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Abstract 30 

Background: In psychosis, white matter (WM) microstructural changes have been 31 

detected previously; however, direct comparisons of findings between bipolar (BD) and 32 

schizophrenia (SZ) patients are scarce. In this study, we employed deterministic 33 

tractography to reconstruct WM tracts in BD and SZ patients.  34 

Methods: Diffusion tensor imaging (DTI) data was carried out with n = 32 euthymic BD 35 

type I patients, n = 26 SZ patients and 30 matched healthy controls. Deterministic 36 

tractography using multiple indices of diffusion (fractional anisotropy (FA), tract volume 37 

(Vol), tract length (Le) and number of tracts (NofT)) were obtained from the fornix, the 38 

cingulum, the anterior thalamic radiation, and the corpus callosum bilaterally.  39 

Results: We showed widespread WM microstructural changes in SZ, and changes in the 40 

corpus callosum, the left cingulum and the fornix in BD. Fornix fiber tracking scores were 41 

associated with cognitive performance in SZ, and with age and age at disease onset in the 42 

BD patient group.  43 

Limitations: Although the influence of psychopharmacological drugs as biasing variables 44 

on morphological alterations has been discussed for SZ and BD, we did not observe a clear 45 

influence of drug exposure on our findings. 46 

Conclusions: These results confirm the assumption that SZ patients have more severe 47 

WM changes than BD patients. The findings also suggest a major role of WM changes in 48 

the fornix as important fronto-limbic connections in the etiology of cognitive symptoms 49 

in SZ, but not in BD.   50 

51 

52 

53 

54 
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1. Introduction 55 

The last two decades have witnessed a large development of non-invasive techniques 56 

approaching structural brain changes with new frameworks for studying the cerebral 57 

activity (Hagmann et al., 2012). In psychiatry, potential morphological abnormalities have 58 

been assessed using voxel-based morphometry (VBM) for density or volume and diffusion 59 

tensor imaging (DTI) for white matter (WM) microstructure. However, previous DTI 60 

techniques are limited to identify crossing fibers (Emsell et al., 2013) or in localizing 61 

alterations to specific tracts (i.e., fornix bundles) (McIntosh et al., 2005). In order to 62 

overcome these limitations, a newer method, the DTI-tractography, has been developed 63 

and applied in a variety of psychiatric disorders (Behrens and Jbabdi, 2009). This 64 

approach allows a non-invasive three-dimensional visualization and in vivo identification 65 

of fiber tracts (Basser et al., 2000), thus enabling the white matter (WM) bundle 66 

reconstruction typically found in post mortem analysis (Catani et al., 2002a). DTI 67 

tractography is based on the likelihood of fiber connectivity between voxels and the 68 

preferred water movement (diffusion) in the surrounding voxels (Mori and van Zijl, 69 

2002). The technique may be either global or local, probabilistic or deterministic 70 

(Behrens and Jbabdi, 2009). Probabilistic tractography requires a model of the 71 

uncertainty of each fiber orientation estimate (Seunarine and Alexander, 2009). 72 

Conversely, deterministic tractography relies on the streamline tractography principles 73 

to exploit multiple fibers in each voxel (Behrens and Jbabdi, 2009; Catani et al., 2002b) 74 

and has been successfully deployed to isolate and visualized many different WM pathways 75 

(Behrens and Jbabdi, 2009).  76 

 One major goal of recent structural imaging studies is to identify similarities and 77 

differences in neural mechanisms of bipolar disorder (BD) and schizophrenia (SZ) in 78 

order to improve our understanding of the pathophysiological basis of the clinical 79 



5 

continuum of psychosis (Craddock et al., 2006). Current knowledge suggest that BD and 80 

SZ patients share neuropsychological deficits (Hill et al., 200) both in pharmacological 81 

response (Murray et al., 2004) and genetic susceptibility (Craddock et al., 2006). 82 

 Microstructural integrity loss in various WM fiber tracts in BD have been reported 83 

by several groups using DTI (Emsell and McDonald, 2009; Vederine et al., 2011). 84 

Multimodal networks may be disrupted by WM microstructure changes, namely the 85 

thalamo-fronto-striatal and fronto-temporal connections (Adler et al., 2005; Sussmann et 86 

al., 2009). Findings in BD are heterogeneous regarding the direction of diffusion changes. 87 

In fact, while most investigations have reported fractional anisotropy (FA) reductions 88 

(Benedetti et al., 2011a; Chaddock et al., 2009; Lu et al., 2011; Macritchie et al., 2010) a 89 

smaller amount of studies have noted FA increases compared to healthy controls (Versace 90 

et al., 2008; Wessa et al., 2009). To the best of our knowledge, there are scarce studies 91 

carried out with DTI tractography in BD samples (Barysheva et al., 2013; Emsell et al., 92 

2013; Lin and al, 2010; Sarrazin et al., 2014; Toteja et al., 2014). One tractography 93 

investigation observed lower FA and higher mean diffusivity (MD) in the corpus callosum 94 

(CC) (i.e., genu, splenium) and also in both projection and association fibers. MD changes 95 

were associated with age in the genu and splenium of the corpus callosum (Toteja et al., 96 

2014). In another study, decreased FA in the anterior thalamic radiation and uncinate 97 

fasciculus were reported (Lin and al, 2010). However, the fornix WM microstructure was 98 

less frequently examined. The existing results showed no major structural changes in this 99 

region in BD compared with controls (al., 2008; Barysheva et al., 2013). 100 

 Accordingly, a recent meta-analysis (Williamson and Allman, 2012) of diffusion 101 

tensor imaging (DTI)-studies in SZ compared with controls yielded two regions with 102 

significant WM changes: the left frontal deep WM and the left temporal deep WM. DTI 103 
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tractography studies revealed abnormalities in WM integrity in several structures, e.g. the 104 

fornix (Abdul-Rahman et al., 2011; Fitzsimmons et al., 2009; Kuroki et al., 2006).105 

 Regarding the functional relevance of these findings, WM alterations may arguably 106 

underscore ‘hot’ and ‘cold’ cognitive deficits in psychosis. This assumption has been 107 

supported by emerging findings that point to a relationship between WM changes and 108 

cognitive dysfunction in BD as well as in SZ (Bauer et al., 2015; Ehrlich et al., 2011; 109 

Gutierrez-Galve et al., 2011; Hartberg et al., 2010; Hartberg et al., 2011; Knöchel et al., 110 

submitted; Knochel et al., 2014; Oertel-Knöchel et al., 2012; Oertel-Knochel et al., 2014; 111 

