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Abstract  

Background 

RA patients have an increased prevalence of CVD independently of traditional risk 

factors. Studies using a mouse model of inflammatory arthritis – mCIA have shown 

decreased vascular constriction response of the thoracic aorta to 5HT, associated with 

increased MMP-9 production. The source of the latter, inflammatory content and 

impact on the structural proteins of the vessel wall remains elusive.  

Methods 

Myography was used to determine vascular constriction response in mCIA animals. 

Immunohistochemistry determined presence of F4/80+ macrophages, Ly6G+ 

neutrophils, DR3 and MMP-9. DR3 was assessed in the healthy and arthritic constriction 

response using DR3-/- and DR3WTs. Vascular calcification was determined in short and 

long term mCIA using RT-qPCR. Protein levels were quantified using 

immunohistochemistry. Collagen and elastin were determined using Van Geisson and 

Ver Hoeffs staining. The role of the AIM2 inflammasome in mCIA associated vascular 

dysfunction was also determined using CRID3 therapy. 

Results 

Increased macrophages with complimentary DR3 staining were observed in the aorta 

and PVAT.DR3-/- had normal constriction response despite increased cells and MMP-9 in 

the PVAT. DR3 ablation decreased arthritis onset and severity, however, worsened the 

vascular function. DR3 PVAT was protective to the constriction response. Calcification 

mediators remained constant following the onset of mCIA. Long term mCIA showed 

exciting trends of increase to calcification mediators. Collagen and elastin both become 

deregulated during mCIA and showed a fibrosis like phenotype.  Blocking the AIM2 

inflammasome had no impact on mCIA onset but partially restored vascular constriction 

response. 

Discussion  

Systemic inflammation is key in explaining the vascular dysfunction associated with the 

mCIA model. mCIA allows us to determine very early changes in the vasculature 

associated with systemic inflammation as opposed to long term changes. Macrophages 

specifically are early inflammatory cells implicated in the aorta and are associated with 

both DR3 and AIM2, suggesting them as key players contributing to vascular dysfunction 

in this model. Successful AIM2 blocking therapy has potential to be used in human RA 

patients to reduce CV co-morbidity. 



1 
 

 

 

 

 

 
 

 

Chapter 1 – General Introduction 



2 
 

This general introduction provides an overview of the main topics explored during this 

thesis. Each subsequent results chapter is accompanied by its own in depth introduction 

to the appropriate pathways and mediators under investigation. 

 

1.1 Rheumatoid Arthritis 

 

Rheumatoid Arthritis (RA) is a common, chronic, inflammation-driven auto immune 

disease. It is the second most common type of arthritis, the most common inflammatory 

joint disease and affects 1% of the world’s population (Firestein, 2002), equating to 

approximately 400,000 people in the UK. RA impacts approximately three times more 

women than men, and while it is thought of as a disease of the aging population, in 80% 

of cases initial onset occurs between the ages of 35 and 60 (Kavanaugh and Lipsky, 

1996). The health related quality of life for RA patients is significantly reduced by the 

burden of chronic joint pain, persistent synovitis, swelling, fatigue and decline in bodily 

function. Importantly RA is also associated with systemic inflammation and the 

production of auto-antibodies, commonly rheumatoid factor and anti-citrullinated 

proteins (Scott et al, 2010). Despite some cases of RA being mild and self-limiting, many 

patients experience severe joint destruction, physical disability and multiple co-

morbidities (Plenge, 2009). It is therefore no surprise that RA is a huge burden to the 

economy, costing the UK approximately £8 billion per year (NRAS, 2010), with current 

mortality rates at twice that of the general population (Kelly et al, 2007). Existing 

treatment options focus on the symptoms of RA and do not focus on disease progression 

or symptom reversal. In reality they largely slow down the onset of RA, thus promoting 

remission.  

 

1.1.1 RA pathogenesis 

 

Longitudinal studies have assessed the pathogenesis of RA and suggest it to be a serious, 

long term disease with dominant features, limited treatment options and poor 

outcomes (Scott et al, 1987). RA is a polyarthritis, initiating primarily in the small joints 

of the hands and feet, often presenting as morning stiffness (Suresh, 2004). A healthy 

synovial joint has a synovial membrane that coats the joint capsule and produces 

synovial fluid to lubricate the joint.  The initial onset of joint damage begins at the 

synovial membrane where synovitis is driven by the local activation and recruitment of 

primary immune cells including; T and B cells, macrophages, mast cells and dendritic 

cells. Consequently, the synovial membrane thickens due to increased cellular 

populations and eventually becomes hyperplasic (Smolen and Steiner, 2003). During this 

time an osteoclast (cells that break down bone) rich region of the synovial membrane 

forms the pannus and eventually leads to pathological bone erosion. At the same time 

inflammatory cells such as neutrophils, along with synoviocytes and chondrocytes 

secrete enzymes capable of degrading cartilage into the joint cavity (Smolen and Steiner, 
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2003). These changes create severe pain and ultimately disability for the RA patient 

(Figure 1.1). Many of the RA cohort also experience extra-articular manifestations and 

recent data suggest that in the first four years following a rheumatoid diagnosis 47.5% 

of patients are affected by at least one of these (Hochberg et al, 2008). The most 

common included; rheumatoid nodules, vasculitis, pericarditis, uveitis and rheumatoid 

lung disease, while other studies have also shown the increased prevalence of systemic 

manifestations such as anaemia, cardiovascular disease (CVD), fatigue and depression 

(Hochberg et al, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – The pathogenesis of RA – The healthy joint is compared with the arthritic joint. 

During arthritis common pathological features present including: pannus formation, synovial 

hyperplasia, increased trafficking of immune cells and production of their cytokines. This 

ultimately leads to the destruction of cartilage and bone.   
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1.2 RA and CVD – The Associated Co-Morbidity    

 

Currently CVD is the leading cause of death worldwide (WHO, 2016). In 2012, CVD 

accounted for over 30% of all deaths, approximately 17.5 million people in one year. The 

biggest killer of all CVDs is coronary heart disease, closely followed by stroke. Alarmingly, 

the majority of CV deaths are preventable. This is caused by the common association of 

CVD with traditional risk factors. Activities such as smoking, unhealthy diet, obesity and 

physical inactivity are all behaviours likely to increase the risk of heart disease (WHO, 

2016). The impact of such unhealthy activities can often be determined by high blood 

pressure, high lipid profile, high blood glucose and body mass index. Changes to these 

behaviours such as stopping smoking or treatment of high blood pressure have been 

positively shown to reduce CV risk. It is imperative that health policies drive a healthy 

lifestyle in the population in order to reduce overall CV risk.  

CVD is a common co-morbidity experienced by RA patients. In fact, CVD has now been 

identified as the leading cause of mortality in this cohort, accounting for almost 40% of 

all deaths. RA patients have a twofold greater risk of CVD, rising to threefold with over 

ten years of disease, than someone of the general population (Solomon et al, 2006).  

This represents a similarly elevated risk experienced by individuals with diabetes 

mellitus (Peters et al, 2009). Importantly, increased risk in affected individuals remains 

unexplained and is not associated with the traditional CV risk factors, such as age, 

gender and smoking status. The only currently known association with risk factors in this 

cohort is that a lower body mass index is associated with increased mortality. This is 

likely explained by individuals with more severe arthritis experiencing a higher 

inflammatory burden and thus a higher cytokine -mediated catabolic state leading to 

weight loss (Escalante et al, 2005). Interestingly, in some patients CVD is evident often 

before the RA diagnosis, possibly due to the long diagnosis time often seen in 

rheumatoid clinics (Iafolla, 2013). That patients can have increased systemic levels of 

inflammation, as dictated by their C-reactive protein and Erythrocyte Sedimentation 

Rate, before the onset of articular symptoms is very relevant to the early presentation 

of CVD.  

As traditional risk factors are not the driving force for increasing CV risk in RA patients, 

a number of studies have been conducted to determine the underlying mechanisms. 

The majority of these have focused on the role of a systemically increased inflammatory 

profile. Particularly relevant to rheumatoid joint pathology are the cytokines, including 

Tumour Necrosis Factor-α (TNF-α), Interleukin-1 (IL-1) and Interleukin-6 (IL-6) that are 

detectable systemically. The latter means that these signalling proteins have the 

potential to affect the normal function and homeostasis of many tissues including 

adipose tissue, skeletal muscle, liver and more specifically regarding CVD, the wider 

vasculature (Sattar et al, 2003). It is therefore imperative that the earliest changes in the 

vasculature system during RA are examined. This will identify the priming events and 

factors driving cardiovascular (CV) dysfunction in this disease. 

 



5 
 

1.3  Normal Vascular Function  

 

The cardiovascular system comprises of the heart and vasculature. The latter is a 

complex network of vessels responsible for the delivery of oxygen and nutrients around 

the body whilst removing waste products. Importantly it also acts as a trafficking system 

for inflammatory cells and cytokines, critical to auto immune disease pathology. Normal 

artery structure comprises of a three-layered wall, encompassing the tunica intima, the 

thick elastin and muscle cell layer the tunica media and the outer most tunica adventitia 

(see Figure 1.2) with an endothelium lining the lumen of the vessel.  

 

 

Figure 1.2 – The Arterial Vessel Wall (Shawky, 2015). The normal vessel wall is lined by an 

endothelial layer in contact with the lumen of the vessel. The vessel wall is made up of three 

layers, inner most the tunica intima, the middle tunica media containing both internal and 

external elastic lamina and the outermost tunica adventitia.  

Nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) and are key mediators 

in vasorelaxation. An extensive body of evidence has shown that NO produced by the 

endothelium is involved in both normal and pathological blood pressure regulation (for 

review see Nava and Llorens, 2016). Stimulation of soluble guanylate cyclase by 

endothelium-derived NO causes an increase in cGMP within the vascular smooth 

muscle. Subsequent activation of cGMP-dependent protein kinase (PKG) then mediates 

the actions of NO to lower vascular tone and maintain a healthy vasculature (Sausbier 

et al, 2000).  

 

The healthy vascular constriction response is well documented (for review see Benoit 

and Taylor, 1997). Briefly, the binding of agonists such as, angiotensin II, norepinephrine 

and serotonin to their appropriate membrane bound receptors activates phospholipase 

C. This leads to an increase in inositol trisphosphate production, and the release of 

calcium from the sarcoplasmic reticulum. The increase in intracellular calcium then 
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mediates a pathway of processes, including further influx of extracellular calcium, and 

leads to vascular smooth muscle contraction.  

1.4 Perivascular Adipose Tissue 

 

PVAT surrounds all blood vessels and is thought to increase in line with an individual’s 

adiposity (Lehman et al, 2010). It is continuous with the adventitial layer of the blood 

vessel wall (Chatterjee et al, 2009), demonstrating the potential cross talk between the 

two entities and that PVAT may play an important role in normal and diseased vascular 

function. This tissue was historically considered to only play a mechanical support role 

in the vascular system, acting as a scaffold to support the vessel itself. However, more 

recently the PVAT has emerged as a metabolically active organ, capable of producing 

many signalling moieties that have important effects on the vasculature (Szasz and 

Webb, 2012). For example, active hormones and cytokines, collectively termed 

adipokines, are now thought to be essential for normal vascular function (Chatterjee et 

al, 2009). These mediators were first discovered following the incidental observation 

that rat vascular constriction responses in isolated tissues were reduced in the presence 

of PVAT (Soltis and Cassis, 1991). This adipocyte-derived relaxing factor (ADRF) was later 

shown to be transferable and independent of NO release (Lohn et al 2002). The ability 

of PVAT to produce such factors in close proximity to the vessel wall shows how 

important it is in both health and disease.   

The makeup of PVAT is also important when determining its function, and this is 

dependent on the type of vessel that the PVAT surrounds. For example, smaller 

resistance vessels are surrounded by PVAT that is predominantly made up of white 

adipocytes (Gao, 2007). Conversely, larger vessels are surrounded by a mixture of both 

brown and white adipocytes (Gao, 2007). Whether changes to these cell types occur in 

the face of inflammation is an interesting question. 

Importantly, roles for PVAT in the pathology of cardiovascular disease (CVD) are 

emerging (Lee et al, 2013). Recent studies have demonstrated an increase in PVAT-

derived adipokines in human stenotic arteries (Verhagen et al, 2014). Moreover, the 

Framingham heart study has shown that increased amounts of thoracic PVAT are 

positively correlated with a higher prevalence of CVD. What contribution PVAT makes 

to the vascular dysfunction seen in RA is unknown.  An animal model would provide an 

ideal tool to investigate this further. 

1.5 Vascular Calcification 

 

Interestingly, it would appear that the majority of the over 60s population have some 

type of calcium deposit within their major arteries (Allison et al, 2004). With regards to 

the aetiology of CVD, the propensity of arteries to quite literally turn to bone is a major 

issue. These calcium deposits are harmful in many ways to CV health and affect 

homeostasis within the vessel itself. Ultimately, the presence of mineral deposits 

increases morbidity and mortality (Wayhs et al, 2002). The main outcomes of calcium 
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deposits within the major arteries include; hypertension, congestive heart failure and 

compromised structural integrity. Over the years the description of vascular calcification 

has changed dramatically. Originally it was considered to be both passive and 

degenerative; however, recently it has been described as an active process with many 

similarities to bone formation (Mizobuchi et al, 2009). 

 

1.5.1 Vascular Calcification in RA 

 

A condition widely recognised as a complication in renal disease (Moe and Chen, 2008), 

early onset and diffuse vascular calcification is now clearly associated with RA (Paccou 

et al, 2012). However, the pathogenesis driving this increased risk is poorly understood 

despite many potential explanations in the literature. Recent studies have shown that 

coronary artery calcification is significantly higher in men than women with RA (Giles et 

al, 2009), although both male and female RA patients had increased coronary artery 

calcification in comparison to a “normal” population. Moreover, it has also been shown 

that prevalence and extent of coronary artery calcification is associated with worsened 

RA severity at all ages (Giles et al 2009). Notably the biggest difference between RA 

patients and “normals” occurred in the youngest age category (Giles et al 2009). This 

suggests that vascular calcification could well be a significant issue for a young RA 

population in the absence of traditional risk factors for CVD. 

Vascular calcification in RA patients is not specific to one region, though its prevalence 

would seem to be higher in the aorta in comparison to other sites such as the coronary 

and carotid arteries (Wang et al, 2009). Conversely, in age-matched non-RA, the highest 

levels are seen within the coronary artery (Wang et al, 2009). This highlights the aorta 

as a potential early region of calcification, and suggests that RA-associated increased 

systemic inflammation may contribute to the differences described (Wang et al, 2009). 

 

1.5.2 Importance of Vascular Smooth Muscle Cells and Phenotypic Switching. 

 

Vascular smooth muscle cells (VSMCs) are crucial cells within the vascular wall and have 

been deemed the main cellular determinant of arterial wall pathology (Lacolley et al, 

2012).  Due to the VSMC association with myosin and actin interactions they are crucial 

within the vasoconstriction response. This implicated them in the regulation of blood 

pressure and blood flow. Phenotypically VSMCs differ dependent on their location 

within the arterial tree (Michel et al, 2012). However, they also differ depending on their 

organ microenvironment and can react to changes therein. The role of VSMCs also goes 

beyond the vascular constriction response and they are now recognized to play a role in 

the synthesis and secretion of extracellular matrix, comprising the vessel wall (Forsyth 

et al, 1997). As a consequence of their constant exposure to circulating plasma 

molecules, over time VSMCs can become damaged (Michel et al, 2012). Indeed, they 

can respond in a number of ways to their local environment, including undergoing 
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apoptosis, and perhaps more interesting, modification of their phenotype. During 

pathological conditions the plasticity of VSMC is key and broad changes in phenotypes 

between migratory, proliferative, synthetic, endocytic, phagocytic or osteoblastic can 

occur (Lacolley et al, 2012). Hypertension, as an example can both directly, via blood 

pressure and indirectly by sheer flow influence the VSMC phenotype. Ultimately in this 

circumstance the change in VSMC phenotype leads to increased rigidity in the vessel 

wall (Michel et al, 2012). Similar effects are seen during aging. 

 

1.5.3 VSMC Switching and Vascular Calcification 

   

As described above ectopic vascular calcifications constitute a huge risk to life. The 

current underlying mechanisms by which this occurs is not well defined and therefore 

potential lifesaving treatments are few and far between. One possible mechanism, the 

prospect of VSMC to calcify, has been described in depth in the literature. It has been 

suggested that medial calcification is a process with many similarities to bone 

mineralization and is caused by VSMCs that have switched to an osteoblastic-like 

phenotype (Persy and D’Haese, 2009). The expression of bone transcription factors 

within the vasculature suggests that the differentiation of VSMCs to osteogenic 

phenotype is similar to that differentiation seen in osteoblasts (Bostrom et al, 1993). 

However, the exact mechanism underlying this transition remains unknown. 

1.6 Matrix Metalloproteinases 

 

Gelatinases are proteolytic enzymes that catalyse the breakdown of gelatin. In humans, 

the gelatinases are matrix metalloproteinases 2 and 9 (MMP-2/MMP-9). The majority of 

MMPs, including MMP-2 and MMP-9, are produced as pro-enzymes and require 

proteolytic cleavage via a proteinase enzyme in order to be activated (Woessner, 1991).  

The enzymes within the MMP family are highly conserved and share similar 

characteristics including mode of activation, amino acid sequences and regulation by 

tissue inhibitors of metalloproteinases (TIMPs) (Edwards et al, 1996). They are involved 

in the breakdown of the extracellular matrix, and as such are important in vascular 

remodelling and cellular migration. This process occurs during normal tissue 

homeostasis, for example in embryonic development, but also happens during diseases 

such as cancer metastasis and arthritis.  

 

 

1.6.1 MMP-9 Association with RA 

 

An associated between MMP-9 and RA has been well documented. Indeed, RA patients 

are characterised by elevated serum and synovial fluid MMP-9 levels in comparison with 
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healthy controls (Gruber et al, 1998). Furthermore, immunohistochemistry has 

identified MMP-9 expression in synovial specimens, and particularly associated with 

both fibroblasts and macrophages within vascular walls (Gruber et al, 1998). More 

recently, the role of MMP-9 in RA progression has been highlighted. When MMP-9 was 

supressed in isolated RA synovial fibroblasts, concurrent decreases were seen in key 

cytokines such as IL-1β, IL-6, IL-8 and TNF-α (Xue et al, 2014). Importantly, the inhibition 

of MMP-9 was also associated with decreased RA synovial fibroblast-mediated cartilage 

degradation (Xue et al, 2014). A further study has identified pro-MMP-9 expression by 

both monocytes-macrophages and neutrophils, and indeed osteoclasts within the lining 

of the rheumatoid joint (Seki et al, 1997). Whether there is a role for the MMP’s in RA-

associated CVD is less clear.  

1.6.2 MMP-9 Association with CVD 

 

Increasing evidence demonstrates that MMPs have pathology-associated effects within 

the vasculature that have now been shown to involve both the endothelium and VSMCs 

(Chen et al, 2013). In healthy tissue MMP production and activation is tightly controlled 

at the level of transcription, post-translational proteolytic activation and by the 

presence of TIMPs (Brew and Nagase, 2010).  It is in fact the balance between active 

MMPs and TIMPs that determine the role of MMPs in the vasculature, a switch in favour 

of MMPs being likely to drive pathological changes (Raffetto and Khalil, 2008). 

