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 Abstract 

 

Keratoconus is a primary cause of visual impairment in young people in the UK. 

Corneal cross-linking is a recently-introduced treatment for halting progression of 

keratoconus, which is more effective in early cases. It has long been observed that 

keratoconus is significantly more prevalent in those with Down’s syndrome (DS) 

when compared to the general population.  Moreover, young people with Down’s 

syndrome are less able to report early symptoms of keratoconus, often presenting 

late to eye clinics when cross-linking is no longer possible.   

 

A cohort of children and young people with DS were examined with the aim of 

discovering optometric correlates of keratoconus and to establish the utility of these 

parameters as risk factors for identifying keratoconus in primary care. An abnormal 

retinoscopy reflex was found to be the earliest indicator of keratoconus, showing 

greater potential as a screening test than either refractive error or objective vision 

measurement.  

 

The cornea of individuals with DS is known to be thinner and steeper than usual. 

Despite this, the high prevalence of keratoconus in DS has long been attributed to 

eye-rubbing, despite the inherent difference in baseline shape. The current work 

revealed no relationship between eye rubbing and the development of keratoconus in 

DS eyes.  In vivo biomechanical analysis demonstrated an increased deformation 

tendency in DS eyes vs. controls, largely accounted for by the decreased corneal 

thickness in the test group.  These results suggest that the high prevalence of 

keratoconus in DS originates from biomechanical weakness, permitting the loss of 

regular corneal shape in the absence of eye rubbing.  However, ultrastructural 

analysis of the cornea of the Tc1 mouse model of DS revealed an unaltered collagen 

and proteoglycan structure.   

 

Topographical examination of ‘cone’ morphology in individuals with and without 

DS demonstrated a similar phenotype at all stages of the disorder, indicating that 

people with DS and keratoconus may be a useful cohort for future genetic studies 

into keratoconus as a whole. 
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1.1 Keratoconus 
 

Keratoconus is a complex disease process affecting the cornea, the transparent shell 

of the anterior ocular surface.  Typically, the cornea thins paracentrally, causing 

subsequent steepening and protrusion of the surfaces, towards a cone-like shape.  

The corneal distortion inevitably causes a significant decrease in vision, impacting 

young people ‘during their prime years’ (Kymes et al. 2004).  While the prevalence 

of keratoconus (KC) in the typical population is 0.05% (Rabinowitz, 1998), it 

appears to be much more common in Down’s syndrome: 5.5% (Cullen & Butler, 

1963).  The majority of the corneal thickness is composed of a collagenous stromal 

layer, considered to bear the most significant change in keratoconus.    

 

1.2 Collagen 
 

The cornea is a remarkable part of the human body.  While many tissues comprise a 

structural scaffold of collagen, matrix and cells, it is the unique transparency of the 

healthy cornea that sets it apart, provided for by the intricate organisation of collagen 

at the ultrastructural level (Figure 1. 1).   

 

Other key functions of the cornea are: 

• Refraction of light to contribute to retinal focus 

• Biomechanical strength and protection from physical trauma 

• Protection from chemical and biological trauma 

 

Each one of the crucial functions are compromised in the ectatic disease 

keratoconus.  This chapter provides insight into the physiology of the normal cornea, 

and the aetiologies and impact of keratoconus on the eye and on vision.  
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Figure 1. 1 Arrangement of collagen fibrils seen by transmission electron microscopy in the corneal 

stroma, both in transverse and longitudinal section.  Note the highly ordered arrangement of collagen 

fibrils.  Image courtesy of Dr RD Young. 

 

1.2.1 Collagen Fibrils 
 

A single collagen molecule comprises 3 polypeptide chains entwined as a triple 

helix.  It measures just under 2nm in diameter and is around 200 times as long 

(Shoulders and Raines 2009).  Electrostatic forces attract five collagen molecules, 

such that they align in parallel in order to form a microfibril (Figure 1. 2).   

 

 
 

Figure 1. 2 Schematic representation of a collagen fibril (left), a microfibril (middle) and collagen 

molecule (right).  This image denotes the relative hierarchy of structures, specific to corneal and scleral 

collagen, with the five collagen molecules coiling to form the microfibril, which in turn coils to comprise a 

full collagen fibril.  Adapted from (Meek and Knupp 2015).   
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Electrostatically, maximal attraction occurs when the molecule ends are staggered. 

Because the length of the molecule is not integrally related to this stagger, there is a 

gap between one molecule and the one in front (marked by an asterisk in Figure 1. 3) 

which leads to a regular periodicity along the fibril axis (Figure 1.3A). 

 

In order to view this structure using the electron microscope, stains are used to ‘fill 

in’ the gaps between the molecule ends, and a striated pattern arises through negative 

staining of the tissue.  The recurring sequence is seen as ‘banding’, whereby fibrils 

appear striped (Figure 1.3B), and the period of such banding is specific to fibrillar 

collagen.  In striated fibrillar corneal collagen, this so-called D-periodicity is 65nm 

as measured by Meek and Boote (2004).   

 
 

Figure 1. 3 Organisation of collagen molecules (A).  The electrostatic ‘gap’ formed between molecule 

ends is denoted by *.  When a stain is introduced to image fibrillar collagen, this results in a ‘striped’ 

banding pattern observed with electron microscopy, demonstrated in (B).   Adapted from Ghadially 

(1997) 

 

65nm 
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1.2.2 Collagen genesis 
As for any protein, each of 26 known vertebrate collagen types are coded for by a 

specific gene, and this genetic information is generally held in the nucleus of the 

fibroblast that produces it.  Post-transcription, fibrillar collagen is initially produced 

as procollagen molecules.  Procollagen itself consists of repeating amino acid 

sequences that form a polypeptide α chain.  The terminals of procollagen are N- and 

C- type propeptides, and upon exit from the fibroblast into the extracellular 

environment, these propeptides are cleaved by specific procollagen proteases (Njieha 

et al. 1982).  This cleaving allows the natural collagen structure to be released and 

subsequently 3 collagen molecules wrap around each other to form the triple-helix 

collagen fibril arrangement as described by Hulmes (2002).     

 
 

Figure 1. 4 Diagram to show an assembled collagen fibril.  Adapted from Robins (1988).   

 

While fibril-forming collagen discussed above forms the bulk of corneal collagen 

(providing structure and shape), other non-fibril forming collagens facilitate 

attachment of collagen structures to each other, to neighbouring cells, to basement 

membranes, or the ECM.   

 

Further still, some collagens produce short chains, and others microfibrils.  Such 

collagen becomes part of a scaffold that may be structural or aid cellular 

communication.  The site of ocular corneal collagens and their genetic locus are set 

out in table 1.1.    
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1.2.3 Ocular Collagen types 
Table 1. 10 Corneal collagen types, their site and their genetic reference.  

Collagen 

type 

Corneal site Gene Human 

Chromosome 

Source 

Ep B S D En    

I  X X   COL1A1, 17q21.31-q22 (Bryan Sykes 1990) 

COL1A2 7q21.3-q22 (C Junien 1982) 

III   X   COL3A1 2q24.3-q31 (Solomon et al. 1985) 

IV X X    COL4A1, COL4A2 13q33-q34 (Griffin et al. 1987; Boyd et al. 1986) 

COL4A3, COL4A4 2q35-q37 (Momota et al. 1998) 

COL4A5, COL4A6 Xq22 (Tryggvason et al. 1993; Zhou et al. 1994) 

V   X   COL5A1 9q34.3 (Caridi et al. 1992) 

COL5A2 2q14-q32 (Huerre-Jeanpierre et al. 1986) 

COL5A3 19p13.2 (Imamura 2000) 

VI   X   COL6A1, COL6A2 21q22.3 (Weil D 1988) 

COL6A3 2q37 (Weil D 1988) 

VII  X    COL7A1 3p21 (Parente et al. 1991) 

VIII 

 

   X 

 

X COL8A1 3q11.1-q13.2 (Tamura et al. 1991) 

  COL8A2 1p34.2-p32.3 
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Collagen	I	

 

The most abundant collagen in the cornea is collagen I, its fibril forming nature 

providing the biomechanical strength and scaffolding nature of the corneal stroma 

(Marshall et al 1993).  In the cornea, this collagen does not function alone, and Birk 

et al (1998) demonstrate that type I and V coexist and copolymerise along the same 

fibril, and this is known as a heterotypic fibril.  Such heterotypic fibrils possibly 

exist as a mechanism to regulate fibril diameter and maintain corneal transparency – 

because type V is not found alongside type I so readily in other non-transparent 

tissues such as bone or tendon.   

 

Collagen	III	

 

Collagen III is found in the anterior stroma and Bowman’s membrane, and is 

considered prevalent when the cornea is in a growth or a healing state, in both rabbit 

and human cornea (Cintron et al. 1988).   

 

Collagen	IV		

 

Type IV collagen is non-fibril forming, but instead exists in strands that are 

associated with such striated fibril-forming collagen.   Type IV, alongside type VII 

collagen is thought to stabilise the architecture of fibrillar collagens (including type 

I) through their formation of anchoring plaques.  Collagen IV is found in Bowman’s 

layer, and in Descemet’s membrane – both basement membranes of the cornea 

(Marshall et al 1993).  

 

Collagen	V	

 

As previously discussed, type V collagen co-exists with type I collagen (Birk et al. 

1988).  It is considered that collagen type V is partly responsible for the maintenance 

of small and regular fibril diameter of type I collagen (Linsenmayer 1993).  Impaired 

collagen V, as found in certain variants of Ehlers-Danlos syndrome (EDS), results in 

abnormal fibrillogenesis and clinical signs of skin fragility and joint hypermobility.  
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A comparison of normal and EDS collagen fibril organisation is seen in Figure 1.5 

and 1.6.  This results from mutations in either the COL5A1 or COL5A2 gene 

(Richards et al. 1998; Schwarze et al. 2000). 

 

 
Figure 1. 5 Granulofilamentous material (arrowhead) seen in longitidunal view in the skin of a patient with EDS, 

and collagen fibrils that may have unravelled and become disorganised (arrow).  Adapted from (Nuytinck et al. 

2000).   

 

 
Figure 1. 6 Electron EM photograph to show fibrillar organisation in normal skin (left), and that from a patient 

with EDS (right).  Unusual ‘composite’ fibrils are seen in abnormal tissue (arrows) Schwarze et al. (2000).   
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Collagen	VI	

 

The α1 and α 2 chains of collagen VI are produced along chromosome 21 in humans 

(Lampe 2005), the chromosome triplicated in Down’s syndrome.  Collagen VI is a 

non-fibrillar collagen that has long, flexible strands that carry periodic beading 

(Bruns 1984), such as that seen in Figure 1.7.  The extent of any change to collagen 

VI in the DS cornea is unknown, but the collagen VI anomalies present in DS skin 

will be discussed later in this chapter.   Little is known about collagen VI in KC, but 

in a Western blot study by Chwa et al (1996) found that collagen VI does not stain 

well in ectatic corneae, and as such may be in some way degraded or the genetic 

expression or secretion of altered in KC.   

 
Figure 1. 7 The beaded collagen VI network intertwined among striated collagen fibrils (Burgeson 

1988).   
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Collagen	VII	

 

Collagen VII thought to be important as anchoring fibrils in basement membranes.  

Microscopically, they are found arched or contorted, indicating their flexibility 

(Keene 1987).  The production of collagen VII is thought to be controlled, to some 

degree, by innervation of the trigeminal ganglion (Baker et al. 1993).   

 

 

Collagen	VIII	

 

Collagen VIII is a non-fibrillar short chain collagen, produced by endothelial cells, 

keratinocytes, and mast cells.  Collagen VIII is prominent in Descemet’s membrane, 

and is sometimes found in association with elastic fibres or microfibrils. It may have 

a role maintenance of corneal thickness and structural stability (Puk et al. 2009), and 

a role in permitting the passage of fluids (Jones 2013).  The presence of collagen 

VIII is thought to stabilise the neighbouring endothelial cell phenotype, and thus 

have a facilitating role in angiogenesis - both in developmental tissue and in wound 

healing (Shuttleworth 1997).   
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1.3 Proteoglycans 
 

Proteoglycans (PGs) are small molecules that act as spacers between collagen fibrils 

in the corneal stroma.  They have a protein core and a glycosaminoglycan (GAG) or 

oligosaccharide side chain, or ‘tail’  (Michelacci 2003).  Corneal proteoglycans have 

been long since considered important in different key properties, including 

transparency (Chakravarti et al 1998), hydration (Almubrad et al. 2010), and the 

genesis of collagen itself (Rada et al. 1993). Both the normal ageing process, and 

abnormal corneal scar tissue are associated with altered levels of proteoglycans 

(Malik et al. 1992).  

 

In PGs, since the GAG side chain is so large compared to the core protein, the GAG 

property dominates the PG, and this is reflected in the grouping of PGs according to 

their associated GAG chain.  The two main types found in the cornea are: 

 

• Keratan sulphate (KS) – corneal KS is thought to impact primarily upon 

collagen fibril structure (Chakravarti 1998) 

• Chondroitin sulphate/dermatan sulphate (CS/DS) – as well as 

involvement with fibrillary structure, corneal CS/DS is thought to impact 

upon cell signalling and the inflammatory cascade (Kawashima et al. 2002; 

Sugahara et al. 2003) 

 

KS PGs have core proteins: keratocan, lumican, or mimecan.   

CS/DS PGs have the core proteins: decorin or biglycan.   

 

GAGs produce such significant hydration because they are highly negatively 

charged and attract an abundance of water molecules with respect to their own 

weight.  Specific GAG content and thus controlled hydrostatic pressure allows for 

the precise ‘spacing’ property of corneal GAGs, regulating collagen fibril 

organisation and permitting the maintenance of collagen transparency.  The degree 
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of spacing is controlled by both the availability of free GAG terminals to bind to 

water and the PG core protein chemistry.  PGs, as a whole therefore, can be 

considered to modulate collagen fibril formation.   

 

Sulphation of GAGs is the addition of a sulphonic acid to the polysaccharide GAG 

chain.  In the cornea, the sulphation of GAGs varies depending upon GAG type, 

tissue type, and species.  The degree of sulphation of the GAG is considered to 

impact upon corneal hydration, interfibrillar spacing, fibril organisation and thus 

corneal transparency, and is altered in particular disease states.  

 

Hyaluronan is a particular GAG of note, because it is not found attached to a core 

protein, and yet is found in abundance in the body, being more prevalent in those 

tissues requiring hydration and load distribution.   Produced by most human cells, 

hyaluronan acts as the body’s natural lubricant, and found in abundance in the 

synovial fluid surrounding joints (Fraser and Laurent 1997).  Hyaluronan was first 

isolated from purified bovine vitreous humour, and named after hyaloid, meaning 

vitreous (Hascall and Esko 2009).  Hyaluronan is found in the cornea, considered 

important in the proliferation of fibroblasts and in modulating the healing response 

and the resultant collagen produced, in order to minimise scar tissue (Price et al. 

2007).  The metabolism of hyaluronan may differ in DS (Raio et al. 2005; Karousou 

et al. 2013; Bohlandt 2000).   
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1.3.1 Keratan sulphate proteoglycan 
 

Keratan sulphate (KS) is of particular interest in the study of KC because of its 

abundance in the normal cornea and its correlation with fibril organisation and 

corneal transparency (Borcherding et al. 1975).  Corneal KS is altered in various 

disease states, an effect of fibroblastic repair response during wound healing that 

causes a down-regulation in the production of normal KS (Funderburgh 2000).  

 

The study of KS and component-specific antibodies show that, while the core protein 

of KS remains unchanged in KC corneae, the formation of KS GAG is altered in 

some way in the keratoconus cornea (Funderburgh et al. 1989).  KS antigen staining 

was reduced by 48% in KC corneae from control tissue.  The authors suggest that 

reduced staining of KS PG could occur for several reasons: 

 

I. Decreased KS sulphation 

II. Shorter KS chains 

III. Decrease in the number of KS chains per molecule 

 

KS core protein (keratocan) mRNA is overexpressed in the corneal stroma of those 

corneae of eyes with keratoconus, as measured by immunohistochemical staining 

and PCR (Wentz-Hunter et al. 2001).  Results from the same study indicate that 

there was actually less KS in the severe keratoconus with significant scarring, results 

that resonate with others (Sawaguchi et al. 1998; Wollensak and Buddecke 1990).  

Meek et al (2003) examined a keratocan-null mouse model, calculating both larger 

fibril diameters alongside reduced regularity of interfibrilliar spacing from small 

angle X-ray scatter data.  The authors hypothesise that keratocan-null mice exhibit 

less KS and thus reduced governance of fibrillar diameter and organisation.   
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Lumican, another KS core protein, was first discovered as a product of corneal 

keratocytes, and more recently found to be expressed by the corneal epithelium 

during wound healing (Saika 2000).  Lumican is found in abundance in both the 

developing chick eye and heart valves (Chakravarti et al 1998).  In lumican knock-

out (null) mice studies, the absence of lumican results in a 25% loss in the total KS 

present in the cornea, and the mice have bilateral corneal opacities and skin laxity 

and fragility (Chakravarti et al 1998).  A further study by the same authors indicated 

that the posterior cornea appeared particularly susceptible to the adverse effects of 

the lumican-knockout gene, corresponding to collagen fibrils of a more variable 

diameter, creating greater light scatter and a reduction in transparency as seen in 

figure 1.8 (Chakravarti et al. 2000).  X-ray diffraction patterns obtained from the 

lumican-null mice reveal that the spatial arrangement of their stromal collagen is in 

‘disarray’, with diffractive evidence that a much greater range of collagen fibril 

diameters existed (Quantock et al. 2001).   

 

 
Figure 1. 8 Wild type mouse, (a), and lumican null mouse, tm1Sc, (b).   Chakravarti (1998)  Note the ring of 

clear cornea found in the far periphery of the cornea in (b).   
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1.3.2 Chondroitin sulphate / Dermatan sulphate 

proteoglycan 
 

Decorin and Biglycan are two core proteins of CS/DS and are implicated in corneal 

transparency and tissue strength, but also in the regulation of inflammation and cell 

signalling (Tiedemann 2005).  Both CS and DS are thought to have an important role 

in forming or organising collagen, particularly during embryological development 

(Zhang et al. 2009).  

In humans, a mutation in the Decorin gene resulted in autosomal dominant 

expression of an inherited corneal opacity in a family studied by Bredrup et al. 

(2005).  Unlike humans, Decorin-null mice displayed normal corneae but weakened 

connective tissue (skin and tendon) (Danielson 1997).  Ultrastructural analyses of the 

mouse tissue revealed coarser fibrils that were irregular in size and shape.  The mice 

exhibited less collagen-bound proteoglycans, considered to be the cause of the 

biomechanical weakening.  While the relationship between transparency and 

biomechanical strength is uncertain, a connective tissue weakness in PG abnormality 

lends weight to the lamellar ‘slippage’ theory suggested by Meek et al. (2005). 

 

Decorin and biglycan are found in the normal basement corneal epithelium, 

Bowman’s layer, and the corneal stroma.  Both core proteins and their PG 

counterparts are upregulated in diseased cornea and dermatan sulphate side chain 

exhibits abnormally increased sulphation (Funderburgh et al. 1998; Sawaguchi et al. 

1998).  Funderburgh suggested that a fibrotic ECM produces the abnormal PG and 

core protein formation, in work later supported by Tiedemann (2005).  Such a 

suggestion is consistent with the now well documented inflammatory cascade and 

aberrant healing response that the keratoconic cornea are thought to undergo 

(McMonnies 2015).   
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Sawaguchi et al (1991) found an accumulation of abnormally thick CS/DS PGs in 

keratoconic corneal tissue when compared to that from a healthy cornea (figure 1.9). 

 

 

 
Figure 1. 9 Control cornea (C) and keratoconus cornea (F) and staining with cuprolinic blue following pre-

treatment with chondroitinase ABC.  The small arrows in (C) point to medium-sized filaments expected in 

healthy tissue and the large arrows in (F) point to the abnormally thick filaments in the KC cornea.  

(Sawaguchi et al. 1991).   

 

It is not yet known if the change in composition of CS/DS in some keratoconic 

corneae could be an underlying cause of biomechanical instability, or simply an 

effect of the inflammatory nature of the disease.   



38 

 

 

1.4 Corneal lamellae 
 

It is thought that a variation in fibril organisation and fibril thickness throughout the 

corneal structure is important to the biomechanical integrity in the human cornea 

(Boote et al. 2003).  Fibrils are arranged into flattened bundles, and these lamellae 

run parallel to the face of the cornea, providing 90% of its thickness (Thomas 1955).  

Whilst lamellae occur in many orientations in order to cover the whole cornea, there 

appear to be two preferred directions across the cornea: one running superiorly to 

inferiorly, and the other naso-temporally (Meek et al. 1987; Aghamohammadzadeh 

et al. 2004).  This orthogonal arrangement is thought to provide tensile strength and 

anchorage to the cornea as the pulling force of the extra-ocular muscles attach 

locally to move the globe vertically and horizontally.  This orthogonal nature is 

highlighted in figure 1.10, which also shows a construct of the peripheral collagen in 

a circumferential arrangement.   

 
Figure 1. 10 Anchoring lamellae that appear to have their origins outside of the peripheral cornea may 

enter the cornea at a given principle meridian, curve within the cornea and exit at a neighbuoring 

principle meridian (Aghamohammadzadeh et al. 2004).   

 



39 

 

 

 
 

Figure 1. 11 Stacking of lamellae (L) in the deep corneal stroma as viewed with scanning electron microscopy 

(Komai & Ushiki 1991).  While the corneal lamellae are predominantly orthogonal, it is apparent from images 

such as these that a great deal of angular overlapping is present.   

 

1.5 Collagen in keratoconus 
 

The knowledge gained into the changes in collagen of the keratoconic cornea is from 

those corneae deemed severe enough to require a corneal transplant, and for which 

the removed tissue has been gifted to research.  The organisation of central collagen 

lamellae within the cone is profoundly altered from the normal orthogonal alignment 

into oblique directions (Meek et al. 2005).  This demonstrates large-scale changes 

within the architecture of collagen bundles around the site of the ‘cone’, but in 

addition, the authors found that the arrangement of peripheral lamellae is also 

affected.  ‘Anchoring’ lamellae that lie in a diamond pattern are thought to strap the 

cornea in place in the corneal periphery, and the formation of this typical diamond 

pattern is also disrupted in keratoconus.  This finding was mirrored using second 

harmonic imaging of the peripheral lamellae (Morishige et al. 2007).   
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Redistribution of collagen in the periphery as well as the central cornea implies some 

sort of unravelling of normal corneal architecture that appears to be at odds with the 

‘focal’ defect as postulated by Roberts & Dupps (2014).  Since the cornea is 

composed of many collagen fibrils weaving together, it is thought that the ends of 

the fibrils are like ‘sutures’ and integral to holding the structure together.  Another 

concept in the aetiology of keratoconus is that the bonding between neighbouring 

fibrils may act as a ‘interfibrillar glue’, and a generalised degradation of such bonds 

may allow fibril bundles to split and unravel, or slip across each other, and a 

redistribution of tissue would result, just like a small tear in fabric under tension in a 

garment (Meek et al. 2005).  Since there is a great deal of regularity and 

interweaving in the normal anterior stroma, this hypothesis carries much weight in 

explaining the clinical anterior changes seen, but does not explain why the posterior 

cornea shows preferential damage in early disease, even with an intact anterior 

curvature (de Sanctis et al. 2013).  It seems reasonable that in early to moderate 

keratoconus, collagen is redistributed rather than ‘lost’, and that this redistribution is 

perhaps governed by the changing/altered strain in the tissue.  “Biomechanical 

coupling” causing flattening peripheral to the cone may compensate for the increased 

curvature of the cone in the central cornea.  This is supported by clinical evidence, 

such that both corneal surface area and corneal volume in keratoconus are both 

conserved in keratoconic corneae (Smolek and Klyce 2000).   

 

Vogt’s striae are a hallmark of keratoconus, were considered ‘folds’ of tissue seen in 

the stroma of patients with keratoconus.  These are now considered to be lamellae 

under stress (Hollingsworth and Efron 2005), and are much more prevalent when 

viewed using the confocal microscope than compared to what is clinically 

appreciable using a clinical slit lamp biomicroscope (Mocan et al. 2008).  It is 

thought that their presence is proportional to the direction and magnitude of the 

biomechanical tension that exists is the keratoconic eye, and that the striae radiate 

outwards from the cone apex (Hollingsworth et al. 2005).   

 

Ordinarily, Bowman’s layer rigidity and resistance to swelling suggest that it may be 

integral to the maintenance of normal corneal curvature and architecture, and key 
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aspect of the refractive stability of the eye (Holtzman et al. 1996; Müller et al. 2001).  

Reporting of alterations in Bowman’s layer in KC appear to conflict.  From a 

biomechanical view, the behaviour of anterior stromal lamellae intersecting with and 

just posterior to Bowman’s layer is of interest. Morishige and colleagues noted a 

decrease in the number of short lamellae intersecting into the layer, suggesting a 

degradation of lamellae at this level, and a loss of interlamellar weaving in the 

anterior stroma (Morishige et al. 2007).  This complements the findings of Meek et 

al (2005) who suggest that the failure of regulation of insertion of mechanically 

important lamellae causes a redistribution and slippage of the fibrils.  Horne et al. 

(2003) discovered electron-dense formations in the Bowman’s layer where lamellae 

may terminate, hypothesising that a loss of these areas in KC may result in reduced 

adhesion and facilitate collagen slippage.  More recently, this research group 

proposed that corneal thinning in KC results from splitting of the anterior lamellae at 

this region due to the stress induced by ocular forces Mathew et al. (2015).   

 

In advanced keratoconus, breaks in the collagenous Descemet’s membrane result in 

a large influx of water and an acute swelling of the cornea (Figure1.12).   

 
Figure 1. 12 A cornea before, and with, corneal hydrops, as viewed with optical coherence tomography (Fuentes 

et al. 2015). 

 

There is evidence to suggest that the late finding of corneal hydrops is more common 

in Down’s syndrome (DS).  Six of 22 patients (27%) with hydrops in a general 

corneal referral population had DS (Grewal et al. 1999).  In another study 

comprising 8 patients with DS who had keratoconus in at least one eye, 5 of the 16 

eyes (31%) were blind due to acute keratoconus (hydrops) (Cullen 1963; Butler and 

Cullen 1963).  This is significantly higher than the prevalence of hydrops in a 

general KC population at 2.8% (Tuft et al. 1994).  Conversely, in a study of 147 
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hydrops cases in contact lens wearers, just two had DS.  Since the learning disability 

inherent in DS makes successful contact lens fitting and wearing more difficult, it is 

likely that keratoconics with DS are under-represented in this particular contact lens 

sample.  A minority of patients with corneal hydrops can identify a potential 

traumatic trigger such as an incidence of prolonged eye rubbing or a traumatic 

contact lens insertion.  It is both the author’s experience and denoted in the scientific 

literature that most patients are unable to identify a cause (Grewal 1999).  While it is 

postulated that people with DS may induce hydrops by rubbing (Grewal et al 1999), 

it is entirely possible that the DS cornea is simply more prone to developing the 

latter stages of the disease, for biomechanical, metabolic or biochemical reasons.  
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1.6 Corneal Biomechanics 
 

Corneal biomechanics is the study of the response to applied stress or strain on either 

side of the corneal tissue.  Corneal biomechanics are intrinsically related to the 

content and distribution of collagen fibrils and their surrounding ground substance.  

Since the corneal stroma comprises the majority of corneal thickness, it is the most 

modelled aspect of the cornea.  The influence of Descemet’s membrane (posteriorly) 

and Bowman’s layer (anteriorly) carry conflicting reports in scientific literature 

(Seiler et al. 1992; Jue and Maurice 1986; Weed et al. 2006; Hollman et al. 2002; 

Yoo et al. 2011; Danielsen 2004).   

 

1.6.1 Elasticity  
 

The cornea exhibits elastic behaviour after a force is applied, because it can stretch, 

bend, and return to its original shape.  This allows for corneal flexibility when the 

eye is rubbed, and for corneal curvature to be regained upon removal of the force.  

Inflation testing and extensometry testing (Vellara and Patel 2015) are two primary 

methods of ex vivo biomechanical research.  Young’s modulus, a characterisation of 

the elasticity of a material, relates stress (force per unit cross sectional area) to the 

resultant strain (relative linear deformation) (Edmund 1988).  Elasticity, that is, the 

ability to deform the cornea, was found to be greater in keratoconic strips than those 

from known healthy corneae.   

 

The limbal and peripheral corneal structure and shape mitigates the shape change in 

the central cornea due to intra-ocular pressure (IOP)  increase, but in general the 

cornea becomes stiffer as IOP is raised in an experimental setting (Boyce et al. 

2008).  IOP, therefore, is a confounding variable in the measurement of whole-eye 

corneal biomechanics, such as that measured with whole-eye inflation testing, or in 

vivo systems as discussed below.  Another confounding variable in the study of 

corneal biomechanics is central corneal thickness (CCT), whereby a thicker cornea, 
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in general, results in an artificially higher applanation tonometer reading (Doughty 

and Zaman 2000), although when studied experimentally with an intercameral 

tonometer, this is shown not to be a systematic error and therefore cannot be directly 

accounted for by a simple regression clinically (Feltgen 2001).  Such work 

demonstrates the complex interplay between IOP, corneal thickness and corneal 

biomechanics.   

 

While not yet fully understood, Descemet’s membrane appears to hold important 

elastic properties, holding the greatest elastic modulus of any part of the cornea 

measured by atomic force microscopy, despite being only 10 microns thick (Last et 

al. 2012).  Maurice postulates that Descemet’s membrane may preferentially take up 

corneal strain in rabbits, although the same is not seen in humans (Jue and Maurice 

1986).  Descemet’s membrane increases in thickness with age in normal eyes 

(Thomasy et al. 2014).  It is conceivable that this increase could go some way to 

explain the relative stabilisation of the keratoconic cornea often seen in the fourth 

decade of life as noted by Rabinowitz (1998).   

 

1.6.2 Viscoelasticity 
 

The relationship between the distension of the cornea and the force applied is non-

linear, and therefore there are other attributes to the cornea’s biomechanics besides 

elasticity (Kotecha 2007).  Elasticity that occurs within the cornea is considered a 

function of its collagenous and proteoglycan structure.  Viscosity is the flow of a 

material when an external shear force is applied, and represents the fluidity of the 

cellular, extracellular and extrafibrillar environment that inherently accompanies the 

collagenous base.  Viscoelasticity is the combined effect of the elastic and viscous 

attributes, and provides the cornea with a strong structure that is able to both absorb 

some force and dissipate the energy, whilst returning to its original shape upon 

removal of that force.  Hysteresis is a measure of the energy absorption by the 

material during the loading/unloading stress/strain cycle in a viscoelastic material 

(Ewing 1889) and is represented by Figure 1.13.   
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Figure 1. 13 Stress-strain graphs of elastic materials (left) and viscoelastic materials (right).  The stress-

strain curve is noted to follow a different path in the viscoelastic material, demonstrating the property of 

hysteresis (Vellara and Patel 2015). 

 

1.6.3 In vivo corneal biomechanics 
 

The drive toward manufacturing an instrument to measure the ‘true’ IOP of the eye 

by way of accounting for corneal biomechanical properties, has provided a 

mechanism for corneal researchers to study corneal biomechanics in the ectatic 

cornea.  Two commercially available systems are currently available. 

 

The Ocular Response Analyzer (ORA) (Reichert Ophthalmic instruments, Depew, 

NY, USA) deploys a collimated air pulse to the ocular surface, whilst measuring a 

reflected infra-red signal throughout indentation of the central cornea, and its 

recovery.  The metered air-puff is said to ‘shut off’ upon detection of the first 

applanation.  The cornea passes through two applanations:  The inward applanation 

of the cornea (as it is flattening) and the outward applanation (as it begins to regain 

its natural convex shape).  Peaks of maximal signal are produced as the cornea 

passes through each applanation event (figure 1.14), corresponding to the flattened 

surface acting as a mirror to reflect the incident beam.  At every other point through, 

the beam is only partially reflected from the convex or concave surface and hence 

the signal on the receiver is reduced.   
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Figure 1. 14  Graph to illustrate a pressure gradient (green) and a two-peak applanation signal (red) from the  

Ocular Response Analyzer.  Reproduced from (Luce 2005) with permission.   

 

 

Two collimated IOP readings are supplied for each measurement, one on the inward 

and one on the outward applanation.  Theoretically, in a solely elastic material 

(absorbing no energy), both applanation events would correspond to an equal applied 

pressure and produce a symmetric graph.  The ORA assumes that difference in the 

two applanation pressure results produced by the cornea represent corneal hysteresis.  

Similarly, the ORA assumes that the cornea behaves elastically, and as such obeys 

the Imbert-Fick law stating that the inward pressure force is equal to the underlying 

IOP.  This is demonstrated by figure 1.15.   
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Figure 1. 15  P=AW, Representation of Imbert-Fick law, where P = IOP, A = applanated area and W is the 

external force applied (Gloster and Perkins 1963).   

 

The Imbert-Fick law assumes that the cornea is completely dry, infinitely thin, 

completely flexible and elastic (i.e. assumes no viscoelastic behaviour).  Since the 

cornea is wet, has a thickness and an associated viscoelastic structure, the Imbert-

Fick principle has been modified in this context to include the presence of a force of 

surface tension acting in the same direction as the applanating force, with a force 

representing corneal resistance acting against the applanation force.  The latter two 

forces were assumed to nullify each other, when the applanated area was 3.06mm2 

(Goldmann 1956).  Contact tonometry including such Goldmann tonometry may be 

considered a static form of tonometry, in that the forces acting upon the cornea are 

not changing with respect to time once the applanation has been made.  Non-contact 

tonometry methods such as the ORA have a dynamic force, changing with respect to 

time, rather than the stable force acting in contact tonometry. Since the cornea is 

carrying a velocity and relative acceleration in one of two directions, an accelerating 

force is at play which is more difficult to characterise in biophysical terms.  It may 

be for this reason that non-contact devices are calibrated to Goldman applanation 

tonometry measures in order to achieve clinically useful results.  In the case of the 

ORA, the accelerating force will act in the same direction as the incident air-puff 

force in the inward applanation, whilst acting in the opposite direction to the air-puff 

during the outward measurement.  This does not appear to be considered with 

Force (W) 

IOP (P) 

Area (A) 



48 

 

respect to hysteresis in the introductory material by the developers (Luce 2005), or, 

to the best of the authors knowledge, subsequently.   

 

This ORA system makes several further assumptions: 
 

• The cornea is sufficiently moist and smooth to reflect the incident light 

appropriately 

• The corneal apex is located in the centre of the cornea 

• There is negligible latency effect of the shutting-off of the air-puff after the 

first applanation 

• There is a standard corneal curvature 

• There is a standard applanation area 

 

 

The primary limitation of the use of the ORA in corneal ectasia studies is that the 

output measures rely on the reflection from the corneal surface.  Since the 

keratoconic eye has an increasing irregular ocular surface often compounded by tear 

film irregularities and dry eye, poor signals may be as a result of deflection of the 

beam from an irregular ocular surface rather than biomechanical reason.  Further, 

since most often the apex of the cone is decentred from the geometrical centre, the 

alignment of the beam is likely to be governed by a measure of reflections that do 

not in fact represent the geometrical centre or indeed the apex.  The resulting air 

pulse may therefore be delivered to an unknown location, and this may further 

compound the optical measures.  The resulting signals and derived measures may 

therefore be a representation of the irregularity of the cornea rather than the 

biomechanical properties in the study of ectasia, and may be unduly influenced by 

dry eye.   
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The Oculus CorVis ST (Wetzlar, Germany, figure 1.16), delivers an air pulse to the 

cornea, providing two applanations as the ORA above.  Unlike the ORA, the air 

pulse is standardised to deliver the same force to a cornea at each measurement.  The 

CorVis utilises a Scheimpflug camera that takes 140 images during the deformation, 

tracing the form of the anterior and posterior corneal surfaces dynamically 

throughout the impact of the force and the recovery from it, as seen in Figure 1.17.     

 
Figure 1. 16 Oculus Corvis ST (Wetzlar, Germany.  From Ambrósio et al. 2013) 
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Primarily, the CorVis measures the attributes of corneal deformation, which is an 

effect of corneal biomechanics.  Such attributes are shown in Figure 1.19.  It also 

measures standard IOP, using the timing of first applanation with respect to the 

metered air puff (as for any standard non-contact tonometer).  The CorVis appears to 

demonstrate that keratoconic corneae deform more than healthy controls, even when 

matched for confounding variables such as IOP and corneal thickness (Figure 1.18).  

