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Abstract

Image retargeting techniques that adjust images into dif-
ferent sizes have attracted much attention recently. Objec-
tive quality assessment (OQA) of image retargeting results
is often desired to automatically select the best results. Ex-
isting OQA methods output an absolute score for each re-
targeted image and use these scores to compare different re-
sults. Observing that it is challenging even for human sub-
jects to give consistent scores for retargeting results of dif-
ferent source images, in this paper we propose a learning-
based OQA method that predicts the ranking of a set of re-
targeted images with the same source image. We show that
this more manageable task helps achieve more consistent
prediction to human preference and is sufficient for most
application scenarios. To compute the ranking, we propose
a simple yet efficient machine learning framework that uses
a General Regression Neural Network (GRNN) to model a
combination of seven elaborate OQA metrics. We then pro-
pose a simple scheme to transform the relative scores out-
put from GRNN into a global ranking. We train our GRNN
model using human preference data collected in the elabo-
rate RetargetMe benchmark and evaluate our method based
on the subjective study in RetargetMe. Moreover, we intro-
duce a further subjective benchmark to evaluate the gener-
alizability of different OQA methods. Experimental results
demonstrate that our method outperforms eight represen-
tative OQA methods in ranking prediction and has better
generalizability to different datasets.

1. Introduction

Image retargeting refers to techniques that adjust a
source image into different sizes, which has become an in-
creasingly demanded tool with the diversification of display
devices. Although a large number of retargeting methods
have been developed, a single method that works well on
any image still does not exist [12, 33]. Subjective qual-
ity assessment involving human judgment is usually time-
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(a) Source image (b) Result 1 (27) (c) Result 2 (26)

(d) Source image (e) Result 3 (30) (f) Result 4 (28)

Figure 1. Subjective scores are only comparable for retargeting
results of the same source image. In each row, two retargeting
results are presented and their scores are shown in parentheses.
These scores provided in RetargetMe benchmark [25] are numbers
of votes that people cast when comparing this image against other
images. Higher scores mean better results. Although the scores of
the two retargeting results in (e) and (f) are higher than the scores
in (b) and (c), we cannot conclude that the results in (e) and (f) are
better than the results in (b) and (c); instead, the opposite appears
to be true.

consuming and laborious, and thus unpractical in many situ-
ations. As summarized in Section 2, despite recent progress,
existing objective quality assessment (OQA) methods are
still far from ideal in predicting human preference. There-
fore, a good OQA method correlating well with human
judgements is essential in automatically selecting the best
retargeting results and helpful for developing new image re-
targeting methods.

Existing OQA methods compute an absolute score for
every retargeting result and compare the results using these
scores. A key observation that motivates the work presented
in this paper is that in most cases, the scores of retargeted
images are only meaningful with the same source image.
Even for human subjects, it is often difficult to give consis-
tent scores for retargeting results of different sources. An



example is shown in Figure 1, in which the two retargeting
results in (b) and (c) have lower subjective scores, but ap-
pear to be more plausible than the results in (e) and (f) that
have higher scores. We also notice that in majority of ap-
plication scenarios, relative quality measures are sufficient,
e.g., to rank a set of retargeting results. Therefore, instead
of assigning every retargeted image with an absolute score,
in this paper we focus on a more manageable task that pre-
dicts the ranking of a set of retargeted images with the same
source image.

Given a set of retargeted images, we propose a learning-
based OQA method that provides the ranking of these im-
ages as output. Our method uses the General Regression
Neural Network (GRNN) [29] to model a combination of
seven known OQA metrics [12] including preservation of
salient regions, influence of introduced artifacts, preser-
vation of the global structure, preservation of symmetry,
and aesthetics. We train this GRNN model using the hu-
man preference data collected in the elaborate RetargetMe
benchmark [25]. The GRNN model is known to work effec-
tively with relatively few training samples, which suits our
task well due to the limited availability of subjective data.
In the testing stage, the GRNN model takes the features of
a pair of retargeted images as input and predicts their rela-
tive quality difference. By computing relative quality differ-
ences of all pairs in a set of retargeted images, we propose
a simple scheme to transform them into a global ranking.

The main contributions of this paper are:

• We propose a two-step OQA method to predict the
ranking in a set Ω of retargeted images with the same
source image: (1) at step 1, we introduce a simple yet
effective machine learning framework to predict the
relative quality difference in a pair of retargeted images
in Ω and (2) at step 2, we propose a simple scheme to
transform the relative quality differences in all pairs in
Ω into a global ranking.

