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Abstract

The development of GPS tags for tracking wildlife has revolutionised the study of home

ranges, habitat use and behaviour. Concomitantly, there have been rapid developments in

methods for estimating habitat use from GPS data. In combination, these changes can

cause challenges in choosing the best methods for estimating home ranges. In primatology,

this issue has received little attention, as there have been few GPS collar-based studies to

date. However, as advancing technology is making collaring studies more feasible, there is

a need for the analysis to advance alongside the technology. Here, using a high quality GPS

collaring data set from 10 proboscis monkeys (Nasalis larvatus), we aimed to: 1) compare

home range estimates from the most commonly used method in primatology, the grid-cell

method, with three recent methods designed for large and/or temporally correlated GPS

data sets; 2) evaluate how well these methods identify known physical barriers (e.g. rivers);

and 3) test the robustness of the different methods to data containing either less frequent or

random losses of GPS fixes. Biased random bridges had the best overall performance, com-

bining a high level of agreement between the raw data and estimated utilisation distribution

with a relatively low sensitivity to reduced fixed frequency or loss of data. It estimated the

home range of proboscis monkeys to be 24–165 ha (mean 80.89 ha). The grid-cell method

and approaches based on local convex hulls had some advantages including simplicity and

excellent barrier identification, respectively, but lower overall performance. With the most

suitable model, or combination of models, it is possible to understand more fully the pat-

terns, causes, and potential consequences that disturbances could have on an animal, and

accordingly be used to assist in the management and restoration of degraded landscapes.
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Introduction

The development of global positioning system (GPS) tags for tracking wildlife has revolution-

ised the study of home ranges, habitat use and behaviour [1]. GPS telemetry has provided the

opportunity to simultaneously track multiple animals with improved locational accuracy,

without the limitations associated with radio tracking or direct human observation, such as

biases due to bad weather, length of time followed, distance covered, or difficult terrain [1,2].

However, the larger data sets and more frequent sampling intervals compared to traditional

tracking technologies challenge the validity and feasibility of established data analysis methods,

stimulating the development of new methods to reveal movement patterns, behaviour and esti-

mate home ranges [3,4]. These are important developments, yet relatively little guidance is

available to help researchers choose between them.

Home range estimation is one of the main applications of GPS tagging data [4]. An animal’s

home range is traditionally defined as the area used for feeding, sleeping, finding mates, and

raising young [5], but more modern definitions describe it in terms of the area across which

an animal has a defined probability of occurrence during a specified time window [6]. Further-

more, the home range is suggested to be part of the animal’s cognitive map, in which move-

ments are planned based on the nutritional state or motivation of the animal [7]. The cognitive

map of an animal may also include areas which it is aware of but does not go to, due to smell,

sight or hearing [7]. Within the home range, important information for ecology and conserva-

tion includes the total area required by the study subjects, the time spent in different areas and

how frequently different parts are used [8]. This is often displayed in terms of a utilisation distri-

bution (UD), which is the relative frequency at which an animal uses different parts of its home

range [9,10]. This in turn can help to identify the core area where an animal spends most of its

time, including important feeding and resting sites [5,11,12]. Characterising these different

aspects of home ranges, and understanding the processes of habitat selection, movement and

activity patterns and how they respond to environmental and anthropogenic changes, are all

important for the conservation management of wild populations [11,13,14].

Since the first use of radio-collaring for studying home ranging in the 1960’s [15], methods

for analysing tracking data have evolved continuously, accelerating after 2000 with an end to

blocking GPS accuracy and rapid technological developments [16]. Home range estimators

vary widely in their sophistication, assumptions and the level of detail revealed, but fall into

two main groups: location-based methods, which ignore temporal information and include

many of the traditional methods of analysis, and movement based methods, which are more

recent developments and combine time and location data. Both categories include methods

for estimating utilisation distributions.

Location-based estimators tend to be conceptually simple and computationally efficient. The

grid-cell method (GCM) is the simplest approach to estimating the utilisation distribution, in

which a grid is superimposed over the area, and the number of times an animal enters each cell

counted [17,18]. Other approaches based upon parametric kernel density estimators are also

used (e.g. [19–22]). Although GCM is useful in showing hot spots in utilisation patterns, its

main disadvantage is in measuring overall home range size, as well as estimating range bound-

aries, i.e. barriers or ranges with complex boundaries [18]. Both GCM and parametric kernels

are widely used throughout ecological studies, but the disadvantage of these approaches is that

they are sensitive to the degree of smoothing (e.g. grid cell size or kernel widths) [4]. These

approaches also struggle in habitats with barriers to movement or where there are abrupt

changes in habitat type [23]. In common with most location-based parametric methods, they

also assume that points are independent from each other—an assumption that is rarely met by

the short time intervals between GPS fixes [24].
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In response to the limitation of parametric methods in handling barriers or habitat edges

and assumptions requiring GPS points to be independent, the local convex hull nonparametric

kernel method (LoCoH) was developed [23]. LoCoH calculates the convex hull around each

GPS fix based upon its close neighbours, before forming density isopleths by merging hulls

together [23,25]. Neighbours can be defined in different ways, leading to different versions of

LoCoH [25]. Unlike parametric kernel methods, LoCoHs do not require the user to make any

pre-assumptions of the functional form for the kernels, and therefore they are more successful

at identifying the true boundaries as the density of data increases [25].

Temporal autocorrelation between fixes has traditionally been considered a problem in

home range analysis, often leading to large amounts of data being discarded to produce ‘inde-

pendent’ observations [26,27]. By contrast, movement-based density estimates combine the

location and time of a fix, as well as being able to incorporate activity data collected between

fixes by the movement sensors built into most GPS collars [28–30]. Two of the main methods

are adaptive time LoCoH (T-LoCoH), which adds temporal information to the basic LoCoH

analysis whilst retaining the desirable edge-detection qualities [30], and biased random bridges

(BRB), a development on kernel density estimation that combines serially correlated GPS fixes

with high frequency activity data to estimate fine scale movements and habitat use [24,28,31].

Recognising the value of accurately resolving range edges, BRB allows barriers to movement

(e.g. rivers) to be specified, further reducing biases associated with parametric kernel smooth-

ing [28].