This corresponds to Edmund (1988) who found that ocular rigidity and steady-state 

Young’s modulus of elasticity were both reduced in keratoconus.  Both concepts are 

fitting with the clinical view of the cornea in KC having lost its structural resistance 

and resulting deformed appearance, however is not yet clear how the attributes of air 

pulse deformation correspond to ectatic deformation.   

 

 

 

 

 

 

 

 

 
Figure 1. 17 The phases of corneal applanation with air-puff tonometry (Ambrósio et al. 

2013).  There are two applanations: one on the ingoing movement, and one on the outgoing 

movement.  Note the oscillation period that occurs only after the cornea has reached 

maximum concavity.   
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Figure 1. 18 Deformation of a healthy cornea (A) and a keratoconic cornea (B) matched for IOP and CCT.  Note 

the increased deformation and concavity seen in the keratoconic eye, whereas the healthy eye is relatively less 

affected by the air-puff (from Ambrósio et al. 2013).   

 

The deformation parameters measured by the CorVis are confounded by the factors 

that intrinsically confound corneal biomechanical measurements in general.  Asaoka 

et al (2015) found that the CorVis parameters (such as deformation amplitude, DA) 

were very strongly (negatively) correlated with IOP measurement (which is derived 

from the first applanation) and that IOP affected several other parameters including 

the time of, and velocity at, the first applanation (‘A1T’ and ‘VIN’, positively and 

negatively, respectively) and the radius of curvature at the highest deformation 

(positively).   

 

The effect of corneal thickness was investigated by Huseynova et al (2014).  An 

increased CCT increases the time of the first applanation, for a given IOP range. 

Increasing CCT correlates with increasing radius of curvature at the highest 

deformation.   
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Figure 1. 19 Software-derived characteristics of the CorVis.  From Vellara and Patel (2015) 

 

Non-commercial systems for analysing corneal biomechanics are also available.  

Swept-source OCT provides dynamic capture of corneal deformation with an air-

puff, and although in its infancy, is considered to be a promising mode of analysing 

the behaviour of a cornea under stress and may be useful to measure the response to 

treatment (Maczynska et al. 2016).  Recent investigations of in-vivo biomechanical 

properties in  KC examine Brillouin shift, an indirect measure of elastic modulus, 

indicating changes in biomechanical integrity across the sample, with particularly 

low modulus in the zone of the cone (Scarcelli et al. 2014).  Since Brillouin 

microscopy can be carried out in vivo, and is undergoing much investigation at 

present, including the use of adaptive optics interferometry to measure the elastic 

background signal (Lepert et al. 2016).  The possibility of measuring live 

biomechanical properties across the cornea may shed light on whether the presumed 

biomechanical weakness in keratoconus is indeed focal as suggested by Roberts et al 

(2014) or generalised across the whole cornea (Andreassen et al. 1980).   
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1.7 Topography 
 

Keratoconus causes alterations in the corneal profile, both to the front and to the 

back surfaces.  It is now possible to gather data from both corneal surfaces, but in the 

early history of corneal ophthalmology, reflections from the front surface of the 

cornea were used to detect irregular corneae, by observation of the asymmetry of the 

reflected concentric mires.   The simplest of systems involves having the patient 

fixate at the centre of a series concentric rings, coincident with a viewing space 

(Placido 1880).  Hofstetter used a similar technique (termed keratoscopy), to 

estimate a population prevalence of irregular cornea of 0.6%.  (Hofstetter 1959).   

Videokeratoscopy, or topography, is simply a digitisation of this technique.  Whilst 

early videokeratoscopy produced a photo of reflected mires, modern topography 

provides data analytics about the corneal surfaces images.  Strictly, corneal 

topography refers only to equipment imaging the front surface of the cornea, whilst 

corneal tomography refers to equipment measuring both front and back surfaces.  It 

follows that only tomography devices can derive information of corneal thickness.  

In the remainder of this thesis, for simplicity and to follow clinical convention, the 

term, ‘topography’, will be used for both.   

 

Accurate topography imaging is considered vastly superior in diagnosing early KC 

than the reliance of slit lamp observations alone, where tell-tale slit-lamp signs have 

not yet developed.  The drive toward accurate topography and automated detection 

of keratoconus was propelled by the expanse of refractive surgery, for which 

incipient KC is a significant contraindication – a high sensitivity to KC is vital.  

Since refractive surgery is primarily a private venture and a significant source of 

income for such refractive surgeons, a high degree of specificity became very 

important, such as not to unnecessarily decline surgical income.  The proliferation of 

diagnostic indices in the literature since the mid-1990s have been primarily designed 

for this remit, but grading and classification systems are of great use to eye care 

researchers worldwide.  Several methods of using topography to identify 

keratoconus are discussed below: 
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1.7.1 Classification by topographical pattern 

recognition 
 

A typical KC cone lies inferiorly (Krachmer et al. 1984), and so imaging reveals 

relatively steeper cornea below the midline of the corneal centre (Figure 1.21), 

whilst the superior cornea is imaged as relatively flat.  Such characteristic steepening 

is typically easily identified by an experienced clinician ‘by eye’.   

 

Protrusion of the cone is denoted by forward movement, or elevation of the front 

surface topography (Figure 1.20), whilst posterior bowing of the cornea is only seen 

using tomography imaging of elevation of the back corneal surface.  There is 

evidence to suggest that very early ectatic changes occur at the posterior corneal 

surface prior to the anterior (Schlegel et al. 2008; Tomidokoro 2000; de Sanctis et al. 

2013) and thus an increased posterior elevation will alert an experienced clinician 

even in the presence of a normal front surface topography.  In tomographic imaging 

systems, the differential of anterior and posterior elevation data provides the relative 

thickness profile of the cornea.  When the thinnest point of the cornea is displaced 

with respect to the corneal centre (Figure 1.22), and particularly when this change is 

coincident with the area of steepest curvature and elevation, a high likelihood of 

keratoconus is reached in the mind of the skilled observer.   

 

 

Figure 1. 20 A reference sphere aligned 

with the profile of a normal cornea, and 

the resulting topographic pattern (top).  

The bottom shows a relatively steep 

cornea and resulting ‘hot spot’ where 

the corneal elevation is above that of the 

reference plane 
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Figure 1. 21 A reference shape relative to a normal cornea (top), an inferior keratoconus cone with an en-face 

reference shape that highlights the relative steepness of the inferior cornea to the reference shape and the 

relative flatness of the superior cornea (middle).  The last image depicts a healthy eye looking inferiorly and the 

en-face reference shape inappropriately displaying inferior steepening (bottom), artificially creating the 

impression of KC, as can be the case when fixation is poor.  
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1.7.2 Classification by monitoring for changes in 

corneal tomography within individuals  
 

When a topographical pattern as discussed above appears in conjunction with 

reduced vision, alongside slit lamp signs of KC, and in the absence of other 

explanatory pathology, a diagnosis of KC can be made.  However, in very early 

keratoconus, before vision is affected, keratoconus is diagnosed after an increase in 

conical shape parameters from the measured baseline.  A clinically significant 

change in Kmax in early keratoconus is 0.95D (Flynn et al. 2015).    

 

 

1.7.3 Classification with respect to a ‘fellow eye’ 

dataset 
 

Data from clinically unaffected fellow eyes of keratoconus subjects (a ‘fellow-eye’ 

dataset) may be used as a benchmark over which indices should raise suspicion for 

KC in a healthy population (Lema et al. 2009).  This does have the limitation of 

assuming that the clinically affected eye started out as a symmetrical version of the 

fellow eye (Bühren et al. 2007).  Such pre-clinical keratoconus is termed, ‘forme 

fruste’ KC (FFKC), and was identified by Amsler (1946, who noted that although 

patients presented with ‘unilateral’ KC, early changes were present in the fellow eye, 

despite this not yet being symptomatic, possibly representing an ‘aborted’ form of 

the disease.  Lema and colleagues looked at topographic, corneal wavefront and 

pachymetric indices, to study the ability of a ‘fellow-eye dataset’ to significantly 

differ from healthy eyes, or those of genetic relatives.  Of the topographical indices 

studied, only the ‘location of the steepest point’ (location of Kmax) was significantly 

useful at 80% specificity.  All wavefront indicators were useful in differentiating 

from controls, and all but coma were sensitive enough to differentiate from relatives 

(Lema et al. 2009).  Pachymetric data, however, was found to be the most useful.  

The distance from the maximum point of posterior elevation from the central cornea 

was the most predictive of keratoconus.  Since healthy corneae with DS are known 
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to be, on average, steeper (Vincent et al. 2005), thinner (Haugen et al. 2001) and DS 

eyes carry abnormally high whole-eye aberrations (McCullough et al. 2013), Lema’s 

approach is not transferrable to DS eyes without prior validation.     

 

 

 

 
 
Figure 1. 22 An infro-temporally displaced cone in the left eye, the steepest point displaced from the corneal 

centre.  The measure of the resultant vector by Pythagoras’ theorem provides a mathematical depiction of the 

extent of apical shift.  Any of: elevation, curvature or pachymetry may be measured in this way.   

 

C 

IT 
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1.7.4 Topographically-derived single indices 
 

Corneal	Power	

Since keratoconus is characterised by a steep cornea, measuring the steepest aspect 

of the central cornea is considered a fundamental measure of the course of the 

disease. The steepest corneal measurement is known as Kmax.  This is derived from 

topographical data with the use of computer software and can detect the maximum 

corneal steepness regardless of the location on the cornea.   In the case of the Oculus 

Pentacam, the location of the Kmax is provided as polar co-ordinates with respect to 

the central reference (line of sight).   

 

As per a traditional keratometer, modern topography systems are calibrated to 

provide simulated K readings, from the central 3 mm of the cornea.  This builds on 

the original work by Klyce (1984) and Maguire et al. (1987) who investigated the 

mathematical derivatives of the elliptical reflection of a circular projection onto an 

astigmatic eye, to provide a map of corneal power across the central cornea.  K1 

represents the flat K reading and K2 the steeper.  Average corneal power value 

(ACP) is the mean of the maximum and the minimum corneal powers as per 

(simulated) keratometry.  Since significant astigmatism can exist in keratoconus, this 

measure takes into account flatter regions also.  Using corneal steepness alone (K2), 

Rabinowitz found that a K-value greater than 47.2D is indicative of possible 

keratoconus, and classed corneae over 48.7D as clinically keratoconic (Rabinowitz 

and Rasheed 1999).  Others have used average K values of from just 45.57D to 

identify keratoconus suspects (Smolek and Klyce 1997).   

 

However, it is not accurate to classify neighbouring grades by average central 

corneal curvature alone.   Average corneal curvature, maximum corneal curvature, 

and simulated steepest keratometry readings did not differ significantly between the 

forme fruste eyes and those of controls (Lema et al. 2009).  This demonstrates that 

the elimination of early keratoconus cannot be ensured through keratometric values 

alone, but rather that more sophisticated, or multiple measures must be taken.   
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Regular	astigmatism	

Regular corneal astigmatism is the difference between K1 and K2 using keratometry, 

or simulated K’s.  In refraction, regular astigmatism is simply the cylindrical 

component of the spectacle prescription.  In a typically developing population, 

Serdarogullari and colleagues determined that patients with refractive astigmatism 

over 2D should be screened for early keratoconus (Serdarogullari et al. 2013).   

However, Krachmer warns against using high astigmatism to categorise patients into 

KC group, stating that this artificially increases the observed prevalence 

unnecessarily (Krachmer et al. 1984).   

 

Corneal	irregularity	and	aberration	

Topographic indices representing irregularity or aberration highlight corneal 

asymmetry and the measure of the deviation of the cornea from an optically regular 

shape.  Since the typical keratoconic cone lies inferior to the corneal horizontal, 

producing relative inferior steepening it is possible to quantify the difference 

between the average corneal power across the inferior cornea relative to that of the 

superior cornea.  The difference is known as I-S and is usually a positive value.  

When used alone, in the TMS-1 system (Tomey Corporation, Nagoya, Japan), 

methods by Rabinowitz show an I-S >1.4D is indicative of keratoconus (Rabinowitz 

and Rasheed 1999).   

 

Keratoconus Index (KI) is provided by the Oculus Pentacam, expressing the ratio 

between mean sagittal radius values in the upper and the lower segment.  The 

Pentacam itself highlights that which it considers >2.5 standard deviations (S.D.) 

from the healthy mean as a yellow flag and >3 S.D. from the mean as a red flag.  

Independently, Kanellopoulos found that a KI value larger than 1.07 correlated with 

early clinical KC, and that a measure of 1.04 should raise suspicion of KC. 

(Kanellopoulos and Asimellis 2013).  This is in line with data from Goebels who 

recommends thresholds for the classification of KC using the KI specifically 

(Goebels et al. 2015).    
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Corneal irregularity is also measured by the corneal aberrations, whereby the shape 

of the anterior, or posterior cornea is mathematically compared to Zernike 

polynomial shapes.  While ophthalmic sphere and cylinder correction represent low-

order aberrations, high order aberrations such as horizontal coma, vertical coma and 

spherical aberration represent a large proportion of the vision loss experienced by 

keratoconic patients.  The healthy cornea has minimal aberrations and so aberrations 

can be used as an early pre-clinical indicator for KC.  Alió found that coma-like 

aberrations are most significantly different in a keratoconic group with respect to 

normal (Alió and Shabayek 2006).  Coma is produced when decentered optics exist 

within an optical system – in the keratoconic case, a decentering of the powerful 

corneal apex.  The defocus spherical aberration is induced by the protrusion of the 

cone and the relative shape change in the centre of the cornea in comparison to the 

periphery.  The authors found no correlation between corneal thickness and corneal 

HOA in the 40 eyes studied - the two factors may be independent.  The authors 

suggest a modification to the well-accepted Amsler-Krumeich classification to 

include total coma quantification, but do not discuss the impact of vertical or 

horizontal coma components separately.   

 

Schwiegerling and Greivenkamp propose an aberration classification system that 

utilises Zernike polynomial decompensation of corneal height data to classify 

between normal and keratoconic eyes, using a factor called -Z3, measured in µm 

(root mean squared aberration, RMS) representing the ‘bump’ shape of the cone that 

remains when the spherical and cylindrical values of the ocular system have been 

removed.  This is, in effect, a measure of spherical aberration.  The dataset consisted 

of 15 keratoconic eyes (3 mild, 10 moderate and 2 severe KC), using myopic eyes as 

controls.  When used on the test group, normal eyes and keratoconus eyes were 

separated without overlap, with the closest keratoconic eye being 3 S.D. away from 

the cut-off value -Z3 = 0.00233µm (Schwiegerling and Greivenkamp 1996). Lema 

and colleagues found that corneal wavefront indices exhibited the best performance 

for discriminating between controls and the fellow eye of ‘unilateral’ keratoconus 

patients (Lema et al. 2009).  In particular, total HOA RMS and vertical coma RMS 
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were the most statistically different parameters and the best clinical detector of KC, 

over corneal curvature and corneal thickness.  

 

The Pentacam provides two particular irregularity indices of note: 

(i) The index of surface variance (ISV) denotes the value of curvature variation 

from the mean curvature across the anterior cornea.   

(ii) The index of vertical asymmetry (IVA) denotes the value of curvature 

symmetry between the upper and lower hemisphere of the anterior cornea.   

 

Elevation	

Mean posterior elevation is a value derived from the Oculus Pentacam and quantifies 

in microns the average distance that the posterior cornea sits above the reference 

plane.  Values above 29µm are considered suspect for KC while above 35µm is 

considered indicative of KC.  While the sensitivity (97.3%) and specificity (96.9%) 

are high for KC, the values are lower for the identification of sub-clinical KC 

(sensitivity 68.0% and specificity 90.8%) (de Sanctis et al. 2008).  Thus, this index 

may be more useful for establishing a diagnosis than for screening.   

 

 
Figure 1. 23 Derivation of elevation height data with respect to the reference plane.  The lower image depicts an 

increased height (elevation) from the reference place, compared to the upper. 
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The Pentacam provides two particular elevation-derived indices of note: 
 

(i) The index of height decentration (IHD) is a value denoting the decentration 

of height data in the vertical direction.   

(ii) The index if height asymmetry (IHA) denotes the value of height data 

symmetry between the upper and lower hemisphere of the anterior cornea.   

 

1.7.5 Combined indices 
Combined indices are typically found within software built-in to corneal 

topographers and tomographers.  Primarily used to screen refractive surgery 

candidates prior to corneal refractive surgery, they were initially designed to 

objectively quantify the likelihood of keratoconus for each patient.  The same output, 

however, is used to either stratify, or chart the progression of keratoconic patients in 

clinical research. 

 

Belin-Ambrosio	Enhanced	Ectasia	display	

This display is additional software available for Oculus Pentacam, providing a 

corneal tomography view whereby a more sensitive reference shape is used in order 

to increase the ability for the software to detect an early protruding cone presence 

(Belin and Khachikian 2007).  Figure 1.24 shows how the new reference shape 

(‘enhanced BFS’) is fitted to the peripheral corneal shape rather than as an average 

of the cornea as a whole.  Without this software, the automatically-chosen reference 

shape can be influenced by the portion of abnormal cornea, and mask subtle defects.  

 

 
Figure 1. 24 Depiction of Belin Ambrosio enhanced ectasia display.  Adapted from (Ishii et al. 2012)with 

permission.  The superimposition of the standard ‘BFS’ (best fit sphere) demonstrates how the residual elevation 

would be masked.  In this case the enhanced BFS would highlight the focal defect more readily.   
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1.8 Shape classification 
 

The most comprehensive classification of cone morphology is proposed by 

Rabinowitz (1996).  This topographically-based classification system was originally 

conceived for the TMS-1 topographer, but the application is relevant across systems.  

The colours representing the steepest areas of the cornea were used to analyse the 

shape of the central curvature. 
 

Table 1. 11 Classification of topography from Rabinowitz et al. (1996) 

Category Acronym Description 

A R Round 

B O Oval 

C SS Superior steepening 

D IS Inferior steepening 

E I Irregular 

F SB Symmetric bowtie 

G SB/SRAX Symmetric bowtie with skewed radial axes 

H AB/IS Asymmetric bowtie with inferior steepening 

I AB/SS Asymmetric bowtie with superior steepening 

J AB/SRAX Asymmetric bowtie with skewed radial axes 

 
Figure 1. 25 Classification of topography from Rabinowitz et al. (1996)
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1.8.1 Scheimpflug profiling 
 

A qualitative profile of the cornea can be extracted from the Oculus Pentacam.   This 

provides several useful points of understanding in the assessment of a keratoconic 

cornea: 

 

• The distension of the cornea with respect to the anterior chamber.  The 

protrusion of the cone is accounted for by the ‘sag’ value of a scleral contact 

lens. 

• The transparency of the cornea is shown directly, and scar tissue is 

highlighted by a whitened appearance.   

• The profile of the cone becomes clear, in terms of its centrality and symmetry 

about the centre of the imaged plane.   

 

 

 

1.8.2 Corneal apex location 
 

The corneal apex is defined as the maximum curvature or height [elevation] of the 

front surface (Demirbas and Pflugfelder 1998).  This is in contrast to the Oculus 

Pentacam’s notation of ‘apex’, which is simply an arbitrary point coinciding with the 

line of sight. This point is used as the reference for all (x,y) locations.  When using 

the Oculus Pentacam, the true apical locations can be derived from either the co-

ordinates of Kmax or the co-ordinates of the point of maximum elevation. In a normal 

eye, the apex of curvature or elevation may be generally considered to be coincident 

with the line of sight, although, in reality, it is laterally displaced by a small angle, 

kappa, which is typically of no clinical relevance (Artal et al. 2006).   The formation 

of a cone in KC will naturally alter the original apex, and may displace it from a 

location that is typically just infero-temporal to the pupil centre (as in figure 1.22).  
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Demirbas (1998) used data from typically developing individuals and categorised the 

corneal apex location into 5 categories from both axial curvature and elevation data: 

central 1mm zone, and into the following quadrants: inferotemporal, inferonasal, 

superotemporal and superonasal.  Using elevation indices, the apices of most cones 

are displaced inferotemporally, whilst using axial curvature, most apices were 

displaced in the central and inferior vertical zone (Fig 2.1). Demirbas suggests that 

an elevation-based approach is likely to produce an apical location that is more 

reliable for use when fitting contact lenses or planning corneal surgery.   

 

 
Figure 1. 26 Location of the corneal apex using an elevation based method (above) and an axial curvature 

method (below).  Note the symmetry between the eyes and the predominance of the cone in the inferotemporal 

quadrant of each eye.  adapted from Demirbas and Pflugfelder (1998) 
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1.8.3 Corneal shape: Eccentricity and Asphericity 
 

Eccentricity of a conical section is a measure of the deviation from a circular shape.  

This is an important measure since the corneal shape cannot be defined by the 

central cornea alone (Bibby 1976).  In corneal terms, eccentricity ε is considered as 

the degree of flattening toward the peripheral cornea.  The normal cornea is 

inherently aspheric, that is, steeper centrally and flattening toward the periphery – 

this controls spherical aberration in the normal eye (Holladay 1997).  The mean 

eccentricity value of a healthy cornea in a typically developing individual is 

0.41±0.11 and is defined as the square root of the difference of the average values of 

the radius of curvature of the sagittal and the mean central radius (Benes et al. 2013).  

 

Asphericity, Q, is a useful derivate of eccentricity   Q = - ε 2.  Values >0 denote an 

oblate cornea, i.e. relatively steep in the periphery – such as that found after myopic 

LASIK (Hersh et al. 2003).  In the normal eye, a prolate cornea is typically present, 

steeper in the centre relative to the periphery and Q having a value between 0 and -1 

(a flattening elipse).   Mean Q values for a typically developing adult population are 

-0.19±0.1 for a 6mm diameter of central cornea (Read et al. 2006), -0.29±0.09 for a 

8mm diameter (Pinero et al. 2010), and -0.36±0.1 for a 10mm diameter (Read et al. 

2006).  Shape factor, p, indicating the rate at which the peripheral cornea departs 

from the central curvature, is given by the equation p=1- ε 2, or p=1+Q (Guillon et al. 

1986).   

 

It is notable that keratoconic cornea have a greater negative asphericity of both the 

front and back of the cornea than healthy eyes (Piñero et al. 2010).  This indicates a 

more significant prolate shape and represents the relative protrusion of the central 

cornea.  An average early keratoconic cornea has an asphericity of -0.65±0.27 over 

an 8mm diameter.  Despite this difference, asphericity is not a useful diagnostic 

indicator of early disease (Piñero et al. 2010).   
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1.8.4 Pachymetric profiling 
 

Since there is a large variation in corneal thickness in any population, relative 

pachymetric indices are more useful at characterising pathological thinning than an 

absolute cut-off value.    

 

In a keratoconic eye, focal thinning exists around the location of the cone.  Such 

focal thinning is in contrast to the generalised thinning that exists in a normal 

thinned cornea (Fig 5.4).  Relative thinning results in a relative increase in thickness 

when moving away from the cone, or the thinnest point.  This is the basis of 

Percentage Thickness Increase (PIT) graphs provided by the Corneal Thickness 

Spatial Profile (CTSP) programme of the Oculus Pentacam.   

 

 
Figure 1. 27 Difference in thickness profile of a pathologically and physiologically thin cornea (Halstenberg, 

Oculus Pentacam) 
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Corneal thickness at the thinnest point is determined and the average thickness 

values of the points within 22 imaginary circles (centred around the thinnest point) at 

0.4mm intervals, are determined.   

 

 
Figure 1. 28 CTSP display from Oculus Pentacam.  

 

 
 

PIT is then plotted graphically on the lower display, allowing a relative thickness 

increase profile to be built up.  A normal (Fig 5.6a) and ectatic (Fig 5.6b) cornea 

provides a visual depiction of the standard deviation within which the healthy cornea 

is expected to lie, and how the pathological cornea falls outside this expected range.  

With increasing distance from the thinnest point, the difference between normal and 

pathological spatial profiling values increases (Ambrósio et al. 2006).   
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Figure 1. 29  (left) and  5.6b  (right) to show the Pentacam display of a healthy cornea CTSP and an ectatic CTSP respectively.  The actual corneal thickness values are plotted in 

the superior plot, whilst the PTI is plotted inferiorly.  Corneal thickness maps are provided for reference.  
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1.9 Grading scales for KC 
 

Amsler was the first to suggest a grading scale for KC, categorising the disease into 

4 stages (Amsler 1938).  This utilised the skewing of axes seen by placido disc 

viewing, and Amsler noted the increasing irregularity with advancing disease 

distorting the keratometer mires, and noted the increasing disparity in shape between 

the central and peripheral corneal areas.  Fundamentally, Amsler pointed out that 

keratoconus could be identified by the asymmetry of the principle refracting 

meridians of the cornea.   

 

Amsler’s work has been supplemented by further understanding and imaging of the 

corneal power across the corneal surface, and by corneal thinning with disease 

progression.  The Amsler-Krumeich scale (from Alio and Shabayek 2006) is a 

modern expression of the original scale: 

 

Stage I 

• Eccentric steepening 
• Myopia and/or induced astigmatism 
• Mean K readings <48D 

Stage II 

• Myopia and/or induced astigmatism from 5D to 8D 
• Mean central K readings <53D 
• Absence of corneal scarring 
• Minimum corneal thickness >400µm 

Stage III 

• Myopia and/or induced astigmatism from 8D to 10D 
• Mean central K readings >53D 
• Absence of scarring 
• Minimum corneal thickness 300-400µm 

Stage IV 

• Refraction not measurable 
• Mean central K readings >55D 
• Central corneal scarring 
• Central corneal thickness <200µm 
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This scale has significant limitations.  This scale is extremely prescriptive with 

dioptric power, refraction and corneal astigmatism and there is frequently cases in 

which a subject will overlap on at least two of the ‘stages’.  For example, a cornea 

that is 350µm with corneal scarring would fit into both III and IV, whilst an early 

keratoconic with hyperopia, low astigmatism and a relatively flat cornea might not 

reach the specification for grade I.  In a population of people who have naturally 

thinner, steeper cornea, such as that seen in DS (Haugen 2001), healthy corneae 

could easily be attributed to group I if eccentric steepening was not clearly defined 

by corneal topography analysis in another manner.   
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1.10 Cross-linking of collagen and elastic 

fibres 
 

A vital aspect of molecular-binding is the generalised intermolecular crosslinking 

across collagen and elastin within tissues.   Crosslinking is a developmental 

necessity in order to provide structure and biomechanical strength to various organs 

and systems (Bailey et al. 1998).  The degree of cross-linking of tissue is important.  

Under-crosslinking of tissue results in reduced tensile strength whereas over-

crosslinking results in poor elasticity and brittle tissue (Buehler 2006).   

 

Bonds between collagen fibrils are covalent in nature and allow formation of larger, 

stronger collagen fibrils.   These occur from the onset of life, through to corneal 

maturity - with additional crosslinks adding throughout adulthood.  Cross-links 

result in collagen that is tougher, less elastic, less soluble, and less prone to 

enzymatic degradation (Malik et al. 1992).  Two contrasting types of crosslinking 

are relevant to the predominant collagen type I found in the corneal stroma – 

enzymatic and non-enzymatic crosslinks (Raiskup and Spoerl 2013).   

 

I. Oxidation – enzymatically controlled cross-linking that occurs during 

development and maturation.   

II. Glycation – the spontaneous addition of sugar (usually glucose) to a protein, 

is a key part of the ageing process.   

 

Developmental crosslinks in young tissue occur due to aldehyde formation and are 

reliant upon the production of oxygen by the enzyme lysyl oxidase in the presence of 

copper (Bailey et al 1998;Bykhovskaya et al. 2012).   

In older tissue, crosslinking is aldehyde-based but non-enzymatic, instead is 

facilitated by the presence of glucose.  Such glycation is shown to increase with age 

(Malik et al. 1992), and so collagen fibrils grow in volume over a lifetime as new 
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collagen molecules are covalently bonded to the fibrils with time (Daxer et al. 1998).  

As the diameter of collagen fibril increases, the flexibility decreases (Bailey et al. 

1998).  Indeed, in vivo study of older corneae indicate that they are firmer, less 

elastic, and show less viscoelastic absorption of force than younger corneae, whilst 

corneal thickness remains constant (Schwarze et al. 2000; Ohmoto 2009). 

 

Diabetic patients are more susceptible to glycation due to their increased blood 

glucose availability (Nuytinck et al. 2000; Jerums et al. 2003).  While the addition of 

cross-links to vascular tissue is thought to increased blood pressure and the 

susceptibility for adverse cardiac events (Wenstrup et al. 2004; Kass et al. 2001), 

natural cross-linking of the cornea appears to show no great clinical disadvantage.  

Interestingly, diabetes may be protective against keratoconus, possibly due to the 

additional glycation and crosslinks in the cornea (Seiler et al. 2000) (KUO et al. 

2006).   

 

The gene coding for lysyl oxidase, LOX, is located on chromosome 5 (5q23.2), and 

variants in this gene are thought to account, in some part, for susceptibility to 

keratoconus in some individuals (Sethi et al. 2012).  A deficiency in LOX activity is 

seen in certain connective tissue disorders, Ehlers-Danlos syndrome type V and cutis 

laxa (Byers et al. 1980).  Since LOX is considered a cross-linking agent, a search has 

taken place for an abnormal variant of the LOX gene in keratoconics, which could 

theoretically cause a decrease in normal cross-linking of corneal collagen, 

biomechanically weakening the cornea and leading to a susceptibility to keratoconus 

(Bykhovskaya et al. 2012).  

 

In human epithelial cells from the apical area, LOX expression is reduced in 

keratoconic eyes versus healthy controls (Pahuja et al. 2016).  LOX activity across 

fibroblast culture medium produced from keratoconus samples was found to be 

decreased 2.5 fold compared to that of controls (Dudakova et al. 2012). Further work 

from Dudakova and colleagues, suggests that a LOX abnormality may be the 

common basis for both the biomechanical instability seen in keratoconus and that of 

mitral valve prolapse, particularly because both are common in Down’s syndrome 

(Dudakova and Jirsova 2013).  Other papers disagree about the involvement of LOX 
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in KC (De Bonis et al. 2011).  However, lysyl oxidase, or the LOX gene does not yet 

appear to have been explored specifically in DS.   

 

1.10.1 Induced Corneal Cross-Linking (CXL) 
 

CXL was developed in order to strengthen the cornea and reduce its propensity to 

deform in shape (Spoerl et al. 1998).  Since the biomechanical integrity of a 

biomaterial is determined at least in part by the extent of the crosslinking within the 

structure, the introduction of further crosslinks between the collagen fibrils should 

make the stroma stiffer and more robust, thus preventing degradation (Spoerl et al. 

2009) or fibrillar slippage.   

 

In standard protocol, after removal of the corneal epithelium, the stroma is irradiated 

with UV light (370nm) in the presence of Riboflavin and dextran solution 

(Wollensak et al. 2003).  This is usually carried out in a surgical theatre as a day case 

procedure under local anaesthetic, with the patients taking intensive topical 

medication and returning several days postoperatively to ensure healing of the 

corneal epithelium. 
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1.11 The healing cornea 
 

As can be seen from Figure 1.30, the normal corneal epithelium is typically at least 5 

layers thick, and as such is able to fend off much mild biological and chemical 

trauma.   Epithelial stem cells are produced in the limbal crypts (Dua et al. 2005), 

migrate centrally to form the basal layer, move anteriorly, and are naturally sloughed 

off at the ocular surface.  

 

 
Figure 1. 30 Healthy corneal epithelial cells progress from the basal layer upwards to wing and surface cells.  

Bowman’s layer underlies the epithelium and is morphologically distinct from the underlying corneal stroma 

(Beuerman and Pedroza 1996), with permission.   

 

In repair, it is the deeper cells basal cells of the epithelium which are most important, 

undergoing mitosis and quickly replacing the protective superficial cells that have 

been lost to ocular damage (Thomas 1955).  When epithelial trauma occurs, basal 

cells are thought to release inflammatory cytokine interleukin 1 (IL-1) into the 

underlying collagen layers (Wilson et al. 2001).  
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Keratocytes are differentiated fibroblast cells that are specific to the corneal stroma.  

They produce the components for the production and the maintenance of collagen.  

They appear mitotically quiescent in absence of pathology, and very slowly maintain 

the slow turnover of corneal collagen (Davison and Galbavy 1986).  Keratocytes are 

derived from neural crest cells and are thought to possess stem cell-like qualities in 

terms of their ability to repair and regenerate tissue (West-Mays and Dwivedi 2006).  

When the corneal epithelium is damaged, IL-1 infiltrates the stroma and binds to the 

IL-1 receptors on the keratocyte cell.  This initiates the keratocytes either to apoptose 

or assume a repair phenotype (Fini and Stramer 2005).  Depending upon the extent 

of the damage, keratocytes proliferate and migrate resulting in the upregulation of 

the expression of collagenases and metalloproteinases to degrade damaged tissue.  

Upon injury, some keratocytes transform into ‘myofibroblasts’, cells that control the 

deposition and organisation of ECM specific to corneal wounds (Jester et al. 1999).  

These specialized cells are phenotypically different to keratocytes, and produce 

altered secretions  including altered glycosaminoglycans for the resulting new 

collagen to be laid down to the extracellular matrix (ECM) (Funderburgh et al. 

2003). A significant product of myofibroblasts is actin (akin to that of smooth 

muscle cells) that contracts, sealing the open wound (Majno et al. 1971).  See figure 

1.31.   
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Figure 1. 31 The healing of an incisional corneal wound at 3 days (A&D), 14 days (B&E) and 30 days (C&F). 

A-C show staining of presumed keratocytes with anti-fibronectin antibodies whilst D-F show presumed staining 

of epithelial ingrowth by phallacidin (Garana et al. 1992).  It appears that the wound is contracting and sealing, 

a function of cellular activity, both by the epithelium and the keratocytes.   

 

Jester (1999) describes that, in general, the healing of controlled, incisional wounds 

involve: 

(i) Early sliding of the corneal epithelium over the wound margins 

(ii) Formation of an epithelial plug 

(iii)  Epithelial plug is replaced by fibroblastic cells 

(iv)  Formation of scar tissue 

 

Such healing is modulated by the activation of the corneal inflammatory pathway, 

and the studies of the pathophysiology in KC reveal interesting parallels that are 

worthy of note. 
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1.12 Cellular changes in Keratoconus 
 

On the very first page of his 1854 book, Nottingham remarks that [keratoconus], 

“…in most instances, of inflammatory action, although this antecedent may not, at 

all times, be observed.”  Despite this, for many years, scientific keratoconus 

literature has typically introduced the disease as a “non-inflammatory corneal 

ectasia” and research has focussed upon the biophysical and structural changes 

present.   Recently, more attention has been placed upon investigating the 

inflammatory aspects that may contribute to the disease state, and their impact upon 

the existing biochemical changes that are well established in KC.  

 

1.12.1 Tear film 
The tear film exhibits inflammatory markers that are altered significantly between 

eyes that do and do not have keratoconus (Lema and Duran 2005; Lema et al. 2009; 

You et al. 2013).  Further, Lema et al (2009) compared the levels of 

proinflammatory markers in patients affected by asymmetric disease divided into 3 

groups: (i) the clinically keratoconic eye (ii) the fellow sub-clinical keratoconic eye 

and (iii) that of control subjects with no overt evidence of keratoconus.  The authors 

found that tear composition is altered in KC (relative to control patients) even in the 

eye with subclinical disease.  

 

1.12.2 Corneal Epithelium 
In keratoconus, there is a loss of epithelial basement membrane integrity and altered 

protein expression (Nielsen 2003).  The morphology of epithelial cells appears 

disturbed in keratoconus, cells appear longer and elongated, even when contact lens 

wear is accounted for (Tsubota et al. 1995).  Reflective deposits are noted in the 

basal epithelial cells under in vivo confocal microscopy, thought to be the 

microscopic component of the haemosiderin, the accumulation of iron in the cornea 

that leads to Fleischer’s ring seen under slit lamp biomicroscopy (Uçakhan et al. 

