£
%
i

Zh—-l"-"rfl.

sveercey | HDelivery

H-delivery WP 3 — Task 3.2: Characterisation of prospective technologies

Sustainable Hydrogen Delphi Survey Round 1 -
Participant Report.

Dr Vicki Stevenson

May 2011

wsa

LC R LOW CARBON
RESEARCH INSTITUTE




Introduction

This is a summary of the data generated from Round 1 of the “Sustainable Hydrogen Delphi Survey”.
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Participant Information

Q1 - Please state which geographical region or country you are primarily
considering when responding to these questions

m UK

m Rest of Europe
mUSA

M Rest of World

m Unspecified

Q2 — Please select your main job function:

M Industrial Manufacture
M Industrial Research

H Lobbying

W National Government
m Non-industrial Research

W Other

Q3 — What percentage of your job is involved primarily with hydrogen?

m0-25%
W 26-50%
m51-75%

W 75-100%




Hydrogen Production

Q4 — Predict the worldwide hydrogen production used as an energy vector
(standard tonnes) for 2020 to 2050:

2020-2050 Worldwide Hydrogen Production as an energy vector
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The median response indicates that the worldwide hydrogen production as an energy vector will steadily rise
from 2.5 million standard tonnes in 2020 to 50 million standard tonnes in 2050. However, the chart above
shows that a significant number of people don’t expect more than 1000 standard tonnes of hydrogen to be
available as an energy vector by 2050.

This question will be explored further in round 2 of the survey.



Q5 —The 2008 global final energy consumption was 8 428 Million tonnes of oil
equivalent (Mtoe)*, this is equivalent to 2 922 million standard tonnes™ of
hydrogen. What percentage of global energy requirement do you think

hydrogen could be used to deliver in the time periods:

* Data from IEA (2010). Key World Energy Statistics
" this is the same as 2.922 trillion gallons of gasoline equivalent (gge), 32.7 trillion cubic meters or 1 156 trillion cubic feet of hydrogen

2020-2050 Percentage of global energy demand supplied using
hydrogen as a vector
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The median response indicates that the percentage of energy demand met using hydrogen as a vector would
rise from 2% in 2020 to 20% in 2050.

This question will be explored further in round 2 of the survey.



Q6 —What do you consider to be the key drivers for the development of a
hydrogen economy?

Key drivers for the development of a hydrogen economy
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The most frequently cited drivers for the development of a hydrogen economy related to concerns about
future fossil fuel availability and cost, the requirement to reduce greenhouse gas emissions and other
pollutants, the requirement for alternative transport fuels and the requirement for storage of electricity
generated from renewable technologies along with increased energy efficiency. This will be assisted by the

development hydrogen technologies, their increased cost effectiveness and the establishment of seed
infrastructure.

This question will be explored further in round 2 of the survey.
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Q7 —What do you consider to be the key barriers slowing or preventing the
development of a hydrogen economy? Bullet points or text acceptable in
answer

Key barriers for the development of a hydrogen economy
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The most frequently cited barriers for the development of a hydrogen economy related to the cost and
technical barriers of implementing the new technology as well as the existence of incumbent technology. It
was considered that policy, lack of infrastructure, lack of investment and public perception were also
significant barriers.

This question will be explored further in round 2 of the survey.



Q8 - Indicate the key developments in the hydrogen economy which you anticipate in the next 40 years:
2010 - 2020 2020 - 2030 2030 - 2040 2040 - 2050
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Hydrogen Production Technologies

Q9/10/16 — For each of the Hydrogen
Production Technologies listed:

a) Indicate the scale of production to
which the technology is best suited

using a scale of 0 to 5 where:
<200kg H; pa

200-1 000 kg H; pa

1 000-10 000 kg H; pa
10 000-30 000 kg H; pa
30 000-100 000 kg H pa
> 100 000 kg H; pa
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Photosynthetic - Bacterial
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The technologies which appear to be best suited for small scale production (<1 000 kg H, pa) are:
e Microbial electrolysis

The technologies which appear to be best suited for medium scale production (1 000 — 30 000 kg H, pa) are:
Bioderived liquid reforming

Biomethane reforming

Plasma reforming

Photoelectrochemical

Photolytic (microbial)

Photosynthetic (bacterial)

Photolysis

The technologies which appear to be best suited for large scale production (>30 000 kg H; pa) are:
Autothermal reforming
Membrane reforming

Partial oxidation

Steam reforming

Sorbent enhanced reforming
High temperature electrolysis
Thermochemical Cycles
Gasification (coal and biomass)
Pyrolysis

Thermocatalytic Cracking

Low temperature electrolysis and dark fermentation appear to be suitable for a wide range of production scales.
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b) Technological Capability

Technological Capability

2060

2050
2040

year

2030 i ‘

2020 — i
| | |

|
2010 L4 ] |, A .