The number of different home range analysis methods that are available, combined with

the rapid rate of development of these analyses, can make it difficult for researchers to choose

between methods. Whilst the research question should be the primary driver of the method

selected [8], a greater understanding of how different methods perform would aid this selec-

tion and assist comparisons amongst existing home range estimates. Within the field of con-

servation biology, there has been an increase in studies comparing different home range

estimators with GPS collaring data (e.g. [25,32–34]). In primatology, however, this issue has

received scant consideration as home range studies are still in their infancy, with few GPS-

based studies and the analysis often relying upon the GCM (e.g. [12,17,18,35]). Here, using a

high quality GPS collaring data set collected from 10 proboscis monkeys (Nasalis larvatus) in

northern Borneo, we aimed to: 1) compare home range estimates generated by the most com-

monly used estimator in primatology, the GCM, with three alternative methods designed for

large and/or temporally correlated data sets (adaptive LoCoH, time LoCoH and BRB); 2) eval-

uate model performance with known physical barriers for a species which recurrently utilises

forest edges; and 3) test which of the models is the most versatile and robust by simulating less

intense sampling regimes resulting from technological limitations or failures.

Methods

Ethics statement

All animal handling was carried out in accordance with the current laws of Malaysia and

Sabah Wildlife Department’s Standard Operation Procedures on Animal Capture, Anaesthesia

and Welfare. Permission was granted by Sabah Biodiversity Centre (permit JKM/MBS.1000-2/

2 JLD.3 (73)). The work carried out during this study was in accordance with the Weatherall

report, and followed the guidelines for non-human primates as described by Unwin et al. [36].

All efforts were made to ensure the welfare, and reduce stress of the animals, with the addition

of full personal protective equipment worn by all team members throughout the process to

prevent human-primate disease transmission. A veterinarian specialised in the capture and

anaesthesia of wildlife performed the darting, having previously conducted an evaluation of
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the area and target individual to minimise risk to the animals. Animals were anaesthetised

using Zoletil 100 (Tiletamine + Zolazepam; 6–10 mg/kg), and a prophylactic dose of Alamy-

cine LA (20 mg/kg) and Ivermectine (0.2 mg/kg) was given as a preventative measure to assist

in the post-anesthesia recovery. Anaesthesia and the vital signs were monitored throughout

the procedure.

Study site and subjects

This study took place in the Lower Kinabatangan Floodplain, Sabah, Malaysian Borneo (5˚

18’N—5˚42’N and 117˚54’E—118˚33’E). The floodplain consists of 420 km2 of protected forest

and approximately 100 km2 of state and private forest, and is a mosaic of agricultural land and

natural forest types, including dry lowland forest, semi-inundated, semi-swamp/grassy forests

and swamp [37,38].

Ten proboscis monkeys were collared from different one-male social units spread along the

Lower Kinabatangan River, covering a range of habitat quality, and forest fragment sizes (Fig

1). Proboscis monkeys travel as an integrated unit, so the movement of a single individual can

be considered to represent the whole group [39]. Collaring locations were always >2 km apart,

or on opposite sides of the river, to minimise potential overlap between home ranges. Eight

individuals were collared within protected forest, and two were collared in unprotected forests

that connect protected forest lots. GPS collars were fitted to six males and four females (male:

Lotek Biotrack GSM WildCellSD; female: e-obs UHF 1C-Light) by a qualified veterinarian,

and weighed <2% of the individual’s body mass (cf. recommended 5% maximum [40]. Collars

were fitted in 2011–2014 and provided data for 109–401 days (S1 Table). By equipping the

Fig 1. Collaring sites of 10 proboscis monkeys along the Kinabatangan River, Sabah, Malaysia.

https://doi.org/10.1371/journal.pone.0174891.g001
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male’s collars with a pre-programmed automatic release mechanism after 12 or 18 months,

and the female collars with leather spacers (due to weight constraints), no recapture was neces-

sary. To maximise battery life, collars were programmed to record hourly positions between

0500hr and 1900hr (at least 30 minutes before sunrise/after sunset), as proboscis monkeys are

sedentary after dark [41].

Home ranging data sets

To improve the quality of the data set as per Bjørneraas [42] the GPS data were filtered prior to

analysis to remove locations which were: i) fixed by fewer than four satellites; or ii) further from

both the previous point and subsequent point than an animal is able to travel in the elapsed

time. This distance was calculated using extensive ground follows of a single proboscis monkey

group from a previous study [43] that calculated the estimated daily path length during ground

follows to be 799 m, Therefore any distance greater than half that between consecutive hourly

points was excluded to account for GPS error. To account for pseudo-replication in the home

range estimates due to the 1900hr and subsequent 0500hr fix being taken in the same tree, all

0500hr points were removed. After the data screening, only 8.3% of points were removed. Com-

pared to other studies, which have had to remove 16–26% of their points [44,45], this study only

rejected a small proportion of points, and is therefore considered a high quality data set.

Many GPS collaring studies have a lower fix frequency than in the current study (e.g. 4h

interval) to maximise battery longevity when tag weight is restricted by the study species [46].

In addition, a large proportion of GPS fixes often fail (e.g. <60% fix success rate [47]) or are

rejected due to low quality, based on high dilution of precision values [16,42,44]. To investigate

the effects of these two factors on home range estimation, we compared home range estimates

using the complete data set to those based on two subsets of the data that simulated lower fix

frequency or higher fix error rates [18]. Simulation 1 removed 75% of the data to create a regu-

lar interval of four hours between fixes to mimic the reality that many GPS tracking studies

have to take less frequent fixes in order to elongate the total collaring study period. Simulation

2 represented the situation where fixes were not always possible, or the GPS error was too high

for the fix to be usable. This is more prevalent for smaller collars or animals living on the forest

floor [32,47–49], and results in irregular time intervals. As it is possible for multiple fixes to fail

in a day, but rarely that all scheduled fixes would fail, a minimum of five fixes were randomly

selected each day, with the maximum potential for 14 hourly fixes, to represent fix failure (S1

Table).