2006; Efron and Hollingsworth 2008).  In severe inflammatory ocular surface 

disease, reflectivity of the epithelial cells is also affected (Alsuhaibani et al. 2006), 
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and the nuclei of epithelial cells appear altered (Efron and Hollingsworth 2008), see 

figure 1.32.  When viewed using histological light microscopy, the overlying 

epithelium is noted to thicken beside areas of breakage in the underlying collagenous 

layers in KC (Sykakis et al. 2012).  This is also noted in some corneae using in-vivo 

imaging with Scheimplug imaging (Figure 1.33).  Taken together, this altered 

epithelial cell behaviour is a likely indicator that the cells are under metabolic stress 

in KC, and suggestive that epithelial cells may be phenotypic of healing properties.   

 

 

 
Figure 1. 32 Reflective epithelial nuclei in KC and those in the normal eye (Efron and Hollingsworth 2008), 

changes  which may indicate that the epithelium is under metabolic stress.   

 

 
 
Figure 1. 33 An image adapted from (Rocha et al. 2013) displaying hypertrophic epithelium overlying a 

particularly thinned area of corneal stroma in a keratoconic eye.  Such cellular volume changes make a dramatic 

difference to the curvature of the anterior cornea and mitigate the detrimental refractive impact of keratoconus.   
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1.12.3 Bowman’s Layer 
In KC, Bowman’s layer is noted to develop breaks and growing evidence to suggest 

these breaks become infiltrated by keratocytes and epithelial cells surrounding the 

area (see Figure 1.34) (Sherwin et al. 2002; Sykakis et al. 2012).  Importantly, 

alterations in the collagen expression found in Bowman’s layer appear to be specific 

to the pathogenesis of keratoconus, and are not as a direct result of the scarring alone 

(Tuori et al. 1997).  Sykakis et al (2012) also found apoptotic cells in the area of 

Bowman’s layer breaks.  In a healthy cornea, the barrier between epithelium and 

stroma is maintained such that inflammatory mediators do not reach the stromal 

keratocytes (Wilson et al. 1996).  Figures 1.34 and 1.35 may to show some evidence 

to the contrary in KC, albeit in a small sample sizes.   

 

 
Figure 1. 34 Examination of Bowman’s layer in KC reveals that epithelial cells (yellow) invaginate into 

Bowman’s layer in a keratoconic sample (Sherwin et al. 2002). 

 
Figure 1. 35  Histological examination of a keratoconic cornea shows a break in Bowman’s layer and the 

invasion of a keratocyte cell into it (arrow denoting the nucleus) (Sykakis et al. 2012). 
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Corneal stroma 
Interleukin-1 has been discussed as the initial mediator of inflammation and healing 

in damaged corneal stroma, through the IL-1 binding sites on kertaocytes, causing 

apoptosis or cell transformation.  Four times more IL-1 receptors are found in 

keratoconic keratocytes cultures than in controls (Fabre et al. 1991).  Since IL-1 

increases the synthesis of collagenase, and subsequent reduction in collagen bulk, 

Fabre and colleagues postulate that a genetic abnormality in the number of binding 

sites in keratocytes could predispose to KC.   

 

Corneal endothelium 
In the absence of hydrops, the corneal endothelium remains largely unchanged in 

keratoconus (Del Viva et al. 2015; Rabinowitz 1998), although precautions are taken 

during CXL so that the endothelium is not irradiated, and hence a minimum corneal 

thickness is required prior to most treatments (Kymionis et al. 2012).   

 

Cellular changes seen in KC are in many ways akin to an inflammatory and healing 

process.  It is hypothesised that an abnormality in such a system could be implicated 

in the pathogenesis of keratoconus, allowing a chronic sub-clinical inflammatory 

process that in some way contributes to degradation of collagenous tissue.   
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1.13 Atopy 
 

Atopy is a term originally coined by Professor ED Perry in 1923, stemming from the 

Greek word, “atopia”, meaning out-of-place, or “strange disease” that was an 

inheritable “abnormal hypersensitiveness” to an infection, or what we now term an 

allergen (Coca and Cooke 1923).  The world allergy organisation (WAO) define 

atopy as “a personal or familial tendency usually in childhood or adolescence, to 

become sensitized and produce IgE antibodies in response to ordinary allergens, 

usually proteins” (Johansson et al. 2004).  Scientifically, atopy is characterised by 

high levels of immunoglobulin E (IgE) antibodies in the blood or on mucous 

membranes.  Clinically, atopy results in the tendency to develop classic allergic 

diseases such as asthma, eczema and hay fever.  Keratoconus itself has long been 

associated with atopy (Copeman 1965). Indeed, clinicians who fit contact lenses to 

patients with keratoconus consistently report that keratoconics tend to have 

particularly red, itchy eyes, and tend to suffer from at least two of the atopic triad 

mentioned above.  

 

1.13.1 Inflammation 
Atopy itself is considered part of a wider allergic disease, immune-mediated 

hypersensitivity.  Whilst the immune system that typically guards the body from 

infection, in hypersensitivity it instead reacts to an antigen that is not otherwise 

dangerous.   This results in the unnecessary activation of what can be a serious 

inflammatory cascade.   

In the normal physiological sense, regulated inflammation exists to eliminate 

invading organisms, and has two main roles: 

 

1. To recruit high levels of immune cells to the potentially infected area 

2. To facilitate the destruction and subsequent healing of damaged tissue 
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Atopy, therefore, creates an undue pathological process that serves no benefit to the 

host and produces local tissue irritation and destruction.  

 

There are two phases for an allergic reaction to occur: 

 

1. Sensitisation.  The allergen enters the immune system and is presented to the 

T-helper lymphocyte cells (Th), triggering the release of inflammatory 

cytokines.  Cytokines activate B-lymphocytes to produce antigen-specific 

antibodies – in the case of allergy, these are from the IgE family.  Not only 

are these released in excessive quantities, they are also bound very tightly to 

the cell membranes of mast cells in tissues, and basophils around the body 

(Fukagawa et al. 1994).   

2. 2.  Re-exposure.  Upon the second or subsequent re-presentation to the 

immune system, the allergen binds to the specific IgE-antibodies on the 

surface of immune cells (MacLean and Eidelman 2001).  This causes the 

cells to degranulate, and burst their contents into the extracellular matrix 

(Figure 1.31).  It is the contents of the granules within these inflammatory 

cells that initiate the inflammatory cascade and result in the signs and 

symptoms associated with inflammation.  The relevant factors are described 

in table 1.3.   

 
Figure 1. 36 IgE antibody receptor on the cell surface and the subsequent degranulation from vesicles 

containing abundant levels of histamine (Stump et al. 1988)
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Table 1. 12 A series of inflammatory mediators involved in the inflammatory cascade. 

 

The factors in table 1.3 comprise part of the inflammatory cascade, responsible for 

all allergic reactions, from a mild skin rash through to life-threatening anaphylaxis.  

Like most allergies, ocular allergy can be acute or chronic in presentation – this will 

depend on the allergen itself, its concentration and duration of exposure.  In acute 

allergic eye disease, the onset is usually within 1 hour of exposure, and causes severe 

swelling of the conjunctival and dermal tissues.  Chronic allergen exposure can lead 

to low grade, persistent symptoms.  While the tissues of the eye do not swell, 

sustained histamine release causes the blood vessels on the conjunctiva to become 

dilated, causing a red eye, and itchiness to occur.  Persistent high levels of 

inflammatory cytokines cause hypertonic tears on the ocular surface and continue the 

Inflammatory mediator Purpose 

Histamine A hormone that causes vasodilation, increased vaso-
permeability, mucous secretion, itch 

Tryptase An endoproteinase specific to mast cells (Fukagawa 
et al. 1994), an enzyme that breaks down collagen 
and amino acids. 

Prostaglandins and heparin Hormones causing vasodilation and preventing clot 
formation 

TNF-a (tumour necrosis factor) Promotes neutrophil migration to tissue site and 
apoptosis of neighbouring cells 

TGF-b (transforming growth 
factor) 

Inflammatory cytokine  

Interleukins  Inflammatory cytokines - signalling molecules 
produced by T helper cells to mediate inflammation 
IL-1, IL-4, IL-9, IL-13.  IL-4 and IL-13 directly 
promote the production of IgE 

MMP (matrix metalloproteinase) Endoproteinases that break down extracellular 
matrix.  MMPs can induce apoptosis of 
neighbouring cells through the release of ligands 
(such as FAS), and activation of inflammatory 
cytokines.   
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cascade that causes stress to the ocular surface cells and ultimately to epithelial cell 

death, and possibly to those in the corneal stroma.  

 

1.13.2 Mast cells 
 

While the dead epithelial cells of the skin’s epidermis provide a physical barrier to 

infection, the living cells of the mucous membranes are in contact with the air, and 

so are constantly exposed to antigens; therefore the mediators for protective 

inflammation must reside locally.  Mast cells predominate in locations such as the 

lungs, the nose, the eyes (and to some extent the skin).  Thus, it is these areas that are 

affected most sieverely in allergic disease (Figure 1.32).   These cells contain 

histamine (Riley and West 1953)  – released upon the activation of the cells and their 

rapid degranulation to initiate a surge of inflammation in the area.  Mast cells are 

found in greater abundance in those with, than in those without atopic dermatitis 

(Damsgaard et al. 1997).   

 

 
Figure 1. 37 Mast cell in the epithelium of the ox lung – note the abundance of histamine granules present at the 

surface of the tissue (Riley and West 1953).  

 



86 

 

1.13.3 Inflammation of the eyelid margin – 

blepharitis 
 

Inflammation of the eyelid margins results in red rimmed, crusty and uncomfortable 

eyes.  Although prevalent in the typical population seen by optometrists (37%) 

(Lemp and Nichols 2009), blepharitis is particularly problematic in DS often leading 

to ophthalmological referral.  The tendency of significant blepharitis in DS is 

attributed to congenital nasolacrimal duct obstruction in this group, preventing sound 

drainage of tears and debris.  However it is possible that the microbiome and 

inflammatory system is altered somewhat in DS and that the inflammatory 

environment in the tarsus is exacerbated biochemically.  Blepharitis in corneal 

disease has common associations with atopy, allergy and eye rubbing (McMonnies 

and Boneham 2003).  Significant eye rubbing due to blepharitis-derived ocular 

irritation could, in theory, lead to keratoconus according to some evidence 

(Krachmer 2004).   

 

1.13.4 Prevelence of atopy 
 

The lifetime prevalence of individual atopic components varies from 6.9% (allergic 

asthma) to 25.7% (atopic dermatitis), but varies considerably with a variety of 

factors including sex, age and geographical location (Mortz et al. 2001; Warner 

1999).  Despite the inherent variation, the prevalence of atopy appears to be 

increasing over time in developed countries.  An Eastern Australian study based in 

Wagga Wagga studied the increase in atopic conditions between 1992 and 1997 

finding an increase in asthma of 8.1% (to 38.6%) and hayfever of 6.7% (to 45.4%) 

(Downs et al. 2001). In Leipzig (East Germany), the prevalence of hay fever 

increased by 2.8% (to 5.1%) and diagnosed atopy increased by 7.4% (to 26.7%) 

between 1991-92 and 1995-96 (Mutius et al. 1998).  It is commonly thought that this 

increase is due to cleaner living environments and less exposure to infection whilst 

young. The hygiene hypothesis (Schaub et al. 2006) states that exposure to 

pathogens early in life aids the regulation of the allergy responses later in life, and 

the absence of suitable exposure results in atopy.  Th2 cytokines (which predispose 



87 

 

to allergy) predominate in infancy, are slowly replaced by Th1 cytokines that are 

allergen-specific and do not cause allergy to innocuous substances.  It is only 

through ‘exercise of infection’ that the maturation of Th1 cytokines can occur (Holt 

2000), and it is thought that children who are brought up in a very clean environment 

are deprived of the viruses and the bacteria usually available to assist in the 

development of a healthy immune system.  This is supported by the inverse 

correlation of atopic risk and family size (Strachan 2000).  Since IgE is thought to be 

an evolutionary throwback to the need for protection against helminth infection 

(Yazdanbakhsh et al. 2001), something much less common in developed countries.  

Others suggest that the diet and gut flora of very young children (Devereux and 

Seaton 2005; Kalliomäki et al. 2001), or the diet of their mothers during pregnancy 

(Chatzi et al. 2008) could impact upon risk of atopy, through the mechanism of 

antioxidant or polyunsaturated fat exposure.   The possible impact of psychological 

stress on the neuroimmunoregulation and hypersensitivity is also proposed (Wright 

et al. 2005).   

 

1.13.5 Diagnosis of atopy 
 

There is no agreed system for the identification of those with atopy.  There is a great 

variation in the literature of methods used to provide an indication of atopy; and 

many reports of prevalence do not discuss a justification for the methods employed.  

Prospective clinical trials often focus on biochemical indicators in blood, whilst 

others observe clinical signs and their severity.   

 

(i) The blood serum IgE content is used as a key inflammatory marker measured 

from the systemic circulation.  Specific IgE for the suspected allergen may be 

quantified, or that of total serum IgE concentration which represent a general 

atopic response (Paganelli et al. 1998).  Alternatively, blood samples may be 

taken to mix with antigens in a lab setting.   

 

(ii) The allergen skin test is the most common invasive method used in primary 

care to measure response to common allergens.  Each allergen is dissolved in 
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an aqueous solution and is injected into, or placed on the superficial skin 

layers in labelled rows alongside a positive control of histamine and a 

negative control of a dilutant (Spergel et al. 2002).  If the patient reacts 

positively to the allergen, inflammation occurs locally at the injection site.  

 

(iii) Atopy questionnaires have been used extensively in preliminary research in 

the investigation of atopic prevalence in a population.  Since atopy has 

clinical features clinically determined by consensus (Edfors-Lubs 1971; 

MacLean and Eidelman 2001), questionnaires are considered a practical 

approach for groups when invasive testing is impractical or excessive to 

clinical need.  The current study aims to produce clinical guidelines for 

primary and secondary care for those with learning difficulties, 

questionnaires were considered both appropriate and minimally invasive 

when screening for atopy in this Down’s syndrome cohort.    
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1.13.6 Grading atopy 
 

The literature on grading of atopy predominantly focuses on atopic dermatitis.  

Despite the extensive use of questionnaires, the agreement of physicians on what 

constitutes atopic dermatitis is poor – and a ‘working party’ was initiated in order to 

design and test a method for eliciting significant signs of the disease that allowed 

both good agreement between physicians and also that were of sound clinical use 

(Williams et al. 1994).  This appears to have been the most extensive and validated 

research on questionnaires for the condition, and its inclusion of general atopic 

criteria is of use to the current study.  Authors first identified all possible diagnostic 

criteria (31 in total) (Williams et al. 1994), identifying those criteria which carried 

the largest sensitivity and specificity, and then tested the agreement to maximise the 

integrity of the questionnaire (Williams et al. 1996).  Patients who have history of 

itchy skin, in combination with 3 or 4 of: itching of the skin creases (flexures), 

visible flexural eczema, asthma or hayfever are considered complete atopic, whereas 

those with 1 or 2 categories in addition to a history of itch are considered incomplete 

or partial atopic (for dermatitis).   

 

Another system of atopic classification was used by Rahi and colleges at Moorfields 

Eye Hospital (Rahi et al. 1977).  Patients were asked for a history of hay fever, 

asthma, allergic dermatitis, urticarial or vernal catarrh.  Those with at least one of 

asthma, allergic dermatitis or hay fever were considered atopic.  Pearce (1999), 

however, suggests that atopy is responsible for less than half of asthma incidence, 

which would suggest that this population is easy to overestimate. 
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1.13.7 Genetics of Atopy 
 

The pattern of atopic inheritance does not follow Mendelian rules that would 

typically be seen in single-gene disease (Romagnani 2000).  The mode of 

inheritance, therefore, is thought to be relatively complex and genetically 

multifactorial (Coleman et al. 1997).  It is highly likely that environmental 

conditions help to determine atopic status, and so atopy may be considered 

multifactorial.  Furthermore, since atopy is characterised by a variety of clinical 

traits (phenotypes), each trait is likely to have its own set of coding genes.  In the 

study of asthma, key genes are excellent candidates for their involvement based on 

the scientific understanding of the inflammatory cascade: Polymorphisms for genes 

coding for interleukins IL-4 and IL-13 (that directly promotes the production of IgE) 

have been found on chromosome 5, whilst FCER1B (high affinity IgE receptor) 

exists on chromosome 11 and has been maternally linked to atopy (Sandford et al. 

2000).  Polymorphisms in these genes increase the risk for high levels of serum IgE 

and the asthma phenotype (Kabesch et al. 2006; Hizawa et al. 2001).   

 

1.13.8 Atopy in KC 
 

Several authors have found a significantly higher prevalence of atopy in KC groups 

than controls.  A UK study of 182 patients from Moorfields Eye Hospital found a 

three-fold increase in atopy with respect to non-atopic controls (Rahi et al. 1977).  

Serum IgE was raised in the KC group over controls, but particularly in those with 

co-existing atopy and KC.   In a Canadian study of 49 cases of KC, complete atopy 

was present in 20.4% of 49 cases of KC versus 4.2% of 71 controls (Bawazeer et al 

2000).  Gasset (1978) found the prevalence of asthma to be 17.9% in the KC group 

versus just 1% of controls.  The DUSKS (Dundee University Scottish Keratoconus 

Study) found a higher proportion of atopic sufferers in their keratoconic population 

than expected from the normal population.  In their KC group, 41.5% had reports of 

clinical atopic manifestation: asthma (in 23% of keratoconics, 6% of controls) and 
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eczema (14% of keratoconics, 16% of controls) and hay fever (30% of keratoconics, 

16% of controls) (Weed et al. 2007).  

 

Several studies did not find significant relationships between KC variables and 

atopy.     Harrison et al (1989) did not find an earlier onset of keratoconus diagnosis 

in individuals with atopy, nor did they have a higher rate of keratoplasty; but the 

keratoconus in atopics was more likely to be bilateral.  Lowell and Carroll (1970) 

studied 31 patients with keratoconus and 30 without, and found no difference in 

eczema or allergic rhinitis (hay fever) between the groups.  Eosinophil count, skin 

reactivity to allergen and familial atopy were comparable between the two groups.  

 

1.13.9 Atopy in DS 
 

The literature surrounding atopy and DS is dominated by atopic dermatitis.  Several 

papers suggest that a majority of young people with Down’s syndrome have atopic 

dermatitis (Carter 1976; Scherbenske et al. 1990; Thomas et al. 1994).  However, 

Schepis et al (1997) challenged this accepted belief, and identify that such papers 

citing a high incidence of atopy in Down’s syndrome, they have not published the 

diagnostic criteria used.  Their own work suggests a much lower prevalence, of 3%, 

when facial dermatitis is excluded as a criterion.  It is certainly the case that 

objective identification of atopic traits is fraught with inaccuracy, and there is no 

commonly accepted diagnostic system.  Mannan (2009) used a skin prick test to 

elicit the response from children with Down’s syndrome compared to that found in 

the general population.  Only 18% of cases were found to have a reaction to just one 

allergen – approximating that of typically-developing children.  The author suggests 

that it is in fact altered DS anatomy causing symptoms of congestion, especially in 

the case of allergic rhinitis.   
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1.14 Eye rubbing  
 

“Vigorous” and “habitual” eye rubbing has long since been associated with KC 

(Ridley 1961).  There is also a strong association with eye-rubbing and atopy and 

Copeman (1965) suggested that atopy provides the stimulus for eye rubbing.  This 

suggestion is supported by modern understanding that the ocular itch that stimulates 

eye-rubbing in atopic individuals is considered to be a clinical expression of the 

histamine released by degranulation of mast cells on the ocular surface (Leonardi 

2000; Wahlgren 1999).  Weed (2007) found that within a keratoconic population, 

those with atopy rub their eyes more frequently than those without atopy.  Lema et al 

(2009) found that, in the majority of cases of asymmetric KC, the itchiest eye was 

the one that had the most advanced keratoconus.  Corneal epithelial damage through 

excessive eye rubbing has been implicated as the causation of keratoconus itself 

(Krachmer 2004). An intact epithelium is thought to protect the corneal stroma, 

preventing the major corneal inflammatory cytokine IL-1 from spilling into the post-

epithelium layers and causing stromal apoptosis of keratocytes (Wilson et al. 2001).  

Epithelial damage from vigorous eye rubbing may release inflammatory cytokines 

down into superficial collagen layers that may adversely affect the anterior stromal 

keratocytes.  Apoptosis in the anterior stroma is becoming accepted as an in vivo and 

ex vivo hallmark of keratoconus (Kim et al. 1999).  The authors suggest that chronic 

apoptosis of keratocytes release degradative enzymes into the extracellular matrix 

(degrading the collagen) and that the loss of keratocytes impedes the generation of 

new collagen into the stroma.  

 

Case studies of patients who are pathological ‘eye-rubbers’ have been published and 

suggest a strong link to eye rubbing in cases of unilateral disease (Jafri et al. 2004); 

however, in studies such as these, a longitudinal analysis is required to confirm this 

finding by following up these subjects to find out if KC develops in the ‘good’ eye 

(since KC may be bilateral but just markedly asymmetric).  Further, not all such case 

reports use topography and therefore there is the possibility of sub-clinical 

keratoconus being present in the fellow eye.  Korb et al (1995) measured the 
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forcefulness of eye rubbing in KC versus non-KC controls (both contact lens wearers 

and non-contact lens wearers) and confirmed that the keratoconics rubbed more 

forcefully than the other groups, and also that they rubbed in a typically rotary 

motion with their knuckles (Korb et al. 1995).  The strongest evidence of an 

association between eye-rubbing and KC is the case–control study by Bawazeer et al 

(2000), where univariate analysis found that atopy, eye rubbing, and a family history 

of KC were all associated with keratoconus development, but multivariate analysis 

showed that only eye rubbing maintained statistical significance and it may therefore 

be causative of the disease in a typical population.   

 

The CLEK study (Collaborative Longitudinal Evaluation of Keratoconus) found that 

in a large study group of non-DS individuals 48.2% of patients reported rubbing both 

eyes vigorously whilst 46.3% of patients reported rubbing neither eye (Zadnik et al. 

1998).  In this case, grading was made by the patient self-reporting “yes/no/unsure” 

to each eye separately during the ‘examination’ questions.  It has been strongly 

suggested that self-reporting of ocular rubbing is inaccurate due to under reporting 

by patients themselves in comparison to the observations of family members 

(McMonnies and Boneham 2003).  

 

The DUSKS study (Dundee University Scottish Keratoconus Study), eye rubbing 

was measured in two ways (both self-reporting): a closed answer set to the question, 

“Do you rub your eyes?” (Great deal/A fair amount/Sometimes/Never) and secondly, 

an analogue scale whereby participants graded their tendency to eye rub by placing 

an X along a line (Never, A fair amount, Always).  The former analogue method of 

the DUSKS study revealed no significant difference in the rubbing behaviours 

between the KC subjects (11% reported never rubbing, 48% reported rubbing ‘a 

great deal’) and the control subjects (4% reported never rubbing, 39% reported 

rubbing ‘a great deal’).  However, when the visual analogue scale was quantified, 

there was a statistically significant difference between the two groups.  It is not made 

clear to what degree this is, or if it is clinically significant at all.  

 

The evidence for eye rubbing is mixed.  While vigorous eye-rubbing appears to be 

associated with some cases of KC, it appears unassociated in others.  In the authors 
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experience, it is a widely-held clinical view that two groups of keratoconics exist, 

those who rub in response to a distinct ocular itch and those who appear to have 

developed eye rubbing in the absence of eye rubbing.   

 

 

1.14.1 Down’s syndrome and eye rubbing 
 

In the non-DS population, eye rubbing has been implicated both in the progression 

of keratoconus (Bawazeer 2000), the transition to corneal hydrops, and in the 

aetiology of keratoconus itself (Koenig and Smith 1993).  Corneal hydrops certainly 

appears more common in Down’s syndrome than that of the typical population 

(Grewal et al. 1999).  However, the evidence to support a strong association, let 

alone a causation of eye rubbing and the development of KC Down’s syndrome 

weak, yet is frequently cited in scientific literature as the probable cause of the 

origins of such a high prevalence of keratoconus in people who have Down’s 

syndrome.  Table 1.4 provides an overview of this literature along with the 

supporting evidence for the genesis of keratoconus in Down’s syndrome.   
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Table 1. 13 An overview of the scientific literature attributing keratoconus in DS to eye-rubbing, relevant extracts, and the supportive citations and experimental data. 

Author Extract Supporting evidence 

Fong et al. (2013) “This, together with frequent eye rubbing, may predispose 
Down’s syndrome patients to keratoconus” 

This statement is not supported by evidence 
(neither referenced nor experimental work within 
the article itself) 

Stoiber et al. (2003) “Habitual eye rubbing, which is frequently observed in 
patients with Down’s syndrome and other forms of mental 
deficiency, has been postulated as an important factor not 
only for the development of keratoconus itself but also for 
the progression to the acute condition of the disease” 

Cites Pierse and Eustace (1971); see below. 

Pierse and Eustace (1971) “Seven mentally defective and ten mongoloid.  Eye rubbing 
has been blamed…”   It is not clear if the beginning of the 
second sentence refers to DS or non-DS eyes.   

Cites Ridley (1961); see below.   

Ridley (1961) In a letter of correspondence to the British Journal of 
Ophthalmology: “It might be thought that the rubbing is 
coincidental and not causal, but the large proportion of 
patients giving a history of habitual rubbing before the 
keratoconus appeared leaves little doubt that eye rubbing 
causes the cornea to give way and is also responsible for the 
progress of the condition” 

No reference to DS.   

Ozcan and Ersoz (2007a) 
 

Case study report entitled: “Severe acute corneal hydrops in 
a patient with Down syndrome and persistent eye rubbing”, 
reads, “Eye rubbing has been implicated in the pathogenesis 
of KC and often a feature in Down’s syndrome, as seen in 
our patient”.   

“The patient was observed rubbing his left eye 
[with hydrops] persistently”.  It is not clear if this 
was prior or following the onset of hydrops, or 
observed by the clinician, or parent/carer.  Cites 
Stoiber 2003 (dealt with above), and (Ioannidis et 
al. 2005), a case study of an eye-rubbing child 
without DS.   
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 Wylegala and Tarnawska 
(2006) 

“Keratoconus appears in 5.5% of Down’s syndrome 
patients… This phenomenon is most likely the result of 
vigorous eye rubbing”,  
 

Supported by Grewal et al (1999), below.    

Grewal et al. (1999) “…Patients with Down's syndrome tend to rub their eyes to 
relieve itching” 

Cites (Koenig and Smith 1993); see below.   

Koenig and Smith (1993) This paper provides a case report of a 35 year old (non-DS) 
patient with pathological eye rubbing secondary to 
‘personality disorder and self-mutilating behaviour’, who 
presented with a severe corneal infection and who 
subsequently developed keratoconus upon healing of the 
ulcer.  Quite separately to the case presented, Koeing et al 
discuss eye rubbing in other demographics, including DS, 
whereby “…the high incidence of keratoconus and hydrops 
in Down’s syndrome may also be related to rubbing to 
relieve symptoms of itching associated with chronic 
blepharitis”.   

This statement is not supported by evidence 
(neither referenced nor experimental work within 
the article itself) 

Rabinowitz (1998) “The frequent occurrence of keratoconus has been 
attributed to a high incidence of eye rubbing in these two 
disorders, owing to increased blepharitis in Down 
syndrome…” 

This statement is not supported by evidence 
(neither referenced nor experimental work within 
the article itself) 

McElvanney and Adhikary 
(1997) 

“…and the increased incidence of eye rubbing and self-
inflicted trauma” 

Cites Haugen (1992) – discussed below. 
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A single study explores KC specifically within a DS population, as a subset of an 

institutionalised learning disabled population (Haugen 1992).  Quantification of eye-

rubbing was estimated by institution staff, into: ‘normal’, ‘often’, or ‘very often’.  

Eye rubbing ‘very often’ was reported in 3 out of 6 (50%) cases of KC in DS.  

Healthy DS without KC were used as controls.  This small study also found that eye 

rubbing occurring ‘very often’ was significantly correlated to keratoconus in 

individuals with intellectual disability generally.  However, since half the patients 

with DS and KC were found not to rub their eyes abnormally, it is difficult to draw 

firm conclusions about the causal relationship between eye rubbing and KC in DS.  

Haugen remarks that it is a common surgical experience during corneal grafting of 

the DS eye, that the consistency and the mechanical properties appear to differ from 

those KC eyes that do not have DS.   

 

1.14.2 Corneal hydrops 
 

There is anecdotal evidence to suggest that eye rubbing may be an inciting event to 

the progression to hydrops in both DS and non-DS eyes (Wylegala and Tarnawska 

2006; Ozcan and Ersoz 2007b), and there is evidence to the contrary (Rehany and 

Rumelt 1995; Aldave et al. 2003).  In a larger study, Grewal et al (1999), 21 

consecutive presentations of hydrops were recorded.  Significant eye rubbing was 

considered present in 15 out of the 15 non-DS cases, and 5 out of the 6 DS cases.  It 

appears that patients with DS are highly represented in this particular study.  

However, given the relative frequency of DS in the whole population, and the 

relative frequency of KC within the DS population, it is possible that hydrops in DS 

is proportionally represented, but the manner in which currently available data has 

been collected makes it difficult to analyse.  Further, the limitations of current 

studies mean that it is difficult to difficult to establish if having DS predisposes the 

keratoconic individual to develop hydrops or not.  If indeed people with DS are more 

likely to develop hydrops, this may be due to an inherent biomechanical weakness in 

the DS eye, altered immunological systems, or it may be due to external factors such 

as eye rubbing.  It is conceivable that patients with intellectual disability and who 

already have KC may rub their eyes in an attempt to ‘clear’ their vision, and are less 

able to understand the potential impact of vigorous eye rubbing when they do.   
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Limitations of current studies to determine (a) if eye rubbing in the keratoconic eye 

leads to hydrops, or (b), if eye rubbing predisposes the healthy DS eye to KC; are: 

(i)  Except for Haugen (1992), no control group (healthy eyes with DS) existed 

to compare eye rubbing in those who have DS 

(ii)  Except for Haugen (1992), eye rubbing was not assessed quantitatively or 

qualitatively 

(iii)  Confounding eye rubbing factors of blepharitis or atopy have not been 

explored 

 

Despite much anecdotal evidence, eye rubbing in DS appears relatively unexplored 

experimentally, and thus a causal relationship either on the initial development of 

KC, or the progression to corneal hydrops, is so far impossible to draw.  Further, 

since it is now widely considered that a significant link exists between KC and 

atopy, and there is mounting evidence to suggest that KC itself is an inflammatory 

disease, it is therefore vital to examine the inflammatory issues associated with KC 

in DS and explore the factors that may underpin a possible causative relationship 

between DS and KC.  
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1.15 Vision in KC  
 

1.15.1 Visual Acuity 
Visual acuity (VA), the ability to which the eye can discern detail, is reduced 

significantly in keratoconus and especially in low luminance and low contrast levels 

(Gobbe and Guillon 2005; Applegate et al. 2003).  VA worsens with the progression 

of the disease, and this is attributed to the increasing detrimental effects of the 

optical defects outlined below.   

 

1.15.2 Contrast sensitivity 
Patients with KC suffer a loss of contrast sensitivity, particularly under glare 

conditions (Jinabhai et al. 2012).  The reduction in contrast sensitivity found in 

keratoconics is in line with an increasing optical aberrations seen in the distended 

cornea (Okamoto et al. 2007).  Further, there is likely to be significant additional 

reduction in corneal clarity (and thus contrast sensitivity) from scarring that occurs 

as KC progresses.   

 

1.15.3 Myopia & Astigmatism 
The changing shape of the keratoconic cornea results in axial elongation of the 

globe, a reduction in the radius of curvature of the cornea, and the power of the eye 

as an optical system increases.  The refractive error therefore tends towards myopia 

and this effect is countered with negatively powered spectacles or contact lenses.  

A pathological increase in corneal curvature is rarely equal in all meridians, and 

results in high degrees of corneal astigmatism.  This is represented in optical terms 

by the directions of the flattest and steepest curvatures (principle meridians), and in 

early keratoconus, when the principle meridians are orthogonal, vision can be 

corrected with cylindrical correction in glasses (as per regular physiological 

astigmatism).  Regular astigmatism represents a deviation of curvature along two 

orthogonal principle meridians; in irregular astigmatism, the two principle meridians 

are non-perpendicular.  In advancing keratoconus, the axes may become increasingly 
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skewed, with increasing differences in curvature such that correction with spectacles 

becomes practically and cosmetically unacceptable (Shneor et al. 2013).   

 

1.15.4 High order aberrations 
 

Full spectacle correction is unable to correct the optical defects of the keratoconic 

eye completely, because the distension of the cornea produces additional 

pathological aberrations.  Progression towards a conical shape produces an area of 

steepening, the ‘cone’, that is rarely co-located with the natural centre of the cornea.  

This results in a poorly aligned optical system that, as Melamund et al (2006) 

reports, carries an “asymmetry of focus due to relative hyperopia and myopia present 

in the same meridian”.  For example, an inferiorly displaced cone produces an area 

of steepened cornea that is inferior to the line of sight, and an area of relative 

flattening above it.  Wavefronts from spot of light would be refracted more in the 

inferior portion of the cornea with respect to the superior aspect, and would be seen 

as a spot inferiorly with a flare radiating upwards as depicted in figure 1.33.  This is 

known as coma, and vertical coma represents the decentration of the corneal power 

in the vertical plane, whereas lateral positioning of the corneal power is reflected by 

the horizontal coma component.  Coma is the dominant higher order aberration 

(HOA) in the keratoconic eye, increasing with the severity of the disease (Alió and 

Shabayek 2006).   
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Figure 1. 38 A point spread function, demonstrating the often-reported ‘flare’ perceived by a KC patient, due to 

significant coma in the eye.  Note that in this case, the flare is, rising vertically upwards from a point of relative 

focus.  It is most probable to have arisen from an inferiorly displaced cone.  (Jinabhai et al. 2009).  

 

The normal human cornea is an aspheric shape, flattening toward the periphery.  

This shape compliments the internal ocular surfaces such that peripheral light rays 

are focussed as closely as possible to those centrally, thereby minimising spherical 

aberration within the eye.  As a keratoconic cone develops, the disparity between the 

central and peripheral powers increase to the extent that the mid-peripheral light rays 

are increasingly defocussed, producing a detrimental effect on vision (Maeda et al. 

2002).   
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1.16 Vision in DS 
 

1.16.1 Refractive error 
 

Emmetropisation is the tendency toward lower refractive error in infancy.  

Therefore, a population of babies will have a greater spread of errors than the same 

group of babies as toddlers, and as children (Brown et al. 1999).  The lack of 

emmetropisation in DS results in much greater magnitudes of refractive error, 

affecting a greater proportion of the population such that around 60% of children 

with DS rely on spectacle correction (Cregg et al 2003). 

 

A significant magnitude of corneal astigmatism in the human eye is generally 

accepted to be ≥1.00D in either eye.  While most typically developing children 

‘grow out’ of their astigmatism, the opposite is observed in DS, whereby an 

increased prevalence in significant astigmatism is seen in DS relative to peers, and 

further increasing magnitudes of astigmatism during the early ears and throughout 

adolescence (Woodhouse et al. 1997; Al-Bagdady et al. 2011).  These findings are 

also reported by Haugen (2001) and Little et al (2009).  The underlying aetiology of 

greater astigmatism in DS remains unclear.  It is hypothesised that a thinner cornea 

may permit bending of the cornea from eyelid forces (Haugen 2001) or that reports 

of ‘slanted palpebral fissures’ give rise to tension necessary to alter the corneal shape 

and provide large degrees of oblique astigmatism (Read et al. 2007).   

 

A well-held clinical view is that early keratoconus presents with myopic astigmatism 

(Rabinowitz 1998).  This is quite likely to be the case for the general population who 

are frequently emmetropic, but less likely for those with DS who have a tendency to 

be highly hyperopic to begin with.  In addition, since teenage DS eyes are 

predisposed to high astigmatism, it is unlikely that the evolution of growing 

astigmatism and directional change can be relied upon to monitor for the detection of 

KC in this group, making diagnosis based upon refraction alone very difficult.   
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1.16.2 Visual acuity and contrast sensitivity 
 

VA in all babies is initially very poor at birth, developing rapidly in the first months 

and years of life to reach adult levels.  From the age of 2, vision in DS is 

significantly reduced with respect to control subjects (Woodhouse et al. 1996; 

Tsiaras et al. 1999).    

 
 

Figure 1. 39 The symbol-matching Kay Picture Test.  This recognition acuity test allows the non-verbal patient 

the opportunity to match a symbol (from the key card on their lap) with a corresponding optotype presented in 

the distance.   