MMP-9 is one of the most widely investigated MMPs in CVD. It acts to degrade the ECM 

and activate both cytokines and chemokines, and as such plays a key role in pathological 

remodelling during both inflammation and fibrosis. Indeed, both the deletion and 

inhibition of MMP-9 has proven to be therapeutically beneficial in CVD (Yabluchanskiy 

et al, 2013). A previous study published by our group suggested a role for MMP-9 in the 

contractile dysfunction phenotype observed in a mouse model of inflammatory arthritis 

(Reynolds et al, 2012). However, the source of the increased MMP-9 in this model has 

not been identified.  Such information is imperative should this gelatinase be considered 

as a therapeutic agent in RA-associated CVD. 

1.7 Death Receptors  
 

Death Receptors are essential in tissue homeostasis as they are key regulators of both 

cell death and cell survival. However, recent studies have highlighted the importance of 

the death receptor family beyond these roles. The signalling from death receptors is now 

considered dynamic and further studies are required to determine the alternative 

consequences of death receptor signalling. 
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1.7.1. Death Receptor Superfamily 

 

Death receptors are members of the tumour necrosis factor (TNF) superfamily and are 

characterised by the presence of a highly conserved 80 amino acid cytoplasmic region 

known as a “death domain” (Guicciardi and Gores, 2009). This death domain is required 

to initiate apoptosis and allows the binding of specific ligands (Nagata, 1997). The latter 

are defined by the presence of up to six cysteine rich domains and are capable of driving 

cytotoxic pathways (Guicciardi and Gores, 2009). All members of the death receptor 

family are type 1 transmembrane proteins, and all have an intracellular C terminal 

domain, a membrane spanning region and an extracellular N terminal domain 

(Guicciardi and Gores, 2009). 

The ligands that bind to the death receptors are complementary cytokines that also 

belong to the TNF family. The majority of these “death ligands” are type 2 

transmembrane proteins comprising of an intracellular N terminus, membrane spanning 

region and extracellular C terminus domain (Guicciardi and Gores, 2009). Importantly, 

not all of the death ligands are membrane bound, some following proteolytic cleavage 

become soluble. However, it has been reported that these soluble forms are less potent 

in comparison to their membrane-bound counterparts. (Schneider et al, 1998)  

Death receptors have a general initiation pathway that is similar throughout the family, 

and includes three main steps. Firstly, an appropriate ligand binds to the membrane-

bound portion and mediates trimerization of the receptor. This leads to the recruitment 

of adaptor proteins, allowing the initiation of a caspase complex. Consequently, initiator 

caspase 8 and 10 drive the formation of effector caspase complexes, including caspases 

3, 6 and 7 (Guicciardi and Gores, 2009). Conversely, more recent studies have shown the 

capability of death receptor activation to mediate non-cytotoxic pathways via the 

activation of nuclear factor- κβ (NF-κβ) and mitogen-activated protein kinases (Migone 

et al, 2002). However, the roles of such signalling pathways are yet to be determined. 

1.7.2. DR3 

 

Death Receptor 3 (DR3) has been shown to play a major role in immunity, inflammation 

and inflammatory disease, being implicated in many auto-immune diseases including RA 

(Wang et al, 2014). It was discovered in 1996 by various groups of researchers and was 

originally known by different names, including Apo3, LARD, TR3, TRAMP and WSL-1 

(Kitson et al, 1996; Chinnaiyan et al, 1996; Marsters et al, 1996). The wide variety of 

DR3-mediated roles that have now been identified suggest that in fact driving apoptosis 

is a minor part of the puzzle, rather DR3 having more significant actions in cell survival, 

expansion and differentiation (Wang, 2012). 

DR3 has close sequence homology to TNF superfamily member TNF Receptor 1 and is 

predominantly expressed on lymphocytes such as T cells (Aiba and Nakamura, 2013), B 

cells (Cavallini et al, 2013) and Natural Killer cells (Screaton et al, 1997). More recently 

expression has also been identified on osteoblasts (Borysenko et al, 2006), macrophages 
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(McLaren et al, 2012), fibroblasts (Ge et al, 2011) and possibly adipocytes 

(GeneCards.com). That DR3 expression on both osteoblasts and macrophages is 

associated with vascular inflammation (Borysenko et al, 2006; McLaren et al, 2010), 

further investigations regarding its role in vascular inflammation associated with 

inflammatory arthritis is of great interest. The impact of such DR3 ligand binding and 

pathway activations will be further discussed in chapter 3 of this thesis. 

1.8. The Inflammasome 

 

Inflammasomes are a broad group of initiating proteins that act as innate immune 

system receptors and sensors and ultimately control the activation of caspase-1 as part 

of the host inflammatory response (Vladimer et al, 2013). Importantly they have 

recently been implicated in immune diseases and their mechanisms of action have been 

well characterised (Shaw et al, 2011). As a consequence of this increased attention, a 

number of potential therapeutics have been developed with a high potential for use in 

a number of currently poorly treated diseases (Guo et al, 2015).  

A number of pattern recognition receptors are involved in the initiation of 

inflammasome complexing. These include “nucleotide binding domain, leucine-rich 

repeat containing proteins” (NOD-like Receptors, NLRs) and “absent in melanoma 2-like 

receptors” (AIM2) (Takeuchi and Akira, 2010). Depending on the stimuli, the appropriate 

receptor oligomerizes allowing the recruitment and activation of pro-caspase-1 (Netea 

et al, 2015). Further downstream caspase-1 is able to trigger cytokines pro-interleukin-

1 and pro-interleukin-18 into their active forms interleukin-1 (IL-1) and interleukin-18 

(IL-18) respectivel (Netea et al, 2015). Ultimately the activation of any inflammasome 

leads to a specific type of cell death known as pyroptosis (Guo et al, 2015). 

 

1.8.1 The AIM2 Inflammasome  

 

The AIM2 inflammasome will be a particular focus in this thesis, firstly regarding a role 

in RA-associated CVD and secondly its potential as a therapeutic target.  

AIM2 is unique within the inflammasome family. The first major difference between 

AIM2 and other inflammasomes, such as NLRs, is that AIM2 is IFN-inducible 

(Burckstrummer et al, 2009). Both IFNβ and IFNϒ have been shown to upregulate AIM2 

activation and this is important given that IFNϒ is a key cytokine implicated in the 

progression of RA. Secondly the composition of AIM2 is also different in that it has a 

pyrin (PYD) domain and a hematopoietic interferon-inducible nuclear antigen with 200 

amino acid repeats (HIN200) domain (Guo et al, 2015). These have key functions that 

aid the activation of the AIM2 pathway; in particular HIN-200 being involved in the 

recruitment of the AIM2 substrate, cytosolic double stranded DNA (Hornung et al, 2009). 

The presence of HIN-200 makes AIM2 the only inflammasome complex that is able to 

directly bind its substrate. The HIN-200 domain recognises double stranded DNA that is 

over 80 amino acids in length, but independently of its specific amino acid sequence (Jin 
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et al, 2012). On DNA binding PYD domain is displaced and allows the recruitment of 

adapter protein apoptosis speck containing protein (ASC) (Hornung et al, 2009). The 

latter is common to all inflammasome pathways and is the recruitment protein for 

inactive zymogram pro-caspase-1. The interaction of ASC and AIM2 triggers the 

assembly of a large protein containing mulitmers of ASC dimers (Fernandes-Alnemri et 

al, 2007). Upon the recruitment of pro-caspase 1 it is able to self-cleave and form the 

active heterotetrameric caspase 1. When caspase 1 is proteolytically active, it cleaves a 

number of inactive proteins, including pro-IL-1β and pro-IL18 into their active forms 

(Thornberry et al, 1992). 

The AIM2 inflammasome is active mainly in macrophages following host infection. 

Within these cells a caspase-1 mediated inflammatory response is initiated and results 

ultimately in macrophage cell death (Burckstrummer et al, 2009). The production and 

activation of pro-inflammatory cytokines IL1 and IL18 within the macrophage are also 

cruicial for innate immunity. This shows the importance of AIM2 in clearing bacterial 

infections within the host. However, inappropriate recognition of cytoplasmic self-DNA 

by the AIM2 complex can contribute to a number of auto immune diseases. 

Inappropriate AIM2 activation has been linked with the development of psoriasis, 

dermatitis, systemic lupus, inflammatory bowel disease, and importantly for this study, 

arthritis (Man et al, 2016).  Under normal circumstances, DNA is contained within the 

cell nucleus or mitochondria. It is when host DNA appears in the cytosol, for example 

from impairment of DNA degradation or clearance that inflammation is initiated 

(Dombrowski et al, 2011). 

1.9 Animal Models of RA 

 

To investigate the nature of CV pathology caused by inflammatory arthritis, in vivo 

animal models are essential, particularly with regard to the very earliest changes. This is 

not possible in human patients due to obvious ethical issues and the fact that the varied 

time before diagnosis often means the critical early time points are missed. Animal 

models of inflammatory autoimmune arthritis have proved to be invaluable in the study 

of RA pathogenesis and potential therapeutics. As such there are several well 

established mouse models that are in routine use, namely Antigen or Collagen-induced 

arthritis, Streplococcal cell wall arthritis, Oil-induced arthritis, or spontaneous models 

such as the TNF-α transgenic mouse and the K/BxN T-cell Receptor transgenic mouse 

(Brand, 2007).   

The transgenic models of RA were developed and established many years ago. For 

example, the TNF-α transgenic mouse expresses both wild-type and 3'-modified human 

TNF-α and is a chronic model where mice develop erosive poly arthritis (Keffer et al, 

1991). Importantly it has aided the understanding of TNF-α’s role in RA progression and 

been intrinsically involved in the establishment of anti-TNF-α treatment in humans 

(Asquith et al, 2009). 

Antigen-Induced Arthritis (AIA) is another commonly used model of inflammatory 

arthritis that can be initiated in a variety of animal species, including mice (Brackertz et 
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al, 1977), rabbits (Henderson et al, 1991) and guinea pigs (Bendele, 2001). In particular 

mouse models of AIA have been extensively used to study the biology of many cytokines 

in disease pathogenesis (Oshima et al, 1998). Regardless of the species, the protocol of 

induction in AIA is standard, comprising of two subcutaneous injections of methylated 

bovine serum albumin (m-BSA) a week apart. This antigen traffics to the joint where it 

binds to negatively charged cartilage. Subsequently m-BSA is injected intra-articullarly 

into the knee joint (Van der Berg et al, 2007) and provides an acute inflammatory 

reaction leading to rapid joint destruction. One benefit of the AIA model is that disease 

only impacts the local knee joint, so the contralateral can be used as an internal control. 

However, despite the disease locally showing similar pathological joint changes, RA is a 

systemic disease and this is not mirrored in this model. For this reason, the systemic 

murine collagen-induced arthritis (mCIA) model now represents the gold standard for 

arthritis research and is discussed in more detail below. 

 

1.10 mCIA  

 

Whilst all the above described mouse models of RA have advantages and disadvantages 

for research, the mCIA model is both reproducible and well defined, and is now the most 

commonly used (Brand, 2007). It is induced via intradermal injections of an emulsion 

containing type II collagen and complete Freund’s adjuvant (CFA). Importantly this 

model shares many pathological features with human RA and its main target, type II 

collagen is a major constituent of cartilage. Similarities between mCIA and RA include 

characteristic pathological hallmarks such as synovial hyperplasia, mononuclear cell 

infiltration, cartilage degradation and the potential to express specific MHC class II genes 

(Brand, 2007). However, there are some phenotypic features of mCIA that differ to RA. 

These include the absence of Rheumatoid Factor, little sex bias between male and 

female mice and the fact that mCIA is a monophasic disease in comparison to the 

relapsing and remitting phases seen in RA. A further advantage of mCIA over the other 

antigen-induced protocol is the short time frame of approximately 7 days between 

immunization and disease manifestation. The mCIA model has been used extensively 

allowing the identification of common inflammatory cells and their mediators that drive 

disease pathology and indeed potential therapeutics. 

 

 

1.10.1 Susceptibility 

 

Induction of mCIA in DBA/1 mice is often quoted as the gold standard model for 

researching RA. The main reason for this is due to the DBA/1’s susceptibility to mCIA, 

with arthritis incidence falling between 80 and 100%. Susceptibility to mCIA is strongly 

related to the major histocompatibility complex (Wooley et al, 1981). However, more 

recently studies   have shown that several mouse genotypes are also susceptible to mCIA 
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and can be used successfully in the study of RA. These mice are known as HLA-DR models 

and have established transgenic expression of the HLA-DR1 or DR4 class II genes. Data 

show that the DR molecules are necessary for mCIA susceptibility and are involved some 

way in the immune response to collagen II. 

 

 

1.10.2 Pathogenesis  

 

An orchestrated response of both B and T cells to type II collagen II underlies the 

pathology of mCIA. The B-cell populations produce anti-Collagen II antibodies (Terato et 

al, 1992), the significance of which is starkly evidenced by the fact that B-cell deficient 

mice are protected from mCIA onset (Svensson et al, 1998). While T-cells are also 

instrumental in the production of anti-Collagen II antibodies, they also play a secondary 

role in the joint where they can induce activation of other inflammatory cells, such as 

macrophages (Kinne et al, 2000). A number of cytokines are also involved in the 

progression of mCIA, and these include IFN-ϒ, TNF-α, IL-6, IL-12, IL-17 and IL-22 

(Lubberts and van der berg, 2000). Interestingly some of these agents are involved in 

pro-inflammatory disease progression, while others act in an anti-inflammatory manor 

(McInnes and Schett, 2007).  The differentiation of naïve T-cells allows the production 

of IL-1β, TNF-α, IL-6, RANKL, MMPs and chemokines that are vital in both local and 

systemic inflammation (Billiau and Matthys, 2011). The role of some of these mediators 

will be discussed later in this thesis and their role within vascular dysfunction during 

mCIA will be investigated.  

  



15 
 

1.11 Project Summary 

 

In RA patients the increased prevalence of CVD is apparent and studies suggest that the 
CVD predictors are present in this cohort prior to RA diagnosis. Few studies exist that 
examine the early changes in the RA vasculature meaning the underlying mechanisms 
of the RA-associated vascular pathology remain elusive. mCIA was therefore chosen as 
an appropriate murine model of inflammatory arthritis, as it has distinct advantages 
enabling the very earliest vascular changes to be examined. Although a dysfunctional 
vascular contractile phenotype has been previously observed in the mCIA model 
(Reynolds et al, 2012), the underlying mechanism(s) of this pathology remain unclear. 
While the systemic inflammation associated with RA is thought to contribute, the 
inflammatory context of the arthritic blood vessel remains unknown. 

DR3 has been implicated in many inflammatory disorders and specifically linked with 
both RA and vascular disease. However, no study has investigated the role of DR3 in 
vascular dysfunction in mCIA or the RA patient cohort. As a consequence of its 
expression profile, and previously reported associated with inflammatory disease, the 
potential for DR3 to play an important role in the interplay between RA and CVD is highly 
likely. For the first time in this thesis the role of DR3 in both the healthy and arthritic 
constriction responses to serotonin in isolated tissues, and its impact on the 
inflammatory context of the thoracic aorta, are reported. As an adjunct to these studies, 
the onset of vascular calcification will also be determined. 

Since RA is a bone-associated condition, it is postulated that decreased bone formation 
in the joints and increased bone metabolism may drive ectopic calcification of the 
vasculature. Finally, due to the association of calcification systemic inflammation, 
inflammatory activation pathways will also be discussed. The AIM2 inflammasome has 
previously been implicated in vascular disease and here a relationship with vascular 
dysfunction will be examined. The therapeutic potential of inhibiting these 
inflammatory pathways will also be analysed later in this thesis.  
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1.12 Hypothesis, Aim and Objectives 

 

Data reported within this thesis will answer the hypothesis that vascular dysfunction in 

mCIA occurs in a DR3-dependent manor and is driven by increased inflammasome 

activation which may contribute to aortic calcification. The hypothesis was investigated 

using the following aim; to determine the role of systemic inflammation associated with 

inflammatory arthritis in driving cardiovascular pathology and to postulate potential 

mechanisms responsible for vascular dysfunction in a murine model of inflammatory 

arthritis. This aim will be achieved using the following five objectives: 

1. To determine the inflammatory context of the thoracic aorta during mCIA and to 

analyse the relationship between inflammation and vascular dysfunction in this 

model. 

 

2. To analyse the role of DR3 in both the healthy and arthritic vascular constriction 

response. 

 

3. To investigate whether vascular calcification is initiated in the mCIA model, 

potentially explaining the apparent dysfunction observed. 

 

4. To establish the relationship between time with mCIA and vascular calcification 

onset. 

 

5. To mechanistically evaluate increased AIM2 inflammasome activation in the 

thoracic aorta during mCIA and to determine the therapeutic potential of 

inhibiting AIM2 activation in terms of inflammatory arthritis and vascular 

dysfunction.  
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2.1 Introduction 

RA patients have high levels of systemic inflammation, as reflected by increased C 

Reactive Protein (CRP) and Erythrocyte Sedimentation Rate (ESR) (Rashid et al, 2007). 

This high inflammatory burden can often affect regions outside of the joints and causes 

damage, for example to the vasculature. The extent of this issue means that clinical 

arthritis is now associated with a double in risk of heart attack and stroke, compared 

with the general population (Mayo Clinic Study, 2013). Despite this co-morbidity being 

well recognized, few studies have investigated the early impact of systemic 

inflammation on the normal function of the vasculature.  

Investigating the effect of systemic inflammation upon vascular function is challenging 

and experiments of this nature are difficult, if not impossible, to conduct in humans or 

indeed in human tissues. It is for this reason that the gold standard animal model for 

inflammatory arthritis –mCIA was employed in this project. Previous studies using mCIA 

showed decreased vascular constriction response by thoracic aorta to cumulative 

concentrations of 5-Hydroxytriptamine (5-HT) following arthritis induction (Reynolds et 

al, 2012). Reynolds et al showed no effect on endothelium-dependent relaxation 

responses which suggested that the constriction impairment was due to a change in the 

contractile phenotype of the aorta. Here for the first time, the inflammatory profile of 

the thoracic aorta was examined.  The main cell types present in control and arthritic 

vasculature and surrounding PVAT were determined. In doing so, the aim was to achieve 

insight cellular and molecular characteristics of the vasculature that were attributable 

to experimental inflammatory arthritis and to establish phenotypic alterations of 

potential therapeutic and/or diagnostic importance. 

For many years the PVAT was thought to act as an inert physically protective barrier 

against vascular damage. Therefore most studies looking at isolated vascular function, 

including those using the mCIA model, were carried out in the absence of PVAT. We now 

know that PVAT is an important modulator of vascular constriction responses and 

removing it may alter the physiological response of the aorta. The presence of PVAT 

modulates the constriction response by more than one mechanism: it is capable of 

releasing a relaxation factor which can act on the endothelium, inducing relaxation via 

nitric oxide release while also producing hydrogen peroxide (Gao et al, 2007) which has 

a negative effect on relaxation. However, it is important to consider that PVAT has more 

recently been associated with the production of leptin and angiotensin II, which are 

known to promote vasoconstriction (Chang et al, 2012). The impact of the PVAT on 

vascular function following arthritis induction is unknown and will be investigated in this 

thesis.  