• We conduct a new user study using an approach sim-
ilar to RetargetMe benchmark [25] with better qual-
ity control. The novel dataset obtained in this user
study, as well as the source code of the proposed OQA
method, will be made publicly available to provide a
useful dataset for evaluating generalizability of differ-
ent OQA methods.

Extensive experiments are presented, demonstrating that
our OQA method correlates better with human judgements
than eight representative OQA methods and has signifi-
cantly better generalizability.

2. Related work
Image retargeting has attracted considerable attention in

recent years and many content-aware methods have been

developed [27]. To compare different retargeting algo-
rithms, several quality assessment methods have been pro-
posed. These methods can be divided into two types: sub-
jective and objective methods.

Subjective quality assessment designs elaborate per-
ceptual studies and systematically analyzes user prefer-
ences. RetargetMe [25] is a well-established benchmark
that contains a decent number of source images and their
retargeting results produced by eight representative meth-
ods. A comprehensive, comparative subjective study is also
included in RetargetMe. It is the first in-depth perceptual
study with a large number of users for image retargeting
quality assessment. A different subjective study was pro-
posed in [16], in which the user evaluation was carried out
by simultaneous double stimulus for continuous evaluation
[1] that scored only one retargeted image each time rather
than pairwise comparison. Castillo et al. [3] developed
an image retargeting survey using eye tracking technology.
All these subjective methods can provide good evaluation,
but they are laborious and very time-consuming. Neverthe-
less, these studies provide valuable benchmarks for devel-
oping objective quality assessment methods. Our method
proposed in this paper mainly depends on the RetargetMe
benchmark and we further perform an extended user study
for evaluating generalizability.

Objective quality assessment (OQA) defines metrics
that can be calculated from pixels of images. Edge
Histogram (EH) [18] and Color Layout (CL) [10] are
two image-content-based measures in the MPEG-7 stan-
dard [19]. They are low-level metrics that treat images
as a whole and define image distances based on similar-
ity of edge or color distribution. Bidirectional Similar-
ity (BDS) [28] treats an image as a collection of patches
and calculates a bidirectional mapping of these patches be-
tween two images as a measure. Bidirectional Warping
(BDW) [26] is similar to BDS, but the mapping in BDW
takes an asymmetric dynamic time warping, which simulta-
neously minimizes the warping cost and preserves the patch
order. BDS and BDW are relatively easy to calculate; how-
ever, they treat every patch as equally important for the final
distance and do not take salient regions or aesthetic perspec-
tives into account. Thus their results are not always con-
sistent with subjective ranking. Objective quality assess-
ment methods based on SIFT flow (SFlow) [13] and Earth-
Mover’s Distance (EMD) [23] can capture the structural
properties more robustly. Liu et al. [14] proposed a top-
down simplified model of the human vision system to de-
fine a saliency-based image similarity metric in the CIE Lab
color space. Recently, an aspect ratio similarity (ARS) met-
ric [33] was proposed, which characterizes how the source
image is resized into the target image by geometric changes
and provides an efficient solution based on a Markov ran-
dom field. Noting that human judgment of retargeting qual-



ity often involves multiple factors, several state-of-the-art
methods combine several metrics that characterize different
factors of image retargeting quality [16, 17, 12].

Our proposed method is inspired by the work in [12]
that elaborately designs seven metrics and develops an OQA
method by combining them. These seven metrics take the
following factors into consideration: keeping salient image
content, reducing local artifacts, preserving global struc-
ture, satisfying aesthetic requirement, and maintaining sym-
metry features. Liang et al. [12] make use of a linear com-
bination of these seven metrics, with the weights learned
from the RetargetMe benchmark. This method provides an
all-round characterization of retargeted images. However,
the linear combination is over-simplified and does not al-
ways produce a consistent prediction to human preference.
To address this problem, we propose to use a machine learn-
ing approach to provide the necessary flexibility.