 

Electrophysiological visual measurement quantifies activity in the primary visual 

cortex as measured by skin electrodes.  The electrical response to patterns of light, 

diminishing in size, is measured.  Electrophysiological testing controls for 

behavioural variables, and those associated with higher visual, motor and sensory 

processing systems.  Vision in DS subjects as measured by Visually Evoked 

Potentials (VEPs) for a sine-wave detection stimulus was decreased compared to 

control subjects’ (John et al. 2004), suggesting a disability in vision within the first 

aspects of neural processing, demonstrating that poor vision in DS is not attributable 

to motivational or attentional aspects, and that a true deficit in vision exists within 

optical, retinal or neural factors in DS.  This is also demonstrated in the Ts65Dn 

mouse model of DS (Scott-McKean et al. 2010).  Interferometric visual acuity 
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measurement was used by Little et al to investigate visual acuity in children with DS 

whilst bypassing the optics of the eye.  Since this type of measurement was relatively 

less affected in DS, the authors conclude that a degradation in optical quality is a 

major contributor to poor visual performance in this group (Little et al. 2007). 

Contrast sensitivity 

 

Sensitivity to contrast is the ability to distinguish between closely matching shades 

of light and is a useful indicator of ‘real world’ visual function, particularly in low 

light levels.  Patients with Down’s syndrome are known have a reduced sensitivity to 

contrast (Courage et al. 1997; John et al. 2004), even with full spectacle or contact 

lenses in place. Since the reduction in contrast sensitivity is in line with the reduction 

in VA, the deficit in both of these aspects of vision are likely to derive from a 

common cause.  A reduction in contrast sensitivity was also noted in the Ts65Dn 

Down’s syndrome mouse model with respect to the euploid wild-type mouse (Scott-

McKean et al. 2010).   Since high contrast VA does not reliably predict low contrast 

performance, it has been recently recommended to measure both high contrast VA 

and low contrast VA in patients with DS (Little et al. 2013).  This is particularly 

important for the current study as contrast sensitivity is known to be detrimentally 

affected in keratoconus (Yang et al. 2014).   

 

 

1.16.3 Visual Processing 
 

Children with DS appear to have a motion perception deficit that corresponds to an 

abnormal Visually Evoked Potential (VEP), in common with members of the 

typically-developing population who have Alzheimer’s disease (Del Viva et al. 

2015).  Whilst there is a strong body of literature DS and Alzheimer’s disease, 

suggestive of an abnormal ageing process - it is also of note that the DS brain 

contains reduced numbers of specific populations of neurons, and abnormalities in 

dendrites within the cortex (Coyle et al. 1986).  It correlates that children with DS 

may not process the visual world in a typical way, and there remains many aspects of 

visual processing in DS that are yet to be investigated.  An impact of this may be that 
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young people with DS do not perceive blur in the same way and therefore remain 

asymptomatic of keratoconus until the moderate or late stages of the condition.   

 

 

 

1.16.4 The problem with early detection of KC in DS 
 

In non-DS cases, the diagnosis of keratoconus is usually made after a patient 

presents to the optometrist with blurred vision.  Taken together, prior knowledge of 

the visual deficits in DS indicate that it would be much more difficult for a patient 

with DS to: 

 

(i) Perceive an early vision indicator of KC 

(ii) Articulate a vision change 

 

Further, it would be much more difficult for a clinician to reliably establish whether 

or not a statistically significant drop in vision has occurred in a patient who has 

inherently reduced vision, as the confidence interval is greatly increased (KISER et 

al. 2005).   
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1.17     Rehabilitation of vision in keratoconus 
 

As described above, increasing irregular astigmatism renders spectacle correction 

impractical in KC and so it is necessary to rehabilitate vision in another way.  

Contact lenses rest over the irregular surface and mask many of the irregularities by 

vaulting over the localised defects and allowing the tear film to fill up the spaces 

between (Visser et al. 2013).  Quality of life is higher in those corrected with contact 

lenses rather than spectacles (Ortiz-Toquero et al. 2015).   

 

Unfortunately, the pathogenesis of keratoconus can result in changes to the 

transparency of the corneal stroma, due to the presence of hydrops or corneal 

scarring and so even a well-fitting contact lens will not improve vision if there is 

significant scar tissue in the line of sight.  Within a 8.5 year period, around 3 in 10 

patients will progress to require corneal transplant/graft in order to regain the ocular 

transparency they will need to see clearly (Weed and McGhee 1998).   

 

Corneal grafting is a major ophthalmic surgery, and there are significant medical 

risks that accompany the procedure for any patient, as shown in table 1.5.  It is of 

note that the incidence of the infective events appear higher in the studies of those 

with DS patients, whereas traumatic events appear comparable over the period 

studied.  It is difficult to compare rejection rates since the follow-up periods and the 

study cohort vary considerably.   
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Table 1. 14 Surgical risks of corneal grafting for non-DS and DS patients 

Risk Incidence 

(non-DS) 

Evidence Incidence (DS) Evidence 

Infection 10.5% (8 

years) 

(Sung et al. 

2015) 

14.6%  

(7 years) 

50% (3 years) 

(Haugen et al. 2001; 

Wroblewski et al. 

2006) 

Rejection 7% (2 years) 

– 28% (3 

years) 

(Figueiredo et 

al. 2015; Bali 

et al. 2016) 

12.2%  

(7 years) 

(Haugen et al. 2001) 

Trauma 2.23% (8 

years) 

(Tzelikis et al. 

2015) 

2.4%  

(7 years) 

(Haugen et al. 2001) 

 

With such high complication rates, grafting is therefore not entered into lightly, and 

visual rehabilitation with glasses or contact lenses is usually extensively explored 

before consideration for surgery of this kind.  Furthermore, corneal grafting relies on 

the supply of healthy donor tissue, which is in short supply in the UK (Gaum et al. 

2012).   

 

Additional risks when grafting in Down’s syndrome surround the general anaesthetic 

needed for the procedure, that puts additional strain on the heart and respiratory 

system (Kraemer et al. 2010).  People with DS are also more prone to infections 

(Valentini et al. 2015).  The ability to comply with post-operative treatment is 

difficult, but generally patients manage very well after surgery with good support 

and supervision (Haugen et al. 2001).   

 

It is considered that the early use of corneal crosslinking will reduce the need to graft 

keratoconus in the longer term (Sandvik et al. 2015).  For the reasons outlined above, 

if crosslinking is successful in this group, it is likely that an early diagnosis of KC in 

DS would reduce the need for visual rehabilitation with contact lenses, which in the 

authors experience, is a resource-intensive form of treatment.   
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1.18 Topography and pachymetry in DS 
 

The difficulties of identifying early keratoconus in DS through subjective measures 

or prescription analysis have been described earlier.  In clinic (non-DS eyes), early 

keratoconus is ordinarily diagnosed by progressive thinning and steepening of the 

cornea, in line with slit lamp microscopy signs.  Early keratoconus, or sub-clinical 

Forme Fruste keratoconus is diagnosed in the absence of slit lamp signs, and in the 

absence of symptomatic loss in vision.  In such cases, corneal power and thickness 

maps are used (such as those obtained with the Oculus Pentacam) to classify at-risk 

eyes, or those presenting with very early clinical keratoconus (Saad and Gatinel 

2010; Toprak et al. 2015).   

 

Unfortunately, even the average healthy DS cornea is known to be naturally steeper 

(Haugen et al. 2001) and thinner (Evereklioglu et al. 2002) than controls, and this 

presents further problems with the screening of DS patients based on their 

keratometric power and pachymetry alone.  A cut-off set at 2 standard deviations 

from the mean normal corneal curvature (in non-DS eyes) provides a value of 45.7D 

(Maeda et al. 1995).  Toprak suggests that optimal screening cut-offs for normal 

corneae are a combination of mean corneal power that lies below 45.2D and central 

corneal thickness of above 519µm.  The modified Rabinowitz-McDonnell test, 

however, is more generous suggesting corneal normality up to 47.2D (Rabinowitz 

and McDonnell 1989).  To the best of the author’s knowledge, no literature exists on 

the exploration of suitable cut-off points in DS eyes.   

 

Table 1.6 summarises the corneal power found in children and young people with 

DS.  From these data, it is clear that screening for KC with the data available from 

non-DS eyes could produce a significant number of false positives.     
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Table 1. 15 Table to show existing literature on corneal power in DS vs control subjects. 

Author Age 

(years) 

Power (D) 

in DS 

Power (D) in 

controls 

method 

Haugen et al (2001) 14-26 46.39±1.95 43.41±1.40 topography 

Vincent et al (2005) 10 

months-

18 years 

46.66±1.64 42.60±1.87 topography 

Ji (2006) 4-16 44.5±1.8 41.5±1.6 topography 

Little et al (2009) 9-16 45.62±2.13 43.10±1.37 keratometer 

 

 

Vincent et al (2005) builds on the earlier work by Haugen (2001) to suggest that a 

significant proportion of eyes with DS carry abnormalities of corneal shape even in 

the absence of clinical disease; yet the reason for this altered corneal shape in 

healthy DS eyes remains elusive.   

 

Two hypotheses relevant to the unusual DS corneal shape are: 

 

I. The abnormal topography in DS is part of an incomplete KC phenotype; or 

an aborted disease process.  An underlying structural abnormality 

predisposes these eyes to KC.  

 

II. That DS eyes have steep/irregular corneae as a feature that is unrelated to the 

risk for, or the development of, keratoconus.   

 

Personal observation to support the second hypothesis is that many DS corneae that 

have unusual topography are stable for 10+ years and do not develop ectasia in this 

time.  The second hypothesis suggests that the development of keratoconus in DS is 

not related to the initial shape of the cornea, but to other factors (such as those that 

are biochemical in nature).   
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Vincent (2005) discusses possible genetic causes for the increased steepness and 

suspicious (front surface) topography seen in DS eyes.  To the best of the author’s 

knowledge, no research into the specific genetics of KC and DS has been 

undertaken.  Chromosome 21 (triplicated in DS) has however been considered as a 

candidate chromosome for containing the gene(s) predisposing to KC.  Despite this 

(and analysis of various other chromosomal locations), the mode of inheritance for 

corneal power and keratoconus is poorly defined (see later).   

 

1.19 Corneal Thickness 
 

Studies into corneal thickness demonstrate a significantly reduced thickness in DS 

eyes compared to controls.  Ultrasound pachymetry revealed corneal thickness of 

488±40µm (DS) versus 536±21µm (Evereklioglu et al. 2002); whilst Scheimpflug 

imaging revealed 480±40µm versus 550±30µm (Haugen et al. 2001).  Haugen also 

demonstrated that ultrasound pachymetry carried good agreement with Scheimpflug 

pachymetry measurement, and found that corneal thickness was not influenced by 

age or gender.  Haugen suggests that the reduced corneal thickness reduces 

mechanical rigidity of the DS cornea and in turn may be responsible for increased 

levels of astigmatism and KC in DS eyes.  Little (2001) in a study of 29 DS 

individuals, later found that corneal astigmatism or curvature were not related to the 

total ocular refraction of the DS eye.  This has recently been challenged by 

(Knowlton et al. 2015), who in a larger study of DS eyes, found that corneal 

astigmatism was predictive of refractive astigmatism (both in magnitude and in 

direction).  Scheimpflug imaging in Haugen (2001) suggest that the relative corneal 

thinning is largely at the level of the corneal stroma.  It is not clear if the reduced 

corneal thickness is due to a reduction in the total collagen available, or if the 

corneal collagen is simply compressed in DS.  It is possible that the composition of 

corneal collagen in DS differs from that expected of a typical non-DS population.   

 

The exploration for the genetics of corneal thickness in non-DS eyes has been 

relatively successful.   Dimasi (2009) suggests that corneal thickness is one of the 

most highly heritable human traits.   
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Twin studies are useful in the investigation of heritability: In a UK/Australian study, 

CT was comparable in sets of monozygotic twins, whilst carried much less similarity 

in the dizygotic twins (Toh et al. 2005).  Since monozygotic twins carry the same 

genetic makeup, CT appears strongly influenced by genetics and is considered to be 

of high heritability.  The Guangzhou Twin eye study revealed similar findings in 

Chinese participants (Zheng et al. 2008) 

A sample of ethnicity studies (table 1.6) reveal that certain populations appear to 

have thinner corneae, even when the discrepancies between the methods used have 

been accounted for (Tam and Rootman 2003; Amano et al. 2006).  It is of interest 

that the Mongolian population have the thinnest corneae, because it was the likening 

to this population by John Langdon Down that gave the Down’s syndrome 

population the historical term, ‘Mongoloid’, in the paper, ‘Ethnic classification of 

Idiots’ in 1866.  

 
Table 1. 16 A sample of the variation in corneal thickness with ethnicity. 

Author Method CT Ethnicity 

Suzuki et al. (2005) Specular 

microscopic 

pachymetry 

518±30µm Japanese 

Foster (1998) Optical 

(pachymetry) 
505±32µm Mongolian 

Landers et al. (2007) Ultrasound 

pachymetry 
512±35µm Aboriginal 

Australians 

Landers et al. (2007) Ultrasound 

pachymetry 
542±33µm Caucasian 

Australians 

Aghaian et al. (2004)  Ultrasound 

Pachymetry 
570±32µm Chinese 

Aghaian et al. (2004) Ultrasound 

Pachymetry 
525±38µm African 

 

Studies of known genetic disorders demonstrate a significant departure from the 

expected values of corneal thickness in certain groups.  Ehlers Danlos Syndrome 
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(EDS type I/II – affecting collagen type V) revealed reduced CT (436±13µm) 

compared to controls (569±28µm).  The affected corneae were also steeper than 

controls (46.30±1.36D and 44.11±1.21D respectively).  Patients with osteogenesis 

imperfecta (affecting collagen type I)  have significantly reduced CT (460±25µm) 

versus controls (544±21µm) when measured with ultrasound pachymetry 

(Evereklioglu et al. 2002).  Collagen I and V appeared to co-exist in the human 

cornea, and mutations in human (collagen I) and mouse (collagen V) lead to a 

reduction in the diameter of collagen fibrils, which was considered to be the cause of 

reduced corneal thickness in EDS and OI (Mietz et al. 1997; Segev et al. 2006).   

 

In humans with posterior open-angle glaucoma, mutations were found in the 

COL8A2 gene in patients with a corneal thickness below 513μm (Desronvil et al. 

2010).  Despite this, Aldave et al (2007) found no association with these genes in a 

group of keratoconic patients.   

 

Marfan’s syndrome, characterised by a defective fibrillin gene appears to result in a 

reduced corneal thickness versus controls (502±42µm and 552±24µm respectively) 

alongside a flatter central cornea (40.8±1.4D and 42.9±1.1D respectively).  The 

authors suggest that this combination may be as a result of globe enlargement, as the 

morphologic abnormalities of the elastic components of the eye allow stretching of 

the globe (Sultan et al. 2002).  This suggestion would correspond with the significant 

myopia in this group (Maumenee 1981).  Since the converse is seen in DS, with a 

large prevalence of hyperopia (Akinci et al. 2009) and increased corneal power 

(Haugen et al. 2001), it is unlikely that the aetiology of the thinner cornea in 

Marfan’s syndrome is comparable to that of the thin cornea seen in DS. 
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1.20 The genetics of keratoconus 
Keratoconus (non-DS) typically manifests in the second or third decade of life and 

its prevalence is thought to vary between 0.057% and 0.229% depending upon 

ethnicity (Pearson et al. 2000) and the method of case selection (eg based on slit 

lamp signs or topography).  Keratoconus appears sporadic in the vast majority of 

cases (Rabinowitz et al. 1999; Wang et al. 2000), however there are occasions when 

the disease appears to co-exist with other diagnoses.  Down’s syndrome is a well-

known association, and the prevalence estimates are detailed in table 1.8.   
 

Table 1. 17 Table to show prevalence of keratoconus in studies of patients with Down’s syndrome.  It is notable 

that the studies with a higher prevalence of keratoconus are those that include older patients.   

Author Age (years) Subjects Prevalence 

Pires De Cunha (1996) 0-18 152 0% 

Roizen et al (1994) 0-19 115 0% 

Wong & Ho (1997) 0-13 140 0% 

Berk et al (2009) 0-25 55 0% 

Liza-Sharmini et al (2006) 0-17 60 0% 

Kim et al (2002) 0-14 123 0% 

Fimiani et al (2007) 0-18 157 0% 

Doyle et al (1998) 15-22 50 2% 

Jaeger (1980) 15-64 75 2.7% 

Cullen & Butler (1963) 2-53 143 5.5% 

Walsh et al (1981) 5-60 88 8% 

Shapiro & France (1985) 7-36 53 15% 

Haugen (1992) 15-90 30 20% 

Hestnes et al (1991) 21-72 30 30% 

 

The common occurrence of keratoconus within a geographical cluster, a family or 

particular groups with a chromosomal disease has led research into the possible 

genetic basis of the condition.   
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1.20.1 Aggregation studies  
 

Aggregation studies observe the clustering of disease within families is studied to 

establish if it is significantly atypical to that observed in the general population.  

Segregation Analysis uses the study of offspring to propose the mode of inheritance 

of the condition - patterns of offspring affected and unaffected by keratoconus are 

compared statistically to probabilities expressed from binomial distribution analysis. 

While Wang and colleagues proposed an autosomal recessive mode of inheritance 

(Wang et al. 2000).  Rabinowitz proposes an autosomal dominant mode; whereby 

high degrees of regular astigmatism, irregular astigmatism or keratoconus fruste are 

assumed to represent incomplete expression of the keratoconus gene, this trait is 

found across three generations (Rabinowitz 1998).    Many researchers suggest a 

complex mode of inheritance with involvement of several alleles that is not 

represented by Mendelian genetics.  However, this also raises the possibility that the 

advent of topography has exposed variations in corneal anatomy that previously may 

be considered ‘normal’. 

 

1.20.2 Geographical populations 
 

Nottingham (1854) was the first to document the apparent prevalence of keratoconus 

in certain countries.  More recent epidemiology studies confirm an increased 

incidence of and severity in keratoconus across Asian populations with respect to 

that seen in Whites (Georgiou et al. 2004).  A hospital study based in the English 

Midlands found that not only is there an increased prevalence in the Asian 

population, but that this group demonstrated an earlier age of onset, more rapid 

progression, and a 4 fold greater proportion of Asians than Whites who ultimately 

progress to requiring a corneal graft (Pearson et al. 2000).   Keratoconus appears to 

be very rare in Japan, Russia and Macedonia whilst very common in Iran, India and 

Israel (Gordon-Shaag et al. 2012).  Suggestions of a link with consanguinity, or 

relatively genetically-isolated populations have been proposed (Woodward 1984).   
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1.20.3 Genetic syndromes & Linkage analysis 
 

The association of other genetic syndromes with KC is widely accepted. Down’s 

syndrome, Leber’s congenital amaurosis, and Ehlers-Danlos syndrome have all been 

linked with keratoconus (Weed et al. 2007; Robertson 1975; Damji et al. 2003).  

Further, the associations with various particular connective tissue disorders or 

syndromes (osteogenesis imperfecta, mitral valve prolapse, floppy eyelid syndrome), 

are of particular note here but will be discussed at length later in this chapter 

(Beardsley and Foulks 1982; Beckh et al. 1995; Naderan et al. 2015; Robertson 

1975).     

 

Most conditions described above have been attributed to a particular genetic region. 

Within a selected chromosome, ‘linkage studies’ allow gene mapping of suspected 

faulty genes-the closer these genes lie together, the more likely it is that they have 

been inherited together and the more significant the finding.  Many keratoconus 

linkage studies have taken place and notable genes have been published in recent 

years include VXS1, SOD1, LOX1-4, COL4A3 and COL4A4 (Stabuc-Silih et al. 

2010).  An overview of these and other significant genetic investigations in KC are 

given in table 1.9.   
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Table 1. 18 Notable candidate genes in the genetic studies of KC 

Gene Evidence 

VSX1 Inconclusive.  VSX1 has been reported as a candidate gene for KC in a small proportion of cases in an Indian population 

(Tanwar et al. 2010) and Iranian population (Saee-Rad et al. 2011), but this was not confirmed in a Saudi Arabian population 

(Abu-Amero et al. 2011).  Studies have struggled to locate VSX1 within the cornea (Heon 2002) and others could not confirm 

a reported association (Moschos et al. 2013; Aldave et al. 2006).   

LOX Implicated by (Hasanian-Langroudi et al. 2015) as a significant risk factor in an Iranian population, but excluded in an Italian 

population studied by (De Bonis et al. 2011)..  Significantly down-regulated in the ocular surface of KC eyes (Rohit Shetty 

2015).   

SOD1 Some found a ‘possible causative role’ (Moschos et al. 2013)and others indicate that whilst the genetic variant is established, 

the pathologic link has not been remains unknown (De Bonis et al. 2011).   

COL4A3 & 

COL4A4 

(Stabuc-Silih et al. 2009) Found no association between mutations in collagen type IV (from COL4A3 and COL4A4 genes) 

and KC, but require further examination using function assay, since some differences in geneotype did exit between the KC 

and healthy groups.   
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COL4A1 & 

COL4A2 

Polymerase chain reaction amplification excluded mutations in α1 and α2 as a cause of KC in 15 Ecuadorian families 

(Karolak et al. 2011) 

COL5A1 Li et al. (2012) found a non-protein coding regions suggested to contribute to corneal thickness in normal eyes and in KC 

COL6A1 Linkage analysis excluded a gene locus for KC on the distal region of chromosome 21 in a family with an autosomal dominant 

keratoconus (Rabinowitz et al. 1992).   

CRB1 Leber Congenital Amaurosis is associated with KC and a common genetic mutation was found on chromosome 1 (McMahon 

et al. 2009) 

5q14.1–

q21.3 

Additional chromosomes were studied for the family above, suggesting a genetic site 5q14.1–q21.3 would provide candidate 

genes for KC (Rabinowitz 2005).   

GPC6 Burdon (2015) found that the GPC6 gene on chromosome 13 was a plausible candidate gene for KC.   

 

 

None of these genes point specifically to a locus for keratoconus present on chromosome 21, the genetic region triplicated in DS.  

However, it is well accepted that, given the heterogenetic nature of KC, that a combination of activated genes on different chromosomes 

may result in the phenotype of KC, or that the cause of KC may be an indirect result of a gene located on chromosome 21.   



1.21 Down’s syndrome 
 

Triplication of the twenty-first chromosome in the developing embryo results in 

Down’s syndrome.  Unlike many trisomies, trisomy 21 is ‘compatible with life’, so 

often results in the birth of a healthy baby that will need minimum medical 

intervention in the early days and years after birth.  As the life expectancy of 

someone with DS grows, so too does the necessity to provide optimal vision for the 

duration of life, and protect against visual impairment from KC.   

 

People with Down’s syndrome carry several advantages over those with the standard 

number of chromosomes, including a reduced incidence of tumours (Sullivan et al. 

2007) and a very low risk of atherosclerosis (Vis et al. 2009) both of which, to some 

degree, are thought to represent an altered immune response.  Down’s syndrome, 

however, carries many significant challenges, both in physical and mental health, 

and is the primary genetic cause of significant intellectual disability worldwide 

(Roizen and Patterson 2003).   

 

Since industrialisation in developed countries, those with intellectual disability were 

removed from their families, growing up in institutions or hospitals, without 

stratification of individual needs or capabilities (Noll 1995).  It was an English 

doctor, John Langdon Down who first noticed the striking physical and behavioural 

similarities between many residents was famously identified and named after an, in 

the paper, ‘Ethnic classification of Idiots’ in 1866.  Rados (1948), an American 

clinician was the first to describe keratoconus in Down’s syndrome, after seeing two 

patients with both bilateral KC and a diagnosis of DS in quick succession. 
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1.21.1 Classifications of Down’s syndrome 
 

Three different classifications of DS are used and these are of genetic importance in 

research: 

	

Trisomy	21	

Meiosis of gametes necessitates the splitting of each of the 23 pairs of homologous 

chromosomes in the cell into two halves.  But an egg, for example might have 22 

normal half-chromosomes and one that has not shed its other half – this is known as 

nondisjunction.  Post-fertilisation, the addition of a healthy paternal set results in the 

embryo now comprising 47 chromosomes, and further mitosis means that every cell 

in the body of the foetus will then be affected.  This cascade of events is known as 

Trisomy 21, and is the most prevalent type of Down’s syndrome.   

 

Mosaicism	

The nondisjunction in mosaicism occurs after fertilisation of two normal gametes is 

complete, during the mitosis that allows the embryonic ball of cells to grow.  This 

results in two different cell lines within one individual, and as different embryonic 

cells are destined for different tissues, some parts of the body will be affected, and 

others unaffected.  Even within a tissue, a fraction of the cells may be affected 

(Wiseman et al. 2010).  The phenotype is therefore variable, and some individuals 

will be affected to a greater or lesser degree than others.  Mosaicism is uncommon in 

DS, accounting for 2-4% of those affected by DS as a whole, although it is of note 

that due to the nature of mosaicism, the clinically diagnosed population may be 

smaller than what actually exists.  Due to the unpredictable nature of the proportion 

of ocular tissue affected, for the purposes of this research, potential subjects with DS 

mosaicism have been excluded.  Mouse models of DS inherently carry mosaicism to 

some degree (Reeves 2006).   
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Robertson	Translocation	

This occurs when an additional copy of a chromosome 21 exists, but is combined 

with another chromosome, usually 14, 15 or a fellow 21. Only an unbalanced form 

of Robertson’s translocation will cause a DS phenotype, a balanced form will 

produce a typically developing child.  The extra genetic material can also be carried 

and passed on unknowingly by individuals with the ‘balanced’ form and is therefore 

the only classification of DS that is hereditary.  Robertson’s translocation accounts 

for 1 in 10 of those diagnosed with DS (Mikkelsen 2009).  For the purpose of this 

research, Robertsonian translocations have not been excluded, since individuals with 

the DS phenotype have all relevant genes affected.   

 

1.21.2 Gene Dosage 
 

The classical phenotype of DS is thought to be attributable to a gene-dosage effect.  

That is, that the additional copies of the genes on chromosome 21 cause an over-

expression in the features that the regular genes would usually code for (Antonarakis 

et al. 2004).  However, not all of the genes on chromosome 21 are likely to be 

dosage-sensitive, and so it is necessary to examine how expression levels of the 

genes are each affected by the additional copy of the chromosome, and how they 

interact with each other (Korenberg et al. 1994; Wiseman et al. 2009b).   

 

Although certain traits are present in all individuals with trisomy 21, the degree to 

which an individual is affected will vary from one person to the next.  Finding out 

which genes, when triplicated, cause the features that are characteristic in DS, is the 

aim of genetic DS research in general (Wiseman, Alford, Tybulewicz and Fisher 

2009a).  This is particularly the case for pathology that is extremely common in DS 

such as Alzheimer’s disease or congenital heart defects – in which studying the 

genetics of the ordinary population would be unfeasible due to the relatively low 

prevalence.   Characterising Alzheimer’s disease in DS may one day unlock the 

secrets to specific conditions found across the world’s population as a whole 

(Korenberg et al. 1994).   

 



120 

 

If there is a genetic link between DS and KC, it may be direct or indirect in nature.  

It is possible that the ‘gene dosage’ directly magnifies the effect of the keratoconic 

genetic code on chromosome 21; but it is also possible that the dosage of trisomy of 

chromosome 21 modulates a keratoconic gene at another locus (on a different 

chromosome) (Vincent et al. 2005).   

 

1.21.3 Congenital Heart Defects in DS 
 

The incidence of congenital heart defects (CHD) in newborn babies with DS is 

strikingly high, with most reporting an incidence of between 40-60%, although 

structured epidemiological research indicates that the prevalence is likely to be at the 

lower end (Freeman et al. 1998). The most common defects are those affecting the 

septa between the hearts chambers, the ventricles and the atria (figure 1.40).  (Patent 

ducts that do not require surgery and close spontaneously in the early part of life are 

not considered CHD, as they also occur in the general population).    

 

 
Figure 1. 40 Ventricular septal defects in DS (Tc1)  mice and wild type (Wt) (control) mice.  Note the aberrant 

closure of the divisional wall in the centre of the heart (B), and the healthy heart in (A).  (Dunlevy et al. 2010). 

 

The cause of such an increased incidence of CHD has been the subject of much 

research as it is the primary risk factor for early death in DS, and because babies 

with DS make up 50% of all babies born with CHD (Freeman et al. 1998).  The 

characteristic nature of CHD in DS indicates that genes located on chromosome 21 

are normal cardiac valve and septal development (Gittenberger-De Groot et al. 
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2003), and the characteristic defects in DS suggest that at particular places and times 

during embryonic development, the additional genetic material in trisomy 21 causes 

specific disruptions in normal cardiac development (Freeman et al. 1998).  The Tc1 

mouse model displays a comparable incidence of the specific CHD seen in DS 

(Dunlevy et al. 2010) (Figure 1.35).   

 

An underlying collagen abnormality is thought to produce such a striking DS 

phenotype, and led to investigations of the proteins coded for by chromosome 21 and 

their impact upon cardiac valve development.  Collagen VI and other aspects of the 

ECM in trisomy 21 have been implicated in the formation of CHD (Klewer et al. 

1998; Duff et al. 1990).   

 

The co-incidence of ocular abnormalities and heart defects in children with DS has 

been of interest to several groups and raises the possibility that the conditions may 

derive from a common genetic weakness.  Gardiner (1967) was the first researcher to 

suggest a possible link between the high myopia that was prevalent in his group, and 

with the CHD also prevalent in DS, although did not elude to why this might be the 

case.  Cunha followed this up and found a modest association - just 13 out of 89 

hyperopics had heart defects versus 27 out of 60 of myopes (DA CUNHA and DE 

CASTRO MOREIRA 1996).  Afifi found that 7 of 9 children with DS and myopia 

had a heart defect (Afifi et al. 2013).  Bromham and colleagues found an association 

between myopia and CHD, suggesting that visual pathway damage may be a 

common cause (Bromham et al. 2002).  However, in a recent paper with DS 

subjects, of whom 51 had CHD, Ljubic found that myopia did not correlate (Ljubic 

et al. 2015).  As previously discussed, collagen type VI is found in corneal and 

scleral tissue as well as in the developing heart, and is just one possible source of 

common pathology if overproduced by the trisomy of chromosome 21.   

 

Congenital	Heart	Defects	in	KC	and	Evidence	of	KC	as	a	connective	tissue	disorder	

 

Mitral valve prolapse (MVP) is the non-closure of bicuspid cardiac valve and is seen 

in around 0.7% of the young non-DS population, and 2.4% of adults (Seguela et al. 

2011).  Several reported incidences of MVP in the DS population exist between 14% 
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and 50% (Barnett et al. 1988; Goldhaber et al. 1986).  MVP can be the result of 

congenital malformations of the valve, connective tissue disorders, from 

degenerative heart damage or from a combination of these.  Regardless of aetiology, 

most cases are accounted for by a genetic cause (autosomal and X-linked 

inheritance) (Guy and Hill 2012).  For several decades, there has been much interest 

in the co-incidence of KC and DS, with mixed findings: some finding that MVP 

appears more commonly in KC than in those without KC (Beardsley and Foulks 

1982; Sharif et al. 1992) and others indicating either no correlation (Street et al. 

1991) or no clinical consequence (Moodaley et al. 1992).  In a study examining the 

presence of keratoconus in 36 patients diagnosed with MVP, Lichter found a high 

prevalence of asymptomatic, unilateral KC in 22% of patients (compared to one 

patient, 4%, in the control group).  Lichter used a front-surface topographer and 

automated detection system (Lichter et al. 2000).  Since the presence of KC was not 

necessarily defined by the presence of slit lamp signs (undisclosed) nor the 

progression of the condition, it is not possible to be sure that the findings are not 

merely forme fruste KC or another abnormal topography.  If the results do represent 

true keratoconus, then the findings certainly do appear significant.   The possible co-

incidence of heart problems and eye problems (MVP in KC and CHD/myopia in DS) 

is certainly intriguing and requires further research into connective tissue 

ultrastructure.  Dudakova suggests that a decreased availability of cross-linking 

enzyme, lysyl oxidase, may be a common aetiology that could account for abnormal 

collagen metabolism in both MVP and KC (Dudakova and Jirsova 2013).   

 

Non-cardiac	connective	tissue	findings	in	DS	

 

Joint hypermobility and poor muscle tone is very prevalent in DS.  In the non-DS 

population, joint hypermobility is found 5 times more commonly in KC versus non-

KC eyes (Woodward and Morris 1990) – leading the authors to suggest that 

keratoconus is a localised manifestation of a mild connective tissue disorder.  Further 

evidence for their hypothesis is that floppy eye lid syndrome and sleep apnoea are 

each associated with keratoconus (Ezra et al. 2010).  Floppy eyelids are defined as 

those with a loss of rigidity allowing the lid to be folded over itself with ease, 

thought to be the result of the upregulation of elastolytic (MMP) enzymes causing 
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elastic fibre degradation in the tarsal tissue.  Reduced presence in histological 

staining of elastin in the floppy eyelid syndrome is seen in figure 1.41 (Schlotzer-

Schrehardt et al. 2005).   

 

 

 
Figure 1. 41 The collagenous tarsal stroma in a healthy eye (A) and an eye with floppy eyelid syndrome (B).  

Elastic fibres (elastin) appear dark brown when stained, and are marked with arrows.  There is notably less 

elastin present in the floppy eyelid (B). (Schlotzer-Schrehardt et al. 2005) 

 

 

Evidence of a connective tissue disorder that affects ocular tissues is provided by 

ultrastructural studies that examine abnormality at the level of the proteoglycan core 

protein (Chakravarti et al. 1998). A lumican knock-out mouse exhibits skin 

weakening alongside reduced corneal transparency.  This appears to result from 

abnormal collagen fibril genesis (figure 1.42).  These results are interesting, since 

keratoconus has long been considered a loss of corneal biomechanical integrity with 

is possibly associated systemic collagen defects such as Ehlers-Danlos syndrome and 

Cutis Laxa, some of which also exhibit skin laxity in humans (Cameron 1993; 

Woodward and Morris 1990).  Since, in humans, the corneal transparency in 

keratoconus is generally much better retained than evident in these mice, it is 

possible that this mouse is showing an exaggerated systemic phenotype of some 

collagen disorder, which may relate to KC in some way.     
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Figure 1. 42 Fibril organisation in the posterior cornea of wild type mouse (C) and lumican-null mouse (D).  

Arrows point to larger, and abnormally shaped fibrils seen in the lumican-null mouse, that are likely the cause of 

the reduced transparency.  Chakravarti et al (2000).  

At the ultrastructural level, healthy DS skin also shows abnormalities.  While 

collagen VI is abundant in non-DS endocardial tissue differentiation, occurring at 5-

8 weeks gestation, an abnormally large deposition of collagen VI was noted in the 

developing heart of all trisomy 21 human embryos, all of whom had heart defects 

(Gittenberger-De Groot et al. 2003).  The authors report that the pattern of collagen 

VI distribution was considered to be in some way be related to the shear stress forces 

in the normally developing heart, as another load bearing tissue.  

 

Often the first clinical indication of DS is during routine ultrasonography, in which 

the unusual presence of a relatively transparent nucal skin fold is imaged in the 

developing foetus.  Ultrastructurally, this is due to an abnormally high concentration 

GAGs associated with an unusual abundance of collagen VI (Kaisenberg 1998; 

Brand-Saberi et al. 1994).  Figure 5.8 shows the schematic representation of DS 

(left) and control (right) nuchal skin, with several distinct differences that are 

represented in figure 1.43 (Brand-Saberi et al. 1994): 

 

• Nuchal skin is significantly thicker in DS 

• Collagen I network was less dense in DS, fibrils were more widely spaced 

• Collagen VI network was unusually dense throughout the thickness of the 

dermis 

• Collagen VI was randomly orientated in DS, and in parallel with the dermis 

in controls 

• Hyaluronan was abundantly present in DS, whilst scarcely present in controls 
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Figure 1. 43 Schematic representation of histological sample of the fetal nucal skin in (b) DS and (c) non-DS.  

DS tissue (b) harbours an abundance of collagen VI and of hyaluronic acid, with widely space collagen I.  

Adapted from Brand-Saberi et al. (1994). 