Very few studies have attempted to determine the cellular makeup of the aortic vessel 

wall during arthritis-associated vascular dysfunction. Therefore this Chapter will 

interrogate the very earliest changes seen within the vessel wall, following arthritis 

induction, in the absence of any overt cardiovascular disease. Previously, the focus of 

vessel inflammation has been linked with atherosclerosis, where immune cells such as 

macrophages populate the vessel wall from an early stage (Ley et al, 2011) (Bennett, 

2013).  
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It has previously been shown that the presence of inflammatory cells, such as 

macrophages, in the vasculature during overt CVD is related the increased expression of 

the TNF family cytokine – TL1A (McLaren et al, 2010). TL1A is the only known ligand 

which directly binds to DR3. The presence of macrophages and increased TL1A has been 

shown in foam cells of the atherosclerotic plaque in vitro (McLaren et al, 2010). DR3 has 

a well characterised “death domain”, in which when activated via its ligand TL1A, can 

initiate apoptosis. However, DR3 is also known for its capability to signal via NF-κβ, in 

which plays a role in cell survival, driving differentiation and proliferation (Kitson et al, 

1996). This work outlines the relationship of the inflammatory cells present in the 

vasculature following systemic inflammation and how they are impacted by DR3 

expression for a number of reasons. TL1A itself has been implicated in overt CVD; where 

in vitro it drives increased uptake of low density lipoprotein (McLaren et al, 2010). 

Moreover, DR3 is involved in the modulation of immune cells (Fang et al, 2008) and its 

role has been shown in a number of inflammatory diseases, including, inflammatory 

bowel disease (Takedatsu et al, 2008) and RA (Bull et al, 2008). Furthering this DR3 has 

been shown to be explicitly expressed on the osteoblast – a major regulator in bone 

formation, important within the RA cohort (Borysenko et al, 2006). Given the 

importance of DR3 and its potential to be involved in vascular inflammation, its 

expression in the vasculature of healthy and arthritic mice will be a significant driver in 

the present studies.   

When considering changes to vascular function in our model, it is suggested that the 

early phenotypic changes may prime the vessel for vascular disease. To this regard it has 

previously been shown that vascular dysfunction is potentially linked with increased 

levels of MMP-9 in mCIA (Reynolds et al, 2012). As a type IV collagenase enzyme, the 

addition of MMP-9 to an environment made up of extracellular matrix has potential to 

cause serious damage, especially when active MMP-9 levels are greatly increased (Cho 

and Reidy, 2002). While the Reynolds et al, study concluded that the source of MMP-9 

was the aortic tissue itself, it did not explore the identity of cells capable of making 

MMP-9 nor their presence within this tissue.  As such this Chapter explores the possible 

cellular sources of MMP-9, including macrophages and neutrophils. 

This chapter describes the experiments used to determine whether the systemic 

inflammation associated with mCIA was driving an inflammatory change within the 

aortic vessel wall and surrounding PVAT. The constriction response was determined in 

the absence and presence of PVAT, in order to demonstrate the role of the latter in 

health and disease. The cell types and soluble factors produced within the aortic vessel 

wall and PVAT were studied in order to identify potential relevance to changes in 

vascular constriction. This Chapter details methodology, results and discussion under 

the following hypothesis and objectives: 

Hypothesis: mCIA associated systemic inflammation drives vascular dysfunction, 

attributable to increased inflammatory cell ingress into the vasculature and surrounding 

PVAT. 
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 To validate the vascular constriction response to 5-HT seen previously in the 

mCIA model and to determine the impact of the PVAT on this response 

 To identify and measure early changes in the cells, namely macrophages and 

neutrophils and soluble mediators, such as MMP-9, in both the aortic vessel wall 

and surrounding PVAT that potentially underlie the vascular dysfunction 

observed following the onset of arthritis.  
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2.2 Materials and Methods 

All chemicals were purchased from Sigma-Aldrich (unless stated otherwise). Solvents 

were supplied by Fisher Scientific (unless stated otherwise). A Millipore Milli-Q system 

produced dH2O that was used to prepare buffers, reagents and stains. Phosphate 

Buffered Saline (PBS) pH7.2 was supplied by Life Technologies Ltd. All plastic-ware was 

obtained from Greiner Bio-One Ltd.  

2.2.1 Materials 

Male mice (8 weeks old) were used for all experiments. Wild Type (WT) DBA/1 mice 

were acquired from Harlan, UK. All experiments were carried out with age and sex 

matched non-immunized controls.  All animal care and experimental procedures 

complied with the United Kingdom Animals (Scientific Procedures) Act 1986 and were 

under the authority of Home Office Project Licence (30/2928). 

2.2.1.1 Preparation of Collagen Induced Arthritis Reagents 

 

1M Acetic Acid  

To make 100mls of a 1M acetic acid stock solution, 5.74 mls of glacial acetic acid was 

added to 94.26mls of dH2O, in a glass bottle, in a class II fume hood.  

Complete Freund’s Adjuvant 

To prepare a complete adjuvant, 100mg of Mycobacterium tuberculosis (M. 

tuberculosis) (Difco, H37 RA, 231141) was ground into a fine powder using a pestle and 

mortar, in a fume hood. This was then added to 20ml of incomplete Freund’s adjuvant 

(Sigma, F5506), providing a final bacterium concentration of 5mg/ml. The CFA was then 

stored at -20oC. 

Type II Collagen Solution 

The type II chick collagen (Sigma, C9301) solution was prepared by dissolving 10mg in 

2.5mls    of 10mM acetic acid (the latter made by adding 2.5µl of 1M acetic acid stock to 

2475 µl of dH2O). Collagen was dissolved by stirring overnight at 4oC.  

Type II collagen Immunization Emulsion 

The immunization emulsion to initiate mCIA was made by combining equal volumes of 

the type II collagen and CFA solutions. Double the volume required for immunization 

was prepared (to account for loss of emulsion, for example in the space between needle 

and syringe). The mixture was made in a glass syringe and emulsified by passing through 

a 19-gauge needle 20 times. All emulsions were made fresh prior to immunization.    
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2.2.1.2 Myography Reagents 

All buffers and reagents were made up using dH2O. 

Table 2.1 - Krebs Buffer Composition 

Reagent mM 

NaCl 109.17 

KCl 2.68 

KH2PO4 1.18 

MgSO4.7H2O 1.22 

NaHCO3 25.00 

Glucose 10.99 

CaCl2.H2O 1.71 

 

Table 2.2 - High Potassium Krebs Buffer (60mM) Composition 

Reagent mM 

NaCl 39.36 

KCl 59.99 

KH2PO4 1.18 

MgSO4.7H2O 1.22 

NaHCO3 25.00 

Glucose 10.99 

CaCl2.H2O 1.71 

  

10mM 5-HT solution 

To make a 10mM solution of 5-HT (Sigma) 2.13mg was weighed and dissolved in 1ml of 

dH2O. 
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2.2.1.3. Histological Reagents 

 

Industrial Methylated Spirit (IMS) was required at 90% and was diluted with dH2O. Harris 

Haematoxylin and Eosin were purchased from Fisher Scientific. DPX Mountant was 

purchased from Sigma. 

2.2.1.4 General Immunohistochemistry Reagents 

 All reagents for immunohistochemistry were made up and used as per manufacturer’s 

instructions. 

Table 2.3 – Immunohistochemistry Reagents 

Product Supplier 

Pap Pen Pyramid 

H2O2 Block (3%) Life Technologies  

Goat Serum Vector Laboratories 

Avidin/ Biotin Blocking kit Vector Laboratories 

TBS Sigma 

High Sensitivity Horse Radish Peroxidase Vector Laboratories 

DAB kit Vector Laboratories 

 

Table 2.4 – Immunohistochemistry Antibodies 

 

Antibody Supplier 

F4/80 Abd Serotech 

Ly6G BD Pharmigen 

MMP-9 R and D Systems 

DR3 R and D Systems 
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2.2.2 Induction of mCIA  

Following arrival all animals received a settling in period of at least one week before 

experimental procedures were initiated. To induce mCIA mice were anaesthetised 

(isoflurane (4L/min) and oxygen (2-4L/min)) and immunized using the intra-dermal 

route with a total of 100 µl of immunization emulsion (as described above, section 

2.2.1.1). Immunizations of 50 µl were administered at multiple adjacent sites right 

laterally at the base of the tail (see Figure 2.1). This was termed day 0.  

For the next 20 days mice were inspected on a regular basis, to ensure good health 

status was retained. On day 20 mice received temgesic (400 micrograms/L) in their 

drinking water, which was later changed on a daily basis. On day 21 a booster 

immunization, identical to that given on day 0, was administered at multiple adjacent 

sites left laterally at the base of the tail (see Figure 2.1). Concurrently from day 21 mice 

were also weighed daily and hind paw diameters were measured using a micrometer, 

to deduce arthritis induction. This was accompanied by manually scoring each paw 

(Table 2.5) to produce an Arthritis Index, a measure of disease activity (Table 2.6). During 

this time health monitoring sheets were filled in daily. 

Table 2.5 – Paw Scoring System 

Paw Score Pathological Features 

0 Normal 

1 Mild/ Moderate erythema and Swelling 

(single toes effected with no other swelling) 

2 Severe swelling encompassing whole paw 

3 Severe swelling encompassing the whole 

paw, and toes beginning to become effected 

4 Whole paw/ankle/ toes swollen. 

5 Deformed paw / ankylosis 

 

Table 2.6 – Paw Scores Used to Determine Arthritis Index 

Total Paw Score Arthritis Severity 

0 No Arthritis 

1-5 Mild 

6-10 Moderate 

11-15 Severe 
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Figure 2.1 – Intradermal Injection Sites. During mCIA intradermal injections were given 

at the above shown sites on day 0 and then on day 21.  

 

2.2.3 Experimental Sample Collection 

 

When the experimental end point was reached (the onset of mild arthritis), mice were 

killed by a Schedule 1 method. Each mouse was placed in a rising concentration of CO2 

until breathing ceased. Palpitation of the heart was then carried out to ensure 

circulation was terminated and the mouse was dead.  

2.2.3.1 Isolating Blood Plasma – Cardiac Puncture  

 

Blood samples were collected from all mice via cardiac puncture immediately following 

the procedure described above. Using a 25 gauge needle, between 600µl and 1ml of 

whole blood was obtained from each animal and transferred promptly into 3ml 

vacutainers coated with EDTA and stored on ice. Samples were then centrifuged at 

 

 

1a 
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2a 
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16000 g for 20 minutes at 4oC. The resulting plasma was then isolated and stored at -

20oC for later analysis.  

2.2.3.2 Tissue Preparation for Histology  

 

All tissue samples that were collected for histological analysis were fixed in 70% (v/v) 

ethanol for no less than one week prior to processing. If aortas were required for 

myography they were removed into fresh physiological Krebs solution and kept on ice.  

Following cardiac puncture, the skin and ribcage was removed from each mouse, 

exposing the heart. The abdominal aorta was vented (Figure 2.2) and the heart was 

flushed using an injection of physiological Krebs solution into the right ventricle. The 

heart was then removed with a small portion of aortic arch still intact. The thoracic aorta 

was revealed by removing the ribs, diaphragm and lungs and then carefully dissected 

out without impacting on the elasticity of the vessel. The hind limbs were finally 

removed by cutting up the spine to the hip bone and were fixed for histology as above.  

 

2.2.3.3. Bone Specific Preparations 

 

Hind limbs were fixed for a minimum of 6 weeks in 70% Ethanol before being processed 

for histology. Following the fixation period all bones were subject to a decalcification 

process for a minimum of 2 weeks, or until bone was evidently decalcified. 

Decalcification solution consisted of 70g of Ethylenediaminetetraacetic acid (EDTA) in 

900ml of PBS (pH 7) and was changed twice weekly. In order to ensure all bone was fully 

decalcified, legs were imaged by X-RAY using a Kodak FX-Pro. 
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Figure 2.2 - The Anatomy of the Murine Aorta. During experimental tissue collection 

the region of the descending thoracic aorta highlighted was taken for sample 

preparation.  

1.2.4 Tissue Processing 

 

Following tissue fixation, thoracic aortic sections were processed for histology. A 

Shandon Tissue processor was used on a 21 hour cycle to prepare each sample for the 

embedding process. Each sample was exposed to a series of washes; 1 70% ethanol, 1 

90 % ethanol, 5 100% ethanol and 3 100% xylene, before being infiltrated with 4 cycles 

of wax. Samples were then transferred to a histocentre, where each was embedded 

within a wax block.  

A microtome was used to trim all excess wax from each block before 8µm sections were 

cut using a specialised S35 soft tissue blade. A minimum of 12 sections were cut and 

mounted onto Superfrost+ slides (2 sections per slide) and stored at 56oC overnight. 

Slides were then stored at room temperature until staining was initiated. 
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2.2.5 Histology 

 

In order to gauge the general structure and to count total cells within the thoracic aorta 

and surrounding PVAT a Haematoxylin and Eosin (H&E) stain was carried out (Table 2.7 

) in all control and mild arthritic samples. Images of staining were taken on a Leica 

Microscope at x10, x20 or x40 magnification.  

Table 2.7 – General Histology Protocol 

Step Time Reason 

3 x Xylene Washes 3 x 5 minutes Rehydration Step 

 2 x 100% IMS Washes 2 x 3 minutes 

90% IMS Wash 3 minutes 

dH2O Wash 3 minutes 

Haematoxylin Stain 90 seconds Identify Cell Nuclei 

Running Tap Water Until Clear Remove Excess Stain 

Eosin Stain 30 seconds Identify Eosinophilic 

Structures 

Running Tap Water Until Clear Remove Excess Stain 

90% IMS Wash 3 minutes Dehydration Step 

2x 100% IMS Washes 2 x 3 minutes 

3 x Xylene Washes 3 x 5 minutes 

Mount in DPX - Preservation of Staining 

 

Corel Paint Shop Pro was used to separate each image into two separate images – one 

of the aortic vessel and one of the surrounding PVAT. From this point the images were 

analysed separately. A Carestream package was used to identify specific regions of 

interest within each image. This programme works by identifying an edge gradient thus 

allowing each cell nuclei to be counted as a single region of interest. Total area of either 

the aortic vessel wall or the PVAT was then determined using Image J. This information 

was used to calculate the number of cells per mm2. 
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2.2.5.2 Determining Arthritis Index – Histological Assessment 

 

The protocol detailed above (Table 2.7) was also used to stain non-immunized and 

arthritic ankle joints in order to determine an arthritis index. Following H&E staining, 

images were taken at x20 magnification using a Leica Microscope. Each joint was scored 

using the following scoring system (Table 2.8) and was given a total score, termed the 

Arthritis Index.  
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Table 2.8 – Histological Assessment of mCIA Joints  

Subsynovial Inflammation 

0 Normal 

1 Focal Inflammatory Infiltrates, adiposity hardly affected (10% 

Inflammatory cells : 90% Adipose Tissue cells) 

2 Focal Inflammatory Infiltrates equal adiposity (50% 

Inflammatory cells : 50% Adipose Tissue cells) 

3 Random Inflammatory Infiltrates that dominate cellular 

histology (70% Inflammatory cells : 30% Adipose Tissue cells) 

4 Substantial Inflammatory Infiltrates with severe loss of 

adiposity  (90% Inflammatory cells : 10% Adipose Tissue cells) 

5 Ablation of adipose tissue due to Inflammatory Infiltrates 

(100% Inflammatory cells : 0% Adipose Tissue cells) 

Synovial Exudate 

0 Normal 

1 Evidence of Inflammatory Cells in Joint Space 

2 Moderate Numbers of Inflammatory Cells in Joint Space, 

Fibrin Deposits Evident 

3 Substantial Numbers of Inflammatory Cells in Joint Space, 

Large Fibrin Deposits Evident 

Synovial Hyperplasia and Pannus Formation 

0 Normal (1-3 Layers Thick) 

1 Synovial Lining >3 Layers Thick, Thickening is Evident and/or 

Invades the Joint Space 

2 Synovial Lining >3 Layers Thick, Approaching Cartilage and/or 

finger like processes into the Joint Space 

3 Synovial Lining >3 Layers Thick, Covering Cartilage, with 

evident Cartilage Loss 

Cartilage and Bone Erosions 

0 Normal 

1 Detectable loss of Cartilage – caused by pannus  

2 Detectable erosions of underlying bone – caused by pannus 

3 Significant erosion of part of the bone 
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2.2.6 Immunohistochemistry 

 

The following protocol was used generally in all immunohistochemistry (Table 2.9) with 

optimized steps for individual proteins of interest, for example a different wash buffer 

was required for each. Identification of macrophages (F4/80+ cells), neutrophils (Ly6G+ 

cells), DR3 positive cells and the presence of MMP-9 was carried out. Different 

antibodies, isotypes and therefore serum blocks were also used and details can be found 

along with the specific antibody concentrations in Table 2.10. 
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Table 2.9 – General Immunohistochemistry Protocol 

Process Reason Time 

3 Xylene Washes Rehydration and Wax 

Clearing 

3 x 5 minutes 

2 100% Ethanol Washes Slide Rehydration 

 

2 x 3 minutes 

90% Ethanol Wash 3 minutes 

Distilled H2O Equilibrate 5 minutes 

Buffer Rinse - 

3% Hydrogen Peroxidase 

Block 

Quench Hydrogen 

Peroxidase Activity 

30 minutes 

PBS wash  5 minutes 

Secondary Host Serum 

Block 

Decrease non-specific 

binding of antibody 

20 minutes 

Buffer wash  5 minutes 

Avidin Block Decrease non-specific 

binding of antibody 

10 minutes 

Buffer wash  5 minutes 

Biotin Block Decrease non-specific 

binding of antibody 

10 minutes 

Buffer wash  5 minutes 

Addition of primary 

antibody or Isotype 

control antibody  (4oC) 

Identification of target 

protein and control IgG 

staining 

Over night 

3x Buffer wash Remove excess antibody 3 x 2 minutes 

Addition of secondary 

antibody 

Identification of bound 

primary antibody 

1 hour 

3x Buffer wash Remove excess/unbound 

antibody 

3x2 minutes 

High Sensitivity Horse 

Radish Peroxidase 

Identify bound Antibody in 

sections 

30 minutes 

PBS wash Remove excess HRP 5 minutes 

DAB Allows identification of 

positive staining 

3-5 minutes 

Running Tap Water Remove excess DAB 

staining 

5 minutes 

Haematoxylin Counter stain 90 seconds 

Running Tap Water Remove excess counter 

stain 

Until water runs clear 

90% Ethanol Dehydration of slides and 

Clearing 

 

3 minutes 

2 x 100% Ethanol 2 x 3 minutes 

3 x Xylene 3 x 5 minutes 

Mount with DPX and 

coverslip 

Preservation of staining  
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Table 2.10 – Antibody Specific Reagents and Concentrations 

 

 

 

 

 

 

 

 

 

 

Representative high power images (x40) were taken on the Leica microscope, of both 

the aortic vessel wall and the surrounding PVAT. From this point the aortic vessel wall 

and the PVAT were analysed separately.  

Photoshop was used to determine the total number of pixels in the selected area of the 

picture (eg, the vessel wall). The number of brown pixels, representative of positive 

staining, was then calculated. The positive staining was calculated as a percentage of 

the total region and was corrected for isotype control values. 