2000 ........‘............‘.‘...

pyrolysis

photolysis
thermocatalytic cracking

autothermal reforming
bioderived liquid reforming
biomethane reforming
membrane reforming
partial oxidation

plasma reforming

steam reforming

sorbent enhanced reforming
electrolysis (low temp)
electrolysis atm alkaline
electrolysis press alkaline
electrolysis PEM
electrolysis (high temp)
electrolysis (microbial)
photoelectrochemical
photolytic (microbe)
photosynthetic bacterial
thermochemical cycles
dark fermentation
gasification (coal)
gasification (hiomass)

Many hydrogen producing technologies have already reached technological capability. These include:
e Autothermal reforming

Biomethane reforming

Steam reforming

Low temperature electrolysis including atmospheric and pressurised alkaline as well as PEM.

Gasification (coal and biomass)

Those expected to reach technological capability by 2020 are:
e Bioderived liquid reforming

Membrane reforming

Partial oxidation

Plasma reforming

High temperature electrolysis

Microbial electrolysis

Photolysis

Thermocatalytic cracking

Those expected to require more time include:
e Sorbent enhanced reforming

Photoelectrochemical

Photolytic (microbial)

Photosynthetic (bacterial)

Thermochemical cycles

Dark fermentation

Pyrolysis
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c) Commercial Capability

Commercial Capability
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Hydrogen producing technologies which have already reached technological capability include:

Biomethane reforming
Steam reforming

Low temperature electrolysis including atmospheric and pressurised alkaline

Gasification (coal)

Those expected to reach technological capability by 2020 are:
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Autothermal reforming
Membrane reforming

Partial oxidation

PEM electrolysis

High temperature electrolysis
Photoelectrochemical
Photolytic (microbial)
Photolysis

Gasification (biomass)

Those expected to require more time include:
e Bioderived liquid reforming
e Plasma reforming
Sorbent enhanced reforming
Microbial electrolysis
Photosynthetic (bacterial)
Thermochemical cycles
Dark fermentation
Pyrolysis
Thermocatalytic cracking

In general, technologies are expected to move from technological to commercial capability within 5 to 10
years. However, microbial electrolysis, microbe photolysis and the use of photosynthetic bacterial are
expected to take significantly longer (>20 years) to reach commercial capability.
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d) Standardised production (>1 000 units per year)

Standardised production
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The only hydrogen producing technologies which have already achieved standardised production are
biomethane reforming and coal gasification.

Those expected to reach technological capability by 2020 are:

Autothermal reforming

Steam reforming

Low temperature electrolysis including atmospheric and pressurised alkaline as well as PEM
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e Gasification (biomass)

Those expected to require more time include:
e Membrane reforming

Partial oxidation

High temperature electrolysis

Photoelectrochemical

Photolytic (microbial)

Photolysis

Bioderived liquid reforming

Plasma reforming

Sorbent enhanced reforming

Microbial electrolysis

Photosynthetic (bacterial)

Thermochemical cycles

Dark fermentation

Pyrolysis

Thermocatalytic cracking

In general, technologies are expected to move from technological capability to standardised production
within 30 years. However, pyrolysis and microbial electrolysis are expected to take significantly longer.
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e) Greatest potential assets for commercialisation
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f) Greatest potential barriers to commercialisation

_Aaomarmal Ralorming.
Stesam Radorming Hone &
_Low Temperuture Electrolysis _

ot Suitable for urban environment =

Low Tompeatorn Eloctrobyus Buikc Sito 3

Stsam Rulorming
B0 Derved Liguid Reforming

Flasma Ratoimies \
e G

Y SealeUp 5
Prokotys (Microbe) 7
_Protoaynihets bacieriel) _/ Scalo &
Mipmiteans HReloming Low Volume =
Microbial Blecholyus Large Volume
Mucrobiad Electiohysn.
H
Cost
By Darived Ligusa Ristorming Binfued outiook uncedtain ¢, Foodstock o
Bl Do Ligue Rkaming Availability
Staam Rufonming Caren
Parkal Cruagation Sedormeng Cost of oxygen . omr >n Barrk
Coal Gascaton
. Heneeds cleaned .,
Trrmocatalytic Cracking "
Autotharmal Relseming Mol suitable fov small sealo production .,
Coal Gantication Product 8
it A\ 0
Pyrobysis //
Autothermal Reformeng
™, Process Engineering .y
Partal Cn Ralorming -
Pariail Cuiabion Redoeming Catalysts
— Complexity =

