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Abstract: 1 

 2 

BACKGROUND: The selective conversion of cellulose to gluconic acid under mild 3 

conditions is challenging as it has abundant intra-and inter-molecular hydrogen bonds 4 

that protect the β-1,4-glycosidic bonds and make it intrinsically recalcitrant to 5 

deploymerize. 6 

RESULTS: Au-Pd/TiO2 and Au-Pt/TiO2 catalysts prepared by sol immobilization 7 

method without pre-treatment are active and selective for the oxidation of glucose and 8 

cellobiose to gluconic acid under base-free conditions. Important preparation 9 

parameters are the pre-treatment of the catalyst and the metal ratio.  10 

CONCLUSION: The optimized catalyst provided a good yield of gluconic acid from 11 

cellobiose and has opened up a new catalyst system for cellobiose conversion in terms 12 

of a heterogeneous catalyst.  13 

 14 
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Background 1 

 2 

An efficient utilization of cellulosic biomass, an abundant and renewable resource in 3 

nature, has long been the focus of research and development efforts, with the aim to 4 

compete with and replace petroleum-based products.1, 2 Recently, there have been 5 

several studies into the conversion of lignocellulosic materials into fuels and chemicals 6 

using various processes.3-10 Unfortunately, the production of fuels from cellulose has 7 

a lower efficiency in terms of atom economy due to cellulose having a relatively high 8 

oxygen to carbon (O/C) ratio. Fuels usually possess a much lower O/C ratio, excess 9 

oxygen must be removed when cellulose is transformed into fuels.11, 12 By contrast, 10 

transforming cellulose into oxygenates, such as gluconic acids, via glucose oxidation 11 

(through cellulose hydrolysis), which are widely used in the pharmaceutical and food 12 

industries, has been proven to be a highly atom-economic reaction as most of the 13 

oxygen-functional groups in the cellulose are preserved in the target products.1, 13-16 14 

Additionally, air can be used as an oxidant, which significantly reduces the processing 15 

cost compared with the hydrotreating processes. Unfortunately, the selective 16 

conversion of cellulose to gluconic acid under mild conditions still remains a large 17 

challenge as it has abundant intra-and inter-molecular hydrogen bonds that protect the 18 

β-1,4-glycosidic bonds and make it intrinsically recalcitrant to deploymerize.17 To 19 

overcome this problem, either ionic liquids are used as the solvent (for example 1-20 

butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium 21 

chloride etc.), due to their special abilities to dissolve cellulose, or alternatively 22 
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reactions are run under extreme conditions (>100 oC, longer reaction times up to 18 1 

hours).18 However, the high cost and the toxicity of ionic liquids both increase the cost 2 

and are not environmental friendly. The extreme reaction conditions used during 3 

cellulose degradation are also not a good choice due to the low stability of gluconic 4 

acid at high temperatures. So far, there are no studies reported on the direct conversion 5 

of cellulose into gluconic acid.  6 

Cellobiose, a D-glucose dimer connected by the same β-1,4-glycosidic linkage as that 7 

in cellulose, is the basic repeating structural unit as well as the simplest model 8 

molecule of cellulose although there are some structural differences between cellulose 9 

and cellubiose. Studies on the conversion of cellobiose may provide important clues 10 

for the rational design of efficient catalysts for cellulose transformations. Moreover, 11 

the insights obtained from cellobiose conversions could also be useful for 12 

transformations of the soluble oligosaccharides. However, only a few reports have 13 

attempted to examine the possibility of the conversion of cellobiose to gluconic acid 14 

by heterogeneous catalytic oxidation in an aqueous medium without pH adjustment.19-15 