Artificial neural networks (ANNs) have been well stud-
ied and widely used in image processing. The universal ap-
proximation theorem [6] states that simple neural networks
can represent a wide range of useful functions when given
appropriate parameters. Among many types of ANNs, the
RBF network is a universal approximator and is a popular
alternative to the multi-layer perceptrons, due to its simpler
structure and faster training process. Our work in this paper
uses the general regression neural network (GRNN) [29],
which is a representative RBF network and can obtain good
results even with sparse data in a multidimensional mea-
surement space, particularly suitable for our problem.

As ranking is the major needs for objective assessment
of image retargeting, it is related to learning to rank tech-
niques. Such techniques can be divided into three categories
according to their loss functions, that is, pointwise (e.g.,
[8]), pairwise (e.g., [7]) and listwise (e.g., [2]). Pointwise
methods are the earliest learning-to-rank techniques. They
treat every instance separately and thus easily lose the group
structure of ranking. Pairwise methods transform the rank-
ing problem to pairwise classification or regression, and
then partially protect the group structure. Listwise meth-
ods provide a more straightforward way to solve the ranking
problem, which better preserve the group structure. How-
ever, since data is split into groups and sufficient instances
are needed for each group, a large training dataset is re-
quired in listwise methods. In our study, given the relatively
limited subjective data, the pairwise technique is more suit-
able and used in this paper.

3. A two-step OQA method for ranking
The quality of image retargeting depends on multiple

factors and composite metrics are needed to measure them.
In recent work [12], seven elaborately designed metrics
{Q1, Q2, · · · , Q7} were proposed. We briefly summarize
these metrics in Section 3.1. Given a source image Is and a

retargeted image It, each metricQi(Is, It) computes a scale
value in [0, 1] to reflect the retargeting quality in one factor.

To construct an objective function F (Q1, Q2, · · · , Q7)
based on these seven metrics, an additive value function

F =

7∑
i=1

wiQi (1)

is used in [12]. The value of F is in [0, 1] and a lower value
of F means better quality. We argue that the linear form
in Eq.(1) is over-simplified and we propose to find a better
(possibly nonlinear) form for F by machine learning from
human preference.

Instead of assigning an absolute value for each retargeted
image, our OQA method computes a ranking to a set Ω =
{Ii}ni=1 of retargeted images with the same source image
Is. Our method works in two steps. In the first step, we
represent each retargeted image Ii ∈ Ω as a six-dimensional
vector

v(Ii) = (Q1(Is, Ii), Q2(Is, Ii), · · · , Q6(Is, Ii)) (2)

An additional dimension Q7(Is, Ii) is only applied to sym-
metry images; see Section 3.3.3 for details.

To better characterize retargeted images, in Section 3.2,
we transform the representation v(Ii) in Eq.(2) into a more
regular feature space f(v(Ii)) by taking a global manifold
structure into consideration.

Based on the feature representation f(v(Ii)), we con-
struct an objective function F̃ (f(v(Ii)), v(Ij)), which com-
putes a relative score for any two retargeted images Ii and
Ij , i 6= j, in Ω. To better predict the global ranking in the
second step, we require that F̃ has the following properties:

• F̃ (f(v(Ii)), f(v(Ij))) > 0 means Ii is of better qual-
ity than Ij and vice versa;

• The value of F̃ reflects the degree of relative
quality difference; e.g., F̃ (f(v(Ii)), f(v(Ij))) =
0.01 means Ii is slightly better than Ij and
F̃ (f(v(Ii)), f(v(Ij))) = 0.99 means Ii is much better
than Ij .

To find an appropriate nonlinear form for F̃ , we use a ma-
chine learning method to learn from human preference. Ob-
serving the limited availability of subjective data, we choose
the GRNN model to train F̃ using subjective data in the
well-established RetargetMe benchmark [25]. The training
details are provided in Section 3.3.

In the second step, we transform the relative scores into
a global ranking by computing a ranking value ri for each
Ii, with respect to the remaining images in Ω:

ri =
∑

Ij∈Ω\{Ii}

F̃ (f(v(Ii)), f(v(Ij))) (3)



Then the ranking of all the images in Ω is obtained using
their ranking values. In Section 3.4, we show that this sim-
ple ranking scheme works well.

In Section 4, we demonstrate that our two-step OQA
method outperforms eight representative OQA methods in
RetargetMe benchmark (using leave-one-out cross valida-
tion) and a new user study with novel image dataset (to
evaluate generalizability).

3.1. Seven metrics

By carefully analyzing existing retargeting methods and
their outcomes, Liang et al. [12] present five key critical
factors that determine image quality for a retargeting result.
These factors and their related metrics are summarized be-
low.