 

Since collagen VI α 3 is produced on chromosome 2, it is considered that trisomy 21 

could distort the ratio of available (α1: α2: α3) from 2:2:2 (non-DS) to 3:3:2 (DS); 

thereby allowing for composites consisting exclusively of α1 and α2, and the 

potential to significantly alter biomechanical dynamics of DS connective tissue 

(Weil D 1988; Duff et al. 1990).  

 

Hyaluronan, or hyaluronic acid (HA) is highly hydrophilic, and binds strongly to 

collagen VI (Kielty 1992).  (Raio et al. 2004) propose that an increase in type VI 

collagen by the COL6A1 gene may contribute to an alteration in hyaluronan 

metabolism resulting in an accumulation of low molecular weight hyaluronan 

accumulation in DS tissue (Raio et al. 2004; Raio et al. 2005).  Karousou et al (2013) 

later found an increased expression of ‘hyaluronan synthase-2’ an enzymatic 

precursor to hyaluronan is closely related to the increased expression of the COL6A2 

gene found in DS.  Conversely, Barlow et al (2001) provide evidence against the 

disturbance of collagen VI in their 8 human subjects with mosaic DS, some of whom 
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did not possess triplication of the chromosomal area responsible for the production 

of collagen VI, despite having CHD.   

 

Currently, there are no studies of the collagen and proteoglycans in a DS mouse 

model, but these would be useful to investigate if abnormal collagen or PG content 

may alter the corneal biomechanics in DS.   
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1.22 Summary and aims of thesis 
 

KC appears much more prevalent in DS than non-DS eyes, yet the identification of 

early ectatic disease in this group is difficult.   Fundamentally, these DS eyes are 

known to be of an altered shape, yet it is not known if this altered shape leads to 

biomechanical weakness and the development of KC.  Further, it is not known 

whether the KC seen in DS is of a phenotype similar to that seen in the non-DS 

population, or if the ectasia is a completely different disease in this group (as seen in 

a genetically aberrant mouse model).  

 

Eye-rubbing is frequently postulated as the aetiology of KC in DS, yet this traumatic 

and subsequently inflammatory (biochemical) hypothesis is at odds with the 

understanding that the DS eye exhibits altered shape and thickness, and the possible 

biomechanical implications.  Existing literature suggests that subtle but fundamental 

collagen changes that could affect corneal biomechanics are present in DS, yet there 

appears to have been no ultrastructural investigation of the DS cornea.  In particular, 

no in –vivo corneal biomechanics have yet been assessed in DS.   

 

This thesis will examine the clinical correlates of KC in DS from a primary care and 

a topographical perspective.  The study will also examine corneal biomechanics in 

human DS eyes, and probe the ultrastructure in a DS mouse model.  It assess if the 

ectasia in DS shares a common phenotype with non-DS KC in terms of the cone 

morphology and finally evaluate if KC in DS is a suitable model for the study of 

keratoconus as a whole.  
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Chapter 2 

 

Clinical correlates of 

keratoconus in Down’s 

syndrome 
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2.1 Introduction 
 

Since the introduction of CXL, there is a necessity to diagnose and refer KC as early 

as possible in areas where it is available.   The early identification of KC in DS is 

difficult since this group are typically much less able to perceive or articulate early 

vision loss and so KC in this group may go unnoticed for a number of years.   

Successful early CXL in DS would stabilise the ectatic cornea before much 

structural damage has occurred - in particular, before corneal scarring or excessive 

curvature changes are established, and before the patient becomes dependent on 

contact lenses or requires a corneal graft.  At the time of writing UK CXL guidelines 

necessitate at least 375µm of residual corneal thickness at the thinnest point.  Since 

people with DS typically begin with a healthy cornea of just 475µm, this leaves 

much less tissue as ‘buffer’ for the period before treatment.  Therefore, individuals 

with DS may need targeted screening and monitoring guidelines.   

 

One aspect of considering whether screening for KC in DS is feasible, is the 

establishment of the clinical risk factors for KC in a DS group and associations with 

other aspects of general health, to see if a potential screening population can be 

refined.   In primary care optometry, it is important for a clinician to know the 

optometric risk factors for KC in DS, in order to aid case finding for onward referral.  

This is particularly difficult in DS because the cornea is already steeper and the 

baseline refraction already more astigmatic than that of a non-DS population 

(Woodhouse et al. 2007). Finally, examining the attributes of KC and healthy eyes 

within a DS population may be of use in considering underlying aetiology of the 

disease.   

 

Extensive literature exists indicating that eye rubbing is causative of the high 

prevalence of keratoconus in a population with Down’s syndrome; however, in all 

but one case this appears unexplored experimentally (Fong et al. 2013; Wylegala and 

Tarnawska 2006; Stoiber et al. 2003; Haugen 1992).  Further, the relevance of 
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possibly significant confounding variables of atopy and blepharitis have not been 

explored (Daneshpazhooh et al. 2007; Jaeger 1980).  The current study aims to 

explore the correlates of eye rubbing in KC in DS.   



131 

 

 

2.2 Methods 
 

2.2.1 Participants 
 

Participants were recruited from an ongoing study of 210 children and young people 

with DS at Cardiff University.  The first of these participants were initially 

systematically recruited through the Cytogenetics Department at University Hospital 

of Wales, Cardiff, upon the post-natal diagnosis of DS.   Therefore, there are 

extensive optometric records for these patients and some previous extended research 

data available.  Other participants were initially undergoing a regular examination at 

Cardiff University when they opted to join the cohort.  Further participants heard 

about the KC study online or through the UK KC foundation newsletter and were 

enrolled into the cohort; all these had KC.  Therefore, the Cardiff University ‘cohort’ 

is the base sample, and the ‘current study’ denotes selected patients from this group 

who opted to participate in the ‘Keratoconus and Down’s syndrome’ research. 

 

2.2.2 Ethics 
 

Ethical Approval was gained from NHS Research Ethics Service and all aspects of 

the study are aligned with the Declaration of Helsinki (Appendix D).  

 

2.2.3 Consent 
 

Participants were provided with study information sheet (appendix A) and consent 

form (appendix B) prior to the date of visit, and upon arriving both the participant 

and their parent/carer were talked through the consent form and given the 

opportunity to ask any questions before taking part. When the young person was able 

to, they too signed the consent form.   The young people with DS taking part in the 
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study were given lots of time to ask questions about the research, and were reminded 

that they could change their mind about participating at any time.   

 

2.2.4 Inclusion & Exclusion criteria 
 

Any participants with DS between the ages of 6 and 40 were welcomed to the study.  

Participants with mosaicism were excluded.  Those eyes with a history of injury, 

infection or surgery were excluded.  

 

2.2.5 Diagnosis of keratoconus 
 

Diagnosis of keratoconus was confirmed with Scheimpflug tomography (Oculus 

Pentacam, Weltzar, Germany) in all cases, and confirmed by the progression of 

corneal thinning and steepening over subsequent visits.  This was independently 

confirmed by a keratoconus-specialist optometrist or ophthalmologist. All subjects 

underwent an extensive optometric examination to include visual acuity, 

measurement of contrast sensitivity, binocularity, retinoscopy, slit lamp examination 

and retinal examination.  

 

2.2.6 Atopy Questionnaire 
 

Questionnaires were used to elicit the atopic history of individuals within the study 

(appendix C).  Classification from the ‘UK working party’s diagnostic criteria for 

atopic dermatitis’ was used to group existing skin conditions into partial atopic 

dermatitis, complete atopic dermatitis, or none (Williams et al. 1994).  This was 

combined with data of a history of asthma, and hay fever or other allergies to 

determine the atopic status of the patient – again defined as partial atopic, complete 

atopic, or none.  The final questionnaire included open questions surrounding allergy 

in order to capture immune responses to allergens not listed (for example penicillin 

allergy that would be representative of a significant IgE response).  Dry skin is 

particularly common in Down’s syndrome, and care was taken not to overestimate 
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the prevalence of atopic dermatitis by asking questions about acne and dry skin in 

order to aid parents and carers to differentiate from the more classic allergic 

responses (such as inflammation on the skin creases – flexures), and provide a more 

accurate response.   The presence of, or a history of, dry skin in the absence of any 

other atopic sign was therefore not graded as atopic dermatitis.   

 

Presence of eczema alongside a history of all 3 of: dry skin, flexural irritation and 

either asthma or hay fever was deemed as complete atopic dermatitis.  Eczema 

alongside one or two of dry skin, flexural irritation or asthma/hay fever was classed 

as incomplete atopic dermatitis, in line with the UK Working Party’s classification.   

 

It is well documented that underdeveloped canaliculi and nasolacrimal ducts cause 

watery and sticky eyes in Down’s syndrome in the absence of an allergic trigger 

(Mannan et al. 2009), so those symptoms alone were not considered indicative of 

atopy.  For similar reasons, suspect hay fever in the absence of formal medical 

diagnosis or habitual seasonal treatment was therefore not included as a positive 

result.  

 

2.2.7 Eye rubbing questionnaire 
 

Patients often under-report intensity of eye rubbing (McMonnies and Boneham 

2003).  In order to gain a more objective reflection of eye rubbing tendency, parents 

or carers were asked to fill in a questionnaire estimating the frequency of eye 

rubbing to either eye on an average day.  Since a discussion of eye rubbing may well 

initiate the behaviour in the young person, written information about this aspect of 

the study was given to parents/carers out of sight from the young person, and 

questions regarding it were asked out of earshot.  Parents were given the 

questionnaire in advance of the appointment to bring completed on the day, or 

invited to return it after the eye examination, by post or email.  Eye rubbing tendency 

by observation was divided into one of the following categories in table 2.1.  Those 

whose parents or carers noticed that they rubbed their eyes only when tired (and 

therefore comparable to typically developing children) and not during the course of 

the day, were classed as non eye-rubbers.   



134 

 

Has been 
diagnosed with 

this

Has been a 
problem in the 
past but since 

recovered

No history of the 
condition

inflamed, itchy skin 
(dermatitis/ezcema)

acne

rashes or dry/inflamed skin 
at skin creases (inside 
elbows, behind knees, 
around ankles or neck)

dry skin

asthma

food allergy

Eye rubbing tendency

Not noticed at all

little: once or twice daily

moderate: three to five times daily

regularly: six to ten times

frequently: eleven to twenty times daily

excessively: more than twenty times daily

Has ‘eye rubbing’ been consistent over the two-week period?! Yes   /   No

itch’ tendency

Not noticed at all

little: once or twice daily

moderate: three to five times daily

regularly: six to ten times

frequently: eleven to twenty times daily

excessively: more than twenty times daily

Has ‘itching’ been consistent over the two-week period?! Yes   /   No

 
Figure 2. 1 Extract from atopy questionnaire from the current study 

 

For graded analysis, the eye rubbing categories were retrospectively reduced to 

three: “Not noticed at all” with “Little”, “Moderate” with “Regularly” and finally, 

“Frequently” with “Excessively”.  For analyses that required a binary split between 

significant and non-significant eye rubbing, the following categories were grouped 

together: “Not noticed at all” and “little”, “moderate” were grouped as ‘non-

significant’.   “Regularly”, “frequently” and “excessively” were grouped as 

‘significant’.  Whilst the level of choice available to the parent/carer demonstrated 

the necessity for a specific answer, the grouping provided the power to the statistical 

analysis.   

 

 

2.2.8 History Taking 
 

The participant’s own ocular health was noted to include spectacles, amblyopia and 

strabismus, history of contact lens use, injuries/infections, ocular surgery or other 

ophthalmic diagnoses.  

 

The presence or absence of a CHD was noted, and the type where known.  Further, a 

medication list was taken and the young person and their parent/carer were asked 

specifically about anti-inflammatory medication use, in line with the atopic history 

taking.   
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2.2.9 Optometric examination procedure 
 

i. Retinoscopy – to assess refractive error and to evaluate the clarity of reflex 

ii. Monocular visual acuity measurement using Kay Picture test when possible 

iii. Monocular contrast sensitivity measurement (Cardiff Contrast test) 

iv. Binocular alignment assessment using Hirschberg test, and when possible 

cover test 

v. Scheimpflug Imaging using Oculus Pentacam (Chapter 3) 

vi. Slit lamp examination 

 

 

Retinoscopy	

 

Mohindra retinoscopy (Mohindra 1977) was attempted on all participants so that a 

subjective refraction could be attempted immediately after if possible.  The 

refractive error was neutralised for both eyes and the resulting prescription recorded 

in sphero-cylindrical format, alongside the quality of the reflection (reflex) seen.  In 

order to reflect possible disease states in KC, the reflex was catagorised as either 

normal or abnormal (split/swirling).   Both the magnitude and the direction of the 

astigmatism were conserved by means of astigmatic decompensation (Thibos et al. 

1997).  This ‘breaks down’ a single vector component into two constituent parts, 45° 

apart.  The constituent parts are represented along 180° (C0) and 45° (C45), where C0 

= C cos (2α) and C45 = C sin (2α) (Fig 2.2) 

 

 

 

 

 

 

a 
C0 = C cos (2α) 

C
45 = C sin (2α)   

Figure 2. 2 Astigmatic decompensation of cylindrical value into its C0 and C45 components. 
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Slit	lamp	biomicroscopy	

 

Slit lamp examination was attempted on all participants, and participation maximised 

through having a parent/carer attract attention with a small toy behind the ears of the 

examiner.  Data were collected on: 

i. Blepharitis – anterior and posterior 

ii. Corneal clarity, with scarring graded as per the Gestalt scale 

iii. The presence/absence of corneal thinning, Munson’s sign, Fleisher’s ring, 

corneal nerves. 

iv. Any anomalies detected in the anterior chamber.   

 

Corneal	scarring	

 

Gestalt grading was used in the current study, mirroring others (McMahon et al. 

2006; Szczotka-Flynn et al. 2008), to identify two important clinical parameters: (i) 

the proximity of the scar to the line of sight (LOS) and (ii) the density of the scar.  

Graded in 0.5 steps, the scale is shown in table 2.1.  Corneal scarring >G2.0 was 

deemed clinically significant and incorporated into the analysis.  The advantage of 

this scale over the Amsler-Krumeich is that it reflects the variable clinical 

presentation of corneal scarring (its location, size and density) rather than simply the 

presence or absence of scarring.   

 
Table 2. 6 Gestalt grading scale for assessing corneal scarring 

Grade Features 

1.0 Trace and not on LOS, <1.5 mm total size 

2.0 Easily noticeable and approaching LOS, 1.5–2.5 mm total size 

3.0 Dense but translucent and impinging on LOS, total size 2.5 mm or 

greater 

4.0 Opaque and on LOS, size 2.5 mm or greater 

 

 



137 

 

2.2.10 Grading keratoconus in DS 
 

The potential for misclassification in DS eyes using the modified Amsler-Krumeich 

grading scale (Alió and Shabayek 2006) is large since this scale was derived using 

assumptions based on refractive error, CCT and dioptric power of non-DS eyes, 

when in fact the baseline parameters of healthy DS eyes are significantly different to 

those of DS eyes.  By using the modified Amsler-Krumeich scale, it follows that 

stratifying DS eyes by corneal power, CCT and regular astigmatism could over-

grade KC in DS, while requiring myopia for the classification of early KC would 

under-grade the disease in DS (since high hyperopia is so prevalent in DS).   

 

In order to prevent misclassification of KC in DS eyes, it was decided to grade the 

KC in such a way that the resulting grade represented the clinical severity and 

clinical implication of the disease on the subject in question, and primarily the 

intervention required to optimally rehabilitate the patient’s vision.  Since VA, 

corneal power and corneal thickness are altered in DS (and since is it not known how 

each interact specifically with KC), the diagnosis of KC and the grade had to be 

made without those parameters and as such these aspects were removed from a 

potential grading scale.   Instead the grading from 0 to 5 was based upon 

retinoscopy, slit lamp examination and severity of the topographical pattern and the 

actual or likely path to visual rehabilitation.   Since KC is often asymmetric, each 

eye was evaluated separately. Since longitudinal optometric data were already in 

place for each participant, the VA prior to KC was known for those in the 

suspect/early group.  Therefore, the ‘optimal’ vision level to rehabilitate towards was 

known by the examiner.  The ‘study grading scale is outlined in table 2.2. 
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Table 2. 7 New keratoconus grading scale for the current study 

Study 

Grade 

Status Clinical data used Visual Rehabilitation 

0 Healthy Clear ret reflex, no dioptric asymmetry on topography 

(other than that explained by regular astigmatism) 

Nil – glasses / contact lenses for standard refractive 

error only 

1 Suspect / FFKC Abnormal ret reflex and/or abnormal topography Nil – glasses / contact lenses for standard refractive 

error only 

2 Mild KC Abnormal ret reflex and abnormal topography with or 

without SL signs.  Spectacle correction and BCVA.    

Glasses to incorporate astigmatic correction 

attributable to KC 

3 Moderate KC Abnormal ret reflex and abnormal topography with or 

without SL signs.  Spectacle correction and or Contact 

Lens correction and BCVA.    

Vision correctable to optimal level* with contact lens 

4 Severe KC Abnormal ret reflex and abnormal topography with SL 

signs.  Spectacle correction and or Contact Lens 

correction and BCVA.    

Vision corrected to sub-optimal level with contact lens 

5 End stage KC Abnormal ret reflex and abnormal topography with severe 

SL signs.  Spectacle correction and or Contact Lens 

correction and BCVA.    

Visual rehabilitation not possible / hydrops 

*Optimal level was defined as the usual visual acuity for a patient with DS – 6/12
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This new study grading scale is a clinical tool designed to stratify patients based on 

need and therefore grade necessary clinical intervention/outcome to rehabilitate 

vision.  This will allow classification of patients in a way that is independent of 

refractive error, numerical topographical characteristics, CCT and should be 

transferrable across equipment, and both primary and secondary care.  

 

 

 

2.2.11 Statistical analysis of data 
 

Statistical analysis of the correlation between keratoconus and each variable was 

carried out using the Chi-squared test (with Yates’ correction where appropriate) in 

SPSS (Version 23.0, IBM, Chicago, Illinois, USA). 
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2.3 Results 
 

2.3.1 Subjects 
There were 45 subjects enrolled in the current study, all of whom had DS.  One 

subject had significant autism and was unable to tolerate one eye being occluded; 

they were removed from the analysis.  Therefore 44 DS participants (11 with 

keratoconus) completed this aspect of the study.  Two eyes were excluded, one due 

to a history of retinal detachment (this subject had KC) and one healed corneal ulcer 

(this subject had no KC). This left 86 eyes of 44 subjects (21 KC eyes, 8 suspect 

eyes, 57 healthy eyes). There was a higher percentage of male subjects (61%) than 

female subjects (39%).  Participants ranged from 7.5 to 27.8 years (19.5±8.3, 

mean±S.D.), covering the high-risk age range in which keratoconus typically 

develops.   

 

 

2.3.2 Correlations of eye-rubbing and atopy 
Data from eye-rubbing and atopy questionnaires were analysed using Chi-squared 

statistics in order to measure the independence of the two categorical probability 

distributions presented, by comparing difference between the expected frequency 

with the observed frequency.  The significance of the association between the 

nominal variables is presented in table 2.3.   

 
Table 2. 8 A summary of the relationships explored using the Chi-squared test for statistical significance 

Feature exhibited Correlated with Significance (p value) 

Significant eye rubbing KC 0.81 

Atopic dermatitis KC 0.88 

Hay Fever KC 0.80 

Allergy KC 0.64 

Significant atopy KC 0.73 

Significant atopy Significant eye rubbing 0.05 
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Table 2.3 demonstrates that in the current study, KC is not significantly correlated 

with atopic dermatitis, hay fever, allergy, nor atopic status as a whole.  The 

association between atopic status and the extent of eye rubbing was examined, and 

the association approaches significance, so it is likely that eye-rubbing was 

dependent upon atopy in this group, results that are in agreement with non-DS 

research (Copeman 1965).  

 

 
Figure 2. 3 Eye rubbing classification as a proportion of atopic status.  This illustrates that patients with atopy 

exhibited more eye rubbing in the atopic groups.  Significant eye-rubbers were only found in the complete atopic 

group. 
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While associated with atopy, eye rubbing, however, was not associated with 

keratoconus.  In addition, no ‘frequent’ or ‘excessive’ eye rubbers were found within 

the keratoconic group, as shown in figure 2.4 and figure 2.5.  

 

 
Figure 2. 4 The distribution of keratoconics and non-keratoconics across eye rubbing categories. 
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Figure 2. 5 An alternative presentation of the data in figure 2.4.  The bar chart highlights the relative 

proportions of eye-rubbing in the KC and non-KC groups. 
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Figure 2. 6 The proportion of atopic category comprising normal and KC groups.   

 

Figure 2.6 demonstrates that absent, partial and complete atopy are comparably 

represented in the keratoconus and non-keratoconic Down’s syndrome population.  

Those with partial or complete atopy are not over-represented in the keratoconic 

group.  
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Hay fever, as a component of atopy most likely to affect the ocular surface, is 

strongly associated with KC in non-DS individuals (Rahi et al 1977).  It was 

therefore evaluated separately to investigate a relationship with KC.  Results are 

shown in figure 2.7.   No association was found (P=0.80), indicating that the 

presence and absence of keratoconus is represented similarly in those with and 

without hay fever.   

 

 
Figure 2. 7 Bar graph to shoe KC and normal eyes across hay fever groups. 

 



146 

 

 

2.3.3 Retinoscopy 
 

Retinoscopy assessment was performed successfully on all eyes of all 44 subjects.  

An abnormal ret reflex was found in 21 of 21 KC eyes and in 2 out of 8 KC suspect 

eyes.  Of the eyes of participants with no KC, all (57) had a normal ret reflex (by 

definition).  For the identification of KC eyes, this provides a sensitivity of 100% 

and a specificity of 96.9%.  For the identification of KC and KC suspect (combined), 

this provides a sensitivity of 79.3% and a specificity of 100%.   

 

2.3.4 Refractive error 
 

Objective refractive error was attempted on all subjects, and successful in 57 out of 

57 healthy eyes, 8 out of 8 suspect eyes and 10 out of 21 KC eyes.  Failure to obtain 

refractive data was due to moderate & severe KC eyes having a reflex too distorted 

to gain a meaningful refraction.  
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Figure 2. 8 Scatter graph to show vector analysis of the astigmatic component of spectacle refraction 

 

Figure 2.8 shows astigmatic decompensation of the cylindrical components of the 

prescription for all eyes.  The keratoconic prescriptions (closed circles) are, on 

average, further from the origin of the graph, denoting that the astigmatic value is 

higher, as is expected in keratoconus.   Data points around the horizontal indicate 

that the cylinder lies around 180° or 90°, and the vertical axis indicates an oblique 

prescription at 45°.  No apparent patterns of this nature exist, and astigmatic values 

appear randomly spread.  The extent of the overlap in the magnitude of astigmatism 

in healthy and keratoconic eyes is shown in figure 2.9.   
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Figure 2. 9 Box plot demonstrating the overlap between the magnitude of astigmatism in healthy and keratoconic 

DS eyes.  Note that although the means are significantly different (by 1.2D), the extent of the overlap at the 

higher values provides poor discrimination between physiological and pathological cases.    

 

 

 

 

 

 

 



149 

 

 

2.3.5 Visual Acuity 
 

Best corrected LogMAR visual acuity using crowded Kay Picture test was attempted 

for all subjects, except for 3 participants whose ability meant that they were able to 

perform a detection acuity task only and Cardiff Acuity Pitcure test was used.   Kay 

picture test was used at 3 metres and Cardiff Acuity test results were converted to 

comparable measurement through their respective logMAR values.   

 

For analysis, eyes that had ‘counting fingers’ or ‘perception of light’ were excluded 

from the analysis.  Two such eyes had study grade 4 KC and two had study grade 5 

KC, and were removed from analysis.  This left 81 eyes.   

 

The significant overlap in VA between healthy, and KC and KC suspect eyes (figure 

2.10 and figure 2.11) demonstrates that the two groups cannot be separated by VA 

alone, and that VA is a poor predictor of KC.   
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Figure 2. 10 Spread of Visual Acuity in KC/KC suspect and healthy eyes.  Note the significant overlap in the 

LogMAR 0.2 - 0.6 region, showing that this level of acuity represents patients with KC, KC suspect and healthy 

eyes).   
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Figure 2. 11 Box Plot depicting the overlap of VA in healthy and KC/KC suspect eyes. 

 

  

2.3.6 Contrast Sensitivity 
 

Contrast sensitivity analysis carried the same exclusions as for the visual acuity, 

leaving 81 eyes for analysis.  Figures 2.12 and 2.13 mirror VA findings such that a 

significant overlap between the healthy and KC/KC suspect eyes and thus does not 

carry suitable value as a screening test component.   
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Figure 2. 12 Spread of contrast sensitivity KC/KC suspect and healthy eyes.  Note the significant overlap in the 

LogMAR 1.1 – 1.5  region, showing that this level of acuity represents patients with KC, KC suspect and healthy 

eyes).   

 

 

 

 
Figure 2. 13Box plot depicting overlap of contrast sensitivity between healthy and KC/KC suspect eyes. 
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2.3.7 Congenital heart defects 
 

Cardiac history data was available for 41 out of 44 participants (figure 2.4).  There 

does not appear to be a positive association between those with congenital heart 

defects and those with KC.  Rather, when the statistics are examined with Chi-

squared analysis, there appears to be a negative association (p=0.03, Fisher’s exact 

test).   

 
Table 2. 9 Proportion of congenital heart defects within each KC group 

 Healthy 

 

KC suspect 

 

KC Total 

Number of 
subjects with 
CHD 

20 2 3 25 

Number of 
subjects with no 
CHD 

8 1 7 16 

Proportion of 
subjects with 
CHD 

71% 67% 30% 61% 
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2.3.8 Slit Lamp Biomicroscopy 
 

Slit lamp examination was performed on 44 remaining participants.  By definition, 

all 29 healthy participants and all KC suspect participants exhibited a clear cornea 

with no slit lamp signs of KC.  Slit lamp results from the remaining 21 of 22 KC 

eyes are shown in table 2.5.  

 
Table 2. 10 Table to show the numbers of subjects presenting with various slit lamp signs, stratified by study 

grading scale 

Clinical sign 
Apical 

thinning 
Scarring Vogt’s striae Fleischer’s ring 

Mild KC  
(study grade 2) 
N=4 

0 0 1 0 

Moderate KC 
(study grade 3) 
N=13 

3 7 10 3 

Severe KC 
(study grade 4) 
N=2 

1 2 2 2 

End stage KC 
(study grade 5) 
N=2 

1 2 1 1 

 

 

For eyes with early KC, corneae appeared normal in most cases, indicating a 

predominance of confirmed topographical KC in spite of the absence of slit lamp 

signs.  Fleischer’s ring and apical thinning was uncommon in moderate KC (study 

grade 3).  Vogt’s striae was seen in many corneae but not in the early stages.  

Scarring was exhibited in a number of corneae but only at study grade 3 and above.  

One eye had corneal hydrops that masked likely apical thinning, Vogt’s striae and 

Fleischer’s ring. 
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2.4 Discussion 
 

In general, two main hypotheses for the high prevalence of keratoconus in Down’s 

syndrome exist.  The predominant hypothesis is that of the ‘environmental’ influence 

of eye rubbing (Pierse and Eustace 1971; Koenig and Smith 1993).  This suggestion 

is furthered by the ‘cascade hypothesis’ wherein subsequent mechanical micro-

trauma leads to inflammatory changes and the possible degeneration of the collagen 

scaffold (Kenney and Brown 2003).  The second is that the DS eye is 

biomechanically weak, as a result of its altered shape or hypothetical ultrastructural 

defects.  This is furthered by the ‘two-hit hypothesis’, suggesting KC develops in 

eyes that have an underlying genetic predisposition accompanied by an external 

environmental cause (McGhee et al. 2015).     

 

2.4.1 Eye rubbing 
 

The current study is the first to use a structured questionnaire to prospectively study  

KC, eye rubbing and atopy in the DS population. There appears to be only one study 

that prospectively considers eye rubbing, KC and DS, and the results of the current 

study are in contrast to that work (Haugen 1992).  Haugen found that of the 16 

institutionalised patients with learning disabilities who had keratoconus, 6 had 

Down’s syndrome.  Of these, 3 were noted to rub their eyes ‘very often’ relative to 

their peers whilst three did not rub their eyes at all.  The study did not investigate the 

presence or absence of atopy.  Whilst Haugen found that eye rubbing was correlated 

with keratoconus to some degree, it is certainly unclear if eye rubbing is indeed 

causative of KC, contrary to what the author suggests.  The study of eye rubbing is 

known to be fraught with the possibility of inaccurate response, and patients may 

feel guilty about ‘admitting’ that they rub their eyes and so are thought to under-

report (McMonnies and Boneham 2003).  In the current study, the majority of the 

young people participating in this study lived with their parents, or had carers that 

were very familiar to them, the overwhelming majority were comfortable and 

confident to fill in the questionnaire appropriately.   It is certainly a limitation of this 
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study that, short of filming the subjects for an extended period of time, no objective 

measure of eye rubbing exists.  However, the positive association of atopy with eye 

rubbing is clinically reassuring and expected.  Of the 11 patients who were 

keratoconic, one had both atopy and exhibited moderate eye rubbing.  Another 

subject with keratoconus exhibited moderate eye rubbing in the absence of atopy.  

The other 9 subjects did not exhibit any significant eye rubbing signs to their parent 

or carer, and had little or no observed eye rubbing.  This conflicts significantly with 

currently published literature, and demonstrates that the usefulness of eye rubbing 

history in the screening or diagnosis of keratoconus may be limited.  Likewise, an 

absence of eye rubbing in clinical history taking should not lead the clinician to 

assume that keratoconus is unlikely.   

 

Eye rubbing results from the current study may reflect a general shift towards better 

eye care and early intervention resulted in less clinically significant blepharitis being 

evident in the study group than reported in older literature (Jaeger 1980).  Only two 

cases of substantial blepharitis were observed, and neither case exhibited eye 

rubbing behaviours.  Better health care, education and better socialisation (since the 

institutionalisation of young people with DS is now exceptionally rare) in recent 

decades may mean that young people with Down’s syndrome are more integrated 

with their society, and more engaged with their daily activities.  Therefore, they may 

exhibit less stimming behaviours, such as eye rubbing or ocular massage (which 

blind and intellectually disabled people are sometimes known to engage in for 

sensory stimulation).   It is likely that clinically significant blepharitis is now be 

picked up earlier by an optometrist and managed responsibly by the parents or 

carers.  Another factor that has changed in the last two decades is that a large 

proportion of young people with Down’s syndrome now wear spectacle correction 

and so it is quite possible that spectacles act as a physical barrier that detracts from 

unnecessary eye rubbing.  

 

The low observed power (4.8%) of the eye rubbing result is expected since no 

significant difference was found between the two groups with the high p-value of 

0.81 (Goodman and Berlin 1994, Hoenig and Heisey 2001).  However, this does not 

negate the possibility of making a type II error, since the small sample size was 
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employed in the current study.  While the current study carries a larger DS group 

than published studies to date, a significant limitation of the current study is that it is 

still small in size when compared to larger KC studies of typical individuals (eg 

Bawazeer et al. 2000).  Although unlikely, it is statistically possible that the sample 

studied in the current study does not represent the population of keratoconics with 

DS throughout the nation.  However, in practical terms, this is a large study sample 

from a niche population and in clinical terms, a significant effect size would have 

been required even in this limited sample in order to reject the null hypothesis.  It 

therefore appears reasonable to accept the null hypothesis based on the data above.   

 

2.4.2 Atopy 
 

The association of atopy with eye-rubbing approached significance in this DS group 

(p=0.05), reflecting data seen from the typical non-DS population (Balasubramanian 

et al. 2013; Weed et al. 2007).  Existing literature suggests that atopy is more 

prevalent in DS (Daneshpazhooh et al. 2007; Dourmishev et al. 2000), and as 

previously discussed KC also appears more prevalent in DS.  In non-DS subjects, 

Rahi et al (1977) found a 3 fold increase in prevalence of atopy in the keratoconic 

cohort of 35%.  It was therefore important to investigate if the rates of atopy were 

higher in the DS group with KC than the DS group with healthy corneae.  In the 

current study overall, an atopic history was given in 44% of cases,  higher than the 

levels of atopy generally reported in typical individuals (Copeman 1965), and in 

agreement with other studies (Daneshpazhooh et al. 2007; Dourmishev et al. 2000).  

However, atopic disease is no more prevalent in the KC group than the DS group 

(p=0.73).   These results suggest that although atopy is more prevalent in DS as a 

whole, and that atopics have a tendency to rub their eyes, there is no evidence that 

eye rubbing or atopy are more common in, or indeed causative of, KC in DS.  Whilst 

young people with DS may rub their eyes, it may not necessarily lead to KC in 

isolation.  McMonnies suggests that atopy, itch and eye rubbing are relevant in the 

pathogenesis of KC only when ‘the highest levels of these factors are present’ 

(McMonnies and Boneham 2003).  This hypothesis appears maintained even in DS, 

because a higher propensity to eye rub or be atopic is seen in the keratoconic group.   
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2.4.3 Astigmatism 
 

Patients presenting to corneal clinics with higher magnitudes of regular astigmatism 

are more likely to progress to KC than those with lower astigmatism (Shirayama-

Suzuki et al. 2009).  Since, in the author’s experience, a useful subjective response is 

unlikely in a patient with DS, the reliance on objective measures is greater and thus 

it was important to establish if a clinical cut-off level could be useful in identifying 

those with pathological corneae.  Whilst, as expected, the results demonstrate that 

higher magnitudes of regular astigmatism exist in the keratoconic eyes, the results 

indicate that establishing a useful cut-off is not possible.  This is likely a feature of 

the high refractive error seen generally in eyes with DS (Woodhouse et al. 1997), 

likely masking early astigmatic changes due to KC.  Because the current study 

evaluated an asymptomatic population already undergoing regular eye examinations, 

it likely revealed the earliest levels of disease possible (when ectatic changes and 

thus induced astigmatism would be minor).   However, the clinical implication of 

these results is that a young person with DS does not have to demonstrate a 

significant ‘cyl’ in order to have keratoconus.  

 

2.4.4 Visual function 
 

The significant overlap in the visual acuities and contrast sensitivities of healthy and 

keratoconic eyes demonstrate that a measures of acceptable visual function in DS do 

not exclude the possibility of KC.  This result agrees with others from the non-DS 

population (Kanellopoulos and Asimellis 2013) and is likely the result of the overlap 

of the decrease of vision in the KC eyes with the level of visual impairment that 

exists naturally in DS.  KC in DS is therefore a relatively asymptomatic disease, at 

least in the early stages when indeed there is a need to prioritise CXL (where 

available) in this group.  Kanellopoulos and Moustou suggest that VA in KC is so 

variable that topographic irregularity indices should be more highly weighted in 

specific disease staging.   
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2.4.5 Slit lamp biomicroscopy 
 

In agreement with others, slit lamp signs were not always present in early KC 

(Zadnik et al. 1996).  The current DS study was unique in that the diagnosis of KC 

(in the absence of slit lamp findings) was confirmed by progressive topographical 

changes with time.  This differentiated the early keratoconics from those ‘suspects’ 

with abnormal topography who had remained stable for a long period of time (>12 

months).  Although the current study was not longitudinal, many longitudinal 

observations were possible and it was notable that early keratoconus could progress 

clinically (and through the automated keratoconic staging) whilst maintaining a clear 

cornea.  This mirrors the author’s general experience in non-DS patients, and the 

assumption in general ophthalmic practice that some patients maintain a relatively 

clear cornea until very late stages.  The modern studies examining the DS cornea 

typically confirm a diagnosis of KC in DS only by abnormal topography in the 

presence of slit lamp signs (Aslankurt et al. 2013; Vincent et al. 2005).  These 

studies are not able to differentiate their ‘suspect’ cases or ‘abnormal topography’ 

cases into actual KC or those with atypical but stable corneae.  As such, these studies 

may overestimate the incidence of sub-clinical keratoconus.  

 

2.4.6 Retinoscopy 
 

The preferential use of autorefraction over retinoscopy in busy clinical practice is a 

modern phenomenon in order to save time and skill.  Although modern 

autorefractors are generally reliable and accurate for spectacle prescriptions, they do 

not detect the high-order aberrations that are seen in very early KC using 

retinoscopy.  Results of the current study indicate that retinoscopy provides an 

excellent screening and diagnostic tool for identifying KC in DS.  This mirrors the 

work by (Goebels et al. 2015), and relies on the fundamental principles of Sir 

William Bowman who in 1859 who considered the use of the retinoscope primarily a 

technique of detecting keratoconus .  
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Conclusions 
 

Results from the current study do not support the hypothesis that eye rubbing is 

associated with keratoconus, and it is therefore unlikely to be a causative factor.   