 

 

 

 

 

 

 

 

 

 

Reagent F4/80 Ly6G DR3 MMP-9 

Wash 

Buffer 

TBS Tween TBS Tween TBS PBS 

Serum 

Block 

Rabbit Rabbit Goat Goat 

Primary 

Antibody 

Rat Anti 

MouseF480 

(2ug/ml) 

Rat Anti 

Mouse 

Ly6G 

(5ug/ml) 

Biotinylated 

Goat anti 

mDR3 

(2ug/ml) 

Biotinylated 

Goat anti 

MMP-9 

(15ug/ml) 

Isotype  Rat IgG2A 

(2ug/ml) 

Rat IgG2B 

(5ug/ml) 

Normal 

Goat IgG 

(2ug/ml) 

Normal 

Goat IgG 

(15ug/ml) 

Secondary 

Antibody 

Rabbit Anti 

Rat IgG 

Rabbit Anti 

Rat IgG 

None None 
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2.2.7 Myography 

 

In order to determine the baseline vasomotor responses of the descending thoracic 

aorta and the effect of mCIA and PVAT on this response, myography was carried out on 

both fat denuded and fat intact aortic rings (see below). Tissues from experimental mCIA 

and control animals were compared in order to gauge the level of vascular dysfunction 

present in this model. 

2.2.7.1 Determination of Baseline Constriction Responses for Fat Intact and Fat Denuded 

Aorta  

 

Each well of the myograph was first washed and filled with Krebs solution, gassed at 95% 

O2 and 5% CO2. For each aorta, two PVAT intact rings (2mm wide) were cut with the aid 

of a dissection microscope and mounted in the myograph (see Figure 2.3). The 

remaining aorta was then carefully cleaned of PVAT and a further two rings cut and 

mounted as above. Tissues were left to equilibrate in the bath for 20 minutes at 37oC 

with the tension of the prongs set at 0 MilliNewtons (mN). A resting tension of 5mN was 

then applied by increasing the tension by 0.5mN per minute, over a 10 minute period. 

Subsequently tissues were allowed to equilibrate for a further 20 minutes over which 

time the resting tension was readjusted to 5mN as appropriate. The MyoDaq 

programme was used to monitor changes in tension throughout the experiments.  

Following removal of the physiological Krebs from each bath, a “wake-up response” was 

carried out by addition of 60mM Potassium Krebs, for 10 minutes. Baths were then 

repeatedly washed with physiological Krebs until the vessel tension returned to a resting 

5mN. At this point each bath contained 5mls of physiological Krebs. 

A serial dilution of 10mM 5-HT was carried out in order to produce a range of 

concentrations. To produce a cumulative concentration curve, varying volumes of each 

5-HT concentration were added in turn to each bath (see Table 2.11).  
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Figure 2.3 - A Single Well of a Myograph. Aortic rings were mounted on two wire prongs 

as shown above. The well of the myograph allows for addition of different 

pharmacological agents and determines vascular constrction response.  
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Table 2.11 – Cumulative Concentration Curve 

 

Volume Added to Bath 

(µl) 

Concentration of 5-HT 

added to Bath (M) 

Final Bath Concentration 

(M) 

50 1 x10-7 1 x10-9 

100 1 x10-7 3 x10-9 

35 1 x10-6 1 x10-8 

100 1 x10-6 3 x10-8 

35 1 x10-5 1 x10-7 

100 1 x10-5 3 x10-7 

35 1 x10-4 1 x10-6 

100 1 x10-4 3 x10-6 

35 1 x10-3 1 x10-5 

100 1 x10-3 3 x10-5 

 

2.2.7.2 Myography Analysis 

 

In order to analyse constriction responses the MyoData programme was used. Agonist-

induced contraction responses were calculated as plateau developed tension to each 

concentration above the resting tension. 

 

2.2.7.3 Statistics 

 

Statistics used were dependant on the experiments performed. For all histology and 

immunohistochemical analysis, Students T-Test was used to compare the non-

immunized group with the arthritic group. All correlations were plotted using Graph Pad 

Prism and Spearman’s Rank Coefficients were determined. Where appropriate data 

were averaged for each animal and counted as one n-value. All concentration response 

data were fitted to sigmoid curves using Graph Pad Prism and resulting Ec50 (half 

maximal constriction) and RMAX (maximal constriction) values were then compared 
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using a Students T-Test. Differences that were considered significant were p<0.05. 

Values are all plotted as Mean ± SEM.   

 

2.3 Results 

2.3.1 Arthritis Incidence in DBA/1 Mice Over a 45 Day Time Course 

 

Both non-immunized control and arthritic mice were housed together and there was no 

difference in weight prior to, or at the point of the booster immunization (day21). 

However, from day 22 onwards it was noted that non-immunized mice weighed 

significantly (P<0.001) more than immunized mice. This was apparent even prior to the 

steep curve of arthritis onset, seen between days 26 and 30 (Figure 2.4).  Despite 

arthritic mice weighing less than their non-immunized counter parts, no more than 20% 

weight loss was seen, over the time course, from day 21. 

By day 34 mCIA was initiated in 100% of experimental DBA/1mice (Figure 2.5a).  Total 

paw score and hind paw diameter of experimental animals were both significantly 

(P<0.0001) increased in comparison to non-immunized control mice (Figure 2.5b&c). 

Individual paw score positively and significantly (p<0.0001) correlated with paw 

diameter (Figure 2.5d). 

In order to assess the local impact of systemic inflammatory arthritis, the ankle joints 

were analysed for aspects of inflammation. All such markers were up regulated within 

joints of arthritic mice compared to non-immunized controls. Sub-synovial inflammation 

was significantly (p<0.0001) increased (0 vs. 2.9 ± 0.23). This was matched by a 

significant (p=0.0001) increase in synovial hyperplasia and panus formation (0 vs. 1.9 ± 

0.23). Synovial exudate (0.2 ± 0.2 vs. 0.6 ± 0.18), cartilage and bone erosions (0 vs. 0.9 ± 

0.35) were increased, but not significantly. To determine the arthritis index the total of 

the 4 inflammatory measures was calculated and was significantly (p<0.0001) increased 

in arthritic ankle joints in comparison with controls (0.2 ± 0.2 vs. 6.3 ± 0.62) (Figure 2.6a-

e).  
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Figure 2.4 – Weight Changes Over the Arthritic Time Course. The weight of a sample of 

non-immunized controls (N=20) was compared to the weight of immunized arthritic 

animals (N=48), following the booster injection on day 21, for 24 days. ***=p<0.0001.  
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Figure 2.5 - Arthritis Induction in DBA/1 Mice Over a 45 day Time Course. Arthritis 

Incidence is shown over a sample set of 6 experiments, for a total of 48 experimental 

mice (A). Total Paw Score is shown over a 45 day time course (N=48) (B). Individual hind 

paw diameter (including right and left measurements) are shown for arthritic (N=52) vs. 

non-immunized control paws (N=24) (C). Individual paw score and paw diameter were 

correlated for 2 experiments (N=16) (D). ***=p<0.0001.    

 

 

 

 

  

C) D) 

B) A) 



40 
 

 

Non Immunized Mild Arthritis
0

1

2

3

4

***
S

u
b

s
y
n

o
v
ia

l 
In

fl
a
m

m
a
ti

o
n

 (
0
-5

)

 
Non Immunized Mild Arthritis

0.0

0.5

1.0

S
y
n

o
v
ia

l 
E

x
u

d
a
te

(0
-3

)

 

Non Immunized Mild Arthritis
0

1

2

3

***

S
y
n

o
v
ia

l 
H

y
p

e
r
p

la
s
ia

&
 P

a
n

u
s
 F

o
r
m

a
ti

o
n

(0
-3

)

 

Non Immunized Mild Arthritis
0

1

2

3

C
a
r
ti

la
g

e
/ 

B
o

n
e
 E

r
o

s
io

n
s

(0
-3

)

 

Non Immunized Mild Arthritis
0

2

4

6

8
***

T
o

ta
l 

S
c
o

re

(0
-1

4
)

 

Figure 2.6- Measurement of Arthritis Index. Inflammatory measures were analysed 

following H&E staining of ankle joints from non-immunized control mice (N=5) and 

arthritic mice (N=8). These included; subsynovial inflammation (A), synovial exudate (B), 

synovial hyperplasia and panus formation (C) and cartilage/ bone erosions (D). A final 

total score of all inflammatory measures makes up the arthritis index (E). ***=p<0.001. 
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2.3.2 Arthritis Significantly Reduces the Vascular Constriction Response. 

 

Vascular constriction response to 5-HT was measured in PVAT-denuded and -intact 

tissues from non-immunized control and arthritic mice. In those from non-immunized 

mice, the presence of PVAT caused a significant (P=0.0009) dextral shift in the 

constriction response to 5-HT but did not impact the RMAX.  (Figure 2.7a) The PVAT 

altered the constriction responses in tissues from mildly arthritic animals in a similar 

way, causing a significant (P<0.0001) dextral shift to the curve, without affecting RMAX 

(Figure 2.7b).  

No difference in EC50 values was observed for constriction responses between PVAT-

denuded tissues from non-immunized control and mild arthritic animals (-6.22±0.11mN 

(N=8) vs. -6.11±0.11 (N=14)). However, RMAX responses were significantly (P=0.0003) 

reduced in arthritic tissues compared to controls (4.40 ± 0.18 mN (N=14) vs 5.56 ± 0.17 

(N=8)) (Figure2.7c&d).  

The EC50 values for PVAT-intact tissues from non-immunized controls and mildly 

arthritic rings were comparable (-6.71±0.079 (N=8) vs. -6.80±0.11 (N=14)). However, as 

described above for PVAT-denuded tissues, the RMAX response of PVAT-intact arthritic 

rings was significantly (P=0.025) decreased in comparison to non-immunized controls 

(4.62 ± 0.19 (N=14) vs.5.43 ± 0.29 mN (N=8)). 
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Figure 2.7 - Comparison of Constriction Response Curves in Isolated Rings from Control 

and Arthritic Mice. Constriction responses to 5-HT were determined for PVAT-intact and 

-denuded tissues from both non-immunized controls (N=8) (A) and mildly arthritic mice 

(N=14) (B). The PVAT-denuded (C) and intact (D) constriction responses for non-

immunized controls and arthritic rings were also compared *=p<0.05, ***=p<0.001.  
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2.3.3 Arthritis Does Not Impact on Total Cell Number Within the Aorta or Surrounding 

PVAT. 

 

Following the onset of mild arthritis, total cell numbers within the aortic vessel wall and 

the surrounding PVAT were calculated (Figure 2.8). There was no significant difference 

in total cell number following arthritis onset within the aortic vessel wall (4575 ± 243 

(N=21) vs. 4169 ± 531 cells/mm2 (N=8)). Similar results were seen in the PVAT, with no 

significant difference in total cell number following arthritis onset (2328 ± 181 vs. 2742 

± 297 cells/mm2). 
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Figure 2.8 - Total Cell Counts in Non-Immunized and Arthritic Aorta and PVAT. 

Total cell numbers were counted in the aortic vessel wall (A) and the surrounding 

PVAT (B) for non-immunized (N=21) and arthritic (N=8) mice. Representative 

images show non-immunized (C) and arthritic (D) vasculature. Images are taken 

at x20 magnification and scale bars represent 0.25µm. Images are taken at x10 

magnification. Scale bars represent 0.2µm. 
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2.3.4 Onset of Arthritis Significantly Changes the Inflammatory Profile of the Vasculature 

 

Following the onset of mild arthritis increased numbers of macrophages were found 

within both the aortic vessel wall and the surrounding PVAT. F4/80+ macrophages were 

identified in both regions in both groups of mice (Figure 2.9) and a significant (p<0.02) 

increase was observed within the aorta (4.83 ± 0.6% (N=21) vs. 11.23 ± 3.2% (N=8)) and 

PVAT (p=0.008) (3.08 ± 0.6% vs. 8.81 ± 2.4%) following arthritis onset. 

A small percentage of cells expressed Ly6G in both non-immunized and mildly arthritic 

tissues (Figure 2.10). In the aortic vessel wall Ly6G expression shows a trend (p=0.055) 

towards decreased expression following arthritis onset (1.87 ± 0.86% (N=4) vs. 0.55 ± 

0.22% (N=10)). No difference in Ly6G expression was seen within the PVAT (1.64 ± 0.92% 

vs. 1.84 ± 1.13%).  

Following the onset of arthritis MMP-9 expression in the aorta showed an increasing 

trend (Figure 2.11), though this was not significant (5.31 ± 3.11% (N=4) vs. 12.45 ± 3.06% 

(N=12). However, a significant (p=0.044) increase in MMP-9 expression in PVAT was 

observed (7.0 ± 6.57% vs. 27.15 ± 4.86%). 

A significant (p=0.003) increase in the cellular expression of DR3 was observed within 

the aortic vessel wall (p=0.003) (4.96 ± 0.49% (N=13) vs. 9.84 ± 1.68% (N=8)) and PVAT 

(p=0.048) (5.78 ± 0.78% vs. 10.18 ± 2.45%) following the onset of arthritis (Figure 2.12).  
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Figure 2.9 – Effect of Arthritis Onset on Macrophage Number in the 

Vasculature. The % of cells expressing the macrophage marker F4/80 was 

determined in the aortic vessel wall (A) and surrounding PVAT (B) for non-

immunized (N=21) and mildly arthritic (N=8) mice. Representative images show 

F4/80 positive staining in non-immunized controls (C) and mild arthritic (D) 

vasculature. *p<0.05. Images are taken at x20 magnification. Scale bars 

represent 0.2µm. 
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Figure 2.10 – Effect of Arthritis on the Number of Neutrophils in the 

Vasculature. The % of cells expressing neutrophil marker Ly6G was determined 

in the aortic vessel wall (A) and surrounding PVAT (B) for non-immunized (N=4) 

and mildly arthritic (N=10) mice. Representative images show Ly6G positive 

staining in non-immunized controls (C) and mild arthritic (D) vasculature. Images 

are taken at x20 magnification. Scale bars represent 0.2µm. 
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Figure 2.11 – Effect of Arthritis on the Expression of MMP-9 in the Vasculature. 

The % of MMP-9 staining was determined in the aortic vessel wall (A) and 

surrounding PVAT (B) for non-immunized (N=4) and mildly arthritic (N=12) mice. 

Representative images show MMP-9 positive staining in non-immunized controls 

(C) and mild arthritic (D) vasculature.*p<0.05. Images are taken at x20 

magnification. Scale bars represent 0.2µm. 
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Figure 2.12 – Effect of Arthritis on the Cellular Expression of DR3 in the 

Vasculature. The % of DR3 expression was determined in the aortic vessel wall 

(A) and surrounding PVAT (B) for non-immunized (N=13) and mildly arthritic 

(N=8) mice. Representative images show DR3 positive staining in non-immunized 

controls (C) and mild arthritic (D) vasculature.*p<0.05, **p<0.001. Images are 

taken at x20 magnification. Scale bars represent 0.2µm. 
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2.4 Discussion 

The increased risks to health associated with systemic inflammatory diseases such as RA 
and CVD are well established, however the underlying mechanisms linking these 
disorders to clinical events is poorly understood. Here, we show that systemic 
inflammation leads to an impaired vascular constriction response that is impacted by 
the presence of PVAT. These alterations in constriction responses are associated with 
increased inflammatory mediators within both the aortic vessel wall and the 
surrounding PVAT. 

Vascular contractile dysfunction in mCIA has been described previously (Reynolds et al, 
2012). The experiments described herein to determine that the mCIA model worked 
successfully in our hands. However, the isolated tissue studies described by Reynolds et 
al, were carried out in the absence of PVAT- a tissue that has been shown to modulate 
vascular constriction response (Lohn et al, 2002, Verlohren et al, 2004, Owen et al, 
2013). Importantly, the present study demonstrates for the first time the impact of PVAT 
on constriction response following the onset of mCIA. To this end PVAT causes a dextral 
shift in constriction response to 5-HT in both control and mCIA aortas while having no 
effect on maximum contraction responses. While PVAT does not impact on the maximal 
constriction potential of the aortic vessel, these findings build on an increasing body of 
evidence that PVAT is not just an inert fat store providing physical protection to the 
vasculature, but that it plays a major role in the modulation of vascular tone (Lohn et al, 
2002), (Verlohren et al, 2004), (Owen et al, 2013). 

The definitive mechanism by which PVAT affects vascular constriction response is 
currently unknown. There are many potential candidates that have been postulated, all 
of which are distinct possibilities in this model. Examples of these mechanisms include 
the release of a transferable relaxing factor which induces endothelium-dependent 
relaxation (Gao et al, 2007). This involves the action of nitric oxide (NO) release and the 
activation of KCa channels (Yuan et al, 1996). It is important to note, that despite 
Reynolds et al showing dysfunction in fat denuded vessels occurred independently of 
the endothelium, it was shown that there was no change in endothelium dependant 
relaxation. This suggests the endothelium was functional and therefore able to react to 
any factors produced in its proximity (Reynolds et al, 2012). For example, it is well known 
the PVAT can produce a number of vasorelaxant factors that could impact on vascular 
constriction. Another distinct possibility is that this delayed constriction response occurs 
independently of the endothelium and involves the activity of H2O2, allowing activation 
of soluble guanylyl cyclase (Krieger-Brauer and Kather, 1992). From our results we would 
suggest that whichever mechanism is responsible for the dextral shift seen in 
constriction response to 5-HT, that the mechanism works to the same effect in both 
control and mCIA aortic tissue. Although we show similarities in health and disease, we 
continued to analyse both the aortic vessel and PVAT to determine differences that may 
still exsist at a cellular level.    

Interestingly, there is no significant change in total cell number within either the aortic 
vessel wall or the surrounding PVAT. This is surprising considering the changing 
populations of both macrophages and neutrophils within these regions. As such this 
would suggest that the whole dynamic of the vessel wall and surrounding fat is changing 
as a consequence of systemic inflammation. It is likely that while cells such as 
macrophages ingress into the vasculature, a change in residential cells is simultaneous. 
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This novel data have not previously been reported in the absence of any overt CVD.  In 
order for cells to be able to infiltrate into either region there must be a change within 
the control mechanisms within both tissues. For example, we would likely see an 
increase in adhesion molecules, such as, Vascular Adhesion Molecule 1 (VCAM-1), which 
facilitate both recruitment and trans-endothelial migration of both monocytes and 
macrophages, into the regions (Kaden et al, 2005). 

Although the total number of cells does not change, an alteration to the cellular 
population is not ruled out. For instance, it was noted that the structure of the PVAT 
itself appears to change between non-immunized and arthritic histology images (Figure 
2.13). In non-immunized mice the PVAT appears to be phenotypically white. Structurally 
white adipocytes have a scant ring of cytoplasm surrounding a single lipid droplet. They 
have nuclei that appear flattened within the cell (Klaus, 1997). This is different to what 
we see within the PVAT of arthritic mice. The PVAT appears densely packed; suggestive 
of brown fat. These cells have an increased volume of cytoplasm and contain multiple 
lipid droplets. The cell nuclei are also a different shape to those in white fat, here they 
are round and are usually located centrally within the cell (Cypess et al, 2009), (Klaus, 
1997). Further work would be required in order to determine if these adipocytes express 
markers specific for white or brown fat. Although the PVAT appears to impact both non-
immunized and arthritic constriction response equally, the change in structure may be 
an important consideration when determining more specific changes, unique to the 
arthritic PVAT.  