23 Jason et al24 reported hybrid mesoporous catalysts as an efficient catalytic system 16 

for the hydrolysis of cellubiose with activation energies comparable with the 17 

homogeneous catalysts. They found out that the hydrolysis reaction was catalyzed by 18 

hydrated protons. Tan et al. reported that cellobiose can be directly converted into 19 

gluconic acid over a Au/TiO2 catalyst at 145 oC under 0.5 MPa O2, 68% yield of 20 

gluconic acid was obtained after 3 h.19 Later, Zhang et al. examined the conversion of 21 

cellobiose over gold nanoparticles with various supports.20 It was found that insoluble 22 
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substituted polyoxometalate (Cs2HPW12O40) was the best support for the synthesis of 1 

gluconic acid in aqueous medium, with cellobiose conversion of 97.5% and gluconic 2 

acid selectivity of 98.9% at a reaction time of 3 h.20 An et al. found that Au supported 3 

on CsxH3-xPW12O40 (x=1.2, 1.7, and 2.2) exhibited full conversion of cellobiose with 4 

over 95% selectivity of gluconic acid after 3 h at 145 oC.21 Amaniampong et al. 5 

revealed that cellobiose can be converted to gluconic acid over a Au/TiO2 catalyst at 6 

145 oC under 0.5 MPa O2 with selectivity greater than 70 %.22 This group further 7 

investigated the conversion of cellobiose over supported Au-M (M=Cu, Co, Ru and 8 

Pd) bimetallic catalysts and a complete conversion of cellobiose with a gluconic acid 9 

selectivity of 88.5% at 145 oC within 3 h was obtained for reactions performed over 10 

Cu-Au/TiO2 catalyst.23 Onda et al25 showed Pt/sulphonated carbon as an active and 11 

selective catalyst for the conversion of cellubiose into glucnic acid when air was used 12 

as an oxidant. Recently, Au supported on carbon xerogel has been reported to be an 13 

active catalyst for the direct conversion of cellubiose into gluconic acid.26 where 14 

mesoporous carbon decorated with the phenolic groups showed 80% selectivity to 15 

gluconic acid after 75 minutes of reaction.  16 

Synthesis of gluconic acid from glucose is usually performed under a strict control of 54 

pH. There are a number of reports of heterogeneous catalysts, including supported Pd, 55 

Pt, Pt, and Au nanoparticles.27-29 where pH control is reported to be crucial in order to 56 

obtain high rates of glucose conversion and this is achieved by the addition of a 57 

sacrificial base, usually sodium hydroxide.30, 31 Therefore, from the viewpoint of green 58 

chemistry, there is a need to develop heterogeneous catalysts that can catalyse the 59 
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oxidation of glucose under base-free conditions. 1 

In our previous work, we found that the catalyst preparation method had a crucial 2 

influence on the catalytic activity of supported Au catalysts for base-free glucose 3 

oxidation and the sol-immobilization was found to be the best method.32 Additionally, 4 

both the pretreatment of catalysts and the ratio of polyvinyl alcohol (PVA) to metal 5 

(wt/wt) are also important parameters with respect to both the activity and selectivity 6 

in the oxidation of glucose to gluconic acid. It is believed that bimetallic catalysts 7 

normally exhibit better catalytic activity in comparison with pure metals because the 8 

interaction between the two metals can modify the surface and electronic properties of 9 

the catalysts. In addition, almost all of the literature reported above suggests that the 10 

direct conversion of cellubiose into glucnic acid requires bi-functional catalysts which 11 

not only perform cascade type of reactions in one pot but also improve the product 12 

selectivity and overall activity of the catalytic system. Therefore, we anticipated that 13 

the use of bimetallic catalysts based on gold where the secondary metal could improve 14 

both the initial degradation of cellubiose and the further oxidation would be beneficial. 15 

iIn this work, gold based bimetallic catalysts (Au-Pd, Au-Pt) were employed in glucose 16 

and cellobiose oxidation to gluconic acid in an aqueous medium without pH control.  17 

Experimental methods 18 

Catalyst preparation 19 

All of the catalysts were prepared by using the Sol-immobilization method as reported 20 

previously.33 In a typical synthesis aqueous solutions of HAuCl4·3H2O (Sigma-Aldrich, 21 

