J Heuristics @ CrossMark
DOI 10.1007/s10732-017-9327-z

Tackling the edge dynamic graph colouring problem
with and without future adjacency information

Bradley Hardy! - Rhyd Lewis! -
Jonathan Thompson!

Received: 28 July 2016 / Accepted: 20 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract Many real world operational research problems, such as frequency assign-
ment and exam timetabling, can be reformulated as graph colouring problems (GCPs).
Most algorithms for the GCP operate under the assumption that its constraints are fixed,
allowing us to model the problem using a static graph. However, in many real-world
cases this does not hold and it is more appropriate to model problems with constraints
that change over time using an edge dynamic graph. Although exploring methods
for colouring dynamic graphs has been identified as an area of interest with many
real-world applications, to date, very little literature exists regarding such methods. In
this paper we present several heuristic methods for modifying a feasible colouring at
time-step ¢ into an initial, but not necessarily feasible, colouring for a “similar” graph
at time-step ¢ 4+ 1. We will discuss two cases; (1) where changes occur at random, and
(2) where probabilistic information about future changes is provided. Experimental
results are also presented and the benefits of applying these particular modification
methods are investigated.

Keywords Graph colouring - Dynamic graphs - Heuristics

This work was funded by an EPSRC scholarship (Project Code: 1376020). Information about the data that
underpins the results presented here, including how to access them, can be found in the Cardiff University
data catalogue at http://doi.org/10.17035/d.2017.0033322283.

B Bradley Hardy
hardyB @cardiff.ac.uk

Rhyd Lewis
lewisR9 @cardiff.ac.uk

Jonathan Thompson
thompsonJM1 @cardiff.ac.uk

1 School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK

Published online: 04 April 2017 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-017-9327-z&domain=pdf
http://doi.org/10.17035/d.2017.0033322283

B. Hardy et al.

1 Introduction

Given a graph G = (V, E) with vertex set V and edge set E, the NP-hard graph
colouring problem (GCP) aims to colour each vertex such that adjacent vertices are
coloured differently and the number of colours used is minimised. The minimum
number of colours required to colour a graph G is called the chromatic number of G,
denoted by x (G).

By considering the different aspects of a given problem instance and how they
might relate to the components of a graph (vertices, edges and colours), one can
reformulate many real world problems into a GCP. A prominent example is frequency
assignment (Aardal et al. 2007) where we wish to assign communication frequencies
(e.g. radio wavelengths) to a set of physical locations such that there is no interference.
Here, each location is represented by a vertex, an edge exists between two vertices if
their respective locations are within a certain proximity of one another (which could
lead to interference) and colours represent the communication frequencies. Other
examples include register allocation (Chaitin 1982), tournament scheduling (Costa
1995), exam timetabling (Erben 2001; Qu et al. 2009), designing seating plans (Lewis
and Carroll 2016) and grouping people in social networks (Tantipathananandh et al.
2007).

Most GCP methods suggested in the literature have only been applied to static
graphs and can therefore only be applied to real world problems under the assumption
that the size and constraints of a given problem are fixed (i.e. V and E are fixed in the
associated graph G = (V, E)). However, in areas such as the frequency assignment
problem (Dupont et al. 2009) this is not always appropriate because physical locations
can be added or removed from the communication network, or relocated within the
communication network.

On-line graph colouring, is one example of dynamic graph colouring that has
received some attention in the literature. In this case, one vertex and its associated edges
are revealed at each time-step. Once revealed, a vertex must be coloured using only the
information available up to and including that time-step and may not be “recoloured”
in subsequent time-steps. Research concerning on-line graph colouring mainly con-
sists of worst-case behaviour analysis of simple constructive algorithms (Gyarfas and
Lehel 1988; Lovasz et al. 1989).

The aim of this particular research is to explore graph colouring on edge dynamic
graphs where the edge set E changes over time. More specifically, we wish to look
at methods that are able to modify a feasible colouring for one graph into an initial
colouring for a new graph in a subsequent time-step. In doing so, we wish to explore
whether this modification approach leads to any advantages with regards to colouring
quality and/or time requirements. We also wish to explore how information about the
likelihood of future changes can be used to produce more robust colourings. To the
best of our knowledge, the problem of colouring edge dynamic graphs has received
very little attention in the literature to date.

This paper has the following structure: Sect. 2 will formally define edge dynamic
graphs and the associated graph colouring problem. Section 3 will then introduce ways
of representing a colouring (or solution) and the various solution spaces in which graph
colouring heuristics generally operate. In Sect. 4, the idea of future adjacency will be

@ Springer

Tackling the edge dynamic graph colouring problem

discussed along with move operators that can maintain the feasibility of a colouring.
Section 5 will then outline a general approach for solving the edge dynamic GCP (both
with and without future adjacency information) and define the different modification
operators used. Sections 6 and 7 then contain the experimentation details and results
respectively. Finally, Sect. 8 summarises the findings of the experiments and discusses
opportunities for future work.

2 Edge dynamic graphs

The importance of studying dynamic graphs and their associated problems is high-
lighted by Harary and Gupta (1997) who have described many practical application
areas, especially in the area of computer science, and postulate that techniques applied
to static graphs should be extended for dynamic graphs. Despite this, there has been
very little research regarding methods designed explicitly for colouring dynamic
graphs.

For the purpose of this particular work, we define a dynamic graph G =
(Go, Gy, ...,Gr) as a series of T + 1 static graphs where G, = (V;, E;) € G is
the static representation of G at time-step ¢ € {0, 1,..., T'}. At every time-step the
objective of the dynamic GCP is analogous to the static GCP (i.e. we wish to min-
imise the number of colours used). In terms of methodology, this means that we are
interested in finding a feasible k,-colouring for each time-step ¢, where k; is a good
approximation of x (G;) (see Sect. 3 for a formal definition of a “feasible” colouring).
Objectively, this is an attempt to minimise ZzT:() k;.

The concept of dynamic graphs can be considered as two separate cases: edge
dynamic graphs and vertex dynamic graphs. In this paper we focus solely on the
former case. For an edge dynamic graph, changes can only occur on the edge set E;
therefore V; = V for all time-steps ¢ € {0, 1, ..., T'}. Given an edge dynamic graph
G, consider the graph G; = (V, E;) for time-step ¢. To get to time-step ¢ 4+ 1 we define
a set of deleted edges E, | C E; and a set of new edges Et‘fH C (E\E;) where £ is

the set of all (“2/‘) possible edges between vertices in V. The edge set for time-step
t + 1is then defined as E, 41 = (E,\E,,) UE/, .
An example of how an edge dynamic graph can change between time-steps is

illustrated in Fig. 1. As mentioned, the vertex set V remains fixed between time-steps.

3 Colourings and solution spaces

In this section we introduce ways of representing a colouring (or solution) and the
various solution spaces that are commonly used with graph colouring heuristics.