Poletti et al., 2015b)( Bauer 2015, Poletti 2015(Kafantaris et al., 2009). Notwithstanding 112 

some findings of state-dependent changes in WM integrity have been reported (e.g. 113 

(Sussmann et al., 2009; Versace et al., 2008; Zanetti et al., 2009), most studies point 114 

towards trait-like WM alterations that are independent of current affective symptoms 115 

(Chaddock et al., 2009; Haller et al., 2011; Oertel-Knochel et al., 2014; Wessa et al., 2009; 116 

Yurgelun-Todd et al., 2007).  117 

 Studies investigating DTI-based changes in SZ and BD patients are rare; four 118 

studies exist (McIntosh et al. 2008; Sussman et al. 2009; Lu et al. 2011; Cui et al. 2011) but 119 

have examined samples that differ in important respects. Additionally, to the best of our 120 

knowledge, none of the existing studies addressed DTI tractography to SZ and BD patients 121 

in one study. Therefore we used deterministic tractography, a straightforward method to 122 

compare fiber-tracking scores of various tracts in participants with BD and SZ compared 123 

to age- and gender-matched healthy controls. A further goal of the current study was to 124 

identify potential associations between affective or cognitive symptoms and fiber tract 125 

changes in psychotic spectrum. We assume that alterations in tracts associated with 126 

emotional or cognitive processing are related to the symptomatology of psychosis.   127 

128 
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2. Methods & Materials 129 

Participants 130 

Altogether eighty-eight participants were included in this study, thirty-two of them 131 

were patients with euthymic BD type I disorder (15 female, 17 male; Mage = 39.23 [SD = 132 

12.36] years), twenty-six of them were patients with paranoid schizophrenia (13 female, 133 

13 male; Mage=40.46 [9.01] years) according to DSM-IV criteria (APA, 1994), while thirty 134 

of them were healthy controls (16 female, 14 male; Mage= 39.22 [10.36] years) (see Table 135 

1). 136 

 ----------------------------------------Insert Table 1 about here---------------------------------------- 137 

 All patients were recruited from the Department of Psychiatry, Goethe-University, 138 

Frankfurt, Germany. They had no co-occurring DSM-IV axis I or II disorders. However, BD 139 

patients have suffered from at least two major mood episodes (either depressive or 140 

manic) in their lifetime (number of depressive episodes: M=9.83 [9.65]; number of mania 141 

episodes: M=8.34 [10.03]), and SZ patients had the duration of disease at a minimum of 3 142 

years. The mean age (Mage) of onset of bipolar disorder in this sample was 32.90 (10.95), 143 

and 24.31 (4.88) years for SZ patients. All patients have been taking medications at the 144 

time of enrollment, in average for 8.256 (7.14) years in BD and 7.01 (2.45) years in SZ 145 

patients. None of them received benzodiazepine drugs for at least a month prior to 146 

imaging procedures (vide infra).  147 

 Overall, BD patients’ medications were categorized as: lithium (lithium in 148 

monotherapy or lithium + other mood stabilizers or antipsychotics), other mood 149 

stabilizers (other mood stabilizers in monotherapy or other mood stabilizers + other 150 

mood stabilizers or antipsychotics) and antipsychotics (antipsychotics in monotherapy or 151 

antipsychotics + other antipsychotics or mood stabilizers). Medications for SZ patients 152 

were categorized as: antipsychotics in monotherapy and antipsychotics in dual therapy (see 153 
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Table 2 for further details on the patients’ clinical characteristics). To compare different 154 

substances and doses, chlorpromazine equivalents concerning antipsychotics (see the 155 

formula by (Woods, 2003)), amitryptiline equivalents concerning antidepressant drugs 156 

(Ali, 1998), and mg of valproic acid were computed. Furthermore, a ‘medication load’ 157 

based on a method first introduced by Almeida (Almeida et al., 2009) was calculated. The 158 

medication load indicates mainly the amount of medication dosage (the higher the more 159 

the amount of medication), independently of the ingredients.  160 

--------------------------------------------Insert Table 2 about here------------------------------------- 161 

 Control subjects did not present neurological illness or current or lifetime mental 162 

disorder (according to DSM-IV (APA, 1994)). Both groups did not differ in gender 163 

(χ²=1.786, p=0.176), age (t = 0.156, p = 0.998) or years of education (t=2.821, p=0.095), 164 

and all participants were right-handed.  165 

The procedures of the current study have been explained to all participants who 166 

thereafter provided written informed consent. The protocol of the present investigation 167 

was approved by the ethical board of the medical faculty of the Goethe-University, 168 

Frankfurt/Main, Germany.  169 

170 

Assessment of psychopathology and cognitive performance 171 

 In order to assess the psychiatric history of the patient samples and of the control 172 

group as well as to rule out (comorbid) axis I and axis II mental disorders, the Structured 173 

Clinical Interview for the DSM-IV (SCID-I and SCIDII; German version: (Wittchen et al., 174 

1996) was conducted. The Beck Depression Inventory II (BDI II; (Hautzinger et al., 2006)) 175 

was used to appraise depressive symptoms in BD patients and controls. In addition, the 176 

German version of the Bech Rafaelsen Mania Scale was administered (BRMAS; (Bech, 177 

1981) to measure manic symptoms in BD patients and controls. Participants with SZ 178 
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completed the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987)) 179 

indicating acute symptoms of the disease. (Mass et al., 2000).  180 

 All participants completed the Mehrfachwahl-Wortschatz-Test, the German 181 

equivalent to the “Spot-the-Word test” (MWT-B; (Lehrl, 2005)) as a measure of 182 

crystallized intelligence and the Trail-making-Test as an instrument assessing 183 

psychomotor speed (TMT A) and executive functioning (TMT B) (Reitan et al., 1988). 184 

Clinical and cognitive tests are described in more detail in a previous paper that included 185 

this sample (Oertel-Knochel et al., 2014).   186 

187 

Assessment of WM microstructural data 188 

 Within one week after data assessment, each participant underwent three 189 

Diffusion MRI sequences using a Trio 3-T Scanner (Siemens, Erlangen, Germany) with a 190 

standard transmit-receive head coil. Diffusion MRI data was acquired with an echo planar 191 

imaging (EPI) sequence with generalized auto-calibrating parallel acquisitions (GRAPPA; 192 

