collection of chromosomes that usually works with GAs. 

During the optimisation process, the solution gets fitter as the search evolves. It uses two 

operators to bring a natural evolution to the chromosomes and generates new solutions 

from previous ones: 

 Crossover: here, two chromosomes (parents) combine to form a new chromosome 

(offspring). Parents are selected from the existing chromosomes that have a 

preference towards the fitness. This means that the offspring inherits good genes. 

With more and more iterations applying crossover, more chromosomes with better 

genes are produced, which eventually converges to a good overall solution.  

 Mutation: this is implemented at the gene level, where a random variation is 

brought to the characteristics of the chromosomes. Mutation rates in a GA are 

very small, and this brings genetic diversity to the population and helps the search 

look beyond the local optima. 

A selection procedure is applied during reproduction of the new population. Usually, the 

probability of selection is dependent on the fitness of the chromosomes. Some of the 

popular selection methods are proportional selection, ranking, and tournament selection. 

Figure 5 below shows the pseudo code for a GA. 
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Figure 5. Pseudo code for a genetic algorithm (Brownlee 2015) 

GAs are well suited to solving a multi-objective problem as it is a population-based 

approach. The GA approach can identify multiple sets of non-dominated solutions in a 

single run. It is also capable of searching different areas of the solution space 

simultaneously and providing a diverse set of solutions for complex problems with non-

convex, discontinuous and multi-modal solution spaces. Crossover operators exploit 

structures of good solutions with respect to different objectives and hence give solutions 

from unexplored areas of the Pareto front. In GAs, it is also not necessary to give weights 

to the objectives (or prioritise any over the others), and hence it has become the most 

popular heuristic approach for multi-objective problems.  

Out of the many genetic algorithms used for multi-objective problems, NSGA (Non-

Dominated Sorting Algorithm) is a popular choice and was developed by Prof. 

Kalyanmoy Deb  (Deb et al. 2002). It classifies the population into non-dominated fronts. 

NSGA-II is a better algorithm than NSGA as it is more efficient and faster in sorting the 

non-dominated fronts. These two algorithms are designed to solve non-convex and non-

smooth single and multi-objective optimisation problems. 

Some of the features of NSGA-II are (Openeering n.d.):  

 All individuals are sorted according to the level of non-domination into a 

hierarchy of non-dominated Pareto fronts. 
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 Elitism is implemented, where the selection procedure only includes individuals 

that are non-dominated solutions, and hence enhances converging properties. 

 NSGA-II also uses a crowding-distance approach through which fitness-sharing 

parameters aim to achieve a uniform spread of solutions along the best-known 

Pareto front.  

Figure 6 below shows the pseudo code for the NSGA-II algorithm.  

 

Figure 6. Pseudo code for NSGA-II (Syberfeldt 2014.) 

Artificial Neural networks theory 

Networks are one way in which a complex problem can be broken down into simpler 

problems which make it easier to comprehend. Networks follow the lemma divide and 

conquer principle (Bar Yam, 1997). There can be different types of networks, but they 

are characterised by a set of nodes, and the connections between them. Nodes are 

computational units, which receive inputs and consequently process them to give outputs, 

whereas the connection between them represents the information flow, which can be 

unidirectional (information flows only in one direction) or bidirectional (information 

flows in either direction). The interaction between these nodes leads to a global behaviour 

of the network which can be termed as emergent. This behaviour cannot be observed in 
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the individual elements of the network and hence the abilities of the network supersede 

the abilities of the elements (Carlos Gershenson 2003). 

Artificial neural networks see the nodes in the network as ‘artificial neurons’. These are 

computational models inspired by natural neurons which receive signals through synapses 

(located on dendrites or membranes of the neuron), and, when these signals are strong 

enough (or surpass a threshold), the neuron is activated, and it emits a signal through the 

axon. Signals can then be sent to another synapse which again can activate other neurons 

in the network (Carlos Gershenson 2003). See Figure 7 below. 

 

Figure 7. Structure of a natural neuron (Carlos Gershenson 2003) 

ANNs contain input (like synapses) which is multiplied by weights (to represent the 

strength of the respective signals). A mathematical function then computes this and 

determines the activation of the neuron. Another function then computes the output of 

this. ANNs use these neurons to process information. 

 

Figure 8. Activation function and weights for an ANN (Carlos Gershenson 2003) 

The weights determine the computation of the neuron. Adjusting weights of the artificial 

neuron gives the desired output for a specific input.  
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However, an ANN network sometimes can have hundreds of neurons and adjusting 

weights for each can be complicated. Algorithms, therefore, are available that can 

automatically adjust weights to derive desired outputs, a process which is called learning 

or training. Learning and training can be very useful when the relationship between input 

and output variables is complex and hard to formulate. ANN models can act as black 

boxes, provided sufficient input and output data is available for training them. For this 

precise reason, ANNs are applied in complex energy-related problems of the building 

domain to represent complex relationships here as a black box. Once the model is trained, 

it can then be used as an analytical tool, replacing mathematical models or simulation 

models, for example. 

There can be various possible training algorithms, one of the most common ones being 

backpropagation algorithm. Backpropagation is an abbreviation of ‘backward 

propagation of error’. This algorithm runs using the delta rule, wherein learning is a 

supervised process. Here, when the input is presented, it makes a random guess as to what 

the output might be. Following this, calculation is performed on how far the actual answer 

is from the known outputs, according to which the connection weights are adjusted 

(University of Wisconsin, n.d.).  

ANN models are arranged in layers of interconnected neurons. The patterns are presented 

to the network as the input layer, which then communicates to one or more hidden layers 

where processing is carried out through the weighted connections. The hidden layer then 

links to the output layer, which represents the output of the network.  

2.1.2. Building Domain  

Multi-objective optimisation  

Energy management in buildings requires dealing with multi-objective problems with 

conflicting targets – minimising energy consumption, minimising CO2 emission, 

maximising comfort level. In practice, this can be challenging and complex to achieve as 

it depends on various factors within the building environment. Diakaki et al. (2008) and 

Diakaki et al. (2010) investigated the feasibility of developing a stand-alone multi-

objective optimisation model that would help in decision-making when it comes to 

choosing from many alternative solutions to meet the objectives. The problems 

investigated here were analysed to keep both cost and energy at a minimum, which is 

always a dilemma. Also, this methodology does not complement any other method such 

as simulation, multi-criteria decision analysis techniques and the like. In their later work, 
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Diakaki et al. (2010) did use envelope-related variables and constraints, and also systems-

related (heating system, cooling systems, solar collector systems) variables and 

constraints in their decision model. The objectives set here were clearly defined and 

formulated into linear or non-linear mathematical expressions.  

Many previous works investigated multi-objective optimisation but at the design stages. 

Hamdy et al. (2011) used MATLAB linked with a multi-objective genetic algorithm (GA) 

to investigate energy-saving measures by examining 24 design variables which were 

related to optimal HVAC (Heating Ventilation and Air Conditioning) settings, night 

ventilation, night set-back temperature, daylighting, etc. Wang et al. (2005) developed an 

object-oriented framework for simulation-based green building design optimisation using 

GA again. Bichiou and Krarti (2000) considered three different optimisation algorithms 

including GA to optimise HVAC system selection for residential buildings. Various 

parameters and possible values for each are considered here during the optimisation. 

Wright et al. (2002) demonstrated how a multi-objective GA can be used to find an 

optimum solution when thermal comfort and cost are taken as objectives. Ihm and Krarti 

(2012) tried to improve energy efficiency in buildings in Tunisia while keeping the cost 

low, by examining various design feature combinations including glazing type, location, 

window sizes, appliances, lighting fixtures, heating and cooling systems, etc. The work 

mentioned above shows the potential of GA algorithms to solve multi-objective problems, 

but doing this in real time during the operational stages is important, as referred to in 

Chapter 1, to reduce the performance gap.  

Operational knowledge and data monitoring are important to help reduce the performance 

gap. The operational data can be used with optimisation models, consequently providing 

optimum values to control the facility. One way of doing this, therefore, is to integrate 

these artificial intelligence techniques with existing automation systems or building 

energy management systems (BEMS). However, BEMS applied nowadays tend to be 

isolated and lack flexibility, scalability, and adaptation capacity. They fail to take a 

holistic approach when it comes to the complex multi-objectives, and they more or less 

take a passive approach to decision-making, failing to respond to the changing 

environment. For example, most of the control today is based on best practice rules and 

operational principles which are pre-defined from previous experiences of the facility 

manager. Therefore, BEMS have to work smartly with AI techniques to produce better 

energy management systems. 
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AI techniques used for optimisation needs to be automated when integrating with BEMS. 

Also, traditional rules of thumb or trial-and-error processes are not sufficient or applicable 

for building-related multi-objective problems (Bazjanac 2008). Optimisation algorithms 

are widely classified as conventional gradient-based methods and gradient-free methods. 

Gradient-based methods involve using mathematical procedures, which are applied to 

smooth and continuous objective functions. For most building studies, gradient-based 

optimisation methods are not applicable as their behaviours are often nonlinear and 

discontinuous (Wetter and Wright 2004). Hence, gradient-free methods, in this case, are 

more suited. The Genetic algorithms (GA) and their various adaptations are a widely 

accepted method under this category (Holland 1992).  

Artificial neural network methods 

The optimisation above is implemented on mathematical models which in the case of 

buildings are simulation models of the facility. Simulation models are needed for 

calculation or study of energy demand patterns. These models are then used as cost 

function by the optimisation model to optimise certain decision variables (simulation 

model input) while meeting the various objectives of the problem. Some of these 

objectives can be minimising energy, minimising costs, minimising emissions, and 

maximising comfort. 

Building energy simulation-based optimisation, however, can be time-consuming due to 

the complexity of the models. Most of the existing simulation programs such as 

EnergyPlus or Trnsys rely on heavy computation time, and repeatedly running them for 

optimisation would lead to a greater overall computational time to provide optimum 

results. High computational time is not feasible when the solutions are needed for real-

time energy management. In this case, simplifying simulation models to decrease the 

computational time might mean risking a loss of accuracy. Simulation models, however, 

can be replaced by surrogate models for prediction or calculation of the energy 

consumption. Many surrogate models have been investigated previously, as described 

below. 

Zhao and Magoulès (2012) conducted a review of various methods to predict building 

energy consumption. Accurately predicting the performance of buildings can be a 

complex task due to different reasons, as hinted by the authors – ambient weather 

conditions, the complexity of building characteristics (structure and envelope), dynamic 

changes in occupancy, HVAC system operations, and secondary-level components such 
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as lighting, shading, electrical equipment, etc. The study relates to reviewing the different 

developed models (statistical methods, simplified engineering methods, and artificial 

intelligence methods) that help improve the accuracy of prediction. The authors conclude 

that artificial intelligence methods such as support vector machines (SVMs) and artificial 

neural networks (ANNs) are the best way forward. SVMs are said to be a better option 

than artificial neural networks mainly because they can do a similar job to ANNs with 

less training data. However, they have a lower running speed than ANNs.  

ANNs have been widely implemented. They are used in forecasting and prediction of 

loads (load forecasting, energy management). Kalogirou and Bojic (2000) conducted a 

general review on the various applications of ANNs, especially focusing on their role in 

energy systems – predicting a building’s thermal load, predicting airflow in a naturally 

ventilated room, prediction, evaluation, and optimisation of a building’s energy 

consumption. The ANN method has also been used to model the power consumption of 

a central chiller plant, including chillers, cooling towers and pumps (Yalcintas and Akkurt 

2005). The input variables here mainly consider climatic data (dry bulb temperature, wet 

bulb temperature, dew point temperature, relative humidity percentage, and wind speed 

and wind direction), and chiller-plant power consumption was chosen to be the output. 

Ekici and Aksoy (2009) predicted heating loads in buildings by training a neural network 

with three different building samples, achieving average accuracies of 94.8% - 98.5%. 

Neto and Fiorelli (2008) compared ANN models and EnergyPlus simulations (with real 

measured data) to compare their forecasting capabilities for building energy consumption; 

and concluded that, even though a feed-forward ANN model might not be the most 

suitable one for building applications, it still has an advantage over EnergyPlus 

simulations. This study again, like mentioned previously, focused more on climatic data 

variables like minimum & maximum outdoor air temperature, global solar radiation, and 

relative humidity. The day type was also considered (i.e. weekend or weekday). 

ANNs have been used to evaluate different building simulation packages themselves. 

Yezioro et al. (2008) used an ANN to predict a whole year’s energy consumption data 

based on acquired data from just a week. The predicted data showed good fitness with the 

mathematical model, with a mean absolute error of 0.9%. This data was then used to 

evaluate building simulation packages like eQuest, Green Building Studio, EnergyPlus, 

and Energy_10. The ANN model input independent variables in this study once again 

focused largely on climatic data – outdoor temperature, relative humidity, and also on 

setpoint temperature and occupancy schedule. 
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ANN models were used to optimise the performance of HVAC systems and in smart 

decision-making. Ben-Nakhi and Mahmoud (2004) applied general regression neural 

networks to optimise HVAV thermal storage by predicting cooling load profile based on 

historical data. This study proved the effectiveness of neural networks even with a single 

input variable (external temperature). The model was trained using three years of past 

data collected from three different types of office buildings. Thus, the results produced 

during prediction were more than satisfactory. Hu and Olbina (2011) developed an 

illuminance-based slat-angle selection model based on an artificial neural network and 

used this to predict illuminance at two sensor points in a room. This was then used with 

a mathematical model to find the optimum slat angle. The results showed that the ISAS 

model could predict illuminance with an accuracy of 94.7% and optimum slat angle with 

an accuracy of 98.5%. Ayata et al. (2007) produced ANN models to predict indoor air 

velocity distributions for natural ventilation.  

ANN models have more recently been used in combination with other AI techniques such 

as optimisation. Magnier and Haghighat (2010) used a simulation tool – Trnsys – and 

genetic algorithms to find the optimised solution for a problem aiming to satisfy 

conflicting objectives – thermal comfort and energy consumption within buildings. The 

study also implements an ANN as the response surface approximation model (RSA), 

mainly to reduce the computational time that the GA usually takes. The Trnsys-based 

simulations were validated using measured data, and consequently a database of cases 

was generated, which was used to train and validate the ANN. This ANN model was then 

used to identify potential solutions with changing input variables. Results showed that 

ANN could predict output with good accuracy and also significantly reduce the 

computational time involved while using a GA. The variables considered in this study 

were related to HVAC system settings (heating and cooling setpoints, relative humidity 

setpoints, and supply airflow rate), thermostat programming (starting and stopping delay) 

and passive solar design (window size and thickness of concrete). 

One of the most important studies was conducted by Ben-Nakhi and Mahmoud (2011). 

They demonstrated that ANNs can be used to predict energy consumption for shorter time 

periods, i.e. hourly or daily with high accuracy, provided the right variables are chosen. 

This means that real-time energy optimisation is possible if these prediction models can 

work with optimisation models. Yang et al. (2005) looked into different training 

techniques for adaptive neural network model, and consequently used the model for real-

time on-line building energy prediction. Adaptive neural network models are special 
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because they can adapt themselves when there is a change in input patterns. However, the 

major challenge with an ANN is that: 1. It depends heavily on historical data, and 2. It 

cannot measure energy savings in retrofit strategies because of lack of measured data.  

Summary 

In summary, ANNs have a wide variety of applications in buildings, one of the most 

common ones being predicting of load or demand. Here, most of the authors relied on 

indoor and outdoor weather data for training their models. Although not often, ANNs 

have been used for short-term forecasting applications. They can be used to improve 

energy efficiency in buildings when combined with optimisation models, as shown briefly 

in some of the previous works. GA might be the way forward for optimisation, but it is 

incomplete without these neural networks, which significantly improve computational 

time and do not compromise the accuracy. The majority of the optimisation work 

reviewed here shows the huge application in design stages, and the rare application in the 

operational stages of buildings.  

The pre-requisite, however, to using ANN models is to have adequate data for training of 

the ANN, which would ensure that the black box model is stable and achieves satisfactory 

results without compromising on the accuracy of the results/model. Using ANN models 

as cost function of the optimisation problem is well-suited for real-time applications as 

the evaluation times become negligible. Simulation models can also be used to provide 

data for calibration or training for new ANN models if historical data is not available.  

More recently, EU projects have looked into using ICT (Information and Communication 

Technology) for increasing energy efficiency in buildings under the FP7-2011-NMP-

ENV-ENERGY-ICT-EeB call, including BEAMS (285194), SEAM4US (285408), 

CASCADE (284920), Campus21 (285729), SEEDS (285150), and KnoholEM (285229). 

Most of the solutions adopted in these projects investigate using building information 

modelling techniques with real-time sensing capabilities for the optimisation of energy 

consumption. This again proves that data (historical or real-time) is critical to today’s 

energy management solutions and AI solutions. 

2.1.3. District domain  

As mentioned in Chapter 1, it is important to consider both building (demand side) and 

district (supply side) energy management to increase the overall energy efficiency in the 

district. Multi-objective optimisation algorithms, again, can be applied to districts, as in 

the case of buildings discussed previously. They more or less manage the supply side of 
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the districts, which deals with the operation of energy sources. Previously, a lot of the 

work focused on single-objective optimisation, aiming to only minimise the overall cost 

of energy generation (Buoro et al. 2014; Dorfner and Hamacher 2014; Cai et al. 2009; 

Murai et al. 1999). The underpinning research here addresses individual systems or 

technologies in the domain of district energy optimisation (for example, boilers, CHP, 

district heating networks, biomass energy, etc.). However, research from Pantaleo et al. 

(2014a and 2014b) details exceptions, where the aim is to optimise operations in a smart 

grid or microgrid; however, they focus solely on electricity or power domain. These 

studies lack a more holistic approach to systematically consider the inter-relationship 

among the different domains. Taking a holistic approach today is important especially 

because of the rising carbon emissions rate. 

For example, increasing concern about climate change and CO2 emissions has led to more 

stringent environmental legislations and hence, energy managers have also had to keep 

greenhouse gas emissions as low as possible. There is also constant pressure for 

improvement of the technologies and fuels used; as this helps keep emissions from energy 

production as low as possible. Integration of renewables and low-carbon energy sources 

into the generation mix has also become crucial as they help cut down on emissions level. 

For example, a lot of work has explored trying to reduce greenhouse gas emissions by 

integrating biomass plants into the generation mix (Pantaleo et al. (2014a and 2014b); 

Chicco and Mancarella 2008; Mancarella and Chicco 2008). These models were more or 

less focused on biomass supply chain and distribution; however, they do not look into 

operational optimisation. Biomass is a low-carbon option as it produces fewer emissions 

compared to other fossil fuels. Nevertheless, the costs of integrating renewables into the 

generation mix and its management need to be capped, prompting the need for a multi-

objective approach.  

Arnette and Zobel (2012) use mixed-integer linear programming (MILP) techniques to 

deal with these multi-objective problems, taking into account renewable energy and 

conventional sources of energy such as coal plants, but focus on the electricity supply 

side alone (Arnette and Zobel 2012). Their approach does not consider thermal energy.  

Smart control of district energy management systems has been using neural networks, 

forecasting models, optimisation techniques in complex systems to support scheduling, 

adaptive control, model predictive control, and robust pattern detection. Some of these, 

however, focus on the design stages of a district. Hiremath et al. (2011) introduce a 

holistic mathematical model which takes into account several objectives, e.g. production 
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and distribution price impact on the environment; efficiency of technology used; and also 

potential labour employment in the area due to decentralised energy planning. The model, 

however, is applied for design optimisation rather than operational optimisation. Research 

previously has also looked into optimising the control parameters in the energy systems 

– boiler setpoints, water flow set points, and district heating supply (Jamot and Olsson 

201; Jiang et al. 2014). These set points or schedule of setpoints remain constant 

throughout the operations phase and do not take into account the day-to-day changes in 

demand profiles or weather, for example. A ‘master-slave’ optimisation technique 

(Fazlollahi and Marechal 2013; Fazlollahi et al. 2014) was used to combine evolutionary 

algorithms and MILP to solve the district optimisation problem. However, the research 

looks into both sizings of systems and operating parameters, which are more relevant for 

design purposes.  

Similar to the above, Maifredi et. al. (2000) use a decomposition approach to solve their 

optimisation problem. This work, however, can be applied at the operational level; the 

dynamic programming theory is used to provide dynamic schedules (changes every 24 

hours) for electricity and heat production in the co-generation system. The authors split 

the optimisation problem into a dynamic problem and a static problem with each having 

their respective set of decision variables, but the optimisation only considers cost as the 

objective. 

 Baños et. al (2011) conducted a review of optimisation methods applied to renewable 

and sustainable energy, and showed a significant increase in research papers using 

optimisation methods to solve renewable energy problems, especially for wind and solar 

systems. The authors’ review focused on papers that use traditional optimisation methods 

such as mixed-integer and interval-linear programming; quadratic programming and 

Lagrangian relaxation. They argue that heuristic optimisation, such as genetic algorithms 

and particle swarm optimisation, is a growing trend in the field of renewable and 

sustainable energy management. The review reveals that most of the research has not yet 

taken a holistic optimisation approach as the focus is more on individual renewable 

energy sources, e.g. wind power, solar energy, hydropower, and bioenergy. Their review 

also indicates that forecasting techniques are combined with optimisation approaches. For 

example, Marik et al. (2008) combine forecasting with mixed-integer nonlinear 

programming (MINLP) optimisation techniques, whereas Hashemi (2009) developed an 

offline model to optimise the operations of a combined cooling and heating power 

(CCHP) system (with storage) and uses non-linear solvers (LINGO 8.0). However, both 
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studies only consider cost optimisation. Ikonen et al. (2014), used physical models and 

multi-integer programming to optimise the supply temperature of a district heating 

network; they propose to extend their work in the future using forecasting models to 

implement near real-time optimisation. Pini Prato et al. (2012), examine thermo-

economic optimisation of CHP systems using MILP techniques. Even though this 

optimisation focuses on the operational stages, it does not consider emissions as an 

objective, but rather tries to exploit the heat storage capabilities of the network itself.  

Summarising the review of the district domain, again, combinations of AI techniques 

have been the recent trend, similar to the building domain. Very few, however, have 

looked into multi-objective optimisation during operational stages which takes into 

account all the different domains – costs, emissions, and efficiency. Figure 9 below 

summarises the various optimisation methodologies adopted in the work covering this 

domain and shows that evolutionary algorithms are seldom applied, despite being capable 

of solving multi-objective complex problems, as seen in the building domain. Therefore, 

a future potential strategy is to apply evolutionary algorithms such as the GA to the issue 

of supply side management in districts.   

 

Figure 9. Optimisation methodology adopted 

To apply such a multi-objective optimisation algorithm, however, a simulation or 

mathematical model would also be needed which could simulate the working of the 

district to compute the costs, emissions and efficiency there. 

Optimisation models are complemented with multi-agent systems (MASs) for real-time 

energy management in districts. MAS have been used previously for operational planning 

in district energy systems (including district heating systems) and are becoming a trend 
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(Wernstedt et al. 2007). Doing this, however, also requires simulation models to simulate 

the dynamics of the district based on the decisions made by the multi-agent systems. 

Consequently, analysing the results of the simulation helps researchers study the 

effectiveness of the operational planning decisions (Johansson & Wernstedt, 2005). For 

example, Wernstedt and Johansson (2008) suggest that this is usually carried out using 

weather forecasts as an input to simulation models to predict the future heat demand for 

any period. Consequently, multi-agent systems can then take action to look into 

optimisation of the heat demand. Simulation models used here usually do not explicitly 

model the distribution network or the individual consumer behaviour. They tend to be 

embedded as a black box within the consumer node. 

However, MAS are predominantly applied for demand response and matching of demand 

and supply in the electricity domain (Li and Nair 2015; Brazier et al. 2015). They are also 

used for distributed energy resources’ (DERs) management for better coordination of 

supply and demand, again with a focus on the power sector (electricity domain). Demand 

response here means customers can respond to the changing supply conditions (for 

example, the market prices) and change the pattern of their consumption. However, this 

does not reduce the demand itself, which is important. Actual reduction of demand would 

require agents to work with numerical optimisation.  

2.1.4. Discussion 

Evolutionary optimisation algorithms used for energy management in buildings and 

districts are certainly capable of increasing energy efficiency in the domain. These 

optimisation algorithms (evolutionary algorithms) need to be combined with 

mathematical/simulation models or other AI techniques such as prediction for better 

energy management. For example, using multi-objective optimisation with prediction 

models seems to be the way forward for real-time energy management and optimisation 

in buildings.  

The problem, however, is that demand side optimisation in buildings does not work 

together with the optimisation of the supply side in their districts. Vice-versa, supply side 

optimisation does not take into account demand optimisation (i.e. reduction); it largely 

focusses on management of supply to meet the particular demand. Therefore, one of the 

biggest challenges today is to harmonise energy management solutions at building 

(demand side) and their district (supply side) levels.  
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Despite the advancements in research, there are couple of common challenges both 

domains face: 

1. Both the domains need to look into all objectives possible for a holistic approach 

to energy management. Some of these objectives are listed in Table 1: 

Table 1. Multi-objectives to be considered for demand- and supply- side. 

 Demand Side Supply Side 

Minimise Costs    

Minimise Emissions    

Minimise Energy    

Maximise Comfort   

 

2. Solutions need to be linked with ICT technologies and automation systems to be 

implemented in real time and reduce the performance gap. 

2.2. Ontologies applied today 

This section of the chapter looks to review the application of ontologies in the domain of 

energy management in buildings and districts. The Scopus database was used to search 

for literature relating to the domain. The keywords used for searching were – ‘ontology 

AND building energy’, ‘ontology AND district energy’, and ‘ontology AND ‘energy 

management’. Keywords ‘building energy’ and ‘district energy’ were separated from the 

search as only five documents were found when the search combined these keywords 

with ontology. The operator AND was used with each of the keywords (building energy, 

district energy and energy management) because the scope of the review was limited to 

applications that use ontologies. The search criterion was also confined to the field of 

physical sciences, which includes some of the major domains such as Engineering, 

Computer Science, Energy, Mathematics, and Environmental Science. The search entered 

into Scopus is shown below: 

(TITLE-ABS-KEY (ontology AND district energy) OR TITLE-ABS-KEY (ontology AND 

building energy) OR TITLE-ABS-KEY (ontology AND energy management)) AND 

SUBJAREA (mult OR ceng OR CHEM OR comp OR eart OR ener OR engi OR envi OR 

mate OR math OR phys)  
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The search listed 369 documents as part of the results. These documents were then further 

filtered by removing unwanted subjects such as chemical sciences, business-related work, 

management-related work, and social science-based work. By doing this, the number of 

documents was filtered down to 349. The abstracts of these papers were read and 

irrelevant literature was removed. Then, documents that met at least one of the following 

criteria were selected for the final review: 

1. Linked to buildings domain. 

2. Linked to districts domain. 

3. Linked to energy management. 

4. Ontologies used as a middleware in software design. 

5. Ontologies used for decision-making. 

6. Ontologies focused on energy systems as silos, such as PV systems, wind turbine, 

etc. 

A total of 90 remaining documents were included in the review section. Apart from the 

literature taken from the Scopus database, the authors also reviewed some of the European 

research projects linked to the theme. The review helped categorise the work based on 

the methodology or level of application of ontologies. It was split into different categories, 

as shown in Figure 10 below: 

 

Figure 10. Ontology application in the domain of energy management in buildings and districts 
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 Level 1: Interoperability – this is the very basic use of an ontology when it is 

used merely to map different domains or bring heterogeneous technologies 

together. It can be further used to build independent domain applications. The 

application can query the ontology model to retrieve any static information. In 

the case of dynamic information, the ontology can be used to point to external 

databases or systems that store the location of these dynamic variables. For 

example, it can store the parameter location of variables from automation servers 

(which operates the automation systems), through which the current value can be 

read. Reasoning, as usual, can be applied to these ontologies, which may infer 

new knowledge that was not specified in the ontology explicitly. 

 Level 2: Knowledge-base – on top of interoperability, ontologies can also store 

rule axioms (SWRL rules or any other rule language) within the model. The rules 

make sure that certain conditions are followed if certain other conditions happen. 

These rules can add intelligence to the model; for example, energy anomalies or 

wastage situations can be identified in a building domain ontology as long as these 

conditions are pre-defined as rules in the ontology. They also help the reasoning 

purpose. 

 Level 3: Artificial Intelligence applications supported – here the ontology can 

be further linked with simulation models, multi-agent systems, event processing 

engines, etc. The ontology supports the running of these applications by providing 

the necessary information to the end-users for decision-making.  

The sections below review some of the research previously held in each of these 

categories in detail. 

2.2.1.  Ontologies Used for Interoperability 

Here, the ontologies are solely used to bring different data domains or technologies 

together.  

Many works use ontologies to represent home appliances and devices. DEHEMS (Digital 

Environment Home Energy Management Systems) ontology includes knowledge on 

different home appliances (Shah et al. 2011; Shah et al. 2010). Therefore, ontologies 

facilitate interaction between two or more heterogeneous applications. The DEHEMS 

ontology here is linked with Suggested Upper Merged Ontology (SUMO), which acts as 

an abstract layer on top of the domain ontology, the largest high-level ontology today 

(Pease 2016). Reusing or linking existing ontologies with domain-specific ontologies is 
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highly encouraged for ontology engineering to promote interoperability and reusability 

(Noy and McGuinness 2001). The SUMO framework is an upper-level domain-

independent ontology which enables disparate systems to utilise common knowledge. 

From SUMO, other domain-specific ontologies can be derived and it facilitates metadata 

interoperability and knowledge sharing among other SUMO-compliant ontologies. 

Compliance with SUMO makes the domain ontology more generic and easily reusable 

(Cherifi 2011). Other works using SUMO ontologies are A. Sicilia et al. (2015), Shah et 

al. (2010) and Tomašević et al. (2015). 

SAREF (Smart Appliances REFerence ontology) is another ontology used to represent 

smart appliances used in households. The ontology was developed to help develop a 

standardised interface for sensors and devices. The ontology can be used to communicate 

to heterogeneous systems found in the households (Daniele et al. 2015). Very similar 

work was also carried out by Den Hartog et al. (2015) to create a reference ontology for 

smart appliances in residential households. However, these ontologies were based on 

home appliances alone and lack supply and demand side concepts.   

Wicaksono et al. (2010) used an ontology to integrate many heterogeneous technologies, 

which when combined can support an intelligent energy management system. Here, the 

proposed KEHL framework uses a knowledge-base approach based on ontologies to 

represent knowledge. The knowledge was generated in three ways: 1. Manually by 

domain experts, 2. Semi-automatically by interpreting 2D drawings, and 3. Semi-

automatically using data mining algorithms. The ontology is also linked with other 

modules:  

 A presentation module (for visualisation, configuration, and control of building 

automation systems);  

 2D drawing interpretation module (for semi-automatic knowledge generation 

from 2D CAD drawings using JavaScript rules); and,  

 Data acquisition module (collect data from different building automation logic 

control units or gateways. The data is stored in an SQL-database where it is pre-

processed and ready to be used by the data-mining algorithm to derive energy 

usage patterns). 

Some of the work covered here is focused on the building design stages. For example, 

Niknam and Karshenas (2015) made available disparate sources of data relevant to energy 

analysis through semantic web services. Information such as geometry, material 
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properties, mechanical equipment specifications and climate information was used for 

energy analysis. The energy analysis applications could automatically discover and 

retrieve this data. The information was made available over the web in a machine-

processable format which could be shared, accessed and combined through a semantic 

web. These services allowed the building designers to focus on building design 

optimisation rather than spending time on data preparation and manual entry into energy 

analysis software. Similarly, Katranuschkov et al. (2015) used ontology as a platform to 

bring together multiple information sources in multiple different data models in a 

consistent manner for the efficient functioning of the Virtual Energy Lab. The Virtual 

Energy Lab was built for holistic building energy analysis during design stages. Although 

this work was used during the design stages of buildings, it shows the true potential of 

having an ontology in this building energy domain, which is complex in nature due to the 

multi-domain information models involved. 

Ontologies were also used as a middleware to enable the bringing together of various 

kinds of services to facilitate building energy management. Cafarrel et al. (2012, 2013) 

proposes an ontology-based multi-technology energy management platform called ‘Bat-

MP’, which enables integration of various building automation protocols, linking various 

kind of services, and allowing sharing of data. Bat-MP is designed as a middleware to 

support different kinds of services capable of managing building systems through home 

automation protocols. The middleware consists of three layers – technology manager, 

model manager, and service manager. Out of these, the model manager consists of the 

ontology which is used for the description of characteristics, properties and entities of a 

building. The service manager layer can then provide an application programming 

interface allowing a service to connect to the platform and interact and access information 

related to parameters in the building. From an energy management point of view, the Bat-

MP reads information from sensors and control actuators from different building 

management technologies. It can also implement demand response services by 

communicating with utilities to retrieve metering information. Hence, it can help reduce 

building energy consumption. 

Meanwhile, Project IntUBE aims to improve the energy efficiency of buildings by 

developing intelligent ICT techniques (Böhms et al. 2010). According to the authors, “the 

ontology used here brings together existing software functionalities using open standards 

and their open source implementations.” It advises users on their energy-consuming 

behaviour to minimise consumption while maintaining comfort. Ontology is used here as 
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an integration tool to bring together the various information needed for IntUBE to make 

decisions. It brings together four repositories: 

 BIM (Building Information Model) repository – contains all the general static 

information about the building such as location, building services, spaces, etc. 

 SIM (Simulation Information Model) repository – contains dynamic information 

which is needed as input parameters for simulation programs. 

 PIM (Performance Information Model) repository – handles the monitoring of 

data that is dynamic and changes in real time; 

  RD (reference data) repository – contains the metadata which stores interlinks 

between data from the above three repositories.  

Authors such as König et al. (2011) and König and Stankovski (2012) complement work 

in project IntUBE by integrating all the relevant information from various sources, for the 

stakeholders along the building lifecycle. The data here includes information that is 

mainly linked to Energy Efficiency (EE) and Renewable Energy Storage (RES) aspects 

of the buildings. Integration was carried out by using an ontology to build a sustainable 

building profile. There is currently a general lack of approaches that integrate factual data 

and information from a variety of sources and hence this ontology was helpful here, being 

an open knowledge-base. Along these lines, Pauwels, Törmä et al. (2015) investigated 

the use of semantics to bring together different data domains that can also compliment 

the Building Information Modelling (BIM) process when it comes to managing energy 

information. BIM is a process in which stakeholders and companies from the Architecture 

Engineering and Construction (AEC) industry who are involved in a project share 

information throughout the lifecycle of the project. BIM is simply information modelling 

and information management in a team environment. Certain applications require more 

than just BIM information (National Building Specification 2016). For example, Costa 

and Madrazo (2015) through a linked data approach, added semantic information about 

building products from multiple sources to building components in a BIM model, thereby 

giving structural modelling more meaning. Combining BIM with additional data models 

can also benefit the building energy analysis process. 

Currently, Industry Foundation Classes (IFC) data model, the standard for the BIM 

process, is not good enough to carry out holistic energy analysis. There is a gap in the 

IFC which does not give all the information needed to perform building simulations. 

Consequently, it fails to transform into a simulation domain model and cannot be used as 
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a direct input for performance simulations (Thorade et al. 2015). Information models for 

the simulation domain and corresponding file formats have been developed to deal with 

these drawbacks. The multiple sets of information that ontologies bring together can be 

fed into simulation tools and related simulation models. For example, energy performance 

analysis requires information on climate, architecture of building, user behaviours, etc. 

An ontological approach is beneficial as it is capable of following a centralised integration 

with the BIM model as the centre. BIM model implementations like the IFC aim to 

provide general concepts to cover common building design scenarios.  

Kadolsky et al. (2014) used ontologies to conceptualise the building, its external data 

(such as climate) and the relationship between these. Logical rules are used to represent 

the constraints and the calculation methods. These were then enabled through the energy-

enhanced BIM (ee-BIM) framework, which was consequently used to pre-check the 

simulation input and pre-analyse the energy performance by applying inference rules. The 

framework has to offer non-BIM domain models to complete ee-BIM ontology. The 

ontology platform, manages the input data, also helps in the execution of calculation 

methods. 

Especially for real-time energy management, looking into a single domain is not enough, 

and additional information from various interlinked domain needs to be taken into 

account (Kadolsky et al. 2015). Similarly, Corry et al. (2015) suggested ontologies can 

bring more than just BIM data to close the performance gap. Results provided by current 

BIM-based energy performance tools have been criticised, and they deviate from actual 

data measurements because of modelling assumptions and simplifications (Ham and 

Golparvar-Fard 2013). The building automation system (BAS) modelling needs to be 

interoperable with BIM (Scherer et al. 2012) so that real-time data can be taken into 

account, consequently closing the performance gap. The authors here propose using 

ontologies to bring these two worlds together. Energy-efficient design and operation 

requires data and information models that do not originally belong to the Architecture 

Engineering Construction (AEC) and Facility Management (FM) domain. Hence, these 

need to be linked to the BIM model. In similar works, Muthumanickam et al. (2014) 

investigate linking an IFC-based BIM model with energy-consumption data. Ploennigs et 

al. (2011) also developed an ontology HESMOS which closed the gap between information 

from BIM and monitoring data in building automation systems.  
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The Common Information Model (CIM) (UCA International Users Group 2014), one of 

the leading standards in the energy management domain, was used for development and 

alignment of the facility ontology. The IEC 61970 series of standards (CIM model) deals 

with the application program interfaces for energy management systems (EMSs). The 

Industry Foundation Classes (IFC) (buildingSMART International Ltd 2016) data model, 

which is a standardised specification of Building Information Modelling (BIM), was also 

used here which helped define the basic domain entities such as the data types, devices 

and (sub) systems. This work is also part of European energy research project CASCADE, 

which uses the ontology developed for facility energy management. 

2.2.2. Ontologies used to develop knowledge-bases for decision-making 

Kofler et al. (2011, 2012), developed an ontology to model an energy knowledge-base 

that provides information to users on energy consumption and also allows the home 

automation system to make intelligent decisions to optimise energy use. The authors 

above extended their work in 2013, and explored capturing user profile information and 

its effects on optimisation tasks in an ontology for future smart homes (Kofler et al. 2013). 

Representation of user behaviour is important to achieve greater comfort while trying to 

improve energy efficiency. The idea behind this work is to retrieve the already existing 

information from the BIM and AEC domain, and consequently integrate this to aid 

decision-making in smart homes. The objectives of such a system are to maintain user 

comfort and increase energy efficiency (Kofler and Kastner 2010). The ontology 

developed can be used as a shared vocabulary for an agent-based software system. The 

ontology also considers renewable energy suppliers which help the residents reduce their 

ecological footprint. It is formed of various modules which consist of different categories 

of parameters (useful for energy efficiency accordingly). Figure 11 below shows some of 

the main modules of the smart home ontology.  
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Figure 11. Different modules connected to smart home ontology 

The ontology here has a special focus on both the demand side and supply sides, and the 

interrelationships between them. Some of the applications of this would be to make sure 

the household appliances and consumer electronics run efficiently; and taking decisions 

on which renewable energy supplier to use would provide the optimal tariff for a 

scheduled task or program. This global system for intelligent, smart home management 

is called ThinkHome (Reinisch et al. 2010).  

Ontologies can also help derive SWRL (Semantic Web Rule Language) rules which can 

regulate system behaviour at a home automation level. Valiente-Rocha and Lozano-Tello 

(2010) created an ontology-based expert system which helped home automation and rules 

management. The model contained a database of home devices where the attribute values 

could be stored and also used to instantiate the ontology. A software application called 

DomoRules was consequently used to create SWRL rules from these instances. 

IntelliDomo, a system for controlling a domestic automation system (domotic), was used 

to draw inferences from the ontology and SWRL rules, by using parameters that were last 

indicated by the user, which meant that the state-of-the-art devices could be modified in 

real time. A very similar kind of approach was taken by Wicaksono et al. (2015), where 

the ontology was developed for intelligent energy management in buildings during the 

operational stage. It uses ontologies as a knowledge-base to represent the intelligence and 

then further uses it for reasoning purposes. Here, the knowledge in the ontology was 
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represented as rules and was used to identify energy wastage situations. The rules can be 

derived manually by domain experts, or semi-automatically using data-mining algorithms 

(provided monitored results are available), as shown in this study (Wicaksono et al. 2010). 

These rules can then be used to draw conclusions on building performance. The work was 

extended in 2013, where the authors used a rule engine based on SPARQL_Jess Bridge, 

which combines the execution of rules with Protégé API (Wicaksono et al. 2013). 

ifcOWL ontology was also included in this work.   

PowerOnt, which is an ontology-based power consumption model for smart homes, 

was developed, where the authors used it to estimate the real-time power consumption in 

homes with very few meters  (Bonino et al. 2015). Knowing the power consumption level 

can encourage householders to make positive changes to their energy usage behaviour. 

This ontology is also capable of linking with other smart home environment ontologies 

as the research links PowerOnt with DogOnt ontology. Nuccci et al. (2013) developed 

an ontology for a smart home, where all elements of the smart home (services, context, 

and devices) are formally described but with a focus on device and energy ontology. The 

novel holistic approach presented here can deal with energy production and consumption 

along with device and services management. Rosello-Busquet at al. (2011) also created 

an ontology to bring together the various electrical devices and appliances in a household 

to optimise the energy use and increase energy efficiency. The ontology here deals with 

the issues of interoperability when it comes to bringing devices from different vendors 

together. This ontology was used in the home energy management system (HEMS) 

proposed in this work. The HEMS also contains semantic web-based tools that provide a 

common interface and can also suggest energy management strategies through SWRL 

rule implementation (Rossello-Busquet et al. 2011). Ontologies used by Sallinen et al. 

(2012) provided data from different sources to an intelligent service platform, which 

further made decisions and controlled appliances in homes based on the information. By 

using ontology mapping, the platform was able to exchange information between 

different applications. The JESS engine was used to make decisions, and the platform as 

a whole was implemented using the OSGi service framework to which other systems 

could easily connect. One of the applications demonstrated through the platform was 

smart home heating.  

Grassi et al. (2011) talk about how energy consumption and production need to be dealt 

with together, and consider a holistic vision for the smart home environment. The 

ontology framework discussed here provides the necessary information needed for its 
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implementation. However, the work is only focused within the smart home environment 

– dealing with energy generation within the home environment. Semantic web 

technologies were used to provide data interoperability between the various devices 

involved and also to provide inference capabilities for task management and decision-

making, aiming for higher energy saving. 

Ontologies have also been used for office activity recognition (Nguyen et al. 2014). 

Activity recognition can be useful as it is a key input for building energy and comfort 

management systems. Knowing the activity can help control appliances to save energy 

while still meeting the comfort requirements. Again, a rule-based reasoning feature was 

used to identify the activity based on the state of all sensors. Similar work was conducted 

by Georgievski et al. (2013), where an ontology-based activity recognition was combined 

with AI planning for control of appliances. Camacho et al. (2014) used ontologies for 

conflict detection in home automation systems, thereby improving energy efficiency and 

maintaining comfort. Hsu and Wang (2008) used ontologies for smart home resource 

management where energy consumption, living space partition and network bandwidth 

(to detect any resource conflict) are all modelled into the ontology. Consequently, 

Inhabitants’ resource requirements can be predicted using the case-based reasoning 

features of this ontology. Ahmadi-Karvigh et al. (2016) used ontologies for pattern 

recognition and detected unsustainable behaviour leading to wastage of electricity. Such 

a study further encourages occupants to change their behaviours. The appliance data 

usage is input into the system proposed by authors. This input data is then categorised 

using ontologies based on their context information. The data is further segmented into 

active and inactive segments. Furthermore, the active segments associated with electricity 

consumption are then estimated. Hong et al. (2015) developed an ontology to represent 

energy-related behaviour of occupants in buildings. According to this study, the 

occupants’ interaction with the building can impact the overall building performance 

including comfort, energy load, technology efficiency and operational costs. Therefore, 

it is important to account for these behaviour changes and their effects on the building 

performance. The framework used DNAS (Drivers Needs Actions Systems) ontology 

which has four parts: 

 1) Drivers of behaviour (this is dependent on the environmental conditions that prompt 

actions from occupants to fulfil their psychological or physical needs),  

2) Needs of occupants (these are the tangible and intangible requirements of occupants 

for environmental satisfaction),  
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3) Actions by occupants (these are the actions that occupants perform to interact with 

systems),  

4) The systems used by occupants (these are the systems within or outside the buildings 

with which occupants can interact to control their indoor environment).  

Building modellers use this framework during design stages to simulate occupant 

behaviour, and, during the operational stages, the predictive models and algorithms can 

help improve energy performance by advising users through smart technologies. 

Engineers can also find this tool helpful as they can review their technologies or system’s 

performance by simulating the impact of different energy-related occupant behaviours. 

Such a review can be useful both during design stages and for retrofits.  

The SESAME project (Sesame Project Consortium 2011; Tomic et al. 2010) was focused 

on using smart meters and sensor-enabled solutions for buildings, as well as adapting 

them for commercialising in real-life settings. The project used semantic web 

technologies and semantically linked data to help users control their energy usage by 

making informed decisions. A number of ontologies were used – SESAME Automation 

ontology, SESAME Meter Data Ontology, and SESAME Pricing ontology. Rule-based 

policies were also used here to provide decision-making.  

Ontologies help design and manage low carbon/energy buildings. The authors in 

Tomašević et al. (2015) implemented a facility data model using ontologies as a part of 

the contemporary semantic web paradigm where the ontology stores the static knowledge. 

The use cases presented in the study show how this static knowledge was used for 

decision-making and how it helped improve energy management by interfacing this with 

a custom-based API (Application Programming Interface). The project investigates 

reducing the energy needs of airports by developing an ISO 50001 energy management 

system. The system helps with advanced fault detection and can be used as a diagnosis 

tool. The ICT solutions developed can also integrate with building automation and 

management systems for reduction of energy consumption by 20% and CO2 emissions 

by 20% (PSE AG 2012). This ontology was used in the European energy research project 

CASCADE, mentioned previously, for facility energy management. Tanasiev et al. 