A feasible colouring for a graph G = (V, E) is a partition of the vertex set V into
k disjoint (i.e. non-overlapping) subsets S = {S1, ..., S} such that adjacent vertices
are always in different subsets. By partitioning V in this way, each S; € S is an
independent set. We call S a k-colouring of G and S; the ith colour class of S. For
convenience, we can also use the colouring function ¢ : V. — {1, ..., k} which is
defined such that c(v) =i for all v € §;. If adjacent vertices are assigned to the same

@ Springer

B. Hardy et al.

G = (V, Ey) Git1 = (V, Et41)

Fig. 1 Edge dynamic graph with Ez_-o-l = {{v1, ve}, {v1, v7}, {v3, v7}, {v4, v5}, {v4, v7}, {9, v10}} and
Ef | = 1, v9), {v2, va}, {v2, v, {v2, w10}, {v7, v8}, {v7, vio}}

colour class, such that c(#) = c(v) and {u, v} € E, then this is called a clash. By
definition, feasible colourings have no clashes.

Another way of representing feasible colourings, not used here, involves graph
homomorphisms. In this representation, non-adjacent vertices are contracted to pro-
duce a complete graph with k hyper-vertices such that each hyper-vertex represents a
colour class (Hell and Nesetril 2004).

When considering heuristic methods for solving the static GCP, Hertz et al. (2008),
Lewis (2015), and Lewis et al. (2012) suggest three main solution spaces: (1) feasible
only, where every vertex is coloured, there are no clashes, and the number of colour
classes is allowed to vary; (2) complete, improper, where every vertex is coloured
but clashes are permitted; and (3) partial, proper, where no clashes occur but there
may be “uncoloured” vertices. The number of colour classes k is generally fixed when
operating in the latter two cases, though it is often reduced once a feasible k-colouring
has been obtained.

The feasible only solution space is rarely used for the static GCP. This is due to the
difficulty in determining which of two feasible k-colourings is “closer” to becoming a
colouring with k — 1 colour classes. One exception is a simulated annealing approach
proposed by Johnson et al. (1991). As we will see in Sect. 4, this solution space is
perhaps the most useful when considering the edge dynamic problem with probabilistic
future adjacency information. This is because working within this solution space allows
a colouring to be optimised with regards to a secondary objective without violating
the constraints of the GCP.

As mentioned, in the complete, improper solution space a colour class S; € S is
allowed to contain adjacent vertices. Therefore, an appropriate objective function for
this solution space is simply

k
£ =) IEN{S x Si}| ()

i=1

which is equivalent to the number of clashes in the colouring. If f(S) = 0 then S is
a feasible k-colouring.

@ Springer

Tackling the edge dynamic graph colouring problem

To move from one colouring S to a neighbouring colouring S” within the complete,
improper solution space, one popular strategy is to transfer a vertex v from its current
colour class S(y) to a different colour class S; where j # c(v). The vertex v to
be moved can also be chosen exclusively from the set of currently clashing vertices
(i.e. we can transfer v € S; if and only if Ju € S; such that u # v and {u, v} € E).
The tabu search algorithm TABUCOL (Hertz and Werra 1987) works in this solution
space and uses this particular move operator. Other examples can be found in Galinier
and Hao (1999), Johnson et al. (1991) and Lii and Hao (2010).

When considering a colouring S in the partial, proper solution space, the accom-
panying set of “uncoloured” vertices is defined as U = V\(Uf=1 S;), within which
clashes are permitted. In this solution space, a suitable objective function is

k
fS=UI=V]=) ISl)
i=1

which is simply the number of “uncoloured” vertices. As with the previous objective
function, f(S) = 0 indicates that S is a feasible k-colouring.

A common strategy for moving from one colouring S to a neighbouring colouring
S’ within the partial, proper solution space, is to transfer an “uncoloured” vertex
v € U to a colour class S; and then transfer all vertices adjacent to v in S; into U.
The tabu search algorithm PARTIALCOL (Blochliger and Zufferey 2008), which is a
modification of TABUCOL, works in this solution space and uses this move operator.

A discussion of alternative solution spaces, objective functions and neighbourhood
move operators for local search methods for the GCP can be found in Galinier and
Hertz (2006).

4 Future adjacency

In this section we discuss what is meant by future adjacency with regards to edge
dynamic graphs and introduce two neighbourhood operators that work in the feasible
only solution space.

For a graph G, = (V, E;) € G, let p;4+1(u, v) be the probability that {u, v} €
E; 1. At time-step ¢, we say that vertices # and v are future adjacent with probability
P41, v). If pry1(u, v) is known for every possible edge {u, v} € £ then we can
define the | V| x | V| future adjacency matrix P;41 such that the (u, v)th entry of P;1
is equal to p;41(u, v).

Regardless of whether P,y is known, given the distribution of future adjacency
probabilities for {u, v} € £\ E;, we can estimate the number of clashes in a feasible
k-colouring S; (for G;) in time-step ¢ + 1 as

k

S

F(S1) = E(pr+1) - E <|) |> (3)
i=1

where p;11 is simply the distribution of future adjacency probabilities for edges in
E\E; and E(p,+1) is the expected value of this distribution. If the number of vertices

@ Springer

B. Hardy et al.

in each colour class is approximately equal (i.e. |S;| ~ 7 fori = 1, ..., k) then Eq. (3)

can be simplified to
nn—k)
=E —.
F(Sr) (Pi+1) ok

It should be apparent that if Py is unknown then, other than increasing k, little
can be done with regards to minimising F(S;) because every edge needs to be treated
as having the same future adjacency probability. On the other hand, if P11 is known
then F(S;) is given by

“

k
FS) =YY D pra1(,v) ©)

i=1ues; ves;
v#EU

which is more useful. Vertices in S; can now be “recoloured” in an attempt to reduce
Eq. (5), without increasing k or violating the constraints of the GCP. In doing so, a
more robust, feasible k-colouring for G; can be produced that is likely to have fewer
clashes in time-step ¢ 4+ 1 and therefore be “closer” to a feasible colouring for G4 1
also.

4.1 Move operators that maintain feasibility

The main challenge when attempting to reduce F(S;) is the requirement for S; to
remain feasible for G;. As mentioned in Sect. 3, neighbourhood move operators
designed to work in the feasible only solution space are useful here. Outlined below
are two suitable move operators.

4.1.1 Kempe-Chain interchange

Given a feasible k-colouring S for G = (V, E), a vertex v € V and a colour class S;
such that j # c(v), the Kempe-chain from S.(,) to §; that contains v is the maximal
connected subset of V' which contains v and whose vertices are either in Sy or S;.
This is denoted by KEMPE(v, ¢(v), j). The Kempe-chain interchange takes the vertices
in KEMPE(v, ¢(v), j) and transfers those in colour class S;(y) to colour class S; and
vice versa. It should be noted that if [KEMPE(v, c(v), j)| = |Sc¢w)| + |S;] then the
Kempe-chain interchange is simply a re-labelling of the colour classes.