Home range estimation

Utilisation distributions were estimated using four approaches: i) GCM, ii) adaptive localised

convex hull (a-LoCoH), iii) time-based adaptive localised convex hull (T-LoCoH), and iv)

BRB. GCM and a-LoCoH are location-based estimators, whereas T-LoCoH and BRB incorpo-

rate time i.e. are movement-based. GCM was calculated in Geospatial Modelling Environment

[50]. The remaining estimators were calculated in R 3.1.3 [51] using the packages adehabi-
tatHR, adehabitatLT (a-LoCoH and BRB) [52,53] and tlocoh [30]. The UDs were based on the

90 percentile for overall home range size and 50% for the core area [54].

GCM used a grid with 50 x 50 m cells, consistent with previous proboscis monkey studies

[43,55]. Despite the recommendation to exclude a proportion of outlying points, as they often

represent imprecisions in location estimates or exploratory movements rather than points

within the functional home range, most studies continue to use 100% of the points for GCM

home range estimates. To reduce the bias in home range estimations that include imprecise or

exploratory movements, as well as to make the GCM method comparable to the other methods
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examined in this study, the least dense 10% and 50% cells were eliminated for the estimates of

total and core UD, respectively.

a-LoCoH is a development of the traditional minimum convex polygon method for calcu-

lating home ranges [25]. It calculates a convex hull for every point in the data set, based on its

nearest neighbours, before merging the hulls into a set of nonparametric kernels based on the

density of points [25]. The nearest neighbours for each GPS fix are the sets of points whose

cumulative distance to the focal fix are less than or equal to a defined threshold, a, resulting in

areas of higher use having smaller convex hulls [25]. The value of a was selected using the two-

part method recommended by Getz et al. [25]: i) using the maximum distance between two

GPS fixes in the data set as the starting value for a, before ii) being further refined by rounding

to the nearest multiple of 10 by visually assessing the maps using the “minimum spurious hole

covering” technique, which ensures the physical features that cannot form part of the home

range (e.g. lakes) are excluded from the a-LoCoH estimate [25,30] (S2 Table).

Adaptive T-LoCoH builds upon a-LoCoH by incorporating time into the model. A time-

scaled distance factor is used to select nearest neighbours for T-LoCoH by calculating the max-

imum theoretical velocity of an individual [30]. The scaling factor, s, specifies the maximum

amount of time at which spatially neighbouring, but not necessarily sequential, GPS fixes are

still considered to be temporally correlated to the focal location, and therefore included as a

nearest neighbour [30]. By increasing s, time becomes more important in defining the degree

of correlation in the distance between fixes and the time between those fixes [32]; when s = 0,

time is not considered [30]. Lyons et al. [30] recommend that the value of s should ensure that

40–60% of hulls are constructed using temporally correlated fixes, so that both the spatial and

temporal data are being considered relatively equal in the analysis; we used 50% throughout

for consistency. The a-value was then selected using the MHSC technique (S2 Table).

BRB is a movement-based kernel method that links successive GPS fixes and then interpo-

lates between them to develop a smoothed kernel density estimate for each interpolated location

[32]. To interpolate between locations, BRB assumes that the animal is moving towards the next

location, but incorporating a random component to model deviations from the straight line

path [56]. BRB requires three main parameter values to be set based on biological or technologi-

cal knowledge. The maximum time threshold (Tmax) is the longest period between points before

they are no longer considered to be autocorrelated. Autocorrelation was determined by com-

paring the summed squared differences in step length between successive fixes with randomly

permuted values of step length [57,58]. For the complete data set and Simulation 2, Tmax =

7,800 sec (2 hours plus 10 minutes tolerance), and 29,400 sec for Simulation 1 (8 hours plus

10 minutes tolerance) [28]. The second parameter is the minimum step length (Lmin), which

defines a distance between successive points below which the animal is considered stationary

(e.g. when feeding or resting; [59]). To account for the possibility of an animal moving within a

tree when foraging or due to social displacements, or possible false movements due to GPS

error, which averaged 14.3 m (based on static collar tests with the collars set at a fixed location),

track segments less than 15 m were assumed to be resting points (Lmin = 15). Finally, the mini-

mum smoothing parameter (hmin) corresponds to the minimum standard deviation in reloca-

tion uncertainty [56]. It must be large enough to encompass the range of potential locations an

animal could actually occupy whilst being recorded at the same point, while being less than half

the mean distance travelled for the time Tmax [28]. To assist in the selection of hmin, the mean

cosine of turning angles was calculated to estimate the tortuosity of the animal’s path, and

thereby the uncertainty of a location between two recorded locations [60]. The mean cosine of

turning angles in the tracking data was 0.30, suggesting an intermediate value of hmin between

our observed standard deviation of relocation uncertainty (19.0 m) and half the mean distance

travelled for time Tmax (68.39 m). However, as boundary segment lengths must be greater than
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3×Hmin or cannot be sharper than 90˚ [61], and the boundaries in this study had many sharp

and tight bends, hmin was set at 25 m to account for these restrictions. See Benhamou [60] for

full details of this process.

Model comparisons and statistical analysis

The home range estimates produced by the four methods were compared in two ways: i) the

overall dissimilarity between the utilisation distributions, and ii) specific characteristics of the

range estimates (e.g. area). Overall dissimilarity was assessed by calculating the Hellinger dis-

tance between each pair of home range estimates and ordinating the resulting distance matrix

using principal coordinate analysis (PCoA) [62]. All 40 home range estimates (10 individuals x

four methods) were converted to rasters on a standard grid (identical coordinate origin and

resolution) allowing pixel-by-pixel comparisons based on the row and column pairs between

the paired maps [62]. The significance of apparent differences between the methods was tested

using permutational multivariate analysis of variance (perMANOVA), using the adonis func-

tion in the vegan package [63,64]. Permutations were stratified by individual proboscis mon-

keys to control for individual differences and focus on the differences between the methods.