Preservation of salient regions. This factor is measured
by two metrics Q1 and Q2. Q1 considers the change of the
salient areas between the source image Is and retargeted
image It:

Q1 = |Ss − St|/max(Ss, St), (4)

where Ss and St represent the areas of the salient regions in
Is and It, respectively. Q2 considers variations in content
as changes in the color histogram of salient regions [21]:

Q2 =
1

2

√√√√ 255∑
i=0

(h′s − h′r)2, (5)

where h′s and h′r represent the normalized color histograms
in the source and retargeting salient regions, respectively.

Influence of introduced artifacts. This factor is mea-
sured by a bidirectional similarity metric Q3 that takes into
account the influence of saliency [28]:

Q3 = 0.5
1

Ns

∑
U⊂Is

SU minV ⊂It D(U,V )

maxU⊂Is (SU minV ⊂It D(U,V )) +

0.5
1

Nt

∑
V ⊂It

SV minU⊂Is D(U,V )

maxV ⊂It (SV minU⊂Is D(U,V )) ,
(6)

where U and V are 3 × 3 patches from the source and re-
targeted images respectively, Ns and Nt are the numbers
of patches in Is and It, D is the distance measure between
two patches as defined in [28], and SU and SV are saliency
weights given by the average of the salience values of all
pixels contained in patches U and V .

Preservation of global structure. This factor is mea-
sured by two metrics Q4 and Q5. Based on a structure-
aware pixel mapping scheme in image scale spaces of Is
and It [14], both Q4 and Q5 evaluate the global structure
similarity by a weighted summation of local similarity win-
dows from every pair of pixel correspondence. Q4 consid-
ers the structural similarity between two images by analyz-
ing the degradation of structural information between corre-

sponding windows in Is and It using the SSIM metric [31]:

Q4 =

nt∑
i=1

(1− SSIM(pi, p
′
i)), (7)

and Q5 applies a model VDP2 [20] of human perception to
predict the overall quality of It, when compared to Is:

Q5 =

nt∑
i=1

(1− V DP2(pi, p
′
i)

100
), (8)

where nt is the number of pixels in It, p′i is the ith pixel of
It and pi is the corresponding pixel in Is.

Aesthetics. This factor is measured by two rules in com-
putational aesthetics [4, 15]: the rule of thirds Tthird and
visual balance Vbal:

Q6 = 0.5Tthird(Is, It) + 0.5Vbal(Is, It). (9)

Preservation of symmetry. This factor is measured by
accumulating all the minimum symmetry distances of sym-
metric regions in It:

Q7 =
1

ns

∑
rm∈R

min
rn∈R

Dsym(rm, rn), (10)

where R is the set of symmetry regions in It detected by
[32], ns is the number of symmetry regions in R and Dsym

is the symmetry distance defined in [12].

3.2. Feature space transformation

The six-dimensional representation v in Eq.(2) maps
each retargeted image into a point in R6. Let M be the
union of points representing all retargeted images in R6. We
observe that the manifold structure inM plays an important
role in quality prediction. Given a set of sample points P in
M and a weighted graph G with edges between neighbor-
ing points in P , the manifold structure can be characterized
by the geodesic distances between all pairs of points in P ,
which are approximated by the lengths of shortest paths in
G.

A transformation from the original representation space
R6 to a more regular feature space F is desired, if the
geodesic distances between all pair of points in P are better
represented as Euclidean distances in F . In our practice,
this transformation can make the regression in Section 3.3
more effective, especially with limited number of training
samples. We use a subspace learning technique to find such
a transformation. Nonlinear methods such as ISOMAP [30]
and LLE [24] are effective and insensitive to outlier; how-
ever, they do not work directly with out-of-sample data. If
we use out-of-sample extension, it is only approximate and
the effectiveness relies heavily on neighboring in-samples.
We thus choose the neighborhood preserving embedding



(NPE) [9], which is efficient and defined everywhere (rather
than only on the training samples) and thus suits our prob-
lem well. In our application, we apply NPE in the original
space R6 and we denote by f(v) the feature vector after
transforming the original representation v into the feature
space F .

3.3. Training GRNN for F̃

3.3.1 Training dataset

We use all the 37 groups of images (each group has one
source image and eight retargeted images) in RetargetMe
dataset [25] — a well-known benchmark in image retarget-
ing — to train and evaluate our OQA model.