(2015) also used ontologies for improving energy efficiency and maintaining user 

comforts. Kim et al. (2014) used an ontology-based knowledge-base cloud service for 

sharing knowledge with various BEMS. Once integrated with the ontology, BEMS can 

access the knowledge required for improving energy efficiency in buildings. Such a 



-39- 

 

solution integrates the context information (intelligence) gained from various BEMS 

experts and provides context-sensitive rules for a non-domain expert, thereby sharing 

knowledge on energy management. The knowledge cloud connects the building 

information, facility information, energy information, and environmental information 

needed for holistic energy management decision-making via the internet. This knowledge 

can accumulate over time and users of the service can benefit from each other’s 

knowledge. Yuce et al. (2015) used ontologies to store rules (in SWRL format); 

consequently, the ontology could be queried by the facilities manager through a unique 

user interface that allows negotiation of energy-saving measures to occur. The rule-

generation methodology in this paper is unique as it used simulation models, ANN 

models, and optimisation algorithm; and this system was used in the EU FP7 project 

KnoholEM (Howell et al. 2014; Yuce and Rezgui 2015). The end product of this was an 

intelligent building energy management system for public buildings through a holistic 

knowledge base, as described in Anzaldi et al. (2012). It provides an energy management 

strategy by focusing on occupants’ behaviour in buildings. The platforms bring together 

building occupants’ activities, the interaction between facilities and users, and building 

infrastructure information to improve building energy usage (Sicilia et al. 2015). The 

ontology of the repener-linked dataset was focused on the building energy performance 

domain containing information from the entire building life cycle which affects energy 

performance. The ontology also includes elements from different standards and covers 

certain core areas such as general project data (location of the building, use of the 

building, etc.), building properties, weather information, and operational data (thermostat 

setpoints, occupancy, comfort parameters), and certification (energy ratings). The dataset 

makes the end-users’ decision-making process easier as they have access to multiple 

sources of information, and this can improve the energy efficiency of buildings. Hou et 

al. (2014, 2015) used semantic web technologies to help structural engineers take a 

sustainable approach while designing. The ontology recommends structural design 

solutions that have low embodied energy and carbon as this is linked to the knowledge 

base, which combines structural information, materials and their environmental data.  

Ontologies have been used to aid energy management systems that apply to both domestic 

and industrial fields. Lopez et al. (2015, p.168) developed the ENERsip ontology which, 

according to the authors, helps “formally define the vocabulary and taxonomy and 

captures the engineering and business semantics of domain of knowledge of energy 

efficiency platforms needed for nZEN (nearly zero energy neighbourhood) vision of smart 
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grids”. Nearly Zero Energy Buildings (nZEB) are simply buildings that have a very high 

energy performance and consume nearly zero or very low amounts of energy. They can 

use energy from renewables, which can either be produced on-site or in the vicinity 

(European Union 2010). The European Performance of Buildings Directive (EPBD) 

states that, by 2020 all new buildings needs to be nZEB, and this also should be extended 

to existing buildings undergoing retrofits (Marique et al. 2013). Nearly Zero Energy 

Neighbourhood (nZEN) is the extrapolation of the nZEB concept wherein annual energy 

consumption of buildings in a neighbourhood and transportation of its inhabitants are 

balanced by renewable energy production locally. Macek et al. (2011) developed a 

platform, ‘ENERsip’, for industrial and residential users in households or flats, aiming to 

provide information about their electricity consumption, and consequently guiding them 

to make energy-saving decisions. The ontology here makes the implementation of 

services easier and significantly makes system development faster. It is primarily used 

here to help the software design process and not to make decisions on energy savings.  

Monitoring of real-time data and simulating the energy flows in a district is needed for 

optimisation of energy consumption. There can be many sources of such information, and 

it can also come encoded in different formats. DIMcloud is a model that helps the 

integration of heterogeneous data at a district level using ontologies and also establishes 

the relationships between this data. Ontologies play a significant role in DIMcloud as it 

acts as the link to gathering all the information required from the various types of 

databases (Brundu et al. 2015). This however lack any building level concepts and do not 

look into demand side optimisation. In similar work, Q. Zhou et al. (2012) used semantic 

web techniques to create an integrated smart grid information model. The model here is 

used for integration of information and knowledge representation which will help towards 

next-generation smart grid applications with a focus on demand response. An event-

processing engine is linked to the ontology for decision-making. In summary, the 

semantic model captures the following (Zhou, Simmhan, et al. 2012):  

 Data Sources: the sources of data can be smart meters (measures power 

consumption), sensors (airflow, occupancy, and temperature sensors), and 

weather-reporting services. The physical and virtual spaces that the data is 

measuring are linked to these sources. 

 Infrastructure: the distribution network and the physical environment of the 

campus power grid infrastructure are modelled as well. Buildings, rooms, energy 

appliance concepts, and their relationships are included here. 
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 Organisation: the organisations in the campus are also modelled here, which 

includes departments, labs, schools, etc. These can help define demand response 

strategies; for example, a department coordinator can be alerted in the case of 

consumption that exceeds the threshold. 

 Other information: existing domain ontologies are also used which can help model 

information such as scheduling and weather. 

Authors in Kuriyan (2015) developed a software framework which is used to analyse 

urban energy models. One of the parts of the framework is a technology database which 

is implemented as an ontology developed in Protégé. The ontology here is used simply to 

describe the available energy conversion, storage, and transportation processes. The 

ontology then feeds information to the framework for it to analyse scenarios for design 

optimisation of the urban energy systems while meeting objectives and constraints such 

as investment costs and emission targets.  

2.2.3. Ontologies used to support AI techniques 

Ontologies can also be used in combination with simulation models. SimModel 

(simulation domain model) is an interoperable XML (Extensible Markup Language) 

based data model used for the building simulation domain (O’Donnell et al. 2011). 

Pauwels et al. (2015) developed a SimModel as RDF graphs to make it interoperable with 

the other building information and data. SEMERGY is a computational environment 

which helps in building design and refurbishment optimisation by using semantic web 

technologies and simulation models (Gudnason and Scherer 2012). The framework 

embeds a comprehensive building data model, and it uses an ontology for the building 

product data. To consider valid building construction alternatives, SEMERGY deploys a 

rule-based logic. The refurbishment optimisation considers investment costs, 

environmental impact and energy demand of the various alternatives (Wolosiuk et al. 

2014). The authors in Han et al. (2011) used four ontologies in their system architecture 

to provide an intelligent energy management system. The ‘building architecture’ ontology 

contains general information on the building’s areas and zones. The ‘context’ ontology is 

used to identify if the building is behaving abnormally by analysing the operational data. 

The ‘cause’ ontology points out the cause of the abnormality. Finally, the ‘control’ 

ontology implements actions to solve the reasons for this abnormality. Abnormal 

situations lead to energy wastage. In addition, the simulation model was also used, the 

results of which helped accumulate inference rules by studying the effect of varying key 
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control parameters on building behaviour. The study, however, does not state if these 

rules are generated automatically or manually. 

An ontology-controlled energy simulation was developed by Baumgärtel et al. (2015). 

Here, an enhanced version of ee-BIM is used to support the integration and validation 

of input data for the simulation. This is achieved with the help of ontology constraints 

and rules. The work is beneficial because it automates the process of running various 

simulations to study different green building design options until the user-defined targets 

are fulfilled. It is also supported by parallel thermal simulations to run simulations of the 

various design choices. 

Ontology was also used in combination with MAS and IEC 61499 function blocks to 

make BAS more intelligent for efficient energy management (Mousavi and Vyatkin 

2015). BAS are heterogeneous systems that can have control over various devices (from 

the different vendors). However, these devices or their operating standards might be 

incompatible with each other. Ontologies ensure interoperability between the devices and 

their operations. The collaboration of these devices can help towards holistic energy 

management, making it more intelligent than a silo-based approach to energy 

management. The authors mention that the collaboration requires sharing of knowledge 

in a format that is machine-readable and machine-processable. For building automation 

systems this can be about facilities, devices, operations, building energy, etc. Once this is 

represented in the ontology in a machine-readable format, it can be queried, and used as 

a knowledge-base for decision-making. Ontologies represent knowledge in a structured 

way which deals with the increasing complexity of this domain, which can have many 

stakeholders, economic and environmental challenges. Once the ontologies conceptualise 

the domain, it can be reused for similar applications on different sites or systems. 

Moreover, the reasoning techniques that an ontology offers can be used for case-based 

reasoning, which is a powerful method for problem-solving.   

Ontologies have also been applied at a larger scale. A city-level application of ontologies 

for energy management was demonstrated in a European Union Framework Programme 

7 (EU FP7) project called SEMANCO. It aimed to develop an ontology-based energy 

information system and tools to help stakeholders involved in urban planning make 

decisions to reduce CO2 emissions at a city level (Madrazo et al. 2012). Nemirovski et al. 

(2013) describe the method in which ontologies can be designed to make this possible. 

The ontology brings together various data sources from different scales and domains 

(building, urban), and consequently simulation and other assessment tools developed 
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within the SEMANCO framework interact with the semantically modelled data (Corrado 

et al. 2015). Some of the domains brought together through the SEMANCO ontology are 

building, geospatial, energy, climate and socioeconomic (Sicilia et al. 2015). The work 

presented here integrates the semantic model developed with existing simulation software 

such as URSOS2.  

The Optimus project3 aims to manage energy production and consumption but within a 

building level. It is an ongoing project which seeks to develop a semantic-based decision-

support system to optimise the energy use in public buildings. The tools developed in the 

SEMANCO project, described previously, are further being used here to develop the 

decision support system optimises energy by providing short-term decisions. The 

decision support system analyses five types of data from heterogeneous and dynamic 

sources: building energy performance, social behaviour, weather forecasts, renewable 

energy production and energy prices (Á. Sicilia et al. 2015).  

The semantic framework here feeds the decision support system engine with all the 

information needed. The engine further uses intelligent rules to propose action plans for 

the user. The intelligent rules are fed by predicted data, static data, and real-time data.  

Ontology in Schiendorfer et al. (2015) was used to model resources from multiple 

hierarchical levels in a smart grid. The unified model is then used along with constraint-

based optimisation algorithms to help distributed energy management. Fernandez et al. 

(2013) used ontologies along with multi-agent systems for management and control of a 

smart grid. The paper discusses the architecture where ontologies form the middle layer, 

which is the link between real-time data collected from entities in the smart grid and 

multi-agent systems used for decision-making.  

Similarly, Aung et al. (2010) used ontologies for real-time operation and control of a 

smart grid. The ontology is used in the structure of the messages, and the agents interact 

with each other through these messages, providing a shared understanding of the 

information between the agents which work together for microgrid operation. The 

Ambassador project aimed to develop and experiment systems and tools that optimise 

energy usage at a district level by the management of energy flows, prediction and 

tracking of energy consumption and production. Doing this would meet its overall 

objective, which is to reduce the cost of energy in a district (Amires and 

                                                 
2 http://ursos-software.com/ 
3 http://www.optimus-smartcity.eu/ 
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Bumblebeestudio.eu 2016).The project plans to investigate energy efficiency at both  the 

district and building levels. It proposes to use an ontology for the autonomous system that 

needs to be developed. These autonomous systems aim to take real-time energy 

optimisation strategies to meet the various objectives. Here, the district energy 

management and information system (DEMIS) is designed to interact with other smart 

systems (BMS, EMS, etc.) to gather information which will help solve problems at the 

district level. Resilient (Resilient Project Consortium 2012), another project under the 

FP7 framework, also proposes the use of a district information model based on an 

ontology combined with simulation models and multi-agents to make optimum decisions 

at a district level. The aim is to help minimise energy use and consequently cut down 

carbon emissions (Hippolyte et al. 2014).   

The Inertia project (Inertia Consortium 2012) looked into developing a data management 

infrastructure that allows the production and consumption of electricity to be measured, 

reported and controlled. The demand side management framework enables local and 

global multi-agent management at a building and grid level respectively. The project 

develops a building-level ontology that covers three domains: location, devices, and 

occupants. The ontology also describes the DERs (such as HVAC and lighting), the 

sensors, and the actuators installed. The ontology here refers to the energy-related BIM 

model and is used to bring together the DERs with sensors and actuators. This is used to 

meet the various needs of the project, especially for information gathering. 

2.2.4. Discussion 

Summarising the review conducted above in terms of the application domain: ontologies 

have been applied to three types of domain within the supply and demand sides– Smart 

Homes, Smart Buildings, and Smart Grids. There are also occasional overlaps wherein 

some of these semantic models cover aspects of another domain as well, but largely they 

can be split into three. Figure 12 below shows an overview of the application of ontologies 

in the field of smart energy management for demand and supply sides. It also highlights 

the various gaps in the field.   
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Figure 12. Literature review summary with gaps in the field. 
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The gaps, shown in figure 12, in each of the domain is summarised below: 

Ontologies applied in Smart Homes - One of the major application areas for ontologies is 

smart home environments (SHEs). Integration between the various devices, appliances, 

and technologies is key for a holistic, intelligent energy management approach. 

Ontologies at a home level have mainly been used to represent the domain as concepts 

and also represent the interrelationships between these concepts. In other words, they 

have focused on presenting the information collected (data originating from devices, 

appliances, energy information, tenants, etc.). However, representation of energy 

information alone is not enough. Hence, following from this, the SHE was combined with 

reasoning and knowledge (modelled as rules), enabling it to be an intelligent system. The 

systems or frameworks used were capable of defining a common way to communicate 

with various devices from different vendors, for example, by integrating the various 

automation protocols. Most importantly, by doing this, they were able to contribute to 

making intelligent decisions. Some looked into activity recognition of occupants and 

intelligently controlled the appliances/devices in homes. Others monitor devices and 

occupant behaviour and suggest ways to positively change occupant behaviour in 

detecting energy-wasting situations. Positive changes to occupant behaviour were also 

made possible by using ontologies to estimate power consumption and analyse this. Most 

of these applications aim to minimise energy consumption and maintain occupant 

comfort. However, it is important to consider not just the demand side in these homes but 

also the supply or production side for holistic energy management, but research has 

seldom addressed integrating supply and demand concepts in a smart home.  

Ontologies applied in Smart Buildings - The work reviewed under the building domain 

examines building operations in a smart way, aiming to achieve high energy efficiency 

and maintain comfort for users. For example, SWRL rules were modelled into ontologies 

to help detect energy-wastage situations. Some of the work also looked at the design 

stages, trying to achieve a low carbon design and also perform a holistic energy analysis 

in these buildings. Ontologies in the building domain were combined with simulation 

models for a holistic energy analysis to study various design options. They were also used 

to examine refurbishment options considering investment cost, environmental impact and 

energy demand of the different scenarios. Multi-agent systems were also combined with 

ontologies for intelligent energy management. Ontologies linked smart meters and 

sensors together to help occupants make informed decisions about saving energy in 

buildings. The review also suggests how ontologies can complement BIM information by 
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combining various data sources with BIM data. Such an approach can help achieve a 

holistic energy analysis – as IFCs (BIM data standard) alone are not currently fit to do 

this. More importantly, to ensure holistic and real-time energy management, both static 

knowledge and operational knowledge need to complement each other. In relation to this, 

some research has tried to use ontologies to bring together the building automation 

systems and BIM model. Doing this is important, as it can lead to a reduction in 

performance gap and today work rarely addresses the integration of BEMS or BAS with 

this operational knowledge to aid in energy management. The problem here is also similar 

to the smart home environment domain – it is necessary to consider a holistic viewpoint 

and involve the supply side as well for decision-making. 

Ontologies applied in Smart Grids - Another domain of application of ontologies is smart 

grids or in urban energy systems. In most cases, the ontology is used as a knowledge base 

for information brought together from heterogeneous sources. Some researchers used 

MAS or simulation models with a knowledge base to make decisions on smart grid 

operations. In some cases, ontologies have been linked to an event-processing engine for 

operations such as demand response. In certain cases, the ontology was used to aid 

software design as well, such as Macek et al. (2011), where the ENERsip ontology was 

used to produce semantics to achieve the nearly zero energy neighbourhood (nZEN) 

vision of smart grids. Ontologies are used for the design of autonomous systems, which 

aims at operating the smart grid in real time. They were also used for an urban energy 

design optimisation study where the knowledge base provides all the heterogeneous 

information (from various domains in a district or city) needed to assess urban energy 

systems, especially their design, from a cost or sustainability point of view. However, 

there is a lack of holistic approach because optimisation of demand within the buildings 

and production side optimisation are not considered simultaneously. The solutions 

reviewed here focus on the operations of the production side of the grid where it tries to 

deal with how best to meet the demand and never attempts to reduce the demand itself. 
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3. Ontology Development Methodology 

From Chapter 2, it is clear that semantic models are applied for smart energy management 

in both demand (smart homes and smart buildings) and supply side (smart grids). Within 

their respective domains, both multi-objectives (user comfort, energy, environment, 

efficiency, and cost) and real-time data are considered for operational stage energy 

management. However, the integration of energy management techniques at demand and 

supply side is a definite research gap. For example, in previous works, smart grid 

ontologies represent the energy demand for buildings but do not implement or support 

techniques to optimise it. On the other hand, smart home/building semantic models look 

to increase energy efficiency within the home or building but fail to consider energy 

efficiency at their supply side. This PhD research develops an ontology to support holistic 

energy management for both supply and demand sides. The ontology to be developed was 

named REMO, which stands for real-time energy management and optimisation ontology. 

 The review also shows how semantic models linking with automation systems are 

increasingly used for rule-based decision-making to increase energy efficiency at a home 

or building level. On the other hand, at the district level, semantic models are used to 

support AI linked simulation models to increase energy efficiency. This research, along 

similar lines, focuses on developing an ontology-based framework which supports both 

AI models and automation systems to increase overall energy efficiency. 

3.1. Ontology development and validation methodology 

There are many ontology development methodologies that have been adopted in the past. 

Some of these works have been reviewed by Fernández-López (1999). Looking at some 

of these methods presented in the paper above, a few of the common steps involve: 

1. Definition of the requirements (where the purpose of the ontology is defined). 

2. Extracting terms and concepts (here the taxonomy, i.e. the concepts, is formally 

defined in the ontology). 

3. Implementation of the ontology (using a formal language to build the ontology in 

detail, which means even adding relationships between concepts, and rule 

axioms). 

4. Evaluation of the ontology (testing the ontology to see if it meets the 

requirements). 

The development process may not be linear, and several refinements can be made by 

repeating some of these stages (Roussey et al. 2011). Many different methodologies are 
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available; however, the enterprise ontology development methodology defined by 

Grüninger and Fox (1995) is closely examined for the development of the required 

ontology.  

Taking this into account, the methodology adopted in this research is presented below in 

Figure 13: 

 

Figure 13. Methodology adopted for development of REMO ontology 

3.1.1. Domain information collection  

Here the domains are studied in detail to understand how the ontology can be applied for 

real-time energy management. This PhD adopted action research to understand the 

application of real-time energy management techniques in the domain. Action research 

further helped conceptualise the domain. Action research for this stage can be defined as: 

“A disciplined process of inquiry conducted by and for those taking the action. The 

primary reason for engaging in action research is to assist the ‘actor’ in improving 

and/or refining his or her actions.” (ASCD 2016). It is also meant to be a reflective 

process of progressive problem-solving (Culatta 2015). 

The author was involved in two European Union Framework Programme 7 (FP7) research 

projects, which have been used as case studies in this process to understand the practical 

solutions applied to today’s real-time energy management issues which are at the cusp of 
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European research. The two projects were SportE24 and Resilient5. SportE2 looked into 

demand side optimisation, whereas Resilient looked into supply side optimisation. 

Although the two projects were focused on different domains, demand and supply, both 

aimed to address the problem of real-time energy management using AI concepts. In the 

case of the demand side (within buildings), the primary focus was to reduce demand and 

costs while trying to maintain occupants’ comfort levels. In the case of the district (supply 

side), the main objective was to keep carbon emissions and operational costs of the district 

at a minimum while trying to meet the demand. This phase also aimed to identify factors 

that affect the objectives of the district or building optimisation problem – costs, 

emissions, comfort, and efficiency. The artificial intelligence technologies used for these 

projects were very different in nature. Each project conducted a detailed literature review 

and selected some of these artificial intelligence techniques and algorithms.  

3.1.2. Taxonomy development 

A taxonomy6 here represents a classification scheme that organises controlled vocabulary 

into a hierarchical structure based on the user needs. Through the action research and 

domain conceptualisation stage, key concepts are identified from the demand and supply 

domains that are needed for real-time energy management and optimisation.  

Understanding the methodology in which artificial intelligence was used for real-time 

energy management was important so that taxonomy of REMO ontology could be 

appropriately designed to support these AI techniques. Moreover, the knowledge behind 

the use of these artificial intelligence models needed to be captured in REMO ontology 

through rule axioms. Capturing this knowledge meant that, once the ontology was built 

and instantiated, it would be capable of providing all the information needed to develop 

AI models. For example, in the case of prediction or optimisation models, the input 

parameters and output parameters can be identified.  

The projects and the work undertaken by the author and colleagues as a part of this are 

presented in Chapter 4. The key project use cases were also beneficial to model the 

domain (supply and demand) related concepts in the ontology. The concepts identified 

here are listed in a hierarchical structure (class hierarchy) also establishing the 

relationships between various classes and concepts. Chapter 4 towards the end represents 

                                                 
4 http://www.sporte2.eu/  
5 http://www.resilient-project.eu/ 
 
6 http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.html#sect-taxonomies  

http://www.sporte2.eu/
http://www.resilient-project.eu/
http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.html#sect-taxonomies
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some of the learning and understanding from these projects which have helped develop 

the REMO taxonomy. Working on these projects as case studies helped with the following 

research questions, which were listed earlier in Chapter 1: 

 What are the artificial intelligence techniques that can be applied at a building and 

district level for real-time energy management? 

 What are the various objectives that need to be considered for energy management 

when it comes to building and district energy management? 

 How can building and district energy management techniques be harmonised to 

take a multi-objective approach? 

3.1.3. Competency questions 

It was necessary to list competency questions as this helped to determine the scope of the 

ontology and some of its applications. The ontology-based knowledge-base should be 

able to answer these questions either through inferencing or querying (Grüninger and Fox 

1995). Competency questions help define the scope of the ontology. They are usually just 

a sketch, and the list does not need to be exhaustive (Noy and McGuinness 2001). These 

are defined for REMO in Chapter 6 under Section 6.2.1. 

3.1.4. Development using an ontology editor 

The ontology was built using the TopBraid Composer Standard Edition7, which is a 

powerful tool used to build semantic web and linked data applications. Web Ontology 

Language (OWL), which is an extension to RDFS (Resource Description Framework 

Schema), is a formal syntax for defining ontologies as simple classes and objects (Linked 

Data Tools 2015). Both RDFS8 and OWL are W3C specifications. RDFS is a semantic 

extension of RDF through which a group of related resources (RDF) and the relationship 

between them can be described. RDF is a way of modelling data in triples – subject 

(denotes the resource), predicate (expresses the relationship between the subject and the 

object) and object.  RDF and OWL9 language use classes and subclasses to classify things 

regarding semantics. Classification of individuals into groups sharing common 

characteristics can be defined as a class in OWL Specification. Once all these classes are 

classified and the relationships between them have been established, a domain model is 

                                                 
7 http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition 
 
8 https://www.w3.org/TR/rdf-schema/ 
 
9 https://www.w3.org/TR/owl-features/ 
 

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-features/
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complete where a common vocabulary and a shared understanding is established. 

Consequently, the instances of these classes and subclasses can be defined and are called 

individuals. Individual members of the class come under the semantic classification given 

by the OWL class. The individuals are related by properties:  

(1) Object properties relate individuals or instances of two OWL classes and, 

(2) Datatype properties relate individuals of OWL classes to literal values. 

Defining all the individuals and their properties completes the instance model. 

Reusing an existing ontology (which is well established in the domain) is recommended 

in ontology engineering to avoid “reinventing the wheel” (Madrazo and Sicilia 2014). 

These third-party ontologies can be imported to REMO ontology, and their concepts can 

be either reused or mapped with the similar REMO concepts.  

3.1.5. Defining rule axioms 

Ontologies are based on description logics, which is classical logic, whereas rules are 

based on logic programming. Rules, therefore, provide high expressivity with efficient 

reasoning support. Therefore, rules are usually combined with ontologies and can be used 

for problem-solving. 

Background on SPIN and SPARQL 

A wide range of business rules can be represented through SPIN rules. SPIN rules store 

SPARQL queries and help specify constraints or rules (World Wide Web Consortium 

2011). SPARQL query stands for SPARQL query and RDF Query Language. It is a 

semantic query language, which is capable of retrieving and manipulating data stored in 

RDF format from databases. These queries are made possible using HTTP protocol, and 

they are sent from a client to a SPARQL endpoint. Because the interaction between the 

endpoint and the client happens through a machine-friendly protocol – it cannot be 

interpreted by humans – hence SPARQL requires an interface through which queries can 

be entered, and results can be displayed in a meaningful way (World Wide Web 

Consortium 2008).  

SPIN rules also help define RDF class description properties – 

 spin:rule – the inference rules can be defined here. 

 spin:constraint – these can be used to define conditions that all members of a class 

need to meet. 
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 spin:constructor – any new instance that needs a default value can be defined 

through a rule using this property. 

SWRL rules can also be used for the same purpose as SPIN rules. SWRL stands for 

Semantic Web Rule Language and is a combination of the OWL web ontology language 

and ruleML sublanguage of rule mark-up language. The rules are written in abstract 

syntax, and they make sure that a certain action is followed if certain other conditions 

happen (World Wide Web Consortium 2004). 

SPIN rules were chosen as the rule engine for REMO ontology. One of the reasons for this 

is that the SPIN-related class properties are class-specific properties whereas SWRL is 

applied to the entire ontology. SPIN, being based on SPARQL, is more expressive that 

SWRL and hence is considered to be far superior than SWRL. SPIN rules are also capable 

of expressing constraints, defining new functions and templates. (World Wide Web 

Consortium n.d.). Another reason for preferring SPIN over SWRL was that numerous 

engines and databases could support SPARQL, and it is considered to be well established.  

3.1.6. Ontology evaluation  

There are many ways to validate ontologies, as shown by previous works (Staab and 

Studer 2009; Brank et al. 2005; Denny Vrandecic 2010). Ontology validation is important 

to prove that the ontology built is credible and is worth being reused (knowledge artefacts 

are reusable) and extended in the future. Evaluation is especially important today because 

an increasing number of ontologies are being built and users need to know which ones 

are credible enough to be reused.  

The ontology evaluation can be defined to include two concepts as mentioned by 

Vrandecic 2010– verification and validation. Ontology verification is needed to see if the 

ontology has been built correctly, whereas ontology validation is needed to determine if 

the correct ontology has been constructed. For the REMO ontology a number of evaluation 

steps have been taken for both these types of validation, which have been adopted from 

the survey conducted by Hlomani and Stacey (2014): 

Verification 

Here, the correctness of the ontology is checked. The ontology is validated mainly 

through consistency checking, which looks for syntax-related issues and other violations 

regarding the range of parameters and axioms. It is therefore used for testing and 
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debugging the ontology (both domain model and instance model). Doing this prevents 

ambiguous results being returned from the ontology when it is queried or reasoned.   

Validation 

Hlomani and Stacey (2014) also mentions ‘application-based evaluation’ as an important 

approach for evaluating ontologies, where the effectiveness of the ontology is assessed in 

the context of its application or use cases. To do this, an instance model of the ontology 

was also defined where ontology classes are instantiated with individuals. This instance 

model then undergoes a series of evaluation methods: 

 The reasoning of the REMO ontology is tested by validating the relevance of 

inferred knowledge. Reasoning engines are algorithms that use the defined 

ontology and derive (or infer) new knowledge from it. These were not explicitly 

mentioned in the ontology during the instantiation process. Reasoning also helps 

identify any inconsistencies in the ontology. 

 SPARQL queries are also used to test the instance model to see the relevance of 

the responses. The competency questions are evaluated here, and the relevance of 

the responses are analysed. Fox et al. (1997) in their work on TOVE ontology, 

stressed the importance of competence during validation where the ontology is 

explored in the context of their competency questions.  

Various other metrics and validation approaches are also mentioned in this paper; 

however, in the case of REMO, the above-mentioned steps were chosen for validation. 

These steps test its basic working from an application point of view and quality regarding 

syntax and semantics.  

This part of the research help draws conclusions relating to the final two research 

questions: 

 Can ontologies help facilitate the harmonisation of demand and supply side 

optimisation? Moreover, how? 

 Can the knowledge behind the optimisation models be captured in the ontology 

so that they can be replicated for similar districts and buildings? 
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3.2. Notation Conventions 

Any referral to the ontology is highlighted by bold Courier New font. An entity or 

attribute of the ontology itself is denoted by Courier New font. The best practices 

adopted for naming and vocabulary are presented below (Structured Dynamics 2014):  

 Name of classes starts with a capital letter. Classes in an ontology that have names 

consisting of more than one word are named using CamelCase Notation (no 

spaces left between the words). These classes represent the main concepts of the 

ontology. Most of these classes are also named as single nouns.  

 The attributes (properties) in the ontology are named as verb senses – for example, 

hasName. These predicates are named starting with a lower-case letter, using 

mixedCase notation, and are italicised. Once again, no spaces are left between the 

words, and a capital letter is used for every word after the first. 

 No particular naming conventions are applied for the individuals, i.e. the instances 

of the class. However, their names are italicised. 

 In figures representing parts of the ontology, the grey shaded boxes refer to 

classes, and white boxes represent the individuals. The attributes of classes are 

represented in grey boxes with dashed line borders, whereas those of individuals 

are represented in white boxes with dashed line borders. 
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4. Action research through European Union research projects  

This chapter covers in detail the action research conducted and knowledge concluded 

from working on the project case studies. This knowledge was fundamental to building 

REMO ontology as mentioned earlier in Section 3.1.1 In this Chapter, Section 4.1 looks 

into demand side energy management (building) – SportE2 – and Section 4.2 looks into 

production side energy management (district) – Resilient. Section 4.3 finally concludes 

some of the knowledge gained from action research and how the gaps identified in action 

research would be addressed thorough the REMO ontology. 

4.1. SportE2 Project – demand side energy management 

The aim of the SportE2 Project was to “develop an integrated, modular, and scalable ICT 

system to manage energy consumption, generation, and exchange locally and within the 

larger context of the smart grid/neighbourhood.” (SportE2 Project Consortium 2014). 

SportE2 aimed to use artificial intelligent techniques such as multi-objective optimisation 

and neural network model (ANN) for real-time energy management in sports facilities. 

The aim of the project was to cut down the energy consumption of existing sports facilities 

by 30%. The problem as a whole in the facility was broken down into use cases and 

scenarios following the divide and conquer principle. The rationale behind this was that 

small savings in each of these different scenarios would bring about a significant overall 

energy saving in the facility.  

The project developed four scalable modules which could either be integrated or adopted 

separately based on the client’s requirements. The modules were (shown in figure 14 

below): 

 SportE2 HOW (smart metering to determine where energy is being consumed),  

 SportE2 WHEN (integrated control systems that enable the actuation of energy 

sourcing and consumption),  

 SportE2 WHY (intelligent and optimal decision-making given smart metering 

data and control capabilities), and  

 SportE2 WHERE (a multi-facility management portal).   

The interaction between the different modules is shown below in Figure 14 (SportE2 

Project Consortium 2014). 
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Figure 14. SportE2 System Architecture (SportE2 Project Consortium 2014) 

WHY module workflow 

Cardiff University was in charge of the development of the WHY module, and this 

module relies on real-time data, which is collected through sensors and meters and fine-

tuned by the HOW module. The data is made available via an automation server, provided 

by the WHEN module. The WHY module requests data every 15 minutes and the 

optimisation system developed by Cardiff University consequently aims to provide 

optimised control parameters. The optimisation objectives in most cases were to minimise 

energy and maximise comfort. The WHY module uses a range of artificial intelligence 

models (artificial neural network models, and multi-objective optimisation algorithms) 

and mathematical models (EnergyPlus or Simulink simulation models). The entire 

building optimisation problem was split into use cases and scenarios, each of which had 

its prediction and optimisation model. The initial stages of the project finalised these use 

cases, which also had to be compatible with the other modules – HOW and WHEN. 

The optimisation solution adopted by the WHY module is shown below in Figure 15. 

Simulation models are initially used to run energy simulations for various scenarios and 

use cases. These results are then used to train artificial neural network (ANN) models for 

each use case or scenario. Once the ANN model is trained and validated, different 

optimisation algorithms can be used to run with it as the cost function.  
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Figure 15. ANN embedded within optimisation Framework 

On receiving the data, the WHY module aimed to return optimum solutions to the 

automation server within a couple of minutes, and hence High-Performance Computing 

(HPC) was implemented. The details of the HPC and its integration with the web services 

and optimisation are mentioned in Petri et al. (2014a). 

4.1.1. Contribution to SportE2 - Use case and scenario development  

The authors major contribution in the project was the development and finalisation of 

these use cases and scenarios. Specific operational use cases and scenarios (instead of a 

comprehensive map of all relevant variables) were developed mainly to limit the amount 

of variables being considered in an optimisation problem. Further analysis of the 

scenarios was also carried out to limit variables by focusing on the most ‘sensible’ (to the 

multi-objective optimisation problem) ones. A general template was developed by the 

author to represent the WHY module use cases and their requirements is presented later 

in the section. The template was developed by interacting with pilot owners and facility 

managers. The methodology for the development of use cases is also presented later in 

this section. SportE2 WHY optimisation can be applied to various possible use cases and 

scenarios in a facility, but its feasibility depends on:  

1. Cost constraints – Cost implications of the practical implementation of the 

solutions should be discussed with pilot owners before making decisions on use 

case implementation. A list of sensors, actuators, meters, and other equipment 

needed and their costs should be finalised for each scenario before pilot owners 

make decisions.  
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2. Energy Audits – Energy audits of the facility help identify the zones in the facility, 

which are major energy consumers. Use cases/scenarios, therefore, could focus 

on these areas. 

3. Practicality – Implementation of SportE2. Solutions would need the scenarios to 

be feasible for all SportE2 modules especially HOW (monitoring) and WHEN 

(control) modules. Sufficient data from sensors and control of devices and 

actuators must be feasible in reality.  

As mentioned earlier in this section, simulation models are key to SportE2 WHY module 

to be able to produce enough dataset for ANN training. However, there can be cases when 

simulation models of buildings do not exist, or the buildings could be too complex to be 

modelled. In such situations the BMS can be used to provide historical data and this data 

can be used to train the ANN model consequently. Figure 16 shows the generalised 

methodology utilised in SportE2 WHY to finalise scenario definitions for different pilots.  
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Figure 16. Use case development methodology and actions 

Generic list of use cases1
• General list of use cases and scenarios defined.

• Generic definition of use cases.

Pilot specific scenarios2
• Each pilot studied separately.

• Scenarios identified for specific pilots.

Simulation models or historical data3
• Simulation models of each pilot studied in detail.

• Historical data investigated if simulation model is not available.

Mapping of devices and variables4
• Sensors, meters and actuators from scenario definition mapped to simulation 

model or historical data.

• A monitoring plan is proposed for data to be collected from any new installations.

Final decision on scenario feasibility5
• Decision made on feasibility of scenario for SportE2 applications.

• Agreement reached between the different partners.

Fine-tuning of scenario6
• List of sensors, meters and actuators finalised for installation.

• Scenario fine-tuned accordingly.

Extraction of data7
• Data extracted from results of simulation.

• Simulation models are run iteratively to collect data from different possibilities.

Results analysis8
• Unwanted data removed from results.

• This ensures safe learning of the neural network.

Final data set prepared and ANN training9
• Final data set prepared and classified as inputs and outputs for training purposes.

• ANN model trained accordingly.
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Figure 16 is explained below: 

1. Initially, a general list of use cases and scenarios was identified based on literature 

and domain knowledge. It included a full list of potential scenarios for real-time 

energy management that could be applied in sports facilities during the 

operational stages. 

2. The pilot-specific scenarios were identified by interaction with pilot owners and 

facility managers. The energy audit was also taken into consideration at this stage. 

The HOW and WHEN module technical partners were consulted to decide on a 

final list of scenarios to be implemented. 

3. Simulation models and historical data were analysed to check if they could 

provide sufficient data for training of ANN models for the respective scenarios. 

4. The devices, sensors, meters and actuators in the facility were mapped with 

variables defined in the WHY module as input and output for each use 

case/scenario. Knowing this helped analyse the feasibility to implement the 

scenario in reality. The scenario would be then fine-tuned based on available 

devices and variables or, in certain cases, the missing physical devices would be 

installed based on the requirements. 

5. Various simulation runs were performed by considering the broad range of 

possible solutions (using a range for decision variable) to gather data, in the cases 

when historical data is not available.  

6. The data was analysed, and unwanted data, which was not relevant to the use 

case/scenario, was removed. For example, data related to unoccupied hours can 

be removed if not related to the scenario. The processed data sets were 

consequently used for ANN training 

The different use cases developed in the project by Cardiff University, which uses ANN-

based optimisation, is described in the project deliverable (Cardiff University 2013). 

However couple of sample use cases are shown below. 

Use case examples for FIDIA and EMTE pilot 

Evaporation in swimming pools is one of the root causes of them being major energy 

consumers. In the FIDIA pilot, the audits suggested that the swimming pool was 

responsible for almost 50% of electricity consumption, and 44% of thermal energy onsite. 

The scenario developed through the project proposes to optimise the air-handling unit in 
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the swimming pool zone to ensure proper air treatment for the zone, and aims to provide 

sufficient conditioned air to the area to reduce evaporation of surface water. Supplied 

inlet air temperature was controlled to maintain comfort requirements while reducing 

energy usage. The scenario also has the potential to control the supply airflow rate if need 

be, but, in the case of the FIDIA pilot, control limitations meant this was not possible in 

reality. 

Table 2. Parameters Involved in Scenario 

Use case 1: Optimisation of HVAC System in swimming pool room 

Scenario  Area Objective Variables 
Sensors/Meters/Set

points 
Units 

Air 
treatment 

Swimming 
pool area 

Minimise 
energy 

consumption; 
Maximise 
thermal 
comfort 

Input for 
ANN & 

Optimisation 

Occupancy Occupancy sensor - 

Indoor temperature Temperature sensor deg. C 

Water temperature Temperature sensor deg. C 

Indoor humidity Humidity sensor % 

Air temperature inlet Temperature sensor deg. C 

Supplied air flow 
rate Velocity sensor kg/s 

Output of  
ANN 

PMV - - 

Electrical energy Electricity meter kwh 

Thermal energy 
supplied  Heat meter kwh 

Output of 
Optimisation  

Optimised air 
temperature inlet Optimised setpoint  deg. C 

PMV - - 

Optimised electrical 
energy - kwh 

Optimised thermal 
energy supplied  - kwh 

      

additional 
parameters 
for Validity 

Check 

Carbon 
concentrations 

Co2 sensor (air 
quality) ppm 

Chlorine in air Cl sensor (air quality) ppm 

Actors Automation server, facility technician, sensor, actuator. 

When 
Applicable 

During operational period  

Additional 
Notes 

1. By default all input parameters are validated before any optimisation can take place. In FIDIA 
scenario 1, there are two extra parameters which needs to be considered for validation. Variables like 
CO2 concentrations and Chlorine concentration in air can affect the air quality of room. Therefore, WHY 
module takes into account these variables even though it is not used in the ANN model nor for 
optimisation.                                                                                                                                                                                                                                                                
2. Here, although the air flow rate used is kg/s in WHY module, the sensors measure air velocity in m/s 
in FIDIA facility. This air velocity is used to calculate the air flow rate by multiplying with density of air 
and duct size. 
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Table 2 above shows the parameters involved in the optimisation process. Implementation 

of the optimisation scenario, in reality, is shown below in Figure 17.  

 

Figure 17. Sample use case of SportE2 

Figure 17 shows the workflow of WHY module where initially, the BMS provides real-

time readings from sensors and actuators to be passed on as the inputs of the ANN model 

for each scenario. The optimisation model then finds the optimum setpoints for the 

scenario by running the ANN model repeatedly (Yang et al. 2014). Moreover, some 

variables like CO2 concentrations and chlorine concentration in air can affect the air 

quality of a room; these are variables that are not present in the optimisation model or 

ANN model, but simple rules are implemented in the optimisation for this scenario 

wherein drastic measures are taken to counteract the situation. For example, in the case 

of high chlorine in the air, the supply airflow rate is increased to maximum, and no 

optimisation is performed until the following time step. 

Similarly, an optimisation scenario was also developed for HVAC systems in fitness 

rooms. This use case was developed for the EMTE pilot. Table 3 below shows the 

variables needed for prediction and optimisation models. Other use cases and scenarios 

developed can be found in the deliverable <reference sporte2 deliverable> 
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Table 3.  EMTE pilot use case 1 for optimisation of HVAC system 

 

4.1.2. Results achieved through SportE2 optimisation 

The ANN model development and its testing are presented by Yuce et al. (2014). The 

details of the optimisation framework of SportE2 and its testing can be found in work 

presented by Yang et al. (2014). Use of high-performance computing and cloud-based 

EMTE Use case 1: Optimisation of HVAC System 

Scenario  Area Objective Variables 
Sensors/Meters 

/Setpoints 
Units 

Optimisation 
of HVAC 
system  

(air handling 
unit)  

Fitness 
Room 1 

Minimise 
Energy 

consumption; 
Maximise 
Thermal 
comfort 

Input for 
ANN & 

Optimisation  

Occupancy Occupancy sensor - 

Outdoor 
temperature Temperature sensor 

deg. 
C 

Indoor temperature 
Temperature 
sensor 

deg. 
C 

Activity type* 
(no sensor) based 
on schedule - 

Indoor humidity Humidity sensor % 

Outdoor humidity Humidity sensor % 

Co2 concentrations Co2 sensor  ppm 

Thermostat heating 
setpoint Setpoint 

deg. 
C 

Supplied air flow 
rate Velocity sensor kg/s 

Output of 
ANN 

Pmv - - 

Fancoil heating 
energy Heat meter kwh 

Output of 
Optimisation  

Optimised supplied 
air flow rate  

Optimised setpoint 
kg/s 

Optimised 
thermostat heating 
setpoint 

Optimised setpoint 
(through 
thermostat) 

deg. 
C 

 Pmv - - 

Optimised fancoil 
heating energy - kwh 

Actors Automation server, facility technician, sensor, actuator. 

When 
Applicable 

During operational period (winter months) 

Additional 
Notes 

1. *Activity type is an input to ANN model and this is based on a pre-defined schedule by pilot 
facility managers. The activity types are: Aerobics – activity type 5; Pilates – activity type 4; 
GAP (exercises to strengthen legs and abdomen) – activity type 3; GIM (elderly people) - 
activity type 2; and Aerotxiki (Aerobics for children) – activity type 1. 
2. PMV computation is from EnergyPlus model. In reality this cannot be calculated. PMV gives 
a rough idea of comfort of occupants. This is not monitored by any sensor or meter.                                                                                                                                                     
3. Here, although the air flow rate used is kg/s in WHY module, the sensors measure air 
velocity in m/s in FIDIA facility. This air velocity is used to calculate the air flow rate by 
multiplying with density of air and duct size. 
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services for optimisation is detailed by Petri et. al (2014a). The SportE2 solutions were 

very efficient and have proven energy savings in various real-world scenarios, as shown 

below through the project validation. The objective of the project was to guarantee energy 

savings of about 30%. 

The energy validation phase of the project was led by project partners, and they analysed 

data in two stages for each of the pilot. Initially the SportE2 systems and solutions were 

turned off for a period (typically a working week). During this time, plants and devices 

are controlled manually, and the energy consumption was monitored in detail using the 

various sub-meters available to the pilot. Consequently, in the second stage, the SportE2 

systems were activated (i.e. optimisation module is activated) and data was monitored. A 

comparison was made between the two stages and the average energy savings for the 

different scenarios achieved, when the system was active, is given in detail (Università 

Politecnica Delle Marche 2014) below. The energy savings were isolated based on the 

different optimisation scenarios.  

Pilot 1 – FIDIA, Italy: Here the swimming pool AHU optimisation scenario was 

implemented (shown in table 2) and testing was carried out for the time period as shown 

in table 4 below. 

Table 4. Testing period for FIDIA pilot. 

 Winter Spring Summer 

SportE2 OFF 
08/02/2014 - 

14/02/2014 

09/04/2014 - 

15/04/2015 

18/06/2014 - 

24/06/2014 

SportE2 ON Week 1 
22/03/2014 - 

28/03/2014 

07/05/2014 - 

15/05/2014 

02/07/2014 - 

08/07/2014 

SportE2 ON Week 2 
29/03/2014 -

04/04/2014 

21/05/2014 - 

27/05/2014 

23/07/2014 - 

29/07/2014 

 

The results of monitoring are shown below in table 5 and the average electrical and 

thermal savings achieved in the pilot through the swimming pool optimisation scenario 

was 34 % and 29 % respectively during the testing period. 
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Table 5. Results achieved by SportE2 solutions in FIDIA pilot for the swimming pool scenario. 