11.5 mg L−1), PdCl2 (Sigma-Aldrich, 10 mg L−1), H2PtCl6·6H2O (Sigma-Aldrich, 10 22 
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mg L−1), polyvinylalcohol (PVA) (1 wt%, Aldrich, Mw = 10000, 80% hydrolyzed) and 1 

NaBH4 (0.1 M) were prepared. The requisite amount of a PVA solution was added to 2 

the metal precursor solution (diluted to 400 cm3g-1catalyst). A freshly prepared 3 

solution of NaBH4 was then added to form a dark-brown sol. After 30 min of sol 4 

generation, the colloid was immobilized by adding TiO2 (Degussa P25). A small 5 

amount of H2SO4 was added under vigorous stirring to attain a pH of 1–2. After 2 h, 6 

the slurry was filtered, and the catalyst was washed thoroughly with distilled water (2 7 

L) until the filtrate was neutral and then dried at (110 °C, 16 h, static air). The catalysts 8 

are labeled as x%Au–y%Pt (or Pd)/TiO2, in which x and y stand for the nominal weight 9 

loading of Au and Pt (or Pd), respectively. 10 

 11 

Catalyst post-synthesis treatment 12 

a. Reflux method.  13 

The dried catalyst was refluxed with hot water following the method described 14 

previously.34 Typically, catalyst (1 g) was refluxed at 90 °C in water (150 mL) with 15 

stirring (1000 rpm for 60 min). The catalyst was recovered by filtration and washed 16 

with distilled water (2 L) and dried (110 °C, 16 h). 17 

b. Heat treatment.  18 

Calcination was performed on the dried catalyst in static air at 250 °C for 3 h. 19 

Characterization 20 

X-ray photoelectron spectroscopy (XPS) was performed on a Kratos Axis Ultra DLD 21 

spectrometer, utilizing monochromatic Al radiation operating at 144 W (12 ma x 12 22 
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kV). Charge neutralization was performed using an magnetic immersion lens system 1 

and the subsequent spectra calibrated to the C(1s) line of carbon taken to be 284.8 eV.  2 

All data was analyzed using CasaXPS utilizing atomic sensitivity factors supplied by 3 

the manufacturer. 4 

Powder X-ray diffraction (XRD) patterns were recorded using a Panalytical X'pert Pro 5 

diffractometer using Ni filtered CuKα radiation (operating at 40 kV, 40 mA). Scans 6 

were in the range of 10–80° 2θ. 7 

Transmission electron microscopy (TEM) was carried out using a Jeol 2100 with a 8 

LaB6 filament operating at 2000 kV. Samples were prepared by dispersing the powder 9 

catalyst in ethanol and dropping the suspension onto a lacey carbon film over a 300 10 

mesh copper grid. Particle counts were based on 300 particles.  11 

Oxidation reactions  12 

Reactions were carried out using a low pressure Colliver glass reactor (50 ml). Glucose 13 

or cellobiose (0.20 g), catalyst (0.05 g) and water (20 g) were added into the reactor, 14 

which was then purged with oxygen three times before the reactor was sealed and 15 

pressurized with oxygen (3 bar). The reaction mixture was heated to 160 °C for 1 h 16 

under constant stirring (1000 rpm), then cooled to room temperature. The products 17 

were analyzed by HPLC using an Agilent 1200 fitted with a metacarb 67H column, 18 

and UV and RI detectors. 19 

All of the catalytic tests were repeated at least three times and the data were found to 20 

be within an experimental error of 1-3%.  21 

 22 
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Results and discussion 1 

Effect of the catalyst post-synthesis treatment on the base-free oxidation of glucose 2 

 3 

According to our previous work, the post-synthesis treatment for 1%Au/TiO2 catalysts 4 

had a significant effect on the catalyst performance.26 Therefore, the effect of post-5 

treatment procedures on bimetallic Au-M (M = Pd, Pt) catalysts were investigated for 6 

the base free oxidation of glucose and the data is shown in Table 1. It can be seen from 7 