Five characteristics were used to compare home range estimates from the four methods in

greater detail (Table 1). Although an animal’s ‘true’ home range is unknown using empirical

data (as opposed to in silico comparisons), we can assess the relative properties of different esti-

mators using a range of measures. Area, boundary complexity and patchiness provided infor-

mation about the basic shape of the home range. Variation in these three properties can

illustrate the likelihood of estimators under- or over-fitting, and therefore can be indicative of

the models’ tendency to under- or overestimate of home range area, respectively. The com-

plexity of a boundary can be used as a proxy to measure the relative goodness of fit of a home

range, and may show that, due to irregular or concave boundaries created, it not only excludes

areas which were not used, but also used areas [44]. Although patches in a home range may be

indicative of differences in habitat quality [65] or an increase in speed through disfavoured

areas to reach favoured areas, a large degree of patchiness may also mean that the pathways

taken to the patches are not included due to the over-fitting. Accurate barrier detection is

important for reliably delineating the edges of the home range. Methods that are unable to

intrinsically delineate the edges of an animal’s range are particularly susceptible to boundary

Table 1. Summary and methods used to calculate the physical characteristics used to compare the

home range estimators.

Home range

characteristics

Justification and method

Total home range area Calculated in ArcGIS in ha

Boundary complexity Edge density (ED) ratio: ED = perimeter (m) / area (ha) [68]. Higher numbers

indicate more complex boundaries, which in turn can be used as a proxy for how

the data fit the model (i.e. by creating irregular or concave boundaries [44]).

Patchiness The number of separate patches. Being too patchy may indicate the model

over-fitting (underestimating) the data and therefore not being as truly

representative towards the area actually required by the animal [18].

Barrier detection The percentage of the estimated home range that overlapped features known to

be barriers to proboscis monkeys: large water bodies (main river and oxbow

lakes) in this study. Small tributaries (<10 m wide) were not considered as true

barriers, as proboscis monkeys are able to cross them easily [43]. The presence

of water was determined using pre-existing drone imagery of the study area.

Area-under-the-curve

(AUC)

The AUC is a measure of accuracy used to determine the most appropriate

home range estimator by assessing how well GPS fixes fit the contours of each

estimator, calculated using the caTools package in R based on [66].

https://doi.org/10.1371/journal.pone.0174891.t001

Evaluating home range estimators using GPS collars

PLOS ONE | https://doi.org/10.1371/journal.pone.0174891 March 31, 2017 7 / 23

https://doi.org/10.1371/journal.pone.0174891.t001
https://doi.org/10.1371/journal.pone.0174891


bias, particularly for quadrats that are in direct contact with the boundary, as values will be

over- or under-estimated, depending on whether the quadrat lies on the unused side of the

boundary, or the used side, respectively [28]. The area-under-the-curve (AUC) is a metric that

has recently been used to determine the most appropriate home range estimator by assessing

how well GPS fixes fit the contours of each estimator [66]. AUC values measured each home

range estimator’s ability to discriminate between areas that had GPS fixes and those that did

not [66]. In effect it provided a measure of accuracy–the agreement between the observed GPS

points and the modelled utilisation distribution. The AUC value ranges between 0.5 to 1.0,

with 0.5 equivalent to chance–no agreement between observed and modelled data–and a value

of 1.0 indicating perfect agreement between the points and the utilisation distribution [67].

Differences in the five home range descriptors between the four methods were tested using

General Linear Mixed Models (GLMMs) using R’s lme4 library [69], with estimation method

as a fixed effect. The individual identification for each collared monkey was treated as a ran-

dom effect in the models to account for multiple estimates of each individual’s home range,

whilst sex was included as a covariate to control for differences between males and females.

Significance of terms was tested with a likelihood ratio test, comparing nested models with

and without the fixed effect of interest, and Tukey tests were carried out using themultcomp
library to examine pairwise differences between the four methods [70].

The effects of reduced data quantity (Simulation 1 & 2) were assessed in two ways. First, a

subsample overlap analysis was used to compare the home ranges estimated using the full data

with those from the two simulations [18]. The percentage of the fixes from the full data set

included within the subsampled home range was calculated for both simulations, as well as the

percentage of area overlap between the complete and simulation ranges of the same method. A

higher percentage of overlap and greater inclusion of fixes indicated a more robust model [18].

The second approach compared home range estimates from both simulations to the estimates

obtained using the full data based on the five measures (Table 1). GLMMs were used, with

fixed effects for data set (complete, Simulation 1 or Simulation 2) and estimation method, and

a random effect for proboscis monkey individuals.

Results

Method comparisons using the full data set

Utilisation distributions differed significantly among home range estimators (F(3,36) = 0.45,

p = 0.001) and in how closely they matched the original GPS fixes (AUC; Chi-sq = 112.92,

df = 3, p<0.001). GCM utilisation distributions were clearly separated from the other three

methods, which were usually very similar to one another: a-LoCoH and T-LoCoH models

were generally concordant, whilst half of the BRB models overlapped the LoCoH models, and

the remaining half were still closer to the LoCoH methods than to the GCMs (Fig 2). GCM

estimates agreed most closely with the raw GPS fixes (AUC = 0.998), followed by BRB (0.969),

with the two LoCoH methods showing weaker agreement: a-LoCoH (0.841) and T-LoCoH

(AUC = 0.807) (Fig 3). All pairwise comparisons of AUC were significantly different (p<0.05).

The choice of home range estimate method also significantly affected the area, boundary

complexity, patchiness and edge detection accuracy of the resulting home range estimates (all

p<0.001; Fig 4, see S3 Table for detailed values and test statistics of overall and core range).

GCM produced the largest, most patchy estimates, with the longest boundaries relative to area

and the largest overlaps with the rivers/oxbow lakes for overall home range and core range

(Fig 5). It differed significantly (all Tukey tests p<0.05) from all other methods on these four

measures, with the exception of BRB for total area and a-LoCoH for boundary complexity of

the core range. Using 100% of the points for GCM (as is commonly used in other studies),
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resulted in a home range estimate which was 22.06% larger, from 83.05 ha (range 35.00–167.25

ha) to 108.13 ha (range 41.25–217 ha; S4 Table).

a-LoCoH produced the smallest home range estimates, and was not significantly different

than T-LoCoH in producing the least patchy estimates, with the least amount of overlap with the

river and oxbow lakes. There was no difference in edge density between a-LoCoH, T-LoCoH

and BRB in overall home range, but the core range edge density for a-LoCoH was significantly

higher than that of T-LoCoH and BRB. BRB produced mid-range estimates for patchiness and

barrier detection for the overall range, but was no different than a-LoCoH and T-LoCoH in its

overlaps with rivers and oxbow lakes for core ranges

Simulations

In the majority of cases, rarefaction of the GPS data (Simulation 1) or random removal of 5–14

points per day (Simulation 2) did not have significant effects upon the average characteristics

of estimated UDs (Table 2, S5 Table). Where differences were detected, they occurred most

frequently between Simulation 1 and the full data, and affected GCM and BRB to a greater

extent than the two LoCoH techniques. GCM was the only method to experience a significant

change in the sub-sample overlap analysis, with Simulation 1 having the lowest percentage of

Fig 2. Principal coordinates plot of the home range estimators for 10 individual proboscis monkeys.