Electricity Savings 

Testing Phase Unit Winter Spring Summer Average  

SportE2 OFF Week 
Energy Consumption 
(Baseline) 

 kWh/Week 1.983 1.92 3.3  

SportE2 ON Week 1 
Energy Consumption 

 kWh/Week 1.365 1.275 2.2  

Savings (baseline Vs 
week 1) 

% 31% 34% 33% 33% 

SportE2 ON Week 2 
Energy Consumption 

 kWh/Week 1.278 1.398 1.9  

Savings (baseline Vs 
week 2) 

% 36% 27% 42% 35% 

Thermal Energy Savings 

Testing Phase Unit Winter Spring Summer Average  

SportE2 OFF Week 
Energy Consumption 
(Baseline) 

 kWh/Week 11.5 8.4 3.5  

SportE2 ON Week 1 
Energy Consumption 

 kWh/Week 10.6 6.7 2.3  

Savings (baseline Vs 
week 1) 

% 8% 20% 34% 21% 

SportE2 ON Week 2 
Energy Consumption 

 kWh/Week 8.5 4.6 2.1  

Savings (baseline Vs 
week 2) 

% 26% 45% 40% 37% 

 

Pilot 2- EMTE Sport, Spain: This pilot implemented the air-handling-unit optimisation 

scenario for one of the fitness rooms in the facility. The average energy savings achieved 

here during the testing period here was 47% and 35% of electrical and thermal energy 

respectively as calculated from the results shown in table 6 below. Testing took place 

mainly during winter. During the spring season, only electricity related data could be 

monitored whereas thermal energy data was missing.  
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Table 6. Results achieved by SportE2 solutions in EMTE pilot for the fitness room HVAC 

optimisation scenario. 

Electricity Savings 

Testing Phase Unit Winter Spring Average  

SportE2 Off Week Energy 
Consumption (Baseline)  kWh/Week 18 24.4   

SportE2 On Week 1 Energy 
Consumption  kWh /Week 7.3 17.4   

Savings (baseline Vs week 1) % 59% 29% 44% 

SportE2 On Week 2 Energy 
Consumption  kWh /Week 7.1 15.4   

Savings (baseline Vs week 2) % 61% 37% 49% 

Thermal Energy Savings 

Testing Phase Unit Winter Spring Average  

SportE2 Off Week Energy 
Consumption (Baseline)  kWh /Week 179 n/a   

SportE2 On Week 1 Energy 
Consumption  kWh /Week 106 n/a   

Savings (baseline Vs week 1) % 41%   41% 

SportE2 On Week 2 Energy 
Consumption  kWh /Week 129 n/a   

Savings (baseline Vs week 2) % 28%   28% 

 

Note: the testing period here was slightly different to that of the FIDIA pilot. Further 

testing results and analysis are provided in the project validation report which is available 

from Sporte2 website online10. On average SportE2 solutions helped achieve 36 % energy 

savings across the three pilots. 

4.1.3. Knowledge processing from SportE2 contributing to REMO ontology 

Some of the highlights and knowledge gained from this project were:  

 SportE2’s generic and scalable smart energy management system had embedded 

intelligence (i.e. contextual understanding of the scenario-based dependent and 

independent governing variables and their complex interactions) which addressed 

the limitations of existing SCADA-based commercial energy systems. SCADA-

based systems only provide the basic logic-based control capability; it depends on 

a pre-defined static schedule or setpoints for control of key equipment with the 

hope of achieving the required comfort level and energy-saving target. The 

                                                 
10 http://www.sporte2.eu/public-documents/ 
 

http://www.sporte2.eu/public-documents/-/document_library_display/QE88cZmNbVVY/view/20836?_110_INSTANCE_QE88cZmNbVVY_redirect=http%3A%2F%2Fwww.sporte2.eu%2Fpublic-documents%3Fp_p_id%3D110_INSTANCE_QE88cZmNbVVY%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
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achieved results are usually not satisfactory because the static schedule/set points 

cannot factor in the continuously changing environmental and building usage 

condition. SportE2, on the other hand, uses the real-time data to react to those 

changing conditions. The project reinforces the need for real-time energy 

management. Moreover, the discussions held with facility managers and pilot 

owners over the course of working on this project reaffirmed the need for real-

time energy management in buildings, and in this particular case for sports 

facilities, because of the increasing number of potential use cases for real-time 

energy management. 

 Energy optimisation for the entire building could be complex, and hence a divide 

and rule approach was adopted here, where use cases and scenarios were 

developed to be applied for individual zones of the building. It was clear that the 

REMO ontology developed should be able to support these use cases and scenarios, 

and hence the concepts relevant for this had to be modelled in REMO. 

 The results of the project imply that the solution adopted in the SportE2 WHY 

module specifically is a suitable methodology for real-time energy management. 

Some of the use cases developed in this project could be applied to other buildings 

as well which have similar optimisation problems.  

 The authors used the Protégé11 tool initially to model the concepts that were 

relevant for building energy optimisation through an ontology called SportE2 

ontology (Jayan et al. 2014). The idea behind this was to use this ontology to aid 

the optimisation process. However, this work had some limitations: 

1. It was focused at a building level, and no district level concepts were modelled 

for a holistic optimisation. 

2. Although use cases were modelled into the ontology, the work was incomplete 

as it could not show the working of these use cases. 

However, a few of the SportE2 ontology concepts were adopted into the REMO 

ontology, as explained later in Section 4.3. 

4.2. Resilient project – supply side energy management and optimisation 

This section looks into the author’s work on the Resilient project and also on using 

numerical optimisation techniques for supply side optimisation, similar to the work 

                                                 
11 http://protege.stanford.edu/ 
 

http://protege.stanford.edu/
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developed in SportE2, but at a district scale. This section is sub-divided into two: Section 

4.2.1 studies the ontology developed to support the Resilient framework and Section 4.2.2 

looks into details of the numerical optimisation applied for supply side energy 

management. 

The aim of the Resilient project was to “design, develop, install and assess the benefits 

of a new integrated concept of interconnectivity between buildings, distributed energy 

resources and grids at a district level” (Resilient Project Consortium 2012). The project 

therefore required new ICT components adapted to the context of energy management at 

the district scale. Cardiff University’s role in the project was to develop a district 

information model (Hippolyte et al. 2014) using semantic models. The district 

information model was developed using ontologies that would enable it to adapt to a 

broad spectrum of technologies including new energy supply and building technologies 

as suggested by Keirstead et al. (2012). The district information model is then further 

used by multi-agent systems and simulation models to help increase energy efficiency in 

the district in real time, as shown below in Figure 18. The ee-district ontology and 

the associated tools developed are applied at a district level, and the primary aim is to 

optimise the local energy production and consumption solely in the district. 

 

Figure 18. RESILIENT project proof of concept 
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4.2.1. ee-district ontology development 

The district information model contained many domain-specific ontologies. The 

development of these domain-specific ontologies can be an ad hoc process (Madrazo et 

al. 2012). Although the strategy adopted for developing these ontologies, i.e. 

methodology, is case specific, the ontology itself did not need to be built from scratch. 

The ontology could have its structure and content constructed from a mix of both existing 

ontologies and other specific standards, which is the case in any modern software 

development project (d’Aquin et al. 2008). The core of the district information model is 

the district energy ontology named ‘ee-district’. 

The ee-district meta-model “formalize a generic, yet capable of specialisation, 

description of district elements as a socio-technical system. This formalisation allows 

then to produce machine-readable (and even machine understandable) models usable by 

software tools” (Hippolyte et al. 2014, p.107). The multi-agent systems-based software 

tools in the Resilient framework also require the ontology to infer to and extract rules 

from it. A network of ontologies together forms the ee-district meta model which 

conceptualises the elements of the district energy system, their characteristics and 

relationships, and the various constraints of these systems. Using best practices of the 

semantic knowledge field, some of these ontologies were built from UML models. They 

were integrated into the network following novel alignment and modularisation methods. 

Methodology  

The author was mainly involved in the ontology development work conducted in the 

Resilient project, especially the development of the taxonomy of the domain ontology. 

The ontology was created in OWL language and was iteratively developed as knowledge 

collected throughout the different stages of the methodology. The development involved 

various stages of collaborative work and discussions between the different partners in the 

project. Some of the inputs were from (Cardiff University 2014):  

 Literature from Cricchio et al. (2012). 

 Questionnaires and interviews with stakeholders (reference the deliverable…). 

 Domain knowledge gained from experts. 

 Various standards such as IEC 61970-301:2011 (McMorran 2007; International 

Electrotechnical Commission et al. 2013). 

 Existing ontologies.   
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The methodology for ontology development is described in Figure 19 below (Hippolyte 

et al. 2014): 

 

 

Figure 19. The methodology adopted for ontology development 

Here the author was leading stages one, two and four. Stage three was mainly led by the 

authors colleague Dr. Jean-Laurent Hippolyte as it involved mapping the domain 

ontology with other standards and ontologies which were relevant to the domain.  

Stage 1: the first step was to understand the use of the ontology in the scope of the project. 

The Resilient ontology was built for aiding MAS to coordinate the district energy 

Stage 1: General 
understanding

•understand objectives of the district energy ontology

•literature review

•general overlook of pilot sites to understand what districts constitute

Stage 2 : Case study 
approach

•case study approach to ontology to delimit the scope of the project

•study pilot sites

•questionnaire to understand day-to-day functions of the pilot

Stage 3:  Taxonomy 
and mapping

•taxonomy refinement

•map entities with standards

•map entities with other linked ontologies

Stage 4: Defining 
relationships

•defining relationships in the ontology

•relationships between the various entities

•can be done by understanding the use cases and scenarios
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systems, which involves a combination of storage systems, generation units, cogeneration 

units and energy users. Therefore, the ontology was required to: 

 Answer queries from real-time optimisation software which incorporates the 

MAS; 

 Ensure interoperability between the district coordination-level entities and 

building-level entities and/or energy system-level entities. 

All the district entities – consumers, distributors and energy producers – are therefore 

modelled in the ontology. It also includes the district energy infrastructure (pipelines, 

power cables); the demand/supply load schedules; the overall system constraints; the 

objectives that are to be met; and the individual entities such as buildings, energy sources; 

etc.  

This stage also involves gaining knowledge from the Resilient project’s pilot sites. The 

project has three pilot sites – in Italy, Belgium and Wales. The different physical 

components installed in a district and the various stakeholders involved on the site are 

studied. Some of the key features of the district energy ontology concluded during this 

stage were:  

• The ontology models energy information at a district level. 

• It needed to support real-time decision-making for district energy optimisation. 

• OWL Semantic Web Language, which provides the ontology engineers with a 

good extension of modelling formalisms, was chosen as the language for 

development.  

• The ontology should also be able to link with other standards and well-accepted 

ontologies in the domain. 

Therefore, stage one of ontology development was largely based on literature review and 

general understanding of how a district works. 

Stage 2: the second stage involved studying the pilot sites’ day-to-day operations in the 

district. This stage is important because the working of the district in reality can be 

different to that learnt from literature or during the actual design stages.  

A questionnaire was used as one of the key tools to source information during this stage. 

The questionnaire was aimed at the Welsh site first. The various sections of the 

questionnaire are directed at different consumers and producers in the pilot site. Figure 
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20 shows a screenshot of the questionnaire. The questionnaire prepared was answered 

through a series of interviews (both in person and over the telephone) and site visits. The 

Semanco project (Semanco Consortium 2011) also followed this approach of using 

questionnaires and interacting with stakeholders, as it helps limit the scope of the research 

and also helps identify potential use case and scenarios. These use cases and scenarios 

assist the development of the ontology from the application perspective (end use).  

 

Figure 20: Case study questionnaire, sample questions 

In the future, a more efficient way of collecting and sharing information needs to be put 

forward, such as using any survey management systems (Bristol online survey12) or web-

based wikis such as Cicero (Suárez-Figueroa et al. 2008) 

Stage 3: the next stage dealt with defining the details of the entities in the ontology, which 

also involved grouping the entities and looking for associations between them (Hippolyte 

et al. 2014). During this stage, another action was to align the domain ontology with other 

existing standards or ontologies that were relevant to it. The alignment involves mapping 

the relevant concepts from ee-district ontology with the entities from other 

ontologies. This task can be tedious but increases the robustness of the ontology and also 

enhances the potential of the ontology to be reused.  

                                                 
12 https://www.onlinesurveys.ac.uk/ 
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Stage 4: based on how the ontology was going to be used, the relationships between its 

entities were defined during this stage. SWRL rules could also be implemented which 

will help the querying or reasoning process. As seen in the literature review, adding 

SWRL rules can also help in rule-based decision-making for a particular application such 

as energy management. Such practices are usually not machine-readable and therefore 

the district’s individual energy management systems are not capable of responding to 

such scenarios by themselves.  

Conceptual model of ee-district  

The ee-district ontology contains concepts that are related to the district energy 

system. The district energy system contains physical entities and social entities. Physical 

entities would be buildings, energy networks, energy systems, storage facilities, etc., 

whereas the social entities would be mainly the stakeholders and the contracts they have 

with the physical entities. It was important to cover both these entities and their 

relationships in the ee-district ontology for the purpose of optimisation. Figure 21 below 

shows a very simple example of how the physical and social concepts are aligned in the 

ee-district ontology. The horizontal links in the figure depict the relationships 

between the entities in the same domain, i.e. between entities that are network specific. 

The vertical dotted lines show the cross-domain relationships. A socio-technical ontology 

developed by Koen van Dam ( 2009) was reused (as an imported ontology) in ee-

district to describe the relations between social and technical concepts. The socio-

technical ontology is described in detail in the next section, which explains the semantic 

structure and other standard ontologies that were reused in ee-district. 
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Figure 21. Sample concepts and relationships in the ee-district ontology 

Semantic structure  

Building and energy sectors are fragmented and interdisciplinary in nature and therefore 

any knowledge management system looking to aid practitioners in these areas need to 

adopt a layered and modular approach (Rezgui 2007). The ee-district ontology 

structure, therefore, had two main concepts: 

 The district energy systems being modelled as socio-technical systems. 

 Bringing together a set of diverse ontologies to form the meta-model of the district 

energy system. 

Dr. Jean-Laurent Hippolyte worked on mapping the domain ontology with these various 

other ontologies. The various ontologies contained in this meta-model are shown below: 
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1.  Socio-technical ontology 

Koen van Dam (2009) abstracted the concepts of social and technical systems across 

disciplines. The work introduces the concept of nodes that represent the systems of the 

network that contain both social and technical elements. The social nodes are involved in 

the decision-making of physical nodes, and the physical nodes represent the actual 

elements of the physical world. 

Figure 21 above shows an example where the district energy systems are an instantiation 

of a socio-technical system. Here, the top layer represents the social elements (such as 

owners and stakeholders) and the physical elements are represented in the three layers 

below (such as buildings and energy sources). The socio-technical systems also have a 

hierarchy of classes – physical edges and social edges (see Figure 22 below). The physical 

edges connect the physical nodes whereas the social edges connect the social nodes. 

 

Figure 22. Hierarchy of socio-technical systems ontology (adopted from van Dam 2009) 

The elements of the physical infrastructure, for example, a hot pipe in the district heating 

network, are represented by physical connections, which are specialisations of physical 

edges. Similarly, material (water, gas) or immaterial (energy, data) flowing from one node 

to another is represented by physical flows. The Technology class, which is a subclass of 

physical node, is very relevant to the district energy systems as this class represents the 

various types of energy systems – energy using systems, energy source systems, and 

storage systems, as shown in Figure 23 below. The different characteristics of the nodes 

and edges can be represented by the properties’ classes and their specialisations. Abstract 

classes such as DesignProperties, EconomicProperties or PhysicalProperties make this 

possible. 
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Figure 23. The link between socio-technical system ontology and ee-district ontology concepts 

(Cardiff University 2014) 

2. Non-ontological resources used in the meta-model  

The Resilient project being diverse in content and format meant also reusing and re-

engineering non-ontological resources while building the ontology network as done 

previously in (Suárez-Figueroa et al. 2008). The authors of the deliverable of this 

European Project ‘Neon’ put forward best practices and recommendations for 

transforming resource content (dictionaries, and terminologies) into ontological schemas. 

Some examples of such resources are normative documents regarding international and 

European standards. The ee-district meta-model development followed these best 

practices to include some of the criteria. For example, the IEC/EN 61970-301 standard is 

essential to the meta-model to help facilitate the integration of Energy Management 

System (EMS) applications developed by different entities (IEC61970-301:2011) 

(McMorran 2007). Doing this enables the Resilient solution (the district coordination 

system) to communicate with the various energy management systems in individual 

buildings and energy generation units. Integrating this standard also means that the 

support of building automation and communication protocols, such as BacNET (ISO 

16484-5:2012), is made simpler.  

The meta-model linking ee-district ontology adopts a modular architecture and Figure 24 

below shows the structure of the modular architecture. The structure shown below is 

derived from the OntoCAPE’s meta-model (Morbach et al. 2007). OntoCAPE is a domain 
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ontology developed for computer-aided process engineering. Although the meta-model 

was designed for this ontology, it has been used successfully for the development of other 

domains.  

 

Figure 24. Module hierarchy of the ee-district ontology (Cardiff University 2014) 

“The ee-district meta-model approach is similar. It formalises a template that 

encompasses the domain ontologies required to support the definition of an ontology that 

would be specific to a district.”(Hippolyte et al. 2014). Figure 24 above shows some of 

the main modules identified, during stage 1 and stage 2 of the methodology, (from Figure 

19) that would be part of ee-district meta-model. Dependency relations between 

modules are shown using dashed arrows. The socio-technical system ontology has been 

aligned with the OntoCAPE meta-model, in particular with the topology module (defining 

fundamental concepts from the theory of connectedness) and mereology module (defining 

fundamental concepts from the theory of part-whole relations), which are both essential 

in the standardisation of network and ownership concepts across the ee-district meta-

model (Hippolyte et al. 2014). 

The ee-district ontology is aligned with the other domain independent ontologies 

of OntoCAPE by interposing the generic socio-technical system ontology, as shown 

below in Figure 25:  
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Figure 25. ee-district ontology alignment with other ontologies (Cardiff University 2014) 

All these ontology modules, along with the target ontology, constitute the ontological 

definition of the ee-district meta-model. Six of these ontologies were reused from the 

meta-model, which is a modularised ontology design which can be used to support the 

design of domain ontologies such as OntoCAPE (Morbach et al. 2007) -  

a) Fundamental concepts module: the root terms in socio-technical systems and ee-district 

ontology can be derived from the fundamental classes and relations which are found in 

this ontology.    

b) Mereology module: the part-whole relationships of two types are derived here – 

aggregation and composition.  

c) Topology module: the connectivity between models is made possible with this module.   

d) System module: the kinds of systems, their taxonomical semantics and their 

conceptualisations can be defined through this module. 

e) Space and Time module: a specific coordinate system for spatial and temporal data can 

be defined through this. 

f) Physical dimension module: physical quantities, dimensions and units are represented 

by this module.  

The modules are described in detail in the project deliverable (Cardiff University 2014). 
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Implementation of the ontology 

ee-district ontology here provides high level semantic representation of the district 

energy system component and organisation which is to be used by any district scale 

energy management software application purposes (visualisation / monitoring/ generation 

or distribution control etc.). A web service, developed by author’s colleague, Dr. Jean-

Laurent Hippolyte was used to encapsulate the ontology which further facilities the 

knowledge requirement of any energy management software components. The web 

service also has a SPARQL engine which generates the required SPARQL queries to 

retrieve knowledge from the ontology repository. Detailed web implementation plan is 

discussed in project deliverable (Cardiff University 2014). 

4.2.2. Numerical optimisation for supply-side. 

The demand side optimisation and its methodology have already been described and 

discussed in Section 4.1 through the action research conducted in SportE2. A similar 

optimisation methodology had to be developed and tested at the supply-side as well. 

Hence, multi-objective optimisation algorithms on numerical models need to be used at 

the district level. Doing this would make REMO ontology applications consistent at a 

building and district level in supporting optimisation models and numerical models. The 

author therefore further aimed to develop: 

1. A district energy analytical or simulation model, and 

2. An optimisation model which uses this district energy model (from step 1) as the 

cost function.  

This section explains the mathematical (analytical) model and the optimisation algorithm 

implemented at the district level along with various objectives, decision variables, and 

constraints of the optimisation problem. The analytical model was built based on the 

Ebbw Vale site (Resilient pilot site), since most of the site information was available to 

the author. A more generic mathematical model needs to be developed in the future after 

considering a variety of district sites which may include various other types of energy 

sources 
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Ebbw Vale site information (Jayan et al. 2016) 

The Ebbw Vale site was previously occupied by a steelworks, which closed down in 1982. 

The site was demolished after that and remediation was undertaken to develop the site for 

residential, commercial and educational developments.  

The Blaenau Gwent County Borough Council (BGCBC) owns the whole of ‘The Works’ 

site, which has six buildings/structures and forms the Resilient project. All of the 

buildings are located at the northern end of the site, and all except one have been 

developed within the last seven years. The six buildings/structures are: 1. General Office, 

2. Learning Zone, 3. Energy Centre, 4. Multi-storey car park (MCSP), 5. School for 

aged11-16 pupils, 6. Leisure Centre. 

The energy sources in the Energy Centre provide district heating to the entire site. The 

School, Leisure Centre, and the General Office electrical demand are met by an 8MW 

HV electricity main which runs through the site. In the case of the other buildings on the 

site, the main ring supplements the supply from the gas-fired CHP unit. The CHP works 

in conjunction with the four gas-fired boilers. The boilers are used in series based on the 

heat demand to provide the district heating system. The council recently also installed 

biomass boilers in the Energy Centre. The Energy Centre provides district heating to the 

site, whereas electricity is provided by both the main grid and a CHP unit. 

Thermal Power Supply 

Four gas-fired boilers (ICI REX180 1950kW (input)) and a Cogenco (2012) 375kW CHP 

plant are used to provide the district heating. The boilers are fitted with Nuway MGN2800 

burners with 790-2800kW output, and each boiler has two Variable Speed Driven (VSD) 

circulating pumps, each rated at 7.5kW and run on duty when there is a boiler demand. 

Figure 26. Ebbw Vale site (Jayan et al. 2016) 



-82- 

 

The base load of the district is maintained by the CHP plant and the boilers, which come 

online as and when needed, are separately metered and connected to the external natural 

gas grid. Within the Energy Centre, BGCBC owns, manages and operates all of the 

equipment. The CHP gives priority to meeting heat demand. When the electricity 

produced by the CHP is not enough to meet the demand at any particular time, it is bought 

from the national grid, which is quite a common strategy (Liu et al. 2014). 

Electricity Supply  

Both the CHP plant and the main electrical grid combine to provide electricity to the site. 

The Learning Zone building contains the BGCBC switchboard to which the CHP 

provides 375kW of electricity. This supply is used by the Leaning Zone, the Energy 

Centre itself, and the Multi-storey Car Park. The grid directly meets any shortfall in the 

supply to these buildings. Any surplus production from the CHP goes to the grid and 

BGCBC receives a small payment under the FIT (Feed-in Tariff) process. On the other 

hand, the General Office, Leisure Centre, and the aged 11-16 pupils School do not benefit 

from the CHP or any renewable electricity generation, and are all connected to the main 

electricity grid. 

 

Figure 27. Heat and power schematic flow in the district (Jayan et. al 2016) 

 

Currently, the Ebbw Vale uses CHP to meet the base load, and biomass or gas boilers 

come online when CHP cannot meet the load. Any changes in the strategy of the district 

operations are made manually by human knowledge, usually based on the seasonal 

variation. However, the day-to-day energy demand and supply in the district depends a 
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lot on the dynamic and static factors such as weather, occupancy, energy prices and so 

forth. These need to be taken into account for the day-to-day operational decision-making 

to potentially increase energy efficiency and also to bring about economic or 

environmental savings. Optimising the energy generation mix on a day-to-day basis at an 

operational level, therefore, is a critical issue for the facility managers. Before 

implementing the multi-objective optimisation, a mathematical model was needed to be 

used as the cost function of the optimisation. Section 4.2.2.1 below explains the analytical 

model developed and the reasons for using this model as the cost function in optimisation. 

4.2.2.1. Analytical model development  

Development of a district energy model using existing simulation packages (such as 

Trnsys or EnergyPlus) would compromise on the flexibility regarding what can be 

considered in the model. For example, considering minute details such as Renewable Heat 

Incentive (RHI), or carbon tax or emissions due to biomass transport, etc., would not be 

possible with some of the existing simulation packages. Hence, the decision was made to 

make an analytical model from scratch using mathematical formulas. The interviews and 

questionnaires used for ontology development, as mentioned in Section 4.2.1, helped in 

developing this model. 

 

Figure 28. General mathematical model developed for districts (Jayan et. al 2016) 
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Figure 28 above represents a general mathematical model for districts, even though the 

model is based largely on the Ebbw Vale site. In the future, more sites need to be 

considered, and newly discovered features or entities need to be included in this generic 

model. 

Here, the electricity demand, heat demand and heat production schedule for a 24-hour 

period serve as the input. The model is then able to compute the total daily carbon dioxide 

emissions (kg) and operation costs (£). Emissions can also include other toxic gases such 

as NOX and SOX, provided that data is available for this computation. In the case of Ebbw 

Vale, this data was missing and hence it was not provided. 

The model is applied to the Ebbw Vale pilot, and Table 7 below shows the nomenclature 

adopted in the analytical model.  

Table 7. Nomenclature used in Ebbw Vale Mathematical Model (adopted from Jayan et. al 2016) 

 Symbol Representation Value 

S
u

b
sc

ri
p

t 

I represents the CHP  - 

J represents a boiler  - 

K represents a biomass boiler  - 

G represents an energy source system  - 

E  represents the different greenhouse gases CO2, SO2, NOX, 

PM 

E
co

n
o

m
ic

 p
ar

am
et

er
s 

𝑃𝐸𝐿𝐸𝐶  Purchase price of electricity (£/𝑘𝑊ℎ𝑒𝑙) Day rate: 0.11 

Night rate: 0.07 

𝑃𝐺𝐴𝑆 Purchase price of natural gas (£/𝑘𝑊ℎ𝑔𝑎𝑠) 0.0248 

𝑃𝐵𝐼𝑂 Purchase price of biomass (£/kg)  0.205  

𝐶𝑠𝑎𝑙𝑒,𝑐
𝐸𝐿𝐸𝐶  Sale price of electricity (for the energy use system) 

(£/𝑘𝑊ℎ𝑒𝑙) 

Day rate: 0.11 

Night rate: 0.07 

𝐶𝑠𝑎𝑙𝑒,𝑛𝑔
𝐸𝐿𝐸𝐶  Sale price of electricity (for the national grid) 

(£/𝑘𝑊ℎ𝑒𝑙) 

Day rate: 0.0764 

Night rate:0.03 

𝐶𝑠𝑎𝑙𝑒,𝑐
𝐻𝐸𝐴𝑇  Revenue for delivering heat to the energy use system 

(£/𝑘𝑊ℎ𝑡ℎ) 

0.0594  

𝐶𝐶𝐻𝑃
𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 Maintenance rate for CHP (£/𝑘𝑊ℎ𝑒𝑙)) 0.0035  

𝐶𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 Total maintenance cost for Energy Centre - 

𝐶𝑠𝑎𝑙𝑒,𝑐
𝑅𝐻𝐼  Renewable Heat Incentive for biomass production 

(£/𝑘𝑊ℎ𝑡ℎ) 

0.12 

E
n

er

g
y

 

P
ar

a

m
et

er

s 

𝑄𝑚𝑎𝑥
𝑔

 Maximum production capacities of the energy source 

system g (kW) 

Refer to table 8 
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𝑄𝑔 Thermal generation of energy source system g - 

𝐸𝐶𝐻𝑃 Electrical KWh generated by CHP (kWh) - 

𝜂𝑔 Efficiency of the energy source system g 

(dimensionless) 

Refer to table 8 

*𝐸𝑑𝑒𝑚𝑎𝑛𝑑   Electrical energy demand (kWh) - 

𝐸𝑠𝑜𝑙𝑑,𝑐 Sold electricity to the energy using system (𝑘𝑊ℎ𝑒𝑙) - 

𝐸𝑠𝑜𝑙𝑑,𝑛𝑔 Sold electricity to the national grid (𝑘𝑊ℎ𝑒𝑙) - 

𝐸𝑏𝑜𝑢𝑔ℎ𝑡 Electricity bought from the national grid (𝑘𝑊𝑒𝑙) - 

𝑄𝑠𝑜𝑙𝑑,𝑐 Thermal energy sold to the Energy using system - 

 𝑄𝑑𝑒𝑚𝑎𝑛𝑑 Thermal demand (kWh)  

Τ CHP’s heat and power ratio (dimensionless) 0.65 

E
n

v
ir

o
n

m
en

ta
l 

P
ar

am
et

er
s 

𝜇𝑒
𝑙    

Amount of ‘e’ emitted from the energy source system 

using fuel ‘l’ (kg) 

- 

𝜀𝑒
𝑙    

Specific emission of e per kWh for energy source 

system using fuel ‘l’ (kg/kWh)) 

Refer to table 10 

χ𝑙 Calorific value of fuel l (kWh/kg) - 

 𝜇𝑒
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 Emissions due to transport of biomass (kg) - 

BTrc 
Carbon emission factor for biomass transport. (kgCO2 

/KgBiomass – Km) 

0.00012 

O
th

er
 P

ar
am

et
er

s 

𝐷𝐼𝑆𝑃&𝐸𝑉 
Distance between biomass producer and Ebbw Vale 

(km) 

277 

𝑞𝑡𝑟𝑎𝑛𝑠 Biomass transported (kg/day) - 

𝐶𝑜𝑛𝑠𝑚𝑎𝑥
𝐵𝐼𝑂   Max biomass consumption in one day (kg/day) 6023 

𝐶𝑜𝑛𝑠𝐺𝐴𝑆  Natural gas consumption (𝑘𝑊ℎ𝑔𝑎𝑠) - 

𝑁𝐺  

Number of energy source systems CHP, Biomass 

Boiler 1, 

Biomass Boiler 

2, Gas Boiler 1, 

Gas Boiler 2, 

Gas Boiler 3, 

Gas Boiler 4  

𝑁𝑙 
Number of types of fuel used Biomass, 

Natural Gas 

𝑁𝐶𝐻𝑃 Number of CHP units 1 

𝑁𝐵𝑂𝐼𝐿𝐸𝑅 Number of boilers 4 

𝑁𝐵𝐼𝑂𝑀𝐴𝑆𝑆 Number of biomass boilers 2 

* here 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 only considers electricity demand from those customers to which the CHP is linked to. 
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The numerical values presented here in Tables 7 above and, Tables 8 and 9 below are 

mostly the data collected from the questionnaire and pilot site interviews (with the owners 

and facility managers).   

Table 8. Energy source systems’ characteristics 

Energy Source CHP Biomass 

Boiler 

Gas 

Boiler 

Electricity to Heat 

ratio 

0.65 - - 

Max. Thermal 

Production (kw) 

410 495 2800 

Efficiency (%) 78 82 67 

 

Table 9. Parameters related to carbon tax 

Parameters Value 

CRCTaxRate £0.012/kg 

CRCElectricityCOnversionrate 0.541 

CRCNaturalGasCOnversionRate 0.1836 

  

Cost-related Equations 

The operational costs of the district can be calculated using the following equations: 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒  represents the total cost of the energy centre, whereas 𝐵𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒  

represents the total income received by the energy centre.  

The various costs are calculated as shown below: 

     𝐶𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒 = 𝐶𝐵𝐼𝑂𝑀𝐴𝑆𝑆 + 𝐶𝐶𝑂𝑁𝑆 + 𝐶𝑇𝐴𝑋𝐸𝑆 + 𝐶𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + 𝐶𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒       (1) 

𝐶𝑇𝐴𝑋𝐸𝑆 (costs due to taxes), 𝐶𝐶𝑂𝑁𝑆(gas consumption costs) and 𝐶𝐵𝐼𝑂𝑀𝐴𝑆𝑆 (Biomass 

consumption costs) are calculated as shown below:  

   𝐶𝐵𝐼𝑂𝑀𝐴𝑆𝑆 = 𝑃𝐵𝐼𝑂 ∗ 𝑞𝑡𝑟𝑎𝑛𝑠                         (2) 

Here, 𝑞𝑡𝑟𝑎𝑛𝑠  is the quantity of biomass transported and used on site and 𝑃𝐵𝐼𝑂  is the 

purchase price per unit biomass fuel. 

The biomass transport cost is included in the buying price, according to the pilot owners, 

and therefore is not explicitly mentioned in equation 2. Biomass storage losses can be 

ignored as the storage systems on site are highly efficient. Moreover, the biomass pellet 
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fuel is also of good quality, which limits the storage losses. Carbon taxes are calculated 

as shown below in equation 3.  

    𝐶𝑇𝐴𝑋𝐸𝑆 = 𝐶𝑡𝑎𝑥𝑒𝑠 ∗ (𝑁𝐶𝐻𝑃 ∗ 𝜇𝐶𝑂2
𝐶𝐻𝑃 + 𝑁𝐵𝐼𝑂𝑀𝐴𝑆𝑆 ∗ 𝜇𝐶𝑂2

𝐵𝐼𝑂𝑀𝐴𝑆𝑆 + 𝑁𝐵𝑂𝐼𝐿𝐸𝑅 ∗  𝜇𝐶𝑂2
𝐵𝑂𝐼𝐿𝐸𝑅)   (3) 

  𝐶𝐶𝑂𝑁𝑆 = 𝑃𝐺𝐴𝑆 ∗ 𝐶𝑜𝑛𝑠𝐺𝐴𝑆                      (4) 

             CElectricity = 𝐸𝑏𝑜𝑢𝑔ℎ𝑡 ∗  𝑃𝐸𝐿𝐸𝐶                                              (5) 

The cost of maintenance, 𝐶𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  , in the case of Ebbw Vale includes only the CHP 

maintenance cost, as CHPs need a regular service. This rate is based on the use of CHP 

and is represented as cost per unit of electrical energy produced (Department of Energy 

and Climate Change 2008). Investment costs can be ignored throughout the analytical 

model as they are not part of the district operational stages. 

          𝐶𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝐶𝐶𝐻𝑃
𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ∗ 𝐸𝐶𝐻𝑃                                  (6) 

The Energy Centre revenue comes from: 

(1) The amount of electricity sold to the Learning Zone building,  

(2) The excess electricity produced by CHP, during night time, which is sold back to the 

grid,  

(3) The amount of heat energy sold to the Learning Zone building in the district, and  

(4) The Renewable Heat Incentive (RHI) received from the amount of biomass produced 

(Biomass Energy Centre 2011b). 

 

𝐵𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒 = 𝐶𝑠𝑎𝑙𝑒,𝑐
𝐸𝐿𝐸𝐶 ∗ 𝐸𝑠𝑜𝑙𝑑,𝑐 + 𝐶𝑠𝑎𝑙𝑒,𝑛𝑔

𝐸𝐿𝐸𝐶 ∗ 𝐸𝑠𝑜𝑙𝑑,𝑛𝑔 + 𝐶𝑠𝑎𝑙𝑒,𝑐
𝐻𝐸𝐴𝑇 ∗ 𝑄𝑠𝑜𝑙𝑑,𝑐 + 𝐶𝑠𝑎𝑙𝑒,𝑐

𝑅𝐻𝐼 ∗

𝑄𝐵𝐼𝑂𝑀𝐴𝑆𝑆                                                                                        (7) 

The only building block that consume the electricity which is produced by the CHP are 

the learning zone and the multi-storey car park. The heat energy consumed by the 

Learning zone building is the only revenue from the heat energy that the BGCG council 

receives, as this building is being leased to a third party whereas the council owns all the 

other buildings.  

When considering electricity production, there are two possible scenarios that Ebbw Vale 

experiences: 

(1) The energy centre electricity production is not enough to meet the customer demand, 

i.e. 𝐸𝑠𝑜𝑙𝑑,𝑐 ≤ 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 and 𝐸𝑠𝑜𝑙𝑑,𝑛𝑔 = 0; and  
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(2) The energy centre electricity production is sufficient to meet all the customer 

electricity demand, i.e.  𝐸𝑠𝑜𝑙𝑑,𝑐 > 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 and 𝐸𝑠𝑜𝑙𝑑,𝑛𝑔 ≥ 0.  

The electricity exchanged with the national grid will also affect the costs. 

Electricity sold to the national grid: 

𝐸𝑠𝑜𝑙𝑑,𝑛𝑔 = 𝐸𝐶𝐻𝑃 − 𝐸𝑑𝑒𝑚𝑎𝑛𝑑       (8) 

Electricity bought from the national grid: 

𝐸𝑏𝑜𝑢𝑔ℎ𝑡 = 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 − 𝐸𝐶𝐻𝑃       (9) 

Emission-related equations 

The equations presented here take into account the CO2 equivalent produced from the 

various types of fuel used by the energy systems. The Department of Environment, Food 

& Rural Affairs (DEFRA) provides the greenhouse gas conversion factor for unit energy 

(Department of Environment, Food & Rural Affairs 2014), as shown below in Table 10. 

Table 10. Carbon Dioxide equivalent 

Fuel Source Specific Emissions 

Natural gas (kg/kwh) 𝜀𝐾𝑔𝐶𝑂2𝑒
𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐺𝑎𝑠 0.1850 

Wood Pellet (kg/kwh) 𝜀𝐾𝑔𝐶𝑂2𝑒
𝑊𝑜𝑜𝑑 𝑃𝑒𝑙𝑙𝑒𝑡 0.0118 

 

Electricity bought from the grid also has associated greenhouse gas emissions, but this 

can be ignored as they are part of life cycle emissions. 

When source ‘g’ is CHP or boilers: 

𝜇𝐾𝑔𝐶𝑂2𝑒
𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐺𝑎𝑠 = 𝜀𝐾𝑔𝐶𝑂2𝑒

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐺𝑎𝑠 ∗  𝑄𝑔        (10) 

Whereas, when the energy source ‘g’ is biomass boilers: 

                               𝜇𝐾𝑔𝐶𝑂2𝑒
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 𝜀𝐾𝑔𝐶𝑂2𝑒

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 ∗ 𝑄𝐵𝑖𝑜𝑚𝑎𝑠𝑠          (11) 

 𝜇𝑒
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

 represents emissions due to biomass transport and this can be calculated as:                                                                                    

        𝜇𝐾𝑔𝐶𝑂2
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 𝐵𝑇𝑟𝑐 ∗ 𝑞𝑡𝑟𝑎𝑛𝑠 ∗ 𝐷𝐼𝑆𝑃&𝐸𝑉                               (12) 

𝑞𝑡𝑟𝑎𝑛𝑠 =  
𝑄𝐵𝑖𝑜𝑚𝑎𝑠𝑠

χ𝐵𝐼𝑂∗𝜂𝐵𝐼𝑂
                             (13) 
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In equation 12 above, 𝐷𝐼𝑆𝑃&𝐸𝑉 = 276 𝑘𝑚 , because the nearest biomass producer, 

according to the council, is PBE Fuels and they are 138km away from the site.   

𝐵𝑇𝑟𝑐 =  0.00012 𝑘𝑔𝐶𝑂2 /𝐾𝑔𝐵𝑖𝑜𝑚𝑎𝑠𝑠 –  𝐾𝑚  

𝐵𝑇𝑟𝑐 represents the carbon emission factor. This is the rate of kilograms of CO2 emitted 

by the lorry based on the distance and amount of biomass transported (Biomass Energy 

Centre 2011a). This gives an approximate value for the amount of CO2 emitted for 

transporting biomass by road. Assuming that only CO2 emissions are considered for 

transport, the total carbon dioxide equivalent remains the same.  

Consequently, the total greenhouse gas emissions can be calculated as shown below: 

 𝐺𝐻𝐺𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = (∑ 𝜇𝐾𝑔𝐶𝑂2𝑒
𝑙𝑁𝑙

𝑙=1 ) +  𝜇𝐾𝑔𝐶𝑂2
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

      (14) 

As mentioned before, the analytical model is also capable of computing other greenhouse 

gases produced in the process (methane, sulphur oxides, nitrous oxides and so forth). 

Considering these gases can help take into account the toxicity effect related to solutions, 

as some of these greenhouse gases are more toxic than others. However, in this work, 

only CO2 is taken into consideration.  

Other calculations 

This section presents all the other operating equations. The production of thermal energy 

for gas boilers, CHP, and biomass boilers is calculated below: 

𝑄𝐵𝑂𝐼𝐿𝐸𝑅 = ∑ 𝑄𝑗
𝑁𝐵𝑂𝐼𝐿𝐸𝑅
𝑗=1   (15) 

𝑄𝐶𝐻𝑃 = ∑ 𝑄𝑖
𝑁𝐶𝐻𝑃
𝑖=1    (16) 

𝑄𝐵𝐼𝑂𝑀𝐴𝑆𝑆 = ∑ 𝑄𝑘
𝑁𝐵𝐼𝑂𝑀𝐴𝑆𝑆
𝑘=1   (17) 

The electrical energy produced by the CHP can be calculated as shown below: 

𝐸𝐶𝐻𝑃 = ∑ 𝐸𝑖
𝑁𝐶𝐻𝑃
𝑖=1    (18) 

𝐸𝑖 in equation 18 above can be calculated using the CHP to heat ratio, τ : 

𝐸𝑖 = 𝑄𝑖 ∗ τ   (19) 

Here, τ = 0.65. This is obtained from the manufacturer’s documents. 
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Assuming the biomass boilers are needed for 24 hours on full capacity, the maximum 

biomass consumption for one day can be calculated in kilograms, as shown below: 

𝐶𝑜𝑛𝑠𝑚𝑎𝑥
𝐵𝐼𝑂 =

𝑁𝐵𝐼𝑂𝑀𝐴𝑆𝑆 ∗ 𝑄𝑚𝑎𝑥
𝐵𝑖𝑜𝑚𝑎𝑠𝑠∗ 0.001

χ𝐵𝐼𝑂∗𝜂𝐵𝐼𝑂
  (20) 

Here, χ𝐵𝐼𝑂 = 4.8 𝑘𝑊ℎ/𝑘𝑔  

           𝜂𝐵𝐼𝑂 = 0.82 

                         𝑄𝑚𝑎𝑥
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 495 𝑘𝑊 ×  24 =  11,880 𝑘𝑊ℎ 

The maximum biomass consumption calculated for one day is about 6036 kg. The natural 

gas consumption, which is represented in equation 4, can be calculated as below: 

𝐶𝑜𝑛𝑠𝐺𝐴𝑆 = ∑ (
 𝐸𝑔+𝑄𝑔

𝜂𝑔
)

𝑁𝐺−𝑁𝐵𝐼𝑂𝑀𝐴𝑆𝑆
𝑔=1   (21) 

4.2.2.2. Supply side optimisation problem 

This analytical model can be used as a cost function for optimisation, using a workflow 

that was greatly used for the SportE2 project, as shown below in Figure 29. 

 

Figure 29. Optimisation Model 
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The optimisation problem can look into solving a multi-objective problem such as 

minimising costs and minimising emissions while increasing efficiency. The approach 

here considers emissions, costs and energy efficiency (intelligent matching of supply and 

demand), and therefore it can be termed ‘holistic’. Moreover, the model considers both 

heat and electricity domains, even though it optimises only heat energy production. The 

optimisation proposed help facility managers decide on the operational strategy for the 

district for a period of 24 hours, further helping to optimise the power output of each 

source in the strategy. The constraints are implemented to make sure that the solution also 

meets the demand at all times during the 24-hour period analysed. This analytical model 

is applied to the case of Ebbw Vale district and is used as the cost function for multi-

objective optimisation. 

Optimisation Objectives 

 The first objective is related to minimising the operational costs of the district:  

Minimise  (𝐶𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒 − B𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒)  

Detailed calculations for 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒 and B𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑒𝑛𝑡𝑟𝑒 were presented earlier 

in Section 4.2.2.1. 

 The second objective aims to minimise the total greenhouse gases emissions: 

Minimise (𝐺𝐻𝐺𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) 

 Calculation of 𝐺𝐻𝐺𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 was detailed in Section 4.2.2.1. 

Decision Variables 

The 24-hour production schedules in the analytical model for each source g,  𝑄𝑔  are 

chosen as the decision variables. “According to the IEEE/IEC 61970-301 CIM (Common 

Information Model) standard, a regular schedule for automation systems can be defined 

by: 

 Δt a time step (a constant value in seconds); 

 𝑡𝑠 a start date; 

 𝑡𝑒 an end date; 

 𝑎𝑛 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠. 
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In the proposed mathematical model, each thermal energy production schedule is 

represented by a row vector. Let 𝑁𝐺  be the total number of energy source systems and 

energy using systems in the district. ∀𝑔 ∈ {1, … , 𝑁𝐺}, 𝑄𝑔 ∈ ℝ𝑚, where m is the number 

of time points 𝑚 = |
𝑡𝑒−𝑡𝑠

𝛥𝑡
|. Let 𝑔 ∈ {1, … , 𝑁𝐺}, the schedule of energy source system 𝑔 be 

denoted by: 𝑣𝑔 = {𝑣𝑡
𝑔

: 𝑡 ∈ 𝑇}, where T is the set of time points (|𝑇| =  𝑚). For example, 

𝑄𝐶𝐻𝑃denotes the production schedule of the CHP generation system of the considered 

district.” (Jayan et al. 2016, p.161).  

Constraints 

 The difference between the heat production schedule, 𝑄𝑔, and the heat demand 

schedule, 𝑄𝑑𝑒𝑚𝑎𝑛𝑑
𝑏 , is computed from the analytical model. Here, a factor for 

losses, i.e. a safety factor, needs to be taken into account as well. The safety factor 

in the Ebbw Vale problem is assumed to be around 20%, which is assumed by 

taking an average from the losses seen in historical data. The constraint enables 

the optimisation algorithm to choose a solution that meets demand at all times.  

𝑄𝑟𝑖𝑛𝑔
𝑖𝑛 ≥ ∑ 𝑄𝑑𝑒𝑚𝑎𝑛𝑑

𝑏𝑁𝑏
𝑏=1    (22) 

 The energy sources have their own maximum and minimum power capacities. 

These are designed as constraints in the optimisation problem by setting them as 

lower and upper bounds of the design variable itself. The lower and upper bounds 

are presented below in Table 11. For CHP and Biomass boilers, the optimisation 

algorithm however is allowed to turn them off when not needed. 