Table 1 that the calcined Au-Pd/TiO2 catalyst exhibited 70.3% glucose conversion 8 

while the dried catalyst, without further calcination, showed lower glucose conversion 9 

(65.1%). Furthermore, the refluxed catalyst showed a very low conversion and 10 

subsequently lower yield of gluconic acid. Interestingly the Au-Pt/TiO2 showed a 11 

slightly different trend with the highest activity and selectivity for the untreated 12 

catalyst, the lowest activity was again observed with the refluxed catalyst. It is 13 

important to mention that trace amounts of fructose, glycolic acid and 5-14 

hydroxymethyl furfural (5-HMF) were also observed with all of these catalysts. No 15 

other byproducts were observed and carbon balance was always 95-100%. This leads 16 

us to think that interaction between the substrate and the PVA ligand may play an 17 

important role in the reaction, an effect which has been reported previously by Pratti 18 

and co-workers.35  19 

For all samples (Au-Pd and Au-Pt), XPS analysis revealed all metals to be in their 20 

metallic state, exemplified by binding energies of 83.1 (Au(4f7/2), 334.7 (Pd(3d5/2)) 21 

and 70.3 eV (Pt(4f7/2)). For the Au-Pd systems, the Au/Pd ratio was 0.62 for the dried 22 
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samples, decreasing slightly to 0.59 for the calcined sample, although the presence of 1 

a small amount of Pd(II) species is now also evident, whilst the refluxed sample is 2 

dominated by Au as evidenced by a Au/Pd ratio of 12 (Supplementary Information – 3 

Table S1). This suggests that the increase in Pd(II) may be beneficial to the catalytic 4 

system however the reflux treatment leads to an increase in the apparent gold loading 5 

which would suggest a redistribution of the metals, either increasing the dispersion of 6 

gold or reducing the distribution of palladium. In comparison, the Au-Pt system almost 7 

identical Au/Pt ratios of 1.31 and 1.28 for the fresh and calcined samples respectively 8 

were observed, whereas the refluxed sample exhibited a Au-Pt ratio of 1.65 indicating 9 

an increase in the Au content. For both these catalysts it seems clear that an increase 10 

in the surface gold content is detrimental to the catalyst activity suggesting the role of 11 

the secondary metal is important for this reaction.  12 

The XRD pattern of the bimetallic catalysts are shown in Figure 1. Typically all of 13 

these catalysts showed reflections of pure titania (P25). No phases related with Au, Pd 14 

and Pt could be identified which was either due to a very small particle size (less than 15 

5 nm) or a homogeneous dispersion of the metals on the titania surface. This also 16 

supports the XPS data, specifically, that the increase in apparent gold content is not 17 

due to agglomeration of the palladium/platinum particles. 18 

 19 

The above comparison of catalytic data in Table 1 showed that the untreated Au-Pt 20 

catalyst showed much higher activity and selectivity than the Au-Pd catalyst. 21 

Therefore, we chose the Au-Pt catalyst system to study further variation of preparation 22 
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parameters.  1 

Effect of the PVA to metal ratio on base-free oxidation of glucose 2 

The amount of stabilizing agent (PVA) can affect the catalytic activity by controlling 3 

the number of exposed active sites as well as the metal particle size. The balance 4 

between ligand interaction and number of exposed sites has been discussed previously 5 

by Prati and co-workers,35 we have previously shown that increasing the amount of 6 