In RetargetMe, a comparative user study based on
linked-paired comparison design [5] was performed to en-
sure balanced voting. Three complete sets were collected
for each retargeted image to guarantee statistical robustness.
Each time a participant was shown two retargeted images
side by side, and was asked to simply choose the one he/she
liked better. Each retargeted image appeared 3 times for
a participant and judged by 21 participants, meaning that
a retargeted image received a maximum of 21 × 3 = 63
votes. The number of votes for a retargeted image shows the
subjective quality by human observers. As demonstrated in
Figure 1, such subjective scores cannot be used to effec-
tively compare human preference with different source im-
ages, but work reasonably well for retargeted images with
the same source image.

3.3.2 F̃ for non-symmetry images

We model F̃ using GRNN, due to its approximate capa-
bility with relative few training samples. The input to this
model is a concatenation of two feature vectors f(v(Ii))
and f(v(Ij)). We use the standard configuration for our
GRNN model with the output layer being a scale that is the
predicted relative score F̃ (f(v(Ii)), f(v(Ij))). A spread
parameter σ in GRNN controls the influence range of radial
basis functions and is set to 1.4 in our experiments.

In the training stage, for each group in the training set
(i.e., one source image and a set of retargeted images Ω),
we take every pair of retargeted images in Ω including a
retargeted image with itself. Let n = |Ω| be the num-
ber of retargeted images in Ω. Each group contributes to
n2 pairs of training input. Note that although subjective
scores from user voting may not give universally compa-
rable scores, the relative scores for the same source image
are much more reliable. Based on this observation, we train
the GRNN model using the input-output samples (xk, yk),
where xk = (f(v(Ii)), f(v(Ij))) and

yk =
si − sj

63
, (11)

Image Original representation v(Ii) Feature vectors f(v(Ii))
I1 (0.0, 0.0, 0.12, 0.49, 0.55, 0.34) (-0.02, -0.04, -0.10, 0.03, -0.01, 0.02)
I2 (0.09, 0.10, 0.09, 0.63, 0.70, 0.36) (-0.01, -0.03, -0.08, 0.03, 0.10, -0.02)
I3 (0.13, 0.03, 0.10, 0.41, 0.54, 0.35) (-0.02, 0.01, -0.10, 0.01, -0.02, -0.04)
I4 (0.24, 0.07, 0.11, 0.67, 0.71, 0.36) (-0.0, 0.02, -0.06, 0.02, 0.05, 0.04)
I5 (0.25, 0.05, 0.10, 0.50, 0.57, 0.38) (-0.01, 0.06, -0.09, 0.03, 0.01, 0.01)
I6 (0.23, 0.08, 0.12, 0.50, 0.57, 0.37) (-0.01, 0.05, -0.09, 0.05, 0.03, -0.03)
I7 (0.66, 0.48, 0.02, 0.49, 0.51, 0.43) (-0.01, 0.25, -0.05, 0.18, 0.43, -0.19)

Relative scores F̃ (f(v(Ii)), f(v(Ij)))
I1 I2 I3 I4 I5 I6 I7

I1 0.0 0.022 0.026 0.027 0.039 0.047 0.207
I2 −0.022 0.0 −0.004 0.004 0.017 0.025 0.185
I3 −0.026 0.004 0.0 0.0 0.013 0.021 0.181
I4 −0.027 −0.004 0.0 0.0 0.013 0.020 0.181
I5 −0.039 −0.017 −0.013 −0.013 0.0 0.008 0.168
I6 −0.047 −0.025 −0.021 −0.020 −0.008 0.0 0.161
I7 −0.207 −0.185 −0.181 −0.181 −0.168 −0.161 0.0

Ranking values ri
I1 I2 I3 I4 I5 I6 I7

ri 0.368 0.201 0.193 0.170 0.094 0.040 −1.083

Table 1. Original representation v(Ii), feature vectors f(v(Ii)),
relative scores F̃ (f(v(Ii)), f(v(Ij))) and ranking values of seven
retargeted images Ω = {Ii}7i=1 in Figure 2.

where si and sj are subjective votes that the retargeted im-
ages Ii and Ij received, and we use the maximum number
of votes 63 for normalization. The relative score defined in
Eq.(11) satisfies the following two desirable properties:

• F̃ (f(v(Ii)), f(v(Ii))) = 0, ∀Ii ∈ Ω,

• Both (f(v(Ii)), f(v(Ij))) and (f(v(Ij)), f(v(Ii)))

are in the training pairs and F̃ (f(v(Ii)), f(v(Ij))) =

−F̃ (f(v(Ij)), f(v(Ii))), ∀Ii, Ij ∈ Ω.