(Griswold et al., 2002)) (TR = 8760 ms; TE = 100 ms; bandwith = 1302 Hz/pixel, 193 

acquisition voxel size = 2 x 2 x 2 mm3; 60 axial adjacent slices; slice thickness = 2 mm (no 194 

gap); FOV = 192 mm x 192 mm x 120 mm; acquisition matrix = 96 x 96; averages of 10 195 

images without (b0) and 60 images with diffusion weighting (b1000 = 1000 s/mm2 60 196 

noncolinear directions) (acquisition time per scan = 10 min 31 sec). 197 

 Participants were instructed to lie still and look at a white fixation cross positioned 198 

in the centre of the visual field. Moreover, they were given protective earplugs to reduce 199 

scanner noise and were asked not to engage in any overt speech throughout the scanning 200 

sequences. The data of the three DTI sequences were averaged during further 201 

preprocessing. 202 

203 
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Tractography 204 

All subjects were investigated through deterministic tractography using TrackVis 205 

version 0.5.2 and Diffusion Toolkit 0.6.2 (http://trackvis.org/). We chose the following 206 

four tracts: the corpus callosum (CC), the anterior thalamic radiation (ATR), the fornix (F) 207 

and the cingulum (C). The selection of these tracts has been driven by two different 208 

sources of evidence: (a) an intensive literature search, which identified potential tracts 209 

relevant for affective disorders as well as for emotional processing (view for instance the 210 

results (Emsell et al., 2013)); (b) the TBSS results of this sample published elsewhere 211 

(Oertel-Knochel et al., 2014){Knochel, 2012}. All tracts were delineated twice by two 212 

independent raters (P.O. and L.A.C), which were blind for the clinical diagnosis. In order 213 

to ensure an accurate rating, both tract delineation steps and ROI definition have been 214 

guided by a reference tractography Atlas (Stieltjes et al., 2013). Inter-rater reliability was 215 

assessed with the intraclass correlation coefficient, and it was considered high (0.91). 216 

Following a previous publication of Torgerson and colleagues (Torgerson, 2013), we 217 

computed values for the so-called indices of WM microstructural integrity: the fractional 218 

anisotropy (FA), number of fiber tracts (NofT) and tract length (Le) for left and right 219 

hemispheres. We additionally included the number of tract volumes (vol), which has been 220 

also acknowledged by previous studies as a metric of accuracy for WM integrity, in our 221 

analysis (Brandstack et al., 2013).   222 

223 

Delineation of tracts  224 

We also based our technique on the study of Torgenson and colleagues (Torgerson, 225 

2013). All tract delineations were followed by the general procedures: voxels were 226 

individually highlighted to view each appropriate tract, and then all voxels whose 227 

associated fibers were not consistent with the color of the tract of interest were 228 
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eliminated. A sphere was then positioned to assign all fibers passing through the region 229 

of interest (ROI). Secondary, all spurious fibers that passed through the sphere but did 230 

not belong to the tract of interest were removed. 231 

232 

Fornix (F) 233 

Two spheres were placed to identify fibers crossing the anatomical location of the 234 

fornix. Additionally, two rectangular ROIs were drawn to remove inconsistent fibers: the 235 

first one vertically, splitting the right and left hemispheres; the other sphere was 236 

positioned to eliminate fibers belonging to the corpus callosum and anterior commissure.  237 

238 

Cingulum (C) 239 

The first ROI was placed above the corpus callosum in the region characteristically 240 

identified as the cingulum. The second ROI is a rectangle drawn by free hand in the sagittal 241 

plane, splitting the right and left hemispheres. Finally, a third ROI was drawn to remove 242 

the influence of rectangular structures that commonly interfere with the delineation of 243 

the cingulate gyrus, like the corpus callosum fibers.  244 

245 

Anterior Thalamic Radiation (ATR) 246 

 The forelimb of the internal capsule was identified and a sphere was positioned in 247 

this ROI to cover the fibers of the ATR, with a second ROI plane drawn in the sagittal plane 248 

to remove inconsistent fibers.  249 

250 

Corpus Callosum (CC) 251 

A ROI was first positioned in the sagittal plane, encompassing all fibers passing 252 

transversely in the x plan, forming the characteristic drawing of the corpus callosum; a 253 
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second ROI was positioned in the brainstem, spanning the descendant fibers of cortico 254 

spinal, bulbar tenement tracts, as well as stem fibers and the cerebellum (cerebellar 255 

peduncle medium).  256 

257 

Statistical analyses 258 

All data were normally distributed and homoscedastic. We computed linear 259 

regression analyses (hierarchical), including fiber tracking scores as dependent variables 260 

and group as independent variables on a first level, and age, TMT A and TMT B as 261 

independent variables on a second level. Afterwards, post-hoc contrasts across groups 262 

were completed across groups (SZ vs. BD, BD vs. CON, SZ vs. CON). Post-hoc contrasts 263 

were only done if there was a significant effect at first level (significant group effect). 264 

Single post-hoc contrasts between groups (BD / SZ patients, BD patients / controls, SZ 265 

patients / controls). A α-level of 0.05, corrected for multiple comparisons using the 266 

Bonferroni correction, was defined as the statistical threshold. All analyses were 267 

conducted with SPSS 22.0 software package. 268 

Bivariate correlation analyses using Pearson Product Moment correlation or 269 

Spearman Rank correlation coefficients were conducted to examine relationships 270 

between fiber tracking values and other variables of interest in each group independently 271 

(i.e. clinical scores, cognitive scores). However, only fiber tracking scores that revealed 272 

significant group effect (corrected for multiple comparisons) during comparisons were 273 

included in these analysis.  274 

We also investigated the potential influence of medication regimens through 275 

bivariate correlation analyses (Spearman product-moment correlation, two-tailed) 276 

between fiber tracking values and medication doses, medication equivalents as well as 277 
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the duration of medication in the patient groups separately for each group of drug 278 

(antipsychotics, lithium, valproic acid).  279 

280 

3. Results 281 

3.1 Cognitive and Clinical data 282 

Significant group differences across groups were observed for psychomotor speed 283 

(TMT A) and executive functioning (TMT B) (TMT A: F=4.983, p=0.009; TMT B: F=62.85, 284 

p<0.001; view Table 1).  285 

BD patients had significantly higher BDI II scores when compared to control group 286 

(t = 18.85, p ≤ 0.01). However, BRMAS scores revealed no significant group differences 287 

between BD patients and controls (p ≥ 0.05). None of the patients or controls reached a 288 

score of > 19 in the BDI II or a score of > 7 in the BRMAS, which would indicate clinically 289 

relevant depressive symptomatology.  290 

291 

3.2 Fiber tracking scores 292 

Fornix (F) 293 

All left and right fornix indices (FA, Le, Vol, NofT) revealed a significant group effect 294 

during regression analysis (all found a p<0.05 level; see Table 3). Post-hoc single contrasts 295 

revealed significant differences between SZ patients and controls in all fornix indices 296 

without the left fornix FA. Regarding group contrast between BD patients and controls, 297 

we observed significant effects in the left and right fornix indices FA and Le. However, 298 

group contrast between SZ and BD patients revealed significant in bilateral Vol and NofT 299 

fornix indices (all p’s<0.05; see Table 3, Figure 2).  300 

-----------------------------------Insert Table 3 about here ---------------------------------- 301 
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On the second level of the regression analysis, we observed a significant effect of 302 