Itis shown in Lewis (2015) that if S is feasible for G then applying the Kempe-chain
interchange to S cannot result in an infeasible colouring for G.

To illustrate, the graph in Fig. 2 contains the following unique Kempe-chains:
{v1, v3, vg, v7}, {v2, V4, V8, V10}, {v5} and {vy}. Applying the Kempe-chain interchange
to KEMPE(vy, 1, 2) = {vy, v3, vg, v7} transfers vertices v; and v3 from S; to S and
vertices vg and vy from S5 to S1. Note that although there are (k — 1) x n = 10 distinct
Kempe-chain labels for this example, these labels only map onto four unique sets of ver-
tices, e.g. KEMPE(vy, 1, 2) can also be identified as KEMPE(v3, 1, 2), KEMPE(vg, 2, 1)
or KEMPE(v7, 2, 1).

@ Springer

Tackling the edge dynamic graph colouring problem

OO WO O WO,
O OO)

Fig.2 A feasible 2-colouring with the vertices in colour class S displayed in the row above those in colour
class S

4.1.2 Pair swap

An additional move operator for the feasible only solution space is the pair swap.
This operator transfers a single vertex v € V to a colour class S; such that j # c(v)
and no clashes are incurred whilst simultaneously moving a vertex u € S; to S¢(y)
such that, again, no clashes are incurred. It should be noted that a pair swap is the
simultaneous application of 2 Kempe-chain interchanges on KEMPE(v, c(v), c(u))
and KEMPE(u, ¢(u), c(v)) such that [KEMPE(v, ¢(v), c(u))| = |[KEMPE(u, c(u), c(v))|
=1.

By observing this relationship to Kempe-chain interchanges, it follows that the pair
swap does not alter the feasibility of an already feasible colouring either. There is only
one pair swap in Fig. 2 which transfers vertex vs from S to S» and vg from S5 to Sj.

5 Methods

The NP-hard nature of the static GCP (Garey and Johnson 1979), together with the
fact that no approximation algorithm exists with an approximation ratio of less than
two (Garey and Johnson 1976), means that heuristic methods are usually the go-to
solution approach for finding colourings with good approximations of x (G) for a given
graph G. Previously, local search, evolutionary and hybrid heuristics have all been
applied to solving the GCP, all of which have been shown to produce competitive results
on publicly available benchmark instances.! Due to the time constraints we choose to
enforce during our experimentation, we will focus on local search methods (Galinier
and Hertz 2006) here, which are usually quicker at locating local optima (Lewis 2015).

The most common approach for solving the static GCP via heuristic methods is to
solve a series of k-GCPs for G such that k is decreasing. The goal of a k-GCP is to
determine whether a graph G can be feasibly coloured using k colours. In practice,
an initial value for k can be calculated by a constructive operator that is guaranteed
to produce a feasible colouring for G, such as the well known greedy (Welsh and
Powell 1967) or DSATUR (Brélaz 1979) algorithms. Once an initial, feasible value of
k has been identified, an attempt can be made to find a feasible colouring with k — 1
colour classes. If this is successful then an attempt to find a feasible colouring with
one fewer colour class can be made, and so on, until some stopping criteria (e.g. a
time or computational limit) is reached.

! These can be found at http://mat.gsia.cmu.edu/COLOR/instances.html.

@ Springer

http://mat.gsia.cmu.edu/COLOR/instances.html

B. Hardy et al.

For the edge dynamic GCP, we can replace the constructive operator with a modi-
fication operator that takes a feasible colouring S; for G, and modifies it for use as an
initial (though not necessarily feasible) colouring S;4 for G;41. From here, we can
then attempt to change S;41 into a feasible k-colouring for G, where, at least for the
initial feasible colouring, k > |S;|. Our strategy for the latter is shown in Algorithm 1.

Algorithm 1 Generic Dynamic GCP Time-step Algorithm

Input: A graph G and a feasible colouring S; for G,
Output: A feasible colouring S; 11 for G;41

1: Spest < ¥

2: Si41 < S; modified in some way (see Sect. 5.1)

3tk < |Si41]

4: while not stopping criterion do

5: Attempt to make Sy a feasible k-colouring for G4
6: if S; is a feasible k-colouring for G, | then
7~
8

Sbest < St+1
k<k—1
9: if Spest = ¥ and a computation limit is reached then
10: k<—k+1
11: 841 < Spest
12: return Sy

A problem arises, however, if S; is modified into a k-colouring for G, such that
k < x(Gy41). If this happens then it will be impossible to find a feasible k-colouring
for G,41. To combat this, we allow the value of k to be increased as shown on Lines
9 and 10 of Algorithm 1.

As mentioned previously, one of the main objectives of this research is to explore
the different methods for modifying a feasible colouring for time-step ¢ into an initial
colouring for time-step ¢ + 1 (i.e. Line 2 of Algorithm 1). The essential question to be
answered is: can a feasible colouring for one graph G, be used in some advantageous
way to help find a feasible colouring for a similar but currently unknown graph G;41?

At this point it is worth noting that the edge dynamic GCP has previously been
considered by Preuveneers and Berbers (2004) who proposed an agent-based approach
for “repairing” colourings between time-steps; however, their method differs from our
approach as it is only concerned with the quality of the initial colourings achieved. As
such, it does not include any local optimisation between time-steps.

5.1 Modification operators

The final feasible colouring S; for G is likely to be a complete, improper colouring for
G+1. This holds because every vertex v € V will be coloured but the new edges E ;:L 1
could potentially cause clashes where none existed previously. With this knowledge,
we propose applying one of the following modification methods to find an initial
(but not necessarily feasible) colouring Sy for Gyy. The effectiveness of these

modification operators will be explored and assessed in Sect. 7.

@ Springer

Tackling the edge dynamic graph colouring problem

Method O (reset): Ignore S; completely and use a constructive operator to produce an
initial colouring Sy . This is the approach used for G and can be used
for a base-line comparison against the remaining methods for time-steps
t=1,...,T.

Method 1 (calculateClashes): Simply set S;+1 = S, calculate the number of clashes,
and then pass S;41 directly to a tabu search operator that operates in the
complete, improper solution space and attempts to remove all clashes to
achieve a feasible k-colouring for G;4 (where k = |S;]).

Method 2 (uncolourClashes): 1dentify pairs of clashing vertices in S; and then transfer
one vertex from each of these pairs to a set of “uncoloured” vertices U.
The resultant colouring ;1 is a partial, proper colouring for G;4; which,
along with U, can then be passed to a tabu search operator that operates
in the partial, proper solution space and attempts to feasibly colour all
“uncoloured” vertices, to achieve a feasible k-colouring for G;41 (where
k=5

Method 3 (solveClashes): First apply Method 2, to obtain a partial, proper colouring
Si41 for G;41 and a set of “uncoloured” vertices U. Then attempt to re-
insert each “uncoloured” vertex v € U into a colour class of Sy such that
no clashes are incurred. The residual graph G induced by the remaining
“uncoloured” vertices in U is then passed to a constructive operator which
produces a feasible k-colouring S for G. Finally, combine Sy and Sto
produce a feasible colouring for G;4; with k + k colour classes where
k=|S/| and k = |S|.