Partiah Oniclason Rukming

Inharantly Eghting thermodynamics

. Oparatona! Complaxity

= Capability

=Diparabilty B Dariveed Linuid Reforming

Sortent Enturced Rotoming
e
o Migh Tamperaturs Electrotysis

lnfeasbie
Photosynitheti: (bacterisl)
J Technologically Challonging Themmochemical Cycles
=Membranes Mesntrane Retorming

Mamibrane Refoming
[ Sotbent Entenced Refarming

Durabiity ' Low Temperature Eloctrotynis

}\_lw Tomparature Electiolyss
'\ Microbual Elecinalysis

sStabilty | Relabiity Memmivane Redorming

= Track Record Plasma Rofoming

Shieeds constant operation High Temparature Ehecrotysn

=Stack Decay Raln High Temperature Electotys

iLiower power per unit surdace area Protalacimochamical

Low Tamparatues (Asscaghate
Adsine Elsctrolysis

High investment required for small s/ Low Tamparature (Prossurised
igh i <

Sertiert Erhantes: Reliermy

Low Temperaturs Hlsctrotysn

e e

sCarbon

High lemperature igh Iemperatun elecirolyss

_High temperatne and pressure

Low Pressure

SEnergy

_Power Consumplion

<ot suited 10 intermitient power supply RLow tarpar sty siuctoie

Low Tampemtur (Almosgrenc
Adhaterw|

Slusues with fuctuating powes input -~

Low Temperatuns (Presssised
. Atkaten) Elscrotyus
nteminancy Frotosoctchomical
:mlkyd high leemparature (without T T —
Eneegy Loss _,_High Temperaiurs Elecirotyss
=Eneegy Balance Trarmacatitytic Cracking

23



A wide range of assets and barriers to commercialisation of hydrogen production technologies have been
reported by the participants. Where the technologies affected have been indicated by more than three
participants, it has been represented with bold text.

g) potential of hydrogen production within an urban setting

Potential for H2 production in an urban setting
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Low Temperature Electrolysis and Photoelectrochemical are the technologies most widely accepted as being
suitable for hydrogen production within an urban setting.

h) indizcate the scale of production feasible within a forecourt situation (325m? or
3500ft?)

using a scale of 0 to 5 where:
<200kg H, pa

200-1 000 kg H; pa

1 000-10 000 kg H; pa
10 000-30 000 kg H; pa
30 000-100 000 kg H; pa
> 100 000 kg H; pa

gk~ wdhNhDPEF, O

There were few responses to this question and some confusion as to the scale feasible in a forecourt
situation.
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i) Indicate the barriers forseeable in an urban setting

Microbial Electrolysis

Photolytic (microbe)

Biomethane Reforming Biogas availability =

Steam Reforming

Coal Gasification Carbon emissions =

Biomass Gasification Low Temperature Electrolysis

Autothermal Reforming High Temperature Electrolysis

Bio Derived Liquid Reforming Coal Gasification

Membrane Reforming Autothermal Reforming

Partial Oxidation Reforming \ Bio Derived Liquid Reforming

Plasma Reforming \ ! Membrane Reforming

Steam Reforming Partial Oxidation Reforming

Sorbent Enhanced Reforming Plasma Reforming
=5afety

High Temperature Electrolysis Steam Reforming

Photoelectrochemical Space & Sorbent Enhanced Reforming
Phatolytic {(microbe) High Temperature Electrolysis
Photolytic (microbe) Thermochemical Cycles

Photosynthetic (bacterial}

Coal Gasificati

Thermochemical Cycles

= 3 H =Transport Bio Derived Liquid Reforming
/ =Barriers in an urban setting

Dark Fermentation Bio derived liquid reforming
=Waste Products

Coal Gasification Sorbent Enhanced Reforming

Biomass Gasification =Perception Low Temperature Electrolysis

Thermocatalytic Cracking Low Temperature Electrolysis

Autothermal Reforming High Temperature Electrolysis

Membrane Reforming Photoelectrochemical

Partial Oxidation Reforming High Temperature Electrolysis

: =Heat Source / High Temperature
Plasma Reformirig Thermochemical Cycles

Steam Reforming =Scale Coal Gasification

Sorbent Enhanced Reforming

=0ffgas cleanup Coal Gasification

Low Temperature Electrolysis

HRegulations. codes & standards

Low Temperature Electrolysis
High Temperature Electrolysis (lack of)

Photoelectrochemical =Normal for industrial and / or nuclear Thermocatalytic Cracking

Thermoachemical Cycles / =Not Suitable Thermocatalytic Cracking
Dark Fermentation
Coal Gasification

Biomass Gasification

Pyrolysis

Thermocatalytic Cracking
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j) indicate the frequency and skill level of maintenance required
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- Bitrvea LUkt Rekrming' .