           Non Immunized Control PVAT     Arthritic PVAT 

   

Figure 2.13 The Structural Differences in PVAT Between Controls and Arthritic Mice. A 
comparison of structural PVAT composition in regions of non-immunized and arthritic 
PVAT. Images show a change in appearance from typically white fat in non-immunized 
PVAT to a brown fat like phenotype in arthritic PVAT.  
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Surprisingly in this study we found no significant difference in the number of neutrophils 
in the vasculature following the onset of systemic inflammation. The peak in neutrophil 
ingress into an inflammatory environment occurs prior to the peak in macrophage 
ingress. This is due to macrophages being recruited to the region to clear out dead 
neutrophils (Godson et al, 2000). Thus our data suggest that our experimental samples 
were collected post the neutrophil peak (Figure 2.10). This could therefore explain the 
low percentage of neutrophils found in the aortic vessel wall and surrounding PVAT, in 
both non-immunized and arthritic aortas. It also goes some way to explain the overall 
lack of change in cell number, as although one specific cell subset may be increasing, 
another will be decreasing.  

The observation that the numbers of macrophages are increased in both the aortic 
vessel wall and the surrounding PVAT, in the absence of overt CVD, is indeed novel. 
Many studies have reported ingress of macrophages into the aorta itself; however, the 
majority of these studies refer to the onset or development of atherosclerosis (Boisvert 
et al, 2006, Bennett, 2013). Here, we look at the very earliest changes to the vasculature 
following the onset of mCIA, suggesting that these changes happen prior to any CV 
development. It is important to note that in the mCIA model the presence of 
atherosclerotic plaque has never been confirmed.  It is well established that F4/80+ 
macrophages are resident within the “healthy” aorta (Gerrity, 1981). As these cells are 
a resident population it is suggested that they play a role in “normal” tissue functions 
and homeostasis, such as, in tissue remodelling and angiogenesis (Fantin et al, 2010). 
However, it is also known that local inflammation can drive the recruitment of 
monocytes to the aorta (Butcher and Galkina, 2012). Recent studies have shown that 
differing populations of macrophages exist within the aorta itself and these vary from 
M1 (Stanley et al, 1978), M2 (Stein et al, 1992) macrophages to MOX (Kadl et al, 2010) 
and M4 (Gleissner et al, 2010) macrophages. Such differentiation is dependent on the 
local micro environment these macrophages encounter once resident within the aorta 
(Italiani and Boraschi, 2014). Further studies are required for us to determine the 
inflammatory phenotype of these macrophages. However, the expansion we show in 
the arthritic vasculature is similar to that shown by Moore et al (2015) during 
hypertension. We suggest that this increase in macrophage number is highly likely to 
impact on vascular constriction. During inflammatory arthritis, it is well established that 
systemic levels of IFN-ϒ are increased (Kawashima and Miossec 2005). The increase in 
macrophages, coupled with this increase in such inflammatory mediators, could lead to 
the production of vasodilatory mediators, such as, nitric oxide (Fang, 2002).  

The macrophage plays a critical role within the innate inflammatory response. In order 
for any inflammatory cell to infiltrate into the aortic vessel wall or the PVAT a change in 
the local micro environment is essential (Grivennikov et al, 2010). The mechanistic 
pathway that allows this change in local environment is currently unknown. However, 
we have shown that the number of macrophages does increase in both the aortic vessel 
wall and the surrounding PVAT, suggesting this change in micro-environment is a reality. 
It is likely that the resident macrophages present in these tissues act as sentinels during 
this process and thus act to recruit firstly neutrophils and secondly more macrophages 
to the regions (Schiwon et al, 2014). These resident macrophages produce cytokines 
that enable the endothelium of the aortic vessel to become “sticky”. Expression of 
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adhesions molecules such as P-selectin (Hume, 2015), allows peripheral blood 
monocytes to be able to adhere to the vessel wall and cross the endothelial barrier - 
chemotaxis. Once these macrophages are within the region they can orchestrate the 
release of a number of pro-inflammatory cytokines to drive the inflammatory response 
(Dugue et al, 2014). This includes the production of Interleukin-12 (IL-12), to activate 
natural killer cells, IL-8 secretion to recruit neutrophils and TNF-α and IL-1, cytokines 
that are known hallmarks in RA (Beutler, 1999). Therefore, once the macrophage is 
recruited to the aortic vessel wall and surrounding tissues the inflammatory response is 
fully initiated. 

It is clear from these data that the constitution of the tissues surrounding the 
vasculature (PVAT and aortic wall) will likely determine its functional responsiveness. As 
a potential effector molecule capable of degrading stromal tissue and impacting on 
contractility through its gelatinase and collagenase activity, we chose to study MMP-9 
(Zorina et al, 2002). Primarily MMP-9 was chosen because of previous reports that 
described; firstly, increased levels associated with vascular dysfunction in mCIA 
(Reynolds et al, 2012) and secondly the reduced levels of MMP-9 observed in the 
absence of DR3 in AIA (Wang et al, 2014). MMP-9 is also of interest due to the capacity 
of DR3 signalling to trigger MMP-9 release from macrophages in vitro (Kang et al, 2005), 
(Collins et al, 2015). Here we show that the change in constriction response is not simply 
attributable to increased levels of MMP-9 in the aortic vessel wall, as previously 
suggested by Reynolds et al. There is no increase in total MMP-9 levels in the aorta itself 
and therefore does not correlate with the decreased response to 5-HT. As we know both 
macrophages and neutrophils produce MMP-9 (Lepidi et al, 2, Lin et al, 2005 and 
Webster et al, 2006). In the aorta the total numbers of macrophages are increased in 
comparison with non-immunized controls. This would suggest that the heightened 
macrophage population is not producing MMP-9 in this region. As the number of 
neutrophils in this region does not change, we would suggest this cell type as the 
potential main producer of MMP-9 in this region. Although neutrophils have not been 
shown as the main producer of MMP-9 in the vasculature, it has been shown that 
neutrophils are critical for delivery of pro-MMP9 to tumour sites, in early tumour 
development (Deryugina et al, 2014). This does not rule out the possibility of resident 
cells being the source of MMP-9 in our model.   

Contrastingly in the PVAT we see a significant increase in the total expression of MMP-
9. This is accompanied by increased macrophages but a static number of neutrophils. 
Therefore it is possible that in this region the main cell type producing total MMP-9 is 
the macrophage and thus is different to that within the aorta. Despite this increase in 
total MMP-9 we have not determined if this MMP-9 is activated. An excess in MMP-9 
production, where the MMP-9 becomes activated would have an impact on the 
structure of the PVAT and its capability to produce any transferable factors thought to 
cause the dextral shift in constriction response. The lack of activation of MMP-9 may 
explain why the function of PVAT is not changed between non-immunized control and 
arthritic animals.  

Of course it is important to consider that macrophages and neutrophils themselves are 
not the only cell types which are capable of producing MMP-9. Perhaps another cell 
type, present in both the aortic vessel wall and the surrounding PVAT population 
changes simultaneously with the changes in MMP-9 production. There are many cell 
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types in these regions that are capable of this production. For example, fibroblasts 
(Wang et al, 2007), adipocytes (Bouloumie et al, 2001), mast cells (Kanbe et al, 1999) 
and mesenchymal stem cells are all capable of MMP-9 production in these regions.  
Further study would be required to determine if any of these cellular populations would 
correlate with MMP-9 production in the aortic vessel wall and PVAT. However, from the 
studies we have already carried out we can show that MMP-9 production does not 
correlate with the changes seen in constriction response to 5-HT. 

The final mediator that we looked at to answer the hypothesis within this chapter was 
DR3. Here, for the first time we demonstrate a complementary macrophage/DR3 
expression profile in the absence of overt CVD, following inflammatory stimulus. Such a 
profile has been shown previously (McLaren et al, 2010) during inflammatory CVD, 
where DR3 signalling induced an increase in uptake of cholesterol into foam cells in vitro. 
In order to explain static total cell numbers, while the macrophage population is 
expanding, we postulate a mechanism of apoptosis occurring within our regions. If 
programmed cell death is occurring to either residential cells or early inflammatory cells, 
an increase in macrophage population would be concealed, by counting total cell 
number. If this is occurring it would be expected that markers of apoptosis such as FAS 
or Caspases would be up regulated. Expression of markers of apoptosis will be 
determined in the later chapters of this thesis. Therefore, we suggest DR3 as a potential 
mechanism orchestrating cell death via its “death domain” and therefore as a potential 
driving force behind the changing cellular populations that we see. 

 

 

 

2.5 Conclusion 
 

The work represented in this chapter shows validation of the arthritic vascular 

constriction response. We also demonstrate how PVAT causes a dextral shift in vascular 

constriction without impacting on maximal constriction response, in both health and 

disease. I have shown how total cell number doesn’t change in either the aortic vessel 

wall or surrounding PVAT. This is despite macrophage number being increased in both 

regions. Macrophage expression is complimented by increased DR3 expression 

following arthritis onset and MMP-9 expression is increased only in the PVAT. It is 

suggested that changes in DR3 are integral to changes in the vascular constriction 

response via its role in increasing macrophage recruitment. Although we show increased 

macrophage and DR3 expression we have not fully elucidated the role of DR3 in vascular 

constriction response and how it impacts on the expression of mediators such as MMP-

9. Within the next chapter we will fully explore the impact of DR3 in health and disease, 

determine its impact on vascular constriction and on changing inflammatory cell 

populations within the aortic vessel wall and PVAT. 
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Chapter 3 – Does Death Receptor 3 drive 

inflammatory changes in the vasculature 

during inflammatory arthritis? 
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3.1 Introduction 

 

Previous work shown in Chapter 2 demonstrates that DR3 was up regulated in the aorta 

and PVAT of arthritic mice (Chapter 2). This response was matched by the increased 

expression profile of macrophages in both regions and correlated with decreased 

vascular constriction response to cumulative concentrations of 5-HT following arthritis 

onset. Previous reports suggested that MMP-9 was the driving force behind this 

impaired vascular function (Reynolds et al, 2012). However, the data showed that MMP-

9 was only increased in the PVAT of arthritic mice and so was unlikely to cause the 

dysfunction “single handed”. Therefore in this chapter we investigate the impact of DR3 

in the vasculature of both healthy and mCIA mice. In particular we determine the impact 

on vascular constriction response and inflammatory measures in the aorta and 

surrounding PVAT. 

The Death Receptor family is a sub-section of the Tumour Necrosis Factor Receptor 

(TNFR) superfamily and currently contains eight characterised members (Lavrick et al, 

2005). DR3 is the closest relative to TNFR-1 having a 47% sequence homology compared 

to 20 – 30% for other TNFR family members (Cleveland and Ihle, 1995). The main 

identifying features of the Death Receptor group include the presence of a number of 

cysteine rich regions, along with an approximately 80 amino acid “death domain”. The 

DR3 death domain is well characterised and is known to initiate apoptosis (Park et al, 

2007). However, DR3 has a number of diverse roles that are related to its ability to 

activate NFκβ (Park et al, 2007). The activation of NFκβ allows DR3 to play a role in cell 

survival, along with differentiation and cell proliferation (Kitson et al, 1996; Chinnaiyan 

et al, 1996; Marsters et al, 1996), with cellular expression and localisation being 

imperative when determining the impact of DR3 on molecular pathways. Indeed roles 

for DR3 in numerous locations, including the lung, joints and vasculature are current 

topics of high interest.  

Activation of DR3 occurs via binding of its high affinity ligand, TL1A (Migone et al, 2002). 

TL1A itself is a close relative of TNFα (Bamias et al, 2006; Jin et al, 2007), a master 

regulator of inflammation that is up-regulated in RA (Feldman et al, 2003).  Cellular 

expression of TL1A is wide and is confirmed on monocytes, macrophages, plasma cells, 

dendritic cells, T-cells and endothelial cells (Pobezinskaya et al, 2011). Such extensive 

expression demonstrates the plethora of roles in which the DR3/TL1A signalling pathway 

could be involved. Moreover, cellular expression of TL1A can be induced by a variety of 

mechanisms, for example, following antigen presenting cell stimulation via the cross 

linking of Fcϒ receptor (Meylan et al, 2011), activation of toll-like receptors (Casatella et 

al, 2007) and increased expression of IFN-ϒ (Shih et al, 2011). As such TL1A is implicated 

within the immune response and is further associated with key pro-inflammatory 

cytokines implicated during inflammatory arthritis. 

As previously explained (Chapter 2), the binding of TL1A to DR3 can drive the activation 

of two different pathways (Figure 3.1). In brief, the binding of TL1A causes trimerisation 

of the DR3 receptor which then instigates a conformational change in the death domain 
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itself, allowing the recruitment of adaptor protein TNFR1 Associated Death Domain 

(TRADD). This is the point in the pathway where recruitment can either lead to apoptosis 

or conversely promote cell survival. To initiate apoptosis, TRADD recruits downstream 

proteins, ultimately resulting in the activation of a caspase complex, initiating cell death 

(Kruidering and Evan, 2000). Alternatively, TRADD can complex to activate a number of 

cell survival proteins, including NFκβ, ERK, JNK and p38 mitogen activated protein kinase 

pathways (Orange et al, 2005). Once activated NFκβ can pass into the nucleus where it 

works to up regulate cell survival transcription factors (Wen et al, 2003). 

It is important to consider that recent studies have found a second ligand capable of 

binding to DR3 – Progranulin derived Atsttrin. Atsttrin acts as an antagonist of TNF and 

TNF Receptor signalling via the targeting of multiple TNF Receptors (Liu et al, 2014). 

Atsttrin works to inhibit the action of TL1A binding to DR3 and thus has mediated anti-

inflammatory action in models of inflammatory arthritis (Tang et al, 2011). The following 

work does not look at the impact of Atsttrin or TL1A independently but looks at the 

whole system in a global context. AS DR3 was globally diminished, neither TL1A nor 

Atsttrin were able to signal. Thus all actions of either ligand through the DR3 receptor 

were inhibited. 

DR3 was studied due to its association with both RA (Bull et al, 2008; Wang et al, 2014) 

and CVD (McLaren et al, 2010), while expression of its ligand TL1A is observed 

specifically within the aorta (McLaren et al, 2010). In RA, DR3 is linked with neutrophil 

accumulation in the arthritic joint (Bull et al, 2008) whereas in atherosclerosis, it is 

associated with macrophage differentiation to foam cells, a process intrinsic to plaque 

development (McLaren et al, 2010). There is also an association between DR3 and the 

up regulation of MMP-9 production during an inflammatory model of RA (Wang et al, 

2014). Considering DR3 is implicated in RA and CVD, as well as being associated with 

increased MMP-9 production, it is suggested that it may play a key role in the vascular 

changes we see in mCIA. To further elucidate the role of the DR3 pathway we must 

consider its role physiologically as well as in pathological conditions. 

This chapter highlights the experimental approaches used to determine whether DR3 

played a role in the vascular dysfunction associated with our model of inflammatory 

arthritis. DR3 WT and DR3 Knockout (DR3-/-) mice were used to determine the impact of 

DR3 on the constriction response of isolated aortic rings in both health and disease.  To 

further investigate the impact of DR3 ablation, and to identify the relevance of potential 

changes in vascular constriction responses, the cell type and soluble factors produced 

within the aortic vessel wall and PVAT were studied. This chapter details methodology, 

results and discussion under the following objectives: 

Hypothesis: DR3 drives arthritis associated vascular changes contributing to 

vascular dysfunction in vivo. 

 

 To investigate the role of DR3 in vascular constriction response in health and 

disease. 
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 To identify and measure changes in the cell type and soluble mediators 

attributable to ablation of DR3 and to establish the role of DR3 specifically in the 

aorta and PVAT.  

 To determine whether cellular ingress and mediator production drives vascular 

dysfunction in inflammatory arthritis in a DR3 dependent manor.  
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Figure 3.1 –The DR3/TL1A signalling cascade. 1. The binding of high affinity ligand TL1A 

to DR3 (2) leads to trimerization of the DR3 receptor on the cell membrane. (3) Following 

receptor activation, TRADD is recruited to the intracellular death domain. This can lead 

to activation of one of two intracellular signalling cascades. (4) The first of these 

cascades in driven by effector protein FADD, which is recruited by TRADD to the death 

domain. (5) Binding of FADD leads to activation of Pro-Caspase 8 and therefore induces 

an effector Caspase complex within the cell. (6) This protease enzyme complex is the 

trigger for apoptosis within the vell and ultimately leads to cell death. (7) The second of 

the possible pathways is driven by receptor interacting protein (RIP), which in turn 

recruits effector protein TRAF2 to the death domain. (8) The addition of TRAF2 drives 

the activation of transcription factor NF-κβ, via the NIK, IKK pathways. (9) Activated NF-

κβ passes into the cell nucleus where it works to up regulate the transcription of cell 

survival proteins driving cell proliferation and differentiation.   
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3.2 Materials and Methods 

 

New methods relevant to the work discussed in this chapter are described below, 
previous methods detailed in Chapter 3 also apply here. 

3.2.1 Animals 

 

Male mice (8 weeks old) were used for all experiments. The DBA DR3-/- colony was 

produced through backcrossing C57Bl/6het mice with DBA/1 WT mice for 7 generations, 

allowing the breeding of DBA/1 DR3het mice. DBA/1 DR3 knockout (DR3-/-) and 

appropriately age-matched DBA/1 DR3 WT were then sourced from the in-house 

breeding colony, generated by DR3het x DR3het crossing. All animal care and experimental 

procedures complied with the United Kingdom Animals (Scientific Procedures) Act 1986 

and were under the authority of Home Office Project Licence (30/2928).  

3.2.2 Genotyping  

3.2.2.1 Preparation of Cell Lysis Buffer for DNA Extraction 
 

Table 3.1 – Genotyping Materials 

 

 

 

Reagent Description 

0.5mM EDTA  

Tris HCl 

300mM NaCl 

 

1% SDS  

Proteinase K Roche Diagnostics 

Isopropanol Fisher Scientific 

70% (v/v) Ethanol Fisher Scientific 

dNTPs Invitrogen 

10 x Buffer Invitrogen 

50mM MgCl2 Invitrogen 

Taq Polymerase Invitrogen 

DNA ladder Invitrogen 
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Lysis buffer was prepared as a master mix containing the following constituents. The 

volumes given are those required per sample being lysed. 

Table 3.2 – Lysis Buffer Materials 

Reagent Volume Per Sample (mls) 

Distilled Water 12.6 

0.5 mM EDTA 2 

Tris HCl 1 

300mM NaCl 0.4 

1% (w/v) SDS 2 

3.2.2.2 Preparation of Master Mix for Polymerase Chain Reaction 

 

Table 3.3 - Genotyping Primer Sequences 

 

Table 3.4 – Genotyping Reagents 

Reagent Volume Per Sample (µl) 

dNTPs 5 

10x Buffer 4 

50mM MgCl2 1.2 

AV1 Primer 0.2 

4F Primer 0.6 

2R Primer 0.8 

Taq 0.5 

 

The reagents for PCR were made as a master mix before adding to each sample. 