Table 11. Operational constraints of the problem 

 Lower Bound (Kw) Upper Bound (Kw) 

CHP 375 401 

Biomass Boilers 124 495 

Gas Boilers 0 1600 

 

Implementation of district analytical model and optimisation 

GA are nature-inspired stochastic optimisation algorithms which have the following 

characteristics: 

 Encoding: this is where the decision variables in the optimisation problem are 

encoded in abstract constructs.  
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 Set-based: a set of abstract constructs (called solutions) are manipulated by the 

algorithm simultaneously; 

 Iterative: along the run of the optimisation algorithm the solution set is updated 

dynamically. This update is performed by applying genetic operators – crossover 

and mutation operators. The crossover operator combines two or more existing 

solutions to create a solution, whereas the mutation operator slightly modifies the 

existing solution by a fraction.  

 Selection and replacement: the solution set is improved by iteratively exploring 

the neighbourhood in the solutions search space (defined by the genetic 

operators). The better solutions discovered are then selected and incorporated.  

 Random-based: most of the sub-processes mentioned above are applied in a 

probabilistic manner by the GA. 

 Black box: the value of a comparative performance measure for each solution 

(called evaluation) is then needed by GA, regardless of how this measure is 

computed. 

Here, the NSGA-II algorithm developed by Prof. Kalyanmoy Deb was used (Deb et al. 

2002) and implemented in MATLAB13. 

                                                 
13 http://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii--a-multi-objective-
optimization-algorithm 

http://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii--a-multi-objective-optimization-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii--a-multi-objective-optimization-algorithm
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Figure 30. Optimisation process workflow showing the use of NSGA-II and district analytical 

model (Jayan et al. 2016) 

The overall optimisation process workflow and the interaction between the analytical 

model and the NSGA-II optimisation algorithm is shown above in Figure 30.  

A straightforward generalisation of a classical single-point crossover operator is chosen. 

This operation means that the row vectors in the schedule matrix (decision variable) are 

crossed by randomly picking a time point from either side. The scope of this research 

does not demand a detailed look at the optimisation model parameters and therefore the 

selection of mutation operator is also basic. “When mutation probabilistically occurs, a 

random value of thermal energy production is given at a randomly picked time point of a 

randomly picked schedule (respecting the lower and upper bound capacities of the 

targeted generation system)” (Jayan et al. 2016, p.162). Non-dominated sorting is 

performed within the algorithm by evaluating the constraints of the optimisation problem. 

The NSGA-II algorithm used maximum generation, in this case, 100, as the stopping 

criterion for the optimisation problem.  

As mentioned earlier, the decision variable solutions are encoded as 𝑚-by-𝑁𝐺  matrices. 

Conceptually, they are matrices of regular schedules as standardised in IEEE 61970-301 

(British Standards 2011). The results of the optimisation problem are presented in the 

next section. 
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4.2.2.3. Results and analysis of supply side optimisation 

Two different optimisation test cases were applied to the Ebbw Vale pilot using typical 

winter day demand profiles, and the results of these were used to compare with the base 

case (which is also known as the business as usual case). The testing results and analysis 

are shown below: 

Business as usual case – the business as usual case utilises simple deterministic 

algorithms to calculate the production schedules in the district and is currently 

implemented in the pilot site. The operational strategy is manual (under the control of the 

facility manager), and it uses the CHP initially to meet the base load, and any excess load 

is met by the biomass and gas boilers. The CHP is given priority to meet the loads. The 

biomass boilers are preferred over gas boilers for three reasons:  

(1) The carbon emissions produced using this source is almost 10 times less compared to 

gas boilers,  

(2) Biomass boilers are capable of running at a lower output power, which can reduce the 

excess energy being produced, and  

(3) They are economically attractive, as renewable heat incentives (RHIs) are available 

for unit heat production using biomass boilers.  

Figure 31 below shows the results where each source is used to meet the demand. The 

deterministic algorithm uses a mathematical rule-based approach to computing the 

production profiles, which were generated based on human knowledge of system running. 

Figure 31 shows demand being perfectly met by production profiles with the available 

resources. Table 12 shows the final cost and emissions value calculated during the 24 

hours. 
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Figure 31. Energy Demand vs. Supply for business as usual case. 

Scenario 1: Optimisation using NSGA-II  

In this scenario, the NSGA-II algorithm was used to solve the problem. NSGA-II also has 

user-defined parameters, like other GAs, which impact the performance of the algorithm. 

During the running of the algorithm, sufficient variety among the population sets needed 

to be induced and therefore the algorithm was assigned a crossover value of 0.9 and 

population size of 1000, considering the scale of the solutions. 0.05 was taken as the 

mutation value, making sure that the solution would not converge early. 

The strategy regarding the order of use of sources was fixed and therefore the optimisation 

could only modify the output power of each of the sources within its constraints. One of 

the non-dominated solutions achieved by the NSGA-II algorithm is shown below in 

Figure 32. The algorithm is adapted to the energy management problem, and it processes 

the decision variables before the evaluation stage to make sure that the demand is met for 

each time step. The cost and emissions value achieved through this scenario is shown in 

Table 12. 
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Figure 32. Energy Demand vs. Supply for scenario 2 using NSGA-II.   

Scenario 2: Optimisation using NSGA-II but with a changed strategy 

  

Figure 33. Supply vs. Demand for Scenario 2 

Scenario 1 did not make a huge amount of savings in terms of profit and brought about a 

very small decrease in emissions (results are shown in Table 12 below). In other words, 

very few solutions could meet all constraints while keeping emissions and costs low. In 

Scenario 2, therefore, the algorithm was made flexible regarding the strategy, i.e. change 

the order of use of the energy sources. Any change in strategy was performed manually 

by testing out many different possibilities. Doing this brought about a drastic 

improvement in the cost and emissions objectives. Figure 33 above shows one of the non-

dominated solutions where biomass boilers and gas boilers were used, and CHP was 

turned off. The objective values computed for this solution are shown below in Table 12. 
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The loss in the network, which is approximated at around 20%, is included in the demand 

profiles of Figures 31, 32, and 33. This value was approximated by historical data 

analysis. The final results of the objectives for each scenario and their computational time, 

during a typical winter day, are shown below in Table 12: 

Table 12. Final results (Jayan et. al 2016) 

 
Business as 

Usual 

Scenario 1- 

Optimisation 

using NSGA-II  

Scenario 2- Optimisation using 

NSGA-II (flexible strategy) 

 

Computational time 

(seconds) 
1.98 2373 2379 

Profit (£) £1854  £1805.18 £2442.68 

CO2 Emissions (kg) 2394.7 2374.89 1531.92 

No. of time steps where 

Demand was not met 
0 0 0 

 

Discussion 

When compared to the business as usual case, scenario one reduces emissions by 0.8% 

during the 24-hour period analysed. Despite the NSGA-II optimisation being applied, this 

is very little improvement in results. The optimisation also failed to improve the profits, 

which actually decreased by 2.6%. When compared to the deterministic algorithms used 

in the business as usual scenario, scenario one has not brought about any drastic 

improvements. Therefore, for scenario two the strategy that decides the order of priority 

of use of the energy sources was made flexible, which improved the results – it increased 

the profits by 31.8% and most importantly, decreased the emissions by 36% when 

compared to the business as usual case.  

The results are purely computational and not monitored in reality. However, the 

optimisation model does consider operational constraints, through sub procedures applied 

to each individual solution of the population, before calculating the objective values such 

as profits and emission. One of the constraints for example is the fact that CHP should 

not be switched on and off repeatedly over a short period of time, as it has a minimum 

start-up time to work at full capacity. Therefore, solutions which suggests such an 

operational schedule are corrected through sub procedures prior to the evaluation stage 

of NSGA-II. 
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For the current demand profile analysed, turning off the CHP and using biomass boilers 

and gas boilers worked out to be a better strategy. One of the reasons for this could be the 

high renewable heat incentive received for every unit of energy produced from the 

biomass boilers. However, the results might vary with varying different demand profiles. 

Therefore, the optimisation algorithm should be modified in future wherein by default the 

strategy is kept flexible, which means it would be capable of autonomously running the 

different test cases with different strategies rather than leaving it to the user to do it 

manually. Applying the black box approach to optimisation therefore can be 

advantageous in such cases. 

In conclusion, NSGA-II can bring savings in costs and emissions if it is allowed to be 

flexible with the strategy and not restricted to finding the optimum output power of energy 

sources. The advantage of the optimisation performed here is that it takes into account all 

constraints, factors, and objectives to compute a feasible solution. When considering 

these factors, the GA can produce an optimised solution which can perform better than 

the operational strategy devised through human knowledge. The Ebbw Vale site, being 

small compared to other districts, has fewer feasible strategies for running the district. 

However, for larger districts with many energy sources, the problem can become 

complex, and the optimisation methodology adopted here can be beneficial in such cases.  

One of the challenges behind the optimisation is the computational time it takes to process 

results. “The optimisation process currently is time-consuming as it takes about 2373 

seconds hours on a normal computer with which has the following specification- Intel(R) 

Core (TM) i5-3360M CPU @2.80 GHZ Processor Speed, RAM 8 GB” (Jayan et al. 2016, 

p.164). However, if the optimisation is to perform ‘day-ahead’ scheduling for facility 

managers, it becomes less of a problem as it gives ample time for the solutions to be 

implemented. Other options would be to follow a similar approach to that in SportE2 

wherein high-performance computing was used and the optimisation process was also 

parallelised (Petri et al. 2014a).  

Limitations and future work 

For the current analysis, no real-time prediction of building demand is used, and the 

experiments are carried out offline using a typical winter demand profile for each 

building, which was provided by project partners. To implement the optimisation 

methodology, in reality, the 24-hour demand profile predictions of the various buildings 

that consume energy in the district are needed. These demand loads are dynamic in nature 
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based on factors such as weather, occupancy, seasons, etc., and hence “being proactive 

and planning ahead can increase the energy efficiency of the overall system” (Jayan et 

al. 2016, p.164). Demand prediction is possible by following a similar approach to that 

used by the authors in the SportE2 project using artificial neural networks.  

Future work can also look into optimising the supply and return temperatures within the 

network. To do this, however, a dynamic simulation model of the network is needed. 

Once this is available it can be linked with the analytical model and furthermore the 

energy production schedules can be translated into the actual setpoint – for example, 

supply temperature, return temperature, the mass flow of water, etc.  

The current mathematical model does not include any renewables and storage 

technologies because it is largely based on the Ebbw Vale case study where these 

technologies were lacking, but this needs to be integrated in the future. More case studies 

in the future can help add knowledge to the existing analytical model, making it more 

generic. The study conducted here is steady state, which means the time steps are not 

linked to each other and therefore latency effects and time constants cannot be considered 

during the analysis.  

As mentioned in the discussion earlier, the optimisation code ideally should be altered to 

allow for NSGA-II to be flexible regarding order of use of the energy sources. Currently, 

any change in strategy needs to be manually made in the code, which is not feasible when 

the model needs to be applied to a slightly complicated district that has many energy 

sources. 

In this research, only the NSGA-II algorithm was implemented; further investigation and 

testing can be done using other GA-based optimisation algorithms for better results. A 

range of GA operator instances (selection, crossover, mutation) can also be experimented, 

starting with ones that has previously solved similar real-world optimisation problems 

and moving towards the ones that are tailored for district energy production scheduling. 

“The resulting best-practice metaheuristics set-up for district energy schedule 

optimisation, combined with accurate load prediction and possibly deployed on 

delocalised high-performance computing infrastructures, could be at the heart of a multi-

criteria” (Jayan et. al 2016, p.164).  

4.3. Conclusions from action research 

Although the Resilient project looks into real-time district energy optimisation, it fails to 

consider any demand optimisation within the building domain, which was also a gap 
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highlighted during the literature review in Chapter 2. Similarly, SportE2 fails to consider 

any supply side optimisation. Therefore, the need to harmonise supply and demand side 

optimisation was reinforced through working on these two projects, realising the true 

potential of bringing together both solutions adopted in both the projects. A method to 

harmonise both demand and supply side optimisation can be concluded as a result of the 

action research conducted as shown in figure 34 below.  

 

Figure 34. The link between building energy optimisation and district energy optimisation 

Here, the results of daily demand optimisation (at a building level) would need to be taken 

into consideration for the supply optimisation (at a district level). The author believes that 

this can achieve a holistic energy optimisation. The demand side energy optimisation is 

conducted through the SportE2 solution wherein ANN models are used with multi-

objective optimisation algorithms. A pre-requisite for this would be ANN models for each 

use case/scenario to be trained and validated (either through simulation model or 

historical data). This solution would optimise the demand throughout the day (every 15 

minutes or 30 minutes). The new, reduced demand schedules of each building will be 

used to predict the 24-hour demand profile for the next day (again using demand 
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prediction ANN models). The predicted demand profile can consequently be used as an 

input to the simulation/analytical model of the district for supply side optimisation. 

Hence, the optimisation of the supply side can be linked to the optimisation of the 

buildings. Together they would deal with the complex issue of trying to match demand 

and supply in real time taking into account all the static constraints and objectives, and 

consequently increasing the overall efficiency. 

ANN models which are capable of day ahead demand forecasting is needed to complete 

the workflow. Initial work on this suggested using the ANN input and output as shown 

below. However, detailed investigation is needed in this area. The author assumes the 

ANN model shown below for the purpose of completing the ontology in this research. 

 

Figure 35. Proof of concept of ANN model for day ahead demand prediction. 

REMO ontology conceptual model design 

REMO ontology which needs to be developed would then have to support this 

harmonisation of demand side optimisation (SportE2 demand optimisation method) and 

supply side optimisation (district energy model and optimisation method). To do this, the 

following concepts can be concluded to be part of REMO ontology as shown in figure 36 

below:  
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 Artificial intelligence concepts – these include entities that are meant to support 

the running of AI models such as prediction or optimisation models. AI models 

as mentioned earlier are key for any real-time energy optimisation. 

 Numerical or simulation model concepts – simulation or numerical models, as 

seen in previous works, are also useful to analyse different scenarios in advance 

and help the decision-making process. The entities identified here would, 

therefore, support the running of these models. 

 Energy Demand side concepts – these entities are mainly building or demand 

side related. Various aspects of a building that are needed for real-time energy 

management and optimisation are included here.  

 Energy Production side concepts – these entities are mainly district related or 

production side related. Various aspects of the district that are needed for real-

time energy management and optimisation are included here. 

 Link with IFC and other standards – the ontology would also need to include 

some of the entities that were defined previously in standardised ontologies. For 

example, in the building domain, IFCs are standard data models which might need 

to be included or linked with REMO concepts as well.  

Figure 36. REMO ontology concepts further detailed from action research 
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 User interface concepts – these concepts are needed in the ontology to support 

any user interface that may be developed as a part of the application through which 

users can interact with the ontology (or other features of the energy management 

system) for well-informed decision-making. 

Any optimisation based on artificial intelligence needs to involve real-time data to reduce 

the performance gap, as mentioned earlier in Chapter 1. REMO ontology, therefore, would 

need to be linked with automation systems in buildings (BMS) and districts (EMS) as 

shown before in figure 36. Consequently, systems or frameworks using this ontology 

would have the know-how to be able to interact with sensors and actuators in the 

respective buildings and districts. The main application of REMO ontology would be to: 

 Represent intelligent energy information (through the user interface). 

 Support real-time intelligent energy management by linking artificial intelligence 

and automation systems. 

 Support the optimisation of building energy or demand side: Holistic energy 

management within buildings – taking into account the various objectives 

involved. 

 Support the optimisation of district energy or supply side: Holistic energy 

management in districts taking into account environmental and economic 

objectives. 

The research also planned to make the artificial intelligence based use cases adopted in 

REMO ontology replicable to other districts of the future, which are similar to Ebbw Vale 

(as right now it is built based on this particular site). This can be possible if the contextual 

understanding of the use case-based dependent and independent governing variables and 

their complex interactions is captured in REMO ontology. The rule axiom features in 

ontologies are capable of doing this. Consequently, when REMO ontology is instantiated 

for another district in the future, the knowledge required for developing the optimisation 

and prediction models are available through the reasoning process. This makes REMO 

ontology very unique, innovative and intelligent as it is embedding the action research 

knowledge of use cases generation in the ontology. Chapter 5 further discusses how the 

ontology can be part of framework which is capable of facilitating real-time holistic 

energy management. 
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5. Overall System Design 

This chapter explains the overarching system framework which aims to aid real-time 

energy management by using ontologies to facilitate the working of artificial intelligence 

solutions and underlying automation systems. In this chapter, Section 5.1 describes the 

overall framework where the different layers are presented briefly. The core part of the 

framework is the semantic layer, also the major contribution of this PhD, is discussed in 

detail in Sections 5.2. Generic use cases of the overall framework are presented in Section 

5.3.  

5.1. Overarching Framework 

The design of the overarching framework is shown below in Figure 37. 

 

Figure 37. Architecture of overarching framework 

Semantic Layer 

The brain of the overall framework is the semantic layer, which embeds the REMO 

ontology at its core. REMO ontology includes relevant parameters and variables related to 

energy management at both the building and district domains, which is capable of 

supporting the optimisation operations in buildings and their districts using the 

methodology adopted in SportE2 (Section 4.1) and district energy optimisation (Section 

4.2.2) respectively.  

REMO ontology here imports ee-district ontology (from resilient), IFC ontology and 

a refined version of the building ontology developed by the author under the SportE2 

project (Jayan et al. 2014), as shown in Figure 38. Similar classes and properties from 
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these ontologies are aligned to the REMO ontology using a linked data approach. The 

various ontologies within REMO are:  

 ee-district ontology – this ontology was developed as a part of the Resilient 

project (Section 4.2 in Chapter 4). This ontology is also linked to other existing 

standards such as the CIM standards, socio-technical ontology, and other well-

defined ontologies such as the OntoCAPE ontology. It mainly contains all the 

relevant concepts with regard to the district and the energy systems in the district. 

 Building ontology – this ontology consists of the concepts that were developed 

under the SportE2 project (Section 4.1). These concepts are used for real-time 

energy management at a building level.  

 ifcOWL ontology – the idea behind linking IFC domain ontology (ifcOWL14) 

with REMO ontology was to make sure that the energy management applications 

through REMO would be BIM compliant. The concepts in ifcOWL ontology 

similar to REMO ontology are therefore aligned together using equivalent property 

and rules. This means an instance model of ifcOWL can be used to automatically 

instantiate REMO ontology through a reasoning process. This can be useful, as it 

means that any future building that is available in IFC format can be used to 

instantiate REMO ontology, provided the IFC model is converted into an ontology. 

The IFC to OWL convertor (Terkaj and Šojić 2015) can be used to convert IFC 

files to an ifcOWL file. More details on this are provided in Section 5.1.4. 

 

Figure 38. REMO ontology importing the necessary ontologies 

                                                 
14 http://www.buildingsmart-tech.org/future/linked-data/ifcowl 

http://www.buildingsmart-tech.org/future/linked-data/ifcowl
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Section 5.2 explains the detailed design of the REMO ontology including classes, 

properties and rules, and also shows links between ee-district and IFC ontology. 

Functional Layer  

The functional layer includes the prediction models, optimisation models and simulation 

models which run the optimisation and prediction use cases for real-time energy 

management in buildings and districts. It is used for: 

Demand side optimisation for the buildings – this is based on the action research work 

carried out in the SportE2 project (SportE2 Project Consortium 2014), as explained in 

Section 4.1. Demand side optimisation functionalities use the ANN models and their 

respective optimisation algorithms. 

Supply side optimisation for the district – this functionality allows real-time optimisation 

of the production side in the district using mathematical models and optimisation 

algorithms, as discussed previously in Section 4.2.2. The supply side optimisation can 

take into consideration the optimised building demand on a day-to-day basis, as per the 

overall workflow demonstrated in Section 4.3. 

Visual Layer 

The framework also has a visualisation layer, which is the user interface. The user 

interface is envisioned to be linked to the semantic layer where the ontology is hosted. 

The scope of this research does not include looking into the interaction between the 

semantic layer and the visual layer; however, preliminary work on this is presented in 

Chapter 6, under Section 6.3. 

Through the visual layer, the users can interact with the overall framework and run the 

use cases for energy optimisation and management. More details on the development can 

be found under Section 6.3.  

Data Layer 

The data layer represents the parameters and other information stored in the BMS of 

buildings and EMS of districts. The BMS and EMS are of particular importance for all 

the dynamic information within buildings and districts, respectively. The functional layer 

accesses this information and further uses it for running of optimisation, prediction, and 

mathematical models.  
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Detailed interaction between the different layers is beyond the scope of this research. The 

interaction may require the development of a system integration module which is similar 

to the approach taken in the European project ISES where the module served to link the 

data with systems and physical devices in place, using a linked data approach 

(Katranuschkov et al. 2015). The Semantic layer is discussed in detail below in Section 

5.2. 

5.2. Semantic layer 

This section describes the REMO ontology in detail and also some of its links with other 

ontologies.  

5.2.1. REMO Ontology Classes 

Figure 39 below shows the high-level concepts derived as a result of the action research. 

 

Figure 39. High-level concepts of REMO ontology derived from action research 

The main classes of REMO ontology were derived from the action research conclusions as 

shown in Figure 39 above. The blue spheres in the diagram show some of the high-level 

abstract concepts of REMO ontology derived post literature review stage. Whereas the 

orange oval-shaped concepts drive into the details of some of the abstract concepts, clarity 

on which, was a result of the action research conducted. This can then further be derived 
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into super-classes. The REMO ontology super-classes are the direct subclass of 

owl:Thing as shown below in Figure 40. 

 

Figure 40. Main classes of REMO ontology 

This section describes these classes, their subclasses and their purpose in the REMO 

ontology. The classes of REMO ontology are grouped according to their domain or 

application area. Only the main classes are described in this section. However, a 

description of the other classes can be found in the appendices. 

1. Classes related to building and energy consuming zones 

 

Figure 41. Building and EnergyConsumerZone class 

Building class 

Description 

This class contains all individuals representing buildings in the district. 

Relations 

- Building is a subclass of owl:Thing 
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- Building class also has an equivalent class linking to ee-district 

ontology, which is eedistrict:Building. The prefix ‘eedistrict’ 

here suggests that the class belongs to ee-district ontology. 

EnergyConsumerZone class 

Description 

This class contains individuals that are zones in buildings. A zone here represents a space 

that can control its heating and cooling requirements. This space can be one room or a 

group of rooms. Building energy optimisation use cases that can be applied to individuals 

of this class. 

Relations 

- EnergyConsumerZone is a subclass of owl:Thing. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of energy consumer zone>.  

Example: EnergyConsumerZone_OfficeSpace1 

2. Classes related to Energy Sources 

 

Figure 42. EnergySource class and its subclasses 
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EnergySource class 

Description 

This class contains all individuals that are energy-producing systems in the district. They 

can be a central source or a decentralised source. 

Relations 

- EnergySource is a subclass of owl:Thing. 

 

3. Classes related to environmental and fuel properties 

EnvironmentalAndFuelProperties class 

Description 

This class contains individuals and subclasses that are related to fuel types that are used 

in the district and their related properties, as shown in Figure 43. To keep the figure 

simple, it does not show any disjoint relationships, but all subclasses of this class are 

mutually disjoint with each other. As the name suggests, the class also has environmental 

properties such as specific emissions of fuel and emissions due to biomass fuel transport. 

 

Figure 43. Subclasses of EnvironmentalAndFuelProperties class 

Relations 

- This class is a subclass of owl:Thing. 

- It is equivalent to 

socio_technical_systems:EnvironmentalProperty class 
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4. Classes related to energy source design parameters 

 

Figure 44. EnergySourceDesignParameters class and its subclasses 

EnergySourceDesignParameters class 

Description 

This class contains individuals and subclasses that are related to the various properties of 

the energy sources in the district including their efficiencies, maximum and minimum 

power capacities, and electricity to heat power ratios. For clarity, Figure 44 above does 

not show any disjoint relationships, but all subclasses of this class are mutually disjoint 

with each other.  

Relations 

- This class is a subclass of owl:Thing. 

- It is equivalent to socio_technical_systems:DesignProperty 

class. 
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5. Classes related to building operational parameters 

 

Figure 45. Classes related to BuildingOperationalParameters 

BuildingOperationalParameters class 

Description 

This class contains individuals and subclasses that are related to the various operational 

parameters relevant to real-time operations in the buildings. Various subclasses 

representing sensors and meter readings are present under this class. For clarity, Figure 

45 above does not show any disjoint relationships, but all subclasses of this class are 

mutually disjoint with each other.  

Relations 

- This class is a subclass of owl:Thing. 

 

6. Classes related to location of parameters in BMS or EMS  

 

 

Figure 46. ParameterMapping class and subclasses 
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ParameterMapping class 

Description 

Real-time energy management requires dynamic values to be read for parameters from a 

BMS or EMS. This class contains all individuals that represent the BMS/EMS endpoint 

information, i.e. the location of the real-time values of these parameters. More details can 

be found when the properties of this class are explained. 

Relations 

- ParameterMapping is a subclass of owl:Thing. 

 

7. Classes related to district operational parameters.  

 

Figure 47. DistrictOperationalParameters class and its subclasses 

DistrictOperationalParameters class 

Description 

This class contains individuals and subclasses that are related to operational parameters 

in the district. Operational parameters in the district are required for energy optimisation 

at a district level. Figure 47 above shows some of the subclasses of this class; however, 

it does not show any disjoint relationships between them. All subclasses of this class are 

mutually disjoint with each other.  

Relations 

- This class is a subclass of owl:Thing. 
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8. Classes related to use cases and scenarios for real-time energy management 

UseCases class 

 

Figure 48. UseCases class and its subclasses 

Description 

One of the most important classes of the REMO ontology that is needed for real-time 

energy management applications is the UseCases class. This class contains individuals 

and subclasses that represent the use cases for optimisation and prediction. Once 

individuals are defined in this class, various parameters (or instances) needed for the 

prediction and optimisation models are automatically inferred through SPIN rules during 

the reasoning process (shown in the reasoning Section, 7.1.2). Figure 48 above shows 

some of the subclasses of this class but does not demonstrate any disjoint relationships 

between them. All subclasses of this class are mutually disjoint with each other.  

Relations 

- This class is a subclass of owl:Thing. 

UseCases_Building class 

Description 

This class contains individuals that represent the building-related use cases.  

Relations 

- This class is a subclass of UseCases class. 

- Disjoint with UseCases_District class. 
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UseCases_Building_Optimisation class 

 

Figure 49. UseCases_Building_Optimisation class and its subclasses 

Description 

This class contains the optimisation-related use cases applied within a building. 

Subclasses of this class are shown above in Figure 49. These are the use cases adopted 

from the work conducted in the SportE2 project. 

Relations 

- Subclass of UseCases_Building. 

- Disjoint with UseCases_Building_Prediction class. 

Other subclasses of UseCases_Building_Optimisation and its description are 

shown in Table 13 below. Details of this can be found in the appendices. 

Table 13. Other classes related to UseCases_Building_Optimisation class 

Name of class Description 

UseCases_Building_Optimisation

_ScenarioSwimmingPoolAhuOptimi

sation 

This class contains the optimisation-related use cases 

applied within a building, especially looking into 

optimisation of the air-handling unit of a zone or space 

containing a swimming pool. 

UseCases_Building_Optimisation

_ScenarioRoomAhuOptimisation 

This class contains the optimisation-related use cases 

applied within a building, especially looking into 

optimisation of the air-handling unit of a zone or space. 
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UseCases_Building_Prediction class 

 

Figure 50. UseCases_Building_Prediction class and its subclasses 

Description 

This class contains the prediction-related use cases applied within a building. These use 

cases can be applied for the training of ANN models for a particular optimisation scenario. 

Sometimes they are used for running of the actual ANN models. Subclasses are shown in 

Figure 50 above. 

Relations 

- Subclass of UseCases_Building. 

- Disjoint with UseCases_Building_Optimisation. 

UseCases_Building_Prediction_Model class 

Description 

This class contains individuals that represent use cases to run the actual ANN model. All 

the information needed to run the ANN model is provided through the properties of the 

individuals defined through this class.  

Relations 

- Subclass of UseCases_Building_Prediction. 

- Disjoint with UseCases_Building_Prediction_Training class. 

Other subclasses of UseCases_Building_Prediction_Model and its 

description are shown in Table 14 below. Details of this can be found in the appendices. 



-118- 

 

Table 14. Other classes related to UseCases_Building_Prediction_Model class 

Name of class Description 

UseCases_Building_Prediction_Model

_OverallDemandProfile_Heat 

Individuals of this class represent use cases that 

support running of ANN models which predict the 

overall heat demand profile of buildings. 

UseCases_Building_Prediction_Model

_OverallDemandProfile_Electricity 

Similar to class 

UseCases_Building_Prediction_Model_O

verallDemandProfile_Heat, but here the 

focus is on electricity demand profiles prediction of 

buildings and not heat. 

 

UseCases_Building_Prediction_Training class 

Description 

This class contains individuals that represent use cases to train the actual ANN model. 

All the information needed to train the ANN model is provided through the properties of 

the individuals defined through this class.  

Relations 

- Subclass of UseCases_Building_Prediction. 

- Disjoint with UseCases_Building_Prediction_Model class. 

Other subclasses of UseCases_Building_Prediction_Training and their 

descriptions are shown in Table 15 below. Details of this can be found in the appendices. 

Table 15. Other classes related to UseCases_Building_Prediction_Training class 

Name of class Description 

UseCases_Building_Prediction

_SwimmingPoolAhu 

This use case class is needed to support the 

UseCases_Building_Optimisaiton_ScenarioSw

immingPoolAhuOptimisation class, as it provides 

information for the training of the ANN model that is used for 

optimisation of air-handling units in spaces or zones 

containing swimming pools. 

UseCases_Building_Prediction

_RoomAhu 

This class has individuals that represent use cases class needed 

to support the 

UseCases_Building_Optimisaiton_ScenarioRo

omAhuOptimisation class, as it provides information for 

the training of the ANN model that is to be used for 

optimisation of air-handling units in rooms. 
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UseCases_Building_Prediction

_OverallDemandProfile 

This class contains individuals that represent the prediction-

related use cases applied for a building. The individuals and 

their properties once reasoned will contain information for 

developing and training an ANN model that will be applied 

for day-ahead forecasts of overall building heat and electricity 

demand profiles. 

UseCases_Building_Prediction

_OverallDemandProfile_Heat 

This class contains individuals that represents the prediction 

models of overall heat demand profiles of buildings. The 

individuals and their properties once reasoned will contain 

information for running an ANN model that will be applied 

for day-ahead forecasts of heat demand of the building. 

UseCases_Building_Prediction

_OverallDemandProfile_Electr

icity 

Similar to class 

UseCases_Building_Prediction_OverallDeman

dProfile_Heat, but here the focus is on electricity 

demand profile prediction of buildings and not heat. 

 

UseCases_District class 

Description 

This class contains individuals that represent the district optimisation-related use cases. 

The individuals of these use cases are linked to energy producing buildings through 

properties, and this consequently provides information for running the district analytical 

model and optimisation model through reasoning. The detailed application of this class 

and its individuals is shown through the use cases in Section 5.3. 

Relations 

- This class is a subclass of UseCases class. 

- Disjoint with UseCases_Building class. 

Other subclasses of UseCases_District and their descriptions are shown in Table 

16 below. Details of this can be found in the appendices. 
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Table 16. Other classes related to UseCases_District class 

Name of class Description 

UseCases_District_Optimisation_

TypicalDemand 

This class contains the district optimisation use case but 

uses a typical demand profile for each building in the 

district. 

UseCases_District_Optimisation_

PredictedDemand 

This class contains the district optimisation use case but 

uses predicted demand profile for each building in the 

district. In other words, the district optimisation uses day-

ahead demand forecasts for heat and electricity profiles of 

each building. 

 

9. Classes related to optimisation 

Optimisation class 

 

Figure 51. Optimisation class and subclasses 

Description 

This class contains individuals and subclasses that are related to concepts needed for real-

time energy optimisation. They provide knowledge and information for the optimisation 

model to run, such as the optimisation variables, the objectives, and the solutions. 

Optimisation model input and output are mainly presented through the properties 

associated with the UseCases class. Figure 51 above shows the various subclasses of 

this class. It does not demonstrate any disjoint relationships. All subclasses of this class 

are mutually disjoint with each other.  

Relations 

- This class is a subclass of owl:Thing. 

Optimisation_ModelParameters class 

Description 
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This class contains individuals that represent the different parameters needed to initiate 

the district optimisation model. The subclasses of this class are shown in Figure 52 below: 

 

Figure 52. Optimisation_ModelParameters class and its subclasses 

Relations 

- This class is a subclass of Optimisation. 

- Disjoint with sibling classes: Optimisation_Objectives, 

Optimisation_Solution, and Optimisation Variables.  

Other subclasses of Optimisation_ModelParameters and their descriptions can 

be found in the appendices. 

Optimisation_Objectives class 

Description 

This class contains individuals that represent the different objectives of the optimisation 

problem at both a building and a district level. The subclasses in Figure 53 below show 

the different types of objectives. 

 

Figure 53. Optimisation_Objectives class and its subclasses 
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Relations 

- This class is a subclass of Optimisation. 

- Disjoint with sibling classes: Optimisation_ModelParameters, 

Optimisation_Solution, and Optimisation Variables.  

Other subclasses of Optimisation_Objectives and their descriptions can be 

found in the appendices.  

Optimisation_Variables class 

 

Figure 54. Optimisation_Variables class and its subclasses 

Description 

This class contains individuals that represent the optimisation variable or, in other words, 

the decision variables of the optimisation problem at the district level. The individuals 

here are automatically constructed when the district energy optimisation use case is 

defined in the UseCases_District class.  

Relations 

- This class is a subclass of Optimisation. 

- Disjoint with sibling classes: Optimisation_ModelParameters, 

Optimisation_Solution, and Optimisation_Objectives.  

5.2.2. REMO Ontology Properties 

This section describes the data properties and object properties in REMO ontology. Only 

the most important properties are described in this section; the others can be found in the 

appendices. 
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1. Properties Related to Building class 

Table 17. Properties related to Building class 

Name of Property Domain Range 

hasOutdoorTempSensor Building TempSensors_Outdoor. 

hasOutdoorHumSensor Building HumiditySensors_Outdoor. 

hasMainElecMeter Building MeterReadings_Electricity_Primary. 

hasMainHeatMeter Building MeterReadings_Heat_Primary. 

 

Description 

hasOutdoorTempSensor – this property assigns an outdoor temperature sensor to 

individuals of the Building class. 

hasOutdoorHumSensor – this property assigns an outdoor humidity sensor to 

individuals of the Building class. 

hasMainElecMeter – this property assigns a primary electricity meter to 

individuals of the Building class.  

hasMainHeatMeter – this property assigns a primary heat meter to individuals of 

the Building class. 

2. Properties related to EnergyConsumerZone and EnergyConsumerRoom 

class 

Description 

hasSensors – this property assigns the sensors to energy-consuming rooms within 

a building. 

hasMeter – this property assigns meters to energy-consuming rooms within a 

building. 

hasComfortPMV – this property assigns a comfort PMV parameter to energy-

consuming rooms in the building. 

hasEnergyUsingSystem – this property assigns energy-using systems such as 

radiators or air-handling units to energy-consuming rooms in a building. The 

range here belongs to an imported class of the ee-district ontology– 

eedistrict:EnergyUsingSystem. 

hasActuators - this property assigns actuators to energy using systems.  

hasSubzone – this property assigns subzones to energy consumer zones. An 

energy consumer zone here can be a building or a room within a building as a 

building can have many zones. Room, however, is the smallest zone and cannot 
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have a subzone. This restriction can be explicitly mentioned in the properties by 

the following statement:  

“hasSubzone exactly 0“. 

3. Properties related to ParameterMapping class 

Table 18. Properties related to ParameterMapping class 

Name of Property Domain Range 

hasLocationString_Read ParameterMapping xsd:string 

hasLocationString_Write ParameterMapping xsd:string 

hasHistoricalDataLocationString ParameterMapping xsd:string 

 

Description 

hasLocationString_Read – this property assigns the individuals of the 

ParameterMapping class and its subclasses to its endpoint location in the BMS or 

EMS. The individuals represent each dynamic parameter of the REMO ontology whose 

value might have to be read in real time from the BMS or EMS, for example, temperature 

sensors, actuator setpoints and so forth. The endpoint location is stored as a string. 

hasLocationString_Write – this property is very similar to the property above. However, 

here the string value assigned represents the endpoint location to modify or write setpoints 

in the BMS or EMS. For example, the actuators in the building might need to be modified 

after the optimisation process. Retrieving this information from the ontology, therefore, 

enables editing of the actuator setpoints in the BMS or EMS. 

hasHistoricalDataLocationString – this property assigns the endpoint location of 

parameters in the BMS or EMS to individuals of the ParameterMapping class and its 

subclasses. Through this string location, the historical data of the parameter of interest 

can be retrieved. 

 

4. Properties related to UseCases class and its subclasses. 

Table 19. Properties related to UseCases class and its subclasses 

Name of Property Domain Range 

isApplicableFor UseCases_Building EnergyConsumerRoom 

hasOptimObjective UseCases_District 
MeterReadings 

Optimisation_Objectives 

hasOptimSettings UseCases_District 
Optimisation_ModelParameters

_Nsga2 
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hasOptimModelParameters UseCases_District 
Optimisation_ModelParameters

_Analytical 

isApplicableForDistrictOpti

misation 
UseCases_District EnergyProducerBuilding 

 

Description 

isApplicableFor – this property assigns the energy management use case (prediction or 

optimisation) to a particular space or zone in an energy consumer building. This property 

is at a building level only and is available only to building-level use cases. 

hasOptimObjective – this property assigns the objectives of optimisation to the use case. 

The objectives assigned are automatically inferred through SPIN rules defined in the 

ontology. Further explanation of this can be found in Section 6.1.2. The objective is 

usually individuals from the MeterReadings class or 

Optimisation_Objectives class. 

hasOptimSettings– this property assigns the settings for the district optimisation model 

(for the NSGA-II algorithm) to the individuals of the UseCases_District class. The 

instances defined in the Optimisation_ModelParameters_Nsga2 class already 

have default values if the user wants to leave this unchanged. 

hasOptimModelParameters – this property infers some of the parameters needed for the 

district energy optimisation and analytical model to run. The SPIN rules defined in the 

class UseCases_District makes this possible.  

The Optimisation_ModelParameters_Analytical class already predefines 

the individuals needed, but the properties of these individuals are needed for the models 

to run, which are only complete once the ontology is reasoned. Examples of this are 

shown in Section 6.1.2. 

isApplicableForDistrictOptimisation – this property assigns the district energy 

management use case (optimisation) to a particular energy producer building at the 

district level. This property can be used only at a district level and is available only to 

energy producer buildings, which supply energy to the buildings at a district level. 
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5. Properties related specifically to building prediction and optimisation use cases 

class 

Description 

hasAnnInput – this property assigns the inputs of the ANN model to the prediction use 

case (through subclasses). This property is at a building level only and is available only 

to building-level use cases. The individuals are automatically assigned to this property 

through inference, as SPIN rules are embedded in the ontology. These individuals are 

selected from the range of this property, i.e. from the Actuators class, Sensors 

class, or at times even the ActivitySchedule Class.  

hasAnnOutput– this property is similar to property above, but here it assigns the output 

parameters of the ANN model to the use case. These properties mainly infer the recorded 

meter readings or other objectives, such as comfort factor.  

hasOptimInput– this property assigns the input parameters needed for the building 

energy optimisation model of the selected use case. The individuals allocated to the use 

case through this property are automatically inferred once the ontology is reasoned.  

hasOptimObjective – defined previously under properties related to the UseCases class 

and its subclasses (refer to Table 19). 

hasDecisionVariable – this property assigns the decision variables of the optimisation 

model to the use cases This is applicable for both the building and district optimisation 

problems. These are again automatically inferred based on knowledge embedded in the 

ontology through SPIN rules. They are mainly from the class Actuators in the case of 

building optimisation and the class ProductionScheduleHeat in the case of district 

optimisation. 

Table 20. Properties related to UseCases_Building_Prediction and 

UseCases_Building_Optimisation class 

Name of Property Domain Range 

hasAnnInput 
UseCases_Building_

Prediction 

Actuators 

ActivitySchedule 

Sensors 

hasAnnOutput 
UseCases_Building_

Prediction 

MeterReadings 

Optimisation_Objectives 

hasOptimInput 
UseCases_Building_

Optimisation 

Sensors 

ActivitySchedule 

Actuators 

Optimisation_Objectives 
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hasOptimObjective 
UseCases_Building_

Optimisation 
MeterReadings 

hasDecisionVariable 
UseCases_Building_

Optimisation 

Actuators 

ProductionScheduleHeat 

 

6.  Properties related to Optimisation class 

Table 21. Properties related to Optimisation class 

Name of Property Domain Range 

hasAnalyticalModelValue Optimisation_ModelParameters_Analytical 
xsd:integer 

xsd:float 

 

Description 

hasAnalyticalModelValue – this property assigns a numerical value to individuals in the 

Optimisation_ModelParameters_Analytical class, which is needed for 

running the district analytical or optimisation model. If not allocated by the user, they are 

usually inferred through SPIN rules (as shown in Section 6.1.2). 

5.2.3. Dependencies with the ee-district ontology  

ee-district ontology is imported into REMO ontology as shown earlier in Figure 38. 

Some of the benefits of doing this were: 

 Reusing some of the classes such as UnitOfMeasure (imported into ee-

district from system ontology) and EnergyUsingSystem. 

 All the applications that ee-district ontology supports have the possibility 

also to be linked to the overarching framework in this research, if needed in the 

future. 

 ee-district allows a detailed description of a district including social and 

technical entities.  

 Concepts from CIM standards that are relevant for energy management systems 

to talk to each other are included in the ee-district ontology, and therefore 

they are available for REMO ontology as well. Using these standards can be 

beneficial for further development of the framework in the future, to establish 

communications with the energy management systems (BMS/EMS).  
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Some of the concepts in REMO ontology are similar to ee-district ontology 

concepts. These were mapped to each other using the equivalent property. Some of the 

links are shown below in Figure 55. 

 

Figure 55. Links between REMO and ee-district ontology 

ScalarValue class and concepts from ee-district ontology were also important 

to adopt into REMO ontology to represent the scalar values and properties for various 

parameters related to real-time energy management. The ScalarValue class was 

imported into ee-district through the system ontology. Each individual of this 

class has properties UnitOfMeaure and numericalValue, which were both linked to REMO 

ontology as shown below in Figure 56 and Table 22. 

 

Figure 56. ScalarValueClass and its properties 

The equivalent property of this class and its purpose is shown below in Table 22. 
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Table 22. Equivalent property between system and REMO ontologies 

System ontology 

property 
REMO ontology property Purpose 

system:hasValue remo:hasValueName 
Represents the scalar value name for each 

property. 

system:numericalValue remo:hasNumerialValue 
Stores the numerical value for the 

property. 

system:UnitOfMeasure remo:hasUnitMeasure 
Assigns the dimension to the scalar value 

from the class system:UnitOfMeasure. 

 

Some classes of REMO ontology were defined as subclasses of ee-district ontology. 

For example, the EnergyUsingSystem class belongs to ee-district ontology, 

whereas its subclasses belong to REMO ontology, as shown below in Figure 57. The 

subclasses are energy-using systems within a building and these concepts were missing 

in ee-district ontology. 

 

Figure 57. eedistrict:EnergyUsingSystem class and its subclasses in REMO 

5.2.4. Dependencies with the IFC ontology 

Framework compliance with BIM 

BIM is a methodology increasingly being adopted by the Architecture Engineering and 

Construction (AEC) industry around the world and especially in the UK. IFC building 

standards are used as a file format for exchanging information in BIM. Therefore, linking 

the framework with IFC by importing the ifcOWL ontology into REMO ontology was 

important, as this allows the framework to be applied to all future BIM-compliant 

construction projects. Integrating the operational stages of the building to BIM is now 

critical as there are more and more operational data requirements for holistic and real-

time energy management. Integrating into BIM process will formalise or standardise the 
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operational data requirement from the conception of the project itself. For example, a 

COBIE15 schema for real-time operational energy management can be built from this. 

ifcOWL Ontology – Background 

Previous research has suggested the need to make IFC available as an OWL ontology 

(Schevers and Drogemuller 2005) so that it can be used with semantic web technologies. 

Since 2012 there have been many different ifcOWL structures, and there was a need for 

formalisation and standardisation. Therefore, ifcOWL was created by Pieter Pauwels and 

Walter Terkaj in close collaboration with buildingSmart and WC3 standardisation bodies 

(Pauwels and Terkaj 2016). It was developed to support the conversion of IFC files into 

equivalent RDF files. Currently, only the following formats are supported: 

IFC4_ADD1, IFC4, IFC2X3_TC1, or IFC2X3_Final schema. However, the ifcOWL 

ontology is in the process of being standardised.  

Using ifcOWL ontology 

Initial studies on the ifcOWL structure showed that some of the concepts were similar to 

the ones in REMO ontology, as shown below in Table 23. 

Table 23. IFC classes and REMO classes 

ifcOWL classes REMO classes 

IfcBuilding Building 

IfcSensor Sensors 

IfcActuator Actuators 

IfcSpatialZone / IfcSpace EnergyConsumerRoom 

IfcZone EnergyConsumerZone 

IfcBoiler GasBoiler / BiomassBoilers 

IfcDistributionElement AirHandlingUnit 

IfcSystem / IfcBuildingSystem eedistrict:EnergyUsingSystem 

 

The link can be achieved by explicitly stating the ifcOWL classes, and REMO classes 

from table above are equivalent to each other in the domain model. Another possibility is 

to define rule axioms in the domain model that state that any instance of ifcOWL 

                                                 
15 http://www.bimtaskgroup.org/cobie-uk-2012/ 
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ontology class X is the same as the instance of REMO ontology class Y. For example, X 

here can be the IfcSensor class and Y here can be the Sensors class. 

Many of the concepts from REMO ontology are still lacking in the IFC standards today, 

especially those at a district level. IFC standards, therefore, are not quite good enough to 

be applied for the real-time energy management approach mentioned in this research, 

which is also supported by the literature review from Chapter 2. However, some of the 

concepts included in REMO ontology can also be considered to be incorporated into the 

IFC standards. 