Bio Darived Licuid Reforming

There was a spread of opinions about
the frequency and skill level required
for maintenance. In general, most
technologies required at least a general
handyman with hydrogen specific
training on a monthly basis.



Electrolysis Production Priorities

Q11 —increased site surface area vs increased operating costs

Choice of increasing site surface area to incorporate larger storage tanks or increasing operating costs due to
lack of capacity to take advantage of off-peak electricity rates.

Larger Site Surface Area generally favoured.

Q12 —increased use of solar / wind generated electricity vs reduced maintenance

Choice of increasing use of solar / wind generated electricity or reducing maintenance by allowing
electrolyser to run without interruption.

Increasing use of solar / wind generated electricity should not be an issue if appropriate control systems are

used. Varying current is a problem, but on/off operation is not.

Q13 — high electrolysis efficiency vs sellable oxygen production
Choice of increasing electrolysis efficiency or producing sellable oxygen as a by-product.

Increased electrolysis efficiency generally favoured — potential exceptions to this would be a hospital with a

local requirement for oxygen.

Q14 — high electrolysis efficiency vs high hydrogen production rate

Choice of increasing electrolysis efficiency by operating with a very low current density or increasing
hydrogen production rate by increasing the current density.

This was considered to be application dependent with no clear bias to one option or the other.

Q15 - high electrolysis efficiency vs higher capital/maintenance costs and restricted
availability of high temperature process heat

Choice of using more electricity for low temperature electrolysis or using high temperature electrolysis with
higher capital/maintenance costs and restricted availability of high temperature process heat

This was considered to be application dependent with no clear bias to one option or the other.
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Feedstock

Q17 — Specify the energy inputs/feedstock most likely to contribute to the bulk of
hydrogen production in 2020-2050

Energy inputs/feedstocks: 2020-2050
L —

m 2020
m 2030

2040
2050

Carbon based feedstocks are expected to decline, with biomass sources peaking in 2030 then declining,
while nuclear and other renewable sources increasing.

Q18a — For hydrogen produced through electrolysis, what issues might arise with
electricity provision in urban areas for transport refuelling locations?

Electricity availabilty for urban electrolysis

No of mentions
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Q18b — What issues with industrial electricity rates might be faced?

Issues with industrial electricity rates

No of mentions

none
not relevant .
none if

to domestic offpeak short term
producers only

yes
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Safety Risk and Public Perception

Q19 — What opportunities do you forsee to develop global standards and safety
regulations for hydrogen production?

General agreement that good progress has already been made

Q20 — What will be the key factors to cover insurance risk mitigation from 2020 to
20507

Key factors for insurance risk mitigation
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Initially standards/regulations and storage/transport methods need to be developed at the same time as
demonstration projects are undertaken which will build up familiarity and experience.

Q21 — Are there any safety issues which should be addressed when siting hydrogen
production facilities near power plants (including nuclear) and high voltage lines?

General concensus that common sense be followed and that hydrogen production would be no more
dangerous in this scenario than other energy sources or chemical plants.
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Q22 — What are the key factors to include in any scheme aimed at community
education regarding hydrogen production?
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Q23 — What public acceptability barriers do you foresee for hydrogen production in
fuelling stations?

Public acceptability barriers

no of mentions

Safety is considered to be the main public acceptability barrier and as such is the key factor to include in any
scheme aimed at community education.
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Sustainable Development and Hydrogen

Q24 — most important aspects of sustainability (environmental / economic / social)

Key Sustainability Issues
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No of mentions
|

Q25 — most sustainable methods of hydrogen production

Sustainable H2 production methods

no of mentions

Q26 — least sustainable methods of hydrogen production

Least sustainable H2 production methods

No of mentions

Although fossil fuel based technologies are generally regarded as the least sustainable, renewable methods
including biomass, PV/solar and wind are also mentioned in this category, despite also being considered as
sustainable methods in Q25.
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