TMT A on the left and right fornix FA, and significant effect of TMT B on the left and right 303 

fornix FA as well as in the left and right fornix Le. Accordingly, age showed a significant 304 

effect on the left and right fornix Le values (all p’s<0.05; see Table 3, Figure 2). 305 

-----------------------------------Insert Figure 2 about here ---------------------------------- 306 

307 

Cingulum (C) 308 

With regard to this bundle, significant influence of the factor group during regression 309 

analysis were exhibited for the cingulum Vol (bilaterally) and NofT (left hemisphere). We 310 

observed significant single group contrasts between SZ patients and controls and SZ 311 

patients and BD patients in the left and right cingulum Vol. Left cingulum NofT showed 312 

significant group contrasts between BD patients and controls (all p’s<0.05; see Table 3, 313 

Figure 2). None of the variables of the second level regression analysis (TMT A, TMT B, 314 

age) revealed any significant influence on the cingulum fiber bundles (all p’s > 0.05).  315 

316 

Anterior thalamic radiation (ATR) 317 

A significant group effect was also displayed for the left ATR Vol and Le and the right ATR 318 

Vol and Le (all p’s<0.05; see Table 3). This effect was driven by significant group contrasts 319 

between SZ patients and controls and SZ and BD patients in these indices (all p’s<0.05; 320 

see Table 3, Figure 2). As well, none of the variables of the second level regression analysis 321 

(TMT A, TMT B, age) revealed any significant influence on the ATR fiber bundles (all p’s > 322 

0.05).  323 

324 

Corpus Callosum (CC) 325 
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In the corpus callosum, Le and NofT indices showed a significant group effect. Such 326 

findings could be noted, for both variables, by significant contrasts between SZ patients 327 

and controls and SZ and BD patients, and also by significant contrasts between BD 328 

patients and controls in CC Le (all p’s<0.01; see Table 3). Again, none of the variables of 329 

the second level regression analysis (TMT A, TMT B, age) revealed any significant 330 

influence on the corpus callosum fiber bundles (all p’s > 0.05).  331 

332 

3.3 Secondary regression analysis  333 

A second regression model, including fornix values as dependent variables and 334 

diagnostic groups (BD patients, SZ patients), age, age at onset and TMT B as independent 335 

variables was computed, in order to examine whether the observed alterations in fornix 336 

were influenced by age or age at onset. However, this regression analysis did not reveal 337 

any significant improvement in explaining variances (p>0.05). Therefore, we did not 338 

report the results in detail here.  339 

340 

3.4 Correlation analyses  341 

Fiber tracking scores and cognitive and clinical data 342 

There were several significant associations between psychomotor speed (TMT A) 343 

and executive functioning (TMT B) and left and right fornix Le and FA across groups.  344 

 However, the significant correlations between cognitive variables and fornix fiber 345 

tracking scores were mainly driven by the SZ group: in this subsample, psychomotor 346 

speed was inversely correlated with left and right fornix FA, and executive functioning 347 

was negatively associated with left and right fornix Le and FA. Age was also negatively 348 

correlated with right fornix Le in this sample. Regarding the BD patient group, both age 349 

and age at disease onset were significantly negative associated with right fornix Le. In 350 
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controls, executive functioning (TMT B) scores correlated significantly with left and right 351 

fornix Le, and age was significantly associated with left fornix Le and right fornix Le.      352 

---------------------------------------------Insert Table 4 about here-------------------------------- 353 

354 

Control for medication influence 355 

We observed no significant correlation between fiber tracking scores and 356 

medication load, equivalents scores for antipsychotics, lithium, valproic acid or time of 357 

exposure to medication (all p’s>0.05).  358 

359 

360 

4. Discussion 361 

In this study, DTI deterministic tractography has been carried out to investigate WM 362 

microstructure abnormalities in pre-defined fiber tracts of SZ and BD subjects compared 363 

to controls; in addition, WM abnormalities were measured in association with clinical and 364 

cognitive symptomatology. We showed three main findings that deserve in-depth 365 

discussion. 366 

 First, our study showed widespread alterations in fiber tracking scores in SZ 367 

patients compared to controls, and much less differences in BD patients compared to 368 

controls. Importantly, the differences in BD patients compared to controls were mainly 369 

located in the bilateral fornix, whereas SZ patients showed differences in all chosen tracts 370 

independently of the indices (FA, Le, Vol, NofT). These results confirm the assumption 371 

that SZ patients have more severe WM changes than BD patients (Ellison-Wright and 372 

Bullmore, 2010; Friedman et al., 1999; Ivleva et al., 2012; Janssen et al., 2008; McIntosh 373 

et al., 2004; Yu et al., 2010). Contrasting with the relatively limited evidence on 374 

tractography in BD, volumetric studies have reported a number of morphometric changes 375 
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in predominantly frontal, temporal, fronto-temporal, fronto-thalamic and limbic WM 376 

regions in euthymic and / or symptomatic BD samples (Arnone et al., 2008; Delaloye et 377 

al., 2011; Ellison-Wright and Bullmore, 2010; Emsell et al., 2014; Hulshoff et al., 2012; 378 

McDonald et al., 2005; McIntosh et al., 2005; McIntosh et al., 2006; Selvaraj et al., 2012). 379 

Conversely, several studies also reported no volumetric changes in remitted bipolar 380 

patients (e.g. (Houenou et al., 2007; Zanetti et al., 2009)). These heterogeneous findings 381 

regarding WM integrity, density or volumes in BD likely results from the inclusion of 382 

participants in different illness states (i.e., remitted, acute depressive, acute manic), 383 

clinical heterogeneity (Houenou et al., 2015) as well as the use of different analytic 384 

techniques to identify morphological changes across studies.  385 

 However, as Kumar and colleagues suggested, both disorders share some 386 

abnormalities in fiber tracts that may partly explain the functional outcome (Kumar et al., 387 

2015). Beside bilateral fornix microstructure, SZ and BD share abnormalities in the 388 

corpus callosum Le and the left cingulum NofT. This confirms to the suggestion by Kumar 389 

and colleagues who identified five clusters (callosal, posterior thalamic/optic, paralimbic, 390 

fronto-occipital) with reduced FA in both disorders. They also recognized that a single 391 