PVA on the catalyst leads to a decrease in activity,36 therefore, we prepared various 7 

catalysts by varying the amount of PVA to metal ratio in the range of 0 to 1.2 in order 8 

to find a balance between ligand shielding effect and the size of metal particles. The 9 

prepared catalysts did not go through any post synthesis treatment other than a drying 10 

step at 110 °C overnight. All the catalysts were tested for glucose oxidation under 11 

standard reaction conditions and the data is presented in Table 2.  12 

An analysis of data showed that there was an increase in both catalytic activity and 13 

selectivity of gluconic acid with an increase in PVA to metal ratio. The catalyst 14 

synthesized with the highest ratio of PVA to metal (1.2) showed the highest conversion 15 

of glucose (80%) and also the highest yield of gluconic acid was observed. We also 16 

observed some side products mainly glucaric acid and glycolic acid along with a traces 17 

amount of fructose and 5-HMF.  18 

 19 

XPS of the catalysts prepared with increasing PVA to metal ratio showed an initial 20 

decrease in the Au/Pt ratio from 2.34 (no PVA) to 1.35 (0.1 PVA) which would suggest 21 

a decrease in metal particle size. For higher PVA/metal ratios the Au/Pt metal ratio 22 
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varies only slightly, (1.36 and 1.40 respectively) which is within confidence limits. 1 

The detailed analysis data are provided in Supplementary Information Table S2.  2 

 3 

The XRD patterns of the Au-Pt catalysts prepared by variation of PVA to metal ratio 4 

are shown in Figure 2, again there were no reflections related to Au and Pt. All of the 5 

catalysts presented typical pattern of titania indicating a very small particle size or a 6 

homogeneous dispersion of metals on the surface. As there were no reflections related 7 

to the metals observable in the XRD we carried out TEM analysis on the catalyst with 8 

the varying metal to PVA ratio to get an indication of the particle size distribution. 9 

Representative images of the different catalysts along with their associated particle 10 

size distributions are shown in Figure 3. All the catalysts had an average particle size 11 

that was below what we would expect to be able to observe by XRD. It is clear that 12 

the use of PVA results in a smaller average particle size, when no PVA is used (Figure 13 

3a) the average particle size is 3.67 nm, compared with our standard ratio (1.2, figure 14 

3d) which has an average particle size of 1.6 nm. The use of PVA also leads to a much 15 

narrower spread of the particle size as indicated by the reduction in the standard 16 

deviation from 2.71, with no PVA, to 0.62 for the 1.2 ratio catalyst. The catalysts 17 

prepared with PVA:metal ratios in between these have average particles sizes and 18 

standard deviations that are between those of the 0 PVA and 1.2 PVA samples. The 19 

activity of the catalyst correlates inversely with the average particle size, the smaller 20 

the average particle the more active the catalyst is. This suggests that the particle size 21 

is a significant factor that affects the activity of the catalyst.  22 
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Generally, it is considered that the activity is a compromise between the particle size 1 

of the metal and the shielding effect of the PVA ligand.37 However in the case of these 2 

catalysts the shielding effect did not seem to contribute, either because the maximum 3 

amount of PVA used in these catalyst preparations was below the amount required to 4 

cause this effect, there is good diffusion of the glucose through the PVA layer or the 5 

PVA is removed under reactions conditions, an effect that we have reported previously. 6 

38 From this analysis we conclude that the metal particle size is the key factor for the 7 

conversion of glucose. 8 

 9 

Effect of the metal loading 10 

 11 

After identification of the optimum conditions for sol immobilization preparation we 12 

varied the amount of Au and Pt metals. Various catalysts with different Au and Pt 13 

loadings in the range of 0.5 to 2.5% were prepared by the sol immobilization method. 14 

PVA to metals ratio was kept constant at the optimum 1.2 ratio and the catalysts did 15 

not go through any post-synthesis treatment. All of the catalysts were tested for glucose 16 

oxidation and the data is presented in Table 3.  17 

The catalytic data showed that the catalysts prepared with the lowest amounts of both 18 

metals showed a relatively low activity and a correspondingly lower yield of gluconic 19 

acid. An increase in amount of metals from 0.5% (total) to 1% (total) increased both 20 

the activity and selectivity and a further increase in the amount of metals to 2% fully 21 

converted glucose into ~90% gluconic acid yield. A further increase in the amount of 22 
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metals to 5% (total) also showed a full conversion with a similar yield of gluconic acid. 1 

