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Abstract—Polynomial singular value decomposition (PSVD)
plays a very important role in broadband multiple-input
multiple-output (MIMO) systems. One of its applications lies
in the decoupling of MIMO convolutive mixing channel matrix
in order to recover the transmitted signals corrupted by the
channel interference (CI) at the receiver. In this paper, a novel
algorithm, known as multiple shift second order sequential best
rotation (MS-SBR2), is proposed to compute the approximate
PSVD of the broadband MIMO channel matrix. Experimental
examples, including a measured (2 × 2) optical MIMO channel
impulse response using the multi-mode fiber (MMF) testbed, are
presented to examine the proposed algorithm. Bit error rate
(BER) performances are evaluated among different transmission
schemes. In addition, power allocation (PA) schemes are investi-
gated to further optimize the BER performance.

Keywords—Multiple shift SBR2, polynomial SVD, precoding,
equalization, multi-mode fiber, optical MIMO systems, power
allocation.

I. INTRODUCTION

An explosive development of MIMO technology has been
witnessed in wireless communication systems over the last
decade. Compared to single-input single-output (SISO) sys-
tems, MIMO systems are capable of achieving higher data
rates and transmission reliabilities by using the techniques of
spatial multiplexing and transmit diversity. Aiming to increase
the fiber capacity, the concept of MIMO in optical transmission
systems has also attracted intensive research interests [1], [2].

Due to the multipath effect in broadband MIMO systems,
the channel is characterized by frequency-selective fading, so
apart from the channel interference caused by the MIMO
components, there also exists inter-symbol interference (ISI)
between the transmit symbols. Provided the approximate chan-
nel length is known at the transmitter, a standard approach
of combating the ISI is to use multi-carrier modulation tech-
niques, such as orthogonal frequency division multiplexing
(OFDM) with cyclic prefix which can divide the spectrum
into a number of narrowband channels. In other words, the
frequency-selective or broadband MIMO channel is turned
into a set of parallel frequency-flat or narrowband MIMO
channels where the ISI does not exist anymore, and each
narrowband channel can be independently addressed using
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existing narrowband optimal techniques. This type of MIMO-
OFDM system was well implemented by a spatio-temporal
vector coding (STVC) [3], [4] communication structure com-
bined with the singular value decomposition (SVD) based
equalization technique [5]. Another widely applied approach is
based on optimal filter bank transceiver techniques [6] which
involve block processing and guard intervals to eliminate inter-
block interference (IBI). These two traditional techniques are
in common in the sense of eliminating the polynomial nature
of the channel which corresponds to the IBI due to the time-
dispersive nature of the channel, and essentially they are all
designed to convert the broadband problem into narrowband
ones.

II. THE STATE OF THE ART

The work which we present here is related with the broad-
band MIMO decoupling method proposed in [7], [8]. This
method is essentially distinct from the traditional techniques
like OFDM or optimal filter bank transceiver, as it can
be applied to decouple the broadband (polynomial) MIMO
channel directly, instead of converting it into narrowband
channels. It mainly consists of two steps. The first step is
based on the PSVD that was used to diagonalize the broadband
MIMO channel matrix in order to remove the CI, which
results in the frequency-selective MIMO channel decoupled
into a number of independent frequency-selective SISO chan-
nels. The second step involves removing the remaining inter-
symbol interference (ISI) for each SISO channel, which can
be implemented by further equalization techniques, such as
zero-forcing equalization or maximum likelihood sequence
estimations (MLSE).

There are different ways of calculating the PSVD of a
polynomial matrix, such as using polynomial matrix QR
decomposition to formulate the PSVD [9], PSVD based on
generalized Kogbetliantz transformations [10], and PSVD by
polynomial matrix eigenvalue decomposition (PEVD) method
[11], which is analogous to how the scalar matrix eigenvalue
decomposition (EVD) can be used to generate the singular
value decomposition (SVD) of a matrix. In terms of the PSVD
by PEVD method, the second order sequential best rotation
(SBR2) algorithm [12] has been used in the existing literatures.
However, an improved version of the SBR2 algorithm, i.e.
MS-SBR2 [13], has been recently proposed by the authors for
calculating the PEVD of polynomial matrices. The improved
algorithm can provide much faster convergence than the SBR2
algorithm when dealing with high dimension polynomial ma-
trices. In other words, the diagonalization of bigger MIMO
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channel matrices can be implemented faster than that of using
the SBR2 algorithm.