Dotted lines indicate Hellinger distance, showing the differences between the ranges produced by four home

range estimators (GCM, green triangle; a-LoCoH, blue; T-LoCoH, orange; and BRB, brown).

https://doi.org/10.1371/journal.pone.0174891.g002
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Fig 3. Mean (±SE) area-under-the-curve for the home range estimators (N = 10 individuals). Grid-cell

method (GCM—blue), adaptive local convex hull (a-LoCoH—red), adaptive time local convex hull (T-LoCoH—

green) and biased random bridges (BRB—purple), using the complete data set (C) and the simulated scenarios,

with a decreased sampling interval (S1 = fixes every 4 hours), and simulating random failures (S2).

https://doi.org/10.1371/journal.pone.0174891.g003

Fig 4. Summary of averages for overall (90%, blue) and core (50%, green) home range comparison variables (N = 10

individuals). (1) home range area; (2) boundary complexity (edge density); (3) patchiness and (4) barrier detection for: Grid-

cell method (GCM), adaptive local convex hull (a-LoCoH), adaptive time local convex hull (T-LoCoH). a,b,c Pair-wise results

from Tukey test; results significantly different from another (p<0.05) are indicated by a different letter, those with the same

letter showed no significant difference. Lower-case letters represent overall home range differences, and upper-case letters

represent core-range differences.

https://doi.org/10.1371/journal.pone.0174891.g004
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overlap. Despite changes in area and outline, the AUC values for GCMs and BRBs showed no

difference between simulations, whereas this was the only measure by which a-LoCoHs and

T-LoCoHs were affected, both producing smaller AUC values for Simulation 1 (Fig 3). Differ-

ent methods responded to the simulations in different ways. For GCM, Simulation 1 produced

smaller UDs, with more complex outlines, whereas areas from BRB estimates increased by

approximately a factor of 1.4 (core) and 1.5 (overall), and had smoother boundaries. Simula-

tion 2 did not differ from the full data for either measure. Patchiness only changed for BRB

with Simulation 1, decreasing the number of patches more by a factor of 2.6 (core) to 2.7 (over-

all) from the complete model. The area overlapping the river was not significantly affected by

either simulation, despite the significant changes in home range area and boundary complexity

for GCMs and BRBs. (Fig 6).

Discussion

Considering the advances in methods for home range estimation over recent years, there have

been relatively few studies examining the suitability of new methods for primate ecology or

conservation [but see 17,63]. Here, we compared the most widely used approach in primatol-

ogy (GCM) against several recently developed methods. This showed that the home range esti-

mates produced by GCM were distinctly dissimilar from the others, even when only using

90% of the points instead of the standard 100% for GCM. For the physical characteristics, both

LoCoHs were particularly robust to variations in sampling intensity, and were the best

Fig 5. An example of the home range estimates produced for one proboscis monkey. Home range

estimator (1) Grid-cell method (GCM), (2) adaptive local convex hull (a-LoCoH), (3) adaptive time local convex

hull (T-LoCoH), and (4) biased random bridges (BRB); light colours = 50% isopleth, and dark colours = 90%

isopleth.

https://doi.org/10.1371/journal.pone.0174891.g005
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methods at detecting barriers. Next to GCM, BRB estimates agreed most closely with the raw

data, even when sampling intensity varied. Despite BRBs similarity to GCM in terms of area

and AUC values, the utilisation distributions were similar to the LoCoH methods, and pro-

duced intermediate results between GCM and LoCoHs. The results demonstrate that the

choice of home range estimator can have important impacts on the conclusions drawn from a

study, and could be important considerations in selecting a method for home range estimation

(Table 3). We first consider some of the limitations to our study, before discussing the results

in greater detail and concluding with some recommendations for future studies.

There are three main limitations to this study. The first is that it used a single species in one

location, and so it is not possible to assess how different environments or home-ranging

behaviours might affect the conclusions. Nevertheless, the comparison is valuable alongside

other studies comparing home range methods in an increasing diversity of single species (e.g.

Canis familiaris [32]; Carcharhinus melanopterus [71]; Papio hamadryas ursinus [44]; Ursus
arctos horribilis [72]). Furthermore, proboscis monkeys are a good model species for home

ranging comparisons as they naturally occur in habitats that have sharp barriers (water-bodies)

against which to test the edge-finding ability of different range estimators and, as one of the

largest monkey species, are able to wear relatively large GPS collars that can collect high quality

data over long periods of time. This made it possible to use subsets of the data to simulate

other tracking scenarios.

The second limitation is that the “true” home range of proboscis monkeys, as it is with

mammals in general, is unknown, so that whilst we were able to compare different methods

and our simulations in terms of their relative performance, there is no way to know the abso-

lute accuracy of the range estimates. Powell and Mitchell [7] suggest that because a mammal’s

home range is part of their cognitive map, which is constantly updating, home range estimates

can only defined for a specific point in time. Instead, utilisation distribution models can be

used predict areas in which the animal is likely to be at a point in time [7]. Simulation studies

in the literature have begun to overcome this problem by using artificial tracking data in which

Table 2. Summary of simulation home range models.