Glucaric acid, glycolic acid and fructose were produced in very small amounts. 2 

Analysis of the different loadings by XPS (Supplementary Information Table S3) 3 

reveal metallic components as expected based on the results discussed earlier, however 4 

both low (0.25Au 0.5Pt) and high (2.5Au 2.5Pt) have a higher apparent Au content, 5 

exhibiting Au/Pt ratios of 2.49 and 3.35, whilst the 0.5 and 1 wt% loadings yield 6 

substantially lower ratios (1.42 and 1.12 respectively). 7 

The XRD patterns of the Au-Pt catalysts prepared with the variation of metal ratios are 8 

shown in Figure 4. Irrespective of the amount of metals no reflections associated with 9 

Au or Pt was observed. A typical XRD pattern of P25 TiO2 was apparent. However, 10 

one phase of rutile titania (110) at 27.1° angle39 disappeared when the amount of metals 11 

was increased from 1.0 to 2%.  12 

The differences of activity between the catalysts could be attributed to the loading of 13 

the metals, however if the the totalamount of metal loading in the reaction is 14 

standardizedin the reaction would be higher by calculating activity per unit metal,  the 15 

lower loaded catalysts prove to be more active. This suggests that as the metal loading 16 

increases the amount of the metal that acts as spectator species increases.when 17 

considered in terms of activity per unit metal, a This cas can be seen by the turn over 18 

frequencies (TOFs) reported in table 3.  19 

 20 

TEM analysis was carried out on these catalysts to see if there was a relationship 21 

between the particle size and the total metal loading. The results are shown in Figure 22 
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5, the difference between the particle size of the first 3 loadings is relatively small 1 

(Figure 5a-c), 1.74-2.10 nm, once the loading gets higher there is a significant increase 2 

in the average size to 3.64 nm. This suggests that the particle size is determined at the 3 

formation of the sol stage until a point where the relative concentration of the metals 4 

on the support surface is sufficient for particle agglomeration to occur. There is 5 

evidence of particle agglomeration visible in figure 5d. Overall, the TEM does not 6 

show a correlation between particle size and activity, which suggests that the 7 

differences in observed activity observed are related to the total metal loading of the 8 

catalyst. . 9 

Further to this we used 1%Au-1%Pt/TiO2 catalyst for the oxidation of cellobiose and 10 

cellulose. The catalyst was prepared by sol immobilization method and it went through 11 

no post-synthesis treatment. The ratio between PVA and metals was 1.2. The activity 12 

data is shown in Table 4.  13 

 14 

From the oxidation data it is clear that cellulose showed a very low conversion and no 15 

gluconic acid was observed. The products detected were mainly in the region where 16 

we would expect to see polymers. 5.7% yield of cellupentose was also observed. 17 

Cellobiose showed higher conversion and 15% yield of gluconic acid with glucose 18 

observed as a side product. Cellobiose consists of two glucose units so the 15% yield 19 

of glucose could only be a breakdown of cellobiose followed by oxidation into 20 

gluconic acid. Side products from cellobiose oxidation were glucaric acid, and glycolic 21 

acid. From this data the Au-Pt/TiO2 catalyst showed a promising activity for the 22 
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conversion of cellobiose. Therefore, in next step we varied the temperature of reaction 1 

and the data is presented in Table 5.  2 

An increase in temperature from 130 to 140 °C showed an increase in conversion from 3 

31.6 to 51.5% and gluconic acid yield also increased from 6.5 to 20.5%. Further 4 

increase in the temperature to 150 °C showed no change in conversion but the yield of 5 

gluconic acid increased from 20.5% to 28%. Interestingly another increase up to 6 

160 °C decreased the conversion by 10% and also the gluconic acid yield was 7 

decreased to almost half. This decline in activity and selectivity with an increase in 8 

temperature can be linked with the deposition of carbon species or polymers on the 9 

catalyst surface at high temperature which could be responsible for a lower number of 10 

active sites. Similarly to the other reactions, the side products were glycolic acid and 11 

glucaric acid.  12 

Subsequently we performed a variation of reaction time for cellobiose oxidation with 13 