WM integrity factor that predicted social and occupational functioning scores in patients 392 

was irrespective of the diagnostic categorization (SZ vs. BD) (Kumar et al., 2015). In sum, 393 

our results with deterministic tractography support the relevance of chosen fiber tracts, 394 

as those may be crucial for a set of cognitive dimensions, particularly executive and 395 

psychomotor performance.   396 

 Secondly, as a major result, we observed differences in the fiber tracking scores of 397 

the bilateral fornix in both patient groups with most meaningful results exhibited in the 398 

SZ patient group compared with BD patients and controls. These results may be 399 

considered relatively new, as this fornix has been less frequently examined in major 400 
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psychosis disorder. Regarding the functional relevance of these tracts, they are part of the 401 

limbic system and are known to be involved in memory processing (Bähr and Frotscher, 402 

2009; Emsell et al., 2014; Ulfig, 2008), while the fronto-limbic connections play a pivotal 403 

role in emotional processing (Adler et al., 2005; Sussmann et al., 2009). Fornix WM 404 

abnormalities in SZ patients have been observed previously using voxel-based (e.g., Guo 405 

et al., 2012) and tract-based DTI analyses (e.g., (Fitzsimmons et al., 2014)). However, the 406 

fornix WM microstructure has been less frequently examined. The existing results were 407 

controversial, showing no major structural changes in this region in BD (al., 2008; 408 

Barysheva et al., 2013), but also FA changes in the fornix in BD (Barnea-Goraly et al., 2009; 409 

Oertel-Knochel et al., 2014). However, none of the aforementioned studies employed 410 

deterministic tractography. Indeed, regardless the limited evidence of tractography, the 411 

few existing studies support our findings (Emsell et al., 2013; Sarrazin et al., 2014; Toteja 412 

et al., 2014).  However, technical limitations of previous DTI studies might account for 413 

the lack of evidence involving the fornix, as acknowledged by more recent investigations 414 

(Emsell et al., 2013). Despite of the limited evidence, our findings are in line with other 415 

investigations, for instance, one reporting decreased FA in the left fornix (Emsell and al, 416 

2015). In addition, it has been suggested the compression of the fornix as one possible 417 

cause of BD (Xu et al., 2007) and fornix alterations have been associated with the early 418 

occurrence of bipolarity among adolescents (Chao et al., 2009)). Finally, our findings for 419 

the fornix highlight the importance of this bundle, particularly for the emotional and 420 

cognitive processing, namely the integration of several limbic regions, such as the septal 421 

nuclei, nucleus accumbens, thalamus, cingulate cortex, and also, as the main efferent 422 

pathway of hippocampal networks (Behrens and Jbabdi, 2009). 423 

There were several negative correlations between psychomotor speed and 424 

executive functioning and bilateral fornix Le and FA in SZ patients and controls (only 425 
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executive functioning), but not in BD patients. Results herein reported highlight the 426 

importance of fornix, whose altered circuitry connections to the temporal lobe, prefrontal 427 

cortex and hippocampal formation (Eisenberg, 2010), among SZ individuals, may have 428 

lead to deregulation of the aforementioned cognitive functions.  429 

Additionally, reductions in fractional anisotropy of temporal white matter, 430 

including the fornix (Fitzsimmons et al, 2009) and inferior longitudinal fasciculus (Ashtari 431 

et al, 2007), suggest compromised integrity of key bidirectional white matter tracts of the 432 

hippocampus, including those that communicate with the prefrontal cortex.  433 

We further analysed whether the inclusion of age and age at onset improved the 434 

explained variance of our regression model, in order to examine whether the observed 435 

alterations in fornix are related to neurodegenerative (age) versus neurodevelopmental 436 

(age at onset) factors or simply reflect the relationship with executive dysfunction. In our 437 

study, we failed to find any associations with age of onset and fornix values in the patient 438 

groups. Importantly, this finding suggests that both of these cognitive domains may at 439 

least partially explain some of the differences evidenced between BD and SZ patients. 440 

Indeed, previous findings showed also correlations between structural imaging markers 441 

and cognitive test performance in SZ (e.g., (Ehrlich et al., 2011; Ehrlich et al., 2010; 442 

Hartberg et al., 2010; Hartberg et al., 2011; Oertel-Knöchel et al., 2012)). Furthermore, 443 

significant associations between decreased WM integrity and cognitive performance in 444 

BD have also been reported previously (Haller et al., 2010; Kafantaris et al., 2009; Poletti 445 

et al., 2015a). For instance, Kafantaris and colleagues (Kafantaris et al., 2009) showed that 446 

orbito-frontal WM integrity reduction was significantly correlated with slower 447 

performance in visuo-motor processing in adolescent BD. However, the number of studies 448 

investigating the association between WM abnormalities and cognitive performance in 449 

BD remain scarce in the literature. 450 
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Another worthy of note finding is that neither acute depressive (BDI II), acute 451 

manic (BRMAS) symptoms in BD nor acute psychotic symptoms in SZ were significantly 452 

correlated with any of the fiber tracking scores across groups. Nevertheless, we have to 453 

emphasize that only non-acute or remitted patients were enrolled in our study, resulting 454 

in relatively low symptom severity scores. Although there are some reports of state-455 

dependent changes in WM integrity (e.g. (Sussmann et al., 2009; Versace et al., 2008; 456 

Zanetti et al., 2009), most studies report relatively consistent WM alterations independent 457 

of acute symptoms (Chaddock et al., 2009; Haller et al., 2011; Oertel-Knochel et al., 2014; 458 

Wessa et al., 2009; Yurgelun-Todd et al., 2007).  459 

 In general, the underlying mechanisms related to fiber integrity loss in psychosis 460 

remain ambiguous (Schneider et al., 2012). Some authors have highlighted the role of 461 

genetic risk factors (Benedetti et al., 2015; Marlinge et al., 2014), while alternative 462 

mechanisms, e.g., loss of axonal density and diameter, neuronal loss, localized water 463 

content or a reduced myelination have also been proposed (Benedetti et al., 2011b; Beyer 464 

et al., 2005; Chaddock et al., 2009; Kafantaris et al., 2009; Mahon et al., 2010; Regenold et 465 

al., 2007; Tkachev et al., 2003)). Additionally, the specificity of tractography has been 466 

criticized (Koerte and Muehlmann, 2014). One common problem acknowledged by 467 

authors refers to the interpretation of diffusion in crossing fibers zones (Behrens and 468 