The details regarding the constructive and tabu search operators used within these
modification operators are discussed in Sect. 6.2.

5.2 Future adjacency reduction

As noted in Sect. 4, if Py is known then we can also attempt to reduce the estimated
number of clashes in S; for time-step ¢ + 1 by reducing F(S;), given by Eq. (5).
The approach outlined in Algorithm 2 is a two-stage approach that first attempts to
find a feasible colouring for the current time-step with a target number of colour
classes (Lines 1-10). It then attempts to reduce the estimated number of clashes in the
following time-step (Lines 11-16).

Stage 1 (Lines 1-10) of this approach is almost identical to Algorithm 1 with
the exception that a user-defined, target number of colour classes k* must also
be provided. For Stage 2 (Lines 11-16) a tabu search operator is implemented
that, at each iteration, identifies and executes the best Kempe-chain interchange or
pair swap, and then makes all inverse moves “tabu” for a given number of sub-
sequent iterations (see Sect. 6.2 for specific parameter settings). With regards to
the example given in Sect. 4.1 for Fig. 2, the inverse moves of the Kempe-chain
interchange applied to KEMPE(vy, 1, 2) is the Kempe-chain interchange applied to
KEMPE(v1, 2, 1), KEMPE(v3, 2, 1), KEMPE(vg, 1, 2) or KEMPE(v7, 1, 2).

@ Springer

B. Hardy et al.

Algorithm 2 Two-stage Approach for “Robust” Colourings

Input: A graph G, 1, a target number of colour classes k*, a feasible colouring S; for G; such that
|S¢| > k* and the future adjacency matrix P;4o

Output: A feasible colouring Sy for G, such that |S;4 1| > k*
1: Spest < ¥
2: §;41 < S; modified in some way (see Sect. 5.1)
3k < |Si41]
4: while not stopping criterion and |Spegt| # k* do
Attempt to make Sy a feasible k-colouring for G,
if Sy is a feasible k-colouring for G, then

Shest < St+1

k<—k—1
9: if Spest = ¥ and a computational limit is reached then
10: k<« k+1
11 Fpest < F(Spest) (see Eq. (5) in Sect. 4)
12: while not stopping criterion do
13: Attempt to reduce F(S;41)
14: if F(Si41) < Foest then
15: Sbest < St+1
16: Fbest < F(Sr41)
17: 8141 < Sbest
18: return Sy

A

6 Experimentation details
6.1 Test instances

In our experiments we consider edge dynamic random graphs. For each test instance
we specify the number of vertices n = | V|, a desired density d, an “expected” change
probability p and a number of time-steps 7. In our case we use n = 500,> d €
{0.1,0.5,0.9}, p € {0.005,0.01,...,0.05} and T = 10. These values of n and
d are broadly in line with the parameters of the static random graphs presented in
the benchmark instances (referenced in Sect. 5 and Footnote 1). Preliminary trials
indicated that larger values of p greatly diminished the benefits of using a modification
operator between time-steps. For each combination of these parameters, 20 dynamic
graphs were produced.

In each case, G is constructed such that every edge {u, v} € £ exists with proba-
bility d. Thenfor¢t =0, 1,..., T — 1, every edge in E; is copied to the set of deleted
edges E, | with probability p and the edges in £\ E; are copied to the set of new edges
E;jr | with probabilities sampled from the uniform distribution U[0, %]. By using
this distribution, each edge in £\ E; is copied to E t++1
% which ensures that the density remains approximately equal over all time-steps.

with an expected probability of

2 Trials were also conducted on test instances with n = 250 and 1000 and the relationships observed
between the different modification operators were similar regardless of the value of n. To reduce the
volume of results presented, we have opted to present results regarding test instances with n = 500 only.

@ Springer

Tackling the edge dynamic graph colouring problem

6.1.1 Legal parameter combinations

Note that at time-step ¢ there are | E;| active edges out of the |£| possible edges between
all the vertices in V where |£]| = (“2/‘). If at each time-step a proportion p of the active
edges are deleted and a proportion ¢ of the non-active edges are added then

|Ei1l = |Ei| — |E; |+ |ES
= |Ei| = plE| +q(E] — |E)).

If we want the density of G to remain approximately equal to d over all time-steps
then |E;| ~ d|€&| for all ¢ and the above equation becomes

|Er1] = dI€] — pd|E| + q(I€] — d|E]).

Setting |E;11| = d|€| and rearranging gives ¢ = %. Hence, if each edge in E; is

added to E;H with probability p then each non-active edge in £\ E; should be added
to E ;jrl with probability %.

As q is a probability, it must hold that 0 < g < 1. It therefore follows that p and
d must satisfy % < land p < %. Because p is also a probability (satisfying
0 < p < 1) these inequalities can only be reasonably violated when d > 0.5. Figure 3
clearly illustrates the legal combinations of p and d (represented by the shaded area).

6.2 Algorithm parameters

For our experiments we used DSATUR (Brélaz 1979) as our constructive operator. In
the case of Gy, this is used to find an initial colouring (i.e. DSATUR replaces Line

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Expected Change Probability

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Desired Density

Fig. 3 Legal combination of expected change probability p and desired density d that maintain approxi-
mately equal density of an edge dynamic graph over all time-steps

@ Springer

B. Hardy et al.

2 in Algorithms 1 and 2 for G). We used a time limit of 10 seconds’ per time-step
(i.e. Line 4 in Algorithm 1, and Lines 4 and 12 in Algorithm 2). If this time limit had
been set much longer, say hours, then the advantage of modifying colourings between
time-steps obviously diminishes.

As mentioned in Sect. 5, local search heuristics lend themselves more appropriately
to this short time limit in comparison to more elaborate evolutionary or hybrid methods.
Therefore, we exclusively use tabu search operators to solve each k-GCP (i.e. Line
5 in Algorithms 1 and 2). More specifically, we use the TABUCOL (Hertz and Werra
1987) and PARTIALCOL (Blochliger and Zufferey 2008) algorithms in the complete,
improper and partial, proper solution spaces, respectively. These algorithms use the
neighbourhood move operators and objective functions outlined in Sect. 3.

At each iteration of these algorithms, the best “non-tabu” move is selected and
executed. The inverse moves are then made “tabu” for 0.6 x f(S’) + r iterations,
where f is the objective function given in Egs. (1) and (2) respectively, S’ is the
resultant colouring after the neighbourhood move, and r is a random integer from the
set {0, 1, ..., 9} (this tabu tenure is recommended in Blochliger and Zufferey 2008;
Hertz and Werra 1987).