 

Results from the current study are impactful in the screening and diagnosis of 

keratoconus in someone with Down’s syndrome since it is no longer useful to 

assume that an absence of eye rubbing reduces the likelihood of the patient having 

keratoconus.  

The results have implications for those being considered for corneal grafting or 

corneal cross-linking, where previously those with DS were often considered poor 

candidates for treatment due to the perceived likelihood of inadvertent trauma.  

While eye rubbing is likely to put the patient at risk of inflammation, infection and 

ultimately corneal graft rejection – the data highlight that each patient should be 

looked at on a case-by-case basis, especially with the knowledge that the 

keratoconus was not self-inflicted.   

 

This research adds some weight to the hypothesis that the high prevalence of 

keratoconus in Down’s syndrome may be due to an underlying collagen abnormality, 

causing a structurally weaker cornea that is predisposed to developing KC.    

 

The current study reinforces the clinical need for the use of retinoscopy on all 

patients with DS.  The sensitivity and the availability of this technique in the primary 

care setting makes it the most suitable tool for any screening.  Although the sample 

size of keratoconic subjects was relatively small compared to non-DS studies, it was 

large in DS terms and provides enough overlap in the data to understand clinically 

that VA, contrast sensitivity and the measurement of astigmatism are not useful 

measurements in the identification of KC in DS.  Further, waiting for slit-lamp signs 

is likely to prove too conservative a treatment plan for already-thin DS corneae, in 

areas where CXL assessment is available.    

 

 

 



160 

 

 
Chapter 3a 

 

Topographical correlates of 

keratoconus in Down’s 

syndrome 
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3.1 Introduction 
 

The DS cornea is known to be thinner and steeper than controls.  Vincent (2005) 

found that 61% of DS subjects had an average corneal power 2 S.D. outside the 

normal non-DS range, in corneae that otherwise appeared healthy.  Vincent also 

presents a case of a DS subject with inferior steepening and yet normal topographic 

parameters.  Since a keratoconic cornea inherently thins and steepens, and 

topographic systems are sensitive to such shapes, the attributes of the normal DS 

cornea create the capacity to provide false positive results if automated indices based 

on a non-DS population are used.  In addition, the DS eye is known to have 

increased levels of whole-eye aberrations when compared to controls.  Data from 44 

DS eyes showed increased overall aberrations, increased coma, but these did not 

reach pathological proportions (McCullough et al. 2013).  The small levels of 

abnormality reported, however, may account for the degradation in optical quality 

found in DS eyes, and the demonstrable improvement in vision found when the 

optics of the eye are bypassed using interferometric acuity (Little et al. 2007).  It is 

not known to what extent any baseline aberrations in the healthy DS cornea differ 

from those eyes with both DS and KC, and how this influences the rate of false 

positive topography results.   Aslankurt et al. (2013) excluded subjects with clinical 

signs of keratoconus and relied only on the automated topography diagnosis of 

keratoconus by Pentacam in a group of 27 children with DS (aged 8.9±2.4 years), 

finding ‘early, subclinical’ KC in 11 eyes (21.1%), and abnormal topographic 

parameter in a total of 20 eyes (38.4%) overall, each proportion approximately ten-

fold that of the control group.  It is difficult to imagine KC being present in such epic 

proportions in such a young group, but rather it seems more likely that the Pentacam 

indices were producing a large proportion of false positives.  In an older group 

(25±9.6 years), Anderson et al. (2014) found 23.6% of DS corneal topographies to 

be abnormal (versus just 0.7% of non-DS topographies).  Vincent (2005) proposes 

that people with DS have abnormalities of corneal shape even in the absence of 

clinical evidence of KC.  In clinical ophthalmology, such ‘suspect’ cases are 

monitored over time in order to examine the reliability and progression of the initial 
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topography data - a cornea is not considered to have keratoconus unless the cornea is 

becoming more ectatic with time.  To date, no DS studies have done this to confirm 

‘suspect’ or ‘sub-clinical’ cases of KC by means of any prior or subsequent 

topographical mapping.  This is essential in order to differentiate whether the 

abnormality of corneal shape in KC is truly representative of keratoconus ectasia, or 

if the abnormality of corneal shape is simply an inherent but stable finding in DS 

(such as the failure of emmetropisation and the resulting wide-range of refractive 

error seen in the DS population).   

 

 

3.2 Aim of study chapter 
 

To establish the normative topographical associations for healthy DS corneae, in 

combination with suspect/abnormal but demonstrably stable corneae (study grade 0-

1); finding the useful topographical parameters that differentiate this group with 

established KC, in particular from early-moderate KC (study grade 2&3).  By virtue 

of this, the current study will investigate the diagnostic capacity of the metrics 

available from the Oculus Pentacam for a DS population.   
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3.3 Methods 
 

3.3.1 Oculus Pentacam Images 
 

An accurate Pentacam image relies on excellent fixation.  In a group of young people 

with learning disabilities this was aided through significant encouragement and 

minimising the task duration.  Prior to introduction to the Pentacam, the subject had 

an eye exam with the researcher and was given plenty of time to feel at ease in the 

unusual environment.  The subject was positioned until comfortable on the chin and 

forehead rest, and asked to concentrate on the blue fixation light.  The shorter of two 

Pentacam settings was utilised, such that 25 component images were captured in 1.0 

seconds.  A display was available for the examiner to align the eye in the x, y and z 

directions.  It was ensured that the subject had the opportunity to blink shortly before 

the alignment that initiated the capture, so that a broken tear film did not cause 

patterns of corneal irregularity.  The participant was asked to look steadily at the 

blue fixation light and automatic capture was used when the alignment was deemed 

acceptable by the software.  In some cases, the ‘auto-capture’ had to be overridden 

manually in order to gain a capture.  In such cases, measurements were repeated 

until acceptable quality imaging was obtained (Aslankurt et al. 2013).   

 

In most circumstances, scans were taken until at least 3 images with good co-

operation for each eye were obtained.  Such multiple images often required a high 

degree of co-operation and stamina, and the child or young person with DS was 

asked if they felt able to continue with each new capture.  Occasionally, if the 

subject became fatigued, they would be invited back to complete this aspect of the 

study on another occasion.  If the scan proved too difficult for someone with a 

particularly significant learning disability, or if a subject appeared to be becoming 

distressed, then this aspect of the study was abandoned.   
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Figure 3. 1 A young participant being lined up for tomography by Oculus Pentacam.  

 

Those scans that demonstrated loss of fixation or a blink during the process were 

removed.   Even the normal cornea will simulate the appearance of a cone if the line 

of sight (and therefore the optical axis) is not directly coincident with the fixation 

target (Hubbe and Foulks 1994).  By the same principle, an eye with inferior corneal 

ectasia could appear relatively normal if the gaze was directed above the horizontal, 

pointing the cone in the forward direction and minimising the appearance of the true 

inferior steepening.  In order to ensure that the participant understood the fixation 

instructions and to ensure that the scans were representative of the cornea in 

question, many images were taken from each eye, when possible.  The effect 

described above applies primarily to front-surface topography but to mitigate for this 

effect, an observation of the location of minimum corneal thickness was employed to 

exclude variable gaze position.  This appears to have been a method employed by 

others (Aslankurt et al. 2013).  If in doubt, those scans with non-concentric contours 

were treated with caution, and excluded where more regular corneal thickness 

patterns were seen in the same eye.  When this was inconclusive, a reference back to 

the position of the eye in the Scheimpflug images was made.  Finally, the first scan 

for each eye to be found quantitatively sound (denoted by an ‘OK’ in the Pentacam 

reliability index) and/or qualitatively sound (manual examination of the component 

Scheimpflug images by eye) was shortlisted for analysis. 
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Since clinical signs such as Munson’s sign or a Fleisher’s ring are diagnostic of KC 

using a slit lamp, the clinical usefulness of Pentacam in diagnosis is to confirm KC 

in these cases (and in general, to monitor for progression over time).  Therefore, 

Pentacam is more useful for the subtle clinical abnormalities that do not clearly 

manifest themselves on slit lamp examination, and in particular for identifying early 

and subclinical cases.  Whilst many papers incorporate the latter KC stages into 

analyses, this has the detrimental effect of skewing the data, and the increasing the 

significance of diagnostic parameters against controls.  Therefore, stages 4 and 5 KC 

have been removed from most analyses, leaving only early and moderate KC 

corneae included.   

 

3.3.2 Statistical analysis of data 
 

Statistical analysis of the differences between groups was carried out using the 

Mann-Whitney U test, or the Chi-squared test in SPSS (Version 20.0, IBM, Chicago, 

Illinois, USA).  Receiver operating characteristic (ROC) curves derived from the 

same software were used to analyse the performance of selected parameters as 

diagnostic indices when used as binary classifiers.  The graphs plot sensitivity (y-

axis) against the specificity (x-axis) at various threshold settings.  ROC ‘Curves’ that 

edge toward the upper-left of the plot are superior in their discrimination between 

healthy and diseased groups.  The point (0,1) is a ‘perfect classification’, 

representing 100% sensitivity and 100% specificity.   
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3.4 Results  
 

3.4.1 Subjects 
 

The same study group as detailed in Chapter 2 were invited to complete this aspect 

of the study.  Thirty-eight subjects were able to complete this aspect, including all 11 

of those who had keratoconus.  As with the previous chapter, two eyes were 

excluded (one due to a history of retinal detachment and one due to a history of a 

corneal ulcer).  This left 74 eyes for analysis, and they fell into the study grades as 

set out in table 3.1.   
 

Table 3. 16 Breakdown of keratoconic status in DS eyes 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Corneal Power Indices 
 

All corneal power indices explored in eyes with KC were significantly different from 

control eyes (table 3.2).  Even though KC eyes were not defined by the magnitude of 

Study Grade Status Number of eyes 

0 Healthy 45 

1 Suspect / FFKC 8 

2 Mild KC 4 

3 Moderate KC 13 

4 Severe KC 2 

5 End stage KC 2 

 Total 74 
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their curvature in this study, as expected, an increase of curvature was found in the 

pathological eyes. Each anterior surface index maintained its significance even when 

severe KC (SG 4-5) was excluded from analyses, as shown in table 3.2.  The 

maximum corneal curvature (Kmax) carried the greatest area under the curve 0.993 

(see figure 3.2) and hence held the greatest diagnostic capacity.  The box plot in 

figure 3.3 and the data in table 3.3 demonstrates that there is still significant overlap 

(3.70D), thus its capacity as a diagnostic indicator (when used alone) is limited.   

 

 

 
Figure 3. 2 ROC curve for curvature indices.  This figure depicts the blue ‘curve’ (Kmax) as the closest to the 

top-left corner, indicatibg the greatest sensitivity and specificity of the indices examined.  This is a pictoral 

represention of the ‘area under the curve ‘AUC’.   
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Table 3. 17 Table to show the significance of various corneal power indices using the Mann-Whitney U test when grouped by KC status (normal and suspect versus early KC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index Mann-

Whitney 

U 

Significance (p-value) 

AUC 

 

Significance 

(p-value) 

Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

Maximum K, Kmax 6 0.00 0.993 0.00 0.979 1.000 

Steepest K, K2 35.5 0.00 0.959 0.00 0.889 1.000 

Flattest K, K1 90 0.00 0.896 0.00 0.777 1.000 

Average K, AveK 52 0.00 0.940 0.00 0.850 1.000 

Distance from Kmax 

to corneal centre, 

Kmaxdist 

313 0.05 

0.302 0.02 0.163 0.441 
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Figure 3. 3 Box plot to show spread of values for healthy and KC eyes 

 
Table 3. 18 Box plot statistics for Kmax between the two groups 

Statistic Healthy (SG 0 & 1) Keratoconic (SG 2 & 3) 

Mean 46.97 63.19 

Standard deviation 2.37 8.41 

Minimum 43.20 49.70 

Maximum 53.40 83.90 

Total range 10.20 34.20 

Interquartile range 3.50 13.15 

 

 

In Chapter 1, the potential shortcomings of current grading scales were discussed 

with respect to their suitability for use in DS, and therefore all eyes were split into 

study groups according to the clinical severity and likely visual rehabilitation need.  

In order to validate that method decision, table 3.4 and figure 3.4 document the mean 

and standard deviation of the anterior corneal surface variables for each study grade.  

It can be seen that each dioptric curvature index has increasing corneal power with 

increasing severity grade.  As expected clinically, the smallest difference is found 

between healthy and suspect eyes.  This suggests that the study grading scale does 
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indeed categorise KC eyes into appropriate clinical categories with respect to 

increasing corneal distension.  In the KC group, increasing distension (characterised 

by increased corneal curvature), is correlated with a decreasing CCT.  In the healthy 

group, however, the correlation between corneal curvature and CCT was minimal 

(figure 3.5).   

 
Table 3. 19 Table to show mean and standard deviations for various corneal curvature indices with increasing 

study grade severity 

KC 

study 

grade 

N= Kmax Kmaxdist K2 K1 AveK 

Mean ± S.D. 

0 40 46.67±2.10 1.66±0.82 45.82±1.88 44.29±1.40 45.04±1.59 

1 13 48.60±3.15 1.39±0.93 47.18±2.63 45.26±2.32 46.19±2.35 

2 3 60.50±8.58 1.24±0.58 54.10±7.02 50.60±8.35 52.27±7.71 

3 12 65.82±7.39 0.87±0.50 59.19±6.05 54.07±7.20 56.47±6.61 

4 3 87.73±12.73 0.30±0.08 73.23±6.53 65.33±6.26 69.03±6.01 

 

 

 
Figure 3. 4 Graph to show the mean and stand deviations for curvature indices with increasing study grade 

severity. 
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Figure 3. 5 Correlation and associated regression of corneal power (AveK) and corneal thickness in the healthy 

DS corneae (blue) and the keratoconic DS corneae (green).  Note the significant difference in the gradient of the 

regression lines, and the relative steepening of the KC cornea.  Evidently, there are a significant number of 

pathological corneae that share a CCT range with those of healthy eyes.  In contrast, the pathological corneae 

are more readily separated by corneal power, however a significant proportion of overlap is still evident. 
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3.4.3 Astigmatism 
 

Regular astigmatism from the anterior corneal surface was measured directly from 

the Oculus Pentacam - derived as the difference in dioptric value between the two 

principle meridians represented by the simulated keratometry values.  The angle of 

the flat axis was also taken directly from the Pentacam, representing the location of a 

‘minus cylindrical correction’.  As per the previous chapter, in order to preserve the 

directionality of the corneal astigmatism found, vector analysis was used (Thibos et 

al. 1997), breaking down the astigmatism into its vertical and horizontal 

components.  If an eye were free of astigmatism, the points would be expected to 

collapse around (0,0).   
 

 

Figure 3. 6 Topographical cyl spread in Healthy and KC eyes. 
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Figure 3.6 shows the spread of astigmatism of healthy (open circles) eyes and those 

with KC (closed circles).  As is the norm in KC, greater magnitudes of astigmatism 

are associated with KC.  There appears to be no preferred orientation of the 

physiological astigmatism found in the healthy eyes nor the pathological astigmatism 

found in the eyes with KC.  Since 7 eyes with KC are intermingled with healthy 

eyes, it is clear that an obvious cut-off value for either direction or magnitude is not 

available (see also box plot below, figure 3.7).  From Pentacam data, the smallest 

magnitude of corneal astigmatism in a clinically keratoconic eye was 1.40DC.  

Clinically, this value would be considered within a normative range for a healthy 

population of DS or typically-developing individuals.  A cut-off guideline to indicate 

pathology is therefore not possible.     

 

Figure 3. 7 Box plot of corneal astigmatism in healthy and DS eyes. 

Table 3. 20 Box plot statistics for corneal astigmatism. 

Statistic Healthy (SG 0 & 1) Keratoconic (SG 2 & 3) 

Mean 1.54 5.14 
Standard deviation 0.95 2.59 
Minimum 0.10 1.40 
Maximum 4.50 12.00 
Interquartile range 1.40 3.45 
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3.4.4 Surface irregularity indices 

 

Two anterior surface irregularity indices were taken directly from the Oculus 

Pentacam output: the ‘Index of Surface Variance’ (ISV) and ‘Index of Vertical 

Asymmetry’ (IVA).  A simulated ‘I-S’ value was derived by subtracting the 

paracentral inferior measurement from the superior measurement (Aslankurt et al. 

2013).  Using the Mann-Whitney U test, each irregularity index maintained 

significance when healthy/suspect eyes were compared to those with early KC.  

ROC analysis was used to investigate the diagnostic power of each irregularity 

index.  Both ISV and IVA had an AUC of 1 and so differentiated completely 

between healthy and diseased groups (table 3.6).  This is further demonstrated in box 

plots by the gap between the lowest ISV/IVA of the KC group and the highest 

ISV/IVA of the healthy group (figures 3.9 and 3.10).  One outlier was detected 

(subject 15) and this datum was verified as correct and repeatable as per the other 

scans obtained at the same visit.  However, I-S was not useful at discriminating 

healthy eyes from those with KC and was dropped from further analysis.  This 

mirrors the findings of Aslankurt et al. (2013), who found that ISV and IVA were 

more reliable than I-S.   
Table 3. 21 Table to show the significance of irregularity indices and their diagnostic capacity 

 

 

 

 

Index 

 

Mann-

Whitney 

U 

 

Significance 

(p-value) 
AUC 

 

Significance 

(p-value) 

Asymptotic 95% 

Confidence Interval 

Lower 

Bound 

Upper 

Bound 

ISV 0 0.00 1.000 0.00 1.000 1.000 

IVA 0 0.00 1.000 0.00 1.000 1.000 

I-S 118 0.00 0.864 0.00 .715 1.000 
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Since ISV and ISA both have such strong sensitivity and specificity for the early 

keratoconus, the correlation of both is shown in figure 3.8.  They are strongly 

correlated especially toward the lower values.      

 

 
Figure 3. 8 Scatter plot correlating IVA and ISV.  Keratoconic corneae are shown as closed black circles and 

each have a much greater magnitude of both IVA and ISV than healthy eyes (open blue circles).  The correlation 

between IVA and ISV in healthy eyes is strong and whilst the correlation in the keratoconic eyes is weaker, a 

significant relationship is observed. 
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        Table 3. 22 Box plot statistics for ISV between the two groups. 

 

 
 

 

 

 

 

Figure 3. 9 Box Plot to show Index of Surface Variance 

 

Table 3. 23 Box plot statistics for IVA between the two groups 

 
 

 

 

 

 

 

         Figure 3. 10 Box Plot to show Index of Vertical Asymmetry

Statistic Healthy (SG 0 
& 1) 

Keratoconic (SG 
2 & 3) 

Mean 22.37 128.29 
Standard 
deviation 

9.03 36.70 

Minimum 14.00 70.00 
Maximum 50.00 220.00 
Total range 36.00 150.00 

Interquartile 
range 

14.00 48.00 

Statistic Healthy (SG 0 & 
1) 

Keratoconic (SG 
2&3) 

Mean .22 1.21 
Standard deviation .09 .37 
Minimum .05 .71 
Maximum .40 2.12 
Total range .35 1.41 
Interquartile range .11 .47 
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3.4.5 Keratoconus Indices 
 

Pentacam-derived Keratoconus Index (KI), Central Keratoconus Index (CKI) and the 

total KC index from the Belin-Ambrosio display (D) were examined.  All indices 

were significantly different between KC and healthy groups, and ROC and AUC 

analysis revealed that Keratoconus Index (KI) carried the most diagnostic power 

(table 3.9).  When examined using box plot analysis (figure 3.10 and table 3.11), the 

KI index generates the possibility of creating a cut off value between the 

healthy/suspect and the keratoconic eyes, which could be used toward clinical 

guidance for the DS population.  Such a value would lie between the maximum 

healthy KI of 1.11 and the minimum KC value found for KI of 1.15.   This is in 

agreement with Goebels et al. (2015), who found that stage 2 (early KC) in the 

studied group also began at an index of 1.15, in non-DS eyes.  

 
Table 3. 24  Table to show the significance of keratoconic indices in the two groups and their diagnostic 

capacity. 

 

Index 

 

Mann-

Whitney 

U 

 

Significance 

(p-value) 
AUC 

 

Significance 

(p-value) 

Asymptotic 95% 

Confidence Interval 

Lower 

Bound 

Upper 

Bound 

KI 39.5 0.00 1.000 0.00 1.000 1.000 

CKI 6.5 0.00 0.993 0.01 0.976 1.000 

D 0 0.00 0.997 0.00 .988 1.000 
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Figure 3. 11 Box plot of Keratoconus Index against KC status.  A cut off value of 1.13 is present on the graph, 

showing the halfway point between the maximum KI value of the healthy eyes  and the minimum KI value from 

pathological eyes. 

 

 
Table 3. 25 Box plot statistics for KI between the two groups 

Statistic Healthy (SG 0 & 1) Keratoconic (SG 2&3) 

Mean 1.04 1.29 

Standard deviation 0.03 0.14 

Minimum 0.98 1.15 

Maximum 1.11 1.68 

Total range 0.13 0.53 

Interquartile range 0.04 0.20 
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The topographic keratoconus index (TKC) is the Pentacam method of topographic 

keratoconus classification.  It does not place a grade on healthy eyes but grades 

supposedly keratoconic eyes as G1, G1-2, G2, G2-3, G3, G3-4, G4.  Whereas the 

Pentacam graded an eye as a combination (eg displayed G1-2) the median was taken 

and recorded (in this case, G1.5).  It was of interest to compare the clinically-based 

study grading with that automated by the topography only TKC method.    Eyes with 

clinical KC received a Pentacam grade of G2 or higher, whereas healthy eyes 

received up to a grade G1-2 (analysed as G1.5).  This results in a ‘clean split’ 

between healthy and KC, but as such the Pentacam appears to overestimate the KC 

grade in healthy DS eyes (with respect to the study grade), labelling them up to a 

G1-2.  Clinically keratoconic eyes were labelled with a G2 and above.  If in DS eyes 

the G1 and G1-2 is interpreted as suspect KC then this index becomes useful at 

differentiating between healthy/suspect and clinical KC.   

The clinical study grade (SG) given to each subject at the end of the clinical 

examination was correlated with the automated measurement provided by the 

Pentacam (TKC).  The regression of the data is TKC=1.333 (KC grade) + 0, 

indicating that the TKC systematically overestimates the level of KC with respect to 

the study scale, or that the study scale underestimates the level of KC found 

topographically. 

 
Figure 3. 12 Regression of Pentacam TKC grading and the study study grading scale. 
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3.4.6 Elevation Indices 
 

Elevation indices obtained from the Pentacam were as follows:   

• IHA = Index of height asymmetry (Pentacam output), IHD = Index of height 

decentration (Pentacam output) 

• Standard Ft Ele Th = Caliper measure of the front surface elevation at the 

thinnest point (Pentacam derived) 

• Standard Bk Ele Th = Caliper measure of the back surface elevation at the 

thinnest point (Pentacam derived) 

• Belin Ft Ele Th = Caliper measure of the front surface elevation at the 

thinnest point using the Belin-Ambrosio display (Pentacam derived) 

• Belin Bk Ele Th = Caliper measure of the back surface elevation at the 

thinnest point using the Belin-Ambrosio display (Pentacam derived).   

 

All elevation indices were significantly different between healthy and KC groups 

(table 3.11). The IHD index of one healthy eye crossed into the KC range – this was 

identified as an outlier, but on post hoc it belonged to a subject who went on to 

develop map-dot keratopathy. Tables 3.12 and 3.13 and figures 3.13 and 3.14 show 

specific indices IHD and ‘Front surface elevation at the thinnest point’ respectively.   
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Table 3. 26 Table to show AUC data for elevation indices 

 

Index 

 

Mann-

Whitney U 

 

Significance  

(p-value) 

AUC 

 

Significance 

(p-value) 

Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

IHA 126.5 0.00 0.854 0.00 0.741 0.967 

IHD 1 0.00 0.999 0.00 0.995 1.000 

Standard Ft 

Ele Th 

0 0.00 
1.000 0.00 1.000 1.000 

Standard Bk 

Ele Th 

2 0.00 
0.998 0.00 0.992 1.000 

Belin Ft Ele 

Th 

0 0.00 
1.000 0.00 1.000 1.000 

Belin Bk Ele 

Th 

2 0.00 
1.000 0.00 1.000 1.000 
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Table 3. 27 Group box plot statistics for IHD 

Statistic Healthy (SG 0 & 1) Keratoconic (SG 2&3) 

Mean .016 0.124 

Standard deviation .011 .042 

Minimum .00 .06 

Maximum .07 .25 

Total range .06 .20 

Interquartile range .01 .04 

 
Figure 3. 13 Box Plot to show IHD values in healthy and KC eyes. 

 

Table 3. 28 box plot statistics for ‘Front surface elevation at the thinnest point’ 

Statistic Healthy (SG 0 & 1) Keratoconic (SG 

2&3) 

Mean 7.55 51.65 

Standard deviation 3.62 20.28 

Minimum 1.00 22.00 

Maximum 19.00 91.00 

Total range 18.00 69.00 

Interquartile range 4.00 34.50 

 
Figure 3. 14 Box plot to show front surface elevation (thinnest point) against KC 

status.
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3.4.7 Aberration indices 
 

Vertical coma and spherical aberration showed significant differences between 

healthy and keratoconic groups.  Horizontal coma did not, and was removed from 

further analysis. Spherical aberration had a small AUC and therefore carries poor 

diagnostic capacity.   Vertical coma had an AUC of 1 and was further examined 

using box plot analysis 

 
Table 3. 29 Analysis of aberration indices using the Mann-Whitney U test when grouped by KC status (normal 

and suspect versus early KC) 

 

Index 

 

Mann-

Whitney 

U 

 

Significance 

(p-value) 

 

AUC 

 

Significance 

(p-value) 

Asymptotic 95% 

Confidence 

Interval 

Lower 

bound 

Upper 

bound 

Horizontal 

coma 

404 0.68 - - - - 

Vertical 

coma 

1 0.00 1.000 0.00 1.000 1.000 

Spherical 148 0.00 0.171 0.00 0.011 0.330 

 

The relationship between vertical coma and spherical aberration was studied, with 

respect to healthy and keratoconic eyes.  Figure 3.15 shows healthy eyes were 

clustered together and keratoconic eyes showed much higher spherical and vertical 

comatic aberration.  Interestingly, some keratoconic eyes demonstrated a significant 

increase in negative spherical aberration in the absence of great comatic aberration, 

and vice versa.  
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Figure 3. 15 Scatter plot to show correlation between spherical aberration and 

comatic aberration in KC and normal eyes.  Examination of vertical coma reveals no 

overlap between healthy and keratoconic values, whereas such a cut-off is not 

possible for spherical aberration, with a significant degree of overlap occurring.   

 

 

 

 

 
Figure 3. 16 Box plot to show vertical coma 

 
Table 3. 30 Box plot statistics for vertical comatic aberration data between the two 

groups. 

Statistic Healthy (SG 0 & 1) Keratoconic (SG 2&3) 

Mean -0.33 -4.12 

Standard deviation 0.51 2.60 

Minimum -1.20 -10.66 

Maximum 1.20 -1.69 

Total range 2.29 8.97 

Interquartile range 0.73 3.86 
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3.5 Discussion 
 

It is clear from previous DS corneal studies that a significant proportion of the 

corneae provide anomalous topography results that may indicate the presence of 

keratoconus (Vincent et al. 2005; Aslankurt et al. 2013; Anderson et al. 2014).  

While some authors believe topographical abnormalities may exist in a healthy DS 

cornea, others suggest that all abnormal topography in DS is an early sign of ectasic 

disease in these patients.  Ophthalmologically, the only way to determine if KC is 

present in such a case is to compare subsequent topographies over a period of time.  

While the current study was not intended to be a longitudinal one, previous 

topographical records were used when appropriate to confirm stability or 

progression.  When historical records were not available, suspect cases of abnormal 

topography were followed up in clinic over a 12 month period to monitor for change, 

in line with standard corneal clinic protocol.  However, although others were 

available for comparison, it was always only the first topographies during the 

timeframe of the current study that were used in the analyses of this thesis.  This 

topographical study of KC in DS is therefore the first attempt to reliably distinguish 

true ectasia from ‘abnormal but stable’ corneae in those eyes which exhibit 

suspicious topography.   

 

The current research used a specifically designed ‘study grading scale’ (SG) to 

stratify the study patients based upon clinical severity in a manner that was 

independent of visual acuity, contrast sensitivity, CCT and corneal power.  The 

stratification of corneal curvature indices in figure 3.4 demonstrated that this 

approach was appropriate since there was a clear increase in the magnitude of the 

corneal power measures for each incremental step in severity.  These results were in 

line with findings of the general population by Pinero et al. (2010), albeit with the 

DS eyes demonstrating higher baseline values.  When SG was correlated with TKC, 

the automated Pentacam grading scale, the TKC was found to overestimate suspect 

keratoconus in a linear fashion.  Any DS cornea that was graded by the Pentacam as 

TKC 2 or above was correctly identified (with respect to the clinical appearance, the 

ophthalmic history and the stability of topography).  However, the Pentacam had a 
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tendency to grade healthy DS corneae up to TKC ‘1-2’ (taken to be TKC 1.5 for the 

purposes of this study), indicating the possibility of false positives if the TKC grade 

is relied upon alone in DS.  Revisiting Aslankurt et al. (2013), ‘subclinical’ was not 

specifically defined in TKC terms, but it is highly likely to have been TKC ‘poss’ or 

TKC 1, and in light of the current study may therefore have overestimated the 

prevalence of KC (at 38%) in this group of 5-13 year old children.   

 

In addition to the automated Pentacam grading from the current study, other findings 

were of clinical and scientific use.  Typically, an Index of Surface variance (ISV) is 

considered to be abnormal if >37 and pathological if >41 in the typical population 

(Oculus, 2006).  Values of up to 50 were found in healthy eyes with DS and this 

indicates that healthy DS eyes may have more irregularity in their corneal surface as 

standard than that of the typical population.  In the current study, the range of 

elevation index, IHD, in healthy DS eyes was also larger when compared to a prior 

study measuring IHD on healthy controls (Kanellopoulos and Moustou 2013).  It is 

likely that larger measures of IHD and ISV in healthy DS indicate an abnormality in 

corneal topography, reflected in the overestimation of TKC grade.  By their nature, 

higher ISV and IHD values are likely to correspond to increased aberrations from the 

cornea.  As expected, spherical aberration and vertical coma were both significantly 

associated with KC in this study. Horizontal coma was not significantly different 

between healthy and KC groups, perhaps resulting from the tendency of cones to be 

vertically rather than laterally displaced. The current study found an increase in 

vertical coma in healthy DS eyes when compared to that of controls in a previous 

study eliciting the same Zernike coefficient data (DS controls, -0.33±0.5 and non-DS 

controls, 0.00±0.23, Piñero et al. 2009).  The DS control comatic aberrations did not 

reach the pathological aberrations seen in either DS (current study) or non-DS 

(Piñero study).  Research by McCullough et al. (2013) found larger whole-eye 

HOAs in DS eyes, and the current study suggests that this may be, at least in some 

part, corneal.  It is possible that an increased physiological threshold of aberrations 

may exist in DS, that these may be ‘natural’ aberrations in the DS cornea to some 

extent, a product of the fundamentally altered shape, rather than an indication of 

early ectatic disease, as suggested by others (Aslankurt et al. 2013).  
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While eyes with KC were associated with a higher magnitude of corneal 

astigmatism, significant overlap existed between healthy and diseased eyes in the 

low and moderate astigmatic range.  This demonstrates that a diagnosis of KC 

cannot be reliably made upon the level of corneal astigmatism alone.  Maximum 

corneal power (Kmax) provided the largest AUC values and hence had the most 

diagnostic value of the corneal power set.  However, when examined further using 

box plot analysis, Kmax too demonstrated significant overlap between healthy and 

diseased eyes and thus a reliable cut-off point could not be established.  This 

parallels the clinical view that physiologically steep corneae can occur in the absence 

of disease, and thus Kmax should be used as a descriptor of disease rather than a 

diagnostic indicator alone.  This study did however provide some useful indicators of 

normal limits for demonstrably healthy corneae, some of which may be useful 

clinically when using the Pentacam with DS patients.  

 

 One metric, the Pentacam-derived Keratoconus Index (KI) separated the healthy and 

the diseased groups.  The highest value for the healthy group was 1.11 and the 

lowest value for the KC group was 1.15.  Goebels (2015) classified the beginning of 

stage 2 also at 1.15, lending validation to the results obtained in this study.  A cut-off 

value could be chosen as 1.15, again to provide maximum specificity and to be in 

common with that of the general non-DS population.   

 

When corneal power was correlated with CCT, and these results grouped by 

keratoconic status (confirmed KC or non-KC), the regression lines are markedly 

different between the groups (figure 3.5).  A very small negative relationship 

between corneal power and CCT was found, but a much more significant 

relationship found in the KC eyes, indicating a divergence of pathological and 

physiological data.  The weak relationship in heathy eyes demonstrated that those 

DS corneae which were steeper were not necessarily thinner, and vice versa.  This is 

important, since it must be considered that DS corneae and their abnormal 

topography could represent a spectrum of keratoconus, with only those most 

genetically affected expressing the clinically manifest disease and the accompanying 

clinical signs.  However, the very clear divergence in regression between the two 

categories, coupled with the weak correlation in healthy eyes, suggests a spectrum of 
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disease is not the case.  The development of a much larger database would 

strengthen or weaken this argument, as the sample size is a limiting factor to the 

power of this statement. 

 

Elevation indices in this study provide excellent discrimination, especially when 

Belin-Ambrosio display units are used.  High elevation at the thinnest corneal point 

is considered highly indicative of keratoconus (Miháltz et al. 2009), and this was 

reflected in the AUC values across all 4 direct elevation measures.  Results from this 

study are reflected in those from De Sanctis and colleagues, who found similar 

efficacy in detecting subclinical and early disease with and without the Belin-

Ambrosio enhanced display (de Sanctis et al. 2013).  The ability of elevation-based 

topography to measure the posterior surface is considered a great advantage in the 

study of KC.  Posterior change is in some instances the earliest indicator of 

subclinical ectasia (de Sanctis et al. 2008; Belin and Khachikian 2009), yet in the 

current study, the posterior elevation at the thinnest point was not found to be more 

sensitive than the anterior elevation at the thinnest point.  It is clinically useful to 

know that the anterior surface of the DS cornea can be relied upon to demonstrate 

early KC, particularly as some hospitals do not have access to posterior curvature 

data.  This lack of difference found may be because of study sample size, or simply 

because the anterior surface of the DS cornea is not as able to mask early changes in 

the same way as a relatively thicker and flatter cornea from a typically-developing 

person.   To utilise a parameter that is available in all Pentacams with or without 

Belin-Ambrosio display software, anterior elevation at the thinnest point was chosen.  

In order to gain maximum specificity, a cut-off should be set at 22μm. 

 

In conclusion, the current study provides an indication of Oculus Pentacam limits for 

confirmed healthy DS eyes, and an indication of possible cut-off points that may be 

useful if validated with a further test set.  This data are of scientific importance since 

it is the first DS study to have provided a considered grading scale to remove biasing 

aspects such as corneal power and CCT.  Although the current sample size was 

limited, the divergence between the physiological and pathological was considerable.  

Since the corneal astigmatism alone was not sensitive or specific enough to 

differentiate healthy from KC eyes, the use of a keratometer to quantitatively assess 
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for KC in DS is unsuitable.  Using the Oculus Pentacam, it was possible to separate 

the two groups using data from the anterior ocular surface parameters only.  If such 

results were demonstrated to be transferrable between different topographers, the 

analysis of corneal ‘tomography’ using posterior surface data may not necessarily be 

required to identify KC in DS; standard topography may suffice.  Similarly, the 

Belin-Ambrosio enhanced ectasia display is not essential to the determination of 

ectasia in this group.  Finally, the healthy DS cornea carries levels of comatic 

aberration that may contribute to the increased whole-eye aberrations, and therefore 

poorer visual quality in DS eyes.   
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Chapter 3b 

 

Morphology of cones in 

keratoconus:  

Down’s syndrome and non-

Down’s syndrome eyes 
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3.6 Introduction 
 

Understanding how the morphology of the keratoconic cone in DS differs to that in a 

typical population is vital not just to the clinical understanding of KC in DS and its 

subsequent treatment, but also in the scientific application of the findings in the 

current study.  That is, should the cone morphology in DS be comparable to that in 

non-DS eyes, KC in DS could serve as a potential model for the disease as a whole.  