The main contributions of this work are the exploitation of
the proposed PSVD by MS-SBR2 method in the application
of solving the broadband MIMO decoupling problem, com-
parisons against the PSVD by SBR2 method, the discussion
of the accuracy of the PSVD approach. The results presented
in this paper include a simulated broadband channel matrix
example which is designed to test how the PSVD method
works. More importantly, a (2 × 2) optical MIMO channel
which comprises a 1.4 km MMF and optical couplers at
both ends is designed to examine the BER performance of a
optical MIMO system in which the channel impulse responses
are measured for the operating wavelength of 1576 nm [8].
In particular, transmission and power allocation schemes are
employed to bring further improvement with respect to the
BER performance.

The remaining parts of the paper are structured as follows.
The convolutive MIMO channel model with polynomial matrix
representation is described in Sec. III. In Sec. IV we introduce
the idea of broadband MIMO channel decomposition, i.e.
PSVD. Sec. V presents the proposed MS-SBR2 algorithm for
calculating the PSVD. Simulation results and conclusions are
shown in Sec. VI and Sec. VII, respectively.

III. MIMO CONVOLUTIVE MIXING MODEL

Given a frequency selective MIMO link with nT inputs and
nR outputs, the convolutive mixing channel can be modelled
as a polynomial matrix with an indeterminate variable z−1

given by

C(z) =
T∑

τ=0

C[τ ]z−τ =



c11(z) · · · c1nT

(z)
...

. . .
...

cnR1(z) · · · cnRnT
(z)


 , (1)

where τ, T ∈ Z and C[τ ] ∈ CnR×nT denotes the poly-
nomial coefficient matrix at time lag τ and cνµ(z), ν ∈
{1, 2, · · · , nR}, µ ∈ {1, 2, · · · , nT}, is the polynomial matrix
entity which represents the channel impulse response between
the µ-th input and the ν-th output. It takes the form of

cνµ(z) =
T∑

τ=0

cνµ[τ ]z−τ , (2)

where cνµ[τ ] denotes a non-zero element of the symbol rate
sampled overall channel impulse response at the τ -th lag. In
this case there are T + 1 lags in total for each SISO channel.
Throughout this paper, polynomial matrices and vectors are
denoted as underscored boldface letters.

In the context of optical MIMO systems, it should be noticed
that the group delays in a MMF optical channel belong to
a fixed set of values in contrast with that of the wireless
channel which can change from one realisation to another [14].
Assuming that the transmit signal is represented by s′(z), the
convolutively mixed received signal x′(z) can be expressed as

x′(z) = C(z)s′(z) + n(z), (3)

where n(z) represents the additive noise which has variance
of σ2InR

.

IV. BROADBAND MIMO CHANNEL DECOMPOSITION VIA
PSVD

One potential application of PSVD is to enable communi-
cation over a broadband MIMO system in which the channel
matrix is represented by a polynomial matrix as shown in
(1). In this case, provided the channel matrix has firstly
been estimated, the PSVD then can be used to simplify a
MIMO channel equalization problem into a set of independent
SISO problems. In other words, the CI can be removed by
performing the PSVD to the channel matrix C(z), which can
be expressed as [11]

C(z) = Ũ(z)Σ(z)V(z) = Ũ(z)

[
Γ(z)

0

]
V(z), (4)

where we assume nR ≥ nT, and Γ(z) is a diagonal
polynomial matrix with n = nT diagonal elements, i.e.
Γ(z) = diag {γ

11
(z), γ

22
(z), · · · , γ

nn
(z)}. Ũ(z) and V(z)

are paraunitary polynomial matrices with dimension nR×nR

and nT×nT respectively, such that Ũ(z)U(z) = U(z)Ũ(z) =
InR

and Ṽ(z)V(z) = V(z)Ṽ(z) = InT
. Here the notation

{˜} over a polynomial matrix denotes the paraconjugate op-
eration which is computed by performing Hermitian transpose
{·}H to all the polynomial coefficient matrices U[τ ] and time-
reversing all entries inside, i.e. Ũ(z) = UH(1/z).