We implement TABUCOL such that only the moves that involve currently clashing
vertices are considered. By doing so, the algorithm only examines the problematic
region of the neighbourhood of all possible moves. By design, PARTIALCOL acts in
a similar manner by only considering the moves that involve currently “uncoloured”
vertices.

Our implementations of TABUCOL and PARTIALCOL also include an aspiration
criterion that allows “tabu” moves to be selected and executed if they lead to a colouring
which has fewer clashes or “uncoloured” vertices, respectively, than the best colouring
observed up until that iteration.

During execution, the target number of colour classes is adjusted in the following
way. If a feasible k-colouring, where the initial value of k is defined by the modification
operator, cannot be obtained within half of the allotted time limit then k is increased by
1. If a feasible k-colouring cannot then be obtained within half of the remaining time
limit then & is again increased by 1, and so on (i.e. Lines 9 and 10 of Algorithms 1 and 2).
This adjustment is particularly useful if the initial value of k satisfies k < x(G;41)
(see Sect. 5).

Note that Method 1 operates exclusively in the complete, improper solution space,
and Method 2 operates exclusively in the partial, proper solution space. On the other
hand, Methods O and 3 can operate in either solution space as required. Because of
this, only comparisons between methods operating in the same solution space will be
compared (i.e. Methods 1 and 2 will not be compared against one another).

The tabu search operator described in Sect. 5.2 for reducing F(S;) (i.e. Line 13
of Algorithm 2) uses a tabu tenure of |2ﬂ iterations, which for our test instances is
250. When applying Algorithm 2 to test instances with d = 0.1, 0.5 and 0.9, we have
found that appropriate values of k* lie in the ranges of 12—18, 4870 and 125-170

3 All algorithms were programmed in C+4-4- and executed on a 3.3 GHZ Windows 7 PC with an Intel Core
13-2120 processor and 8§ GB RAM.

@ Springer

Tackling the edge dynamic graph colouring problem

respectively. If the initial, feasible colouring achieved has less than k* colour classes
then empty colour classes are added until k* is reached.

7 Results

In this section we present analysis of our experimental results. The majority of our
data was found to be non-normally distributed, therefore non-parametric statistical
techniques are employed. Unless stated otherwise, all statistical comparisons are based
on the Wilcoxon signed rank test with significance level @ = 0.01.

7.1 Without future adjacency information

We first consider the situation where we have no information regarding the likelihood
of changes between time-steps (i.e. changes to the edge set occur at random). In this
case our goal is to use the available time limit to find feasible colourings for each
G, € G with the fewest number of colour classes using the approach described in
Algorithm 1.

7.1.1 Initial, feasible colourings

We start by comparing the initial, feasible colourings achieved when applying different
modification operators. For all values of d and p tested, Methods 1 and 2 were found to
achieve initial, feasible colourings with significantly fewer colour classes than Methods
0 and 3 but there is a trade off as they also required significantly more time to do so.
These observations can be seen in Fig. 4 and Table 1, respectively.

A main contributing factor to the time difference may be found in the nature of
the different methods: Methods 0 and 3 both start from feasible colourings, whereas
Methods 1 and 2 do not and therefore require more time to move to a feasible region of
the solution space. In fact, observations in Table 1 with values greater than 5 seconds
indicate that, for at least half of the test instances, with the associated parameters
settings the initial value of £ has been increased at least once.

The number of colour classes in the initial, feasible colourings achieved by Method
3 was found to be significantly and positively correlated to p for all values of d tested.
This leads to observations in which Method 3 achieves initial, feasible colourings
with both significantly fewer and significantly more colour classes than Method O (see
Fig. 4).

Considering computational effort, we found that the time required by Method 3 to
achieve initial, feasible colourings was significantly less compared to Method 0 for
all values of d and p. Both Methods 0 and 3 employ the same constructive operator
(DSATUR); however, Method O applies it to the whole graph G, at each time-step f,
whereas Method 3 only applies it to a residual graph of G;, which is subsequently
“smaller” than G;. We conclude, therefore, that applying Method 3 to dynamic graphs
with low values of p is advantageous with regards to both the number of colour classes
in the initial, feasible colourings achieved and the time required to obtain them.

@ Springer

B. Hardy et al.

1 d=0.1andSS.=Cl. 1 d=0.1andS.S.=P.P.
8 16 g1 ——o
o o
3 15 3 15
° °
o o
5 14 5 14
P P
@ 3
o o
£ 13| B—8—8—8—8—8—8—8—8—=8 £ 13| B—8—8—8—8—8—8—8—8—=8
=3 =3
=4 =
12 12
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Expected Change Probability Expected Change Probability
—6—reset —B—calculateClashes ~——solveClashes —©—reset —B—uncolourClashes ——solveClashes
0 d=0.5andS.S.=C.l. 70 d=0.5andS.S. = P.P.
g VR _
o 65 & 65
=] o
3 60 3 60
© ©
o o
6 55 6 55
@ @
2 B—68—8—8—8——=——J—8——-8—=8 2 —e—8—s—8&8—8—8—8————
£ 50 £ 50
S S
= 4
45 45
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Expected Change Probability Expected Change Probability
—O—reset —H—calculateClashes ——solveClashes —O—reset —B—uncolourClashes —%—solveClashes
180
d=0.9andS.s.=C.l. 180 d=0.9andS.S.=P.P.
» o
g 10 /R/‘/x/x———x"’x’_'x £ 1o //x——"“’*_’(
g o
C 160 C 160
=3 =3
o o
3 150 S 150
k] s
5 140 5 140
o o
E w|lg 585 o888 88— £ 0|88 8 85 8 B8 88
=4 =4
20 120
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Expected Change Probability Expected Change Probability
—6—reset —HB—calculateClashes ——solveClashes —©—reset —B—uncolourClashes ——solveClashes

Fig.4 Mean number of colour classes in initial, feasible colourings (LHS represent methods in the complete,
improper solution space, RHS represent methods in the partial, proper solution space, and rows from top to
bottom represent graphs with d = 0.1, 0.5 and 0.9, respectively)

7.1.2 Final, feasible colourings

We now look at the final (or “best”), feasible colourings achieved after applying dif-
ferent modification operators. The Friedman test with significance level « = 0.01
shows no significant difference in the number of colour classes of the final, feasible
colourings achieved when using any of the modification operators on test instances
with d = 0.1. This continues to hold for Methods 0, 2 and 3 operating in the partial,
proper solution space on test instances with d = 0.5.