 

Primer Sequence 

AV1 CAT CGC CTA TCG CCT TC 

4F AGA AGG AGA AAG TCA GTA GGA CCG 

2R GAA AGG ATG CTT GCC TGT TGG 
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3.2.2.3 Preparation of a 1.6% (w/v) Agarose Gel 

 

Table 3.5- Genotyping Gel Reagents 

Reagent Manufacturer 

Ultra-Pure Agarose Invitrogen 

1x Tris Borate EDTA (TBE) 1 in 10 dilution with dH2O of 10x TBE 

purchased from Fisher Scientific 

Ethidium Bromide Sigma 

 

2.4g of ultra pure agarose was added to 150ml of 1xTBE and heated in a microwave for 

1 minute 50 seconds, with occasional stirring. 7.5µl of 10mg/ml ethidium bromide was 

added and the gel was poured into a mould to set.  

3.2.2.4 Preparation of Orange G 

Orange G was required at a concentration of 2.5mg/ml (v/v) and was prepared in 2x TBE 

containing 30% (v/v) glycerol.  

 

3.2.2.5 DNA Extraction and Purification for Genotypic Analysis  

 

Ear punches or tail tips were taken from all new animals in the DR3 breeding colony at 

approximately 4 weeks of age. Each was lysed by adding 750µl of lysis buffer and 20µl 

of 1.3% Proteinase K (Roche) at 560C overnight. Salt extraction of DNA was then carried 

out by the addition of 310µl of 5M NaCl, vortexing and incubating at room temperature 

for 30 minutes. Following the formation of a precipitate, samples were centrifuged for 

25 minutes at 13250g. 800µl of the DNA containing, clear supernatant from each sample 

was subsequently used for purification.  

In order to purify DNA, 500µl of ice cold isopropanol was added to each sample. 

Following thorough mixing, samples were centrifuged for 10 minutes at 13250g. 

Following removal of the supernatant, 500µl of 70% (v/v) ethanol was added to each 

sample and left for 30 minutes at room temperature. After final centrifugation was 

carried out for 10 minutes at 13250g, all excess liquid was removed and the samples left 

to dry at 37oC for 45 minutes. For short term storage (overnight) samples were re-

suspended in 50µl of dH2O. 

3.2.2.6 Polymerase Chain Reaction 
 

The PCR required 8µl of extracted DNA (500ng/µl), which was added to a 0.5ml thin 

walled reaction tube (Star Labs). 12.1µl of master mix (Table 3.4) and 19.9µl of dH2O was 

added to each sample. The following cycles were initiated on the Mygene Series Peltier 

Thermal Cycler. 
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Table 3.6- PCR Cycles for DR3 Colony Genotyping 

Temperature (oC) Time Number of Cycles 

94 5 minutes 1 

 60 45 seconds 

72 45 seconds 

94 45 seconds 33 

60 45 seconds 

72 45 seconds 

94 45 seconds 1 

60 45 seconds 

72 5 minutes 

 

3.2.2.7 Visualising PCR Products 
 

To visualise PCR products, 4µl of Orange G solution was added to each sample. 20µl of 

each sample was then loaded into a well of a 1.6% (w/v) agarose gel. A DNA ladder (5µl) 

was also run in the final well of each gel, to allow identification of product bands. The 

gel was run at 100V for 90 minutes and then visualised under UV light. 
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3.3 Results 

 

3.3.1. Ablation of DR3 Does Not Impact On Vascular Constriction Response 

 

Vascular constriction response to 5-HT was measured in PVAT intact and PVAT denuded 

thoracic aortic rings of DR3 WT and DR3-/- mice in the absence of arthritis. In DR3 WT 

the presence of PVAT produced a significant (p<0.0001) dextral shift (logEC50) in the 

constriction response curve to 5-HT (-6.65 ± 0.09 vs. - 5.86 ± 0.13 mN) (Figure 3.2 (A)). 

The presence of PVAT was also associated with a significant (p<0.0001) decrease in the 

maximal constriction response to 5-HT (RMAX) (8.06 ± 0.31 vs. 6.99 ± 0.48 mN). The 

PVAT impacted DR3-/-
 vascular constriction responses in the same way, with a significant 

(p<0.0001) dextral shift (logEC50) in the constriction response curve (-6.74 ± 0.12 vs. -

6.05 ± 0.15 mN) and significant (p<0.0001) decrease in RMAX (7.81 ± 0.42 vs. 6.19 ± 0.49 

mN) being observed (Figure 3.2 (B)). 

When DR3 WT and DR3-/- vascular constriction responses were compared in both PVAT 

denuded (Figure 3.2 (C)) and PVAT intact vessels (Figure 3.2 (D)), no differences were 

observed with regard to either EC50 or RMAX.  
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Figure 3.2- Comparison of the DR3 WT and DR3-/- Constriction Response Curves, in the 

Absence of Arthritis. Constriction response to 5HT was determined for non-arthritic 

PVAT intact (+PVAT) and PVAT denuded (-PVAT) DR3 WT (N=7) (A) and DR3-/- aortic rings 

(N=6) (B). The -PVAT (C) and +PVAT (D) constriction responses for DR3 WT and DR3-/- 

rings were also compared. ***=p<0.0001 

  

A) B) 

C) D) +PVAT -PVAT 



65 
 

3.3.2. The Ablation of DR3 Drives Increased Total Cell Numbers into the PVAT. 

 

Total cell numbers within the aortic vessel wall and the surrounding PVAT were 

calculated in samples from DR3 WT and DR3-/- mice in the absence of arthritis (Figure 

3.3). No difference was observed between groups with regard to the vessel wall (4857 ± 

242.3 (N=17) vs. 4387 ± 112.9 cells/mm2 (N=19) for DR3 WT and DR3-/- respectively). 

However, within the PVAT, a significant (p=0.003) increase was seen in total cell number 

following the ablation of DR3 (2278 ± 195.8 (N=17) vs 3031 ± 138.4 cells/mm2 (N=19)) 

for DR3 WT and DR3-/- respectively). 
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Figure 3.3- Total Cell Counts in Non-Arthritic DR3 WT and DR3-/- Aorta and PVAT. Total 

cell numbers were counted in the aortic vessel wall (A) and the surrounding PVAT (B) for 

DR3 WT (N=17) and DR3-/- (N=19) mice. Representative images show DR3 WT (C) and 

DR3-/- (D) vasculature. Images are taken at x20 magnification and scale bars represent 

0.2µm. **=p<0.01. 
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3.3.3. Ablation of DR3 Impacts on the Inflammatory Profile of the Vasculature 

 

Inflammatory cells and their mediators are found within the aortic vessel wall and the 

surrounding PVAT of DR3 WT and DR3-/- mice. F4/80+ macrophages were identified 

(Figure 3.4) though no significant change was seen between DR3 WT and DR3-/- in either 

the aortic vessel wall (5.22 ± 0.75% (N=11) vs. 3.62 ± 0.75% (N=9)), or surrounding PVAT 

(2.81 ± 0.61% (N=11) vs. 1.88 ± 0.53% (N=9)).   

Conversely Ly6G positive cells (Figure 3.5), indicative of neutrophils, were significantly 

(p=0.005) increased in the vessel wall of DR3-/- compared to DR3 WT mice (19.13 ± 3.0 

(N=4) vs. 4.7 ± 2.2 (N=5)). PVAT Ly6G expression is not affected by DR3 ablation (15.9 ± 

4.9% (N=4) vs. 7.8 ± 4.6% (N=5)) for DR3 WT and DR3-/- respectively). 

Since MMP-9 is a potential underlying cause of vascular dysfunction in the mCIA model, 

and is further linked to expression of DR3, its levels within the non-arthritic vasculature 

were determined (Figure 3.6). Expression within the aortic vessel wall of DR3 WT and 

DR3-/- mice was similar (11.29 ± 2.78% (N=14) vs. 13.58 ± 1.73% (N=16)). However, in 

the PVAT, a significant (p=0.0065) increase in MMP-9 expression was observed following 

the ablation of DR3 (12.26 ± 2.21% (N=12) vs. 25.67 ± 3.54% (N=16) for DR3 WT and DR3-

/- respectively).   
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Figure 3.4 – Effect of DR3 Ablation on Macrophage Number in the Vasculature. 

The % of cells expressing macrophage marker F4/80 was determined in the aortic 

vessel wall (A) and surrounding PVAT (B) for DR3 WT (N=11) and DR3-/- (N=9) 

mice. Representative images show F4/80 positive staining (Brown Staining) in 

non-arthritic DR3 WT (C) and DR3-/- (D) vasculature. Images are taken at x20 

magnification and scale bars represent 0.25µm. 
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Figure 3.5 – Effect of DR3 Ablation on the Expression of Ly6G in the Vasculature. 

The % of Ly6G expression was determined in the aortic vessel wall (A) and 

surrounding PVAT (B) for DR3 WT (N=5) and DR3-/- (N=4) mice. Representative 

images show Ly6G positive staining (Brown Staining) in non-arthritic DR3 WT (C) 

and DR3-/- (D) vasculature. Images are taken at x10 magnification and scale bars 

represent 0.25µm. **p<0.01. 
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Figure 3.6 – Effect of DR3 Ablation on the Expression of MMP-9 in the 

Vasculature. The % of MMP-9 expression was determined in the aortic vessel 

wall (A) and surrounding PVAT (B) for DR3 WT (N=12) and DR3-/- (N=16) mice. 

Representative images show MMP-9 positive staining (Brown Staining) in non-

arthritic DR3 WT (C) and DR3-/- (D) PVAT. Images are taken at x20 magnification 

and scale bars represent 0.25µm. **=p<0.01. 
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3.3.4. Ablation of DR3 Does Not Impact on TL1A Expression 

As TL1A antibodies are not commercially available, the impact of knocking out DR3 on 

TL1A expression was determined using RTqPCR. There was no difference in expression 

of TL1A within the vasculature (aortic vessel and PVAT combined) (0.324 ± 0.75 (N=4) 

vs. 0.427 ± 0.28 (N=3)). 
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Figure 3.7 – Effect of DR3 Ablation on the Expression of TL1A. Expression of TL1A in the 

aortic vessel wall and PVAT combined as determined by RTqPCR.  
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3.3.5 Arthritis Incidence in DR3 WT and DR3-/- Mice 

 

mCIA was initiated in on average 93% of DR3 WT mice by day 34. This was compared 

with an average of 38% of DR3-/- mice, over three separate experiments (Figure 3.8).  

The arthritis incidence between DR3 WT and DR3-/- was decreased following ablation of 

DR3, however, this difference is non-significant, at any time point over the time course. 

Of those mice that did get arthritis by the experimental end point total paw score 

significantly (P<0.05) reduced in DR3-/- mice in comparison to DR3 WT mice. However, 

hind paw diameter of experimental animals did not differ significantly between all DR3 

WT and DR3-/- mice.  

During all experiments, DR3 WT and DR3-/- mice were housed together and had the same 

ab libtum access to food and water.  There was no difference in weight prior to, or at 

the point of the booster immunization (day21). Despite the difference in arthritis 

incidence between DR3 WT and DR3-/- there was no significant difference in weight at 

any point throughout the time course. 

In order to check locally at the impact of systemic inflammatory arthritis the joints within 

the feet were analysed for aspects of inflammation. All of the inflammatory markers 

were down regulated within the joints of DR3-/- mice when compared with DR3 WT. 

Subsynovial inflammation was significantly (p<0.0011) decreased (2.75 ± 0.25 (N=4) vs. 

0.5 ± 0.29 (N=4)). This was matched by a significant (p=0.005) decrease in synovial 

hyperplasia and panus formation (1.75 ± 0.25 vs. 0.25 ± 0.25). Synovial exudate (0.50 ± 

0.29 vs. 0.25 ± 0.25), cartilage and bone erosions (1.25 ± 0.49 vs. 0) were decreased, but 

not significantly. To determine the arthritis index the total of the 4 inflammatory 

measures was calculated and was significantly (p=0.0015) decreased in DR3-/- joints in 

comparison with DR3 WT (6.25 ± 0.75 vs. 1.0 ± 0.58) (Figure 3.9).  
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Figure 3.8 - Arthritis Induction in DBA/1 Mice over a 45 Day Time Course. Arthritis 

Incidence was shown over 6 experiments, for a total of 48 experimental mice (A). Total 

Paw Score is shown over a 45 day time course (N=48) (B). Individual hind paw diameter 

(including right and left measurements) are shown for arthritic (N=52) vs. Non-

Immunized control paws (N=24) (C). Individual Paw score and Paw diameter were 

correlated for 2 experiments (N=16) (D). *=p<0.05.  
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Figure 3.9- Measurement of Arthritis Index. Inflammatory measured were analysed 

following haematoxylin and eosin staining of ankle joints from DR3 WT (N=4) and DR3-/- 

(N=4). Inflammatory measures included; subsynovial inflammation (A), synovial exudate 

(B), synovial hyperplasia and panus formation (C) and cartilage/ bone erosions (D). A 

final total score of all inflammatory measures makes up the arthritis index (E). 

**=p<0.01.  
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Figure 3.10- Representative Images of Changes in Arthritis Index. The foot joints were 

assessed for arthritic damage in order to determine arthritis index. Joints from DR3 WT 

(A) and DR3-/- (B) were assessed.   
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3.3.6. Arthritis Induction and DR3 Ablation Significantly Alters the Vascular 

Constriction Response. 

 

Vascular constriction response to 5-HT was measured in arthritic DR3 WT and DR3-/- 

thoracic aortic rings, PVAT denuded and PVAT intact. When constriction response was 

determined in DR3 WT thoracic rings the presence of PVAT had no significant impact on 

either the half maximal or maximal constriction response, determined by EC50 and 

RMAX measurements respectively.  The PVAT, however, did significantly (p=0.014) 

impact the DR3-/- constriction response, PVAT shifted the curve dextrally, without 

impacting on maximal constriction.  

When the fat denuded constriction response curves for arthritic DR3 WT and DR3-/- rings 

were compared no difference was seen in the half maximal constriction response. 

However, the maximal constriction of DR3-/- rings were significantly (P=0.0004) reduced 

when compared to arthritic DR3 WT rings (4.938 ± 0.21 (N=10) vs. 3.527 ± 0.16 mN 

(N=6)). 

When PVAT remains intact, half maximal constriction for arthritic DR3 WT and DR3-/- 

rings is comparable. However, unlike in fat denuded tissues the maximal constrictions 

were also comparable, with no change being seen between DR3 WT and DR3-/-. 
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Figure 3.11- Comparison of the Arthritic DR3 WT and DR3-/- Constriction Response 

Curves. Constriction response to 5HT was determined for PVAT intact vs. PVAT denuded 

arthritic DR3 WT aortic rings (N=10) (A) and for DR3-/- aortic rings (N=6) (B). The PVAT 

denuded constriction responses for DR3 WT and DR3-/- rings were compared (C), along 

with the PVAT intact responses (D). *=p<0. 05, ***=p<0.001.  
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3.3.7. Arthritis Does Not Impact on Total Cell Number Within the Aorta or 

Surrounding PVAT Between DR3 WT and DR3-/-. 

 

Following the onset of mild arthritis, total cell numbers within the aortic vessel wall and 

the surrounding PVAT were calculated, in DR3 WT and DR3-/- (Figure 3.12). There was 

no significant difference in total cell number following arthritis onset within the aortic 

vessel wall (5096 ± 722.8 (N=8) vs. 3325 ± 571.3 cells/mm2 (N=6)).  Similar results were 

seen in the PVAT, with no significant difference in total cell number following arthritis 

onset (2807 ± 269.6 vs. 3035 ± 489.5 cells/mm2).  
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Figure 3.12- Total Cell Counts in Arthritic DR3 WT and DR3-/- Aorta and PVAT. 

Total cell numbers were counted in the aortic vessel wall (A) and the surrounding 

PVAT (B) for arthritic DR3 WT (N=8) and DR3-/- (N=6) mice using haematoxylin 

and eosin staining. Representative images show DR3 WT (C) and DR3-/- (D) 

vasculature. Images are taken at x10 magnification and scale bars represent 

0.2µm.  
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3.3.8. Onset of Mild Arthritis Significantly Changes the Inflammatory Profile of 

the Vasculature in a DR3 Dependent Manor. 

 

Following the onset of arthritis increased inflammatory cells are found within both the 

aortic vessel wall and the surrounding PVAT of DR3-/- mice. Firstly, F4/80+ macrophages 

were identified in both regions in DR3 WT and DR3-/- vasculature (Figure 3.13). The 

ablation of DR3 had no significant impact on the presence of F4/80+ cells within the 

aorta and expression was stable when DR3 WT were compared with DR3-/-(7.37 ± 1.73% 

(N=8) vs. 7.99 ± 2.69% (N=6)).  However, a significant (p=0.031) increase was seen within 

the PVAT when DR3 WT was compared with DR3-/- (14.02 ± 1.86% vs. 23.15 ± 5.40%). 

The percentage of cells expressing neutrophil marker Ly6G was also determined (Figure 

3.14). A small percentage of cells expressed Ly6G in DR3 WT and DR3-/- arthritic 

vasculature. In the aortic vessel wall Ly6G expression is significantly (p=0.01) increased, 

following arthritis induction in DR3-/- (0.372 ± 0.16% (N=5) vs. 1.806 ± 0.48% (N=4)). A 

similar significant (p=0.01) increase in Ly6G expression is seen within the PVAT of DR3-/- 

mice (0.467 ± 0.10% vs.1.754 ± 0.35%).  

As previously identified as having importance in vascular dysfunction, MMP-9 levels 

within the vasculature were also determined (Figure 3.15). MMP-9 expression in the 

aorta is stable following arthritis induction, between DR3 WT and DR3-/- mice (14.38 ± 

2.80% (N=7) vs. 11.73 ± 3.24% (N=5). In the PVAT MMP-9 expression is also steady 

following arthritis induction and DR3 ablation (34.39 ± 2.81% vs. 18.11 ± 6.45%). 
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Figure 3.13– Effect of Arthritis Induction and DR3 on Macrophage Number in 

the Vasculature. The % of cells expressing macrophage marker F4/80 was 

determined in the aortic vessel wall (A) and surrounding PVAT (B) for arthritic 

DR3 WT (N=8) and DR3-/- (N=6) mice. Representative images show F4/80 positive 

staining in DR3 WT (C) and DR3-/- (D) vasculature. Images are taken at x40 

magnification and scale bars represent 0.2µm. *=p<0.05. 
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Figure 3.14– Effect of Arthritis Induction and DR3 on Neutrophil Number in the 

Vasculature. The % of cells expressing neutrophil marker Ly6G was determined 

in the aortic vessel wall (A) and surrounding PVAT (B) for arthritic DR3 WT (N=5) 

and DR3-/- (N=4) mice. Representative images show Ly6G positive staining in DR3 

WT (C) and DR3-/- (D) vasculature. Images are taken at x20 magnification and 

scale bars represent 0.25µm.*=p<0.01. 
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Figure 3.15– Effect of Arthritis Induction and DR3 on MMP-9 Production in the 

V asculature. The % of MMP-9 expression was determined in the aortic vessel 

wall (A) and surrounding PVAT (B) for arthritic DR3 WT (N=7) and DR3-/- (N=5) 

mice. Representative images show MMP-9 positive staining in DR3 WT (C) and 

DR3-/- (D) vasculature. Images are taken at x20 magnification and scale bars 

represent 0.25µm. 