3.3.3 F̃ ′ for images with symmetry

Only a small number of images are symmetric in the train-
ing set (6 images in RetargetMe). Therefore it is difficult
to train a different model for images with symmetry. In-
spired by the work of transfer learning [22], we build a sim-
ple composite model F̃ ′ that combines the model F̃ trained
for non-symmetry images with the difference of symmetry
feature values:

F̃ ′(f(v(Ii)), f(v(Ij))) =

F̃ (f(v(Ii)), f(v(Ij))) + w(Q7(Ij)−Q7(Ii)),
(12)

where Q7 is the symmetry metric specified in Eq.(10) and
w > 0 is a weight that is optimized using the symmetric
images in the training set to maximize the average Kendall
correlation coefficient, which is used in Section 4 to indi-
cate the degree of agreement between objective and subjec-
tive assessments. Note that a lower value of Q7 means bet-
ter symmetry quality and then F̃ ′(f(v(Ii)), f(v(Ij))) > 0
means Ii is of better quality than Ij .



(a) Source image Is (b) I1 (55) (c) I2 (42) (d) I3 (37) (e) I4 (31) (f) I5 (22) (g) I6 (18) (h) I7 (14)

Figure 2. A group in RetargetMe benchmark includes one source image Is and eight retargeted images {I1, I2, · · · , I8} (only seven are
shown here, which constitute an illustrative example for effectiveness of global ranking in Section 3.4). The subjective score for each
retargeting result is shown in parentheses. In our two-step OQA model, for each retargeting result Ii, i = 1, 2, · · · , 7, the original
representation v(Ii), the feature vector after NPE transformation f(v(Ii)), the relative score F̃ (f(v(Ii)), f(v(Ij))) and the ranking value
ri are presented in Table 1.

3.4. Effectiveness of global ranking

Note that the relative scores cannot always provide a
consistent ranking of all retargeted images in a set Ω. To
see this, one can easily construct an example in which I1
is better than I2, I2 is better than I3 and I3 is better than
I1. Another real example is illustrated in Figure 2 and Ta-
ble 1. In this example, F̃ (f(v(I1)), f(v(I2))) = 0.022 and
F̃ (f(v(I1)), f(v(I3))) = 0.026, meaning that I1 is better
than I2 and I3. Since 0.022 < 0.026, this implies I2 is
better than I3. However, F̃ (f(v(I2)), f(v(I3))) = −0.004,
meaning that I3 is better than I2, a contradiction.

In our two-step OQA method, we solve such potential
conflict by transforming relative scores into rank values
specified in Eq.(3). Our ranking strategy based on rank val-
ues is simple yet effective. Below we show that it always
produces consistent ranking in the training set. By substi-
tuting Eq.(11) into Eq.(3), we have

ri =
∑

Ij∈Ω\{Ii}

si − sj
63

=
nsi −

∑n
i=1 si

63
(13)

Since the value n = |Ω| and
∑n

i=1 si are the same for each
retargeted image Ii, the ranking based on ri equals to the
ranking based on the subjective votes si.

4. Experiments

We implemented the proposed two-step OQA method in
MATLAB and the source code is publicly available1. We
compare our method with eight representative OQA meth-
ods: BDS [28], BDW [26], EH [18], CL [10], SFlow [13],

1Information on the data underpinning the research results pre-
sented here, including how to access them, can be found at
http://47.89.51.189/liuyj and in Cardiff University’s data catalogue at
http://doi.org/10.17035/d.2017.0033306559.

CSim [14], Liang’s method [12] and ARS [33]. The com-
parison is performed in two experiments: one is the leave-
one-out cross validation on the RetargetMe benchmark [25]
(Section 4.1) and the other is a generalizability evaluation
on a novel dataset constructed in a new user study (Section
4.2).