Jbabdi, 2009), for instance, the cingulum fibers. It is generally assumed by DTI that all 469 

vectors within one voxel follow a single direction or, alternatively, that all diffusion 470 

vectors belong to the same WM fiber, what may ultimately overestimate water diffusion 471 

in these areas. Finally, the interpretation of tract measurements herein presented may be 472 

puzzling and lack specificity as heterogeneous results have been reported in other 473 

investigations; for instance, major tract alterations among SZ individuals include arcuate 474 

fasciculus (Wu et al., 2015), cingulum (Voineskos, 2010), striatum and thalamus(Ellison-475 
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Wright et al., 2014). Accordingly, the meaning of such volumetric or length alterations 476 

(both increase and decreases), particularly what it is revealed in terms of disease 477 

progression, still awaits further elucidation. In despite of such constraints, it is also 478 

accepted that tractography results are more specific than Tract based Spatial Statistics 479 

(TBSS) or ROI-oriented studies (Koerte and Muehlmann, 2014).  480 

 Another widely discussed problem of studies with psychotic patients is the 481 

heterogeneity of the symptoms and the different illness episodes patients’ experience. 482 

Since BD patients were assessed during depressive state (Bremner et al., 2002; Lacerda 483 

et al., 2004; Lai et al., 2000), during manic or during remitted episodes (Oertel-Knochel et 484 

al., 2014) – and equally for SZ patients in acute or non-acute state - results are likely to be 485 

influenced by those factors. Additionally, some studies investigated only BD I patients, 486 

others included BD II or schizoaffective disorder patients as well; i.e. only a few studies 487 

have controlled for potential psychotic symptoms while others have not. Therefore, 488 

considering differences in sample selection, it is difficult to compare the results of 489 

different studies directly. This may be one reason for the heterogeneity of WM 490 

microstructural findings in BD that range from decreases, no differences up to increases 491 

in various regions. However, in this study we employed very strict inclusion criteria for 492 

the patient sample in order to ensure a high level of homogeneity. Furthermore, we used 493 

a newer and improved approach to detect WM changes.  494 

 Although the influence of psychopharmacological drugs as biasing variables on 495 

morphological alterations has been discussed for SZ and BD (Dazzan et al., 2005; Hafeman 496 

et al., 2012; Moncrieff and Leo, 2010; Moore et al., 2000; Phillips et al., 2008), we did not 497 

observe a clear influence of drug exposure on our findings. For instance, Manetti et al. 498 

(2014) reported that first-line medications for BD – such as lithium or other mood 499 

stabilizers – may have a substantial influence on myelination processes and as a result on 500 
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microstructural changes in BD. Therefore, Marlinge and colleagues (Marlinge et al., 2014) 501 

suggested to evaluate potential effects of pro-myelinating drugs on WM findings in BD.  502 

 In summary, we identified micro-anatomical changes in the bilateral cingulum, 503 

bilateral fornix, corpus callosum and bilateral anterior thalamic radiation using different 504 

scores (Le, Noft, Vol, FA) in SZ, and less pronounced abnormalities in BD patients (mainly 505 

fornix, left cingulum NofT and corpus callosum Le). The functional relevance of fornix 506 

tract alterations for cognitive performance has been shown by significant association to 507 

executive functioning and psychomotor speed in SZ patients, but not in BD. While 508 

cognitive outcomes are generally milder in the latter, current evidence indicates a 509 

continuum of symptomatic, cognitive and functional outcome across these diagnoses 510 

(Johnstone et al., 1992). Conversely, although DTI findings are usually found in the 511 

spectrum of psychotic-related disorders, overt microscopic alterations may be more often 512 

noticed in SZ (Kumar et al., 2015). Moreover, current findings suggest that cognitive 513 

symptoms are closely associated with WM changes in the fornix, at a greater (and 514 

significant) extent in SZ than in BD. Finally, our results reflect the pivotal role of this 515 

anatomical structure in the fronto-limbic circuitry modulating emotional and cognitive 516 

response in psychotic related syndromes.  Our findings open important avenues for 517 

further research, for instance, prospective studies exploring micro-anatomical and WM 518 

structural abnormalities in psychosis, as the significance of these parameters in terms of 519 

disease progression and cognitive features.  520 

521 

522 
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BD = bipolar disorder 537 

DTI = Diffusion tensor imaging 538 
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Tables:  925 

Table 1: Socio demographic and clinical characteristics of the SZ patient group (SZ 926 

Patients; n = 26), the BD patient group (BD Patients; n=32) and the control group (CON; 927 

n=30). Abbreviations: SZ = Schizophrenia, BD = Bipolar, MWT-B= Multiple Choice Word 928 

Comprehension Test, TMT = Trail making Test, BDI II=Beck-Depression scale, BRMAS = 929 

Bech-Rafaelsen-Mania Scale, PANSS=Positive and Negative Syndrome Scale. 930 

Abbreviations: M = arithmetic middle; SD = standard deviation. * = significant at a p<0.05 931 

level, ** = significant at a p<0.01 level.  932 

SZ Patients BD Patients Controls Significance

Sample Size 26 32 30 - 

Gender 13 female,  
13 male

15 female 
17 male 

16 female 
14 male

χ²=1.78, 
p=0.17

Age  
Years (M, SD)

40.46 (9.01) 39.23 (12.367) 39.22 (10.36) F=0.12, 
p=0.88

Years of 
education  
(M, SD) 

15.07 (2.22) 15.36 (2.34) 16.25 (1.77) F=2.48,
p=0.09

TMT A (M, SD) 36.31 (2.674) 
SZ/CON: p=0.03*
SZ/BD: ns 

36.83 (12.79) 
BD/CON: 
p=0.018* 

27.06 (7.84) F=4.983,
p=0.009**

TMT B (M, SD) 146.69 (40.74) 
SZ/CON: 
p<0.001** 
BD/SZ: 
p<0.001** 

79.16 (33.609) 
BD/CON: 
p=0.015* 

56.31 (17.16) F=62.85,
p=<0.001**

MWT-B (M, SD) 30.84 (0.522) 31.53 (2.57) 30.17 (3.22) F=2.038, 
p=0.137

BDI II (M, SD) - 10.40 (9.57) 2.28 (4.36) t = 18.85,  
p < 0.01**

BRMAS (M, SD) - 0.767 (1.887) 0.59 (1.07) t = 0.200,  
p = 0.657

PANSS (M, SD) 67.00 (13.65) - - - 

933 

934 

935 
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Table 2: Clinical characteristics and psychiatric medication in the SZ patient group 936 