Note that Ũ(z) and V(z) are acting as the multichannel
all-pass filters which can transform the frequency selective
MIMO channel into a number of independent frequency se-
lective SISO channels while still preserving the total signal
energy [15]. In this paper, the PSVD in (4) is implemented
by calculating the PEVD of two para-Hermitian polynomial
matrices C(z)C̃(z) and C̃(z)C(z), which take the form as

[C(z)C̃(z)]nR×nR
= Ũ(z)Σ(z)Σ̃(z)U(z), (5)

and

[C̃(z)C(z)]nT×nT
= Ṽ(z)Σ̃(z)Σ(z)V(z). (6)

Further details about the PEVD algorithms will be discussed
in the following section. To eliminate the CI, the source
signal s(z) is filtered by the paraunitary transformation matrix
Ṽ(z) at the transmitter, i.e. s′(z) = Ṽ(z) s(z), and the
received signal x′(z) is pre-multiplied by U(z) such that
x(z) = U(z) x′(z) at the receiver, which results in

x(z) = Σ(z)s(z) + w(z), (7)

where w(z) = U(z)n(z). Note that neither the transmit power
is increased, nor the channel noise is enhanced here.

Unlike the conventional SVD-based method, each diagonal
element (also called layer) in Σ(z) is frequency-selective and
hence ISI occurs. In order to remove the ISI, layer-specific
T-spaced zero forcing equalizers [8] are adopted in this paper
and therefore this equalization scheme is entitled T-PSVD. A
block diagram of the proposed communication system can be
depicted in Fig. 1.
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Fig. 1. Block diagram of the proposed communication system using the
PSVD.

V. PSVD USING THE MS-SBR2 ALGORITHM

As mentioned above, the PEVD method can be used to
formulate the PSVD problem in (4), and the idea of PEVD
has been generalized as [12]

H(z)R(z)H̃(z) ≈ D(z), (8)

where R(z) ∈ CM×M is a para-Hermitian matrix, such
that R̃(z) = R(z). H(z) is a paraunitary matrix which
aims to diagonalize R(z) by means of paraunitary similarity
transformation, and D(z) is (ideally) a diagonal matrix. The
approximation sign in (8) indicates that a PEVD does not
necessarily exist if the paraunitary matrix H(z) only contains
FIR components. However it has been proved that a very
close approximation can be achieved by letting the polynomial
order of H(z) grow arbitrarily large [16]. This is an iterative
process which transforms all the off-diagonal elements in R(z)
onto the diagonal. Several algorithms [12], [17], [18] exist
for calculating the PEVD, however, this paper is concerned
only with the MS-SBR2 algorithm previously presented by
the authors in [13].

The MS-SBR2 algorithm is an improved version of the
SBR2 algorithm in terms of the algorithm convergence speed.
Basically it adopts the advantages of less computational cost
from SBR2 and the faster convergence from MSME-SMD
[18], which seems to provide a compromise between the
SBR2 and the SMD algorithm family. For the following
part of this section, the SBR2 algorithm is firstly introduced
before we move forward to the MS-SBR2 algorithm, and a
numerical example is chosen to assess the performance of
the algorithms, and then followed by a discussion of the
computational accuracy.

A. Second Order Sequential Best Rotation (SBR2) Algorithm

The SBR2 algorithm was designed to iteratively eliminate
the off-diagonal elements for para-Hermitian matrices by using
the paraunitary similarity transformations shown in (8). At the
i-th iteration, the SBR2 algorithm [12] starts by locating the
maximum off-diagonal element r(i)

jk [τ ]. To find the maximum
off-diagonal element, we define a matrix S(i)[τ ], which con-
tains only the upper triangular elements in R(i−1)[τ ] with the
remaining elements set to zero. Thus the location of r(i)

jk [τ ],
(j < k) found at i-th iteration satisfies

{j(i), k(i), τ (i)} = arg max
j,k,τ
‖S(i)[τ ]‖∞, (9)

where j(i), k(i) and τ (i) are the corresponding row, column
and time lag index. An elementary delay matrix P(i)(z) and
Jacobi rotation Q(i) are sequentially applied to bring r