The advantage of doing this is that any building in the future that is available in IFC 

format can be automatically instantiated in REMO ontology. This is achieved through the 

following three steps: 

 Building IFC file (office.ifc) is converted to RDF file (officeIFC.rdf) using the 

tool16. 

 The newly created building IFC owl file (officeIFC.rdf) is imported into 

instantiated REMO ontology (remoInstance.rdf). 

 The further reasoning of the remoInstance ontology would infer instances 

from officeIFC ontology as instances of the corresponding remoInstance 

ontology classes as they are linked. 

Linking with ifcOWL is important as it helps the user in the instantiation process of REMO 

ontology and it does not have to be from scratch. A district can contain many buildings. 

Thus, in the future, the process mentioned above needs to be automated to bring instances 

of each building IFC ontology file into instantiated REMO ontology. Moreover, the user 

interface layer could also use the IFC ontology instances to display 3D IFC models of 

each building on the site. 

5.2.5. Other dependencies and links 

As a part of the action research mentioned earlier in Section 4.1, the author worked on a 

SportE2 ontology, which is largely an ontology for buildings that can be used for real-

time energy optimisation. Figure 58 shows some of the main concepts identified by the 

author. 

                                                 
16 https://github.com/mmlab/IFC-to-RDF-converter/wiki/IFC-to-RDF   

https://github.com/mmlab/IFC-to-RDF-converter/wiki/IFC-to-RDF
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Figure 58. High-level classes of SportE2 ontology (Jayan et al. 2014) 

The descriptions of these classes and concepts are mentioned below in Table 24. 

Table 24. SportE2 ontology classes and their descriptions 

Class 
Description of Class Similar class in REMO 

Dimension 
Physical quantity 

measurements. 
system:UnitOfMeasure 

EnergyUsingSystem 
Any system that consumes 

energy. 

eedistrict:EnergyUsing

System 

EnergyProducingSystem 

Any system that produces 

energy (can also be main grid if 

no production locally). 

EnergySource 

Scenario 

Covers all the use cases or 

scenarios to which SportE2 

solutions can be applied. 

UseCases 

Zone 
The different zones or rooms or 

spaces in the sports facilities. 
EnergyConsumerZone 

Objective Objectives of scenario. Objectives 

Constraints 
All constraints linked with 

scenario. 
- 

Monitor 
Sensors and meters involved in 

a zone to help monitoring. 

Sensors, Meters, 

Actuators 

ProblemFeasibility 

The individuals here check the 

feasibility of the optimisation 

problems and solutions. 

- 

ComfortIndicator 
Indicates thermal comfort of 

occupants. 
ComfortPMV 
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Most of the classes described above were adopted into REMO ontology, as shown in the 

table. SportE2 ontology was not imported into REMO because it was not a complete 

ontology and there were missing concepts and rules, as mentioned earlier in Section 4.1.3. 

5.3. Generic Use Case Descriptions for the framework 

 

Use case 1 – Initiate ANN training for use cases that need building energy 

optimisation 

Description 

This is one of the primary use cases, and it is required for some of the other use cases to 

work (such as use cases 2 and 5). It is applied for the training of ANN models that will 

consequently be used by the building optimisation use cases.  

Pre-requisites 

 Existing historical data of buildings, to which these ANN models need to be 

applied, should be stored in the BMS. If historical data is not available, a 

simulation model should be able to provide the data for initial training of the 

models. 

Notes 

 The timestamp information for historical data is also necessary for the 

training, but this can be retrieved from the data recordings as most BMS 

systems will by default have timestamp information associated with them. 

Post-processing algorithms can be then used to be able to extract day type, 

month, and hour from this timestamp information. Day type represents all the 

days of the week as numbers from 1-7.  

Use case 2 – Optimisation of building-related use cases 

Description 

This use case is applied to rooms or zones in buildings that need real-time energy 

optimisation. This use case has been adopted from the optimisation methodology adopted 

in the SportE2 project (as explained in Section 4.1). Here, the ANN models trained under 

use case 1 are used as the cost function for the optimisation, and therefore ANN models 

are a pre-requisite. Since the optimisation is applied in real time, ICT devices that read 
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real-time information for the optimisation input parameters are needed. In reality, this use 

case can be triggered every 15 minutes or 30 minutes to read data from BMS and 

consequently optimise the decision variables of the problem. The control of the decision 

variables of the problem should be possible through the BMS.  

Pre-requisites 

 Use case 1 needs to be executed prior to this, and consequent ANN models 

need to be ready for use. (Note: If historical data is not available and Use case 

1 cannot be deployed in reality, then a simulation model for each building can 

be used to develop ANN models.) 

 ICT devices for reading real-time data are needed for providing real-time data 

for optimisation input parameters. 

 Control of actuators (optimisation decision variables) should be feasible. 

Notes 

 The timestamp information is also important here, but this can be processed 

as ANN input based on the current timestamp reading from the BMS.  

Use case 3 – District production schedule optimisation using typical demand 

schedules of each building 

Description 

This use case is applied at a district supply level and the optimisation applied here looks 

to produce optimum production schedules for the various energy sources in the district 

that supply energy to the entire district. The optimisation uses the district analytical model 

(refer to Section 4.2.2.) as the cost function. This use case is based on the district 

optimisation work illustrated in Section 4.2.2. This use case uses typical demand profiles 

of buildings which can be retrieved from the BMS of each building. 

Pre-requisites 

 District optimisation model needs to be ready for implementation. 

 Typical heat and electricity demand profiles are needed for each building that 

is part of the optimisation problem (i.e. each building part of the district 

energy model). 
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Notes 

 Currently, this use case only looks into heat production optimisation in the 

district, because of the focus on district heating, but, in the future, electricity 

energy production optimisation can also be added in a similar way. 

 The schedules here are assumed to be 24-hour with a 30-minute time interval. 

Use case 4 – Initiate ANN training for overall demand prediction of each consumer 

building in the district 

Description 

This use case provides information for training of ANN models for each building, through 

which day-ahead forecasts of heat and electricity demands can be possible. These day-

ahead forecasts can replace the typical demand profiles (of each building) used by the 

district analytical and optimisation model in use case 3 above. The use case can only be 

applied if adequate historical data or simulation data is available for training. 

Pre-requisites 

 The historical data of the buildings, to which optimisation needs to be applied, 

should be stored in the BMS and must be adequate. 

Notes 

 The timestamp information is needed, but this is retrieved from the historical 

data recordings using post-processing algorithms similar to the ones used in 

use case 1.  

Use case 5 – Running of prediction models to predict overall demand of buildings  

Description 

This use case is needed for running the ANN models developed in use case 4. For each 

building, the day-ahead weather forecasts that are available from the BMS (24-hour 

profile of outdoor temperature and outdoor humidity) and the building’s primary meter 

readings for the current day (24-hour schedule) are the input variables of the ANN model. 

Each building will have two ANN models – one for heat demand and one for electricity 

demand. The ANN models, consequently, provide day-ahead forecasts of demand 

profiles for the considered building. 

Pre-requisites 
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 Use case 4 needs to be executed before running this use case. 

 Heat and electricity meters are needed for monitoring the demand in each 

building. 

 BMS/EMS should be able to forecast weather schedules. 

Notes 

 The timestamp information is also important here, but this can be processed 

as ANN input based on the current timestamp reading from the BMS.  

Use case 6 – District optimisation using the predicted demand schedules of each 

building 

Description 

This use case is similar to use case 3; however, the difference is that it uses the predicted 

demand profiles (from use case 5) of each building rather than using the typical demand 

profiles. In reality, this use case, once implemented, allows harmonised district energy 

and building energy optimisation. The facility managers will be able to optimise their 

production schedules a day ahead, taking into account the demand forecasts of each 

building (demand forecasts made possible through use case 5). The demand forecasts, on 

the other hand, consider the daily optimised building energy demand (which is the results 

of running use case 2).  

 

Pre-requisites 

 Use case 4 is needed for the day-ahead demand forecast models to be trained 

for each building. 

 Use case 5 needs to be executed to run the ANN models and compute the 

forecasted demand for each building. 

 District optimisation model needs to be ready for implementation. 

 Production schedules of energy sources in the district, once optimised, should 

be able to be modified in the EMS. 

Notes 

 Currently, this use case only looks into heat production in the district, because 

of the focus on district heating in the site considered, but, in the future, use 
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cases for electricity production optimisation can also be added in a similar 

way. 

 The schedule here is assumed to be of 24-hours’ duration with a 30-minute 

time interval. 

Use cases 2, 5 and 6 executed one after the other can fulfil the holistic district energy 

optimisation requirements illustrated earlier in Figure 34 in Section 4.3, combining both 

building demand side optimisation and supply side optimisation in real time. 

The workflow below shows how this is implemented in reality: 

1. Use case 1 and use case 4 are executed to train ANN models. 

2. Building energy optimisation use cases are applied in real time every 15 or 30 

minutes using use case 2. 

3. Around midnight the ANN models for predicting overall heat and electricity 

demand for each building are triggered by using weather forecasts (24-hour 

profile for outdoor temperature and outdoor humidity) for the next day and each 

building’s previous day’s 24-hour demand.  

4. District optimisation can then be run as described in use case 6, using the predicted 

demand profiles from step 3. 

The workflow is presented below in Figure 59: 

 

Figure 59. Workflow of real-time holistic energy optimisation using the use cases 
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These use cases are developed from the author's experience through the action research 

conducted. Looking into other projects in this domain as case studies can help develop 

more use cases for the framework, by adding more knowledge to REMO ontology. 
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6. System Development and Implementation 

This chapter focuses on the development and implementation of the overall framework. 

The focus of this research is the development of the core aspect of the framework, which 

is the REMO ontology. The implementation of the functional layer (demand side 

optimisation and supply side optimisation) and visual layer is also presented briefly in 

this chapter. The final part of this chapter describes the running of use cases outlined in 

Section 5.3. 

6.1. Implementation of semantic layer (REMO ontology)  

This section introduces the further development of the ontology by adding rule axioms 

and constructors. Rule axioms are added to capture the generic knowledge behind the 

artificial intelligence models in the domain model. These rules in the domain model are 

important as they enable the reuse of this knowledge in future instance models, i.e. for 

other similar sites. Constructors, on the other hand, are defined to help the users’ 

instantiation process, making it more efficient. They by default create linked instances 

and assign them as needed (examples shown in Section 6.1.2). Instantiation of the 

ontology based on the Resilient project case study is detailed in this chapter in Section 

6.1.3. The instantiated ontology is then further used for validation purposes in Chapter 7. 

6.1.1. Competency questions 

Table 25 below lists a few of these questions and they are categorised based on the area 

of application.  

Table 25. Competency questions 

Optimisation-related questions 

What are the various optimisation input parameters given a <use case> 

What are the various optimisation objectives given a <use case> 

What are the decision variables given a <use case> 

What are the optimisation-related settings for district optimisation model given a <use case> 

What are the analytical model parameters needed for district optimisation given a <use case> 

Prediction-related questions 

What are the various ANN inputs needed for training the ANN model given a <use case> 

What are the various ANN outputs needed for training the ANN model given a <use case> 

What are the various ANN inputs needed for running the ANN model for overall building demand given 

a <use case> 

District-related questions – static topology  

List the number of energy consumers in the district  
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List the number of energy producers in the district 

List the energy sources in the energy producer building. 

List the energy sources that supply electricity given an <energy consuming building> 

List the energy sources that supply heat given an <energy consuming building> 

Energy sources and fuel properties-related questions – static information  

List the maximum or minimum output power given an <energy source> 

List the maintenance cost given an <energy source> 

List the fuel type given an <energy source> 

List the specific emissions given a <fuel type> 

Numerical values and dimensions-related questions 

List the numerical value given <scalar value name> 

List the dimension given <scalar value name> 

List the scalar value name given <parameter> 

Dynamic information and parameter mapping-related questions 

List all sensors given <room> 

List all actuators given <energy using system> 

List device location parameter name in BMS or EMS given <device> 

List string location in BMS or EMS to read dynamic real-time information given <device location 

parameter name> 

List historical data location in BMS or EMS to retrieve historical data given <device location parameter 

name> 

List string location in BMS or EMS to modify setpoints for actuators given <device location parameter 

name> 

 

6.1.2. Rules and constructors 

SPIN rules embedded in the ontology 

SPIN rules have been used in REMO ontology for various purposes, as discussed below: 

 To embed the generic knowledge behind optimisation and prediction models used 

for energy management use cases of the framework. Embedding this knowledge 

ensures automatic replication of the models, without any human expertise, when 

REMO is applied to future districts and buildings similar in nature.  

 Used as constructors which help the instantiation process.  

 Used for constraint checking. 

 Used to infer numerical values needed for the district analytical model and its 

optimisation. The user does not explicitly instantiate these numerical values in the 

ontology, and hence SPIN rules are useful. 
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The SPIN rules are attached to each class, and they are applied to every individual in that 

class or its subclasses. Some of the rule axiom definitions in REMO and their purpose are 

explained below. 

Rules relevant for building prediction use cases  

The following SPIN rules are attached to the class 

UseCases_Building_Prediction_RoomAhu. The rules defined under this class 

infer the input and output (of ANN models) for each individual of the class. The following 

rules, shown in Table 26, are defined under this class: 

Table 26. Rules used to infer ANN inputs of the room air-handling unit scenario 

Rule in SPIN language Algorithm 

CONSTRUCT { 

    ?uc :hasAnnInput ?x . 

} 

WHERE { 

    ?uc rdf:type 

:UseCases_Building_Prediction_Room

Ahu . 

    ?uc :isApplicableFor ?room . 

    ?room :hasEnergyUsingSystem 

?system . 

    ?system :hasActuators ?x . } 

uc has Ann Input x 

IF uc belongs to 

UseCases_Building_Prediction_RoomAhu class  

AND uc is applicable for room. 

AND room has Energy Using System system. 

AND system has Actuators x 

 

 

 

CONSTRUCT { 

    ?uc :hasAnnInput ?x . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_Room

Ahu . 

    ?uc :isApplicableFor ?room . 

    ?room :hasSensors ?x . 

} 

uc has Ann Input x 

IF uc belongs to 

UseCases_Building_Prediction_RoomAhu class  

AND uc is applicable for room. 

AND room has Sensors x. 

 

 

Table 26 above infers the ANN input of the prediction model needed for the optimisation 

of the air-handling unit scenario. ANN input of this particular building-based scenario 

includes the temperature and humidity sensors in the room, and also the actuators of the 

energy-using system in the room, as concluded from the SportE2 project knowledge. The 

input and output variables needed for ANN models are inferred using the various 

properties of the ontology, as shown in Table 26, which link the room (or zone where the 
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use case is applied), and the sensors and devices in the room. The output parameters of 

the ANN model are inferred as shown below in Table 27. Here, it is mainly the meters 

and comfort parameters associated with the targeted room in the building that are inferred. 

Table 27. Rules used to infer ANN outputs of the room air-handling unit scenario 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?uc :hasAnnOutput ?comfort . 

    ?uc :hasAnnOutput ?meter . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_RoomAhu . 

    ?uc :isApplicableFor ?room . 

    ?room :hasMeter ?meter . 

    ?room :hasComfortPMV ?comfort . 

} 

uc has Ann Output comfort  

AND uc has Ann Output meter 

 

IF uc belongs to 

UseCases_Building_Prediction_RoomAhu 

class  

AND uc is applicable for room. 

AND room has Meter meter. 

AND room has ComfortPMV comfort 

 

 

Reasoning the ontology therefore assigns the various input and output variables for the 

individuals of the UseCases_Building_Prediction_RoomAhu class. Results of 

reasoning are shown in Section 7.1.2. SPARQL query can be used to retrieve further 

information about these input and output variables, as shown in Section 7.1.3 in the 

validation chapter. 

Similarly, rules can be applied to all the other prediction use cases (i.e. subclasses of 

UseCases_Building_Prediction) of REMO ontology.  

Rules relevant for building optimisation use cases 

These sets of rules are defined in the class 

UseCases_Building_Optimisation_ScenarioRoomAhuOptimisation.

Optimisation input is inferred as instances of the Sensors and Actuators classes, 

similar to the prediction use case (prediction use case for room air-handling unit ANN 

model training); the room to which the use case is applied is used as a link to infer the 

sensor and actuators present here. Table 28 below shows rules used to inference the 

optimisation inputs needed for the air handling unit optimisation scenario. 
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Table 28. Rules used for inferencing the optimisation inputs of the room air-handling unit scenario 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?uc :hasOptimInput ?sensors . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Optimisation_Scenari

oRoomAhuOptimisation . 

    ?uc :isApplicableFor ?room . 

    ?room :hasSensors ?sensors . 

} 

 

uc has optim input sensors.  

 

IF uc belongs to 

UseCases_Building_Optimisation_Scena

rioRoomAhuOptimisation class  

AND uc is applicable for Room. 

AND room has Sensors sensors. 

 

 

CONSTRUCT { 

    ?uc :hasOptimInput ?actuators . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Optimisation_Scenari

oRoomAhuOptimisation . 

    ?uc :isApplicableFor ?room . 

    ?room :hasEnergyUsingSystem 

?system . 

    ?system :hasActuators ?actuators . 

} 

uc has optim input actuators 

IF   uc belongs to 

UseCases_Building_Optimisation_Scena

rioRoomAhuOptimisation class  

 

AND uc is applicable for room 

 

AND room has energy using system system 

 

AND system has Actuators actuators. 

 

The decision variables of the optimisation problem, on the other hand, are inferred by 

checking the energy-using systems in the room and their associated actuators, as shown 

below in Table 29. 

Table 29. Rules used for inferencing the decision variables of the room air-handling unit scenario 

Rule in SPIN language Explanation 

 

CONSTRUCT { 

    ?uc :hasDecisionVariable ?dv . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Optimisation_Scenari

oRoomAhuOptimisation . 

    ?uc :isApplicableFor ?Room . 

    ?room :hasEnergyUsingSystem 

?system . 

    ?system :hasActuators ?dv . 

} 

uc has Decision Variable dv 

 

 IF uc belongs to 

UseCases_Building_Optimisation_Scena

rioRoomAhuOptimisation class  

 

AND uc is applicable for room 

 

AND room has energy using system system 

 

AND system has Actuators dv 
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The objectives of the optimisation are the same as the output of the ANN model of the 

prediction use case. They are inferred by querying which sub-meters and comfort factors 

are linked to the room, as shown below in Table 30. 

Table 30. Rules used for inferencing the optimisation objectives for the room air-handling unit 

scenario 

Rule in SPIN language Explanation 

 

CONSTRUCT { 

    ?uc :hasOptimObjective ?comfort . 

    ?uc :hasOptimObjective ?meter . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Optimisation_ScenarioRoom

AhuOptimisation . 

    ?uc :isApplicableFor ?room . 

    ?room :hasMeter ?meter . 

    ?room :hasComfortPMV ?comfort . 

} 

uc has optim objective comfort 

AND uc has optim objective meter 

 

 IF   uc belongs to 

UseCases_Building_Optimisation_

ScenarioRoomAhuOptimisation 

class  

 

AND uc is applicable for room 

 

AND room has Meter meter 

 

AND room has Comfort PMV comfort 

  

 

Similarly, rules can be attached for other subclasses of the 

UseCases_Building_Optimisation class which can represent other scenarios 

such as air-handling unit optimisation of swimming pool area.  Similarly, rules applied 

for the other optimisation and prediction use cases are also defined, details of which can 

be found in appendix A. 

SPIN rules used for inferring some of the numerical values required for the district 

optimisation model 

The analytical model requires information in order to run, most of which can be obtained 

by querying the relevant individuals from the ontology through SPARQL queries. A few 

of these individuals are defined under the class 

Optimisation_ModelParameters_Analytical, and their numerical values 

need to be inferred using SPIN rules. These rules are defined under the class 

Optimisation_ModelParameters_Analytical. 

For example, the number of consumers in the district is represented by one of the 

individuals under this class and is needed for the analytical model. The numerical value 
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for this can be inferred through the rule shown below in Table 31. The individual 

“NbOfConsumers” will therefore be assigned a numerical value through the property 

hasAnalyticalModelValue after the reasoning process. 

Table 31. Rules used to infer numerical values needed for district optimisation. 

Rule in SPIN language Algorithm 

CONSTRUCT { 

    ?individual :hasAnalyticalModelValue 

?count . 

} 

WHERE { 

    { 

        SELECT ((COUNT(DISTINCT 

?consumers)) AS ?count) 

        WHERE { 

            ?consumers a 

:EnergyConsumerBuilding . 

        } 

    } . 

    ?individual a 

:Optimisation_ModelParameters_Analyti

cal . 

    FILTER regex(str(?individual), 

"NbOfConsumers") . 

}  

Individual has Analytical model value count 

 

WHERE 

{ 

DISTINCT Number of consumers is count 

AND consumers belong to 

EnergyConsumerBuilding class 

} 

AND individual belongs to 

Optimisation_ModelParameters_Analytic

al class  

 

FILTER individual with name “NbOfConsumers”  

  

 

Constructors defined in the ontology 

Constructors are added to make the instantiation process of the ontology easier. These 

constructors are SPARQL queries that can add initial values to the instance being created. 

Some of the applications of constructors in REMO ontology are shown below: 

Creating scalar value for parameters 

When an individual representing ‘distance to biomass supplier’ is instantiated under the 

class Distance_BiomassSupplier, constructors are defined to create a scalar 

value for this individual automatically under the class ScalarValueClass. These 

constructors make it easier for the user to instantiate the ontology, and they consequently 

would only need to assign a dimension and numerical value to this scalar value instance 

defined. The constructor to do this would be defined under the Distance_Biomass 

class, as shown below in Table 32. 
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Table 32. Constructors defined for Distance_Biomass class 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?this :hasValueName ?new . 

    ?new a :ScalarValueClass . 

} 

WHERE { 

    ?this a :Distance_BiomassSupplier . 

    BIND (str(?this) AS ?name) . 

    BIND (STRAFTER(?name, "#") AS 

?stringName) . 

    BIND (STRBEFORE(?name, "#") AS ?uri) . 

    BIND (URI(CONCAT(?uri,"#ScalarValue_", 

?stringName)) AS ?new) . 

} 

this has value name new 

 

AND new belongs to ScalarValueClass  

 

 IF  

  this belongs to 

Distance_BiomassSupplier class  

 

AND BIND (string value of variable (this)) AS 

name 

 

AND BIND (string which comes after “#” in 

name) AS stringName 

 

AND BIND (string which comes before “#” in 

name) AS uri 

 

AND BIND (concatenate strings: uri, 

"#ScalarValue_", stringName ) AS new 

 

The constructor above creates an individual under the ScalarValueClass for every 

individual created under the Distance_BiomassSupplier class. 

The variable ‘this’ 17  during run-time assigns itself with instances of class and its 

subclasses. 

The ‘BIND’ command here assigns a value to a variable from the basic graph pattern or 

property path expression. In the example above, the string value of the instance in ‘this’ 

is assigned to the variable ‘name’.  

The STRAFTER command is used in the form: 

 STRAFTER (?name, "#").  

This command returns a string value of the variable in ‘name’ following the ‘#’ symbol. 

In Table 32, the string value of the variable ‘name’ is the URI of the individual which in 

this case is “http://www.resilient-

project.eu/theworks#TransportEmission_BiomassBoiler_1”.  

                                                 
17 https://www.w3.org/Submission/spin-modeling/#spin-rules-thisUnbound  

http://www.resilient-project.eu/theworks#TransportEmission_BiomassBoiler_1
http://www.resilient-project.eu/theworks#TransportEmission_BiomassBoiler_1
https://www.w3.org/Submission/spin-modeling/#spin-rules-thisUnbound
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Therefore, the STRAFTER command applied above would return 

“TransportEmission_BiomassBoiler_1”. The STRBEFORE command is used in the 

form:  

STRBEFORE (?name, "#") 

This command returns a string value of the variable in ‘name’ prior to the ‘#’ symbol. 

Therefore the STRBEFORE command applied above would return  

“http://www.resilient-project.eu/theworks”. 

The CONCAT command is used here to join two or more strings as one. In the example 

shown in Table 32, string value of variable ‘uri’, ‘#ScalarValue_’ and the string value of 

variable ‘stringName’ are combined. The resultant string stored in the variable ‘new’ is 

“http://www.resilient-

project.eu/theworks#ScalarValue_Emissions_Transport_BiomassBoiler_1” 

Many other constructors similar to this can be applied to REMO ontology, which simplifies 

the instantiation process for the user while creating an instance model. Some further 

examples can be found under Appendix A. 

6.1.3. Instantiation 

In this research, the REMO ontology is applied to the site in Ebbw Vale to create an 

instance model which is named theworks ontology, as shown below in Figure 60. 

 

Figure 60. theworks ontology instantiation 

The ontology is instantiated with all the possible data collected from the site. There are 

four stages to instantiation, as listed below: 

1. District- and building-related data 

http://www.resilient-project.eu/theworks
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The following elements within the district are instantiated or defined here: 

 Buildings in the district as either energy-producing or -consuming buildings. 

 All the energy-consuming zones and rooms within each building.  

 Energy using systems in the rooms or zones. 

 Actuators linked to energy using systems. 

 Sensors and meters associated with the rooms or zones. 

 Demand schedules for each building in the district. 

 Energy sources in the district, which can be centralised sources (National Grid for 

electricity) or decentralised sources (such as biomass boilers, gas boilers or 

combined heat and power units). 

 The energy source design properties such as maximum and minimum output 

power, maintenance costs, electricity to heat ratios and so forth. Most of these are 

defined through constructors. An example is shown below: 

o A new biomass boiler instance named ‘BiomassBoiler_1’ is instantiated 

under the BiomassBoiler class, as shown below in Figure 61: 

 

Figure 61. Instance of BiomassBoiler created 

o The constructor defined under the class BiomassBoiler initialises 

individuals for the various properties of a biomass boiler and associates 

them to the individual ‘BiomassBoiler_1’, as shown below in Figure 62: 
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Figure 62. Instance of BiomassBoiler properties initialised and assigned 

 Energy prices and costs in the district. 

 Production schedules for energy sources in the district. 

 Environmental and fuel properties such as fuel type, specific emissions, fuel 

transport emissions, calorific value and so forth. 

 Optimisation-related parameters have been pre-defined instances, and some have 

default values. The values of these instances need to be updated by the user as 

needed. 

2. Parameter mapping data from BMS/EMS 

 Certain parameters in the ontology, especially operational parameters with 

dynamic values (changes in real-time), require a reference to their endpoint 

location in BMS or EMS systems. This reference is represented by individuals 

under the ParameterMapping class and is automatically created through 

constructors when the user defines the parameters (as shown in Section 6.1.2 using 

constructors). The string values for these references/individuals need to be 

assigned by the user. An example of this is shown below: 

o A new actuator instance named 

‘Actuators_LeisureCentre_SupplyAirTemp’ under the Actuators class 

is defined as shown below in Figure 63: 



-150- 

 

 

Figure 63. Actuator instance being created 

o The constructor defined under the class Actuators creates an individual 

that represents the endpoint location of the actuator in BMS and associates 

this new individual to ‘Actuators_LeisureCentre_SupplyAirTemp’ using 

the property has_locationBMS, as shown below in Figure 64: 

 

Figure 64. Actuator instance being assigned an individual that represents the endpoint location 
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o The individual is then initialised with a string value that represents its 

locations in the BMS or EMS, from which relevant information can be 

retrieved. In the case of actuators, the historical data, real-time data, and 

setpoint location can all be accessed, as shown below in Figure 65: 

 

Figure 65. The string value is given to the individual representing the endpoint location of the 

parameter 

 

3. Numerical value and dimension 

 Certain parameters in the ontology will automatically be given an associated 

scalar value under the class ScalarValueClass using constructors, as shown 

in Section 6.1.2. (refer to Table 32). An example of this is shown below. 

o Referring to Figure 66 below, every newly defined property of a biomass 

boiler will have a scalar value individual created and associated with it. 

Below the scalar value for the individual 

‘DistanceToBiomassSupplier_BiomassBoiler_1’ is shown. 
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Figure 66. Scalar value individual defined automatically for every property of biomass boiler 

 Consequently, these scalar value individuals are assigned a numerical value and 

dimension, as shown below in Figure 67. A list of dimensions is available for the 

user while assigning the dimension and these dimensions are listed from the 

UnitOfMeaure class belonging to system ontology. 

 

Figure 67. Numerical value and dimension being assigned by user for every individual representing 

a scalar value 
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4. Use case initialisation 

Use case instantiation is the final step before reasoning the ontology where individual use 

cases under the UseCases class and its subclasses are defined. The property that assigns 

where the use case is applicable for is also initialised for each use case. Below, sample 

use cases are defined in theworks ontology. An example is provided for each category 

of generic use cases presented from Section 5.3. Detailed steps for each are presented 

below: 

Sample use case 1: Training of prediction model for the fitness room in the Leisure Centre 

 The individual under the class 

UseCases_Building_Prediction_RoomAhu is defined and named 

UseCases_Building_Prediction_RoomAhu_LeisureCentre_FitnessRoom. 

 The property isApplicableFor for the newly defined individual is assigned a target 

area. Here, the prediction scenario is applied to the fitness room in the Leisure 

Centre building, as shown below in Figure 68. 

 

Figure 68. Sample use case 1 is instantiated 
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Sample use case 2: Optimisation of air handling unit in fitness room  

 An individual under the class UseCases_Building_ 

Optimisation_ScenarioRoomAhuOptimisation is defined to 

represent this scenario. The individual here is named 

UseCases_Building_Prediction_RoomAhu_LeisureCentre_FitnessRoom. 

 The property isApplicableFor for the newly defined individual is then assigned a 

target area. Here again, the fitness room is selected from the Leisure Centre, as 

shown below in Figure 69. 

 

Figure 69. Sample use case 2 is defined 

Sample use case 3: District optimisation of Ebbw Vale using typical demand profiles of 

buildings 

 An individual for the class 

UseCases_District_Optimisation_TypicalDemand is instantiated. 

The individual here is named UseCases_District_Optimisation_EbbwVale. This 

individual represents the scenario for optimisation of the heat production schedules 

of the different energy sources in the district. 

 The property isApplicableForDistrictOptimisation for the newly defined 

individual is assigned to an energy producer building from the district. The energy 

producer building instance selected was EnergyConsumerBuilding_EnergyCentre, 

as shown below in Figure 70. 
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Figure 70. Sample use case 3 is defined 

Sample use case 4: Training of heat demand prediction model for Leisure Centre building 

 The individual under the class 

UseCases_Building_Prediction_OverallDemandProfile_Heat 

is defined. 

 The property isApplicableForTotalDemandPrediction for the newly defined 

individual is assigned to an energy consumer building. Here, the energy consumer 

building for which the demand prediction model is required is selected. In this 

example case, the Leisure Centre building instance is selected – 

EnergyConsumerBuilding_LeisureCentre, as shown below in Figure 71. 
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Figure 71. Sample use case 4 is defined 

Sample use case 5: Running of the heat demand prediction model of the Leisure Centre 

building. 

 An individual under the class 

UseCases_Building_Prediction_Model_OverallDemandProfile

_Heat is instantiated. 

 The property isApplicableForTotalDemandPrediction for the newly defined 

individual is assigned to an energy consumer building. In this example case, the 

Leisure Centre building instance is selected, as shown below in Figure 72. 
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Figure 72. Sample use case 5 is defined 

Use case 6: District optimisation of Ebbw Vale using predicted demand profiles of 

buildings 

 An individual under the class 

UseCases_District_Optimisation_PredictedDemand is defined. 

This individual represents the scenario for optimisation of the heat production 

schedules of the different energy sources in the district using the predicted demand 

profiles of each building in the district. The district here is Ebbw Vale, and the 

instance is named 

UseCases_District_Optimisation_PredictedDemand_EbbwVale. 

 The property isApplicableForDistrictOptimisation for the newly defined 

individual is assigned by the user. Here, the energy producer building from the 

district is selected by the user, similar to use case 3, as shown below in Figure 73. 
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Figure 73. Sample use case 6 is defined 

Once the instantiation is complete, the consistency of the ontology can be checked, and it 

is put forward for reasoning as shown in Chapter 7. 

6.2. Implementation of functional layer 

The demand side optimisation module was developed and tested in the SportE2 project, 

and was also implemented over the web across three pilots in the project (Petri et al. 

2014b). More details about this can be found in the project document (Cardiff University 

2015). The major aspects of the demand side optimisation module that needed to be 

implemented in the system framework for real-time energy management were:  

 ANN executable files for each scenario – executable files can be made available 

through the MATLAB 2015 deploy tool18, which was similar to the approach 

taken in SportE2 (Cardiff University 2015). 

 Optimisation model framework – the optimisation framework used in SportE2 

(Yang et al. 2014) was based on a general integrated optimisation design software 

SiPESC.OPT (Yang et al. 2011). This software also needs to be implemented in 

the overall system framework, which runs the optimisation models of the demand 

side use cases. Here, SiPESC.OPT works along with ANN executable files, as 

most of the building optimisation requires their respective prediction models. 

                                                 
18 http://uk.mathworks.com/help/compiler_sdk/ml_code/deploytool.html 
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Supply side optimisation on the other hand was implemented through MATLAB. The 

MATLAB analytical model along with its optimisation model is exported as a standalone 

executable program for external deployment called District_SupplyOptim.exe. The 

export is made possible through the deploy tool19 in MATLAB. The executable program 

needs three input files for it to run. These three input files are: 

 Optimisation file with optimisation-related parameters for the NSGA-II algorithm 

to run (see appendices for MATLAB code). 

 The analytical model file that contains all the static information for the analytical 

model to run (see appendices for MATLAB code). 

 The demand schedules of all the buildings, which are stored in an Excel file. 

 The production schedules of all the sources, which are stored in an Excel file. 

This executable file can be linked to any external program. To complete the functional 

layer, ANN models are also needed for prediction of building heat and electricity demand 

profiles. Only preliminary work on these models was conducted due to lack of required 

data for testing. However, these models can also be similarly provided as executable files 

through MATLAB 2015, similar to the approach followed for SportE2. 

The overall functional layer, therefore, can be detailed as shown below in Figure 74: 

 

Figure 74. Detailed functional layer of the framework 

 

                                                 
19 http://uk.mathworks.com/help/compiler_sdk/ml_code/deploytool.html 
 

 

http://uk.mathworks.com/help/compiler_sdk/ml_code/deploytool.html
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6.3. Implementation of visual layer 

The Computational Urban Sustainable Platform (CUSP) is a prototype designed by the 

author and colleagues (Howell et al. 2016) to demonstrate a typical visual layer for the 

overall framework. The platform runs on the Unity Pro game engine20, and one of the 

reasons for choosing this was its seamless cross-platform deployment capabilities with 

the efficient use of computer resources. Here, the building IFC models of the work site 

were placed on the actual topography of the site. These IFC models, in the future, can 

also be interactive models; wherein the user will be able to query information about each 

building’s IFC model by interacting with it. A screenshot of the IFC models on CUSP is 

provided below in Figure 75: 

 

Figure 75. Screenshot of the visual interface showing 3D IFC model of buildings on the site 

The platform is envisioned to be a tool to manage future cities through an integrated 

semantic approach, and therefore it had to consider all domains that contribute to 

sustainability and not just energy. CUSP, therefore, is designed to have many dashboards, 

each dealing with a particular domain. The first prototype of CUSP had dashboards for 

energy and water domains, each capable of different functionalities.  

REMO ontology, therefore, fits in well with the overall vision of this future cities tool, 

because ontologies are perfect for cross-domain integration and collaboration. The 

authors major contribution here was designing the energy related use cases for the CUSP 

energy dashboard. In this particular case, REMO ontology can be integrated into CUSP 

                                                 
20 https://unity3d.com/unity  

https://unity3d.com/unity
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and can consequently help the running of the use cases of the energy dashboard. The 

energy dashboard once integrated with REMO ontology allows reuse of its applications 

for any site in the future, provided the site is instantiated in the REMO ontology. Some of 

the current use cases of the energy dashboard designed by the author include: 

 Running of the machine-learning algorithms (ANN models) for prediction of the 

overall demand schedules of each building (day-ahead demand forecasts).   

 Optimisation of the operational schedules of the energy sources in the district by 

running the district optimisation discussed in Section 4.2.2. The optimisation 

results provide useful insight into the management of the network and aid day-

ahead decision-making for facility managers. 

 The platform also allows users to calculate the key energy performance indicators 

of the district, with a 24-hour horizon, based on their preference of generation unit 

usage. These indicators are displayed in a radar graph which visualises the 

performance impact of the strategy chosen (see Figure 77 later). The indicators 

are computed by running the analytical model described in Section 4.2.2. 

Figures 76 and 77 below show some of the screenshots of the first prototype developed:  

 

Figure 76. Screenshot of the visual interface displaying heat and electricity demand of a building in 

Ebbw Vale 
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Figure 77. Screenshot of the visual interface showing key performance indicator calculations for the 

chosen strategy 

Future work for CUSP which will be undertaken by author’s colleagues would look into 

utilising a cloud-based approach to improving software performance. Further work is also 

needed on the CUSP district management tool, as it needs to be integrated with the web 

implementation of REMO ontology. The web implementation of the ontology would then 

enable the user interface to seamlessly query the ontology and retrieve information as and 

when needed.  

Linking CUSP to a BIM server is also being investigated by the team, which will allow 

access to BIM information in the platform. One advantage of having BIM servers is that 

changes made to BIM models can be updated easily in the platform, which also makes 

the CUSP platform easily replicable to future sites. Semantisation of IFC model 

information in the platform is also supported by these BIM servers.  

Usage of semantic modelling techniques to the platform is important to utilise the 

numerous analytics components alongside each other and to connect these to the varied 

data sources as well as to the other dashboards. The semantic model allows the integration 

of many heterogeneous data sources such as the demand schedules, meter readings, static 

data, IFC models and so forth. This knowledge can then be used by analytics applications 

such as production schedule optimisation, 3D visualisation, demand prediction and much 

more. Moreover, the semantic approach allows adding of further data sources and 

analytics with far less effort. The overall vision of the CUSP architecture within the 

framework of this research is presented below in Figure 78:  



-163- 

 

 

Figure 78. CUSP architecture detailed in Visual layer 

6.4. Execution of use cases for the framework 

A generic BPMN use case diagram showing the interaction between the various layers of 

the framework is shown in Figure 79 later. The User Interface (CUSP, for example) 

allows users to choose a particular use case through the energy dashboard. The user can 

select any of the following use cases: 

 Use case 2 – optimisation of building-related use cases (for example, optimisation 

of the air-handling unit in a building). 

 Use case 3 – district production schedule optimisation using typical demand 

profile of each building. 

 Use case 5 – running of prediction models to predict overall demand of buildings 

(available for each building in the district). 

 Use case 6 – district production schedule optimisation using optimised demand 

profile of each building. 

Use cases 1 and 4 are not available during the operational stages once the framework is 

implemented because it involves training of ANN models. Algorithm for training of 

prediction models before using the framework for real-time operations is presented 

below: 

1. Start.  

2. Select use case to run. 

3. Script file triggered based on use case selection. 

4. Script file executes set of SPARQL queries to query the ontology. 
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5. Responses to these queries stored in the script file.  

6. Script file from step 4 is used to query the BMS/EMS for historical 

data. 

7. Responses from step 5 used to generate input file and output file 

using post-processing algorithms. 

8. The input and output files used to train the prediction model. 

9. These trained models are exported as executables to be implemented 

with the framework. 

10. End. 

Once the ANN models are trained and implemented in the framework, use cases 2, 3, 5, 

and 6 are available to be executed in real time. The algorithm for running these use cases 

using the framework is presented below: 

1. Start  

2. Select use case to run. 

3. Script file triggered based on use case selection (in the visual 

layer through the user interface). 

4. Script file executes set of SPARQL queries to query the ontology 

(in the semantic layer). 

5. Responses to these queries stored in the script file.  

6. Script file from step 4 used to querying the BMS/EMS (in data 

layer) for real-time information.  

7. Responses from step 5 used to generate input file using post-

processing algorithms. 

8. Input file triggers mathematical model or prediction model or 

optimisation model (in the functional layer) based on the use case 

selection. 

9. Running of these models and computing solutions. 

10. Set solution in BMS/EMS based on user preferences. 

11. End. 

Based on the user's interaction with the user interface, the use case is selected, and a 

corresponding script file queries the ontology using SPARQL queries. The query returns 

all the relevant parameters from the ontology for the functional layer. Some of these 

parameters might be static and some dynamic. In the case of dynamic parameters whose 

value changes in real time, the ontology returns the location from where the parameter’s 

updated value can be read (BMS or EMS). The data layer comes into play here and 

provides the required data to the functional layer. Consequently, the functional layer is 

triggered where mathematical model/prediction model/optimisation model are run based 

on the use case selected. The results are displayed in the user interface, and the decision 

can be made here on any implementation if necessary. Any decision made is set in the 

BMS/EMS by using the setpoint locations of the decision variables. The details of this 

framework need to be worked on in future research, especially the script files that link the 
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different layers together. Figure 79 below shows a BPMN diagram which represents the 

running of use cases using the framework during the operational stages. 

 

Figure 79. Generic use case using the framework 
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7. System Validation  

Different types of validation steps are taken to evaluate the ontology as discussed in the 

validation methodology in Chapter 3. This chapter also provides testing and validation of 

the REMO ontology and also shows how the ontology can be used to support the running 

of the use cases of the framework. 

7.1. Ontology validation 

7.1.1. Consistency checking of REMO ontology 

TopBraid allows for three types of consistency checking, all of which were implemented 

for REMO ontology and theworks ontology. 

 The real-time syntax checking runs when the user is editing the ontology. Invalid 

statements would be outlined in red, as shown below in Figure 80: 

 

Figure 80. Real-time syntax checking in TopBraid 

 Constraint checking in TopBraid is performed after each editing step. Thus, any 

violations of OWL restrictions and global range restrictions, or SPIN constraints 

would be displayed under the problems tab, as shown below in Figure 81. 

 

Figure 81. Consistency checking feature in TopBraid.   
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 Finally, semantic checking checks the semantic validity of the ontology which is 

performed by the built-in OWL DL inferencer OWLIM21. The semantic check is 

also performed while reasoning the ontology.  

As TopBraid is one of the most advanced ontology editing platforms, the consistency 

checks were performed as theworks and REMO ontology was being built and errors 

were mitigated simultaneously. 

7.1.2. Reasoning results and validation of theworks ontology 

Various reasoning engines can be used in TopBraid. The reasoning engines used in this 

research were: Jena built-in reasoner and TopSPIN (SPARQL queries). Running 

reasoning engines on theworks ontology helped to infer new knowledge especially for 

the UseCases class and its subclasses because they contained the majority of the rules 

as described in Section 6.1.2. Reasoning knowledge was cross-checked manually by the 

author with the use case knowledge gained from action research, and the results of this 

are presented below. 

Sample use case 1 reasoning results 

Reasoning theworks ontology retrieves the ANN input and output-related data for the 

sample use case 1 defined in theworks ontology as shown below in Figure 82. 

                                                 
21 https://www.w3.org/2001/sw/wiki/Owlim 
 

https://www.w3.org/2001/sw/wiki/Owlim
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Figure 82. Reasoning results for use case 1 defined in theworks ontology 

Here, the individuals highlighted in blue are inferred through the reasoning process. Table 

33 below shows the results of the reasoning compared to the action research knowledge. 

It confirms that all the required knowledge was successfully retrieved through the 

reasoning process. 

Table 33. Sample use case 1 reasoning results of theworks ontology 

Use case 1 Training data for ANN input and output needed for AHU 

scenario 

 SportE2 Project Knowledge Reasoned Knowledge 

Input parameters 

Outdoor temperature sensor  

Indoor temperature sensor  

Indoor humidity sensor  

Outdoor humidity sensor  

Carbon concentration sensor  

Actuators related to air-handling unit system  

Occupancy sensors  

Output parameters 

Comfort parameter  

Electricity meter of room  

Heat meter of room  
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Each individual inferred has associated properties linked to it. Figure 83 below shows the 

associated properties linked to the individual representing the carbon concentration 

sensor. 

 

Figure 83. Individual representing the carbon concentration sensor and its associated properties 

Sample use case 2 reasoning results 

Inferencing the ontology retrieves the decision variables, optimisation model input, and 

optimisation objectives for the use case 2 individual defined. The results are shown in 

Figure 84 and Table 34. 
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Figure 84. Reasoning results for use case 2 of theworks ontology 

Table 34. Use case 2 reasoning results 

Use case 2 Optimisation input and output data for AHU Scenario in building 

 
 

SportE2 Project Knowledge 
Reasoned 

Knowledge 

Input 

parameters 

Other input for 

optimisation 

model 

Outdoor temperature sensor  

Indoor temperature sensor  

Indoor humidity sensor  

Outdoor humidity sensor  

Carbon concentration sensor  

Occupancy sensors  

Decision 

variables 
Actuators related to air-handling unit system  

Output 

parameters 

 Comfort parameter  

Electricity meter of room  

Heat meter of room  

 

Sample use case 3 reasoning results 

Reasoning the ontology retrieves the decision variables, optimisation model parameters, 

optimisation objectives, and optimisation settings that are needed for the district 

optimisation model to run. Reasoning results are shown in Figure 85 and Table 35. 
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Figure 85. Reasoning results  

The numerical values of the various analytical model parameters are also inferred through 

reasoning. Figure 86 below shows an example, where the ontology infers that the number 

of consumers in the district relying on district heating system is 6. 

 

Figure 86. The reasoning of numerical values of the analytical model parameters 
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Table 35. Use case 3 reasoning results  

Use case 3 Input and output data for optimisation of production schedules of 

the various energy sources in the district 

 
 Knowledge from District Optimisation 

Methodology 

Reasoned 

Knowledge 

Input 

parameters 

Other input for 

optimisation 

model 

NSGA-II optimisation settings related 

parameters 
 

District analytical model parameters 
Partly 

available 

Decision 

variables 
Energy sources heat production schedule  

Output 

parameters 

 Cost parameter  

Emission parameter  

 

In the case of district optimisation, many other related parameters are indirectly needed 

for the district optimisation module to run. These are not directly reasoned and would 

have to be queried against the ontology separately with a set of pre-defined SPARQL 

queries, some of which are shown in Section 7.1.3. 