In comparison to Method 0, Method 1 was found to produce final, feasible colour-
ings with significantly fewer colour classes, for d = 0.5 with small values of p. For
small values of p, it is likely that an algorithm that uses Method 0 will require more

@ Springer

Tackling the edge dynamic graph colouring problem

Table 1 Median time (in seconds) required to obtain an initial, feasible colouring

d M. P
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

5.055 5351 5312 5226 5733 5406 5320 5296 5421 5554
4431 5.008 5.039 5008 5008 5039 5008 5008 5086 5.008
0* 0* 0* 0* 0* 0* 0* 0* 0* 0*

05 0 0.015 0.015 0.015 0.015 0.015 0015 0015 0.015 0.015 0.015
1 1732 2.683 2504 2887 3.136 3362 3572 3409 4126 3.534
2 1.920 2278 2511 2582 3.058 3.097 2324 2723 3.058 3.058
3 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
09 0 0.016 0016 0.016 0.016 0.016 0.031 0016 0.016 0.016 0.016
1
2
3

Results for test instances with d = 0.1 are omitted due to their relatively small values, which were deemed
to be insufficiently accurate to present

0 represents a time less than 1073 seconds

* A time that is significantly less than all others for the same values of d and p

time to achieve a feasible colouring with the same number of colour classes as the
initial, feasible colourings achieved by Method 1, which is often also the final, feasible
colouring.

On the other hand, Methods 1 and 2 achieve final, feasible colourings with signif-
icantly more colour classes than Method O for d = 0.9 with some values of p. This
observation is likely due to the relatively large amount of time required by Methods 1
and 2 to find an initial, feasible colouring compared to Method O for d = 0.9 with all
values of p (see Table 1). This “wasted” time then translates to time not being allo-
cated to finding feasible colourings with fewer colour classes. For the same reasons,
Method 3 was observed to achieve final, feasible colourings with significantly fewer
colour classes than those achieved when using Methods 0 to 2 for d € {0.5, 0.9} with
some values of p.

The following time comparisons correspond to trials where employing the cor-
responding modification operators achieved final, feasible colourings with an equal
number of colour classes. These results are displayed in Table 2.

When using Methods 1 and 2, the time required to achieve a final, feasible colouring
was found to be significantly less for d = 0.1 with all values of p compared to Method
0. Both of these methods were also able to reach final, feasible colourings significantly
faster than Method 3 for d = 0.1 with some values of p. These observations are again
likely due to the fact that the initial, feasible colourings achieved by Methods 1 and 2
are also the final, feasible colourings achieved for d € {0.1, 0.5} with low values of
p- The opposite was found to hold for d = 0.9 and most values of p. This is probably
the result of the “wasted” time mentioned previously with regards to finding an initial,
feasible solution for d € {0.5, 0.9} and high values of p.

Unlike Methods 1 and 2, Method 3 did not require significantly more time than
Method 0 for any combination of d and p to achieve final, feasible colourings. More-
over, for d = 0.1 with all values of p, and d = 0.5 with some low values of p,
it required significantly less time. It should be highlighted that for low values of p,

@ Springer

B. Hardy et al.

Table 2 Median time (in seconds) required to obtain final, feasible colourings with an equal numbers of
colour classes across all modification operators for the given solution space

d SS. M. p
0.005 0010 0015 0.020 0025 0.030 0035 0.040 0.045 0.050

05 CL 0 3947 3.682 3245 3276 3.799 3417 3316 3931 2839 2901
1 1.607 2.824 3.058 3.385 3.167 3.783 3.635 3931 4227 3572

3 0.874* 1.622 2348 2325 3526 2.801 2987 3.151 3.166 3.105

PP. 0 3136 3.198 2.855 2.668 2996 2800 2481 2980 3.237 2933

2 2247 2200 2589 3299 3.869 3.121 2402 2964 3.620 2.823

3 1.669 2324 2324 2207% 2746 2714 2901 2652 2769 2948

09 CIL 0 5662 5351 4977 6.052 4586 4.882 5.710 4.695 5.195 4.984
1 6.661 7.191 7.129 7.442 7894 7378 7559 7.550 7.488 7.933

3 6.224 3.993* 4711 5507 4.150 5.616 6.139 5070 5.132 4.851

PP. 0 4274 4851 6.100 5218 5.117 3.947 4532 4.095 4.226 4.789

2 4852 5460 5257 5640 5882 6.380 6.217 5881 6.396 6.021

3 4259 4477 4337 5117 5226 3.885 4228 4454 5.070 4.789

As with Table 1, results for test instances with d = 0.1 are omitted as they were deemed to be insufficiently
accurate to present
* A time that is significantly less than all others for the same solution space, and values of d and p

Method 3 is able to produce initial, feasible colourings with significantly fewer colour
classes than Method 0 and requires less time to do so. This has a knock-on effect which
allows the algorithm to attempt to find feasible colourings with fewer colour classes
from an earlier point in the allotted time limit.

7.2 With probabilistic future adjacency information

We now consider the situation where the future adjacency matrix P41y is known for
every time-step t € {0,..., T — 1}. By using this additional information we have
implemented the approach outlined in Algorithm 2 in an attempt to produce more
robust colourings. Here we explore how our approach affects the initial number of
clashes at the start of each time-step, the number of colour classes in the initial,
feasible colourings achieved, and the time required to achieve these colourings. Final,
feasible colourings are not be explored, because altering the value of k* will naturally
cap the number of colour classes in these colourings.

7.2.1 Initial clashes

The secondary objective of the approach outlined in Algorithm 2 is to reduce the
value of F(S;) such that the returned colouring S; has fewer expected future clashes
for G;41. To measure the effectiveness of our approach, we compare the number
of clashes at the start of the following time-step when using our approach against an

@ Springer

Tackling the edge dynamic graph colouring problem

Table 3 Significant differences between the number of clashes at the start of each time-step when using
modification operator 3 (solveClashes) within our approach (Algorithm 2) compared against an algorithm
without any secondary optimisation on test instances with d = 0.1

k* p
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

2 - - - - - - - - - -
13 - - - - - - - - - X
14 - - - X X X X X X X
15 X X X X X X X X X
16 X X X X X X X X X
17 X X X X X X X X X X
18 X X X X X X X X X X
“X” indicate that our approach achieves colourings with significantly fewer clashes, and “~” indicates no

significant difference

algorithm that does not include a secondary optimisation stage (i.e. against Algorithm 2
with Lines 11-16 omitted).

Our results show that the number of clashes at the start of the following time-
step is significantly reduced dependent on both k* and p. As k* becomes larger than
x(Gr+1), we begin to observe fewer clashes at the start of the time-step ¢ 4+ 1 for
higher values of p. This is likely due to the fact that as k* increases, so too does the
number of feasible k*-colourings, which grants more opportunities for our method to
reduce F(S;). Moreover, as k* increases, the values of p decrease for which we first
observe these significant reductions.

For example, consider test instances withd = 0.1 where itis likely that x (G,;) ~ 12
or 13 forall¢ € {0, 1, ..., T} (illustrated in Table 3). When using Method 3 within
our approach and operating in the complete, improper solution space, significantly
fewer clashes were observed for k* = 13 with p = 0.05, k* = 14 with p > 0.02,
k* € {15, 16} with p > 0.01, and k* € {17, 18} with all values of p.