(i)
jk [τ ]

and its complex conjugate r(i)
kj [−τ ] onto the zero-lag (τ = 0)

0
1

2

-1
-2

-4
-3

-2
-1

0
1

2
3

4

0

Step 1 Step 2 Step 3

{j(i), k(i), τ (i)} = argmaxj,k,τ ‖S(i)[τ ]‖∞ R′(i)(z) = P(i)(z)R(i−1)(z)P̃
(i)
(z) R(i)(z) = Q(i)R′(i)(z)QH(i)

Fig. 2. A 3-dimensional illustration of a 5× 5 polynomial matrix example,
showing the i-th iteration process using SBR2; Assuming the maximum off-
diagonal element r(i)

jk [τ ] found is at the location of {1, 5, 2} represented
in green color, step 1 shows the location information; Step 2 describes the
corresponding row and column shift operations; Step 3 is to transfer the
pairwise maximum elements r(i)

jk [τ ] and r(i)
kj [−τ ] onto diagonal (only zero-

lag coefficient matrix is shown here for visibility purpose) [12], [18].

coefficient matrix R(i−1)[0], and then rotate its energy onto
the diagonal. This results in R(i)(z) given by

R(i)(z) = Q(i)P(i)(z)R(i−1)(z)P̃
(i)

(z)QH(i), (10)

where P(i)(z) is expressed as

P(i)(z) = diag {1, · · · , 1︸ ︷︷ ︸
k(i)−1

, z−τ
(i)

, 1, · · · , 1︸ ︷︷ ︸
M−k(i)

}. (11)

A 3-dimensional illustration which shows the procedure of
the i-th iteration in SBR2 is described in Fig. 2. Thus the
elementary paraunitary matrix E(i)(z) can be expressed as

E(i)(z) = Q(i)P(i)(z). (12)

The algorithm continues its iterative process until all the off-
diagonal elements in R(i)(z) are smaller than a given threshold
ε which can be set to a very small value to achieve sufficient
accuracy. Assuming that the algorithm has converged at the
N -th iteration, the diagonalized para-Hermitian matrix in (8)
takes the form of

D(z) = diag {d11(z), d22(z), · · · , dMM (z)}, (13)

and the generated paraunitary polynomial matrix is given by

H(z) =
N∏

i=1

E(i)(z) = E(N)(z) · · ·E(2)(z)E(1)(z). (14)

B. Multiple Shift SBR2 (MS-SBR2) Algorithm

The MS-SBR2 algorithm uses a distinguishing search strat-
egy of the off-diagonal elements which is akin to that of
the MSME-SMD algorithm, so that it can achieve the diag-
onalization with less iterations than the SBR2 algorithm. For
the i-th iteration, the MS-SBR2 algorithm involves multiple
shifts operations P̂

(i)
(z), followed by a sequence of Jacobi

rotations Q̂(i). Therefore the resulting para-Hermitian matrix
is computed by

R(i)(z) = Q̂(i)P̂
(i)

(z)R(i−1)(z)
˜̂
P

(i)

(z)Q̂H(i), (15)
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Fig. 3. Comparison of normalized off-diagonal energy η(i) between SBR2
and MS-SBR2 algorithms, showing ensemble averages versus iterations.

where P̂
(i)

(z) =
∏L(i)

l=1 P(l,i)(z), Q̂(i) =
∏L(i)

l=1 Q(l,i) and
L(i) denotes the total number of off-diagonal elements shifted
to the zero-lag coefficient matrix at the i-th iteration (L(i) ∈
Z, 1 ≤ L(i) ≤ bM/2c). Accordingly the delay matrix at the
l-th delay stage within i-th iteration is represented by

P(l,i)(z) = diag{1, · · · , 1︸ ︷︷ ︸
k(l,i)−1

, z−τ
(l,i)