The studies in this chapter will address the hypothesis that the cone morphology in 

DS has similar characteristics to that of typical individuals.   

 

Studying the shape difference in cone morphology between DS and non-DS eyes 

could be compared to the study of morphology of mountains existing in two different 

countries.  Initially, one might consider features such as absolute height, height 

above sea level, and slope steepness.  Analogous to KC, these are features that are 

dependent upon the severity of the cone, but there exist other important features of 

corneal shape that are less dependent upon the KC severity and rather are more a 

function of the phenotype of the cone that has developed.  Such features will be 

compared across a DS and a non-DS sample when the individuals in each group are 

matched for severity using an objective method such as the TKC index on the 

Oculus Pentacam.   
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Furthering the mountain analogy, useful morphological features might include: 

 

1. Shape of the mountain when viewed with elevation contours from the top, 

with respect to (i) its classification, such as round, oval (analogous to the 

shape of the KC cone such as nipple, oval) and (ii) the location of the 

steepest point with respect to its base (analogous to the cone apex location 

with respect to the corneal centre).  A full classification for (i) can be found 

at table 1.2 and figure 1.25, while the depiction of the steepest point location 

is given in fig 1.22, Chapter 1) 

 

2. An observation of the cross-sectional profile of the mountain (analogous to 

the shape of the cornea when viewed from the side using Scheimpflug 

imaging).   

 

3. Rate of incline of hill slope and how this changes from top of the mountain to 

bottom (analogous to asphericity).   

 

4. The lateral variation in thickness of the different material layers (eg bedrock, 

soil) i.e. tomography (analogous to corneal tomography thickness profile).   

 

The aim of this study is to test the hypothesis that KC in DS is comparable in shape 

to KC in the non-DS cornea.   
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3.7 Methods 
 

Keratoconic corneae from the current study were selected for analysis.  A decision 

was made to include eyes only from one side so as to not confuse any locational 

analyses.  The left eye was chosen since a greater spread of severity was present.  

Non-DS eyes with the same Pentacam-derived TKC grade were randomly chosen 

from the university and hospital cornea clinics to provide a matched control for each 

DS keratoconus subject.  Eyes with Pentacam grades between 2 and 4 were included 

in this section of the study in order to evaluate those with diagnosed early to 

moderate disease.  In DS eyes, the same Scheimpflug scan from earlier analyses was 

used, and for the non-DS eyes, a selected Scheimpflug scan was selected in line with 

the protocol set out in Chapter 3a.  Relevant derived topographical data were 

extracted from the clinical display and analysed using SPSS (version 20).   
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3.8 Results 
 

3.8.1 Topographical classification 
 

Eleven (left) eyes with DS and KC were selected for analysis with matched 

keratoconic controls.   Each eye was matched to classification criteria set out by 

Rabinowitz et al. (1996) and is represented by the classification guide symbol.  A 

symmetric bow-tie with skewed radial axes (SB/SRAX) was the modal presentation 

in both groups.  Round and oval cones were found in each group.  Superior and 

inferior steepening were only found in the control group, whilst asymmetric bow-tie 

with skewed radial axes (AB/SRAX) was found in the DS group only.   
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Figure 3. 177 Representation of the quantity of each topographical classification present in left DS eyes with KC in the current study, using the classification key from Rabinowitz et al. (1996). 
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Figure 3.18 Representation of the quantity of each topographical classification present in left non-DS control eyes with KC in the current study, using the classification key from Rabinowitz et al. 

(1996).
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3.8.2 Apical location 
 

The apical locations from the sagittal curvature maps (denoted by the location of 

Kmax) are shown in figure 3.19.  Apices are predominantly in the inferior quadrants in 

both groups, and toward the vertical midline.    
   

 

Figure 3. 19 Apical locations from sagittal curvature maps, DS eyes (closed circles) and control eyes (open 

circles).  The apical locations by curvature of both groups are scattered along the vertical and towards the 

inferotemporal quadrant, indicating a similar pattern of apical location and a similar pattern of spread.  The 

green oval denotes the standard deviation of the control eyes, whilst the blue oval denotes the standard 

deviations of the DS eyes.   
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The apical locations of the cones provided by the point of maximum corneal 

elevation is given in figure 3.20 for both groups.  It is apparent that the majority of 

cones of both groups lie in the inferotemporal quadrant.  There appears to be no 

demarcation between the location of DS cones and those of controls.   

 

 

Figure 3. 20 Apical locations from elevation maps.  While the control eyes indicate a slightly greater spread than 

DS eyes, most subjects in each group have an elevation apex in the inferotemporal quadrant.  The green oval 

denotes the standard deviation of the control eyes, whilst the blue oval denotes the standard deviations of the DS 

eyes.   
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3.8.3 Scheimpflug imaging 
 

Still shots of Scheimpflug imaging were obtained from all subjects.   For each 

integer TKC grade, a DS eye and a control eye were studied to qualitatively compare 

the anterior segment morphology.  An example of a DS eye is shown in the upper 

figure and a control eye below.   
  

 

Figure 3. 21 Scheimpflug image of a DS eye with Pentacam TKC grade of 2.  Note the dotted appearance of lens 

opacities in this subject. 

 

Figure 3.22 Scheimpflug image of a control eye with Pentacam TKC grade of 2.  Note that the cornea appears 

grossly normal and the stromal thinning is not yet visible from this view.   
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Figure 3.23 Scheimpflug image of a DS eye with Pentacam TKC grade of 3.  Note that some bowing of the 

cornea is visible, particularly on the back surface.   

 

 

 

 

Figure 3.24 Scheimpflug image of a control eye with Pentacam TKC grade of 3. Note that some early bowing of 

the cornea is visible. 
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Figure 3.25 Scheimpflug image of a DS eye with Pentacam TKC grade of 4.   Note the thinned central cornea 

and the irregularity on the anterior corneal surface. 

 

 

 

 

Figure 3.26 Scheimpflug image of a control eye with Pentacam TKC grade of 4. 
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3.8.4 Asphericity 
Asphericity was derived from mean eccentricity values taken at 8mm for all subjects.  

The results are shown in table 3.16 and 3.17.  As can be seen from figure 3.27, there 

is a much greater range of asphericity values in the DS than the control group.  

Despite this, there was no significant difference in asphericity between the two 

groups.   

 
Table 3. 16 Box plot statistics for asphericity of DS and controls. 

Statistic Control DS 

Mean -1.69 -2.34 

Standard deviation 0.49 1.47 

Total range 1.52 4.05 

Interquartile range 0.80 3.01 

 

 
Table 3. 17 Analysis of asphericity using the Mann-Whitney U test between DS and control groups. 

Index Mann-Whitney U Significance (p-value) 

Asphericity 48 0.412 

 

 
Figure 3. 27 Box plot to show the range of asphericity found in control and DS eyes with KC. 
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3.8.5 Pachymetric profiling 
 

Percentage Increase Thickness (PIT) scores were available for all analysed corneas 

at 4mm ring around the thinnest point.  Table 3.18 shows that the control and DS 

groups had a PIT of 31.81 ± 19.04 and 28.91 ± 18.64 respectively.  There was no 

significant difference in this value between groups (table 3.19), and little difference 

in the spread of values (figure 3.28).   
 

Table 3.18 Box plot statistics for PIT between the two groups. 

Statistic Control DS 

Mean 31.81 28.91 

Standard deviation 19.04 18.64 

Total range 67 63 

Interquartile range 19 14 

 
Table 3.19 Analysis of PIT using the Mann-Whitney U test between groups 

Index Mann-Whitney U Significance (p-value) 

PIT 49 0.450 
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Figure 3.28 Box plot to show the range of PIT found in control and DS eyes with KC.  Both group means, lower 

interquartile ranges and standard deviations are similar. 

 

 

For each integer TKC grade, a DS eye and a control eye are presented over the 

following pages to qualitatively compare and contrast the anterior segment 

morphology.  The DS is shown in the upper figure, and the control eye below.  The 

plots depicting both the spatial thickness of each matched cornea (CTSP) and the 

PIT are shown.   



205 

 

 

 

 

 
Figure 3.29 CTSP chart (top) and PIT chart (bottom) of a DS eye with TKC grade of 2.  Note that both charts of 

this early keratoconic eye fall just within the expected normative range as denoted by the dotted lines 

representing 2 standard deviations from the mean. 

 

 
Figure 3. 30 CTSP chart (top) and PIT chart (bottom) of a control eye with TKC grade of 2.  Note again that 

both charts of this early keratoconic eye fall just within the expected normative range as denoted by the dotted 

lines representing 2 standard deviations from the mean.   
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Figure 3..31 CTSP chart (top) and PIT chart (bottom) of a DS eye with TKC grade of 3.  Notice the significant 

decrease in corneal thickness from the expected norm value, that in part results from the thinner starting point of 

the DS eye. 

 

 
Figure 3..32 CTSP chart (top) and PIT chart (bottom) of a control eye with TKC grade of 3. 
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Figure 3. 33 CTSP chart (top) and PIT chart (bottom) of a DS eye with TKC grade of 4.  Note the gross thickness 

change from the normative values depicted by the dotted lines. 

 

 
Figure 3..34 CTSP chart (top) and PIT chart (bottom) of a control eye with TKC grade of 4. 
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3.9 Discussion 
 

This section of the current study aimed to identify whether the morphology of the 

DS cone was comparable to that of the non-DS eye, when matched for severity.  This 

appears to be the case, and that taken together, the results above support the 

hypothesis.     

 

As has been discussed at length in previous chapters, the DS cornea has a naturally 

thinner and steeper profile, even in healthy eyes. Because of the altered starting 

point, it must be considered that the underlying pathogenesis of KC may or may not 

be the same as that in typically developing eyes.  Nevertheless, it is vital to 

understand if the morphological phenotype is the same.  In considering if a common 

underlying genetic basis exists between DS and non-DS eyes, the shape of the cone 

is of aetiological importance.  Rabinowitz (1990) suggests that cone morphology is a 

genetic trait, expressed in family members as a variable phenotype.  If the KC in DS 

was predominantly a different cone type from the control eyes, then the evidence for 

DS KC being the same genetic disease as non-DS KC would be much weaker.  

While the study group size was relatively small with just 22 eyes, significant 

similarity exists between the cone morphology existing in DS eyes (figure 3.17) and 

non-DS control eyes (figure 3.18).  The majority of common cone type in each group 

was (SB/SRAX), reflecting the irregular nature of the astigmatism produced and the 

typical decentering of the corneal apex from the corneal centre.   

 

Asphericity data was statistically comparable been the groups, albeit with a large 

spread of values in the DS group.  Mean values for asphericity -2.34±1.47 (DS) and -

1.69±0.49 (control) data are in line with that expected from significant KC (Alio et 

al. 2011).  PIT was closely matched between DS and non-DS eyes, for the 4mm zone 

studied.  This value was chosen to represent the thickness difference between the 

mid-stroma and that of the minimum thickness.  These results demonstrate that for 

the given initial reduced thickness of the DS cornea, ectatic thinning is still similar to 

non-DS eyes when matched for severity.   



209 

 

 

Closer analysis of apical decentration revealed that the vast majority of both DS and 

non-DS cones lay in the infero-temporal quadrant, when measured in elevation 

terms.  Elevation based localisation of corneal apex is preferable and more clinically 

useful over axial curvature localisation, since it is less prone to influence by local 

variations in corneal thickness across the cornea.  Both elevation apex location and 

curvature apex location are consistent with results from Demirbas and Pflugfelder 

(1998), with axial curvature data demonstrating an cluster toward the inferior 

vertical midline.  Clustering and overlapping of DS and non-DS cone locations 

indicates that spatially the cones are indistinguishable.  Comparable elevation 

mapping suggests that the high-order aberrations of coma and the resultant visual 

degradation is likely to be comparable, if the severity of the cone is matched.  These 

data can be used to show that contact lenses suitable for correcting KC in typically 

developing individuals are at least topographically suitable for those with DS, since 

the cone morphology is comparable.    

 

Despite similar morphological phenotype, there is an important observed clinical 

difference of KC in DS.  People with DS progress to corneal hydrops more often and 

more readily than those in the general KC population (Grewal et al. 1999).  This 

could be of scientific significance, as it is evidence of an altered phenotype at the 

later stages of disease.  This study did not seek to examine the severity of the disease 

between DS and non-DS KC, but it is a distinct possibility that the underlying 

disease process might be accelerated in some way in DS.  Another variable not 

investigated in the current study is the age of onset of the disease.  The earliest 

reported DS case of KC is in that of a 4 year old child (Sabti et al. 2015) and in non-

DS an 8 year old (Jiminez et al. 1997).  In non-DS eyes, the presentation of KC at a 

young age is usually accompanied by severe and uncontrolled allergic eye disease 

and thus may be considered a separate entity, in part.  Such a genetic relationship 

was investigated by Adachi et al. (2002), reporting an increase of HLA antigens in 

blood samples of subjects 12-20 years over those 21 years and above.  Men were 

also found to be significantly younger at diagnosis than women.  Genetics therefore 

likely play a key role in the onset and severity of KC, the biochemical basis for 

which is not yet known.  
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In summary, this sample of DS and non-DS KC did not establish any significant 

morphological differences between the studied groups and thus KC in DS may be a 

suitable morphological model for KC as a whole.    
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Chapter 4 

 

In-vivo biomechanics of 

healthy Down’s Syndrome 

eyes 
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4.1 Introduction 
 

The healthy DS cornea is, on average, thinner and steeper than a healthy non-DS 

cornea (Haugen et al. 2001).  Haugen postulates that corneal rigidity may be lower in 

DS eyes because of their generalised reduction in corneal thickness leading to 

steeper corneae, and that such altered shape may be of aetiological importance to the 

high levels of KC in DS.  Aslan (2013) found that corneal volume is reduced in DS 

subjects, and goes further than Haugen to suggest that the thinner cornea in DS is 

early evidence of degenerative corneal disease such as KC.  However, not all people 

with DS go on to develop KC and since this study was not longitudinal, no evidence 

of progressive disease is available to credit this opinion.  In order to investigate the 

biomechanics of the DS cornea, deformation parameters should be compared against 

healthy non-DS controls, and any difference in results be assessed against non-DS 

keratoconic data to assess if any difference is of pathological proportion.   

 

To date, the biomechanics of the DS cornea have not been examined either in vivo or 

ex vivo.  As such, it is not yet possible to know if the DS cornea is weakened as a 

result of its reduced corneal thickness, or if it is pathologically weakened beyond 

thickness changes.  The aim of this pilot descriptive study is to examine deformation 

parameters in healthy DS and non-DS eyes that are matched for age and IOP, and 

controlled for CCT in statistical analyses, in order to elicit if the shape of the healthy 

DS cornea impacts upon its biomechanical strength and, if so, to what extent.  
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4.2 Methods 
 

4.2.1 Patients 
 

A sub-group of known non-keratoconic subjects with DS from the DS cohort at 

Cardiff University were invited to take part.  Non-DS subjects with healthy corneae 

were recruited from staff, students and siblings of patients at the same centre.  

Inclusion criteria for healthy subjects (both with and without DS) were the absence 

of any known corneal abnormality or prior ocular surgery and high myopia 

(>5.00DS).  

 

4.2.2 Examination 
 

All subjects were determined not to have keratoconus through previously established 

methods, including the use of retinoscopy, a full eye examination, and when 

possible, both slit lamp examination and Oculus Pentacam measurements.   

 

CorVis ST (Oculus, Weltzar, Germany) examination was performed by positioning 

the subject comfortably in front of the equipment, encouraging them to put their chin 

on the chinrest and place their forehead against the forehead band.  Where possible, 

a parent/carer was asked to assist in maintaining the contact of the forehead to the 

band in order to maintain safety distances between the machine and the subject’s 

cornea.  While aligning the device, further oral consent was taken from the subject to 

ensure that they were still happy to proceed.  Where possible, a blink was 

encouraged shortly before auto-alignment and auto-release of the air-pulse.   
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4.2.3 Data modelling 
 

The air pulse delivered by the CorVis is standardised with a peak pressure of 

60mmHg, from a distance of 11mm.  This study used software (6.07r24) that, in line 

with others examining confounding variables (Ali et al. 2014), did not include the 

‘corneal compensated IOP parameter.  The CorVis uses the positioning of the outer 

and inner edges of the corneal profile to measure biomechanical effects such as 

deformation.  Under the force of the air-pulse, the cornea deforms, but in addition 

the whole eye globe retracts.  The displacement of the eyeball must therefore be 

separated from the deflection of the cornea itself (Koprowski et al. 2014).  In the first 

instance, the shape of the cornea visible at t=0 is removed.  In the second instance, 

the shape of the peripheral cornea is monitored in position throughout the 

applanation.  The waveform that represents this movement with time denotes the 

eyeball displacement response (shown in red in figure 4.1), and may therefore be 

excluded to facilitate the analysis of the corneal response only.  For corneal analysis, 

the component representing the eyeball displacement is reduced to zero, and the 

resulting waveform is now termed a deflection (shown in green in figure 4.1).   
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Figure 4. 1 Graph to show the whole eye deformation (black, LT(N/2,i)),  during air-pulse tonometry with respect 

to the frame capture number (akin to time) and its subsequent decompensation into corneal deflection component 

(green, LTR(N/2,i)) and eye globe component (red, LTO(N/2,i)).  Adapted from Koprowski et al. (2014) with 

permission.   

 

 

In both groups, the results of the right eye were used for analysis, unless the data 

capture preview taken from the right eye was deemed too inaccurate on the first two 

occasions.  In this case, a measurement from the left eye was taken (Ali et al. 2014).  

When measuring biomechanical properties, it is deemed important not to take 

repeated measures consecutively in order that the viscosity of the cornea is not 

adversely altered, such that it could unintentionally affect subsequent readings.  

When more than one measurement was taken, at least three minutes were given prior 

to any further measurements to allow for the aforementioned, and to ensure re-

stabilisation of the tear film.   

 

Frame capture number 

D
isplacem

ent from
 starting point in pixels 
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4.2.4 Statistical analysis of results 
 

Deformation data was gathered primarily through the extraction of raw csv data 

(location points with respect to time).  IOP and CCT data from the front-end 

software were taken, and when making comparative analyses with other studies, 

deformation amplitude (DA) and velocity at inward applanation (VIN) from the front-

end screen were used.  Standard parameters are listed in figure 1.19 and denote the 

typical deformation attributes used by research teams.  In order to interrogate the 

data and determine the change in attributes such as DA with respect to time, it was 

necessary to utilise the raw data and rebuild the graphs presented on the front end 

display.  The same extraction procedure enabled the mean attributes for each group 

as a whole to be calculated (with respect to time).  

 

Statistical analysis was performed using Microsoft Excel version 15.23.1 (Microsoft, 

Richmond, Washington, USA) for the organisation of extracted data, the early 

descriptive testing of deformation characteristics, and the production of graphs.  

SPSS version 23.0 (IBM, Chicago, Illinois, USA) was used to perform descriptive 

testing, analysis of variance and multiple linear regression testing to assess 

confounding variables.  Significance was taken to be p <0.05.   
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4.3 Results 
Nineteen subjects with DS were recruited for this section of the study, and 23 

controls.  (For an ‘a priori’ power calculation, see appendix E).  All non-DS controls 

were confirmed to have healthy corneae but one subject was excluded due to the use 

of contact lenses on the day of visit (because of the theoretical risk of induced 

corneal swelling).  In the DS group, 1 subject was excluded due to a clinical query 

about a corneal dystrophy.  Two subjects changed their mind about participating 

before measurement, due to a fear of the new equipment.  A further DS subject had 

one inaccurate measurement taken before deciding they no longer wished to 

participate.  The results of 2 subjects who particularly struggled with fixation (and 

for whom no accurate measurement could be obtained), and 1 subject for whom the 

raw data extraction yielded corrupted results were removed from the analysis.  This 

resulted in the inclusion of data for 22 non-DS controls and 12 DS subjects.  The 

groups were matched for both age and IOP, and in doing so, data from 5 control 

subjects was excluded from the analysis, leaving 17 control subjects.  Nine right eyes 

from the DS group were used for analysis (and 3 left eyes).  Sixteen right eyes were 

used from controls (and 1 left eye).   

 

The mean and standard deviations corresponding to age, IOP and CCT for each 

group can be found below in table 4.1.  The p value corresponding to the student’s t-

test is provided. 

 
Table 4. 6 Table comparing group means of age, IOP and CCT 

	 DS	 Control	 Significance	(p	value)	

Age	 19.1±9.7	 19.1±8.8	 0.86	

IOP	(mmHg)	 14.0±2.0	 15.0±3.0	 0.32	

CCT	(µm)	 507.3±42.1	 555.9±23.3	 0.00	
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Age and IOP were matched and therefore by nature not significantly different 

between the groups, but there was a significantly greater CCT in the control group. 

 

Numerical deformation attributes may be considered in the following categories: 

1. Deformation amplitude & deflection amplitude 

2. Deflection area 

3. Timing of applanations 

4. Corneal deflection velocity 

5. Globe displacement mechanics 

 

 

Deformation is defined as the maximum displacement of the anterior corneal surface 

from its habitual convex shape to the inverted shape at the highest concavity between 

applanations.  For visual reference, a DS cornea with  a large deformation is seen in 

figure 4.1 (left) and a thicker non-DS cornea producing a smaller deformation 

amplitude is on the right. 
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Figure 4. 2 The left image shows a DS cornea with a high deformation amplitude.  Note the visible iris as a function of captured position and a shallow anterior chamber.  The image on the right 

shows a control cornea with a significantly larger corneal thickness and much reduced deformation amplitude.  
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4.3.1 Total deformation amplitude & corneal 

deflection amplitude 

 

Table 4. 7 Table showing group deformation amplitudes and corneal deflection amplitudes 

 DS Control Significance (p value) 

Total deformation 
amplitude/mm 

1.21±0.17 1.03±0.11 0.01 

Corneal deflection 
amplitude/mm 

0.95±0.12 0.84±0.09 0.02 

 

 

 

 

Figure 4. 3 Averaged ocular deformation values for DS eyes (blue) and control eyes (orange) with respect to 

time.  The corneal spatial location sampled over time for each subject was that corresponding to the peak 

amplitude.  The Y-axis denotes deformation in mm, the x-axis denotes time in ms.   

 



221 

 

	

 

Figure 4. 4 Averaged corneal deflection values for DS eyes (blue) and control eyes (orange) with respect to time.  

The corneal spatial location sampled over time for each subject was that corresponding to the peak amplitude.  

 

Removal of the ‘globe displacement component’ allows for analysis of the cornea 

specifically (figure 4.4).  The analysis of the deflection curves indicated up to 0.12mm 

difference between DS and control groups – equivalent to an increase of 17.0% in DS 

corneal deflection from control eyes (p=0.02).  It is apparent from table 4.2 that corneal 

deflection accounts for a significant proportion of the total deformation response, but that a 

significant proportion of the deformation is due to the displacement of the globe itself.    

 

In order to examine the impact of confounding variables upon the difference in deformation 

between the DS and non-DS eyes, two statistical methods were employed, both multiple 

linear regression analysis and analysis of variance.  ANOVA testing confirmed a significant 

difference between the DS and the non-DS groups (in the absence of confounding variables.  

Principal component analysis was used when testing the ‘homogeneity of regression’ 

assumption in order to mitigate for the small sample size in testing.  The resulting 

significance of this test was 0.683, and at this level, failed to reject the null hypothesis.  

Therefore, the assumption of homogeneity of data holds and it is acceptable to progress with 
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the analysis of variance.  ANCOVA was used to re-estimate the means in order to account 

for the effect of the covariates.  When CCT was corrected for, the difference in deformation 

amplitude was no longer significantly different between the two groups, meaning that CCT 

accounts for a significant proportion of the variance between the two means (17.9%) leaving 

the DS/non-DS grouping now accounting for just 6.7% of the variance.   

 

Multiple linear regression analysis was then used to establish if the DS/non-DS grouping 

could predict deformation amplitude above and beyond CCT.  Since this produced a non-

significant result (p=0.08), it could not.  
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4.3.2 Deflection area 
   

 Table 4. 8 Deflection area in DS and control eyes 

 

 

 

 
Figure 4. 5 Graphical representation of corneal deflection of DS and control eyes with respect to time.   

 

Corneal deflection areas are comparable between DS and control groups (p=0.63) 

figure 4.5, indicating that any change in deformation or deflection is because of 

alterations in the depth of applanation (the z-axis) and not in the spatial distribution 

of the cornea (x, y-axis).   

	 DS	 Control	 Significance	(p	value)	

Maximum	deflection	

area/mm
2
	

3.02±1.20	 2.94±1.15	 0.63	
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4.3.3 Timing of applanations 
 

 
Figure 4. 6 Applanation length in DS and control eyes with respect to time.  No significant differences in timings 

or amplitude of the peaks occur 

 

The peaks in figure 4.6 depicts the time (in ms) in which the averages of DS and 

control corneae make their applanation.   As individual groups, both DS and control 

eyes appear to follow a similar course until the second applanation (second 

applanation time 2AT), which appears slightly earlier in control eyes (not significant, 

p=0.21), and with greater applanation length (non-significant, p=0.26) (second 

applanation length 2AL).  Data from this limited sample show no significant 

differences between DS eyes in the timings of either applanation time or amplitude.  

When the timings of each of the peak amplitudes were calculated for each subject 

individually, the distance between them (i.e. the lag time between the two 

amplitudes) were not significant (p=0.15).  Further, difference in applanation 

amplitudes were not significant (p=0.91).   
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4.3.4 Corneal deflection velocity 
 

 
Figure 4. 7 Corneal velocity of DS and control eyes.  Note the comparable waveforms.  The positive deflection at 

3ms appears to be an anomalous noise peak of the extracted raw data. 

 

The major positive peak in graph in figure 4.7 above denotes the peak velocity 

achieved by the deforming cornea following its inward applanation, and the negative 

peak the peak velocity around the time of the recovering applanation.  The data have 

been interrogated between 6ms and 32ms to evaluate the significance of the 

graphical observations.  From table 4.4, the difference between the DS and control 

velocities at the inward applanation approach significance, with the DS cornea 

carrying greater velocity.  The same is mirrored in the recovering velocities, and this 

is statistically significant.   
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Table 4. 9 Maximum corneal velocity in the positive and negative directions for DS and control eyes. 

	 DS	 		Control	 Significance	(p	value)	

Maximum	corneal	

velocity	around	inward	

applanation	(m/s)	

0.251±0.048	 0.216±0.037	 0.05	

Maximum	corneal	

velocity	around	outward	

applanation	(m/s)	

-0.465±0.138	 -0.330±0.062	 0.01	

 

The front-end software was used to compare the corneal velocity at the point of 

inward applanation (VIN).  VIN in the DS group was 0.157±0.016 m/s whilst VIN in 

controls was 0.142±0.021 m/s.  The significance of the higher inward applanation 

velocity between the groups was significant (p=0.049, rounded to 0.05 in table 4.4) 

but fell away when CCT was factored in as a confounding variable in analysis of 

covariance (p=0.18).   
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4.3.5 Globe displacement mechanics 
 

 
Figure 4. 8 Globe displacement in DS and control eyes.  Note the larger displacement seen in the DS eyes 

 

  
Table 4. 10 Average globe displacement in DS and control eyes. 

	 DS	 Control	 Significance		(p	value)	

Average	

displacement/mm	

0.363±0.087	 0.312±0.047	 0.08	

 

The	 difference	 between	 the	 means	 of	 the	 maximum	 displacements	 in	 the	 DS	 and	

control	 globes	were	 compared	 (figure	4.8,	 table	4.5).	 	DS	globes	were	displaced	16%	

more	 than	 controls,	 although	 this	 result	 did	 not	 approach	 statistical	 significance	

(p=0.08).			
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4.4 Discussion 
 

The CorVis analyses corneal deformation parameters under the assumption that 

these deformation characteristics are closely related to biomechanical properties.  

While this scientific relationship has not yet been explicitly clinically established, 

there is an abundance of ex vivo evidence to suggest that with a standardised force, 

the keratoconic cornea is less able to resist deformation and to withstand an applied 

force; by clinical definition the keratoconic cornea has lost its regular shape under 

the normal ocular forces.  Therefore, the results from the current study measure 

deformation parameters that are an effect of corneal biomechanics, as opposed to a 

direct measure of biomechanics such as modulus of elasticity.   

 

Since the cornea in DS is inherently thinner and steeper than controls, it is possible 

that the altered corneal structure presents weaknesses that predispose the eye to 

developing the high levels of KC that appear to be present in DS.   

 

The current pilot study is the first to investigate biomechanical characteristics in DS 

eyes.  Deformation amplitude (DA) measured with the high-speed Scheimpflug 

imaging was significantly greater in DS than non-DS eyes, indicating that, on 

average, the standardised air-pulse deforms the DS eye more easily.  Considered 

alone, having DS accounts for 28.5% of the variability of the deformation amplitude.  

The effect size was significant at 1.30 [standard deviations], equivalent to 0.143mm, 

indicating that 90.0% of the control group would lie below the mean of the DS 

group.  However, the statistically significant difference in DA between the DS and 

control group fell away when a known confounding variable, CCT, was accounted 

for.  Having DS now accounts for only 6.7% of the variance in DA between the two 

groups and is non-significant. 

 

Because the applanation area of the cornea is very comparable for both DS and non-

DS eyes and the output pressure of the CorVis is standardised, the applanation force 

is comparable in the two groups.  The load (stress) upon each cornea can thus be 
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related to the strain of the cornea when interpreting the deformation response (Ye et 

al. 2015).  In keratoconic eyes, Ye and colleagues suggest that lamellar loss and 

collagen fibril distortion result in increased lamellar sliding; an inherent 

biomechanical weakness.  Their results show that a statistically significant increase 

in DA (of keratoconic eyes) remained even after adjusting for IOP, CCT and age.  It 

the current study, it is not possible to draw the same conclusion and deduce that a 

healthy DS eye has an inherent biomechanical weakness since CCT accounted for 

18% of the variance between the two groups and the significant difference in DA 

was lost.  It is entirely possible that the difference in corneal thickness alone is 

enough to account for a large proportion of the increased deformation in the DS 

cornea.  In a group of healthy non-DS subjects, Asaoka et al. (2015) found that DA 

was affected more by IOP than by CCT, however this was an exploratory study in 

which confounding variables were not investigated, and a recommendation was that 

future studies control for IOP in the first instance.   

 

Figure 4.6 depicts applanation length against time.  This is akin to the waveform 

produced by the ORA (figure 1.14), albeit characterised by a different mechanism.  

Since no significant differences in the amplitudes of the peak applanation lengths or 

timings of the corresponding applanations were identified between the groups, this 

indicates that the groups were well matched for IOP (calibrated to correspond 

directly to the timing of the first applanation), and that IOP has a minimal 

contribution to deformation amplitude in this study.  However, data from all 

tonometry and pachymetric studies highlight that, with current methods, IOP and 

CCT are inextricably (but not predictably) linked; and until the relationship between 

corneal biomechanics is derived independently of CCT and IOP, they will continue 

to be so.  Since a lower CCT gives rise to a lower IOP reading, an unavoidable 

limitation of the current study (in initially matching controls for IOP) is the potential 

exclusion of normative subjects with a higher IOP (or higher CCT), who may have 

had a reduced DA and thus this study may have overestimated DA in the control 

group.   

 

Although few papers separate the corneal deflection from the whole eye 

deformation, the ability to do so ensures that assumptions are not unduly made.  In 
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the current study, the proportion of deflection due to the cornea alone could be 

elicited.  As per DA, the corneal deflection was significantly different between the 

two eyes, confirming the majority of the deformation may correctly be attributed to 

the cornea.  The data in figure 4.3 highlights the relative symmetry between the 

initial deformation movement and the recovery to the physiological state.  Both 

groups of corneae recover more quickly than they deform, and other than a greater 

degree of deflection, there are no unexpected findings.   

 

Inward corneal velocity is increased in KC corneae typically by 0.01m/s to 0.02m/s 

(Tian et al. 2014; Ali et al. 2014; Ye et al. 2015).  In the current study, the corneal 

velocity in healthy DS eyes was 0.014m/s significantly faster than the controls, 

indicating that the DS cornea is moving at a faster rate.  This is consistent with the 

ectatic velocities in the aforementioned studies that did not control for CCT when 

measuring velocity.  However, the current study found that like DA, the significant 

difference between the two groups fell away when CCT was accounted for.  It is 

possible that the increase in corneal velocity as it passes through the first applanation 

is, at least in part, a feature of corneal thickness.   

 

It is known that the biomechanics of the cornea behave differently when attached to 

the rest of the globe.  In a whole-eye situation, the limbus and the peripheral strain 

appear to take up a significant proportion of the strain (Boyce et al. 2008), likely as a 

result of the circumcorneal annulus of collagen fibrils in this area (Meek and Newton 

1999).  The peripheral cornea and limbus plays a key role in the absorption of 

applied force and should therefore be considered in an in-vivo setting where 

possible.  The separation of the corneal deflection from the whole-eye deformation 

leaves data regarding the displacement of the globe itself.  The extent to which the 

globe displaces is likely related to the ability of the cornea to absorb the force 

applied, the extent to which it is transmitted through to the posterior chamber, and 

the extent to which the movement of the globe is resisted by the orbital fat and 

muscles.  Whilst the current study found a larger displacement in the DS globe, this 

did not reach statistical significance.    
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Ultimately, the aim of this study was to investigate the deformation parameters in the 

DS group and establish to what extent these might impact upon the corneal 

biomechanics.  It is not yet clear to what degree deformation represents elasticity or 

hysteresis of the cornea, or indeed the mechanism by which keratoconic corneae 

appear to deform more when imaged on the CorVis.  Like the KC corneae from prior 

studies, the DS cornea deforms more, and it may be less biomechanically robust.  

Given the high prevalence of KC in DS, data from the current study suggest that the 

DS cornea may be biomechanically weak due to reduced corneal thickness alone.   

 

The progression of keratoconus certainly leads to a reduction in corneal thickness 

and an increase in steepness, therefore studies using subjects with stablished 

keratoconus certainly do, on average, exhibit a reduced corneal thickness compared 

with  controls.  The current study raises the question of whether a naturally thinner 

cornea in the first instance (both in DS in the general population) predisposes to KC.  

It was beyond the scope of the current study to track the progression of the disease in 

DS subjects, but the nature of the cohort meant that there were two patients who now 

have keratoconus that happened to have undergone Scheimpflug imaging 

approximately 10 years before the current study began.  It was notable that the 

patients who subsequently developed KC were not necessarily those who originally 

had the thinnest corneae – the averaged original corneal thickness of the 4 eyes was 

470µm, comparable to the averaged healthy corneae in the current study - 

469±36µm.  This reflects the clinical picture seen in ophthalmology clinics, whereby 

often patients with a surprisingly thick mid-peripheral cornea are developing 

paracentral ectasia.  If subsequent longitudinal DS research fails to demonstrate a 

causative link between original corneal thickness and the likelihood of developing 

keratoconus, it is highly likely that there are additional biomechanical issues 

involved in the development of ectasia, such as those indicated by Ye (2015).   

 

Although it is now well established that DS corneae are thinner than controls, and 

the current study shows this significantly impacts upon deformability, the 

mechanism for this has not yet been investigated. Fundamentally, it is not yet clear if 

the thinner DS cornea has fewer collagen fibrils, or if they are simply more closely 

packed.   Like in DS skin (Brand-Saberi et al. 1994), it is possible that an altered 
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collagen and GAG presence exists, or that the natural cross-linking is altered in some 

way.   

 

While it is not yet possible to elicit corneal rigidity, modulus of elasticity or corneal 

hysteresis from CorVis measurements, it is clear that the reduced CCT impacts 

significantly upon the ability of the DS cornea to resist applied force.  Should a 

calibration for established biomechanical measures such as elasticity become 

available, the results of the current study should be reanalysed.   

 

A limitation of the current study is the small sample size it contains.  Despite this, 

the post hoc power of this study (for deformation amplitude) was 89.4%.  In order to 

ensure reproducibility of these results and to draw further inferences on the 

proportions of confounding variables giving rise to corneal deformation, it will be 

important to repeat this exploratory study on a much larger sample size, perhaps 

allowing for analysis of sub-groups, and possibly the matching for (rather than the 

statistically controlling for) CCT.   