It can also be shown that the magnitude of the reduction is significant and positively
correlated with k* for all modification operators. This can be seen in Fig. 5 where the
two lines (corresponding to the omission and inclusion of secondary optimisation)
become further apart as the value of k* increases.

7.2.2 Initial, feasible colourings

Here, we assume that if a colouring S; has fewer clashes for the following time-step
then our modification operators should require less time to achieve initial, feasible
colourings. It might also be possible that these initial, feasible colourings will have
fewer colour classes. We now investigate whether our results support these hypotheses.

In our experiments we found that secondary optimisation of F(S;) significantly
reduced the time required to achieve initial, feasible colourings when using Methods
1 and 2 for mostinstances withd = 0.9,k* > 143 and p > 0.01 and 0.02, respectively.
For these test instances, we also observed a high level of reduction with regards to

@ Springer

B. Hardy et al.

120

Number of Clashes

80

60

50 55 60 65 70
Target Number of Colour Classes
® no secondary opt. A w. secondary opt.

Fig.5 Mean number of clashes in S; for time-step 7 + 1 against the target number of colour classes k* for
test instances with d = 0.5 and p = 0.05 whilst applying modification operator 1 (calculateClashes)

the number of clashes at the start of a time-step, which supports our hypothesis that
reducing clashes leads to reduced time requirements. Conversely, there appears to be
no effect on the number of colour classes in the initial, feasible colouring achieved
when using Methods 1 and 2.

However, these modification operators are still able to produce initial, feasible
colourings with significantly fewer colour classes than Method O provided that £* is
small enough (i.e. k* < 15, 66 and 164 for test instances with d = 0.1, 0.5 and 0.9
respectively). In addition, the time required to achieve these colourings is dependent
on both k* and p, as illustrated in Table 4. Therefore, our secondary optimisation when
used in conjunction with Methods 1 and 2 can produce initial, feasible colourings with
fewer colour classes and require less time to do so in comparison to Method 0 for low
values of k* and p.

For Method 3 there is no significant difference in the time required to reach an
initial, feasible colouring when including or omitting the secondary optimisation phase
in most cases. In the few instances where differences do occur (for test instances with
d = 0.9, operating in the complete, improper solution space), there are no observable
patterns with regards to the values of k* and p. In comparison to Method 0, for all
values of k*, d and p, Method 3 requires significantly less time to achieve initial,
feasible colourings for the same reasons outlined in Sect. 7.1.

With regards to the number of colour class in the initial, feasible colourings achieved
by Method 3, any significant differences when compared against omitting the sec-
ondary optimisation appear to be dependent on k*. For low values of k* there are
no significant differences. For mid-range to high values of k* there is a significant
reduction (an example of which is illustrated in Fig. 6). On the other hand, significant
increases were observed for test instances with d = 0.1, the highest values of k* and
low values of p. When k* is much larger than x (G) for a given graph G, our algorithm

@ Springer

Tackling the edge dynamic graph colouring problem

Table 4 Significant differences between the time required to achieve an initial, feasible colouring when
using modification operator 1 (calculateClashes) within our approach (Algorithm 2) compared against
Method 0 on test instances with d = 0.9

k*

0.005

0.010

0.015

0.020 0.025 0.030 0.035

0.040

0.045 0.050

125
128
131
134
137
140
143
146
149
152
155
158
161
164
167
170

(ol clcleolNe]

KoK XX X X X X X

o

HKHE XX X XX X XOOOOoOOoOo

e

XX XX X X X I OO0 00000

o

HXHE X X X X X O OOO OO OoOOo

ke

OO0 OO0 O0OOoOO0o
©O O OO0 O0OO0OO0oOOo
OO0 OO0 OO0 0O

XXX X X X
XK X XX
XXX X X

o
>
>

XXX X X O OO0OOOOoOOoOOoOOoOOo

o

©O 00O O0O0CO0OO0OO0O0oOO0o

XoRX X

e

OO0 O O0O0O0OO0O0O0OOoOOo

XXX

X

“X” indicate that our approach requires significantly less time, “O” indicates the opposite, and “—

no significant difference

Number of Colour Classes

70.0

@
N
@0

65.0

»

indicates

0.01

@ reset

0.02 0.03 0.04
Expected Change Probability

A no secondary opt. M w. secondary opt.

0.05

Fig. 6 Mean number of colour classes in initial, feasible colourings for test instances with d = 0.5 and
k* = 60 whilst applying modification operator 3 (solveClashes) in the complete, improper solution space

@ Springer

B. Hardy et al.

Table 5 Significant differences between the number of colour classes in the initial, feasible colourings
achieved when using modification operator 3 (solveClashes) within our approach (Algorithm 2) compared
against Method O on test instances with d = 0.5

k* p
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

48
50
52
54
56
58
60
62
64
66
68
70 (6]

o
o

XXX
o

KoK X X X XX

O O O O X X X X X X X
O O O O O X X X X X X
O O O OO0 O X X X X X
O O O OO0 OO0 X X X X
O O O OO0 OO0 X X X
OO0 O O0O0O0O0OO0OO0oOO0OOo

O O O OO0 OO0

o o O
OO0 O O0OO0OO0OO0O0oOO0o

©C O OO0 00O Oo

@)
@)
@)
@)
@)
@)
@)

“X” indicate that our approach achieves colourings with significantly fewer colour classes, “O” indicates
the opposite, and “—” indicates no significant difference

is more likely to find an initial, feasible k-colouring for G such that k < k* and, there-
fore, a number of empty colour classes will be added to this colouring (see Sect. 6.2).
During secondary optimisation, it is likely that vertices are being moved into these
empty colour classes and, subsequently, these colour classes are less likely to feasi-
bly accommodate “newly clashing” vertices at the start of the following time-step.
Therefore, depending on the test instance, our experiments appear to both support and
contradict our hypothesis with regards to secondary optimisation leading to initial,
feasible colourings with fewer colour classes.

In comparison to Method 0, the number of colour classes in the initial, feasible
colouring produced by this modification operator are dependent on k* and p, similar
to the case without future adjacency information. For low values of k* and p, there
are significantly fewer colour classes and vice versa for high values of k* and p. As
k* increases, the value of p decreases, for which these significant differences can be
observed, as illustrated in Table 5.

8 Conclusions and future work

This paper has introduced a number of methods for modifying colourings for graphs
whose edge sets are subject to change over time. We have also introduced a tabu search
method which maintains the feasibility of a colouring for the current time-step whilst
attempting to reduce the estimated number of clashes in the subsequent time-step, thus
producing more robust colourings.

@ Springer

Tackling the edge dynamic graph colouring problem

Our experiments have shown that, for edge dynamic graphs without future adja-
cency information, initial colourings with significantly fewer colour classes can be
achieved by using Methods 1 and 2 (calculateClashes and uncolourClashes, respec-
tively), which both modify a feasible k-colouring for G, into an infeasible k-colouring
for G, and then pass this colouring directly to a tabu search operator. However, there
is a significant trade off with respect to the time required to achieve an initial, feasible
colouring when these modification operators are applied. These operators were also
found to achieve final, feasible colourings with both significantly fewer or more colour
classes depending on p. The time required to achieve comparable final colourings via
these methods also appears to be dependent on both d and p.