, 1, · · · , 1︸ ︷︷ ︸
M−k(l,i)

}, (16)

and the elementary paraunitary matrix can be expressed as
Ê

(i)
(z) = Q̂(i)P̂

(i)
(z). Note that when L(i) = 1, the MS-

SBR2 algorithm is identical to the SBR2 algorithm.
Another motivation of introducing the multiple shift idea

into the SBR2 algorithm is that it permits us to minimize
the order growth of polynomial matrices by making all row
(column) shifts in the same direction, which can potentially
reduce the computational cost of the algorithm [19]. The
PEVD algorithms are assessed in terms of the normalized off-
diagonal energy η(i) at the i-th iteration, and it is defined as

η(i) ,

∑
τ

∑M
m,n=1,m6=n |r

(i)
mn[τ ]|2

∑
τ ‖R[τ ]‖2F

, (17)

where the notation ‖·‖F denotes the Frobenius norm.
The comparison between these two PEVD algorithms is

calculated via Monte Carlo simulations over an ensemble of
100 different random 10×10 para-Hermitian matrices of order
5, which can be generated from matrices A(z) ∈ C10×10 of
order 3 with i.i.d. zero mean unit variance complex Gaussian
entries, such that R(z) = A(z)Ã(z). Fig. 3 shows the
normalized off-diagonal energy η(i) versus the iteration index
i. Obviously the MS-SBR2 algorithm requires much fewer
iterations than the conventional SBR2 algorithm to achieve the
same level of diagonalization. However, it should be noticed
that each iteration within MS-SBR2 involves more rotation
steps, which means the computational costs between them are
comparable. Nonetheless, the MS-SBR2 algorithm was found
to converge faster than SBR2 as shown in Fig. 4. For further
details of the MS-SBR2 algorithm, see [13].

C. Accuracy of the Decomposition

There are two main factors which can affect the accuracy
of the decomposition. Firstly, since the decomposition is
performed upon the two para-Hermitian matrices C(z)C̃(z)
and C̃(z)C(z) as shown in (5) and (6), the resulting diagonal
matrix Σ(z) might be less accurate than that found by the
way of operating the decomposition directly upon the channel
matrix C(z). Secondly, in the sense of broadband MIMO
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Fig. 4. Comparison of normalized off-diagonal energy η(i) between
SBR2 and MS-SBR2 algorithms, showing ensemble averages versus mean
execution time (measured in MATLAB R2014a on a PC with configurations
Intel Core i7-3770T CPU@2.50 GHz and 16 GB RAM).

decoupling, a strictly diagonalized channel matrix is required.
However, the proposed PSVD method can only generate an
approximately diagonal matrix subject to the pre-specified
stop condition of the algorithm, so there will be errors when
assuming all the off-diagonal elements of Σ(z) are equal
to zero. In addition, due to the fact that the orders of the
polynomial matrices increase as the iteration goes throughout
the PEVD process, the equalization becomes difficult when
the order of Σ(z) is too large. Therefore polynomial order
truncation operations [20], [21] are usually required in order to
keep orders as small as possible and reduce the computational
cost of the algorithm, which can also cause a very small
proportion of the total Frobenius norm of the matrix being
eliminated. To assess how well the proposed PSVD method
performs, the error metric of the PSVD is defined as

E ,

∥∥∥C(z)− Ũ(z)Σ̂(z)V(z)
∥∥∥

2

F

‖C(z)‖2F
, (18)

where Σ̂(z) is equal to Σ(z) with all the off-diagonal elements
set to zero.

VI. SIMULATION RESULTS

A. Example 1

To demonstrate the proposed PSVD method, a polynomial
or broadband channel matrix C1(z) ∈ C4×3 was generated to
describe the propagation of three source signals onto four sen-
sors. Each of the polynomial entries of the matrix was chosen
to be order-5 FIR filter, where both the real and imaginary
parts were drawn randomly from a uniform distribution in
the range [−1, 1]. A graphical representation of this channel
matrix is plotted in Fig. 5. With the truncation and stopping
parameters set as µ = 10−4 and ε = 10−3, the diagonalized
channel matrix Σ1(z) from the PSVD by MS-SBR2 method
is shown in Fig. 6, and the performance comparison against
the PSVD by SBR2 method is summarized in Tab. I. The
results presented in the table demonstrate that with the same
level of decomposition achieved, i.e. g = 9.91 × 10−4, the
PSVD by MS-SBR2 method outperforms the PSVD by SBR2
method in terms of the number of iterations, relative error and
computational time.