1%Au-1%Pt/TiO2 catalyst at 150 °C and the activity data is presented in Table 6. An 14 

increase in reaction time from 1 hour to 2 hours showed a significant increase in 15 

conversion from 51 to 65% and the gluconic acid yield increased from 28 to 42%. A 16 

further increase in reaction time to 3 hours increased both the conversion (74%) and 17 

gluconic acid yield (59%). Small amounts of glycolic acid and glucaric acid were also 18 

observed as side products.  19 

Finally we varied the amount of cellobiose (substrate) within a range of 0.10-0.30 g 20 

using the 1%Au-1%Pt catalyst and the activity data are presented in Table 7. A 21 

decrease in conversion was observed with an increase in amount of the substrate from 22 
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0.10 to 0.20g but a volcano type trend was observed in gluconic acid yield. This 1 

suggests that product inhibition may be a problem in these reactions, with a minor, 2 

difficult to detect, impurity formed when there is sufficient substrate, which cause 3 

deactivation of the catalyst.   4 

 5 

Conclusions 6 

We have reported that Au-Pd/TiO2 and Au-Pt/TiO2 catalysts prepared by sol 7 

immobilization method without pre-treatment are active and selective for the oxidation 8 

of glucose to gluconic acid under base-free conditions. Au-Pt/TiO2 catalysts exhibited 9 

higher activity and yield of gluconic acid. The activity can be improved by tuning the 10 

pretreatment of catalysts and PVA to metal ratio, and these preparation parameters have 11 

a significant effect on the metal particle size. The optimized catalyst provided a 12 

reasonable yield of gluconic acid from cellobiose and has opened up a new catalyst 13 

system for cellobiose conversion in terms of a heterogeneous catalyst.  14 

 15 
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Table 1. Effect of post-synthesis treatments on bimetallic Au- M (M = Pd, Pt) 1 

catalysts for glucose oxidation 2 

Catalyst Post-

synthesis 

treatment 

Conversion (%) Yield (%) TOF 

(mol(glucose)/

mol(metal)/h 

   Gluconic 

acid 

Fructose  

0.5%Au-

0.5%Pd/TiO2 

no 65.1 59.9 0.6 99.9 

0.5%Au-

0.5%Pd/TiO2 

air 70.3 63.3 0.9 10.8 

0.5%Au-

0.5%Pd/TiO2 

reflux 48.0 40.5 2.7 73.6 

0.5%Au-

0.5%Pt/TiO2 

no 80.0 70.2 1.8 174.1 

0.5%Au-

0.5%Pt/TiO2 

air 68.0 62.7 0.8 148.0 

0.5%Au-

0.5%Pt/TiO2 

reflux 71.2 65.6 1.2 155.0 

Reaction conditions: glucose 0.20 g, water 20.0 g, catalyst 0.05 g, reaction 3 

temperature 160 °C, reaction time 1h, O2 3 bar. 4 

5 
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Table 2. Effect of the ratio of PVA to metal on 0.5%Au-0.5%Pt/TiO2 catalysts 1 

for glucose oxidation 2 

PVA/ metals 

(w/w) 

Conversion 

(%) 

Yield (%) 

  Gluconic acid Glucaric acid Glycolic acid 

0 63.2 50.9 2.0 0.5 

0.1 74.5 67.5 2.0 0.5 

0.6 72.5 68.1 1.0 0.2 

1.2 80.0 70.2 1.8 0.3 

Reaction conditions: glucose 0.20 g, water 20.0 g, catalyst 0.05 g, reaction 3 

temperature 160 oC, reaction time 1h, O2 3 bar. 4 

5 
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Table 3.Effect of Au and Pt loading for glucose oxidation 1 