It has also been shown, again without future adjacency information, that Method
3 (solveClashes), which modifies a feasible k-colouring for G; into a feasible k’-
colouring for Gy such that K" > k, can also achieve initial, feasible colourings with
significantly fewer colour classes for small values of p. This modification operator
was also shown to require significantly less time to produce initial, feasible colourings
for all values of d and p. Finally, this modification operator also results in final,
feasible colourings with the same or significantly fewer colour classes and requires
significantly less time to do so for low values of d and p.

By using future adjacency information to reduce the estimated number of clashes
in the following time-step, the number of clashes observed at the start of each
time-step is significantly reduced for high values of k* and p. In some cases, reduc-
ing the initial number of clashes has also reduced the amount of time required to
achieve initial, feasible colourings and the number of colour classes in these colour-
ings.

All of the previous conclusions against Method O (reset) without future adjacency
information continue to hold here but become dependent on the value of k* also, with
the strength of the statements diminishing as the value of k* increases.

Future issues of interest may include the addition of a cost associated with altering
the colour of a vertex between time-steps, in a similar fashion to the dynamic frequency
assignment problem in Dupont et al. (2009). If a colouring is no longer feasible in the
subsequent time-step, then it is desirable to achieve feasibility by “recolouring” as few
vertices as possible. We hypothesise that reducing the estimated number of clashes
in the following time-step will also reduce the number of colour changes required
between time-steps.

Moving away from the edge dynamic GCP, some of our previous work has intro-
duced and explored the effects of modification operators for the vertex dynamic GCP
without future change information (see Hardy et al. 2016). We plan to extend this
work, as we have done here, to explore the situation where information regarding the
likelihood of future changes is provided. More specifically, we wish to investigate
whether this information can again be used in some advantageous way.

The main foreseeable problem with such work is the difficulty in formulating a
“future cost” function analogous to Eq. (5) for the vertex dynamic problem. When a
new vertex is introduced, it is not determined beforehand which colour class it will be
placed in, which makes the question “how likely is it that we can feasibly colour the
new vertex?” a very difficult one to answer in practice.

@ Springer

B. Hardy et al.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Aardal, K.I., Van Hoesel, S.P., Koster, A.M., Mannino, C., Sassano, A.: Models and solution techniques for
frequency assignment problems. Ann. Oper. Res. 153(1), 79-129 (2007)

Blochliger, 1., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme.
Comput. Oper. Res. 35(3), 960-975 (2008)

Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251-256 (1979)

Chaitin, G.J.: Register allocation & spilling via graph coloring. ACM Sigplan Not. 17(6), 98-101 (1982)

Costa, D.: An evolutionary tabu search algorithm and the NHL scheduling problem. INFOR Inf. Syst. Oper.
Res. 33(3), 161-178 (1995)

Dupont, A., Linhares, A.C., Artigues, C., Feillet, D., Michelon, P., Vasquez, M.: The dynamic frequency
assignment problem. Eur. J. Oper. Res. 195(1), 75-88 (2009)

Erben, W.: A grouping genetic algorithm for graph colouring and exam timetabling. In: Burke, E., Erben, W.
(eds.) Practice and Theory of Automated Timetabling III. PATAT. Lecture Notes in Computer Science,
vol 2079. Springer, Berlin, Heidelberg (2000)

Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379-397
(1999)

Galinier, P.,, Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33(9),
2547-2562 (2006)

Garey, M.R., Johnson, D.S.: The complexity of near-optimal graph coloring. JACM 23(1), 43-49 (1976)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman & Co., San Francisco (1979)

Gyarfas, A., Lehel, J.: On-line and first fit colorings of graphs. J. Graph Theory 12(2), 217-227 (1988)

Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79-87 (1997)

Hardy, B., Lewis, R., Thompson, J.: Modifying colourings between time-steps to tackle changes in dynamic
random graphs. In: Chicano, F.,, Hu, B., Garcia-Sadnchez, P. (eds.) Evolutionary Computation in Com-
binatorial Optimization. EvoCOP. Lecture Notes in Computer Science, vol 9595. Springer, Cham
(2016)

Hell, P., Nesetril, J.: Graphs and Homomorphisms (Volume 28 of Oxford Lecture Series in Mathematics
and its Applications). Oxford University Press, Oxford (2004)

Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math.
156(13), 2551-2560 (2008)

Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345-351 (1987)

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an exper-
imental evaluation; part II, graph coloring and number partitioning. Oper. Res. 39(3), 378-406 (1991)

Lewis, R.: A Guide to Graph Colouring. Springer, Berlin (2015)

Lewis, R., Carroll, F.: Creating seating plans: a practical application. J. Oper. Res. Soc. 67(11), 1353-1362
(2016)

Lewis, R., Thompson, J., Mumford, C., Gillard, J.: A wide-ranging computational comparison of high-
performance graph colouring algorithms. Comput. Oper. Res. 39(9), 1933-1950 (2012)

Lovisz, L., Saks, M., Trotter, W.T.: An on-line graph coloring algorithm with sublinear performance ratio.
Ann. Discret. Math. 43, 319-325 (1989)

Li, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241-250 (2010)

Preuveneers, D., Berbers, Y.: ACODYGRA: an agent algorithm for coloring dynamic graphs. Symb. Numer.
Algorithms Sci. Comput. 6, 381-390 (2004)

Qu, R., Burke, E.K., McCollum, B.: Adaptive automated construction of hybrid heuristics for exam
timetabling and graph colouring problems. Eur. J. Oper. Res. 198(2), 392-404 (2009)

@ Springer

http://creativecommons.org/licenses/by/4.0/

Tackling the edge dynamic graph colouring problem

Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic
social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 717-726. ACM (2007)

Welsh, D.J., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to
timetabling problems. Comput. J. 10(1), 85-86 (1967)

@ Springer

	Tackling the edge dynamic graph colouring problem with and without future adjacency information
	Abstract
	1 Introduction
	2 Edge dynamic graphs
	3 Colourings and solution spaces
	4 Future adjacency
	4.1 Move operators that maintain feasibility
	4.1.1 Kempe-Chain interchange
	4.1.2 Pair swap

	5 Methods
	5.1 Modification operators
	5.2 Future adjacency reduction

	6 Experimentation details
	6.1 Test instances
	6.1.1 Legal parameter combinations

	6.2 Algorithm parameters

	7 Results
	7.1 Without future adjacency information
	7.1.1 Initial, feasible colourings
	7.1.2 Final, feasible colourings

	7.2 With probabilistic future adjacency information
	7.2.1 Initial clashes
	7.2.2 Initial, feasible colourings

	8 Conclusions and future work
	References