In addition, akin to an ordered SVD with singular values
in descending order, the power spectral densities (PSDs)
σmm(ejΩ) = σmm(z)|z=ejΩ ,m = 1, 2, · · · ,M of the diag-
onalized matrix Σ1(z) has the spectral majorisation property
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Fig. 5. The stem plot of the 4× 3 broadband MIMO channel matrix C1(z)
showing the magnitude of channel impulse response at different time lag.
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Fig. 6. The stem plot of the 4 × 3 diagonalized MIMO channel matrix
Σ1(z) obtained using PSVD by MS-SBR2 method.

[22] such that for all normalised angular frequency values Ω

σ11(ejΩ) ≥ σ22(ejΩ) ≥ · · · ≥ σMM (ejΩ). (19)

Compared to the original PSDs of C1(z) shown in Fig. 7, the
PSDs of the diagonalized channel matrix Σ1(z) are spectrally
majorised, which intuitively indicates that the MIMO channel
has been decoupled into a set of independent SISO channels.

B. Example 2

This example shows the practical application of the MS-
SBR2 algorithm to a measured (2× 2) optical MIMO chan-
nel. In fiber-optic systems one method to realize a MIMO
transmission is to carry the data streams on different optical
modes through a few-mode or multi-mode fiber (MMF) [2],

TABLE I
RESULTS OF APPLYING THE PSVD BY PEVD ALGORITHMS TO

C1(z) IN EXAMPLE 1

performance metrics PSVD by

SBR2 MS-SBR2

converged value g 9.91× 10−4 9.91× 10−4

number of iterations 561 478
relative error E 0.0428 0.0377
computational time (sec.) 1.98 1.74
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Fig. 7. The PSDs cmm(ejΩ),m = 1, 2, 3 of the channel matrix C1(z).
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Fig. 8. The PSDs σmm(ejΩ),m = 1, 2, 3 of the diagonalized channel
matrix Σ1(z).

[23]. For the excitation of different modes, certain single-
mode fiber (SMF) to MMF alignments with varying radial
offsets δ are used in this work. The spatial diversity of the
optical MIMO channel is visualized by showing the measured
spatial intensity distributions when exciting the two optical
MIMO inputs of the (2× 2) system separately. The measured
patterns depicted in Fig. 9 demonstrate that spatially diverse
channels are generated. However, an ideal separation of the
two channels is hard to achieve since mode mixing usually
occurs in the mode multiplexing and demultiplexing process
which is implemented by fusion couplers, and during the
transmission through the fiber. An overview of the testbed used

Fig. 9. Intensity distribution patterns at the end face of a MMF fiber when
launching centric δ = 0 µm (left) and launching with an eccentricity of
δ = 15 µm (right) measured at a wavelength of 850 nm; the dashed line
represents the 50 µm core diameter.

for measuring optical MIMO impulse responses is shown in
Fig. 10. Here the impulse responses of the (2 × 2) optical
MIMO channel, consisting of a 1.4 km MMF, fusion couplers
and differently aligned SMFs, are measured at an operating
wavelength of 1576 nm with the aid of signal deconvolution
[8]. The measured impulse responses are then sampled at the
symbol rate of 620 MHz and used to constitute the channel
matrix C2(z) as plotted in Fig. 11.