Simulation Ave. Area (ha) Ave. Edge Density (m/ha) Ave. Patch Count Area in river (%) Point Inclusion (%) AUC

GCM: Complete 83.05a 202.77a 18.90 5.00 96.30a 0.998

Simulation 1 40.73b 404.22b 34.90 6.34 85.53b 0.997

Simulation 2 71.15a 252.83a 24.10 4.64 94.28a 0.998

a-LoCoH: Complete 61.41 134.79 2.30 0.33 89.78 0.841a

Simulation 1 59.02 127.08 1.80 0.52 89.45 0.800b

Simulation 2 62.31 123.66 2.20 0.21 89.54 0.821a,b

T-LoCoH: Complete 70.51 122.46 1.50 0.72 89.70 0.807a

Simulation 1 73.78 99.16 1.20 2.95 90.16 0.745b

Simulation 2 72.93 108.63 1.60 1.20 89.85 0.794a

BRB: Complete 80.89a 108.99a 5.10a 2.98 93.88 0.969

Simulation 1 122.53b 60.38b 1.90b 6.71 97.34 0.954

Simulation 2 81.25a 111.08a 5.50a 3.04 93.98 0.968

Chi-sq value* 123.24 205.73 213.05 111.56 98.01 310.11

Grid-cell method (GCM), adaptive local convex hull (a-LoCoH), adaptive time local convex hull (T-LoCoH) and biased random bridges (BRB). Simulation 1

simulated low fix rate (every 4 hours) and Simulation 2 simulated fix failures. (S6 Table for core range model results)

a,b: Pair-wise results from Tukey test; results significantly different from another (p<0.05) are indicated by a different letter, those with the same letter

showed no significant difference

*Chi-square values for GLMM likelihood ratio test: for all tests, df = 11 and p <0.001.

https://doi.org/10.1371/journal.pone.0174891.t002
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the true distribution is known in order to determine the method able to predict the UD most

accurately (e.g. [73,74]), but few studies take these simulations a step further to real applica-

tions, using data with limitations such as GPS fix failure. Comparing the results from real

applications with those from simulations provides greater insight into the differences between

methods.

The final limitation is that this not an exhaustive comparison of home range estimators.

The number of techniques is increasing each year, all of which have a wide range of parameters

that need to be optimised based on the specific study or dataset. It is, however, a realistic appli-

cation for studies that are restricted in the number of units or animals that can be tracked, or

Fig 6. An example of selected home range estimators under different simulations. (A) grid-cell method

(GCM), (B) adaptive local convex hull (a-LoCoH), (C) adaptive time local convex hull (T-LoCoH), and (D)

biased random bridges (BRB). Simulation 1 simulated low fix rate (every 4 hours) and Simulation 2 simulated

fix failures (light = 50% isopleth, and dark = 90% isopleth).

https://doi.org/10.1371/journal.pone.0174891.g006
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by the size of the study subject and therefore the performance of the GPS tracker. The methods

compared here represent both location and movement-based methods, and are some of the

key methods developed specifically for GPS data.

Model performance

Although it is now relied upon less in other ecological fields, GCM is still heavily used in pri-

mate studies, as it is computationally simple and easily comparable between studies and sites.

Overall, it showed the closest agreement between GPS fixes and the estimated home range, but

was the most sensitive to changes in sample size and produced estimates that were distinct

from the other three methods (Fig 2). These findings agree with previous studies showing that

GCM will produce gross underestimates if the subjects are not followed intensively, making

this method unsuitable for studies with longer time intervals between fixes, or random (time)

sampling, such as sign surveys [17,18,75]. Using the full data set, GCM and BRB estimates of

home range area were similar, but the area of GCM estimates declined substantially in our

simulations. However it is important to note that if using 100% of the points, as is standard

practice for GCM, the difference in home range area between GCM and BRB would no longer

be similar, as the GCM area increased by almost a quarter. The close relationship between

sample size and area was also evident with the unchanging AUC value.

The two LoCoH methods were the most robust to changes in sample size for range area and

shape, but produced the lowest and most variable AUC values. In the current study, a-LoCoH

produced significantly higher AUC values than T-LoCoH, which may be due to the extra

parameters of T-LoCoH required to incorporate time. The overall home ranges estimated with

a-LoCoHs and T-LoCoHs were very similar (Fig 2), which was expected as T-LoCoH was

developed as an extension of the location-based a-LoCoH [30]. The area estimates were also

smaller than the GCM and BRB, which is supported by simulated LoCoH studies showing the

hulls created essentially ‘hug’ the data [25,30]. However, this also means that the LoCoH

Table 3. Summary of the strengths and weaknesses of the home range estimators examined in this study.

Method Strengths Weaknesses Requirements Suitability

GCM • Comparable to other studies

• Identifies areas of importance

• High AUC

• Sensitive to sample size

• Cannot handle barriers well

• Largely biased by cell size

selected

• Interpretation is sensitive to

intervals displayed

• Time not a factor

• Knowledge of group

spread, locational accuracy

• Not using 100% points

• Supplement other estimators to

look at finer detail of high use

areas

a-LoCoH &

T-LoCoH

• Identifies complex barriers or

inaccessible areas

• Incorporates time (T-LoCoH)

• Robust area estimate with

changing sample size or sampling

frequency

• Underestimates home range

area

• No allowance for location

uncertainties

• Low and variable AUC

• User-controlled process in

selecting output

• Large dataset

• High temporal correlation

(T-LoCoH)

• Knowledge of natural

barriers

• Conservation planning to identify

barriers or predator avoidance

• Range overlap between groups/

species

• Core area along sharp barriers

BRB • Incorporates time

• High AUC

• Robust area estimates with fix

failures

• Accounts for location uncertainties

• Area robust in variation of

parameters selected (Tmax and Lmin)

• Reduced barrier detection as

barrier complexity increases

• Cannot detect behavioural or

biological barriers

• Sensitive to decreased

sampling frequency

• Species-specific

knowledge, locational

accuracy

• High temporal correlation

• Knowledge of natural

barriers

• At least 200 locations

• Area estimates

• Home range for species living

along definite habitat edges

• Studies with less precise records

and more irregular fix success

Grid-cell method (GCM), adaptive local convex hull (a-LoCoH), adaptive time local convex hull (T-LoCoH) and biased random bridges (BRB).

https://doi.org/10.1371/journal.pone.0174891.t003
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methods are not as strong at modelling spatial uncertainty associated with GPS fixes [30].

They both perform most effectively with large data sets [76]; a-LoCoH has been shown to con-

verge on the true range as sample size increases [25].