Sample use case 4 reasoning results 

Reasoning theworks ontology retrieves the ANN input and output-related data for 

training of the ANN model which is needed for the overall building demand prediction, 

as shown below in Figure 87 and Table 36. 
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Figure 87. Reasoning results for use case 4 of theworks ontology 

Table 36. Use case 4 reasoning results 

Use case 4 ANN-related data for training the demand forecast models of 

individual buildings 

 Research Knowledge Reasoned Knowledge 

Input parameters 

Primary heat meter for building*  

Outdoor humidity data  

Outdoor temperature data  

Output parameters Primary heat meter for building*  

 

 *Primary heat meter for the building is listed as an input and an output, because, once 

the data is retrieved from the BMS or EMS, different datasets (according to timestamp) 

are used as input and output for training purposes. 

Sample use case 5 reasoning results 

Reasoning the ontology infers the ANN input and output parameters needed for running 

the prediction model in this use case, as shown below in Figure 88 and Table 37: 
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Figure 88. Reasoning results of use case 5 of theworks ontology 

Table 37. Use case 5 reasoning results 

Use case 5 ANN-related data for running of the demand forecast models of 

individual buildings 

 Research Knowledge Reasoned Knowledge 

Input parameters 

Primary heat meter for building (to retrieve previous 

day demand) 
 

Forecasted outdoor temperature  

Forecasted outdoor humidity  

Output parameters Demand schedule of building (forecasted demand)  

 

Reasoning results for sample use case 6 is similar to use case 3 results as presented above.  

7.1.3. SPARQL Query validation  

SPARQL queries can be used to query the ontology, and this can be used to validate the 

competency questions listed in Section 6.1.1 under Chapter 6. The summary of results 

from running the competency questions is shown below in the following tables: 
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Table 38. Optimisation-related competency questions and answers 

Optimisation-related questions 

Question What are the various optimisation input parameters given a <use case> : 

< UseCases_Building_Optimisation_ScenarioRoomAhuOptimisation > 

SPARQL 

query 

 

SELECT ?b ?label 

WHERE { 

?a remo:hasOptimInput ?b . 

?a a remo:UseCases_Building_Optimisation_ScenarioRoomAhuOptimisation . 

?b rdfs:label ?label } 

 

Response [b] [label] 

Actuators_LeisureCentre_FitnessRoom_SupplyAirRate Actuator Supply Air Flow 
rate 

Actuators_LeisureCentre_FitnessRoom_SupplyAirTemp Actuator Supply Air Temp 

CarbonConcentrationSensors_LeisureCentre_Fitnessroom CarbonConcentration 

HumiditySensors_Indoor_LeisureCentre_FitnessRoom Indoor Humidity Sensor 

HumiditySensors_Outdoor_LeisureCentreRHO Outdoor humidity Sensor 

OccupancySensors_LeisureCentre_FitnessRoom Occupancy Sensor 

TempSensors_Indoor_LeisureCentre_Fitnessroom Indoor Temperature Sensor 

TempSensors_Outdoor_LeisureCentre Outdoor Temperature 

Question What are the optimisation related settings for district optimisation given a <use case>:  

<UseCases_District_Optimisation_TypicalDemand> 

SPARQL 

query 

 

SELECT ?nsga2 ?label  

WHERE { 

?a remo:hasOptimSettings ?nsga2 . 

?a a remo:UseCases_District_Optimisation_TypicalDemand . 

?nsga2 rdfs:label ?label . 

} 

 

Response  [nsga2]  [label] 

remo:nsga2_maxgen maximum generations 

remo:nsga2_numcons number of constraints 

remo:nsga2_numobj number of objectives 

remo:nsga2_numvar number of variables 

remo:nsga2_popsize population size 
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Table 39. Prediction-related competency questions and answers 

Prediction-related questions 

Question What are the various ANN outputs needed for training the ANN given a <use case>: 

<UseCases_Building_Prediction_Model_OverallDemandProfile_Heat> 

SPARQL 

query 

 

SELECT ?b ?label 

WHERE { 

?a remo:hasAnnOutput ?b . 

?a a remo:UseCases_Building_Prediction_RoomAhu . 

?b rdfs:label ?label } 

 

Response [b] [label] 

MeterReadings_Heat_Primary_LeisureCentre heat meter reading 
primary Leisure Centre 

Question What are the various ANN inputs needed for running the ANN model for overall building 

demand given a <use case>: 

< UseCases_Building_Prediction_Model_OverallDemandProfile_Heat > 

SPARQL 

query 

 

SELECT ?b ?label 

WHERE { 

?a remo:hasAnnInput ?b . 

?a a remo:UseCases_Building_Prediction_Model_OverallDemandProfile_Heat . 

?b rdfs:label ?label } 

 

Response  [b]  [label] 

ForecastedWeatherSchedule_Humidity_EbbwVale forecasted humidity schedule 

ForecastedWeatherSchedule_Temperature_EbbwVale forecasted temperature 

schedule 

MeterReadings_Heat_Primary_LeisureCentre heat meter reading primary 

Leisure Centre 
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Table 40. District static topology-related competency questions and answers 

District-related questions – static topology  

Question List the energy sources in the energy producer building given a <energy producer 

building>: 

<EnergyConsumerBuilding_EnergyCentre> 

SPARQL 

query 

 

SELECT ?b ?label 

WHERE { 

?a remo:includesHeatSource ?b . 

?a a remo:EnergyProducerBuilding . 

FILTER regex(str(?a), "EnergyConsumerBuilding_EnergyCentre") . 

?b rdfs:label ?label 

} 

 

Response [b] [label] 

BiomassBoiler_EnergyCentre1 biomass boiler 

BiomassBoiler_EnergyCentre2 biomass boiler 

CombinedHeatPower_EnergyCentreCHP Chp 

GasBoiler_EnergyCentre1 Boiler 

GasBoiler_EnergyCentre2 Boiler 

GasBoiler_EnergyCentre3 Boiler 

GasBoiler_EnergyCentre4 Boiler 

Question List the energy sources that supply heat given a <energy consuming building>:  

< EnergyConsumerBuilding_LeisureCentre > 

SPARQL 

query 

 

SELECT ?b ?label 

WHERE { 

?a remo:hasHeatSource ?b . 

?a a remo:EnergyConsumerBuilding . 

FILTER regex(str(?a), "EnergyConsumerBuilding_LeisureCentre") . 

?b rdfs:label ?label 

} 

 

Response  [b]  [label] 

BiomassBoiler_EnergyCentre1 biomass boiler 

BiomassBoiler_EnergyCentre2 biomass boiler 

CombinedHeatPower_EnergyCentreCHP Chp 

GasBoiler_EnergyCentre1 Boiler 

GasBoiler_EnergyCentre2 Boiler 

GasBoiler_EnergyCentre3 Boiler 

GasBoiler_EnergyCentre4 Boiler 
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Table 41. Competency questions and answers related to energy sources and fuel properties 

Energy Sources and fuel properties-related questions – static information 

Question List the maximum or minimum output power given a <energy source>: 

< BiomassBoiler_EnergyCentre1> 

SPARQL  

query 

 

SELECT ?upperBound ?name ?source 

        WHERE { 

            ?n remo:hasNumericalValue ?upperBound . 

            ?n a remo:ScalarValueClass . 

            ?name remo:hasValueName ?n . 

            ?name a remo:OutputPower_Max . 

            ?source remo:hasMaxOutputPower ?name 

FILTER regex(str(?source), "BiomassBoiler_EnergyCentre1") 

        } 

 

Response [upperBound] [name] [source] 

495 Bounds_Upper_Biomass1 BiomassBoiler_EnergyCentre1 

Question List the maintenance cost given a <energy source>: 

< CombinedHeatPower_EnergyCentreCHP > 

SPARQL  

query 

 

SELECT ?main_cost ?name ?source 

        WHERE { 

            ?n remo:hasNumericalValue ?main_cost . 

            ?n a remo:ScalarValueClass . 

            ?name remo:hasValueName ?n . 

            ?name a remo:MaintenanceCosts . 

            ?source remo:hasMainCost ?name 

FILTER regex(str(?source), "CombinedHeatPower_EnergyCentreCHP") 

        } 

 

Response  [main_cost]  [name] [source] 

0.0043 MaintenanceCosts_Combined

HeatPower_1 

CombinedHeatPower_EnergyCentre

CHP 
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Table 42. Competency questions and answers related to numerical values and dimensions 

Numerical values and dimensions-related questions  

Question List the numerical value given <scalar value name>: 

< CHP_MaintenanceCost > 

SPARQL 

query 

SELECT ?main_cost ?scalarValueName 

        WHERE { 

            ?scalarValueName remo:hasNumericalValue ?main_cost . 

            ?scalarValueName a remo:ScalarValueClass . 

             FILTER regex(str(?scalarValueName), "CHP_MaintenanceCost") 

        } 

Response [main_cost] [scalarValueName] 

0.0043 CHP_MaintenanceCost 

Question List the dimension given <scalar value name>:  

< CHP_MaintenanceCost > 

SPARQL 

query 

 

SELECT ?dimension ?scalarValueName 

        WHERE { 

            ?scalarValueName remo:hasUnitMeasure ?dimension . 

            ?scalarValueName a remo:ScalarValueClass . 

             FILTER regex(str(?scalarValueName), "CHP_MaintenanceCost") 

        } 

 

Response  [dimension]  [scalarValueName] 

derived_SI_units:EUR_per_kWh CHP_MaintenanceCost 
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Table 43. Competency questions and answers related to dynamic information and parameter 

mapping 

Dynamic information and parameter mapping-related questions 

Question List all sensors given <room>: 

<EnergyConsumerRoom_LeisureCentre_FitnessRoom> 

SPARQL 

query 

 

SELECT ?sensor  

        WHERE { 

            ?room remo:hasSensors ?sensor . 

            FILTER regex(str(?room), 

"EnergyConsumerRoom_LeisureCentre_FitnessRoom") 

        } 

 

Response [sensor] 

CarbonConcentrationSensors_LeisureCentre_Fitnessroom 

HumiditySensors_Indoor_LeisureCentre_FitnessRoom 

HumiditySensors_Outdoor_LeisureCentreRHO 

OccupancySensors_LeisureCentre_FitnessRoom 

TempSensors_Indoor_LeisureCentre_Fitnessroom 

TempSensors_Outdoor_LeisureCentre 

Question What are the optimisation related settings for district optimisation given a <use case>:  

<UseCases_District_Optimisation_TypicalDemand> 

SPARQL 

query 

 

SELECT ?actuator  

        WHERE { 

            ?energySystem remo:hasActuators ?actuator . 

            FILTER regex(str(?energySystem), 

"AirHandlingUnit_LeisureCentre_FitnessRoom") 

        } 

 

Response  [actuator]  

Actuators_LeisureCentre_FitnessRoom_SupplyAirRate 

Actuators_LeisureCentre_FitnessRoom_SupplyAirTemp 

 

After reasoning, the instantiated ontology, in this case, theworks ontology is further 

queried using SPARQL queries to retrieve information from the ontology needed for the 

numerical and optimisation models to run. The running of SPARQL queries and the 

information retrieved for the sample use cases are shown below: 
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Sample use case 1 – Training of prediction model for the fitness room in the Leisure 

Centre 

 Endpoint locations of historical data and their given labels can be retrieved for 

all the ANN input parameters relevant to this use case by using a SPARQL 

query, as shown below in Figure 89: 

SELECT ?label ?locationID  

WHERE { 

?a remo:hasAnnInput ?b . 

?a a remo:UseCases_Building_Prediction_RoomAhu . 

?b remo: has_locationBMS ?c . 

?c remo:hasHistoricalDataLocationString ?locationID. 

?b rdfs:label ?label } 

 

 
Figure 89. SPARQL query to retrieve ANN input for use case 1 and its results 

 

 Similarly, ANN output parameters can also be queried using the query below 

(refer to Figure 90): 

SELECT ?label ?locationID  

WHERE { 

?a remo:hasAnnOutput ?b . 

?a a remo:UseCases_Building_Prediction_RoomAhu . 

?b remo:has_locationBMS ?c . 

?c remo:hasHistoricalDataLocationString ?locationID. 

?b rdfs:label ?label } 

 

Figure 90. SPARQL query to retrieve ANN output for use case 1 and its results 
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 The results of the query are then used to retrieve data which is consequently 

used to train the ANN model of this use case as shown in Figure 91 below. 

Once trained, the ANN model can be stored as an executable file as followed 

in the SportE2 project, and it can be used by the optimisation modules. 

 

Figure 91. Results of SPARQL query being used to train ANN model for use case 1 

Sample use case 2 - Optimisation of air-handling unit in the fitness room 

 This use case is applied in real time, and the ‘label’ and endpoint location (to 

retrieve the dynamic value) for each optimisation-related input parameter for 

this use case can be queried. The ‘label’ is used for matching the input against 

the input of the ANN model, which is the cost function of the optimisation. 

Input parameters are queried using the SPARQL query, as shown below: 

SELECT ?label ?locationID  

WHERE { 

?a remo:hasOptimInput ?b . 

?b remo:has_locationBMS ?c . 

?c remo:hasLocationString_Read  ?locationID. 

?b rdfs:label ?label } 

 



-183- 

 

 
Figure 92. SPARQL query to retrieve ANN input for use case 2 and its results 

 

 The dynamic information retrieved is fed into the optimisation model, as 

shown below in Figure 94.  

 The decision variables are then optimised using methodology adopted in the 

SportE2 project (refer to Section 4.1). The optimised decision variables can 

then be set in the BMS. To do this the location of the actuator setpoint is 

queried using SPARQL, as shown below: 

SELECT ?label ?setpointLocationID  

WHERE { 

?a remo:hasDecisionVariable ?b . 

?b remo:has_locationBMS ?c . 

?b a remo:Actuators. 

?b rdfs:label ?label . 

?c remo:hasLocationString_Write ?setpointLocationID. 

} 

The query above gives the setpoint location in the BMS and its label in the 

ontology, as shown below in Figure 93: 

 

 
Figure 93. SPARQL query to retrieve setpoint location of decision variables in use case 2 and its 

results 
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Figure 94. Real-time data retrieved from ontology used for the optimisation model of use case 2. 

Sample use case 3 – District optimisation of Ebbw Vale using typical demand 

profiles of buildings 

 SPARQL queries help retrieve static parameters and their labels using the 

query below. This is consequently used by the district analytical model.  

SELECT ?label ?analyticalValue 

WHERE { 

?a remo:hasOptimModelParameters ?b . 

?a a remo:UseCases_District_Optimisation_TypicalDemand . 

?b remo:hasAnalyticalModelValue ?analyticalValue  . 

?b a remo:Optimisation_ModelParameters_Analytical . 

?b rdfs:label ?label . 

} 

 

Figure 95. SPARQL query to retrieve numerical values of district analytical model parameters 
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 The individuals under the class 

Optimisation_ModelParameters_Nsga2 represent various settings 

for the optimisation using the NSGA-II algorithm which is used for the 

district optimisation. The values of these parameters and their labels can be 

queried through SPARQL query language, as shown below: 

SELECT ?label ?settingValue 

WHERE { 

?a remo:hasOptimSettings ?nsga2 . 

?a a remo:UseCases_District_Optimisation_TypicalDemand . 

?nsga2 remo:hasValueName ?value  . 

?value remo:hasNumericalValue ?settingValue . 

?nsga2 rdfs:label ?label . 

} 

 

Figure 96. SPARQL query to retrieve optimisation settings needed for district optimisation 

 The initial values for all the decision variables are also taken into account in 

the optimisation model. This can be retrieved using the following query: 

SELECT ?label ?readLocationID  

WHERE { 

?a remo:hasDecisionVariable ?dv . 

?a a remo:UseCases_District_Optimisation_TypicalDemand . 

?dv remo:has_locationEMS ?c . 

?dv a remo:ProductionScheduleHeat_Optimised . 

?dv rdfs:label ?label . 

?c remo:hasLocationString_Read ?readLocationID. 

} 

 

 

Figure 97. SPARQL query to read initial values of decision variables. 

 For optimisation to take place other parameters are also needed (refer to 

Section 4.2.2) which can be retrieved using other SPARQL queries.  In this 

use case, for example, the typical demand schedules are also required for each 
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consumer building in the district because the analytical model requires these 

for calculations. The query for this is shown below: 

SELECT ?buildingName ?typicalHeatDemandReadLocation  

WHERE { 

 ?x a remo:EnergyConsumerBuilding . 

?x rdfs:label ?buildingName . 

?x remo:hasHeatDemand ?y . 

?y remo:has_locationBMS ?z . 

?z remo:hasLocationString_Read ?typicalHeatDemandReadLocation .  

} 

 

 

Figure 98. SPARQL query to read typical demand profiles of each building 

 Once the optimisation is complete, the optimised production schedules for 

each energy source in Ebbw Vale are set after retrieving their setpoint location 

(as they are decision variables of the use case). The setpoint location of these 

individuals and their labels can be retrieved using the query, as shown below: 

SELECT ?label ?setLocationID  

WHERE { 

?a remo:hasDecisionVariable ?dv . 

?a a remo:UseCases_District_Optimisation_TypicalDemand . 

?dv remo:has_locationEMS ?c . 

?dv a remo:ProductionScheduleHeat_Optimised . 

?dv rdfs:label ?label . 

?c remo:hasLocationString_Write ?setLocationID. 

} 

 

 

 
Figure 99. SPARQL query to retrieve setpoint location of decision variables of use case 3 
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 The objective values of the optimised solution can also be set in the EMS 

once its location has been identified using the SPARQL query shown below. 

SELECT ?label ?objValue  

WHERE { 

?a remo:hasOptimObjective ?dv . 

?a a remo:UseCases_District_Optimisation_TypicalDemand . 

?dv remo:has_locationEMS ?location . 

?dv rdfs:label ?label . 

?location remo:hasLocationString_Write ?objValue. 

} 

                    

 
Figure 100. SPARQL query to retrieve setpoint location of optimisation objectives of use case 3 

 The overall workflow of this use case is shown below in Figure 101. 

 

     Figure 101. Results of SPARQL queries being used for the optimisation model of use case 3. 
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Sample use case 4 - Training of heat demand prediction model for Leisure Centre 

building 

 Historical data and ‘labels’ can be retrieved for each individual input and 

output parameter of the ANN model of this use case using a SPARQL query. 

Endpoint location of ANN input data can be queried with the following query: 

SELECT ?label ?locationID  

WHERE { 

?a remo:hasAnnInput ?b . 

?a a remo:UseCases_Building_Prediction_OverallDemandProfile_Heat . 

?b remo:has_locationBMS ?c . 

?c remo:hasHistoricalDataLocationString ?locationID. 

?b rdfs:label ?label } 

 

 
Figure 102. SPARQL query to retrieve ANN input data of use case 4 and its results 

 

Similarly, endpoint location for ANN output data can be queried with the 

following query: 

 

SELECT ?label ?locationID  

WHERE { 

?a remo:hasAnnOutput ?b . 

?a a remo:UseCases_Building_Prediction_OverallDemandProfile_Heat . 

?b remo:has_locationBMS ?c . 

?c remo:hasHistoricalDataLocationString ?locationID. 

?b rdfs:label ?label } 

 

 
Figure 103. SPARQL query to retrieve ANN output data of use case 4 and its results. 

 

 This data is then post-processed and used to train the ANN model for the 

Leisure Centre building as shown below in Figure 104. Once trained, the ANN 

model is stored as an executable file as followed in the SportE2 project. The 
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executable file can then be used for prediction of overall heat demand for this 

building. Similarly, every building in the district will have its own 

independent ANN model. 

 

        Figure 104. Results of SPARQL queries being used to train ANN model of use case 4. 

Sample use case 5 - Running of the heat demand prediction model for the Leisure 

Centre building 

 Real-time data and ‘labels’ can be retrieved for each ANN input of the model 

by using a SPARQL query. ANN input can be queried using the following 

queries: 

SELECT ?label ?locationID 

WHERE { 

?a remo:hasAnnInput ?b . 

?a a 

remo:UseCases_Building_Prediction_Model_OverallDemandProfile_Heat  

?b a remo: ForecastedWeatherSchedule_Temperature 

?b remo:has_locationEMS ?c . 

?c remo:hasLocationString_Read ?locationID. 

?b rdfs:label ?label } 

 

 

 

 

 

 



-190- 

 

 SELECT ?label ?locationID 

WHERE { 

?a remo:hasAnnInput ?b . 

?a a 

remo:UseCases_Building_Prediction_Model_OverallDemandProfile_Heat 

. 

?b a remo: ForecastedWeatherSchedule_Humidity 

?b remo:has_locationEMS ?c . 

?c remo:hasLocationString_Read ?locationID. 

?b rdfs:label ?label } 

 

SELECT ?label ?locationID 

WHERE { 

?a remo:hasAnnInput ?b . 

?a a 

remo:UseCases_Building_Prediction_Model_OverallDemandProfile_Heat 

. 

?b a remo:MeterReadings_Primary_heat 

?b remo:has_locationBMS ?c . 

?c remo:hasLocationString_Read ?locationID. 

?b rdfs:label ?label } 

 

 
Figure 105. SPARQL query to retrieve endpoint location of ANN input (weather parameters) of use 

case 5 and its results 

 

 
Figure 106. SPARQL query to retrieve endpoint location of ANN input (meter data) of use case 5 

and its results 

 

 Post-processing of the retrieved data from the endpoint location above is 

needed, and the following information is used as ANN input: 

o From the historical meter readings of the primary heat meter for the 

Leisure Centre, the previous 24-hour demand is retrieved. 

o Along with this the forecasted 24-hour weather profile is chosen, 

which includes the outdoor temperature and outdoor humidity.  
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 This data is then used as input to the pre-trained ANN model of the Leisure 

Centre building from sample use case 4 as shown in Figure 108.   

 The output of the ANN model of the Leisure centre building is set under the 

individuals of the DemandSchedule_Heat_Predicted class. The 

schedule can be set in the BMS. This setpoint location can be queried using 

the following SPARQL query: 

SELECT ?label ?setLocationID 

WHERE { 

?a remo:hasAnnOutput ?b . 

?a a remo:UseCases_Building_Prediction_Model_OverallDemandProfile_Heat . 

?b remo:has_locationBMS ?c . 

?c remo:hasLocationString_Write ?setLocationID. 

?b rdfs:label ?label } 

 

Figure 107. SPARQL query to retrieve setpoint location of ANN output of use case 5 and its results 

 

Figure 108. Results of SPARQL queries used to run the ANN model of use case 5. 
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Sample use case 6 - District optimisation of Ebbw Vale using predicted demand 

profiles of buildings 

 This use case is very similar to use case 3. 

 SPARQL queries help retrieve static parameters and their labels using the 

same query as covered in use case 3. 

 A set of SPARQL queries is used to retrieve some of the other relevant 

parameters needed for the district optimisation and analytical model to run. 

The queries are similar to use case 3 again, but the only difference here is 

that predicted demand is used from the class 

DemandSchedule_Heat_Predicted instead of typical demand 

profiles.  This can be retrieved using the following query: 

SELECT ?buildingName ?predictedHeatDemandReadLocation  

WHERE { 

 ?x a remo:EnergyConsumerBuilding . 

?x rdfs:label ?buildingName . 

?x remo:hasPredictedHeatDemand ?y . 

?y remo:has_locationBMS ?z . 

?z remo:hasLocationString_Read ?typicalHeatDemandReadLocation .}  

 

 Once the optimisation is complete, these production schedules are set under 

the individuals of the class ProductionScheduleHeat_Optimised, 

as followed in use case 3. This can be done by retrieving the location of this 

schedule from the EMS. 

 The objective values of the optimised solution can also be set in the EMS 

once its location has been identified. The location is retrieved by using queries 

similar to use case 3. 

7.2. Replication of framework to other sites 

Figure 109 below shows the general methodology that needs to be adopted in the 

framework for any future district site. Using ontologies allows the framework to be easily 

reusable for any other site.  

For any new site, the ontology is first instantiated as explained in Section 6.1.3. 

Importantly, the instantiated ontology should contain: 
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Figure 109. Framework replication plan 

 The new static parameters of the site and their numerical values. 

 Locations of dynamic parameters (in BMS/EMS), which would enable the ontology 

to point out the location of data for the functional layer of the framework to run. 

 Use cases need to be instantiated as well. 

Post-reasoning, the ontology can then be queried for information needed to run all the use 

cases as covered in Section 7.1.3. These use cases do have pre-requisites, and those need 

to be met. Use cases 1 and 4 are run during the set-up phase of the framework for a new 

district for the training of the ANN models. Once this is complete, use cases 2, 3, 5, and 

6 (from Section 5.3) are available to be queried for real-time energy management. Some 

of the use cases require analytical and optimisation models, which can be reused across 

various sites as long as they are utilised for the pre-defined use cases in the ontology. 

Some of these use cases also require ANN models. The ANN models applied on one site 

and its buildings cannot be reused for a new site, and hence they would have to be pre-

trained with data. Data, therefore, is quite critical to get the framework to run. In future, 

REMO ontology can be further extended to incorporate more use cases related to 

district/building optimisation scenarios. 
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8. Conclusions and future work  

8.1. Conclusions 

The energy management solution today should be able to make smarter decisions 

considering the multi-objectives involved in both supply and demand side domains, 

working alongside with automation systems that provide real-time actuation. The author’s 

involvement in EU projects through action research lays the foundation to this research. 

Through this action research, the author affirmed that real-time energy management is 

possible today using artificial intelligence solutions. Action research concluded that 

prediction models using ANN and, multi-objective optimisation using genetic algorithms 

are highly effective to solve the complex multi-objective problems at both the demand-  

and supply-side level in real-time. The demand-side optimisation approach was tested 

and validated through the SportE2 project and on an average brings about 36% savings 

in energy. The district energy supply side optimisation, was also promising and resulted 

in 31.8% increase in profits and 36% emissions savings.  

However, one of the biggest problems identified through the literature reviewed and also 

affirmed through action research is the growing gap between demand- and supply-side 

energy management failing to take a holistic approach. The author addressed this issue 

by proposing to use the reduced demand profiles from building demand-side optimisation 

and consequently using these for optimisation of the supply-side in the district. REMO 

ontology, developed here, proposes to facilitate seamlessly this unique method of 

harmonisation of demand- and supply-side energy management. Another problem 

identified was the silo-oriented approach to decision-making in each of this domain. 

However, REMO ontology, built as a cross-domain knowledge-base is able to consider not 

only the multi-scale nature of the problem, i.e. considering both demand-side and supply-

side optimisation, but also take into account the multi-objectives (costs, emissions, and 

efficiency) involved in an optimisation problem. 

Although, the research only stresses on REMO ontology development and its validation, 

the work showcases the potential application of REMO in supporting a real-time energy 

management framework, through the various use cases presented. Here, the ontology acts 

as the brain of the framework linking heterogeneous technologies, systems, and 

information sources. The validation chapter demonstrates how REMO ontology can be 

queried to run these use cases and how the ontology brings together various data domains 

and technologies. Moreover, the framework can also be easily replicated and used for 
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new sites, provided the ontology is re-instantiated. Reusability is one of the advantages 

of using ontologies in the framework, and it is made possible through rule axioms features 

in the domain model. These rule axioms capture the intelligence behind the AI and 

numerical models in the domain. 

One of the biggest challenges of implementing this framework would be that it requires 

a lot of data. Data (either historical or simulation) is necessary for the use cases of the 

overall framework to run especially because both the supply- and demand-side 

optimisation depends on ANN models. For example, for demand-side, the artificial 

intelligence-based optimisation requires adequate data for pre-training of the ANN 

models which are later used as a cost function for the optimisation problem. Whereas, in 

the case of district optimisation, the ANN models are needed for day-ahead demand 

forecast for each building, which is input to the district analytical model. 

8.2. Contributions 

The first contribution by the author in this research is the district analytical model 

developed for real-time optimisation of the supply-side of the district. This model 

considered many data domains and was used to compute both operational emissions and 

costs in the district. Multi-objective optimisation using the NSGA-II algorithm in this 

analytical model helped optimise the production schedules of heat energy sources, 

optimising the costs and emissions. Seldom before have all the different domains been 

considered for operational optimisation. Moreover, the author demonstrates how this 

optimisation model can work along with the real-time demand optimisation methodology 

developed in the SportE2 project. This harmonisation between demand and supply side 

optimisation is a valid contribution as it is considered a big gap in today’s district energy 

management solutions. 

REMO ontology, which was built to facilitate this harmonisation working with automation 

systems and AI solutions, can be considered as the primary contribution of this research. 

Using ontologies in this research brought more than interoperability benefits. Here, the 

ontology not only facilitate requirements of the optimisation and prediction models 

needed for the demand and supply side energy management to work, but also captured 

knowledge behind these models. This knowledge comes from the experience gained by 

the author through action research and was modelled into the domain ontology through 

rule axioms. This methodology is a unique contribution to the field of knowledge. Which 
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also meant, this knowledge can be replicated for future sites. Using ontologies in such a 

manner has not been attempted before. 

The research also highlights how IFC data model that is used in BIM today, is not enough 

for a holistic energy analysis as there were very few overlaps between IFC concepts and 

REMO taxonomy. However, frameworks such as the one proposed in this research can 

be the future for BIM based holistic energy analysis, because REMO ontology here 

complements BIM models linking all the knowledge needed for real-time energy 

management with IFC models. 

The author has also made contributions to the following research papers: 

Journal Papers 

 Jayan, B., Li, H., Rezgui, Y., Hippolyte, J.-L. and Howell, S. 2016. An Analytical 

Optimization Model for Holistic Multiobjective District Energy Management - A 

Case Study Approach. International Journal of Modeling and Optimization 6(3), pp. 

156–165. 

 

 Petri, I., Li, H., Rezgui, Y., Chunfeng, Y., Yuce, B. and Jayan, B. 2014a. A HPC 

based cloud model for real-time energy optimisation. Enterprise Information 

Systems, pp. 1–21. 

 

 Petri, I., Li, H., Rezgui, Y., Chunfeng, Y., Yuce, B. and Jayan, B. 2014b. A modular 

optimisation model for reducing energy consumption in large scale building 

facilities. Renewable and Sustainable Energy Reviews, pp. 990–1002. 

 

 Yang, C., Li, H., Rezgui, Y., Petri, I., Yuce, B., Chen, B. and Jayan, B. 2014. High 

throughput computing based distributed genetic algorithm for building energy 

consumption optimization. Energy and Buildings 76, pp. 92–101. 

 

 Yuce, B., Li, H., Rezgui, Y., Petri, I., Jayan, B. and Yang, C. 2014. Utilizing artificial 

neural network to predict energy consumption and thermal comfort level: An indoor 

swimming pool case study. Energy and Buildings 80, pp. 45–56. 

Conference Papers 

 Jayan, B., Li, H., Rezgui, Y., Hippolyte, J.L., Yuce, B., Yang, C. and Petri, I. 2014. 

An ontological approach to intelligent energy management in building. In: EG-ICE 

2014, European Group for Intelligent Computing in Engineering - 21st International 

Workshop: Intelligent Computing in Engineering 2014. Cardiff University.  

 

 Hippolyte, J.-L., Rezgui, Y., Haijiang, L. and Jayan, B. 2014. An ee-district ontology 

to support the development of the ee-District Information Model of the RESILIENT 
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project. In: EEBuilding Data Models : Energy Efficiency Vocabularies & Ontologies. 

Nice: EEB Data Models Community, pp. 106–119.  

 Howell, S., Hippolyte, J.-L., Jayan, B., Reynolds, J. and Rezgui, Y. 2016. Web-based 

3D Urban Decision Support through Intelligent and Interoperable Services. 

Proceedings of the 2nd IEEE International Smart Cities Conference. Trento; Italy, 12 

September, 2016. 

8.3. Future work 

This research details the semantic layer and functional layer of the framework that can be 

used for real-time energy management and optimisation. In this research, only the 

semantic layer was completed and tested, as shown below in Figure 110 in blue chevron. 

 

Figure 110. Future work 

The optimisation and prediction solutions were also tested and validated individually. 

Future work should look into two main steps as shown in the figure above in green 

chevrons: 

1. Developing the link between the semantic layer and the functional layer 

Here, the communication between the layers of the overall framework needs further 

development. Future work should look into integrating these two layers and demonstrate 
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their working with each other. To achieve this, in reality, script files are needed, as shown 

below in Figure 111. These script files are computer codes and can be used for many 

purposes. For example, these can be written to execute a set of SPARQL queries based 

on the tasks the user wants to run. Here, the SPARQL engine can also be used to query 

the ontology, similar to the approach in the Resilient project (Section 4.2.1). Script files 

can also be used to collect responses from the ontology and generate input files for 

prediction or optimisation models, consequently triggering these models. 

2. Linking the semantic layer with end-user interfaces and implementing it in web 

services 

Ontologies can be very dynamic in nature, with information needing to be changed now 

and then, and therefore they should be able to be easily edited. Therefore, web 

implementation of REMO ontology is necessary to provide a user-friendly approach to 

modifying and instantiating the ontology. For example, in the Resilient project, the web 

implementation of the ontology allowed easy interaction with the other modules such as 

simulation models and multi-agent systems (which were also implemented online). 

Similarly, REMO ontology, which is a high-level semantic representation of the district, 

would need to provide knowledge to different energy management software. For 

example, the ontology has key entities required for running energy optimisation 

functionalities, which can be useful for third-party applications. Here, encapsulating the 

ontology into a web service makes it easier for applications to access the knowledge from 

it. These web services can also easily be linked to the end-user interface such as CUSP, 

which was discussed under Section 6.3 in Chapter 6.  

Overall working of the framework in the future could be as shown in Figure 111 below: 
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Figure 111. Detailed framework and its workflow for future development 

The communication between these layers as shown through the script file needs to be 

completed in the future for the overall testing of the framework.  

Some of the other future work should include looking into: 

1. Further investigation on ifcOWL linking with REMO 

IFC ontology has been mapped with REMO ontology, even though there are very 

few classes and properties with similar semantic meaning in both ontologies. 

Future work should look into instantiating REMO ontology through an instantiated 

ifcOWL ontology, which would make the instantiation process easier for the user 

provided IFC models for the buildings are available. This research does not study 

this in detail because ifcOWL is still in the process of being standardised.  

2. Further investigation in the functional layer 

 The district optimisation methodology developed as a part of the holistic 

energy management methodology needs to be tested with different multi-

objective optimisation algorithms to look for better results. In this research, 

with the ontology development being the priority, less time was spent on trying 

to improve the multi-objective optimisation of the supply side. The analytical 
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model can also be further developed by linking this to dynamic simulation 

models to take into account latency effect, time constants and heat losses. In 

this research, the case study does not include any renewable technologies, but 

these technologies might have to be adopted into the generic analytical model 

in the future as renewables will be very visible in the generation mix for the 

future sites, following a trend in the energy markets. The optimisation models 

and the analytical model currently are very specific to the Ebbw Vale site; they 

need to be made generic to be able to work with the other sites. 

 Only preliminary work was conducted on the day-ahead demand forecasts for 

the buildings as shown in the conclusions of action research Section 4.3. 

Further research/testing on these models is needed. These prediction models of 

each building can also be integrated with the district analytical model and run 

together if needed. 

The features of the ontology and its working are validated. The validation of the numerical 

and optimisation models was mainly through the action research. In the future, a real pilot 

site needs to be tested with both the supply and demand side optimisation facilitated 

through the ontology and the overall framework proposed here. 
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Appendix A – REMO Ontology classes, properties and rules. 

Classes of REMO ontology 

1. Classes related to building and energy consuming zones 

EnergyConsumerRoom class 

Description 

This class contains all individuals that are single rooms in buildings and consume energy. 

Building energy optimisation use cases can be applied to individuals of this class. 

Relations 

- EnergyConsumerRoom is a subclass of EnergyConsumerZone. 

- It is disjoint with EnergyConsumerBuilding class. 

- It cannot contain any subzone, which is defined by the statement ‘hasSubzone 

exactly 0’. This is because a room is considered to be the smallest zone. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of building>_<name of energy consumer room>.  

Example: EnergyConsumerBuilding_LeisureCentre_FitnessRoom 

EnergyProducerBuilding class 

Description 

This class contains all individuals which are energy producing buildings. Most districts 

have a central source of energy usually referred to as the energy centre or energy hub. 

This would, for example, be an individual of this class. It can also include any building 

which produces energy and supplies excess energy back to the main grid or to 

neighbouring buildings. 

Relations 

- EnergyProducerBuilding is a subclass of Building. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of energy producer building>.  

Example: EnergyProducerBuilding_EnergyCentre 
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EnergyConsumerBuilding class 

Description 

This class contains all individuals which are energy consuming buildings. An energy 

consumer building can be an energy producing building as long as it satisfies the 

description of EnergyProducerBuilding class above.  

Relations 

- EnergyConsumerBuilding is a subclass of Building. 

- EnergyConsumerBuilding is a subclass of EnergyConsumerZone. 

This is because sometimes the whole building can be controlled environmentally 

as one zone (see definition of EnergyConsumerZone below) 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of energy consumer building>.  

Example: EnergyConsumerBuilding_LeisureCentre 

2. Classes related to energy sources. 

EnergySource_Centralised class 

Description 

This class contains all individuals that are central sources of energy to the district. An 

example of this would be the main electricity grid, which supplies electricity to a large 

area including the district considered. 

Relations 

- EnergySource_Centralised is a subclass of EnergySource. 

- Disjoint with EnergySource_Decentralised. 

EnergySource_Decentralised class 

Description 

This class contains all individuals that are energy-producing systems within the district 

or, in other words, are distributed energy resources (DER).  

Relations 

- EnergySource_Decentralised is a subclass of EnergySource. 



-219- 

 

- Disjoint with EnergySource_Centralised. 

EnergySource_Decentralised_Electricity class 

Description 

This class contains all DERs which are sources of electricity to the district. 

Relations 

- EnergySource_Decentralised_Electricity is a subclass of 

EnergySource_Decentralised. 

Usage of Class 

This class seldom has individuals’ instantiated because the subclasses of this class usually 

comes into play. In any case, the following naming convention is applied to name 

individuals of this class: 

 <name of index class>_<name of decentralised electricity source> 

EnergySource_Decentralised_Heat class 

Description 

This class contains all DERs which are sources of heat to the district. Sometimes DERs 

can produce both heat and electricity so this class is not disjoint with 

EnergySource_Decentralised_Electricity.  

Relations 

- EnergySource_Decentralised_Heat is a subclass of 

EnergySource_Decentralised. 

Usage of Class 

This class seldom has individuals’ instantiated because the subclasses of this class usually 

comes into play. In any case, the following naming convention is applied to name 

individuals of this class: 

 <Name of index class>_<Name of decentralised heat source> 

NationalGrid class 

Description 
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This class contains individuals if the district has a main electricity grid, through which 

electricity is provided. 

Relations 

- NationalGrid is a subclass of EnergySource_Centralised. 

- Can have only one instance since most districts rely only on one major grid. 

- Disjoint with CombinedHeatPower, BiomassBoiler, and 

GasBoiler classes 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of district> 

For example: NationalGrid_District7 

CombinedHeatPower class 

Description 

This class contains an individual which is a combined heat and power unit (CHP) 

Relations 

- This class is a subclass of EnergySource_Decentralised_Heat. 

- This class is also a subclass of 

EnergySource_Decentralised_Electricity. 

- Disjoint with BiomassBoiler and GasBoiler class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of CHP source> 

For example: CombinedHeatPower_CHP1 

GasBoiler class 

Description 

This class contains an individual which is a gas boiler source 

Relations 

- This class is a subclass of EnergySource_Decentralised_Heat. 



-221- 

 

- Disjoint with BiomassBoiler and CombinedHeatPower class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of gas boiler source> 

For example: GasBoiler_GB1 

BiomassBoiler class 

Description 

This class contains an individual which is a biomass boiler. 

Relations 

- This class is a subclass of EnergySource_Decentralised_Heat. 

- Disjoint with CombinedHeatPower and GasBoiler class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <name of index class>_<name of biomass boiler source> 

For example: BiomassBoiler_BB1 

3. Classes related to environmental and fuel properties 

Fuel_Type class 

Description 

This class contains individuals that represent the different fuel types in the district. 

Relations 

- This class is a subclass of EnvironmentalAndFuelProperties. 

- It is equivalent to eedistrict:FuelType class. 

- Disjoint with sibling classes: Emissions_Transport, 

CalorificValue, Emissions_SpecificEmission, and 

Distance_BiomassSupplier. 
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Emissions_Transport class 

Description 

This class contains individuals which represent the emissions due to transport of fuel. For 

example biomass fuel in most cases are delivered to site, and this therefore leads to 

transport emissions by the vehicle. 

Relations 

- This class is a subclass of EnvironmentalAndFuelProperties. 

- Disjoint with sibling classes: Distance_BiomassSupplier, 

CalorificValue, Emissions_SpecificEmission, and 

FuelType. 

Usage of Class 

Instances of this class is named using the following convention: 

<Name of index class>_<Name of fuel> 

Distance_BiomassSupplier class 

Description 

This class contains individuals which represent the distance between the biomass fuel 

supplier and the district itself. This parameter is needed for calculation of emissions due 

to fuel transport. Biomass fuel, if used in the district, is usually transported from an 

external supplier. 

Relations 

- This class is a subclass of EnvironmentalAndFuelProperties. 

- Disjoint with sibling classes: Emissions_Transport, 

CalorificValue, Emissions_SpecificEmission, and 

FuelType. 

Usage of Class 

Instances of this class is named using the following convention: 

<Name of index class>_<Name of district> 

For example: Distance_BiomassSupplier_District7 

CalorificValue class 
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Description 

This class contains individuals which represent the calorific value of the various fuels 

used in the district.  

Relations 

- This class is a subclass of EnvironmentalAndFuelProperties. 

- Disjoint with sibling classes: Distance_BiomassSupplier, 

Emissions_SpecificEmission, Emissions_Transport, and 

FuelType. 

Usage of Class 

This class in the REMO ontology has two obvious instances already defined in the 

ontology as shown in figure 1 below: 

 

Figure 1. CalorificValue class and its subclasses 

This is because most districts use biomass and natural gas as fuel. The following naming 

convention should be applied to any new individuals that needs to be defined in this class: 

 <Name of index class>_<Name of fuel> 

Emissions_SpecificEmission class 

Description 

This class contains individuals which represent the specific emission of the various fuels 

used in the district.  

Relations 

- This class is a subclass of EnvironmentalAndFuelProperties. 
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- Disjoint with sibling classes: Distance_BiomassSupplier, 

CalorificValue, Emissions_Transport, and FuelType. 

Usage of Class 

As mentioned previously for class CalorificValue, the 

Emissions_SpecificEmission class also has two obvious instances defined in 

the REMO ontology as shown in figure 2 below: 

 

Figure 2. Emissions_SpecificEmission class and instances. 

The following naming convention should be applied to any new individuals that are 

defined in this class: 

 <Name of index class>_<Name of fuel> 

FuelType_Biomass class 

Description 

This class contains the biomass fuel type instances. There can be different types of 

biomass fuels as well in a district. 

Relations 

- This class is a subclass of Fuel_Type. 

- Disjoint with FuelType_Gas. 

Usage of Class 

Instances of this class is named using the following convention: 

<Name of index class>_<Name of biomass fuel type> 

FuelType_Gas class 

Description 
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This class contains the gas fuel type instances. For example, natural gas can be one of the 

instances under this class. 

Relations 

- This class is a subclass of Fuel_Type. 

- Disjoint with FuelType_Biomass. 

Usage of Class 

Instances of this class is named using the following convention: 

<Name of index class>_<Name of gas fuel type> 

By default, both sub classes of FuelType are provided with instances in the REMO 

ontology as shown below in figure 3: 

 

Figure 3. FuelType classes and its subclasses. 

4. Classes related to energy source design parameters 

Efficiency class 

Description 

This class contains individuals that represent the efficiencies of the energy sources in the 

district. 

Relations 

- This class is a subclass of EnergySourceDesignParameters. 

- It is equivalent to eedistrict:Efficiency class. 
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- Disjoint with sibling classes: Elec2heatRatio and OutputPower.  

Elec2heatRatio class 

Description 

This class contains individuals that represent the heat to electricity ratio of energy sources, 

especially cogeneration systems (which produce both heat and electricity) such as CHP. 

Relations 

- This class is a subclass of EnergySourceDesignParameters. 

- It is equivalent to eedistrict:HeatPowerRatio class. 

- Disjoint with sibling classes: Efficiency and OutputPower.  

Usage of Class 

The following naming convention should be applied to any new individuals that need to 

be defined in this class: 

 <Name of index class>_<Name of energy source linked to this property> 

For example: Elec2heatRatio_CHP1 

Efficiency_HeatProduction class 

Description 

This class contains individuals which represent the efficiencies of the energy sources 

which produces heat energy in the district. 

Relations 

- This class is a subclass of Efficiency. 

- Disjoint with sibling classes: Efficiecny_HeatProduction.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of heat energy source whose efficiency parameter is 

defined here> 

For example: Efficiency_HeatProduction_BiomassBoiler1 

Efficiency_ElectricityProduction class 
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Description 

This class contains individuals which represent the efficiencies of the energy sources 

which produces electricity in the district. 

Relations 

- This class is a subclass of Efficiency. 

- Disjoint with sibling classes: Efficiecny_ElectricityProduction.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of electricity energy source whose efficiency parameter 

is defined here> 

For example: Efficiency_ElectricityProduction_CHP 

OutputPower class 

Description 

This class contains individuals which represent the output power of the energy sources in 

the district. 

Relations 

- This class is a subclass of EnergySourceDesignParameters. 

- Disjoint with sibling classes: Elec2heatRatio, and Efficiency.  