4.1. Leave-one-out cross validation on RetargetMe

RetargetMe has 37 groups of images with subjective
preference scores and each group has one source image and
eight retargeted images. These 37 groups are classified into
six types: lines/edges (25), faces/people (15), texture (6),
foreground objects (18), geometric structure (16) and sym-
metry (6). These classifications are not exclusive, meaning
that one image can belong to more than one type.

To verify the performance of our method and compare it
with eight representative methods, we apply leave-one-out
cross validation (LOOCV) in RetargetMe. In each fold of
LOOCV, one group is used as the test set, with the remain-
ing groups as the training set. After 37 folds, each group
has been used as a test set once.

To estimate how well the objective ranking agrees with
the participants’ subjective voting, we follow the method
in [25] to use the Kendall correlation coefficient τ [11].
The value of τ is in [−1, 1] and higher value means better
agreement. The results are summarized in Table 2, classi-
fied according to six image types. We also compute a mean
Kendall correlation coefficient using all the images (last col-
umn in Table 2). The results show that

• Liang’s method [12], ARS [33] and our method are top
three in all nine methods;

• Our method consistently produces significantly better
results than [12], which uses the same seven metrics.
This result demonstrates that the linear combination of



Lines/edges Faces/people Texture Foreground objects Geometric structure Symmetry All
BDS [28] 0.040 0.190 0.089 0.167 −0.004 −0.012 0.083
BDW [26] 0.031 0.048 −0.009 0.060 0.004 0.119 0.046
EH [18] 0.043 −0.076 −0.063 −0.079 0.103 0.298 0.004
CL [10] −0.023 −0.181 −0.089 −0.183 −0.009 0.214 −0.068
SFlow [13] 0.097 0.252 0.161 0.218 0.085 0.071 0.145
CSim [14] 0.091 0.271 0.188 0.258 0.063 −0.024 0.151
Liang’s [12] 0.351 0.271 0.304 0.381 0.415 0.548 0.399
ARS [33] 0.463 0.519 0.444 0.330 0.505 0.464 0.452
Ours 0.437 0.505 0.429 0.536 0.438 0.536 0.473

Table 2. The mean Kendall correlation coefficients of 37 groups of images in RetargetMe. The top three of each type are in bold and the
best results are in blue.

(a) Source image (b) Checkpoint image pair 1 (c) Checkpoint image pair 2 (d) Checkpoint image pair 3

Figure 3. Three check point pairs. In (b) and (c), retargeted images on the left are obviously better than those on the right. In (d), the
retargeted image on the right is obviously better than the one on the left.

these seven metrics is over-simplified and our machine
learning framework can learn a better predictor from
human preference;

• Our method is better than ARS [33] in the image
types of foreground objects and symmetry. ARS is
slightly better than our method in the image types of
lines/edges, faces/people, texture and is better in geo-
metric structure. Overall, our method is slightly better
than ARS.

Our method uses two existing tools: GRNN [29] for ma-
chine learning with sparse data in a multidimensional space
and NPE [9] for feature space transformation that supports
out-of-samples. To demonstrate the performance of GRNN
and NPE, we compare GRNN with RBFN (another artifi-
cial neural network using radial basis functions) and SVR
(a typical kernel method), and compare NPE with ISOMAP
[30] and LLE [24]. The experimental results in Table 4
show that the combination of GRNN and NPE achieves the
best performance.

SVR RBFN GRNN
None 0.438 0.421 0.438
LLE 0.110 0.077 0.064

ISOMAP 0.328 0.369 0.344
NPE 0.456 0.388 0.473

Table 4. The mean Kendall correlation coefficients of images in
the RetargetMe benchmark for different machine learning meth-
ods and different feature space transformations (None means no
transformation is applied). The best result is shown in bold.

4.2. Generalizability on a novel dataset

To evaluate the generalizability of OQA methods to dif-
ferent image datasets, we conducted a new user study on
26 new groups selected in RetargetMe that lack subjective
scores2. These 26 groups are also classified into six types:
lines/edges (11), faces/people (5), texture (1), foreground
objects (15), geometric structure (7) and symmetry (4).

The original web-based user study in RetargetMe [25]
was based on the linked-paired comparison design [5]. In
the website of the survey, two retargeted images and the
source image were shown simultaneously at each time.
Each participant was asked to choose the retargeted im-
age with better quality. To avoid unreliable user input such
as random picking, we extend the web-based user study in
RetargetMe by adding checkpoint input and time check for
quality control. Any user input failed in either of these two
checks is discarded.