Applying PSVD to this frequency-selective MIMO channel
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Fig. 10. Measurement setup for determining the MIMO specific impulse responses [25].
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Fig. 11. The stem plot of the measured 2×2 optical MIMO channel matrix
C2(z) showing the magnitude of channel impulse response at different time
lag.
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Fig. 12. The stem plot of the diagonalized 2 × 2 optical MIMO channel
matrix Σ2(z).

results in layers having a time-dispersive characteristic and
hence ISI occurs on each layer as shown by the diagonalized
matrix Σ2(z) in Fig. 12. The remaining ISI is removed by
applying the T-spaced zero forcing equalization as mentioned
before. The equalizers modify the noise power on each layer
differently, which is expressed by the weighting factors θ`,
with ` denoting the layer index. These factors determine the
layer specific SNRs and hence also the total BER performance
[8]. In this example, the noise weighting factors for each
layer are computed as θ1 = 37.22 and θ2 = 4243.46. In
addition, the remaining off-diagonal energy ε, defined as ε =∑
τ ‖C2[τ ]‖2F −

∑
τ ‖Σ2[τ ]‖2F, is given by 1.26× 10−6. The

value of ε is negligibly small compared with the input energy,
which means that the CI has been significantly eliminated.

The BER quality is studied by using fixed transmission
modes with a spectral efficiency of 8 bit/s/Hz, and the an-
alyzed quadrature amplitude modulation (QAM) constellation
arrangements are depicted in Tab. II. In addition to bit-loading,

TABLE II
TRANSMISSION MODES

throughput layer 1 layer 2

8 bit/s/Hz 256 0
8 bit/s/Hz 64 4
8 bit/s/Hz 16 16

the allocation of the transmit power to the activated layers is
needed to optimize the BER performance. In the optimum
case, the PA aims at equalizing the BERs over all layers.
However, this approach is computationally complex and hence
it is simplified by just equalizing the SNRs as a sub-optimum
solution. After the application of the T-PSVD, the decoupled
MIMO layers exhibit decreasing SNRs at higher layers. This
conforms with the spectral majorisation property shown in
example 1. The SNR conditions subsequent to the PSVD
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equalization and the conditions after power allocation are
illustrated in Fig. 13.

Fig. 13. Illustration of the remaining SNRs in T-PSVD systems without
applying PA (left) and with PA (right). The color black refers to high and
white to low SNR values.

The BER performance results for T-PSVD equalization,
obtained by applying the MS-SBR2 algorithm for calculating
the PSVD, are depicted in Fig. 14 for a range of SNRs. Here
Es is the transmit signal energy and N0 denotes the constant
noise power spectral density of the additive white Gaussian
noise. As seen from the graph, the (256, 0) QAM transmission
scheme shows the best performance results. It should be noted
that no PA is needed for the (256, 0) QAM transmission mode.
In addition, when activating multiple numbers of layers the
benefit of using the equal SNR power allocation method is
clearly visible. As the dimension of the polynomial matrices
C2(z)C̃2(z) and C̃2(z)C2(z) is 2 × 2, this means that only
one off-diagonal element can be eliminated for each iteration
when computing the PEVD via the MS-SBR2 algorithm, i.e.
L(i) = 1,∀ i. Therefore, the MS-SBR2 algorithm operates the
same as the SBR2 and there is no difference between them in
terms of the BER performance for this example. However,
in real world implementations involving more sources and
sensors, the benefits of the MS-SBR2 algorithm could come
into play.

It is expected that PSVD based MIMO systems can offer the
same BER performance compared to systems based on STVC
with SVD equalization, as it is suggested by the achievable
spectral efficiencies presented in [24]. The major advantage
of MIMO systems based on PSVD is that they do not require
a block-wise transmission.

Fig. 14. BER with PA (dotted line) and without PA (solid line) by applying
the T-PSVD equalization scheme, showing the comparisons among different
transmission modes when transmitting over the 2×2 optical MIMO channel.

VII. CONCLUSION

We have investigated how the proposed MS-SBR2 algorithm
can be used in the application of decomposing the channel
matrix of a measured (2 × 2) broadband optical MIMO sys-
tem. Furthermore, different transmission schemes have been
employed to illustrate the BER simulations. In particular, the
power allocation scheme has been utilized to further optimize
the BER performance. Simulation results have shown that
the activation of all transmission layers does not necessarily
lead to the best BER performance. On the contrary, the
(256, 0) QAM with the T-PSVD equalization scheme seems
to achieve the best performance in the studied example.
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