  

DR3 WT mCIA  MMP-9 DR3-/- mCIA  MMP-9 

A) B) 

C) D) 

PVAT Aortic Vessel Wall 



82 
 

3.4 Discussion 

 

In unchallenged healthy aorta (+/- PVAT), DR3 ablation does not impact on the vascular 

constriction response. However, when comparing the same parameters between in 

house bred DBA/1 DR3 colony mice and Harlan WT, some striking differences were 

noted. The presence of PVAT decreases the RMAX in unchallenged DR3 colony mice, 

whereas, it had no impact on the RMAX in unchallenged Harlan WTs. Given that these 

animals should be genetically very similar, if not identical, the question is why our in 

house bred DR3 WT and Harlan WTs (described in the previous chapter) differ in their 

response to PVAT.  

Many factors have previously been discussed in the literature regarding divergences 

between in house and commercially supplied animals (Olfe et al, 2010). These include 

handling and transport within the juvenile period, practices that differ drastically 

between the two sources. Another example is our in house DR3 colony undergoes 

genotyping requiring animals to be tail tipped, a procedure likely to induce a stress 

response in the animals and thus have the potential to alter experimental outcomes. 

Other environmental stressors that can occur in, and significantly differ between, 

laboratories include restraint, noise, temperature and the presence of various people. 

Coupled with alterations in routine laboratory procedures, these factors can also 

activate the stress response (Besch et al, 1971; Brown et al, 2000; Balcombe et al, 2004). 

It is impossible to say whether any or all of the above underlie the observed differences 

between in house bred DBA/1 DR3 WT and Harlan WT. However, this does emphasise 

the need to use the most appropriate controls, in this case in house DR3 WT mice for 

the DR3-/- experiments. 

Despite the overall constriction response in unchallenged healthy tissues remaining 

unchanged between DR3 WT and DR3-/-, morphological differences are seen in the PVAT 

between these genotypes. Firstly, DR3-/- have increased total cell numbers in the PVAT 

compared to DR3 WT. While the underlying mechanism for this difference remains 

unexplained, a number of potential reasons may be attributable to DR3, for instance its 

ability to drive apoptosis (Kitson et al, 1996; Grimaldo, 2009; Wen et al, 2003). Grimaldo 

(2009) suggests that deleting DR3 in endothelial cells renders protection from a number 

of apoptotic ligands. Moreover, it may also result in an increase in NF-κβ signalling, and 

therefore cell survival, via production of anti-apoptotic proteins (Grimaldo, 2009). While 

we have no direct proof, it is possible that either of these mechanisms may be occurring 

in the PVAT resulting in the described differences. 

That key PVAT cellular residents (Gao, 2007), have been shown to express DR3 (Zhang 

et al, 2009) suggests a potential role for this cell surface receptor in the control of PVAT 

cellular ingress. If DR3 normally recruits cells to the PVAT, its deletion may allow cells to 

be freely recruited to the region. DR3’s ability to control cellular ingress has been shown 

previously in inflammatory disease but has not been elucidated in “healthy” murine 

models. For example, it is known that DR3 controls neutrophil ingress into the knee joint 

during inflammatory arthritis (Wang et al, 2014) and is also involved in cellular 
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recruitment to the lungs during allergic lung disease (Singh, 2014). These data presented 

do not identify the specific cell type that is responsible for the increase in cell number 

within the PVAT; however, it rules out F4/80+ macrophages and Ly6G+ neutrophils. 

The “healthy” PVAT consists of a number of cell types, all of which have the ability to 

change with age, nutrition and environmental conditions and could indeed be changing 

within our model (Miao and Li, 2012). However, as suggested above, the increase in cell 

numbers is linked with changing DR3 expression. This would most likely involve 

fibroblasts, lymphocytes or immune cell populations given they have previously been 

shown to be associated with DR3 expression (Aiba and Nakamura, 2013). Gene 

expression profiles from the human gene database suggests DR3 expression on human 

adipocytes, however, this work has not been validated in the literature 

(www.genecards.org). Importantly, in the context of our results, this change in cellular 

populations does not impact on the vascular constriction response.  

In our “healthy” mice the increase in cell numbers in DR3-/- PVAT is accompanied by an 

increase in total MMP-9 levels. Taking into account the static expression of macrophages 

and neutrophils in this region, there are many potential scenarios that could underlie 

this observation. Firstly, resident cells could be responsible for both increased cell 

number and increased total MMP-9 in the absence of DR3. Secondly, the cell type 

moving into the PVAT could also be capable of producing MMP-9. Alternatively, resident 

cells could produce increased amounts of MMP-9 to facilitate the ingress of other cells.  

Indeed, many cells in the PVAT are capable of the latter, adipocytes themselves having 

been shown to produce MMP-9 (Bouloumie et al, 2001). The study showed this increase 

in adipocyte-derived MMP-9 to correlate positively with both hyperplasia and adipocyte 

hypertrophy (Bouloumie et al, 2001) and could explain both the increase in MMP-9 and 

the expansion in cell numbers observed above. However, if we take into account two 

factors; cellular expression of DR3 and ability to produce MMP-9, the potential identities 

of cell type(s) changing in our model are much reduced. From the current literature it 

would seem that the only resident cell type in this region that has both these 

characteristics is the fibroblast (Wang et al, 2007; Ospelt and Gay, 2012; Shih et al, 2014; 

Ma et al, 2016). We therefore suggest it as a real contender in being responsible for the 

observed changes. Despite MMP-9 levels being increased in the DR3-/- PVAT, PVAT intact 

constriction responses are comparable with DR3 WT, suggesting the main driving force 

of the contractile phenotype seen during arthritis is MMP-9 independent.  

When examining the aortic vessel wall of “healthy” DR3-/- an increase in the number of 

neutrophils was detected. This was surprising considering consistent constriction 

responses between the genotypes. As this increase in the neutrophil population did not 

impact on vascular constriction, we suggest that neutrophils do not work independently 

to drive contractile dysfunction, highlighting the importance of inflammatory cells 

working together to produce the changes we see in our model. 

DR3 ablation was previously investigated in a local inflammatory arthritis model – 

Antigen Induced Arthritis (AIA) (Bull et al, 2008; Wang et al, 2014). These studies show 

that DR3 is increased in arthritic WT mice and that DR3 ablation significantly reduced 

reduces histological hallmarks of arthritis. More specifically, mice were protected from 
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cartilage damage (Wang et al, 2014) and subchondral bone erosions (Bull et al, 2008). 

For the first time in the present study the impact of DR3 ablation in a systemic 

inflammatory arthritis model mCIA was determined. Incidence of arthritis in DR3-/- 

animals remained 50% lower than in DR3 WT animals. This was complimented by a 

decrease in arthritis severity in the animals that became arthritic, with reductions in 

total paw score and all histological hallmarks. These data support the current literature 

in showing DR3 plays a key role in the onset and progression of arthritic disease, both 

locally and systemically, and warrants further investigations in the future. 

Despite improved mCIA in DR3-/- mice, DR3 ablation was associated with decreased 

vascular constriction in the absence of PVAT in comparison to DR3 WT. This poses a 

conundrum; DR3 is actively involved in both the onset and progression or arthritis and 

its ablation is beneficial for joint health. Conversely, DR3 is also involved in the vascular 

constriction response in arthritic animals and is required for maintaining high 

constriction potential. If inhibition of DR3 were proposed as a future treatment option, 

further evaluation of its impact in the vasculature would be required, especially to 

determine the risk/benefit ratio of such an action.  

When the PVAT is intact, the constriction of DR3-/- rings is restored to the same level as 

DR3 WT (Figure 3.11(D)). These data suggest that PVAT is protective in the arthritic 

constriction response and for the first time in this study it was established that PVAT has 

the potential to drive vasoconstriction. Such an effect of PVAT has been shown 

previously in models of obesity, where there is an increase in both oxidative and 

inflammatory factors (Agabiti-Rosei et al, 2014). It is suggested that changes to the DR3-

/- PVAT during mCIA may indeed facilitate the production of vasoconstriction agents. 

Further experiments, beyond the scope of the current study, are warranted. 

In mCIA DR3-/- an increased aortic Ly6G+ neutrophil population was observed. As 

discussed previously increased neutrophils cannot drive the decreased vascular 

constriction response independently. Therefore, although this adds to the evidence that 

DR3 is acting as the cellular control mechanism responsible for neutrophil infiltration to 

the aorta, it does not explain the decreased constriction potential in this colony. A 

complimentary change in another mediator, cell type or mechanistic pathway is 

postulated. One potential mechanism is associated with the increased circulating 

mineral levels in the RA cohort due to increased bone erosions. That vascular 

calcification can lead to vascular dysfunction has recently been demonstrated in chronic 

kidney disease patients (Shanahan et al, 2011). These studies show how elevated levels 

of circulating calcium and phosphate have direct impact on VSMCs and stimulate 

osteogenic differentiation within the vessel wall, while also driving apoptosis and 

extracellular matrix degradation. This opens up a wide range of possibilities for the 

potential mechanisms underlying contractile dysfunction in our model of inflammatory 

arthritis, some of which will be investigated in the later chapters of this thesis.  

During mCIA the DR3-/- PVAT also exhibits morphological changes, specifically an 

increase in F480+ macrophages. It has previously been established that macrophages 
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have multiple functions in the vasculature, whether they are resident macrophages in 

the aorta (Gerrity, 1981) carrying out “normal” functions such as tissue remodelling 

(Fantin et al, 2010), or infiltrating inflammatory macrophages that produce a complex 

mixture of chemokines and adhesion molecules that induce inflammation (Wellen and 

Hotamisligil, 2003; Permana et al, 2006). Although more work would be required to 

determine the specific macrophage phenotypes within the PVAT, the impact of both M1 

and M2 macrophages are discussed. The protective phenotype of PVAT in DR3-/- 

suggests an increase in M2 anti-inflammatory macrophages (Murray and Wynn, 2011). 

While this does not exclude M1 – pro-inflammatory macrophages from being present, 

it is likely that the ratio tips in favour of M2. The relationship between M1 and M2 

macrophages in PVAT has recently been evaluated.  Ruan et al (2015) showed how a 

decrease in M1, coupled with an increase in M2 ameliorates vascular injury. Moreover, 

it is also possible that increased production of IL-10 by M2 macrophages underlies the 

protective effect of the PVAT (Weisser et al, 2013). IL-10 is a potent anti-inflammatory 

protein, and while knocking out the IL-10 gene has no impact on vascular constriction in 

healthy mice, following an inflammatory stimuli ablation of IL-10 exacerbates vascular 

contractile dysfunction (Gunnett et al, 1999).  

3.5 Conclusion 

 

Within this chapter the importance of DR3 in both inflammatory arthritis and the 

vascular constriction response has been demonstrated. Firstly, it was established that 

DR3 was not a regulator of the “healthy” constriction response, despite driving changes 

at a cellular level. Ablation of DR3 was beneficial in mCIA, decreasing both onset and 

progression. Despite the benefits in arthritis, ablation mediated vascular dysfunction in 

the mCIA model. Surprisingly, and for the first time, DR3-/- PVAT has been shown to play 

an important protective role in the constriction response. It has been established that 

the presence of either neutrophils or MMP-9 independently does not underlie vascular 

dysfunction, and other associated mechanisms must be involved in order to drive the 

observed changes. The role of other apoptotic pathways is postulated in order to explain 

consistencies in total cell number, despite changes in both neutrophil and macrophage 

populations, along with changes to resident cells such as VSMC differentiation.  Finally, 

the ability of programmed cell death to instigate vascular calcification is an avenue for 

exploration with a view to explaining the decreased contractility in the mCIA model. It 

is postulated that these changes may occur in conjunction with others in the 

extracellular matrix and will be investigated in the following chapters.  
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Chapter 4 - Medial Calcification and/or 

Structural Changes Mediate Early 

Contractile Dysfunction in mCIA 
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4.1 Introduction 

 

Vascular calcification was once thought to be a benign sign of aging. However, in recent 

years the serious implications to the vasculature have become starkly evident. With an 

alarming number of people aged over 60 having some degree of calcium deposits in their 

vasculature, and associated outcomes such as stroke and ischaemic heart disease, 

research in this important area has expanded greatly. Vascular calcification has become 

well defined and is now divided in to two categories; medial artery calcification and 

intimal artery calcification, otherwise known as atherosclerosis (Vattikuti and Towler, 

2004). The exact underlying mechanisms are currently hot topics for debate, and unique 

differences between the processes have been identified.  

Medial artery calcification is common amongst RA patients and thus is the main focus of 

the experiments that follow in this Chapter (Davies and Hruska, 2001). RA patients show 

increasingly early onset diffuse calcification within a number of vascular beds, including 

the aorta and carotid and coronary arteries, in comparison to “healthy” age matched 

controls (Giles et al, 2009). It would seem that this type of calcification resembles matrix 

vesicle-mediated intramembranous bone formation, with regions of calcification 

organized as bone-like structures. 

Medial artery calcification is known to impact on vessel elasticity and has the potential 

to increase vascular stiffness. This is interesting considering the associated contractile 

dysfunction seen in mCIA (Reynolds et al, 2012). Numerous studies have now 

established the roles of factors such as inflammation and oxidative stress signalling in 

contributing to the pathogenesis of vascular mineral deposition (Towler, 2008). 

Importantly this thesis (Chapter 2) demonstrated that contractile dysfunction was 

coupled with an increase in macrophage numbers in the aortic region. These cells have 

been associated with impaired vascular function via two mechanisms. Firstly, they are 

capable of cell-cell interactions and secondly they produce factors such as TNF-α that 

can indirectly drive vascular calcification (Tinut et al, 2000). Given that this cytokine is 

known to be up regulated in inflammatory arthritis (Bradley, 2008) it is suggested that 

the macrophage can contribute to the onset of vascular calcification in mCIA. 

Once thought to be a passive process, it is now well established that medial artery 

calcification is tightly regulated by osteoblast-like cells and is similar in mechanism to 

normal bone formation (Johnson et al, 2006). Whether these pathways become 

dysregulated following the onset of inflammatory arthritis is open to question and will 

be discussed throughout this chapter. The master osteoblast transcription factor of 

bone development is Runt Related Transcription Factor 2 (RUNX2) (Schroeder et al, 

2005). Its expression is seen in medial artery calcification in mice prior to a switch in 

VSMC phenotype from contractile to osteogenic (Liu et al, 2015). The importance of 

RUNX2 in this process has recently been shown following the creation of a mouse model 

with specific knockdown of RUNX2 in VSMCs. This work has established the obligatory 

role RUNX2 expression in medial artery calcification, its depletion completely preventing 

the transition of VSMCs to an osteogenic phenotype (Liu et al, 2015) (Figure 4.1). 



88 
 

Conversely, when RUNX2 expression is forced, osteogenic gene expression was 

elevated. This is mirrored by the knocking out of RUNX2 driving enhanced VSMC 

differentiation in human VSMCs (Tanaka et al, 2007).  

The role of RUNX2 in the pathogenesis of calcification also implicates the involvement 

of other osteoblast transcription factors such as osterix (OSX) and activating 

transcription factor 4 (ATF4) (Komori, 2006). As both OSX and ATF4 act downstream of 

RUNX2, varying expression profiles in relation to changes in RUNX2 are expected, 

possibly occurring later in the progression of vascular calcification. Indeed, the 

prominence of these factors in vascular disease progression is evidenced by the up 

regulation of OSX in the vasculature of diabetic patients (Shao et al, 2010). The use of 

OSX knock out mice shows the importance for any bone formation at all, these mice 

showing a lack of bone mineral deposition, a process that is essential during vascular 

calcification (Nakashima et al, 2002). 

It is well known in bone biology that osteoblasts function in equilibrium with osteoclasts. 

Taken with that described above, this suggests that an obvious experimental route is to 

investigate the involvement of both bone cell phenotypes in the vasculature of the mCIA 

model. The interaction of osteoblasts with osteoclasts works directly through 

osteoprotegerin (OPG), receptor activator of NF-κβ ligand (RANKL) and its receptor 

RANK pathway (Boyce and Xing, 2007) (Figure 4.1). OPG is a glycoprotein that acts as a 

soluble decoy receptor that binds to RANKL, competitively inhibiting the binding of 

RANKL and RANK thereby preventing excessive bone resorption (Simonet et al, 1997). 

Conversely the binding of RANKL to its receptor RANK promotes the formation of the 

multinucleated osteoclast from precursor cells, and controls their activation and 

survival. It is therefore the ratio of inhibitory OPG to RANKL that determines normal 

bone density in both health and disease (Hofbauer and Schoppet, 2004). However, the 

exact role of this pathway in vascular calcification remains unclear.  

OPG levels are known to be up regulated in RA and vascular calcification (Ziolkowska et 

al, 2002) and it is suggested that this protects arteries from medial calcification. The 

importance of OPG is shown by knockout studies where rats are characterised by 

excessive renal and aortic calcification (Bucay et al, 1998) and double knock out 

OPG/apolipoprotein E mice exhibit accelerated atherosclerosis (Bennet et al, 2006).  

Such observations imply that inhibiting RANK-RANKL binding prevents increased 

osteoclast activation and demonstrates that these TNF superfamily members have 

important functions outside of bone. Given that described above, and in the previous 

chapters of this thesis, it is essential that the role of this signalling pathway is 

investigated in the mCIA model. Moreover, since communication between osteoblasts 

and osteoclasts is an integral part of mineral deposition, it is appropriate that further 

osteoclast expression markers, such as tartrate resistant acid phosphatase (TRAP), 

cathepsin K and calcitonin receptor, are assessed in complementary studies. 

Despite a limited number of peer reviewed papers that report the incidence of 

osteoclasts within the vessel wall, there is evidence to suggest that they, or other 

osteoclast-like cells, are present and do play an important role in vascular calcification 

(Massy et al, 2008). It is well known that osteoclasts express TRAP and this 
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metalloprotein enzyme has long been used as a histochemical osteoclast marker 

(Burstone, 1959). Indeed, the essential role of TRAP in normal mineralization of cartilage 

and subsequent maintenance of bone integrity is clearly demonstrated in TRAP knock 

out mice studies (Hayman et al, 1996). Previously TRAP has been associated with 

vascular calcification in the arteries of OPG knock out mice (Bucay et al, 1998). While 

the expression of TRAP in the aorta during RA has not been demonstrated, data now 

suggests that the mechanism of vascular calcification is similar to that seen in bone, in 

which both osteoblasts and osteoclasts are essential (Massy et al, 2008).  The 

assessment of TRAP levels is therefore an obvious choice when investigating the 

presence of vascular osteoclasts in mCIA. 

Cathepsin K is a lysosomal cysteine protease which has been shown to be implicated in 

vascular calcification. Like TRAP, Cathepsin K was also shown to be up regulated in the 

arteries of OPG knock out mice (Bucay et al, 1998). Although Cathepsin K levels have not 

previously been determined in RA patients, a recent study assessed them in both chronic 

kidney disease and diabetes mellitus. Notably, increased circulating levels of Cathepsin 

K were associated with major adverse cardiac and cerebrovascular events (Izumi et al, 

2016). Further knock out animal studies have provided direct evidence implicating 

cathepsins in vascular disease. Suggested roles include; matrix protein remodelling, 

activation, liberation and modification of angiogenic growth factors cytokines and 

proteases (Cheng et al, 2011).   