BRB appeared to show the best overall performance, producing high and robust AUC val-

ues, while not showing as much sensitivity to sample size or fix frequency as GCM, which had

similarly high AUC values. The positioning of BRB home ranges on the PCoA plot indicates

their similarity to those from LoCoH models. Nevertheless, reducing the sampling frequency,

and in turn increasing Tmax, results in a greater degree of smoothing and larger predicted areas

for BRB [32], as observed for our Simulation 1. This was evident in the lower edge density and

patchiness, and greater overlap with the river. The AUC value showed little change, however,

suggesting that the model was still appropriate to use with the current data. The irregular time

spacing in Simulation 2, mimicking high fix failure rates, had much less effect on the BRB esti-

mates, producing a similar values to the complete data set for all variables. This was probably

because there were periods in the data with higher fix frequencies than the 4h intervals in Sim-

ulation 1, allowing better predictions of the tracks taken between fixes. Assuming the dataset

meets the requirement of a minimum of 200 locations recommended for utilisation distribu-

tion models [28,73], our results agree with previous findings that BRB is well-suited for studies

with less precise records and more irregular fix success [32], which is often the case for smaller

collars or for collars that have less direct exposure to satellites (i.e. terrestrial forest-dwelling

animals).

Barrier detection

The ability to detect or incorporate barriers is an important function for home range estimates,

as including inaccessible areas will overestimate the home range area. This is becoming increas-

ingly important in conservation ecology: there has been a dramatic increase in the number of

studies addressing fragmentation and therefore increasingly at sites that include a physical bar-

rier, largely due to habitat loss [77–81]. GCM had the weakest performance, as almost entire

cells overlapped the river and oxbow lakes. Grid cells in direct contact with barriers have a large

bias, as on average half the cell will be under or overestimated [28]. The amount of overlap with

a barrier will be influenced by cell size (here 50 x 50 m), which has also been shown to heavily

affect the estimated home range area [17,18,82–84]. The choice of 50 m resolution in this study

is already finer than in most primate studies (100–500 m; [12,17,18,85–88]), so the problems of

barrier overlap demonstrated here should be relatively conservative.

LoCoH methods on the other hand, were designed to detect hard barriers or areas that

seem inaccessible [89]. This property was apparent in the current study, with LoCoH showing

consistently the lowest overlap with the river and oxbow lakes (Table 2). LoCoH is capable of

identifying sharp and complex boundaries within a few meters, even if the animal is moving

along that boundary, as long as the points are taken at a frequent enough rate that corresponds

with the movement rates of the species in question [25,30]. Having fewer spatially and tempo-

rally auto-correlated points reduces the model’s ability to detect important pathways taken by

animals within their home range [90]. Consequently, T-LoCoH works most efficiently with a

large dataset with high temporal correlation [30]. The major strength of LoCoH in detecting

barriers, such as river edges, can also be its weakness, resulting in the exclusion of areas that

are actually used [44].

BRB does not have the same inherent ability to detect barriers as do the LoCoH methods

[28], and in order to incorporate barriers in the model, there needs to be a priori knowledge of

them. Therefore, unlike LoCoH, BRB cannot identify non-geographic barriers, such as group

territorial barriers or predator avoidance. The mathematical requirements necessary to
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implement the barrier also result in some limitations to their use [28], as the requirements can

be difficult to satisfy when barriers are complex or have sharp and tight bends, as observed in

several sections of the river in this study. The barrier requirements became increasingly difficult

to satisfy as Tmax increased; when the bend of a river was narrower than a distance of 3�hmin, a

simpler boundary had to be used, which subsequently could not include the areas along the river

within the sharpest bends, resulting in an increase in the percentage of the home range extending

in the river. However, provided the data set has relatively frequent fixes and the barriers are well

known (as with the river here), the integrated barrier function performs comparatively well.

Practical considerations

All of the home range estimator methods considered here require choices to be made for one or

more model parameters. For GCM, only the grid cell size needs to be chosen, but as discussed

above, this choice can greatly affect the estimated home range area. Often there is little justifica-

tion given as to the value selected. If GCM is used, biologically based information, such as typi-

cal group spread, as well as locational accuracy (i.e. GPS error) needs to be carefully considered

in the selection of cell size prior to analysis. Smaller cell sizes may also be better at demarcating

areas of importance, and it has been suggested that GCM could be useful when examining habi-

tat suitability and identifying important areas for resource selection [18,91–93].

The LoCoH methods involve selecting an a-value directly from the output that visibly looks

best to the user. Getz et al. [25] described the standard method of initially selecting the parame-

ter values using the maximum distance between points, then using the “minimum spurious

hole covering” rule to refine the parameter based on a priori knowledge of the area. Although

of the three parameter options (radius, nearest neighbours or adaptive), adaptive is the least

sensitive to changes in the parameter value selected [25,30,76], the final selection falls down to

the user, to decide, based on visual aids, which value creates the most suitable looking isopleths

[30,32], potentially adding bias. Furthermore, LoCoH tends to over-fit the data, resulting in

irregular and concave boundaries [44], which was supported in this study by the higher levels

of boundary complexity than BRB. Over-fitting may result in an underestimation of home

range area by excluding areas in which the animal actually goes [18,44]. LoCoH ‘hugs’ the data

[30], and therefore by not providing any buffer around the fix, any surrounding habitat that

may be critical for the species is excluded [18]. Consequently, LoCoH does not allow for any

location uncertainties around the fix (cf. kernel based methods [29]).

Compared to many location-based kernel density estimates, the parameters chosen for BRB

are more intuitive. BRB uses species-specific knowledge as well as the information regarding

the precision of the locational data [28], but does not have the same user-defined bias that the

LoCoH methods have in looking at the resulting range estimate and making it fit the expected

shape. Furthermore, previous studies have shown that adjusting the values of two of the three

BRB parameters (Tmax and Lmin) appears to have little effect on isopleth area and shape [32]. In

studies applying BRB, a balance will have to be made in selecting a smoothing value that is rep-

resentative of the GPS data itself, incorporating the resolution of a habitat map, and one that

allows for implementing barriers. For species that use definite habitat edges, such as proboscis

monkeys, neglecting barriers in the home range analysis could result in an important source of

error.