OutputPower_Max class 

Description 

This class contains individuals which represent the maximum power of the energy 

sources. 

Relations 

- This class is a subclass of OutputPower. 

- Disjoint with sibling classes: OutputPower_Min.  

Usage of Class 
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The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of energy source whose maximum power is defined 

here> 

For example: OutputPower_Max_CHP 

OutputPower_Min class 

Description 

This class contains individuals which represent the minimum power of the energy 

sources. For example, energy sources usually have a preferred lower output power, which 

can be about 30-50 % of the maximum power. This minimum power is defined in this 

class. Turning off energy sources over a short period of time might not always be feasible 

when it comes to real time energy management and hence this class is useful for 

production schedule optimisation. 

Relations 

- This class is a subclass of OutputPower. 

- Disjoint with sibling classes: OutputPower_Max.  

 Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of energy source whose minimum power is defined 

here> 

For example: OutputPower_Min_CHP 

5. Classes related to building operational parameters 

MeterReadings class 

Description 

This class contains individuals that represent the meter readings of the various buildings 

in the district. The Meter readings class is relevant for demand prediction and district 

energy optimisation as they represent the total energy demand of buildings, which will be 

optimised in real time using the demand optimisation use cases. 

Relations 
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- This class is a subclass of BuildingOperationalParameters. 

- It is equivalent to socio_technical_systems:PhysicalProperty 

class. 

- Disjoint with sibling classes Sensors and Actuators. 

Sensors class 

Description 

This class contains individuals that represent the sensors of the various buildings in the 

district. This class is one of the most important classes in REMO ontology which is needed 

for demand side optimisation. The individuals in this class and its subclasses represent 

real-time dynamic values for the various parameters from the BMS systems of the various 

buildings.  

Relations 

- This class is a subclass of BuildingOperationalParameters. 

- It is equivalent to socio_technical_systems:PhysicalProperty 

class 

- Disjoint with sibling class MeterReadings and Actuators. 

Actuators class 

Description 

This class contains individuals that represent the actuators of the various energy systems 

found in buildings or districts. This class is crucial to the optimisation process as it 

represents the actuators in buildings which will be optimised in real time. 

Relations 

This class is a subclass of BuildingOperationalParameters. 

1. Disjoint with sibling classes Sensors and MeterReadings. 

Usage of Class 

The following naming convention should be applied to any new individuals that need to 

be defined in this class: 

 <Name of index class>_<Name of building>_<Name of actuator> 
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MeterReadings_Heat class  

Description 

This class contains individuals which represent the heat meter readings of the buildings 

in the district.  

Relations 

- This class is a subclass of MeterReadings. 

- Disjoint with sibling classes: MeterReadings_Electricity.  

Usage of Class 

This class in the REMO ontology has subclasses and the instances usually are defined in 

these subclasses (shown below). The following naming convention should be applied to 

any new individuals that needs to be defined in this class: 

<Name of index class>_<Name of building>_<Name of heat meter> 

MeterReadings_Heat_Primary class 

Description 

This class contains individuals which represent the main heat meter readings of the 

buildings i.e. the total heat energy demand of the building is recorded through these 

meters. 

Relations 

- This class is a subclass of MeterReadings_Heat. 

- Disjoint with sibling classes: MeterReadings_Heat_Secondary.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of main heat meter> 

For example: MeterReadings_Heat_Primary_LeisureCentre 

MeterReadings_Heat_Secondary class 

Description 
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This class contains individuals which represent the sub-heat meter readings of the 

buildings i.e. the total heat energy demand for individual zones or sections or rooms in 

the building is recorded through these heat meters. 

Relations 

- This class is a subclass of MeterReadings_Heat. 

- Disjoint with sibling classes: MeterReadings_Heat_Primary.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of sub-heat meter> 

For example: MeterReadings_Heat_Primary_LeisureCentreRoom1 

MeterReadings_Electricity Class 

Description similar to MeterReadings_Heat class, but this class includes electricity 

meter readings rather than heat meter readings. 

MeterReadings_Electricity_Primary Class 

Description similar to MeterReadings_Heat_Primary class, but this class 

includes main electricity meter readings rather than main heat meter readings of buildings. 

MeterReadings_Electricity_Secondary Class 

Description similar to MeterReadings_Heat_Secondary class, but this class 

includes sub electricity meter readings rather than sub heat meter readings of buildings. 

HumiditySensors class  

Description 

This class contains individuals which represent the humidity readings of a particular room 

or section or space in a building. It can also be outdoor humidity sensors. 

Relations 

- This class is a subclass of Sensors. 

- Disjoint with sibling classes: CarbonConcentrationSensors, 

OccupancySensors, and TempSensors.  
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Usage of Class 

This class in the REMO ontology has subclasses and the instances usually are defined in 

these subclasses (shown below). The following naming convention should be applied to 

any new individuals that needs to be defined in this class: 

<Name of index class>_<Name of building>_<Name of humidity sensor> 

HumiditySensors_Indoor class 

Description 

This class contains individuals which represent the humidity readings of a particular room 

or space inside a building. 

Relations 

- This class is a subclass of HumiditySensors. 

- Disjoint with sibling class HumiditySensors_Outdoor.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of indoor humidity sensor> 

For example: HumiditySensors_Indoor_LeisureCentre_FitnessRoom1 

HumiditySensors_Outdoor class 

Description 

This class contains individuals which represent the outdoor humidity readings of a 

building in the district. 

Relations 

- This class is a subclass of HumiditySensors. 

- Disjoint with sibling class HumiditySensors_Indoor.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of outdoor humidity sensor> 
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For example: HumiditySensors_Outdoor_LeisureCentre_SensorRHO 

TempSensors class  

Description 

This class contains individuals which represent the temperature readings of a particular 

room or space in a building. It can also be outdoor temperature sensors. 

Relations 

- This class is a subclass of Sensors. 

- Disjoint with sibling classes: CarbonConcentrationSensors, 

OccupancySensors, and HumiditySensors.  

Usage of Class 

This class in the REMO ontology has subclasses and the instances usually are defined in 

these subclasses (shown below). The following naming convention should be applied to 

any new individuals that needs to be defined in this class: 

<Name of index class>_<Name of building>_<Name of temperature sensor> 

TempSensors_Indoor class 

Description 

This class contains individuals which represent the temperature readings of a particular 

room or section or space inside a building. 

Relations 

- This class is a subclass of TempSensors. 

- Disjoint with sibling class TempSensors_Outdoor.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of indoor temperature sensor> 

For example: TemSensors_Indoor_LeisureCentre_FitnessRoom1 

TempSensors_Outdoor class 

Description 
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This class contains individuals which represent the outdoor temperature readings of a 

building in the district. 

Relations 

- This class is a subclass of TempSensors. 

- Disjoint with sibling class TempSensors_Indoor.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of outdoor temperature sensor> 

For example: TempSensors_Outdoor_LeisureCentre_SensorTO 

OccupancySensors class  

Description 

This class contains individuals which represent the occupancy readings of a particular 

room or section or space in a building.  

Relations 

- This class is a subclass of Sensors. 

- Disjoint with sibling classes: CarbonConcentrationSensors, 

TempSensors, and HumiditySensors.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of occupancy sensor> 

For example: OccupancySensors_LeisureCentre_Room1OccSensor 

CarbonConcetrationSensors class  

Description 

This class contains individuals which represent the carbon concentration readings of a 

particular room or section or space in a building. This sensor reading can be used for air 

handling unit optimisation. This parameter gives a good idea of the air quality in the space 

or room. 
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Relations 

- This class is a subclass of Sensors. 

- Disjoint with sibling classes: OccupancySensors, TempSensors, and 

HumiditySensors.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

<Name of index class>_<Name of building>_<Name of carbon concertation sensor> 

For example: CarbonConcentrationSensors_LeisureCentre_Room1CCsensor 

6. Classes related to BMS or EMS 

ParameterMapping_BMS class 

Description 

Individuals of this class represent endpoints of building related parameters. Using the 

associated properties of the individuals of this class, real-time dynamic values or 

historical data for these parameters can be retrieved. 

Relations 

- ParameterMapping_BMS is a subclass of ParameterMapping. 

- Disjoint with ParameterMapping_EMS class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of building>_<Name of parameter> 

For example: ParameterMapping_BMS_LeisureCentre_CCRoom1 

ParameterMapping_EMS class 

Description 

Similar to ParameterMapping_BMS, endpoints of district-related parameters are 

represented by individuals of this class. Using the associated properties of the individuals 

of this class, real-time dynamic values or historical data for these parameters can be 

retrieved. They are mainly stored in the central energy management system (EMS) of the 

district.  
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Relations 

- ParameterMapping_EMS is a subclass of ParameterMapping. 

- Disjoint with ParameterMapping_BMS class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of parameter> 

For example: ParameterMapping_EMS_OutdoorTemperature 

7. Classes related to district operational parameters.  

CrcTax class 

Description 

This class contains individuals that represent values needed for calculation of tax rate. 

The subclasses shown below in Figure 4 represent the most important tax parameters 

required for the calculations. 

 

Figure 4. CrcTax class and subclasses 

Relations 

- This class is a subclass of DistrictOperationalParameters. 

- Disjoint with sibling classes: NetworkParameters, 

OperationalCosts, and OperationalSchedule. 

CrcTax_Rate class 

Description 

Contains value of the CRC tax rate which was a parameter used in the district analytical 

model as explained in Chapter 5 (Section 5.2.1). 

Relations 
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- Subclass of CrcTax class. 

- Disjoint with CrcTax_ElectricityConversionRate and 

CrcTax_NaturalGasConversationRate class. 

- Equivalent to eedistrict:TaxRate 

Usage of Class 

The following naming convention is applied to individuals of this class: 

 <Name of index class>_<Name of tax rate individual> 

For example: CrcTax_Rate_District7 

CrcTax_ElectricityConversionRate class 

Description 

Individuals in this class is again used in the district analytical model. 

Relations 

- Subclass of CrcTax class. 

- Disjoint with CrcTax_Rate and 

CrcTax_NaturalGasConversationRate class. 

- Equivalent to eedistrict:electricityConversionRate class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of electricity conversion rate parameter> 

For example: CrcTax_ElectricityConversionRate_District7ElectricityConversionRate 

CrcTax_NaturalGasConversationRate class 

Description 

Individuals in this class is again used in the district analytical model. 

 Relations 

- Subclass of CrcTax class. 

- Disjoint with CrcTax_Rate and 

CrcTax_ElectricityConversationRate class. 

- Equivalent to eedistrict:naturalGasConversionRate class. 

Usage of Class 
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The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of natural gas conversion rate parameter> 

For example: CrcTax_NaturalGasConversationRate 

_District7NaturalGasConversionRate  

NetworkParameters class 

 

Figure 5. NetworkParameters class and subclasses 

Description 

This class contains individuals that represent values of the district network relevant to 

heat and electricity energy calculations; for example, supply temperature and return 

temperature at various points in the district network. 

Relations 

- This class is a subclass of DistrictOperationalParameters. 

- Disjoint with sibling classes: CrcTax, OperationalCosts, and 

OperationalSchedule. 

 

NetworkParameter_Electricity class 

Description 

Contains individuals or subclasses that are related to electricity network parameters. For 

example, information on busbars of the district can be instantiated here if needed. 

Relations 
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- Subclass of NetworkParameter. 

- Disjoint with NetworkParameter_Heat class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of parameter> 

NetworkParameter_Heat class 

Description 

Contains individuals or subclasses that are related to heat network parameters. For 

example information on a district heating network can be instantiated here. Some of this 

is also needed for district energy optimisation using the analytical model for example. 

Relations 

- Subclass of NetworkParameter. 

- Disjoint with NetworkParameter_Electricity class. 

Usage of Class 

As shown in figure above, there are various subclasses and these classes usually has 

individuals instantiated. The NetworkParameter_Heat class acts mainly as a 

superclass with no or less individuals. The following naming convention is applied to 

name individuals of this class: 

 <Name of index class>_<Name of network heating parameter> 

NetworkParameters_Heat_PrimarySupplyTemp class 

Description 

Contains individuals related to primary supply temperature of district heating network. 

The parameter here refers to supply temperature to a particular building in the district or 

it can also be supply temperature provided by an energy producing source or building. 

Relations 

- Subclass of NetworkParameter_Heat. 

- Disjoint with classes: 

NetworkParameters_Heat_PrimaryReturnTemp, 

NetworkParameters_Heat_SecondarySupplyTemp, 
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NetworkParameters_Heat_SecondaryReturnTemp, and 

NetworkParameters_Heat_SafetyFactor. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of network heat parameter> 

For example: NetworkParameters_Heat_PrimarySupplyTemp_LeisureCentre. 

NetworkParameters_Heat_PrimaryReturnTemp class 

Description 

Contains individuals related to primary return temperature of a district heating network. 

The parameter here refers to return temperature from a particular building in the district 

heating network. Sometimes it can be the return temperature of water which is sent to a 

heat producing source or building. 

Relations 

- Subclass of NetworkParameter_Heat. 

- Disjoint with classes: 

NetworkParameters_Heat_PrimarySupplyTemp, 

NetworkParameters_Heat_SecondarySupplyTemp, 

NetworkParameters_Heat_SecondaryReturnTemp, and 

NetworkParameters_Heat_SafetyFactor. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of network heat parameter> 

For example: NetworkParameters_Heat_PrimaryReturnTemp_LeisureCentre. 

NetworkParameters_Heat_SecondarySupplyTemp class 

Description 

Contains individuals related to Secondary supply temperature in a particular building. 

The parameter here refers to supply temperature within a particular building which is 

dedicated for a particular area of the building. For example, domestic hot water network 

can be linked to a secondary heating network within the building and it has another 

dedicated heat exchanger for its application. This sometimes is branched from the primary 
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heating network in the building i.e. it is branched off the primary heat exchanger of the 

building. 

Relations 

- Subclass of NetworkParameter_Heat. 

- Disjoint with classes: 

NetworkParameters_Heat_PrimaryReturnTemp, 

NetworkParameters_Heat_PrimarySupplyTemp, 

NetworkParameters_Heat_SecondaryReturnTemp, and 

NetworkParameters_Heat_SafetyFactor. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of network heat parameter> 

For example: NetworkParameters_Heat_SecondarySupplyTemp_LeisureCentre. 

NetworkParameters_Heat_SecondaryReturnTemp class 

Description 

This instantiates individuals which contain the return temperature of the secondary 

network within the building. 

Relations 

- Subclass of NetworkParameter_Heat. 

- Disjoint with classes: 

NetworkParameters_Heat_PrimarySupplyTemp, 

NetworkParameters_Heat_SecondarySupplyTemp, 

NetworkParameters_Heat_PrimaryReturnTemp, and 

NetworkParameters_Heat_SafetyFactor. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of network heat parameter> 

For example: NetworkParameters_Heat_SecondaryReturnTemp_LeisureCentre. 

NetworkParameters_Heat_SafetyFactor class 
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Description 

Heat loss within the district heating network is important to be calculated. In many cases, 

detailed real time monitoring or advanced simulation models might not be available and 

hence this heat loss factor needs to be approximated. The 

NetworkParameters_Heat_SafetyFactor class contains instances which 

stores this value. This can also be a dynamic value that the EMS of the district computes. 

It can be approximated using simple historical data analysis. This value needs is taken 

into account by the analytical model and district optimisation model for optimising the 

heat production schedules in the district. 

Relations 

- Subclass of NetworkParameter_Heat. 

- Disjoint with classes: 

NetworkParameters_Heat_PrimarySupplyTemp, 

NetworkParameters_Heat_SecondarySupplyTemp, 

NetworkParameters_Heat_PrimaryReturnTemp, and 

NetworkParameters_Heat_SecondaryReturnTemp. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of network heat safety factor> 

For example: NetworkParameters_Heat_SafetyFactor_District7 

ActivitySchedule class 

Description 

Contains individuals that represents a particular activity schedule which can be building 

or district related. For example, a fitness room in the building might have activities 

planned throughout the week that can help calculate the average MET produced by users. 

This is useful for PMV (Fanger’s comfort factor) calculation, and consequently, comfort 

optimisation. The individuals of this class represents these schedules and its actual 

dynamic values can be retrieved from the BMS or EMS through the corresponding 

ParameterMapping class individuals. 

Relations 

- Subclass of DistrictOperationalSchedule. 
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- Disjoint with classes:  ProductionScheduleHeat, 

ForecastedWeatherSchedule and DemandSchedule. 

Usage of Class 

The following naming convention is applied to individuals of this class: 

 <Name of index class>_<Name of activity schedule> 

For example: ActivitySchedule_LeisureCentreFitnessRoomMET 

DemandSchedule class 

Description 

Contains individuals or subclasses that defines the twenty-four-hour demand profiles of 

buildings or spaces/rooms in the building. The individuals in this class is needed both for 

building optimisation and district optimisation. The various subclasses shown in figure 6 

below shows the variety of schedules which is needed for real time energy management. 

Each of them are explained below in this section. 

 

Figure 6.  DemandSchedule class and its subclasses 

Relations 

- Subclass of DistrictOperationalSchedule. 

- Disjoint with classes: ProductionScheduleHeat, 

ForecastedWeatherSchedule and ActivitySchedule. 

Usage of Class 

As shown as figure above, there are various subclasses to this class and these classes 

usually are instantiated. The DemandSchedule class acts mainly as a superclass with 

no or less individuals. The following naming convention is applied to name individuals 

of this class: 
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 <Name of index class>_<Name of demand schedule> 

DemandSchedule_Heat class 

Description 

Contains individuals or subclasses that defines the twenty-four-hour heat demand profiles 

of buildings or spaces/rooms in the building. 

Relations 

- Subclass of DemandSchedule class. 

- Disjoint with DemandSchedule_Electricity class. 

Usage of Class 

The subclasses to this class are usually are instantiated. The DemandSchedule_Heat 

class acts mainly as a superclass with no or less individuals. The following naming 

convention is applied to name individuals of this class: 

<Name of index class>_<Name of heat demand schedule> 

DemandSchedule_Heat_Typical class 

Description 

A typical heat demand schedule is stored in individuals of this class. The individuals 

represent the schedule and the actual values for the schedule can be retrieved from the 

BMS itself through the corresponding individuals of ParameterMapping_BMS class. 

This typical schedule is derived from historical data and used for district optimisation 

when predicted heat demand schedules are not available. 

Relations 

- Subclass of DemandSchedule_Heat class. 

- Disjoint with DemandSchedule_Heat_Predicted class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

<Name of index class>_<Name of typical heat demand schedule> 

For example: DemandSchedule_Heat_Typical_Building1 

DemandSchedule_Heat_Predicted class 
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Description 

The individuals of this class is similar to individuals of 

DemandSchedule_Heat_Typical class. However, these are predicted demand 

schedules which are results of running the ANN models of REMO framework. These are 

used for district energy optimisation for day to day operations.  

Relations 

- Subclass of DemandSchedule_Heat class. 

- Disjoint with DemandSchedule_Heat_Typical class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

<Name of index class>_<Name of typical heat demand schedule> 

For example: DemandSchedule_Heat_Predicted_Building1 

DemandSchedule_Electricity Class 

Description similar to DemandSchedule_Heat class, but this class includes 

electricity demand schedules rather than heat demand schedules. 

DemandSchedule_Electricity_Typical Class 

Description similar to DemandSchedule_Electricity_Typical class, but this 

class includes typical electricity demand schedules rather than typical heat demand 

schedules. 

DemandSchedule_Elecctricity_Predicted Class 

Description similar to DemandSchedule_Electricity_Predicted class, but 

this class includes predicted electricity demand schedules rather than predicted heat 

demand schedules. 

ProductionScheduleHeat class 

Description 

Contains individuals or subclasses that defines the twenty-four hour heat production 

profiles of buildings or energy sources in the building. This is needed mainly for district 

energy optimisation using the analytical model. Contains two subclasses as shown below 

in figure.  
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Note: Disjoint relationship between the two subclasses is not shown in figure 7 below. 

 

Figure 7. ProductionScheduleHeat Class and its subclasses 

Relations 

- Subclass of DistrictOperationalSchedule class. 

- Disjoint with DemandSchedule, ForecastedWeatherSchedule and 

ActivitySchedule class. 

Usage of Class 

As shown in figure above, there are two subclasses to this class which are usually 

instantiated. The ProductionScheduleHeat class acts mainly as a superclass with 

no or less individuals. The following naming convention is applied to individuals of this 

class: 

 <Name of index class>_<Name of production schedule> 

ProductionScheduleHeat_Typical class 

Description 

A typical heat production schedule is stored in these instances. This typical schedule is 

considered not to be optimised and is used when optimised production schedules are not 

available. 

Relations 

- Subclass of ProductionScheduleHeat class. 

- Disjoint with ProductionScheduleHeat_Optimised class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

<Name of index class>_<Name of typical production schedule> 
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For example: ProductionScheduleHeat_Typical_District7Schedule 

ProductionScheduleHeat_Optimised class 

Description 

The optimised heat production schedules of the district are represented by individuals of 

this class. The optimised production schedule is calculated using the analytical model and 

district optimisation model.  

Relations 

- Subclass of ProductionScheduleHeat class. 

- Disjoint with ProductionScheduleHeat_Typical class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

<Name of index class>_<Name of optimised heat production schedule> 

For example: ProductionScheduleHeat_Optimised_District7Schedule 

ForecastedWeatherSchedule class 

Description 

Contains individuals or subclasses that defines the twenty-four-hour day ahead 

predictions for weather parameters. This is needed mainly for demand predictions of 

building using the ANN model.  

Note: Disjoint relationship between the two subclasses is not shown in figure 8 below. 

 

Figure 8. ForecastedWeatherSchedule and its subclasses. 

Relations 

- Subclass of DistrictOperationalSchedule class. 
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- Disjoint with DemandSchedule, ProductionScheduleHeat and 

ActivitySchedule class. 

Usage of Class 

As shown in figure above, it has two subclasses-  

ForecastedWeatherSchedule_Temperature represents the outdoor 

temperature prediction and ForecastedWeatherSchedule_Humidity 

represents the outdoor humidity prediction. These subclasses are usually instantiated and 

the following naming convention is applied to individuals: 

 <Name of index class>_<Name of forecasted weather schedule> 

OperationalCosts class 

 

Figure 9. OperationalCosts class and its subclasses 

Description 

This class contains individuals that represent cost-related parameters of the district. Cost 

prices, selling prices, incentives, and maintenance costs are all subclasses of this class. 

They are relevant for the analytical model and optimisation model for supply side 

optimisation.  

Relations 

- This class is a subclass of DistrictOperationalParameters. 

- Disjoint with sibling classes: CrcTax, NetworkParameters, and 

OperationalSchedule. 
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MaintenanceCosts class 

Description 

Contains individuals or subclasses that are related to maintenance costs of energy sources 

systems.  

Relations 

- Subclass of OperationalCosts. 

- Disjoint with sibling classes: CostPrice, Incentive, and 

SellingPrice. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of energy source> 

For example: MaintenanceCosts_CHP 

Incentive class 

 

Figure 10. Incentive class and its subclasses. 

Description 

Contains individuals or subclasses that are related to incentives received in the district. 

Incentives are provided mainly for using low carbon sources or renewable energy sources. 

For example, using biomass boilers can gain incentives. 

Relations 

- Subclass of OperationalCosts. 

- Disjoint with sibling classes: CostPrice, MaintenanceCosts, and 

SellingPrice. 

Usage of Class 
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Individuals are defined in its subclasses. In any case, the following naming convention is 

applied to individuals of this class: 

 <Name of index class>_<Name of incentive parameter> 

Incentive_BiomassRHI class 

Description 

This class contains individuals which represents the incentive received for unit energy 

produced using biomass boilers 

Relations 

- Subclass of Incentive class. 

Usage of Class 

The following naming convention is applied to individuals of this class: 

 <Name of index class>_<Name of energy source> 

For example: Incentive_BiomassRHI_BiomassBoiler 

CostPrice class 

 

Figure 11. CostPrice class and its subclasses. 

Description 

Contains individuals or subclasses that are related to cost prices in the district. Subclasses 

include individuals representing cost prices for electricity, heat and the various fuel used 

in the district.  

Relations 

- Subclass of OperationalCosts. 

- Disjoint with sibling classes: Incentive, MaintenanceCosts, and 

SellingPrice. 
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Usage of Class 

As shown in figure above, various subclasses exist and individuals are usually defined 

here. The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of cost price parameter> 

CostPrice_Electricity class 

Description 

This class contains individuals which represents the cost prices related to electricity in 

the district 

Relations 

- Subclass of CostPrice. 

- Disjoint with sibling classes: CostPrice_Fuel and CostPrice_Heat. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of cost price parameter related to electricity purchase> 

CostPrice_Electricity_CHP class 

Description 

This class contains individuals which represents the purchase price of unit of electricity 

produced from a CHP source. 

Relations 

- Subclass of CostPrice_Electricity. 

- Disjoint with sibling classes: 

CostPrice_Electricity_DayPrice_Grid and 

CostPrice_Electricity_NightPrice_Grid. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of parameter> 

CostPrice_Electricity_DayPrice_Grid Class 

Description 
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 This class contains individuals which represents the purchase price of unit of electricity 

during the day, from a centralised source such as the main national grid. Main grid 

purchase price of electricity can vary throughout the day. The case study for which the 

ontology is built at the moment assumes that purchase price during hours of day is 

different to the price in the night. 

Relations 

- Subclass of CostPrice_Electricity. 

- Disjoint with sibling classes: 

CostPrice_Electricity_DayPrice_Grid and 

CostPrice_Electricity_CHP. I 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of parameter or name of district> 

For example: CostPrice_Electricity_DayPrice_Grid_District7 

CostPrice_Electricity_NightPrice_Grid Class 

Description 

This class contains individuals which represents the night-time purchase price per unit of 

electricity. 

Relations 

- Subclass of CostPrice_Electricity. 

- Disjoint with sibling classes: 

CostPrice_Electricity_DayPrice_Grid and 

CostPrice_Electricity_CHP. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of parameter or name of the district> 

For example: CostPrice_Electricity_NightPrice_Grid_District7 

CostPrice_Fuel class 
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Figure 12. CostPrice_Fuel class and its subclasses. 

 Description 

This class contains individuals which represents the cost prices of the different types of 

fuel used in the district. Figure 12 above shows the various subclasses involved. These 

subclasses are all mutually disjoint with each other. 

Relations 

- Subclass of CostPrice. 

- Disjoint with sibling classes: CostPrice_Electricity and 

CostPrice_Heat. 

Usage of Class 

The following naming convention is applied to individuals of this class: 

 <Name of index class>_<Name of cost price parameter related to fuel purchase> 

CostPrice_Fuel_Biomass class 

Description 

 This class contains individuals which represents the purchase price of biomass fuel used 

in the district. 

Relations 

- Subclass of CostPrice_Fuel. 

- Disjoint with sibling classes: CostPrice_Fuel_Diesel and 

CostPrice_Fuel_Gas 

Usage of Class 

The following naming convention is applied to individuals of this class: 

 <Name of index class>_<Name of biomass fuel purchase price parameter> 



-254- 

 

For example: CostPrice_Fuel_Biomass_PurchasePriceDistrict7 

CostPrice_Fuel_Diesel class 

Description similar to CostPrice_Fuel_Biomass class, but this class includes 

individuals that represent cost price of diesel fuel used in the district. 

CostPrice_Fuel_Gas class 

Description similar to CostPrice_Fuel_Biomass class, but this class includes 

individuals that represent cost price of natural gas used in the district. 

CostPrice_Heat class 

Description 

This class contains individuals which represents the cost price of heat being purchased in 

the district. Usually this is from the district heating network. 

Relations 

- Subclass of CostPrice class 

- Disjoint with sibling classes: CostPrice_Electricity and 

CostPrice_Heat. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of cost price parameter related to heat purchase> 

For example: CostPrice_Heat_District7HeatNetwork 

SellingPrice class 
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Figure 13. SellingPrice class and its subclasses. 

Description 

Contains individuals or subclasses that are related to selling prices in the district. 

Subclasses include individuals representing selling prices, especially for electricity, as 

excess production can be sent/sold back to grid. 

Relations 

- Subclass of OperationalCosts. 

- Disjoint with sibling classes: Incentive, MaintenanceCosts, and 

CostPrice. 

Usage of Class 

As shown in figure above, two subclasses exist and individuals are usually defined in 

these. The following naming convention is applied to individuals of this class: 

 <Name of index class>_<Name of selling price parameter> 

SellingPrice_Electricity class 

Description 

This class contains individuals which represents the selling prices related to electricity in 

the district. 

Relations 

- Subclass of SellingPrice. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 
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 <Name of index class>_<Name of selling price parameter for electricity sold to grid> 

SellingPrice_Electricity_DayPrice_toGrid Class 

Description 

This class contains individuals which represents the selling price of unit of electricity 

during the day, to the main national grid. Selling price of electricity can vary throughout 

the day. The ontology here assumes that selling price during hours of day is different to 

the price in the night, similar to the assumption made in the case of purchase prices, 

mentioned earlier under CostPrice_Electricity class. 

Relations 

- Subclass of SellingPrice_Electricity. 

- Disjoint with SellingPrice_Electricity_NightPrice_toGrid 

class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of selling price parameter or name of district> 

For example: SellingPrice_Electricity_DayPrice_toGrid_District7 

SellingPrice_Electricity_NightPrice_toGrid Class 

Description 

This class contains individuals which represents the selling price of unit of electricity 

during the night, to the main national grid.  

Relations 

- Subclass of SellingPrice_Electricity. 

- Disjoint with SellingPrice_Electricity_DayPrice_toGrid class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of selling price parameter or name of district> 

For example: SellingPrice_Electricity_NightPrice_toGrid_District7 
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8. Classes related to use cases and scenarios for real-time energy management. 

UseCases_Building_Optimisation_ScenarioSwimmingPoolAhuOptim

isation class. 

Description 

This class contains the optimisation related use cases applied within a building, especially 

looking into optimisation of air handling unit of a zone (or room) or space containing a 

swimming pool.  

Relations 

- Subclass of UseCases_Building_Optimisation. 

- Disjoint with 

UseCases_Building_Optimisation_ScenarioRoomAhuOptimisa

tion class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of building>_<name of swimming pool ahu 

optimisation use case> 

For example: 

UseCases_Building_Optimisation_ScenarioSwimmingPoolAhuOptimisation_LeisureCe

ntre_SwimmingPoolArea. 

UseCases_Building_Optimisation_ScenarioRoomAhuOptimisation 

class. 

Description 

This class contains the optimisation related use cases applied within a building, especially 

looking into optimisation of air handling unit of a zone (or room) or space.  

Relations 

- Subclass of UseCases_Building_Optimisation. 

- Disjoint with 

UseCases_Building_Optimisation_ScenarioSwimmingPoolAhu

Optimisation class. 

Usage of Class 
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The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of building>_<name of room AHU optimisation use 

case> 

For example: 

UseCases_Building_Optimisation_ScenarioRoomAhuOptimisation_LeisureCentre_Fitn

essRoom. 

UseCases_Building_Prediction_Model_OverallDemandProfile_Hea

t Class 

Description 

Individuals of this class represent use cases that supports running of ANN models which 

predicts the overall heat demand profile of buildings. 

Relations 

- Subclass of 

UseCases_Building_Prediction_OverallDemandProfile. 

- Disjoint with sibling class 

UseCases_Building_Prediction_Model_OverallDemandProfil

e_Electricity. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of building> 

For example: 

UseCases_Building_Prediction_OverallDemandProfile_Heat_LeisureCentre 

UseCases_Building_Prediction_Model_OverallDemandProfile_Ele

ctricity Class 

Similar to class 

UseCases_Building_Prediction_Model_OverallDemandProfile_Hea

t, but here the focus is on electricity demand profiles prediction of buildings and not heat. 

UseCases_Building_Prediction_SwimmingPoolAhu class. 

Description 
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This class contains the prediction related use cases applied within a building for 

developing and training an ANN model. This use case class is needed to support the 

UseCases_Building_Optimisaiton_ScenarioSwimmingPoolAhuOptim

isation class, as it provides information for the training of the ANN model which is 

to be used for optimisation of air handling units in rooms or zones containing swimming 

pools. Therefore, the individuals of this class represent use cases which are applied to 

rooms or zones which has a swimming pool and requires AHU optimisation. 

Relations 

- Subclass of UseCases_Building_Prediction_Training. 

- Disjoint with UseCases_Building_Prediction_RoomAhu class and 

UseCases_Building_Prediction_OverallDemandProfile 

class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of building>_<name of swimming pool room prediction 

parameter use case> 

For example: 

UseCases_Building_Prediction_SwimmingPoolAhu__LeisureCentre_SwimmingPoolRo

om1ANN. 

UseCases_Building_Prediction_RoomAhu class. 

Description 

Similar to its sibling class, this class has individuals which represent use cases class 

needed to support the 

UseCases_Building_Optimisaiton_ScenarioRoomAhuOptimisation 

class, as it provides information for the training of the ANN model which is to be used 

for optimisation of air handling units in rooms. Therefore, this class has individuals which 

represents use cases which are applied to rooms or zones which requires AHU 

optimisation. 

Relations 

- Subclass of UseCases_Building_Prediction_Training. 
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- Disjoint with UseCases_Building_Prediction_SwimmingPoolAhu 

class and 

UseCases_Building_Prediction_OverallDemandProfile 

class. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of building>_<name of room prediction parameter use 

case> 

For example: 

UseCases_Building_Prediction_RoomAhu__LeisureCentre_FitnessRoomANN. 

UseCases_Building_Prediction_OverallDemandProfile class. 

 

 

Figure 14. UseCases_Building_Prediction_OverallDemandProfile class and its 

subclasses. 

Description 

This class contains individuals which represent the prediction related use cases applied 

for a building. The individuals and its properties once reasoned will contain information 

for developing and training an ANN model which will be applied for day ahead forecasts 

of overall building heat and electricity demand profiles. The ANN models once trained 

as a part of this use case, can be consequently used for district optimisation use cases 

under the class - UseCases_District_Optimisation_PredictedDemand 

class.  It has two subclasses as shown above in figure 14. 

Relations 

- Subclass of UseCases_Building_Prediction_Training. 

- Disjoint with UseCases_Building_Prediction_RoomAhu class and 

UseCases_Building_Prediction_SwimmingPoolAhu class. 
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Usage of Class 

The subclasses of this class are usually defined with individuals rather than this class. 

UseCases_Building_Prediction_OverallDemandProfile_Heat Class 

Description 

See description of superclass. This class especially looks into prediction of overall heat 

demand profiles of buildings. 

Relations 

- Subclass of 

UseCases_Building_Prediction_OverallDemandProfile. 

- Disjoint with sibling class 

UseCases_Building_Prediction_OverallDemandProfile_Elec

tricity. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of building> 

For example: 

UseCases_Building_Prediction_OverallDemandProfile_Heat_LeisureCentre 

UseCases_Building_Prediction_OverallDemandProfile_Electrici

ty Class 

Similar to class 

UseCases_Building_Prediction_OverallDemandProfile_Heat, but 

here the focus is on electricity demand profiles prediction of buildings and not heat. 

UseCases_District_Optimisation_TypicalDemand class 

Description 

This class contains the district optimisation use case but uses a typical demand profile for 

each building in the district. 

Relations 

- Subclass of UseCases_District. 

Usage of Class 
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The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of optimisation related use case for district> 

For example: UseCases_District_Optimisation_TypicalDemand_District7 

UseCases_District_Optimisation_PredictedDemand class 

Description 

This class contains the district optimisation use case but uses predicted demand profile 

for each building in the district. In other words, the district optimisation uses day ahead 

demand forecasts for heat and electricity of each building prior to supply side 

optimisation. 

Relations 

- Subclass of UseCases_District. 

Usage of Class 

The following naming convention is applied to name individuals of this class: 

 <Name of index class>_<Name of optimisation related use case for district> 

For example: UseCases_District_Optimisation_PredictedDemand_District7 

9. Classes related to optimisation 

 

Optimisation_ModelParameters_Analytical class 

Description 

The individuals in this class contains all the parameters needed for the analytical model. 

The individuals are instantiated in the REMO ontology. The properties of these individuals 

are automatically inferred once the ontology is reasoned. These property values, 

consequently, is used by the analytical model for its calculations. 

Relations 

- This class is a subclass of Optimisation_ModelParameters. 

- Disjoint with sibling class: Optimisation_ModelParameters_Nsga2.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 
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 <Name of index class>_<Name of analytical model parameter> 

For example: Optimisation_ModelParameters_Analytical_NbOfConsumers 

Optimisation_ModelParameters_Nsga2 class 

Description 

This class contains individuals which represent NSGA-II algorithm parameters, which is 

needed for the multiobjective optimisation calculations. The NSGA-II algorithm is used 

for district schedule optimisation as shown previously. Therefore, the individuals of this 

class and their properties are predefined based on this study. 

Relations 

- This class is a subclass of Optimisation_ModelParameters. 

- Disjoint with sibling class: 

Optimisation_ModelParameters_Analytical.  

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of NSGA-II model parameter> 

For example: Optimisation_ModelParameters_Analytical_MaximumGenerations 

Optimisation_Objectives_ComfortPMV class 

Description 

The individuals in this class represents the comfort factor of Fanger’s model called 

“PMV”. This is one of the objectives usually used to monitor indoor comfort in a room 

within a building. This factor is mainly used as an objective for many building energy 

management use cases as shown in the SportE2 section. 

Relations 

- This class is a subclass of Optimisation_Objectives. 

- Disjoint with sibling classes: 

Optimisation_Objectives_OperationalCosts and 

Optimisation_Objectives_OperationalEmissions. 

Usage of Class 
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The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of building>_<Name of Room> 

For example: Optimisation_Objective_ComfortPMV_LeisureCentre_FitnessRoom 

Optimisation_Objective_OperationalEmissions class 

Description 

The individuals in this class contains individuals which represent the 24 hour operational 

emissions total in the district. This is one of the objectives usually used in the district 

optimisation model problems. Related to the district energy optimisation use case. 

Relations 

- This class is a subclass of Optimisation_Objectives. 

- Disjoint with sibling classes: 

Optimisation_Objectives_OperationalCosts and 

Optimisation_Objectives_ComfortPMV. 

Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of district> 

For example: Optimisation_Objective_OperationalEmissions_District7 

Optimisation_Objectives_OperationalCosts class 

Description 

The individuals in this class contains individuals which represent the twent-four hour 

operational costs total in the district. This is one of the objectives usually used in the 

district optimisation model problems. Related to the district energy optimisation use case. 

Relations 

- This class is a subclass of Optimisation_Objectives. 

- Disjoint with sibling classes: 

Optimisation_Objectives_OperationalEmissions and 

Optimisation_Objectives_ComfortPMV. 
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Usage of Class 

The following naming convention should be applied to any new individuals that needs to 

be defined in this class: 

 <Name of index class>_<Name of district> 

For example: Optimisation_Objective_OperationalCosts_District7 

Properties of REMO ontology 

1. Properties related to DistrictOperationalParameters class. 

 

Figure 15. Properties related to DistrictOperationalParameters class and its subclasses. 

Table 1. Domain and range for properties related to DistrictOperationalParameters class 

and its subclasses. 

Name of Property Domain Range 

hasHeatCostPrice DemandSchedule_Heat CostPrice_Heat 

hasElecDayPrice DemandSchedule_Electricity CostPrice_Electricity 

hasElecNightPrice DemandSchedule_Electricity CostPrice_Electricity 

 

Description 
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hasHeatCostPrice – this property assigns the cost price of heat energy to the heat demand 

schedules of the buildings. 

hasElecDayPrice - this property assigns the day price of electricity to the electricity 

demand schedule of the buildings. 

hasElecNightPrice – this property assigns the night price of electricity to the electricity 

demand schedule of the buildings. 

2. Properties related to EnvironmentalAndFuelProperties classes and 

subclasses. 

 

Figure 16. Properties related to EnvironmentalAndFuelProperties class and its subclasses. 

Table 2. Domain and range for properties related to EnvironmentalAndFuelProperties 

class and its subclasses. 

Name of Property Domain Range 

hasSpecificEmission FuelType Emissions_SpecificEmission 

hasFuelCostPrice FuelType CostPrice_Fuel 

hasCalorificValue FuelType CalorificValue 

 

Description 

hasSpecificEmission – this property assigns the specific emission of a particular fuel to 

its fuel type from the FuelType class. 

hasFuelCostPrice– this property assigns a cost price to the fuel – be it biomass or natural 

gas or any other type of fuel. 
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hasCalorificValue– this property assigns the calorific value of a fuel to its fuel from the 

FuelType class. 

 

3. Properties related to the different subclasses of 

EnergySource_Centralsied class. 

 

Figure 17. Properties related to EnergySource_Centralised class and its subclasses. 

Table 3. Domain and range for properties related to EnergySource_Centralised class and its 

subclasses. 

Name of Property Domain Range 

has_dayGridSellPrice 
National

Grid 
SellingPrice_Electricity_DayPrice_toGrid 

has_nightGridSellPrice 
National

Grid 
SellingPrice_Electricity_NightPrice_toGrid 

has_dayGridCostPrice 
National

Grid 
CostPrice_Electricity_DayPrice_fromGrid 

has_nightGridCostPrice 
National

Grid 
CostPrice_Electricity_NightPrice_fromGrid 

 

Description 

has_dayGridSellPrice – day time selling price of excess electricity production (through 

decentralised sources) to grid is assigned to a centralised source (NationalGrid class) 

through this property. 

has_nightGridSellPrice – night time selling price of excess electricity production to grid 

is assigned to a centralised source through this property. 
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has_dayGridCostPrice – the cost price of buying electricity from the grid during day time 

is assigned here through the property. Once again the domain class is centralised source 

of energy – NationalGrid class. 

has_nightGridCostPrice– similar to above mentioned property, it assigns the cost price 

of buying electricity from the grid during night hours. 

 

4. Properties related to the different subclasses of 

EnergySource_Decentralised class. 

 

Table 4. Domain and range for properties related to EnergySource_Decentralised class and 

its subclasses. 

Name of Property Domain Range 

hasElecEfficiency 

EnergySource_

Decentralised

_Electricity 

Efficiency_ElectricityProduction 

hasHeatEfficiency 

EnergySource_

Decentralised

_Heat 

Efficiency_HeatProduction 

hasElec2HeatRatio 

EnergySource_

Decentralised

_Electricity 

Elec2heatRatio 

hasIncentive BiomassBoiler Incentive_BiomassRHI 

HasDistanceToBiomass

Supplier 
BiomassBoiler Distance_BiomassSupplier 

hasTransportEmission BiomassBoiler Emissions_Transport 

 

Description 

hasElecEfficiency – this property assigns electricity efficiency to decentralised energy 

sources. 

hasHeatEfficiency – this property assigns heat efficiency to decentralised energy 

sources. 

hasElec2HeatRatio– this property assigns the ‘electricity to heat ratio’ to cogeneration 

units in the EnergySource_Decentralised_Electricity class. 

hasIncentive – this property assigns renewable heat incentive to decentralised energy 

sources such as biomass boiler.  

hasDistanceToBiomassSupplier – the distance to biomass fuel supplier from the district 

is assigned to the biomass boiler energy source class through this property. 
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hasTransportEmission – this property assigns emissions due to fuel transport (such as 

biomass fuel transport from supplier to the district) to the biomass boiler energy source 

class. 

 

5. Properties related to EnergySource class 

 

Table 5. Domain and range for properties related to EnergySource class and its subclasses. 

Name of Property Domain Range 

hasHeatProductionSchedule EnergySource ProductionScheduleHeat 

hasFuelType 
EnergySource_

Decentralised 
FuelType 

hasMaxOutputPower 
EnergySource_

Decentralised 
OutputPower_Max 

hasMinOutputPower 
EnergySource_

Decentralised 
OutputPower_Min 

hasMainCost 
EnergySource_

Decentralised 
MaintenanceCosts 

 

Description 

hasHeatProductionSchedule – this property assigns heat production schedules to energy 

sources. 

hasFuelType – this property assigns fuel types to energy sources.  

hasMaxOutputPower – this property assigns the maximum output power for an energy 

source. This is especially needed for district energy optimisation model.  

hasMinOutputPower – this property assigns the minimum output power for an energy 

source. All energy sources can be turned off, but here the minimum output power 

represents the lowest output power at which an energy source can run without losing 

much efficiency.  

hasMainCost – this property assigns maintenance costs to energy sources – specially to 

decentralised energy sources. 
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6. Properties related to EnergyProducerBuilding class. 

Table 6. Domain and range for properties related to EnergyProducerBuilding class and its 

subclasses. 

Name of Property Domain Range 

includesElectricitySource EnergyProducerBuilding 
EnergySource_Decentralised_

Electricity 

includesHeatSource EnergyProducerBuilding 
EnergySource_Decentralised_

Heat 

 

Description 

includesElectricitySource – this property assigns the electricity sources to energy 

producer buildings. As they are included in a building, they are decentralised sources and 

therefore, the range is a subclass of the EnergySource_Decentralised class. 

includesHeatSource – this property assigns the heat sources to energy producer 

buildings. The range here is again a subclass of the 

EnergySource_Decentralised class.  

7. Properties related to EnergyConsumerBuilding class. 

Table 7. Domain and range for properties related to EnergyConsumerBuilding class and its 

subclasses. 

Name of Property Domain Range 

hasElectricityDemand EnergyConsumer

Building 

DemandSchedule_Electricity 

hasHeatDemand EnergyConsumer

Building 

DemandSchedule_Heat 

hasElectricitySource EnergyConsumer

Building 

NationalGrid 

EnergySource_Decentralised_Electricity 

hasHeatSource EnergyConsumer

Building 

EnergySource_Decentralised_Heat 

Description 

hasElectricityDemand – this property assigns the electricity demand schedule for an 

energy consumer building.  

hasHeatDemand – this property assigns the heat demand schedule for an energy 

consumer building. 

hasElectricitySource – this property assigns the electricity sources which supply 

electricity to an energy consumer building. It can either be decentralised or centralised 
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sources or sometimes, even both. NationalGrid class is a subclass of 

EnergySource_Centralised. 

hasHeatSource – this property assigns the heat sources which supply heat to an energy 

consumer building. 