(n=26) and in the BD patient group (n = 32). SZ = Schizophrenia, BD = Bipolar, M = 937 

arithmetic middle; SD = standard deviation. 938 

Variables BD patients SZ patients 
Number of depressive 

episodes 
M (SD) 

9.83 (9.65) - 

Number of manic episodes
M (SD) 

8.34 (10.03) -

Age of onset 
(M years [SD]) 

32.90 (10.95) 24.30 (4.88)

Years of taking medication
(M years [SD]) 

8.25 (7.14) 7.01 (2.45)

Medication category lithium (n = 7) 
lithium + antidepressant 
(n = 2) 
lithium + other mood 
stabilizers (n = 4) 
lithium + antipsychotics (n 
= 3) 
Sum: n = 16

antipsychotics
monotherapy               
(n = 18)  
antipsychotics 
dualtherapy (n = 8) 

other mood stabilizers 
(n=3) 
other mood stabilizers + 
antidepressant (n = 5) 
other mood stabilizers + 
antipsychotics (n = 2) 
Sum: n = 10

Monotherapy:  
Risperidon (n = 10) 
Clozapin  (n = 4) 
Quetiapin (n = 3) 
Olanzapin (n = 1) 

atypical antipsychotics
(n = 4) 
antipsychotics + 
antidepressant (n = 2) 
Sum: n = 6

Dual therapy: 
Risperidon + 
Aripiprazol (n = 3) 
Risperidon + 
Flupentixol (n = 3) 
Olanzapin + 
Aripiprazol (n = 2) 

Medication and medication 
equivalents

Chlorpromazine 
equivalents (mg / day): 
339.85 (288.50) 

Chlorpromazine 
equivalents (mg / 
day): 694.75 
(929.33) 

Amitriptyline-equivalent 
(mg/day): 115.23 (75.23) 
Valproic acid (mg/ day): 
1204.67 (834.65) 
Medication load 
(Almeida): 2.96 (1.35) 

939 
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Table 3: Results of the regression analysis (linear, hierarchical), including fiber tracking 940 

scores as dependent variables and group as independent variables on a first level, and age, 941 

TMT A and TMT B as independent variables on a second level. Afterwards, post-hoc 942 

contrasts across groups were done (SZ vs. BD, BD vs. CON, SZ vs. CON). We only report 943 

second level results and post-hoc contrasts if there was a significant effect at first level 944 

(significant group effect). Abbreviations: SZ = Schizophrenia, BD = Bipolar, CON = controls, 945 

M = arithmetic mean; n = sample size; SD = standard deviation; F = fornix, C = cingulum, 946 

ATR = anterior thalamic radiation, CC = corpus callosum, FA = fractional anisotropy, Vol = 947 

volumes, Le = tract length, NofT = number of tracts, l = left, r = right. * = significant at a 948 

p<0.05 level, ** = significant at a p<0.01 level, ns=not significant.  949 

Tract SZ Patients 
M (SD) 

Post-hoc
t[df=54]

BD Patients
M (SD)

Post-hoc 
t[df=56] 

Controls 
M (SD)

Post-hoc 
t[df=60] 

Regression 
B(SD), β, p

l. fornix 
FA 

0.324  
(0.026) 
SZ vs. CON: 
ns 

0.323  
(0.049) 
SZ vs. BD: ns 

0.343 (0.025) 
BD vs. CON: 
p=0.04* 

Group: B=-0.02(0.01), 
β=-0.27, p=0.04* 
TMT A: B=0.001(0.001), 
β=0.419, p=0.01*
TMT B:B=-0.001 (0.001),
β=-0.394, p=0.02* 

r. fornix 
FA 

0.310  
(0.025) 
SZ vs. CON: 
p<0.001**

0.323  
(0.044) 
SZ vs. BD: ns 

0.343 (0.021) 
BD vs. CON: 
p=0.04* 

Group: B=-0.02 (0.01), 
β=-0.30, p=0.03*
TMT A:B=-0.02 (0.01), β=-
0.29, p=0.02* 
TMT B: B=-0.001 (0.002), 
β=-0.21, p=0.04*

l. fornix 
Vol 

17.855 
(4.251) 
SZ vs. CON: 
p<0.001** 

9.654  
(1.964) 
SZ vs. BD: 
p<0.001** 

9.192 (2.649) 
BD vs. CON: ns 

Group: B=-0.02 (0.01), 
β=-0.15, p=0.04* 

r. fornix 
Vol 

20.893 
(4.918) 
SZ vs. CON: 
p<0.001** 

10.473 
(3.395) 
SZ vs. BD: 
p<0.001** 

9.250 (2.791) 
BD vs. CON: ns 

Group: B=0.201 (0.86),
β=-0.243, p=0.04* 

l. fornix 
Le 

44.253 
(11.354) 
SZ vs. CON: 
0.011*  

51.543 
(17.424) 
SZ vs. BD: 
p=0.168 

55.357 
(12.364) 
BD vs. CON: 
p=0.04* 

Group: B=-0.49 (0.17), 
β=-0.37, p=0.005* 
TMT B: B=-0.89 (0.09),
β=-0.28, p=0.04*
Age: B=-0.51 (0.12), β=-
0.31, p=0.01* 
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r. fornix 
Le 

39.206 
(9.479) 
SZ vs. CON: 
p=0.023*

44.834 
(15.020) 
SZ vs. BD: ns 

47.484 
(12.693) 
BD vs. CON: 
p=0.048* 

Group: B=-0.28 (0.19),
β=-0.30, p=0.03*
TMT B: B=-0.31 (0.08),
β=-0.41, p=0.01* 
Age: B=-0.63 (0.14), β=-
0.52, p<0.01* 

l. fornix 
NofT 

673.00 
(202.046) 
SZ vs. CON: 
p<0.001** 

296.06 
(131.180) 
SZ vs. BD: 
p<0.001** 

336.27 
(146.95) 
BD vs. CON: ns 

Group: B=1.86 (1.73), 
β=0.26, p=0.04* 

r. fornix 
NofT 

913.73 
(267.396) 
SZ vs. CON: 
p<0.001** 

290.94 
(170.584) 
SZ vs. BD: 
p<0.001** 

361.23 
(176.062) 
BD vs. CON: ns 

Group: B=-0.21 (0.18),
β=-0.32, p=0.04* 

l. 
cingulum 
FA 

0.495  
(0.038) 

0.487  
(0.041) 

0.497 (0.020) Group: B=-0.01 (0.009),
β=-0.16, p=0.21 

r. 
cingulum 
FA 

0.456  
(0.036) 

0.460  
(0.041) 