Conclusions and recommendations

The selection of a home range estimator needs to consider a combination of the underlying

research question and information already known about the species and its environment, to

determine the most suitable method [8]. Our study of several popular home range estimators
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revealed some clear differences in performance among the methods. Although GCMs pro-

duced the highest and most consistent AUC values, GCM performed worst at barrier detec-

tion, generated highly fragmented home range estimates and was the most sensitive method to

sample size/sampling frequency. Despite being commonly used in primatology, GCM is not

recommended for determining home range boundaries, especially when animals cannot be

followed intensively [18], or for a species that use areas with hard barriers, such as proboscis

monkeys, who spend a large proportion of the time along water edges. However, GCM may be

useful in conjunction with other methods as a simple way to identity areas of importance

within the range boundary i.e. as a simple way of estimating the UD. a-LoCoH and T-LoCoH

were the most robust models to variations in sample size and fix frequency, but had the lowest

AUC values and the most variation in AUC values for the simulations. They tended to under-

estimate the range area, and therefore may not be suitable when looking to conserve an area

for a species. Between the location-based and movement-based LoCoH methods, a-LoCoH

only slightly outperformed T-LoCoH in terms of AUC values as the extra parameterisation in

T-LoCoH (scaling factor) However, the incorporation of time in T-LoCoH makes it more bio-

logically relevant in utilisation distribution modelling, and therefore is preferred over the loca-

tion-based method if the dataset has frequent and regular GPS fixes. The inclusion of time

(T-LoCoH and BRB) allows for a more dynamic approach of UDs by further analysis into how

often an area is visited, the time spent in those area and the time between visits [30,59]. The

additional information that the movement-based methods provide can therefore shed more

light on the habitat requirements of an animal, particularly when it comes to conservation

planning. Moreover, although LoCoH may not be the most effective method for determining

the total area an animal requires, it can also be useful for conservation planning by detecting

unused areas within a range or potential restrictions to movement, such as anthropogenic bar-

riers or avoidance of predators [18,34,44], identifying range overlap between species or groups

[34,90], or for identifying core ranges along sharp boundaries [89].

With the increasing fragmentation of habitats across the globe, incorporating boundaries in

home range analysis is becoming more relevant in more studies. With the inclusion of the bar-

rier feature, BRB seems to be the most suitable overall method for determining the home

range of an animal with relatively frequent points, and identifying pathways or routes that are

important in the connectivity of an animal’s ranging behaviour. However, this does assume

that the relevant barriers are known in advance (e.g. the river in the current study). Where the

nature of barriers is uncertain a priori, or could follow complex landscape features, or when

fixes are at a relatively low frequency, LoCoH methods could complement BRB.

Using the most suitable model, or combination of models, it is possible to understand more

fully the patterns, causes, and potential consequences that disturbances could have on an ani-

mal, which can then be used to assist in the management and restoration of degraded land-

scapes [13]. Proboscis monkey ranging behaviour is poorly known, with only two previous

estimates, both of which were limited to a single group [43,55]. Using 100% GCM, our home

range estimate averaged 108 ha (41–217 ha), which compares to previous estimates using the

same method, of 138.3 ha [43] to 220.50 ha [55]. By using GPS collars on multiple proboscis

monkey groups, this study showed that BRB was the best-performing HR estimator according

to the parameters defined. As GCM tends to over-estimate home range size (as discussed

above), the value of home range size of proboscis monkeys in a riparian habitat is smaller

using BRB, ranging from 24 to 165 ha, with a mean of 80.89 ha, and therefore should be the

most representative estimates of proboscis monkey range to date. Further work using BRB will

allow the movement patterns and habitat use within the home ranges to be quantified, along-

side the factors affecting the selected range size and variation between the different ranges,

contributing further towards the conservation of this endangered primate species.
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Supporting information

S1 Table. Number of points used for home range estimates for the complete model. Simu-

lation 1 which mimicked low fix rate (every 4 hours), and Simulation 2 mimicked fix failures.

(PDF)

S2 Table. A. Complete model parameters used for adaptive local convex hull (a-LoCoH)

and adaptive time local convex hull (T-LoCoH)

Max. distance is the maximum distance between fixes, and is used as the starting point for

determining the a-value. B. Simulation model parameters used for adaptive local convex

hull (a-LoCoH) and adaptive time local convex hull (T-LoCoH)

(PDF)

S3 Table. Summary of complete models (90% & 50%). Grid-cell method (GCM), adaptive

local convex hull (a-LoCoH), adaptive time local convex hull (T-LoCoH) and biased random

bridges (BRB).

a,b,c Pair-wise results from Tukey test; results significantly different from another (p<0.05)

are indicated by a different letter, those with the same letter showed no significant difference.
�Chi-square values for GLMM likelihood ratio test: for all tests, df = 3 and p<0.001.

(PDF)

S4 Table. Home ranges areas (ha) for each proboscis monkey group using four home range

estimators. Overall home range size using grid-cell method (GCM; 100% & 90%), adaptive

local convex hull (a-LoCoH; 90%), adaptive time local convex hull (T-LoCoH, 90%) and biased

random bridges (BRB; 90%); n = number of GPS fixes used.
�Collared females

(PDF)

S5 Table. Simulated model home range area (ha) for each collared proboscis monkey using

four methods. Overall home range size (90%) using (1) grid-cell method (GCM), (2) adaptive

local convex hull (a-LoCoH), (2) adaptive time local convex hull (T-LoCoH, 90%) and (4)

biased random bridges (BRB); Simulation 1 simulated low fix rate (every 4 hours) and Simula-

tion 2 simulated fix failures.

(PDF)

S6 Table. Summary of simulation core range models (50%). Grid-cell method (GCM), adap-

tive local convex hull (a-LoCoH), adaptive time local convex hull (T-LoCoH) and biased ran-

dom bridges (BRB). Simulation 1 simulated low fix rate (every 4 hours) and Simulation 2

simulated fix failures.

a,b,c Pair-wise results from Tukey test; results significantly different from another (p<0.05)

are indicated by a different letter, those with the same letter showed no significant difference;
�Chi-square values for GLMM likelihood ratio test: for all tests, df = 11 and p<0.001.

(PDF)
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