 

 

 

 



233 

 

 

Chapter 5 

 

Ultrastructural study of the 

Tc1 mouse model of Down’s 

Syndrome 
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5.1 Introduction 

 
5.1.1 Mouse models 
 

Mice, Mus Musculus, are the most wildly studied organism in the study of human 

biology (Gharib and Robinson-Rechavi 2011). The genetic, biologic and behavioural 

systems of mice resemble humans to some degree, because of their divergence from 

a common mammalian ancestry around 75 million years ago, representing a 

relatively late-branching lineage.  Specifically, 80% of amino acids synthesised by 

mouse genes have strict 1:1 orthologues in the human genome (Chinwalla et al. 

2002).  Yet, striking differences in the fundamental biology exist.  The primary 

known limitation of the use of murine cornea is the difference in the appearance of 

proteoglycans seen in the corneal stroma.  Typical, fine filaments associated with 

collagen fibrils are present.  However, long complexes are seen to traverse the 

fibrillar network, and these are thought to be unique to mouse cornea (Young et al. 

2005).  These interweaving structures, thought to be CD/GS GAG chains, 

predominate in the mouse cornea, in contrast to the human cornea in which KS is 

most abundant.  Despite this, mice are still used in research because they are small, 

low-cost, and breed quickly with a short generation time (10-12 weeks) - the 

phenotype of offspring are therefore easily studied (Guénet and Bonhomme 2003).  

 



235 

 

 
5.1.2 Mouse models of DS 
 

Targeted gene mutation in mouse can take 3 forms (Crawley 2007).   

1. Additional copies of normal mouse genes to study overexpression 

2. Inserted copy of a diseased gene from human (humanised mouse) 

3. Knockout model where the specific genes in mice are identified and 

inactivated 

 

In the early modelling of Down’s syndrome, it was identified that a large proportion 

of genes produced by human chromosome 21 were produced by mouse chromosome 

16, with the remainder across 10 and 17 (see figure 5.1).  A trisomy 16 mouse 

therefore demonstrated many characteristics of Down’s syndrome, morphologically 

and biochemically, and was used throughout the 1980’s and early 1990’s (Kola and 

Hertzog 1998).  Unfortunately, this trisomy 16 mouse rarely survived to term, and 

thus the mouse had huge limitations as a therapeutic model – particularly as several 

key health challenges are not present until adulthood.   
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Figure 5. 1 Segments and blocks of human genetic material (>300kb in size with conserved synteny) 

superimposed on the mouse genome.  Each colour corresponds to the human chromosome as shown Chinwalla et 

al. (2002)  

	

	

Ts65Dn	mouse	

 

The Ts65Dn mouse was released in 1993 as a segmental, or partial trisomy 16 

mouse, that is significant genetic material from the distal aspect of mouse 

chromosome 16 (Holtzman et al. 1996), containing up to 50% of human 

chromosome 21 genes (Reeves 2006).  This mouse has the advantage of surviving 

into adulthood and thus was a more feasible model.  While initially appearing 

phenotypically normal, the Ts65Dn mouse exhibited some important features of DS 

in humans: 

 

I. Impaired vision (Scott-McKean et al. 2010) 

II. Craniofacial abnormality (Richtsmeier et al. 2000) 

III. Impaired hearing (Kuhn et al. 2012) 

IV. Impaired muscle strength (Cowley 2011) 
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V. Spatial learning and memory impairment (Escorihuela et al. 1995; Reeves et 

al. 1995) 

VI. Small cerebellum volume (Delabar et al. 2006) with septohippocampal 

cholinergic neural degeneration and astrocytic hypertrophy that are common 

findings in Alzhiemer’s disease (Holtzman et al. 1996) 

 

	Ts1Cje	mouse	

 

The Ts1Cje mouse represents a translocational mutation akin to that of Robertson’s 

translocation, resulting in a partial trisomy 16 mouse model (Sago et al. 1998).  The 

mutation is considered to cause triplication of 21q22 – what previously was 

considered the DS region.  Correlating and contrasting the phenotypes and the 

triplicated genes that are present in Ts65Dn and absent in Ts1Cje helps to narrow the 

chromosomal region for specific features of DS such as craniofacial defects, auditory 

impairment and forebrain degeneration (Sago et al. 1998; Delabar et al. 2006).   

 

Tc1	mouse	

 

The Tc1 mice typically express triplication of 92% of the genes occurring on 

chromosome 21 with analogues for human genes across mouse chromosome 10, 16 

and 17.   Two small gaps are present in the genetic material, although this is the 

smallest gap of any known DS mouse model (O'Doherty et al. 2005).  Tc1 is 

therefore currently the most complete model for DS in terms of genetic 

representation, originally having been engineered for the study of Alzheimer’s 

disease.   

 

Tc1 mouse shows deficits in short-term and long-term memory tasks (Dunlevy et al. 

2010), hearing defects (Kuhn et al. 2012), and a reduction in tumour angiogenesis 

(Reynolds et al. 2010).  It is the only mouse model to show abnormal cardiac 

development (O'Doherty et al. 2005), a crucial feature required for the study of life 

threatening defects in DS.  That the Tc1 mouse demonstrates a congenital heart 

defect where the Ts65Dn mouse does not, indicates that the genes contributing to 

this defect likely lie in the region not triplicated in Ts65Dn.  
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5.2 Methods 
 

5.2.1 Transmission electron microscopy (TEM) 
 

Transmission electron microscopy is used to provide much greater magnification and 

resolution beyond that of light microscopy utilising the small de Broglie wavelength 

of the electrons – permitting the viewing of details within the collagen lamellae and 

therefore imaging at the molecular level. A stream of electrons is generated from an 

emission source, attracted down through a vacuum whilst focused using 

electromagnetic lenses and electrostatic plates.  Apertures are used to narrow refine 

the beam and prevent loss of image contrast as a whole.  An ultra-thin sample is 

positioned in the path of the electron stream and since electrons are displaced by the 

molecules that they interact with in the sample, an image is formed beneath owing to 

the interaction with the sample as the stream of electrons pass through.  In the study 

of collagen, the variation in the greyscale image that allows viewing of the sample is 

predominantly caused by density and sample thickness differences.  This effect is 

enhanced by using heavy metal elements throughout the preparation process that 

‘stain’ aspects of the tissue by increasing electron scatter.  Because the human eye is 

insensitive to electrons, the electron intensity distribution is imaged on a fluorescent 

screen from which digital images can be obtained.   

 

Thirty-six eyes were obtained from 18 mature 12 – 14 month old Tc1 mice (n=9) 

and relevant wild type littermates (n=9) being held and sacrificed in Cardiff 

University for neurological and psychological studies of the Tc1 Alzheimer’s 

phenotype, for another research project.  Eyes were obtained after live perfusion 

fixing of study mice with 4.1% paraformaldehyde.  Live perfusion carries particular 

advantages over post-fixation:   
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(i) Fixation begins immediately after the arrest of the systemic circulation, and 

there is no time delay and minimal artefacts due to post mortem 

enzymatic cell changes and autolytic effects.   

(ii) Rapid and uniform penetration of fixative throughout the tissue is gained, 

utilising the vascular system rather than solely from the sides as with 

immersion fixation.   

(iii) Tissue is fixed and hardened prior to direct handling and thus the reduction of 

traumatic artefacts. 

 

The cornea, of course, does not have the standard vascular supply of other tissues 

and organs and therefore may not benefit directly from the advantages above.  It is 

likely that the fixative indirectly meets the cornea through release into the anterior 

chamber and into the peripheral cornea through the limbus, albeit more limited in 

effect that that seen in the brain and connective tissue surrounding the eyes.   

 

Eyes were removed using curved forceps and post-fixed in vials of 0.5% 

paraformaldehyde (PFA) in Sorensen’s buffer within 60 seconds of death.  Corneae 

were dissected out along the limbal region and cut into four quarters.  Two quarters 

were reserved for the study of collagen fibril architecture and two for the study of 

proteoglycans, and will be discussed respectively.   

 

5.2.2 Preparation for TEM of collagen fibril 

architecture 
 

Fixation	

 

Samples were fixed overnight in 2.5% glutaraldehyde in 0.1M Sörensen’s buffer pH 

7.0-7.4 at room temperature in order to cross-link proteins to prevent deterioration of 

the specimen after death.  Prior to preparation for embedding in resin, the fixative 

was rinsed off with 2 washes of 10 minutes each, in buffer.   
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Samples were then placed in 1% Osmium tetroxide in 0.1M sodium cacodylate 

buffer for 1 hour.  Osmium is an additive fixative that also has a strong affinity for 

unsaturated cellular proteins and lipids, rendering it a broad-spectrum electron dense 

stain.  The use of osmium as a fixative and a stain prevents coagulation during 

dehydration with alcohol.   

 

Samples were then rinsed in distilled water and placed in 0.5% aqueous uranyl 

acetate (UA) for 1 hour.  Uranyl acetate is again both a stain and a fixative, and is 

the highest density electron stain, such that even light staining results in the 

scattering of electrons required for EM imaging.  Treatment with UA following 

double fixation with glutaraldehyde and osmium provides optimal staining of 

membranes and other structures since UA binds strongly to glycoproteins that are 

found in cell membranes, nuclei and proteoglycans.    

 

Embedding	

 

Samples were then dehydrated to remove all water, by using increasing steps of 

ethanol at 70%, 90%, 100% (x2), each step for 15 minutes.  Two 15-minute changes 

of propylene oxide were then used to remove the ethanol from the samples, followed 

1 hour in a 1:1 mixture of the propylene oxide and Araldite resin mixture that the 

sample is to be embedded into.   

 

Samples were then placed into 6 changes of Araldite resin over 2 days, before 

placement in TEM embedding moulds and final curing for 24 hours in a 

polymerisation oven at 60 °C and subsequent storage at room temperature before 

sectioning.   
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5.2.3 Preparation for EM of proteoglycans 
 

Fixation	

 

Immediately after dissection, samples for proteoglycan study were fixed and stained 

overnight in 2.5% glutaraldehyde within 25mM sodium acetate buffer at a pH of 5.7, 

containing 0.1M of magnesium chloride and 0.05% Cupromeronic blue (CB).  (The 

pH of the sodium acetate buffer was reduced to 5.7 with the addition 0.1M 

hydrochloric acid).   

 

Cupromeronic blue (CB) is a cationic dye developed specifically for localisation and 

characterisation of proteoglycans and sulphated glycosaminoglycans (such as keratin 

sulphate, chondroitin sulphate) and hyaluronan (Scott 1992).  Its cationic charge 

provides a very high affinity for the negatively charged GAGs found in the corneal 

stroma.  It is used for PG staining in conjunction with Scott’s “Critical Electrolyte 

Concentration” method (Scott, 1980).  Electrolytes are supplied by the dissociation 

of magnesium chloride in sodium acetate buffer.  The chloride ions compete with the 

CB and reduce its biding efficacy to the PGs.  Thus, more CB molecules must bind 

to the PG in order to gain entropy, and the increase in staining enhances the contrast 

of the EM image.   

 

Specimens were rinsed 3 times (each for 5 minutes) in the reduced pH sodium 

acetate buffer to remove the fixative and stain.  Specimens were then washed 3 times 

(10 minutes each) in (aq) 0.5% sodium tungstate.  Sodium tungstate has a dual 

purpose in EM preparation.  Firstly, it is a heavy metal and binding creates electron 

scatter that enhances image quality.  It also dissociates easily into its respective ions 

and so enhances contrast from the stains used, in a similar way to magnesium 

chloride.   

 

Specimens were dehydrated for 15 minutes with a 1:1 mixture of 0.5% (aq) sodium 

tungstate and 50% ethanol, followed by increasing strengths of ethanol only (each 

for 15 minutes) 70%, 90%, 100% (x2).   
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Embedding	

 

The removal of ethanol and subsequent embedding procedure is the same as for the 

‘Preparation for EM of collagen fibril architecture’ as detailed above.   

 

 

5.2.4 Sectioning of samples for EM of collagen 

fibril architecture 
 

Sections from the embedded samples were cut using a Reichert UCE 

ultramicrotome.  Glass knives were used to produce ‘semi-thin’ sections of 2-3 μm 

for observation after staining with 1% Toluidine Blue in 1% sodium tetraborate 

using light microscopy in order to precisely locate the desired location of interest.    

Either glass or diamond knife was used to cut ‘ultra-thin’ sections of 90nm and 

floated onto G300 copper grids with or without plastic support films (1% pioloform 

in chloroform).   

 

Grids were contrasted with saturated aqueous UA followed by lead citrate for 12 and 

5 minutes respectively.  Grids were then rinsed by floating on distilled water for 5 

minutes each.  Grids were then allowed to dry for 24 hours before being viewed 

using the electron microscope.   

 

Electron Microscopy was performed with a Jeol 1010 transmission electron 

microscope equipped with a Gatan Orius SC1000 CCD (charge coupled device) 

camera.   

 

5.2.5 Sectioning of samples for EM of collagen 

fibril architecture 
 

Contrast enhancement with filtered uranyl acetate is used as a final step in order to 

stain the collagen background of the PGs that will be observed.  As with the grids for 



243 

 

collagen observation, grids were then rinsed by floating on distilled water for 5 

minutes each.  Grids were then allowed to dry for 24 hours before being viewed on 

the electron microscope.   

Quantification of fibril diameter 

 

Cell Profiler (version 2.1.1, Cambridge, Massachusetts, US) was used to analyse 

collagen fibril diameter objectively (Lamprecht et al 2007), when measured at 

x25,000.  Code was selected to invert the colours, smooth the edge profiles of the 

image, identify the fibrils and provide an analysis on various aspects of shape.  The 

particular parameter of interest was ‘minor axis length’ to account for small errors in 

the plane of transverse imaging.  The measurements were sampled in different areas 

across the available tissue image, and averaged to gain a representative result of 

collagen fibril diameter.   

 

Dr Phil Lewis and Dr Rob Young (Cardiff University) kindly assisted in the 

embedding, sectioning and imaging of Tc1 and wild type samples.   

Dr Neil Anthony (Emory University) kindly assisted in refining the ‘Cell Profiler’ 

code. 
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5.3 Results 
 

Presented in figures 5.2a through 5.8b are a series of EM photos illustrating the 

collagen organisation from the mid-stroma (unless otherwise specified) of the central 

cornea in mutant and wild type mice.   
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Figure 5. 2 a & b respectively. EM photographs of transverse and longitudinal collagen organisation in wild type mouse corneal stroma (left) and in Tc1 mutant mouse (right) at 

magnification x2000.  Note the area of reduced collagen density (star).  This is likely to be an artefact created during the dehydration process.  
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Figure 5. 3 a & b, respectively.  EM photographs of longitudinal collagen and associated proteoglycan organisation in wild type mouse corneal stroma (left) and in Tc1 mutant mouse (right) at 

magnification x25,000.  Circles show the short, electron dense PG filaments associated with collagen fibrils, whilst the arrows show the large, elongated PG structures that run across fibrils, 

as described by Young et al. (2005).  These are typical of mouse cornea, and appear to be similar between samples. 
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Figure 5. 4 a & b, respectively.  EM photographs of transverse collagen and associated proteoglycan organisation in wild type mouse corneal stroma (left) and in Tc1 mutant mouse (right) at 

magnification x25,000.  Quantification of collagen fibril diameter in each of these samples is made later, but they appear largely similar in morphology and spacing.  While 5.5a has been 

imaged in transverse plane, 5.5b appears slightly obliquely sectioned, with the fibrils appearing more oval in shape.   
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Figure 5. 5 Tc1 mutant collagen lamellae and a microfibrillar bundle (circled) within a 

transverse section (x6,000). 

 

 
Figure 5. 6 Patches of banded collagen found in ‘Descemet’s membrane’ of Tc1 mutant collagen 

at magnification  x6,000.  The periodicity of this collagen was calculated to measure 83nm. 
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Figure 5. 7, ‘Bowman’s layer’ (lower) junction with the posterior corneal epithelium (upper) in 

Tc1 mutant corneal stroma (x6,000).  The boundary appears normal, with no epithelial invasion 

of Bowman’s layer, as has been reported in some keratoconic corneae. 

 
Figure 5. 8 A keratocyte imaged at x12,000 lying between collagen lamellae in Tc1 mutant 

corneal stroma.  This keratocytes is well preserved, demonstrates a typical appearance, and has 

orderly collagen fibrils surrounding it, suggesting that it was functioning normally. 
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Measurement of fibril diameter was evaluated objectively using 

quantification software, that over many images, useful averages could be 

gained.  When calibrated for pixel size in nm, this resulted in a 

measurement of fibril diameter in control mice of 18.5±2.1nm and 

mutant mice of 19.5±2.4nm and when these averages were compared by 

the student’s t-test, the difference was not significant (p=0.06).  An 

example of an automated edge profiling using the Cell Profile software, 

is given in figure 5.9.  

 

 
Figure 5. 9 A figure extracted from Cell Profiler software detailing the automated edge detection 

of the fibrillar collagen from a control mouse.  While the shapes do not approximate a circle, they 

are defined via a set threshold, minimising bias and providing a comparison between Tc1 and 

control tissue.  
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5.4 Discussion 
 

The architecture of the corneal stroma is governed by several factors: 

 

I. Lamellar organisation 

II. Collagen types present 

III. In fibrillar collagens: fibril diameter, spacing, organisation 

IV. Proteoglycan type present and the sulphation of their GAGs 

V. Cellular arrangement 

 

For the current study, each of these features will be discussed in turn.   

 

The corneal stroma in mouse is fundamentally different from that of human, with 

murine stromal tissue carrying some unique features: 

 

• Significantly thinner stromal thickness - 200μm rather than 550μm 

• A predominance of CS/DS PGs, in contrast to the highly sulphated KS type 

that predominate in the human cornea 

• PG complexes are much larger in mouse than in humans, draped along or 

wrapped along collagen fibrils in longitudinal section (up to 600nm) 

• Collagen lamellae are thinner and appear less stratified than in humans, with 

a more ‘wavy’ appearance after EM processing.   

 

It is therefore the comparison between the mutant mouse and the corresponding 

wild-type mouse that is of paramount importance rather than the absolute appearance 

of the mutant mouse in isolation.   
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5.4.1 Lamellar organisation 
 

Figures 5.2a and 5.2b are low magnification (x2000) EM photographs of the mid 

corneal stroma.  Twisting of the lamellae layers in each sample are likely to be an 

unavoidable product of the fixing and dehydrating process, as the parallel aspect of 

adjacent lamellae is maintained throughout the sample.  Lamellae are seen in both 

transverse and longitudinal and transverse orientation, and on each sample there 

appears an area with a low density of fibrils (marked star).  This is likely to be an 

artefact of the dehydration and embedding process, and does not appear large enough 

to be a true collagen-absent ‘lake’ as discussed by (Meek et al. 2003).   

Both samples feature electron dense oval areas that are microfibrillar bundles and 

condensed lead carbonate as a contaminant product from the staining process.  Upon 

gross examination, there does not appear to be any differences in the lamellar 

features between the control and the mutant mouse cornea.   

 

5.4.2 Collagen types present 
True identification of collagen type is provided by immunolabelling using relevant 

antibodies.  The extensive study of corneal collagen, the availability of a wild-type 

control mouse and the exploratory nature of this work negates the need for this 

procedure in the current study, and instead fibrillar collagen typing was assessed by 

examination of: 

 

• Shape and level of fibril organisation 

• Fibril diameter, interfibrillar spacing and periodicity 

• Interaction and proximity to neighbouring cells and lamina 

 

Fibrillar collagen I was found in the corneal stroma of all specimens, the vast 

majority arranged in a lattice fashion and regularly spaced.  Portions of a long-

spacing structure similar to that found in other studies (Bruns 1984) was noted in the 

Descemet’s membrane area of the posterior stroma in a particular Tc1 mouse (figure 
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5.6).  The banding pattern had ≥83nm periodicity.  Since it is obliquely orientated in 

the section and being viewed from a non-parallel reference plane, it was considered 

that this measurement likely underestimates the true periodicity.  Further, the 

shrinkage observed in EM with respect to fresh tissue state likely further 

underestimates the periodicity.   

 

Collagen VI is known to be abundant in Descemet’s membrane, and was considered 

as a candidate for the observed wide-spaced structure in figure 5.6.  Collagen VI is 

typically observed in a beaded appearance (figure 5.10) but has been found to 

aggregate into banded patterns of 100nm periodicity (Bruns et al. 1986) (see figure 

5.11).  This latter image of collagen VI in rat tail tendon carries a striking 

resemblance to that found in the current study, and has been verified by staining with 

collagen VI antibody, but has not yet been found in Descemet’s membrane.  

 
Figure 5. 10 Micrograph of collagen VI from synovial joint fluid with a tetramer unit length of 102nm (Kielty et 

al. 1993).  This structure denotes the typical beaded appearance of collagen VI discussed in scientific literature. 

 
Figure 5. 11 : Longitudinal section of rat tail tendon showing 100nm periodic fibrils (long arrows) distributed 

among type I fibrils (Bruns et al. 1986).  This is an atypical presentation of collagen VI 
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Collagen VIII is a likely candidate collagen for the observed wide-spaced structure, 

since the side view of collagen VIII modelled polygonal structure is a viable 

explanation for the pattern observed in the mouse tissue.  When viewed en face using 

EM, the globular ends of collagen VIII create a hexagonal structure and banded 

appearance when viewed parallel to the structures side (figure 5.12).   

 

 
Figure 5. 12 Schematic reconstruction of the polygonal lattice arrangement observed in collagen VIII, from 

Jones (2013) 

 

Akimoto et al (2008) found similar long-spaced structures in the rat cornea that 

increased in prevalence with maturity (fig 5.13), in line with work from (Jun et al. 

2006).  Akimoto et al confirmed the banded collagen in Descemet’s membrane as 

type VIII with antibody staining and immunoelectron microscopy.  On balance, it is 

highly likely that the Descemet’s membrane collagen found in the current study is 

therefore also collagen VIII.   
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Figure 5.13 Increasing deposition of long spaced collagen (arrows) increased in prevalence with age in 

Descemet’s membrane of rat.  Adapted from Akimoto and Sawada (2008).   

5.4.3 Fibril diameter, spacing and organisation.   
 

Transverse imaging of collagen type I viewed at x25,000 (figures 5.4a and 5.4b) 

demonstrate comparable fibril organisation between control and wild type mice.  

Specifically, there appears to be no difference in either fibril diameter or interfibrillar 

spacing between the two groups.  The diameter of the fibrils was 18.5±2.1nm in 

control mice 19.5±2.4nm in mutant mice, the difference was not significant 

(p=0.06). This appears to be slightly smaller than the 25-30nm typical fibril diameter 

expected of corneal collagen I when viewed with electron microscopy (Chakravarti 

et al. 2000, Hassell and Birk 2010).  Unlike the skin in DS (Brand-Saberi et al. 

1994), abnormal hydration was not found in Tc1 tissue.  This corresponds to the 

clinical observation that Tc1 mouse cornea appeared clear when viewed using light 

microscopy and appeared to have regular curvature.  Disorganised collagen type I 

fibrils are a hallmark of KC, of systemic collagen disorders and of many genetically 

engineered mice.  Comparison of the above EM photographs with such affected 

collagen reveals no similarities and thus it is reasonable to determine that with the 

imaging techniques employed in the current study, collagen fibril arrangement is 

normal in the Tc1 mouse. 



256 

 

 

5.4.4 Proteoglycans 
 

Despite the fact that proteoglycans in mouse cornea are fundamentally different from 

those found in human tissue, comparison with the wild type strain is still useful, and 

cupromoronic blue staining clearly defined electron dense filaments presumed to be 

PGs in both specimen groups (fig 5.3a and 5.3b).  Short PG chains (circled) are 

observed perpendicular to collagen fibril length in both control and mutant cornea, 

whilst longer filaments are seen to drape over collagen fibrils (arrows).  These 

findings are in line with PG observations discussed by (Young et al. 2005).   The 

increased GAG staining seen in DS nuchal tissue (Brand-Saberi et al. 1994)was not 

mirrored in the current study.   

 

5.4.5 Cellular arrangement 
 

EM photographs of epithelium, keratocytes, and endothelium were obtained.  The 

keratocyte in figure 5.8 is flat in appearance and seen to lie between lamellae, as 

expected.  There exists an area of homogenous material inferior to the cell, which 

may represent the remodelling of collagen or fibrillogenesis – a normal, albeit 

limited function in adult tissue.  The epithelium (figure 5.7) and endothelium (Fig 

5.6) of Tc1 mice both demonstrate intact borders with their respective lamina, and do 

not show signs of discontinuity, or ‘breaks’ which is sometimes referred to in 

keratoconus, especially in Bowman’s layer (Sykakis et al. 2012).   
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5.4.6 Limitations of mouse model 
 

Tc1 is currently the most complete model for DS in terms of genetic representation 

although it does have several limitations, primarily that the trisomy is lost from some 

cells during growth, resulting in mosaicism to some degree (Reeves 2006).   Clearly, 

there are significant differences between mice and humans.  The mouse genome is 

14% smaller than that of humans and contains just 20 pairs of chromosomes.  The 

humanised mouse requires the alteration of the mouse immune system in order to 

prevent rejection of the new genetic material.  As a result, the T-cell system is 

known to respond at a lower level than what would be ordinarily expected, while 

other immunological aspects such as cytokines and adhesion molecules are known to 

be different in mouse (Shultz et al. 2007).  Thus, using mouse as a model for the 

compromised cornea carries limitations, particularly given the new view of 

keratoconus as an inflammatory disease, and the complex interplay between 

biochemical signalling and the structure of the ECM.  

 

There is an experimental risk that human DNA is misread when in a mouse 

environment (Reeves 2006).  An understanding of the basis of species differences, in 

combination with comparative studies between wild type and mutants, allow 

observations that may be relevant for human tissue (Chinwalla et al. 2002).  Thus, 

any differences seen between wild type and mutant corneae might be indirectly, 

rather than directly relevant in human. 

 

5.4.7 Summary of findings 
 

Results from the current study examined the suitability of the Tc1 mouse model as a 

model for corneal ectasia in DS.  Primarily, the stromal collagen from the central 

cornea was examined for differences between the mutant and wild type mice.  No 

differences were found in the samples examined, stromal collagen and PGs of Tc1 

mice were within the normal limits with respect to the wild type littermate mice. The 

current study was limited in power by its sample size.  Whilst 9 pairs of wild type 
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eyes and 9 pairs of control eyes were obtained for experimentation, good-quality 

samples were lost throughout the dissection phase, embedding phase and particularly 

at the sectioning phase.  This resulted in 3 wild-type samples (each for collagen and 

PG analysis), and 4 Tc1 samples (each for collagen and PG analysis) producing 

results of which a sample is shown above.   

 

Owing to stochastic loss of the human chromosome post fertilisation, mosaicism is 

present in the Tc1 mouse.  Thus, some cells are affected by the trisomy and others 

are not.  Resulting tissues therefore have a variable degree of mosaicism (Wiseman 

et al. 2010), which is not predictable.  An example of this is the Tc1 cerebellum, 

which expresses the DS phenotype in between 7% and 77% of cells (O'Doherty et al. 

2005).  It is highly possible that while the heart and the cognitive system of the Tc1 

mouse exhibit the DS phenotype, that the trisomic penetrance does not reach a 

critical phenotypic threshold to produce structural defects in mouse, the Tc1 model 

may simply not reflect that of human eyes.  In order to quantify the proportion of 

trisomic tissue with the Tc1 mouse eye, quantitative polymerase chain reaction 

(PCR) could be used on ocular tissue.  Likewise, due to the small sample size 

employed, it is unlikely but scientifically possible that each Tc1 sampled 

successfully with EM had coincidentally exhibited non-DS ocular tissue due to 

mosaicism.   

 

Alternatively, it is possible that the Tc1 mouse and DS eyes in general both carry 

normal corneal ultrastructure, and that the increased prevalence of keratoconus does 

not stem from altered collagen or proteoglycan constituents. 

 

It is possible that ultrastructural properties exist that were not picked up during the 

analysis in the current study.  The current study aimed to evaluate the corneal 

ultrastructure of the Tc1 mouse for gross structural abnormalities that might give rise 

to KC, specifically in collagen fibril arrangement.  There are possible ultrastructural 

differences that could be investigated that were beyond the scope of this work, but 

which could provide a useful insight into further aspects of the Tc1 cornea.  

Immunohistochemical staining using relevant antibodies (eg collagen VI, collagen 
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VIII) would identify differences between collagens present in the two groups.  

Further, Western blot analysis could be used to quantify the proportions of collagen 

types present.  

 

Individuals with DS are known to have an unusual immune system, becoming prone 

to infections and resistant to particular cancers.  As discussed in Chapter 1, the 

regulation of the immune system is heavily implicated in keratoconus.  While atopy 

and eye rubbing were not associated with the development of KC, it is possible that 

other inflammatory processes (governing collagen turnover, activity of proteases, or 

the ECM environment) could give rise to collagen degeneration that is not a function 

of the collagenous ultrastructure.  Further study surrounding the digestion of Tc1 

corneae compared to the wild type counterparts could provide useful information on 

the relative degree of cross-linking across the two corneal types.  
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Chapter 6 

 

General discussion and 

future work 
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This study was the first to prospectively explore the metrics of the cornea in Down’s 

syndrome eyes with an established diagnosis of keratoconus and compare with those 

that were demonstrably healthy.  The early identification of KC in a learning-

disabled population is of particular importance given the necessity of a prompt 

referral for consideration for corneal cross-linking in order to halt disease 

progression.    

 

The clinical aspects of this study confirmed that the use of retinoscopy was an 

effective screening tool for the identification of KC and KC suspect eyes; and that 

VA, contrast sensitivity and spectacle astigmatism alone provided insufficient data to 

monitor for the onset of KC.  Optometrists in the community are therefore in an 

excellent position to take up regular screening of these individuals and should use 

retinoscopy as opposed to autorefraction.  Further, slit lamp biomicroscopy was of 

limited use in detecting early KC (as is frequently the case in non-DS eyes) and so it 

is important to reiterate the importance of optometrists referring suspect KC even in 

the absence of slit lamp signs of the disease.  This also has implications for 

secondary care (hospital environments) - sometimes it is very difficult to obtain an 

accurate topography on someone with learning disabilities and it is the author’s 

experience that in such cases, a clinical slit lamp observation is often relied upon by 

the observing clinician.  The results of the current study reinforce the need for 

topography examination ‘teaching and training’ for those individuals with DS who 

have an abnormal retinoscopy reflex, so that they can participate in a rigorous 

diagnosis.  The current study is in line with the work of others indicating that the 

absence of slit lamp signs is not an absence of disease (Zadnik et al. 1996).   

 

Topographic examination of healthy DS eyes revealed a greater magnitude of high 

order aberrations (HOAs) and ocular surface irregularity than expected for a healthy 

typical (non-DS) population.  In some eyes, the ‘abnormal’ topography had been 

stable for many years.  Previous literature documents that DS eyes have reduced 

optical quality (Little et al. 2007) and increased whole-eye HOAs than non-DS eyes.  

Results from the current study indicate that the cornea, at least in part, may 

contribute to these HOAs.   It would be necessary to combine whole-eye 
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aberrometry with corneal tomography to investigate this further.  It is known that 

children with DS fail to emmetropise concerning whole-eye refractive error, but the 

current study gives an indication that the typical DS cornea does not reach typical 

curvature or regularity by adolescence and therefore may contribute to the poor 

visual function seen in the DS eye as a whole.  This ‘abnormal’ topography in 

demonstrably stable and healthy eyes provides some understanding as to why 

previous authors have reported a high incidence of early KC in DS when using 

topography in DS (Aslankurt et al. 2013).  Vincent et al. (2005) studied non-KC eyes 

and suggests that children with DS may exhibit abnormalities of corneal shape in the 

absence of clinical keratoconus.  The current study confirms this suspicion and 

indicates some topographical parameters that may be useful in differentiating healthy 

DS eyes from KC eyes.  However, the current sample was small and requires 

validation by using a ‘test’ dataset of further healthy and KC DS eyes as part of a 

longitidunal study that has the capacity to monitor the ‘suspect’ eyes until they are 

ultimately deemed stable or ectatic.   

 

Eye rubbing was not associated with KC in the current study.  Although the study 

had a limited size, it was significantly larger than those in the current literature, and 

the only one to investigate the impact of atopy on the results, a known confounding 

factor.  The predominance of scientific literature associating eye rubbing and DS 

does not remark on or investigate the altered corneal shape that exists naturally in 

DS eyes; until Haugen (1992), there was little consideration that people with DS 

might be predisposed to KC in some way rather than KC being the result of self-

induced corneal degradation.  The current study is the first to examine corneal 

biomechanics in DS, the results indicating that the DS cornea exhibits greater 

deformation ability attributable to its reduced corneal thickness.   

 

A necessity of the current study was to investigate if the ectasia in DS was 

phenotypically comparable to that of non-DS eyes.  No significant differences in 

cone morphology were evident, suggesting that it is likely that DS ectasia is 

representative of KC in the wider population.  Clinical KC is generally considered to 

be a common final pathway of a multifactorial disease.   This means that the 
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underlying aetiology of KC in DS may or may not be the same as that of the wider 

population.  Even in the wider population, there may be more than one ‘category’ of 

KC.  It was first suggested by Nottingham (1854) that more than one aetiology of 

KC may exist, “If conical cornea be met with as an error of development of the eye, 

it is obvious that cases of it, viewed in connection of their source, must be more or 

less of the same nature, whether they occur before or after birth, while those cases of 

this malady which present themselves as direct or indirect consequences of 

inflammatory action, or of any ordinary form of ocular disease, must be regarded as 

belonging to another variety.  It is evident that this distinction may have its use in a 

therapeutic as well as in a pathologic point of view…”.  Much more recently, 

McMonnies and Boneham (2003) state, “…it appears that itch and atopy are neither 

sufficient nor necessary conditions for the development of keratoconus with the 

association between atopy, ocular itch and rubbing being found only in a subset of 

the keratoconic population”.  Contrary to Grewal et al. (1991), the current study 

indicates that atopy and KC, and eye-rubbing and KC, are not associated with the 

atopic, inflammatory type of keratoconus.  Rather, KC in DS may be the result of 

biomechanical changes secondary to an underlying genetic abnormality that results 

in abnormal corneal ECM, such as that seen in DS skin (Brand-Saberi et al. 1994).    

With recent advances in genetic testing, it is now possible to provide ‘whole genome 

screening’ for a group of individuals to elicit genetic correlations in phenotypic 

expression.  Although the current sample size was limited, the dataset represents 

high-quality topography and clinical data with extensive optometric records.  An 

analysis of regular and irregular astigmatism in the healthy and affected corneas of 

the current study should be explored in line with genetic information from each 

individual.  Since the cones in DS and non-DS KC are morphologically similar, a 

basis is provided for using KC in DS as a model for non-atopic KC in the wider 

population.   

 

 

The Tc1 mouse model of DS revealed no ultrastructural abnormalities when 

compared to wild type controls.  For reasons outlined in Chapter 5, this does not 

mean that the DS cornea will exhibit a normal corneal ultrastructure.  It is possible 
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that the Tc1 mouse exhibited a significant proportion of ocular mosaicism and that a 

much larger sample size would have resulted in some abnormal tissue being picked 

up in a small number of samples.  It is possible that staining for particular collagens 

or particular genetic expression would have revealed abnormalities of the corneal 

ultrastructure not visible with the methods employed in the current study.  

Alternatively, the DS expression may not affect the eye in Tc1 mice.   

 

In the thinner human DS cornea, it is not known if the collagen fibrils are 

compacted, or if the collagen mass is reduced overall.  It would be advantageous to 

examine healthy human DS tissue from donor corneae, and examine using TEM with 

immunohistochemical analysis.   Western blot analysis or immunolabelling could 

provide data on the differences in the proportions of collagens I, V and VI and 

examine the expression of relevant genes such as VSX1, LOX or SOD1.   
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Appendix E 

 

A priori power calculation for the measurement of deformation amplitude using 

CorVis ST, using the technique for two independent study groups and the endpoint 

of a continuous variable.  Alpha was set at 0.05 and the power at 80%, as standard.  

It was anticipated that a difference of 10% from the control group would be 

meaningful.   

 

Anticipated mean (control group) = 1.07 ± 0.10 (from Hon and Lam 2013), with an 

enrolment ratio of 2:3 (control:DS).   

 

Requires a sample size:  

Control participants:   17 

DS participants:  11 

Total:    28 

 

 