Checkpoint input refers to three special pairs of retar-
geted images with obvious preference (Figure 3). In each
user study session, these image pairs were randomly dis-
tributed, in which the obviously better images were located
on the left in two occasions and on the right in one occasion.
According to our preparatory experiments, participants with
high concentration can easily choose correct images, while
those who just randomly select images are likely to fail in
at least one checkpoint input.

Time check is a constraint that the average selection time
for an input image pair should not be shorter than 3 sec-

2There are 80 groups in RegargetMe. Only 37 of them have subjective
preference scores. From the remaining groups, we chose all the groups
without substantial similarity to those in the original 37 groups.



Lines/edges Faces/people Texture Foreground objects Geometric structure Symmetry All
Liang’s [12] 0.250 0.381 0.214 0.295 0.082 0.232 0.313
ARS [33] 0.351 0.345 0.571 0.371 0.388 0.607 0.313
Ours 0.393 0.524 0.786 0.400 0.347 0.339 0.407

Table 3. The mean Kendall correlation coefficients of 26 groups of images in our novel dataset. The best result of each type is shown in
bold.

onds. In our preparatory experiments, we found that setting
a fixed time limit for each image pair does not provide reli-
able indication as some cases are genuinely easier to decide
than others. However, the average selection time is effec-
tive in differentiating reliable and unreliable user input. A
participant who randomly selects images may still pass the
checkpoint input test by chance, but their average selection
time is likely to be much shorter than proper input.

We employed 232 participants who were postgradu-
ate students in research labs from Australia, UK, Canada,
China and USA. 168 of them passed all the checks and their
subjective scores were collected for 26 groups of images.

To evaluate the generalizability of OQA methods, we
use 37 groups of images from RetargetMe with provided
subjective scores as the training set. The trained model is
then applied to the novel dataset with 26 new groups of im-
ages. We compare the top three OQA methods (i.e., Liang’s
method [12], ARS [33] and our method) as indicated in Ta-
ble 2. The results are summarized in Table 3, demonstrating
that our method significantly outperforms Liang’s method
and ARS, and has better generalizability.

Since our method obtains the ranking of a group of retar-
geted images based on pairwise comparison, we further test
the reliability of the method when only a subset of images
are provided as input. In this test, we still use 37 groups
of images from RetargetMe with provided subjective scores
as the training set, but only use 7 of 8 retargeted images
in each group of our novel dataset as the test set. The test
is repeated 8 times and at each time a different retargeted
image in each group is removed. The results of 8 tests are
summarized in Table 5, demonstrating that our method sig-
nificantly outperforms Liang’s method and ARS, and has
better reliability.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
Liang’s [12] 0.286 0.355 0.304 0.275 0.311 0.282 0.374 0.319
ARS [33] 0.330 0.249 0.322 0.363 0.260 0.363 0.322 0.297
Ours 0.410 0.469 0.399 0.396 0.432 0.363 0.447 0.381

Table 5. The mean Kendall correlation coefficients of ranking 7
retargeted images in each group in our novel dataset, using Liang’s
method, ARS and our method. Each group has 8 retargeted images
and each of them is removed in turn, resulting in eight tests. The
best result in each test is shown in bold.

5. Conclusion
In this paper, we propose a simple yet effective two-

step OQA method based on a machine learning framework.

After representing a retargeted image in a six-dimensional
representation using six metrics in [12], we transform this
six-dimensional representation into a more regular feature
space by applying the NPE [9]. Based on this feature rep-
resentation, in the first step, we construct an objective func-
tion F̃ by training a GRNN model with the subjective pref-
erence scores from RetargetMe [25]. For symmetry im-
ages, an additional feature Q7 is further introduced into
a composite model F̃ ′ in Eq.(12). Both F̃ and F̃ ′ com-
pute a relative score for each pair of retargeted images.
In the second step, all relative scores are transformed into
a global ranking. Our experiments show that our method
consistently and significantly outperforms eight representa-
tive OQA methods, and correlates better with users’ sub-
jective preferences by means of a leave-one-out cross val-
idation test in RetargetMe and a generalizability test in a
new user study. In addition to the metrics defined in [12],
our learning-based method is general and may benefit from
including new metrics such as ARS [33] in the future work.
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