SPIN rules and constructors 

Rules relevant for overall demand prediction use cases – training and running of 

prediction models 

For training purposes, once again input and output data is required. The rules below are 

defined in the class 

UseCases_Building_Prediction_OverallDemandProfile_Heat for 

inferring the ANN input needed. 

Table 8. Rules used to infer inputs of overall demand prediction models of buildings 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?uc :hasAnnInput ?heatMeter . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_OverallD

emandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?building :hasMainHeatMeter 

?heatMeter . 

} 

uc has Ann Output heatMeter  

 

IF uc belongs to 

UseCases_Building_Prediction_OverallD

emandProfile_Heat class  

AND uc is applicable for total demand prediction 

building. 

AND building has main heat meter heatMeter. 

 

CONSTRUCT { 

    ?uc :hasAnnInput ?outdoorHum . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_OverallD

emandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?building :hasOutdoorHumSensor 

?outdoorHum . 

} 

uc has Ann Input outdoorHum  

 

IF uc belongs to 

UseCases_Building_Prediction_OverallD

emandProfile_Heat class  

AND uc is applicable for total demand prediction 

building. 

AND building has outdoor hum sensor outdoorHum. 

 

 

CONSTRUCT {  
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    ?uc :hasAnnInput ?outdoorTemp . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_OverallD

emandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?building :hasOutdoorTempSensor 

?outdoorTemp . 

} 

uc has Ann Input outdoorTemp  

 

IF uc belongs to 

UseCases_Building_Prediction_OverallD

emandProfile_Heat class  

AND uc is applicable for total demand prediction 

building. 

AND building has outdoor temp sensor 

outdoorTemp. 

 

 

 

The rules infer the main heat and electricity (only the heat meter is shown in the table 

above) meters of the building, outdoor temperature, and outdoor humidity. The historical 

data of these meters and sensors is needed for training of the ANN models, and this can 

be retrieved using SPARQL query after the reasoning process. On the other hand, the 

output for ANN model training is shown below in Table 9. 

Table 9 . Rules used to infer outputs of overall demand prediction models of buildings 

Rule in SPIN language Algorithm 

CONSTRUCT { 

    ?uc :hasAnnOutput ?heatMeter . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_OverallDe

mandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?building :hasMainHeatMeter 

?heatMeter . 

} 

uc has Ann Output heatMeter  

 

IF uc belongs to 

UseCase_Building_Predicion_OverallDe

mandProfile_Heat class  

AND uc is applicable for total demand prediction 

building. 

AND building has main heat meter heatMeter. 

 

 

 

 

The output also requires the main heat and electricity meters. Both ANN input and ANN 

output rely on the same set of historical data for the meters; however, when it comes to 

the actual selection of data for training, it is different in terms of the timestamp chosen. 

Similarly, for running these ANN models, the ANN inputs are inferred using rules 

attached to the class 
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UseCases_Building_Prediction_Model_OverallDemandProfile_Hea 

as shown below in Table 10. 

Table 10. Rules used to infer ANN inputs needed for running the overall demand prediction models 

for buildings 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?uc :hasAnnInput ?forecastedWeather . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_Model_Overall

DemandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?forecastedWeather a 

:ForecastedWeatherSchedule_Humidity . 

} 

 

uc has Ann Input forecastedWeather  

 

IF uc belongs to 

UseCases_Building_Prediction_Mode

l_OverallDemandProfile_Heat class  

 

AND uc is applicable for total demand prediction 

Building. 

 

AND forecastedWeather belongs to 

ForecastedWeatherSchedule_Humidit

y class. 

 

 

CONSTRUCT { 

    ?uc :hasAnnInput ?forecastedWeather . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_Model_Overall

DemandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?forecastedWeather a 

:ForecastedWeatherSchedule_Temperature . 

} 

uc has Ann Input forecastedWeather  

 

IF uc belongs to 

UseCases_Building_Prediction_Mode

l_OverallDemandProfile_Heat class  

AND uc is applicable for total demand prediction 

building. 

AND forecastedWeather belongs to 

ForecastedWeatherSchedule_Tempera

ture class. 

 

 

CONSTRUCT { 

    ?uc :hasAnnInput ?heatMeter . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_Model_Overall

DemandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?building :hasMainHeatMeter ?heatMeter. 

} 

 

uc has Ann Input heatMeter.  

 

IF uc belongs to 

UseCases_Building_Prediction_Mode

l_OverallDemandProfile_Heat class  

AND uc is applicable for total demand prediction 

building. 

AND building has main heat meter heatMeter. 
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For running of ANN models, individuals from the ForecastedWeatherSchedule 

class, which is a subclass of DistrictOperationalParameters, are inferred as 

input along with the meter readings. To further run these ANN models, SPARQL query 

is used to retrieve real-time information from BMS/EMS and it is then post-processed as 

per the ANN model requirements. 

Similarly, ANN outputs are inferred using the rules as shown in Table 11 below: 

Table 11. Rules used for ANN outputs while running the overall demand prediction of buildings 

scenario 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?uc :hasAnnOutput 

?predictedDemand . 

} 

WHERE { 

    ?uc a 

:UseCases_Building_Prediction_Model_O

verallDemandProfile_Heat . 

    ?uc 

:isApplicableForTotalDemandPrediction 

?building . 

    ?building :hasPredictedHeatDemand 

?predictedDemand . 

} 

uc has Ann Output predictedDemand.  

 

IF uc belongs to 

UseCases_Building_Prediction_Model_Ov

erallDemandProfile_Heat class  

AND uc is applicable for total demand prediction 

building. 

AND building has predicted heat demand 

predictedDemand. 

 

 

The individuals inferred as ANN output are further queried to retrieve the location for 

recording the predicted demand. The SPARQL query used here is shown in the validation 

Section, 7.1.3. 

For electricity demand profile prediction of the overall building, the same rules are 

applied to the classes 

UseCases_Building_Prediction_OverallDemandProfile_Electrici

ty and 

UseCases_Building_Prediction_Model_OverallDemandProfile_Ele

ctricity, with the exception that the building’s electricity meter is used instead of 

the heat meter. 

Rules relevant for use cases representing the district optimisation using typical 

demand 
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This set of rules is attached to the class 

UseCases_District_Optimisation_TypicalDemand. 

Optimisation settings are inferred mainly from the class 

Optimisation_ModelParameters_Nsga2. All individuals under this class are 

inferred through reasoning and assigned to the respective individuals of the 

UseCases_District_Optimisation_TypicalDemand class by using the 

hasOptimSettings property. The rules are shown below in Table 12. 

Table 12. Rules used for inferencing the district optimisation-related parameters 

Rule in SPIN language Explanation 

 

CONSTRUCT { 

    ?uc :hasOptimSettings ?settings . 

} 

WHERE { 

    ?uc a 

:UseCases_District_Optimisation_TypicalDeman

d . 

    ?settings a 

:Optimisation_ModelParameters_Nsga2 . 

} 

uc has optim settings settings 

 

 IF   uc belongs to 

UseCases_District_Optimisation_T

ypicalDemand class  

 

AND settings belongs to 

Optimisation_ModelParameters_Nsg

a2 class  

 

The hasOptimModelParameters property is also very similar to the hasOptimSettings 

property. Once again, a rule is defined (shown in Table 13) through which all the 

additional parameters and information needed for running the district analytical model 

are assigned to the respective individuals of the 

UseCases_District_Optimisation_TypicalDemand class through the 

hasOptimModelParameters property. These parameters are default instances defined 

under the class Optimisation_ModelParameters_Analytical.  

 

Table 13. Rules used for inferencing the district analytical model-related parameters 

Rule in SPIN language Explanation 

 

CONSTRUCT { 

    ?uc :hasOptimModelParameters ?parameters 

. 

} 

WHERE { 

uc has optim settings parameters 

 

 IF   uc belongs to 

UseCases_District_Optimisation_T

ypicalDemand class  
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    ?uc a 

:UseCases_District_Optimisation_TypicalDeman

d . 

    ?parameters a 

:Optimisation_ModelParameters_Analytical . } 

AND parameters belongs to 

Optimisation_ModelParameters_Ana

lytical class  

 

The optimisation objectives here are inferred from the instances under the classes 

Optimisation_Objectives_OperationalCosts and 

Optimisation_Objectives_OperationalEmissions, which are the two 

objectives of district optimisation problems. They are inferred using the rules shown 

below in Table 14. 

Table 14. Rules used to infer the objectives of the district optimisation use cases 

Rule in SPIN language Algorithm 

CONSTRUCT { 

    ?uc :hasOptimObjective ?obj1 . 

    ?uc :hasOptimObjective ?obj2 . 

} 

WHERE { 

    ?uc a 

:UseCases_District_Optimisation_TypicalDemand 

. 

    ?obj1 a 

:Optimisation_Objectives_OperationalCosts . 

    ?obj2 a 

:Optimisation_Objectives_OperationalEmissions . 

} 

uc has optim objective obj1 

AND uc has optim objective obj2 

 

 IF uc belongs to 

UseCases_District_Optimisation_

TypicalDemand class  

 

AND obj1 belongs to 

Optimisation_Objectives_Operati

onalCosts class 

 

AND 

obj2 belongs to 

Optimisation_Objectives_Operati

onalEmissions class. 

 

 

The decision variables of the district optimisation use case are usually the production 

schedules of the energy sources in the energy producer building. The energy producer 

building here is the target to which the use case is applied to in the first place – which is 

defined by the user during the instantiation process. Expressing the above-mentioned 

relationships as rules can infer the decision variables of the optimisation problem as 

shown below in Table 15. 
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Table 15. Rules used to infer the decision variables of the district optimisation use cases. 

Rule in SPIN language Algorithm 

CONSTRUCT { 

    ?uc :hasDecisionVariable ?dv . 

} 

WHERE { 

    ?uc a 

:UseCases_District_Optimisation_TypicalDe

mand . 

    ?uc :isApplicableForDistrictOptimisation 

?producerBuilding . 

    ?producerBuilding :includesHeatSource 

?source . 

    ?source :hasHeatProductionSchedule ?dv 

. 

} 

 

uc has Decision Variable dv 

 

 IF uc belongs to 

UseCases_District_Optimisation_Typ

icalDemand class  

 

AND uc is applicable for district optimisation 

producerBuilding 

 

AND producerBuilding includes heat source 

source 

 

AND source has heat production schedule dv 

  

 

The example above refers to heat production schedule optimisation problems only. 

Similar work can be carried out for electricity production schedules.  

Rules relevant to use cases representing district optimisation using predicted 

demand 

The rules here are similar to the section above; the only difference is that here the use 

case individual belongs to the subclass 

UseCases_District_Optimisation_PredictedDemand. 

More details on the actual results of running these rules post-reasoning of the ontology 

are shown in Section 7.1.2. 

Rules used for inferring numerical values 

Similarly, the number of energy sources in the district can also be inferred as shown below 

in Table 16. 

Table 16. Rules used to infer a numerical value for the number of energy sources in the district. 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?individual :hasAnalyticalModelValue 

?count . 

} 

WHERE { 

    { 

Individual has Analytical model value count 

 

WHERE 

{ 

DISTINCT Number of sources is count 

AND sources belong to cl  

AND cl belongs to subclass of 

EnergySource_Decentralised_Heat class 
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        SELECT ((COUNT(DISTINCT 

?sources)) AS ?count) 

        WHERE { 

            ?sources a ?cl . 

            ?cl rdfs:subClassOf 

:EnergySource_Decentralised_Heat . 

        } 

    } . 

    ?individual a 

:Optimisation_ModelParameters_Analyti

cal . 

    FILTER regex(str(?individual), 

"NbOfGenerationUnits") . 

} 

} 

AND individual belongs to 

Optimisation_ModelParameters_Analytic

al class  

 

FILTER individual with name “NbOfGenerationUnits”  

 

 

 

 

Another example is to infer the distance between the biomass supplier and the district, 

which can be inferred as shown below in Table 17. 

Table 17. Rules used to infer distance between biomass supplier and the district. 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?individual :hasAnalyticalModelValue 

?distance. 

} 

WHERE { 

    ?individual a 

:Optimisation_ModelParameters_Analytical . 

    FILTER regex(str(?individual), "Distance") . 

    { 

        SELECT ?distance 

        WHERE { 

            ?value :hasNumericalValue ?distance . 

            ?value a :ScalarValueClass . 

            ?dist :hasValueName ?value . 

            ?dist a :Distance_BiomassSupplier . 

        } 

    } . 

}  

Individual has Analytical model value distance 

 

IF individual belongs to 

Optimisation_ModelParameters_Ana

lytical class  

 

FILTER individual with name  “Distance”  

 

AND  

{SELECT Distance 

WHERE  

{Value has numerical value distance 

AND 

Value belongs to 

ScalarValueClass  

AND 

Dist has value name value 

AND 

Dist  belongs to  

Distance_BiomassSupplier  

} 

} 

 

Similarly, values for transport emissions and renewable heat incentives can also be 

derived from rules. These are some of the parameters which are inferred by SPIN rules 
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and used by the district optimisation model. Other relevant parameters can be queried 

through SPARQL, as explained in the validation and instantiation section (Section 7.1.3). 

Constructors  

Constructors for creating properties for energy sources 

Some of the energy sources, when created, would need to have default properties 

instantiated as well. Using constructors here again makes the instantiation process semi-

automated, as the user does not need to create instances for these properties. Table 18 

below shows constructors defined in the BiomassBoiler class. As a result of this, 

during the instantiation process, when the user defines an individual instance of biomass 

boiler, an instance of each property of biomass boiler is defined (relevant to REMO 

ontology) under its respective class.  

Table 18. Constructors defined for BiomassBoiler class 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?this :hasHeatEfficiency ?heatEff . 

    ?heatEff a :Efficiency_HeatProduction . 

} 

WHERE { 

    ?this a :BiomassBoiler . 

    BIND (str(?this) AS ?x) . 

    BIND (STRAFTER(?x, "#") AS ?y) . 

BIND (STRBEFORE(?x, "#") AS ?uri) 

    BIND 

(URI(CONCAT(?uri,"#Efficiency_heatProduction

_", ?y)) AS ? heatEff) . 

} 

this has value name heatEff 

 

AND heatEff belongs to 

Efficiency_HeatProduction 

 

IF this belongs to BiomassBoiler class  

 

AND BIND (string value of variable (this)) AS 

x 

 

AND BIND (string which comes after “#” in x) 

AS y 

 

AND BIND (string which comes before “#” in 

x) AS uri 

 

AND BIND (concatenate strings: uri, 

"#Efficiency_heatProduction_", y ) AS heatEff 

 

CONSTRUCT { 

    ?this :hasHeatProductionSchedule ?sch . 

    ?sch a :ProductionScheduleHeat_Typical . 

} 

WHERE { 

    ?this a :BiomassBoiler . 

    BIND (str(?this) AS ?x) . 

    BIND (STRAFTER(?x, "#") AS ?y) . 

BIND (STRBEFORE(?x, "#") AS ?uri) 

this has heat production schedule sch 

AND sch belongs to 

ProductionScheduleHeat_Typical 

 

IF this belongs to BiomassBoiler class  

AND BIND (string value of variable (this)) AS 

x  

 

AND BIND (string which comes after “#” in x) 

AS y 
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    BIND 

(URI(CONCAT(?uri,"#ProductionSchedule_", ?y)) 

AS ?sch) . 

} 

 

AND BIND (string which comes before “#” in 

x) AS uri  

 

AND BIND (concatenate strings: uri, 

"#ProductionSchedule_", y ) AS sch 

 

CONSTRUCT { 

    ?this :hasMainCost ?mainCost. 

    ? mainCost a :MaintenanceCosts . 

} 

WHERE { 

    ?this a :BiomassBoiler . 

    BIND (str(?this) AS ?x) . 

    BIND (STRAFTER(?x, "#") AS ?y) . 

    BIND (STRBEFORE(?x, "#") AS ?uri) 

    BIND 

(URI(CONCAT(?uri,”#MaintenanceCosts_", ?y)) 

AS ? mainCost) . 

} 

this has Main Cost  mainCost 

AND mainCost belongs to 

ProductionScheduleHeat_Typical 

 

 IF this belongs to BiomassBoiler class  

AND BIND ( string value of  variable (this)) AS 

x  

 

AND BIND (string which comes after “#” in x) 

AS y 

 

AND BIND (string which comes before “#” in 

x) AS uri  

 

AND BIND (concatenate strings: uri, 

"#MaintenanceCosts_", y) AS mainCost 

CONSTRUCT { 

    ?this :hasMaxOutputPower ?maxPower . 

    ?maxPower a :OutputPower_Max . 

} 

WHERE { 

    ?this a :BiomassBoiler . 

    BIND (str(?this) AS ?x) . 

    BIND (STRAFTER(?x, "#") AS ?y) . 

BIND (STRBEFORE(?x, "#") AS ?uri) 

    BIND 

(URI(CONCAT(?uri,”#OutputPower_Max_", ?y)) 

AS ?maxPower) . 

} 

this has heat Main Cost maxPower 

maxPower belongs to OutputPower_Max 

 

 IF this belongs to BiomassBoiler class  

 

AND BIND (string value of variable (this)) AS 

x 

 

AND BIND (string which comes after “#” in x) 

AS y 

 

AND BIND (string which comes before “#” in 

x) AS uri  

 

AND BIND (concatenate strings: uri, 

"#OutputPower_Max_", y) AS maxPower 

 

Similarly, some of the other properties for biomass boiler individuals such as minimum 

output power, fuel type, incentives, distance to biomass supplier and so forth can also be 

instantiated using constructors. Likewise, individuals of the CombinedHeatPower 

class and GasBoiler class also have default properties defined. 

Constructors for creating BMS and EMS locations for each dynamic parameter 
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This constructor creates and assigns an instance under the ParameterMapping_BMS 

or ParameterMapping_EMS class for every individual created representing a 

dynamic parameter in REMO ontology (such as sensors, actuators, production schedules, 

demand schedules, meter readings and so forth). The constructor is attached to the class 

that represents the dynamic parameter. For example, Table 19 below shows the 

constructor applied to individuals of the Actuators class defined by the user. The 

constructor here creates and assigns an individual instance for the newly defined actuator 

representing its location in BMS.  

Table 19. Constructors defined for ParameterMapping_BMS class 

Rule in SPIN language Explanation 

CONSTRUCT { 

    ?this :has_locationBMS ?new . 

    ?new a :ParameterMapping_BMS . 

} 

WHERE { 

    ?this a :Actuators . 

    BIND (str(?this) AS ?x) . 

    BIND (STRAFTER(?x, "#") AS ?y) . 

    BIND (STRBEFORE(?x, "#") AS ?uri) 

    BIND 

(URI(CONCAT(?uri,”#ActuatorLocation_", ?y)) 

AS ?new) . 

} 

this has location in BMS new 

new belongs to ParameterMapping_BMS 

class 

 

IF this belongs to Actuators class  

AND BIND (string value of variable (this)) AS 

x 

AND BIND (string which comes after “#” in x) 

AS y 

AND BIND (string which comes before “#” in 

x) AS uri  

AND BIND (concatenate strings: uri, 

"#ActuatorLocation_", y) AS new 

 

Following this, the user simply needs to assign a string value to the individual created 

using the relevant properties. The string value here represents the actual location endpoint 

defined in the BMS through which the real-time value can be accessed. In the case of the 

actuators, they also have to be assigned string value, which represents the location to 

modify the setpoints in the BMS. 

Appendix B – MATLAB code for analytical model and its 

optimisation 

Running the analytical model 

eedistrict.m is the main Matlab file which when executed runs the analytical model. This 

file calls various other functions and files within the code. Figure 18 below represents the 

workflow in which the various other files and functions are called within eedistrict.m. 
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Figure 18. Workflow of files running in eedistrict.m 

 

Below the code of eedistrict.m is shown. 

% “eedistrict.m” is the main file which calls all the separate functions for the analytical model 

to run. 

%*********************************************************************** 

%{ the .m files below initialises all the constants and the variables needed for the analytical 

model to run %} 

eedistrict_variables; 

eedistrict_constants; 

%********************************************************************* 

% {call function “total_production” below to calculate the following: the electricity production, 

the daily total heat energy produced, the daily total electricity energy produced %} 

[dailytotal_heatProductionArray, electricityProductionSchedule, 

dailytotal_electricityProductionArray ]=total_production 

(heatProductionSchedule,ElectricityToHeatRatios,NbOfGenerationUnits,NbOfTimeslots); 

%********************************************************************* 

% reading 24-hour demand data for each building using “xlsread” function. 

heatDemand = xlsread('heat_demand.xls'); 

electricityDemand = xlsread('electricity_demand.xls'); 

%********************************************************************* 

START

eedistrict_ 
variables

eedistrict_ 
constants

total_production total_demand

getRhiIncome

getHeatIncome

getElecIncomeAnd
Expense

getTaxCost

getGasAndPower 
Costs

getBiomassCost

getChpCost
getOperationAnd

MaintenanceCosts

getGHGEmission

mim_difference

END
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% “total_demand” function is called to calculate the daily total heat energy and electricity 

energy demand %} 

[totalHeatDemand,totalElectricityDemand]=total_demand(heatDemand,electricityDemand);  

%********************************************************************* 

%{“getRhiIncome” function is called to calculate the income from Renewable Heat Incentive 

(RHI) for using the biomass boilers %} 

rhi_income= getRhiIncome(BiomassIndexes,BiomassRHI,dailytotal_heatProductionArray); 

% “getHeatIncome” function is called to calculate the income from selling heat to the learning 

zone. 

 heat_income = getHeatIncome(dailytotal_heatProductionArray,HeatSalePriceToConsumer); 

%{ electricity income and expense is calculated by function “getElecIncomeAndExpense” which 

is called below %} 

[elec_income,elec_expense] = 

getElecIncomeAndExpense(DayLimit,NbOfTimeslots,electricityDemand,NbOfGenerationUnits,e

lectricityProductionSchedule,ElectricityDayPurchaseRateFromGrid,ElectricityDaySalePriceToCo

nsumer,ElectricityNightPurchaseRateFromGrid,ElectricityNightSaleRateToGrid ); 

%carbon taxes are calculated by calling function “getTaxCost” as shown below 

taxCost = 

getTaxCost(dailytotal_heatProductionArray,GasFueledSourceIndexes,GenerationUnitEfficienci

es,CRCNaturalGasConversionRate,CRCTaxRate); 

%{ costs of fuel for CHP, Biomass, boilers are calculated by calling the function 

“getGasAndPowerCosts”, “getBiomassCost”,and  “getChpCost” %} 

gasCost = 

getGasAndPowerCosts(dailytotal_heatProductionArray,GasBoilerIndexes,GenerationUnitEffici

encies,NaturalGasPurchasePrice); 

biomassCost = 

getBiomassCost(dailytotal_heatProductionArray,BiomassIndexes,BiomassPurchasePrice); 

ChpCost = 

getChpCost(dailytotal_heatProductionArray,ChpIndexes,NaturalGasPurchasePrice,Generation

UnitEfficiencies); 

%{ costs for operations & maintenance of CHP can be calculated by calling function 

“getOperationAndMaintenanceCosts” as shown below.%} 

omCost= 

getOperationAndMaintenanceCosts(ChpIndexes,dailytotal_electricityProductionArray,ChpMai

ntenanceRate); 

%{ ‘objectives’ variable below represents both cost and emissions. ‘objectives(2)’ represents 

cost and ‘objectives(1)’ represents emissions. %} 
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objectives(2)= (heat_income+rhi_income+elec_income-elec_expense-taxCost-gasCost-

biomassCost-ChpCost-omCost); 

%****************************************************************************

****** 

% greenhouse gas emissions are computed using the  “getGHGEmission” function 

objectives(1)=getGHGEmission(heatProductionSchedule,NbOfGenerationUnits, 

NbOfTimeslots,SpecificGasEmissions,BiomassIndexes,dailytotal_heatProductionArray,Btrc,Bio

massCalorificValue,GenerationUnitEfficiencies,DistanceToBiomassSupplier); 

%************************************************************************ 

%function to calculate the difference between production and demand. This will act as 

constraints to the optimisation problem. 

[x,co]= 

min_difference(totalHeatDemand,dailytotal_heatProductionArray,heatProductionSchedule,he

atDemand);  

%************************************************************************ 

eedistrict_constants.m 

% this file defines all the constants that are going to be used in the energy calculations 

NbOfGenerationUnits=7; 

NbOfConsumers=5;  

NbOfTimeslots=48; 

TransportEmissions=0.0001231; 

SpecificGasEmissions=[0.185 0.015 0.015 0.185 0.185 0.185 0.185]; 

ElectricityToHeatRatios= [0.65 0 0 0 0 0 0]; 

GenerationUnitEfficiencies=[0.78 0.82 0.82 0.67 0.67 0.67 0.67]; 

GenerationUnitLowerBounds_Kwh= [187.5 62 62 0 0 0 0]; 

GenerationUnitUpperBounds_Kwh= [200.5 247.5 247.5 800 800 800 800]; 

nboftypes=3; 

productionType= [1 0 0 0;2 3 0 0; 4 5 6 7]; 

BiomassIndexes= [2 3]; 

ChpIndexes=1; 

GasBoilerIndexes=[4 5 6 7]; 

GasFueledSourceIndexes=[1 4 5 6 7]; 

NbOfBiomass=2; 
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NbOfChp=1; 

NbOfGasBoilers=4; 

BiomassUpperBound=124; 

ChpUpperBound=401; 

GasBoilerUpperBound=800; 

ElectricityNightSaleRateToGrid=0.03; 

ElectricityDaySaleRateToGrid=0.0764; 

ElectricityNightPurchaseRateFromGrid=0.07; 

ElectricityDayPurchaseRateFromGrid=0.11; 

ElectricityNightSalePriceToConsumer=0.07; 

ElectricityDaySalePriceToConsumer=0.11; 

NaturalGasPurchasePrice=0.0248; 

NaturalGasCalorificValue=10.56; 

BiomassPurchasePrice=0.205; 

BiomassCalorificValue=4.8; 

DistanceToBiomassSupplier=277; 

HeatSalePriceToConsumer=0.0594; 

CRCTaxRate=12; 

CRCElectricityConversionRate=0.541; 

CRCNaturalGasConversionRate=0.1836; 

ChpMaintenanceRate=0.0035; 

BiomassRHI=0.12; 

Btrc=0.00012; 

SupplySafetyMargin=0.2; 

DayLimit=14; 

%**************************************************************** 

eedistrict_variables.m 

%this file initialises the variables which are needed with default values. 

heatDemand=[0:47 ; 0:47 ; 0:47 ; 0:47; 0:47]; 

totalHeatDemand =[0:5]; 

electricityDemand=[0:47 ; 0:47 ; 0:47 ; 0:47; 0:47 ; 0:47]; 
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totalElectricityDemand=[0:6]; 

heatProductionSchedule=xlsread('heat_production_schedule.xls'); 

objectives = [100,100]; % cost, emissions % this is the output of the cost model 

dailytotal_heatProductionArray =[0:7]; 

dailytotal_electricityProductionArray =[0:7]; 

%**************************************************************** 

 total_production.m 

%{ this is the function to generate total heat and total electricity production for each time slot 

of the day %} 

function [dailytotal_hpArray,electricityPs,dailytotal_epArray ]= 

total_production(heatProductionSchedule,ElectricityToHeatRatios,NbOfGenerationUnits,NbOf

Timeslots) 

dailytotal_hpArray = sum(heatProductionSchedule,2); 

dailytotal_hpArray =transpose(dailytotal_hpArray ); 

for i=1: NbOfGenerationUnits  

  for t=1: NbOfTimeslots 

          electricityPs(i,t)=ElectricityToHeatRatios(i)*heatProductionSchedule(i,t); 

        end 

end 

dailytotal_epArray =sum(electricityPs,2); 

dailytotal_epArray=transpose(dailytotal_epArray); 

end    

%********************************************************************** 

total_demand.m 

% this is the function to calculate the total heat and total electricity demand for the day 

function [dailytotal_hdArray,dailytotal_edArray ]= 

total_demand(heatDemand,electricityDemand) 

dailytotal_hdArray = sum(heatDemand,2); 

dailytotal_hdArray =transpose(dailytotal_hdArray); 

dailytotal_hdArray = dailytotal_hdArray *0.2 +dailytotal_hdArray; % this is to add the 20 % loss 

factor  

dailytotal_edArray =sum(electricityDemand,2); 
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dailytotal_edArray=transpose(dailytotal_edArray); 

end 

%********************************************************************** 

getRhiIncome.m 

function [rhi_income] = getRhiIncome( biomass_index,biomass_rhi,daily_total_heat_produc) 

%Calculate the amount of incentive received for using biomass boilers 

rhi_income= 0; 

for i=1:size(biomass_index,2) 

    rhi_income = rhi_income + (daily_total_heat_produc(biomass_index(i)) * biomass_rhi); 

end 

end 

%********************************************************************** 

getHeatIncome.m 

% function to calculate the income due to selling of heat energy. 

function [heat_income] = getHeatIncome( daily_total_heat,HeatSalePriceToConsumer) 

% only the learningZone is charged for heating as rest of the buildings are owned by the 

council. 

    daily_total_heat=daily_total_heat-0.2*daily_total_heat;   

    g=1; % heating demand of the learning zone is stored in index 1 

 heat_income =  HeatSalePriceToConsumer * daily_total_heat(g); 

end 

%******************************************************* 

getElecIncomeAndExpense.m 

%function to calculate the electricity income and expense in the district 

function [income,expense] = 

getElecIncomeAndExpense(daylimit,nb_time_slots,elec_demand,Nb_generation,elec_produc,

day_purchase_grid,day_sell_grid,night_purchase_grid,night_sell_grid ) 

%This function calculates income from electricity and expense of 

%electricity used by the district 

learningDayElectricityConsumption = 0; 

ehubDayElectricityConsumption = 0; 

day_expense=0; 
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day_income=0; 

%DAY 

for i=daylimit:nb_time_slots 

    learningDayElectricityConsumption = learningDayElectricityConsumption+ elec_demand(1,i); 

    ehubDayElectricityConsumption = ehubDayElectricityConsumption +elec_demand(2,i); 

end 

dayElectricityProduction = 0; 

for j=1:Nb_generation 

    for k=daylimit:nb_time_slots 

        dayElectricityProduction=dayElectricityProduction + elec_produc(j,k); 

    end 

end 

if (dayElectricityProduction < ehubDayElectricityConsumption) 

    elec_bought_from_grid = ehubDayElectricityConsumption-dayElectricityProduction; 

    day_expense=elec_bought_from_grid*day_purchase_grid; 

else 

if(dayElectricityProduction>(ehubDayElectricityConsumption+learningDayElectricityConsumpti

on)) 

        elec_sold_to_grid = (dayElectricityProduction-

(ehubDayElectricityConsumption+learningDayElectricityConsumption)); 

        day_income=elec_sold_to_grid*day_sell_grid; 

        elec_sold_to_consumer=learningDayElectricityConsumption; 

        day_income = day_income+elec_sold_to_consumer*day_purchase_grid; 

    else 

        elec_sold_to_consumer=dayElectricityProduction-ehubDayElectricityConsumption; 

        day_income=elec_sold_to_consumer*day_purchase_grid; 

    end 

end 

%NIGHT 

    learningNightElectricityConsumption = 0; 

    ehubNightElectricityConsumption = 0; 

    night_expense=0; 
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    night_income=0; 

   for l=1:(daylimit-1) 

        learningNightElectricityConsumption = learningNightElectricityConsumption+ 

elec_demand(1,j); 

        ehubNightElectricityConsumption = ehubNightElectricityConsumption +elec_demand(2,j); 

    end 

  NightElectricityProduction = 0; 

  for m=1:Nb_generation 

        for n=1:(daylimit-1) 

            NightElectricityProduction=NightElectricityProduction + elec_produc(m,n); 

        end 

 end 

 if (NightElectricityProduction < ehubNightElectricityConsumption) 

        night_elec_bought_from_grid = ehubNightElectricityConsumption-

NightElectricityProduction; 

        night_expense=night_elec_bought_from_grid*night_purchase_grid; 

         

    else 

if(NightElectricityProduction>(ehubNightElectricityConsumption+learningNightElectricityConsu

mption)) 

            night_elec_sold_to_grid = NightElectricityProduction-

(ehubNightElectricityConsumption+learningNightElectricityConsumption); 

            night_income=night_elec_sold_to_grid*night_sell_grid; 

            night_elec_sold_to_consumer=learningNightElectricityConsumption; 

            night_income=night_income+ night_elec_sold_to_consumer*night_purchase_grid;       

        else 

            night_elec_sold_to_consumer=NightElectricityProduction-

ehubNightElectricityConsumption; 

            night_income=night_elec_sold_to_consumer*night_purchase_grid; 

        end 

    end 

 income =day_income+night_income; 

 expense=day_expense+night_expense;             
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end 

%********************************************************************** 

getTaxCost.m 

% function to calculate the tax incurred due to carbon production 

function [tax_cost] = getTaxCost(dailytotal_heatProduction, 

gas_fuel_source_index,genunit_efficiency,CRC_Naturalgas_conversionRate,CRC_taxrate) 

    tax_cost=0; 

    for g= 1:size(gas_fuel_source_index,2) 

        taxForGenUnit = (dailytotal_heatProduction(gas_fuel_source_index(g)) / 

genunit_efficiency(gas_fuel_source_index(g))) * (CRC_Naturalgas_conversionRate) / 1000* 

CRC_taxrate; 

        tax_cost = tax_cost + taxForGenUnit; 

    end 

end 

%************************************************************************* 

getGasAndPowerCosts.m 

% fucntion to calculate the cost of fuel(gas,biomass) and power incurred 

function 

[gasCost]=getGasAndPowerCosts(daily_total_heat_Production,gas_boiler_ind,gen_unit_eff,Ng

_price) 

% calculating gas cost of gas boilers 

gasCost=0; 

for g=1:(size(gas_boiler_ind,2)) 

    gasConsumption = daily_total_heat_Production(gas_boiler_ind(g)) / 

gen_unit_eff(gas_boiler_ind(g)); 

    gasCost = gasCost + Ng_price * gasConsumption; 

    end 

end 

%********************************************************************* 

getChpCost.m 

% this function is used calculate the cost of fuel used by CHP   

function [ChpCost]=getChpCost(daily_total_heat_Production,chp_ind,gasPrice,gen_unit_eff) 

    ChpCost=0; 
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    for g=1:size(chp_ind,2) 

    ChpCost = ChpCost+ gasPrice*(daily_total_heat_Production(chp_ind(g))/ 

gen_unit_eff(chp_ind(g))); 

    end 

end 

%********************************************************************** 

getBiomassCost.m 

% this function is used calculate the cost of biomass fuel used by biomass boilers   

function [bCost]=getBiomassCost(daily_total_heat_Production,biomass_ind,biomassPrice) 

        % calculating the biomass fuel cost 

        bCost=0; 

        for i=1:(size(biomass_ind,2)) 

            bCost = bCost + ( biomassPrice* (1 / 4.7)* daily_total_heat_Production(biomass_ind(i))); 

            % include the 1/4.8 factor in the parameters inverse of the net 

            %calorific value of biomass pellets 

        end 

    end 

%*********************************************************************** 

getOperationAndMaintenanceCosts.m 

% this function calculates the maintenance cost of the CHP 

function [omCost]= 

getOperationAndMaintenanceCosts(Chp_indixes,dailytotal_elec_Production, 

Chp_maintenance_rate) 

 omCost=0; 

for g=1:size(Chp_indixes,2) 

 maintenanceForGenUnit = 

dailytotal_elec_Production(Chp_indixes(g))*Chp_maintenance_rate; 

     omCost = omCost + maintenanceForGenUnit; 

end 

end 

%************************************************************************* 

getGHGEmission.m 
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%{ this function is used to calculate the total green house gas emissions from the production in 

the district. %} 

function [emissions]=getGHGEmission(heatProductionSch,no_generation_units, 

no_of_timeslots,specific_emissions, 

biomass_ind,daily_heatProductionArray,btrc,Bio_Calorific,gUnitEfficiencies,distToBiomassSup

plier)  

emissions = 0; 

for i=1:no_generation_units 

    for j=1:no_of_timeslots 

    emissions = emissions + (heatProductionSch(i,j)*specific_emissions(i)); 

    end 

end 

 %transport emissions 

for k=1:(size(biomass_ind,2)) 

x= btrc * distToBiomassSupplier * daily_heatProductionArray(biomass_ind(k)); 

y= Bio_Calorific * gUnitEfficiencies(biomass_ind(k)); 

emissions = emissions + (x/y)  ;               

end 

%************************************************************************* 

Min_difference.m 

function [ min_dif, cons] = 

min_difference(totalHeatDemand,dailytotal_heatProductionArray,heatProduction,heatDeman

d) 

%this fucntion returns the difference between the total heat produced and total heat demand. 

min_dif = abs(sum(totalHeatDemand)-sum(dailytotal_heatProductionArray)); 

hProduction = sum(heatProduction,1); 

hDemand = sum(heatDemand,1); 

for i=1:48 

    c(i)= hProduction(i)-hDemand(i); 

    disp('hProduction(i)') 

     disp(hProduction(i)) 

    disp('hDemand(i)')  

    disp(hDemand(i))  
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    disp('c(i)'); 

    disp(c(i)); 

    if (c(i)>=-1) 

        cons(i)=0; 

       disp(cons(i)) 

    else 

        cons(i)=abs(c(i)); 

        disp('no meet') 

        disp(cons(i)); 

    end 

end 

Optimisation using NSGA-II, and analytical model as cost function 

The following code was applied to run optimisation. 

opt = nsgaopt_modified(); % sets the options for the NSGA-II 

nsga2(opt); % calls the nsga2 function to start the optimisation process. Nsga2 file is adopted 

from (reference…) 

Optimisation was run using files from (Aravind Seshadri, 2006)22 

Nsgaopt_modified.m 

%this file assigns all the settings for the NSGA-II optimisation code.  

function defaultopt = nsgaopt_modified() 

order={'chp'; 'biomass'; 'gas'}; 

if (strcmp(order(1),'chp')) 

        for b=1:7 

        for c=1:48 

            if (b==1) 

                lb(b,c)=187.5; 

            elseif (b==2)||(b==3) 

                lb(b,c)=62; 

            else 

                                                 
22 https://uk.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii--a-multi-objective-
optimization-algorithm  

https://uk.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii--a-multi-objective-optimization-algorithm
https://uk.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii--a-multi-objective-optimization-algorithm


-294- 

 

                lb(b,c)=0; 

            end  

        end 

        end       

 end     

lb_tran=lb'; 

    lb= reshape(lb_tran,1,[]); 

if (strcmp(order(1),'chp')) 

        for b=1:7 

        for c=1:48 

            if (b==1) 

                ub(b,c)=201; 

            elseif (b==2)||(b==3) 

                ub(b,c)=247.5; 

            else 

                ub(b,c)=800; 

            end  

        end 

        end       

 end     

ub_tran=ub'; 

    ub= reshape(ub_tran,1,[]);  

defaultopt = struct(... 

... % Optimization model 

    'popsize',20,...           % population size 

    'maxGen', 10,...           % maximum generation 

    'numVar', 336,...             % number of design variables 

    'numObj', 2,...             % number of objectives 

    'numCons', 48,...            % number of constraints 

    'lb',lb,...                % lower bound of design variables [1:numVar] 

    'ub', ub,...                % upper bound of design variables [1:numVar] 

    'vartype', [],...           % variable data type [1:numVar]1=real, 2=integer 
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    'objfun', @eedistrict_function,...       % objective function 

... % Optimization model components' name 

    'nameObj',{{}},... 

    'nameVar',{{}},... 

    'nameCons',{{}},... 

... % Initialization and output 

...% ,oldresult,ngen} add this if you need initial population 

    'initfun', {{@initpop}},...         % population initialization function (use random number as 

default) 

    'outputfuns',{{@output2file}},...   % output function 

    'outputfile', 'populations.txt',... % output file name 

    'outputInterval', 1,...             % interval of output 

    'plotInterval', 1,...               % interval between two call of "plotnsga". 

... % Genetic algorithm operators 

    'crossover', {{'intermediate',2}},...         % crossover operator (Ratio=1.2) 

    'mutation', {{'gaussian',0.8,0.2}},...          % mutation operator (scale=0.1, shrink=0.5) 

    'crossoverFraction', 0.9, ...                 % crossover fraction of variables of an individual 

    'mutationFraction', 0.5, ...                   % mutation fraction of variables of an individual 

... % Algorithm parameters 

    'useParallel', 'yes',...                          % compute objective function of a population in parallel. 

{'yes','no'} 

    'poolsize',4,...                                % number of workers use by parallel computation, 0 = auto 

select. 

... % R-NSGA-II parameters 

    ...%'refPoints', [],...                              % Reference point(s) used to specify preference. Each 

row is a reference point. 

'refWeight', [0.5 0.5],...                              % weight factor used in the calculation of Euclidean 

distance 

'refUseNormDistance', 'no',...                % use normalized Euclidean distance by maximum and 

minumum objectives possiable. {'front','ever','no'} 

    'refEpsilon', 0.1 ...                          % parameter used in epsilon-based selection strategy 

); 

%************************************************************************** 

eedistrict_function.m (cost function) 
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% this function is the cost function which the nsga2 optimisation invokes. It is in an adapted 

version of the file presented earlier – eedistrict.m 

function [objectives,co] = eedistrict_function(h_vec)  

[heatProductionSchedule,padded] = vec2mat(h_vec,48); 

%*********************************************************************** 

%{ the .m files below initialises all the constants and the variables needed for the analytical 

model to run %} 

eedistrict_variables; 

eedistrict_constants; 

%******************************************************************* 

% reading 24-hour demand data for each building using “xlsread” function. 

heatDemand = xlsread('heat_demand.xls'); 

electricityDemand = xlsread('electricity_demand.xls'); 

%********************************************************************* 

% “total_demand” function is called to calculate the daily total heat energy and electricity 

energy demand %} 

[totalHeatDemand,totalElectricityDemand]=total_demand(heatDemand,electricityDemand);  

%********************************************************************* 

%Correction of schedules is shown below using function ‘correction_schedule’ 

[heatProductionSchedule]=correction_schedule(GenerationUnitLowerBounds_Kwh,Generatio

nUnitUpperBounds_Kwh,heatProductionSchedule,nbofTimeslots,nboftypes) 

%********************************************************************** 

%……….rest of the code is same as  shown in eedistrict.m earlier………………………………. 

end 

%********************************************************************** 

correction_schedule.m 

% this function makes sure that energy production sources which are not needed to meet the 

demand are turned off by changing the production schedule. 

function 

[heatProductionSchedule]=correction_schedule(GenerationUnitLowerBounds_Kwh,Generatio

nUnitUpperBounds_Kwh,heatProductionSchedule,nbofTimeslots,nboftypes,newDemand) 

productionType= [1 0 0 0;2 3 0 0; 4 5 6 7]; 

m=size(productionType); 

productionType_row=m(1); 

productionType_column=m(2); 
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j=1; 

type_sum =zeros(nboftypes,nbofTimeslots); 

disp('newDemand') 

 for g=1:nbofTimeslots 

    for i=1:productionType_row 

        for k=1:productionType_column 

            if(productionType(i,k)~=0) 

                type_sum(i,g)=type_sum(i,g)+heatProductionSchedule(productionType(i,k),g); 

            end 

          %  k=k+1; 

        end 

        %i=i+1; 

    end 

   %g=g+1; 

 end 

for m=1:nbofTimeslots 

    n=1; 

    while (n<=productionType_row) 

        if (newDemand(m)>0) 

            if(newDemand(m)> type_sum(n,m)) 

                newDemand(m)= newDemand(m)- type_sum(n,m); 

            elseif(newDemand(m)<= type_sum(n,m)) 

                type_sum(n,m)= newDemand(m); 

                newDemand(m)=0; 

            else 

                newDemand(m)=0; 

            end 

        else 

            type_sum(n,m)=0; 

        end 

        n=n+1; 

    end 
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end 

for l=1:nbofTimeslots 

    for i=1:productionType_row 

        j=1; 

        flag=1; 

        availability=1; 

        while(flag==1) 

            if((productionType(i,j)~=0)) 

                while ( type_sum(i,l) >0&&availability==1) 

                    if(type_sum(i,l)>= GenerationUnitUpperBounds_Kwh(productionType(i,j))) 

                        

heatProductionSchedule(productionType(i,j),l)=GenerationUnitUpperBounds_Kwh(production

Type(i,j)); 

                        type_sum(i,l)=type_sum(i,l)-

GenerationUnitUpperBounds_Kwh(productionType(i,j)); 

                         

                    else if(type_sum(i,l)<=GenerationUnitLowerBounds_Kwh(productionType(i,j))) 

                            

heatProductionSchedule(productionType(i,j),l)=GenerationUnitLowerBounds_Kwh(production

Type(i,j)); 

                            type_sum(i,l)=0; 

                        else 

                            heatProductionSchedule(productionType(i,j),l)=type_sum(i,l); 

                            type_sum(i,l)=0; 

                        end 

                    end 

                    j=j+1; 

                    if(j<=productionType_column) 

                   

                        if((productionType(i,j)==0)) 

                            availability=0; 

                        else 

                            availability=1; 

                        end 
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                    end 

                end 

                if (j<=productionType_column) 

                    if((productionType(i,j)~=0)) 

                        heatProductionSchedule(productionType(i,j),l)=0; 

                    end 

                end 

            end 

            j=j+1; 

            if(j>productionType_column) 

                flag=0; 

            end 

        end 

       end 

    end 

disp('new heat production'); 

disp (heatProductionSchedule); 

%******************************************************************* 

The following code presented in this appendix is detailed code. A simplified version of 

this code is also produced to combine the same type of energy sources into one which is 

not presented in this thesis. 