Au-Pt 

(%)/TiO2 

Conversion 

(%) 

Yield (%) TOF 

(mol(glucose)/

mol(metal)/h 

  Gluconic 

acid 

Glucaric 

acid 

Glyolic 

acid 

 

0.25 - 0.25 45.0 39.2 trace trace 195.8 

0.50 - 0.50 80.0 70.2 1.8 trace 174.1 

1.0 – 1.0 100 88.9 3.4 0.7 108.8 

2.5 - 2.5 100 88.6 3.6 0.6 43.5 

Reaction conditions: glucose 0.20 g, water 20.0 g, catalyst 0.05 g, reaction 2 

temperature 160 °C, reaction time 1h, O2 3 bar. 3 

4 
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Table 4. Catalytic activity of 1%Au-1%Pt/TiO2 with different substrates 1 

Substrate Conversion 

(%) 

Yield (%) 

  Gluconic 

acid 

Glucaric acid Glucose 

Glucose 100 88.9 3.4 - 

Cellobiose 40.3 14.5 1.4 15.6 

α-Cellulose 17.4 no no trace 

Reaction conditions: reactant 0.20 g, water 20.0 g, catalyst 0.05 g, reaction 2 

temperature 160 °C, reaction time 1h, O2 3 bar. 3 

  4 
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Table 5. Effect of the reaction temperature for cellobiose oxidation 1 

Reaction 

T (°C)  

Conversion 

(%) 

Yield (%) 

  Gluconic 

acid  

Glucose  Glucaric 

acid 

130 31.6 6.5 1.7 3.4 

140 51.7 20.5 Trace 7.0 

150 51.6 27.9 Trace 4.6 

160 40.3 14.5 15.6 1.4 

Reaction conditions: Cellobiose 0.20 g, water 20.0 g, catalyst 0.05 g, reaction time 2 

1h, O2 3 bar. 3 

  4 
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Table 6. Effect of the reaction time for cellobiose oxidation 1 

Reaction 

time (h)  

Conversion 

(%) 

Yield (%) 

  Gluconic acid  Glycolic 

acid  

Glucaric acid 

1 51.6 27.9 1.2 4.6 

2 65.0 42.3 1.4 4.4 

3 73.8 59.0 1.4 2.9 

Reaction conditions: cellobiose 0.20 g, water 20.0 g, catalyst 0.05 g, reaction 2 

temperature 150 °C, O2 3 bar. 3 

4 
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Table 7. Effect of cellobiose amount on 1%Au-1%Pt/TiO2 (1.2 PVA:metal) catalyst 1 

Cellobiose 

amount  

Conversion 

(%) 

Yield (%) 

  Gluconic 

acid  

Glycolic 

acid  

Glucaric 

acid 

0.10 90 47.0 4.3 12.8 

0.20 73.8 59.0 1.4 2.9 

0.30 74.9 44.4 1.6 2.8 

 2 

3 
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 1 

Figure 1. XRD patterns of bimetallic catalysts with post-synthesis treatment. 2 

A. Au-Pd – no treatment, B. Au-Pd – calcined, C. Au-Pd – refluxed, D. Au-Pt 3 

– no treatment, E. Au-Pt – calcined, F. Au-Pt – refluxed. 4 
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 1 

Figure 2. XRD pattern of catalysts prepared with the variation of PVA to metal 2 

ratio 3 
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 1 

Figure 3. TEM images and associated PSDs for 1%AuPt/TiO2 catalysts 2 

prepared with different metal:PVA:metal ratios. a) 0; b) 0.1; c) 0.6; d) 1.2.  3 
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 1 

 2 

Figure 4. XRD patterns of Au-Pt/TiO2 catalysts prepared with the carrying 3 

ratio.  4 
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 1 

Figure 5. TEM images and associated PSDs for AuPt catalysts prepared with 2 

different metal loadings. a) 0.25-0.25; b) 0.5-0.5; c) 1-1; d) 2.5-2.5.  3 