0.473 (0.025) Group: B=-0.007 (0.01), 
β=-0.10, p=0.48 

l. 
cingulum 
Vol 

13.912 
(2.847) 
SZ vs. CON: 
p<0.001** 

11.161 
(3.160) 
SZ vs. BD: 
p=0.001** 

10.229 (2.221) 
BD vs. CON: ns 

Group: B=1.89 (0.75),
β=0.34, p=0.01* 

r. 
cingulum 
Vol 

12.728 
(3.025) 
SZ vs. CON: 
p=0.004** 

10.742 
(3.195) 
SZ vs. BD: 
p=0.036* 

10.225 (2.421) 
BD vs. CON: ns 

Group: B=-0.11 (0.04),
β=-0.45, p=0.01* 

l. 
cingulum 
Le 

84.103 
(25.072) 

76.971 
(17.725) 

73.380 (9.288) Group: B=4.87 (4.10), 
β=0.17, p=0.24 

r. 
cingulum 
Le 

71.728 
(21.780) 

68.492 
(13.285) 

68.509 (8.335) Group: B=-0.12 (3.22), 
β=-0.006, p=0.96 

l. 
cingulum 
NofT 

302.88 
(68.379) 
SZ vs. CON: 
ns 

321.60 
(82.720) 
SZ vs. BD: ns 

275.81 
(73.383) 
BD vs. CON: 
p=0.047* 

Group: B=51.50 (22.42),
β=0.32, p=0.02* 

r. 
cingulum 
NofT 

288.15 
(82.087) 

290.80 
(112.441) 

271.75 
(69.162) 

Group: B=8.30 (24.41),
β=-0.04, p=0.73 

l. ATR FA 0.413  
(0.047) 

0.423  
(0.041) 

0.432 (0.032) Group: B=-0.05 (0.58), 
β=0.01, p=0.92 

r. ATR FA 0.409  
(0.040) 

0.428  
(0.039) 

0.432 (0.035) Group: B=-0.004 (0.01),
β=-0.04, p=0.74 

l. ATR Vol 7.247  
(3.103) 
SZ vs. CON: 
p=0.011* 

5.231  
(1.699) 
SZ vs. BD: 
p=0.006* 

5.779 (2.504) 
BD vs. CON: ns 

Group: B=-0.01 (0.01), 
β=-0.29, p=0.04* 
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r. ATR 
Vol 

7.813  
(3.038) 
SZ vs. CON: 
p=0.007* 

5.754  
(1.805) 
SZ vs. BD: 
p=0.008* 

5.779 (2.504) 
BD vs. CON: ns 

Group: B=0.12 (0.64), 
β=0.35, p=0.03* 

l. ATR Le 96.082 
(21.730) 
SZ vs. CON: 
p<0.001** 

62.026 
(24.816) 
SZ vs. BD: 
p<0.001** 

65.719 
(26.405) 
BD vs CON: ns 

Group: B=-7.05 (6.83), 
β=-0.27, p=0.04*

r. ATR Le 92.915 
(13.895) 
SZ vs. CON: 
p<0.001** 

67.029 
(25.828) 
SZ vs. BD: 
p<0.001** 

63.933 
(29.256) 
BD vs. CON: ns 

Group: B=30.32 (15.58),
β=0.28, p=0.04* 

l. ATR 
NofT 

76.12 
(43.957) 

84.20 
(44.828) 

73.19 (43.901) Group: B=14.93 (13.09),
β=0.17, p=0.25 

r. ATR 
NofT 

87.85 
(52.021) 

98.83 
(60.335) 

78.31 (46.081) Group: B=4.12 (8.18),
β=0.07, p=0.61

CC FA 0.526  
(0.025) 

0.522  
(0.042) 

0.533 (0.015) Group: B=-0.01 (0.009),
β=-0.23, p=0.10 

CC Vol 158.553 
(25.481) 

145.737 
(23.526) 

154.937 
(19.288) 

Group: B=9.27 (13.47), 
β=0.13, p=0.49 

CC Le 103.593 
(12.041) 
SZ vs. CON: 
p<0.001** 

70.942 
(39.103) 
SZ vs. BD: 
p=0.002* 

45.885 
(42.843) 
BD vs. CON: 
p=0.019* 

Group: B=31.23 (11.93), 
β=0.36, p=0.01*

CC NofT 4028.92 
(822.606) 
SZ vs. CON: 
p=0.001** 

4883.77 
(1013.571) 
SZ vs. BD: 
p=0.001** 

4886.00 
(610.366) 
BD vs. CON: ns 

Group: B=-13.03 (6.23),
β=-0.30, p=0.04* 

950 

951 

952 

953 

954 
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Table 4: Significant correlations (Spearman rank correlation (rho)), Pearson Product 955 

Moment correlation (r); two-tailed) (Bonferroni corrected). Abbreviations: SZ = 956 

schizophrenia, BD = bipolar, CON = controls. Le = tract length, FA = fractional anisotropy, 957 

TMT B = Trail Making Test A, l = left, r = right. 958 

SZ patients

(n = 26)

BD patients                      

(n = 32)

CON                              

(n = 30)

l. fornix Le TMT B: r=-0.523, 

p=0.003** 

TMT B: r=-0.489,           

p=0.005**

age: r=-0.544,               

p<0.001**

r. fornix Le TMT B: r=-0.621,                  

p<0.001**                                      

age: r=-0.467,                             

p=0.01*

age: r = -0.561,                              

p = 0.001**

age of onset: rho = 

-0.428, p = 0.018* 

TMT B: r=-0.580,       

p=0.001**                                

age: r=-0.568,          

p=0.001**

l. fornix FA TMT A: r=-0.586,                    

p=0.004**                                                   

TMT B: r=-0.594,                    

p=0.003** 

r. fornix FA TMT A: r =-0.462,                  

p=0.01*                                       

TMT B: r=-0.592,                    

p=0.003**    

959 

960 
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Figure legend:  961 

Figure 1: Delineation of the fiber tracts: from the global WM tracts (a), the fornix (b), 962 

cingulum (c) and the corpus callosum (d) fibers are delineated. The spheres (e) depicted 963 

in orange and red remove all voxels that pass through the ROI but do not belong to the 964 

tract of interest.  965 

966 

967 

968 
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Figure 2: Group comparison of fiber tracking scores between SZ patients, BD patients and 969 

healthy controls. The figures show all comparisons which deemed significant during 970 

group contrast between SZ patients / controls, and BD patients / controls (p<0.05). 971 

Abbreviations: BD = BD patients, CON = controls, FA = fiber integrity, Le=length of tract, 972 

Vol = volumes, Noft = number of tracts, l = left, r = right.  973 

974 
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