The third marker used to identify the presence of osteoclasts is the calcitonin receptor. 

Within bone and marrow-type cells this is unique to the osteoclast and studies have 

shown its expression to correlate with osteoclast-mediated bone resorption (Hattersley 

and Chambers, 1989).  As such it will further provide us with information of osteoclast 

functionality. 

If osteoblast and osteoclast-like cells do reside within the diseased vasculature, 

questions remain as to the absence or presence of signalling mechanisms that would 

allow this to occur, and indeed moderate the activity of the cells. One proposed theory 

is that mineral deposition is not an active pathological process, but rather the result of 

a diminished protective mechanism that would usually oppose calcification.  Despite 

high systemic circulating concentrations of calcium and phosphate, normal 

mineralization only occurs in the bone, teeth and cartilage (Schafer et al, 2003). This 

would suggest that undesirable mineralization is inhibited to prevent ectopic 

calcification. Many animal studies using knock out models have now shown the 

importance of several non-collagenous proteins in inhibiting vascular calcification (Luo 

et al, 1997; Speer et al, 2002). The involvement of two in particular, osteopontin (OPN) 

and matrix gla protein (MGP) have been widely investigated (Figure 4.1). 

OPN is known to inhibit the deposition of a calcified matrix, dependent on its 

phosphorylation state (Wada et al, 1999). It has also been shown to aid osteoclast 

function by acting as an anchor between mineral and osteoclasts and stimulating the 

resorption of calcium phosphate crystals (Reinholt et al, 1990). Very pertinent to this 

thesis is the suggestion that OPN is capable of regulating the inflammatory response, 

including the accumulation of immune cells (Scatena et al, 2007). Given the influx of 
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inflammatory cells to the mCIA aorta and surrounding tissues described in the previous 

two chapters, assessment of OPN in this module is essential. 

A role for MGP in vascular calcification is less well defined, with conflicting data 

suggesting that both an increase and decrease can contribute to this process (Zebboudj 

et al, 2002), (Brindle, 2001). Importantly MGP expression has been confirmed on VSMC 

as well as chondrocytes (Murshed et al, 2004).  While both OPN and MGP have been 

shown to work in conjunction with OPG, the question remains as to whether they are 

decreased to allow calcification or increased to reverse calcification. The onset of 

vascular calcification is likely to occur due to the dysregulation of both inhibitory and 

activating signals.  

Data now also support the notion that initiation of calcification is driven by cell apoptosis 

(Shroff et al, 2013) (Figure 4.1). Since this thesis (Chapters 2 and 3) describes changes in 

inflammatory cell populations in the face of little change in total cell number, it is 

possible that apoptosis is actively occurring in the mCIA vasculature. Importantly studies 

have identified a role for apoptosis prior to calcification in VSMC in vitro, inhibition of 

apoptosis by caspase resulting in a 40% reduction in calcification (Proudfoot et al, 2000). 

For this reason, apoptosis markers will constitute investigative targets allowing us to 

determine a time line of events contributing to aortic medial calcification in the mCIA 

model. 

FAS ligand is one such marker that is also a member of the TNF superfamily, and like DR3 

its receptor signals via a death domain. It was discussed in the previous chapter as a 

potential driver of changes in the vasculature when DR3 is ablated.  The relationship 

between FAS and FAS ligand, and its ability to induce apoptosis, has been well 

characterized (Waring and Mullbacher, 1999). Apoptosis via this pathway is important 

for homeostasis in the immune system while also constituting a role for killing for 

cytotoxic T cells. Fas receptor is shown to be up regulated following DNA damage and 

this up regulation is said to be p53 dependent (Waring and Mullbacher, 1999). 

Other than its association with FAS ligand, p53, has also been associated with osteogenic 

differentiation in the vasculature (He et al, 2015). It plays a crucial role in bone 

homeostasis by acting as a negative regulator (Wang, 2006), but more specifically, p53 

inhibition is required to induce RUNX2 activation and therefore subsequent osteoblast 

differentiation (Lengner et al, 2006). In the context of vascular disease, p53 prevents 

trans-differentiation of bone marrow stromal cells to VSMC and protects against 

apoptosis (Li et al, 2012). Whether a decrease in p53 is associated with vascular 

dysfunction and calcification will be investigated. 

Caspases are crucial in programmed cell death; caspase 3 specifically is a frequently 

activated protein and mediates the cleavage of many key cellular proteins (Porter and 

Janicke, 1999). It has also been shown to be important in the dismantling of a cell and 

the formation of apoptotic bodies. In terms of vascular disease, tissue expression of 

caspase 3 is correlated with apoptosis (TUNEL) staining within atherosclerotic plaques 

(Akishima et al, 2005). Plasma caspase 3 levels have also been associated with traditional 
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CV risk factors, suggesting both the importance of itself and apoptosis in vascular disease 

(Matulevicius et al, 2008).  

In order to determine the presence of any mineral depots within the aortic vessel wall 

itself, two commonly used markers will be assessed. Osteocalcin (OCN) is a bone gla 

protein produced by osteoblasts (Lepage et al, 1990) and forms part of the bone 

extracellular matrix following carboxylation and hydroxyapatite binding. Importantly 

expression of OCN has been associated with calcifying VSMCs (Kapustin and Shanahan, 

2011) and suggested as a novel regulator of osteochondrogenic differentiation within 

these cells (Idelevich et al, 2011).  The second marker is the enzyme alkaline 

phosphatase, which appears to act in a number of ways to enhance mineralization; it is 

known to increase local concentrations of inorganic phosphate (Jones and Shinowara, 

1941), it is a mineralization promoter (Golub and Boesze-Battaglia, 2007) and can 

decrease the high concentration of extracellular pyrophosphate that normally inhibits 

mineralization (Golub and Boesze-Battaglia, 2007). With specific relevance to this thesis, 

increased alkaline phosphatase has also been associated with vascular calcification 

(Schoppet and Shanahan, 2008).  

Finally, we must consider the normal structure of the vasculature and how changes to 

this may impact on the vascular constriction response to an exogenous agonist. The 

composition of the ECM, produced by the VSMCs, ultimately defines the mechanical 

properties of the vessel wall. Within the tunica media there are two major ECM 

components, elastin and collagen, accounting for 50% of the vessel weight (Harkness et 

al, 1957).  Elastin comprises a continuous network of lamellae (Dingemans et al, 2000), 

the woven structure forming an elastic reservoir to transfer stress throughout the vessel 

wall thus imparting vessel dispensability (Berry et al, 1997).  The importance of elastic 

lamellar units in distributing tensile strength is evidenced by larger vessels having the 

greatest number of elastic layers (Berry et al, 1972). Studies now suggest that elastin 

turnover (Ashwini et al, 2011) and dysregulation (Ashwini et al, 2011) are early markers 

of phenotypic change, often occurring before the onset of calcification. Importantly 

elastin dysregulation may aid calcification but is not sufficient to do so single-handed 

(Ashwini et al, 2011) pointing to the multifactorial nature of this process. Changes to the 

elasticity of the vessel alter arterial compliance, resulting in altered pulse wave velocity, 

a strong predictor for CVD.    Sandwiched between these lamellar layers are bundles of 

collagen fibres that show no distinct pattern of arrangement. Collagen content is often 

associated with vascular diseases such as atherosclerosis and is important in 

determining the stability of atherosclerotic plaque (Miller, 2016). In this thesis we will 

discuss collagen and elastin content in terms of medial calcification and determine 

associated changes. 
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Figure 4.1 – The Association between Mineralization Factors. Mesenchymal progenitor cells can differentiate into VSMcs, adipocytes or osteoblast/ chondrocyte-like cells 

dependent on environmental conditions. In the presence of osteoblast transcription factors, RUNX2, OSX and ATF4 these cells differentiate towards an osteoblast-like phenotype. 

These cells express RANK and can interact with RANKL expressed on osteoclasts, along with TRAP, Cathepsin K and Calcitonin Receptor. The binding of RANK and RANKL initiates 

osteoclastogenesis. VSMCs can also transdifferentiate in the presence of master osteoblast transcription factor RUNX2. This factor can be produced in response to the fragmentation 

of elastin, which often occurs due the presence of high calcium concentrations within the region. This process allows the production of ALP and initiates the production of skeletal 

matrix, including bone like proteins such as osteocalcin from the osteoblast like cells. Apoptopic cells, expressing markers such as FAS, p53 and Caspase 3, within the region are 

thought to produce matrix vesicles which are phagocytosed. This drives increased production of inhibitors such as OPN, MGP and OPG that act to counteract calcification-promoting 

processes within the vessel wall. 
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This chapter describes the experiments used top interrogate whether the vascular 

dysfunction in our model of inflammatory arthritis was attributable to vascular 

calcification and/or important structural changes. It details methodology, results and 

discussion under the following objectives: 

Hypothesis: Structural changes to the thoracic aorta and surrounding PVAT drive 

dysregulation of constriction response in the mCIA model. 

 

 To evaluate whether medial calcification is driving vascular dysfunction in 

mCIA 

 To understand the presence of osteoblast/osteoclast-like cells in the thoracic 

aorta and surrounding PVAT of mCIA mice 

 To investigate whether apoptosis occurs prior to calcification in the 

vasculature 

 To ascertain whether mineral is produced in the aortic vessel wall following 

arthritis onset 

 To determine whether changes in density and structure of the ECM 

components elastin and collagen are effected during mCIA 

 

 

 

 

  



94 
 

4.2 Methods 

 

New methods are described below. Methods from Chapter 2 still apply here, including; 

mCIA induction (2.2.2) and immunohistochemistry (2.2.6). 

4.2.1 Molecular Biology  

 

Molecular biology was used to determine the expression of calcification markers within 

the aortic vessel wall and surrounding PVAT. These include calcification inhibitors, 

apoptosis markers, osteoblast transcription factors and Osteoclastogenesis factors.  

4.2.2 Tissue Isolation 

 

Aortas were isolated with PVAT still intact as previously described (3.2.3.2). Aortas were 

immediately put into RNA later and stored on ice. The samples were kept at 4oC 

overnight before being stored at -20oC until later analysis. 

4.2.3 RNA Extraction 

 

RNA was extracted from each aorta (with PVAT still intact) on ice using a trizol method. 

Firstly, each tissue sample was fully homogenized using an ultra-turrax T8 (IKA) in 1ml 

of tri reagent. The resulting homogenate was then transferred to a 1.5ml Eppendorf 

tube and 200µl of chloroform added. This was quickly vortex mixed and left at room 

temperature for 5 minutes before being centrifuged at 1200g for 15 minutes at 4oC. 

Following this separation technique, the RNA containing top phase was transferred to a 

new Eppendorf tube. An equal volume of 100% isopropanol was then added and the 

tube vortex mixed before freezing at -20oC overnight. Subsequently samples were 

thawed at room temperature before being centrifuged at 1200g for 15 minutes at 4oC. 

The isopropanol was then carefully removed without disturbing the RNA and 1ml of 

100% ethanol added to purify the pellet.  Following vortex mixing and centrifugation at 

7500g for 5 minutes at 4oC, this process was repeated. All remaining ethanol was then 

removed and pellets left to air dry for 10 minutes at room temperature, before being 

re-suspended in 10µl of RNAse/DNAse free water. RNA samples were stored at -80oC for 

later analysis. 

 

4.2.4 Analysis of RNA Concentration 

 

The RNA concentration in 1µl of each prepared sample was determined using a 

NanoDrop spectrophotometer (Thermo). Results were expressed in ng/ml and 260/280 

and 260/230 ratios were collated. 
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4.2.5 Analysis of RNA Purity 

 

Each RNA sample was also analysed on the BioAnalyser chip in order to determine any 

contamination or breakdown of the RNA product. This gave an RNA Integrity Number 

(RIN) for each sample, which reflected the determination of RNA quality. All samples 

had a high level of RNA quality.  

4.2.6 Production of cDNA – Reverse Transcription  

 

In order to use the same concentration of RNA in each Reverse Transcriptase reaction, 

RNA samples were appropriately diluted with RNAse/DNAse free water to 500ng/µl.  

For the Reverse Transcription reaction, a mastermix of reagents was prepared. This 

contained 10µl of 2x buffer and 1µl of Reverse Transcriptase enzyme (Applied 

Biosystems, 4387406). 11µl of this mastermix was added to 2µl of RNA (at 500ng/µl) and 

7µl of RNAse/DNAse free water. Two controls were also run; a water control containing 

no RNA but 2µl extra of RNAse/DNAse free water and a no transcript control containing 

no enzyme but an extra 1µl of RNAse/DNAse free water. All cDNA samples were stored 

at -20oC for later analysis. 

 

 

4.2.7 Primer Design  

 

All primers (Table 4.1) were designed using three software packages. Ensemble was used 

to determine the exon sequences for the required gene in the correct organism. This 

was then exported as a FASTA sequence into Primer 3 to determine an appropriate 

primer sequence with a product range between 80 and 150 base pairs as well as having 

a 50% guanine-cytosine content. Finally, the designed primers were run through Primer 

Blast to determine specificity and the likelihood of amplification of an unwanted gene. 
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Table 4.1 - Genes and Designed Primer Sequences 

 Forward Primer Reverse Primer 

RUNX-2 CCCTGAACTCTGCACCAAGT TGGCTCAGATAGGAGGGGTA 

Osterix TCTCCATCTGCCTGACTCCT CAGGGGACTGGAGCCATAGT 

ATF 4 CCACCATGGCGTATTAGAGG CAACACTGCTGCTGGATTTC 

Matrix Gla Protein AAGAGAGTCCAGGAACGCAA TGAAGTAGCGGTTGTAGGCA 

Osteopontin AGCCATGAGTCAAGTCAGCT TGTGGCTGTGAAACTTGTGG 

OPG TTATACGGACAGCTGGCACA TCACACTCACACACTCGGTT 

RANK TGAAAGCACCGTGGATTCTG TTGTCAGGTGCTTTTCAGGG 

RANKL CATGAAACATCGGGAAGCGT TTCGTGCTCCCTCCTTTCAT 

MMP-9 GCATCCGAGCAAGAAGACAA CTGTCACAAAAGCCAGCTGA 

Beta Smooth 
Muscle Actin 

AGCAAGCAGGAGTACGATGA GGTGTAAAACGCAGCTCAGT 

GAPDH TGGCAAAGTGGAGATTGTTGCC AAGATGGTGATGGGCTTCCCG 

Alpha Smooth 
Muscle Actin 

TGAAAATGAGATGGCCACGG AGCGTTCGTTTCCAATGGTG 

 

4.2.8 Primer Preparation 

 

Each primer was diluted with RNAse/DNAse free water to make a 100µM stock solution.  

 

4.2.9 Real Time Quantitative Polymerase Chain Reaction (RT-qPCR)  

RT-qPCR was used to determine gene expression of early calcification markers in the 

aortic vessel wall and surrounding PVAT. For each gene analysed by RT-qPCR, a 

mastermix was prepared to contain 10µl of SYBR green mastermix (Life Technologies), 

0.8µl of 10µM specific forward primer, 0.8µl of 10µM specific reverse primer and 4.4µl 

of RNAse/DNAse free water. Subsequently a 1 in 5 dilution was made of the cDNA 

resulting from the RT reaction. In a 96-well plate 16µl of mastermix was added to each 

appropriate well along with 4µl of cDNA (500ng/µL). Three wells were used as controls; 

the water control from the RT reaction, the no transcript control from the RT reaction 

and a no transcript control for this reaction containing 4µl of RNAse/DNAse free water. 

Each plate was sealed with a plastic top and centrifuged at 7500g for 1 minute to ensure 

thorough mixing of reagents. Each plate also contained cDNA samples with mastermix 

for one of two housekeeping genes β-actin and GAPDH. For individual samples, each 

gene was run in triplicate. Each 96 well plate was analysed by the Viia 7 qPCR machine, 

using 40 cycles of the following method. PCR was initiated with a denaturation step at 

95C for 2 minutes, followed by 40 amplification cycles at 95C for 1 second and 60C 

for 30 seconds to enable the annealing and extension of the primers along the cDNA. 

4.3 Alkaline Phosphatase Activity 

 

ALP activity was determined using an assay kit from Abcam (ab83371). 
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Firstly, buffers and enzymes were prepared as per kit instructions. Briefly, 4-

Methylumbelliferyl phosphate (MUP) substrate was dissolved in 1.2mls of assay buffer 

to produce a 5mM solution. ALP antibody was also diluted in 1ml of assay buffer. A 50µM 

MUP standard was prepared by diluting 5µl of 5mM MUP solution with 495µl of assay 

buffer. A standard curve was then produced with 6 points ranging from 0nmol/well to 

0.5nmol/well. All standards and samples were run in duplicate. 

Aortic samples were first homogenised as described above in 100ml of assay buffer 

before centrifugation at 13000g for 3 minutes at 4oC. 50µl of the resulting supernatant 

was then added to the appropriate well of a 96-well plate along with 60µl of assay buffer. 

For each sample, 20µl of MUP substrate (2µl of 5mM solution and 18µl of assay buffer) 

was added and 10µl of ALP enzyme added to each well of the standard curve. 

Subsequently samples were incubated for 30 minutes at room temperature in the dark. 

After this time 20µl of stop solution was added to each well, the plate gently shaken 

before analysis using a plate reader at 360/440nm.  

To ensure ALP activity was standardised for protein concentrations, the latter was 

assessed in each sample by use of a concomitant bicinchoninic acid protein assay (BCA) 

(Thermo, 23225). Briefly, a standard curve was produced from commercial standards 

with concentrations varying from 0- 2000µg/ml. BCA working reagent was prepared as 

per manufacture instructions. In a 96-well plate 25µl of each standard or sample was 

added to appropriate duplicate wells. 200µl of working reagent (a 50:1 ratio of provided 

reagents A and B) was added to each well and following gentle mixing the plate 

incubated at 37oC for 30 minutes. Subsequently the plate was analysed using a plate 

reader at 562nm and protein concentrations determined in relation to the standard 

curve.  
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4.4 TRAP Positive Cell Identification  

 

In order to visualise osteoclasts in the aortic vessel wall and surrounding PVAT, TRAP 

staining was carried out using the protocol detailed below.  

70% ethanol fixed samples were rehydrated through xylene and varying concentrations 

of IMS to water as previously described (Section 2.2.5) before being incubated overnight 

in preparation buffer (Table 4.2). The following day the pH of the remaining preparation 

buffer was adjusted to 5 and samples incubated in working TRAP solution (Table 4.3) for 

6 hours at 37oC. Subsequently samples were dehydrated and preserved with DPX (as 

previously described, section 2.2.5).  

Table 4.2 - TRAP Preparation Buffer 

 
Preparation Buffer 

Constituents 

50ml dH2O 

0.82g Sodium Acetate 

0.58g Tartaric Acid 
 

Table 4.3- Working TRAP solution 

 
Working TRAP solution 

Constituents 

5 ml Preparation Buffer 

0.5mg/ml Napthol 

1.1mg/ml Fast Red 
 

4.5 MGP Immunohistochemistry  

Immunohistochemistry was used to identify MGP within the aortic vessel wall and PVAT. 

The previously described (Table 2.9) general protocol was followed with the inclusion of 

specific reagents and concentrations (Table 4.4). Positive staining was determined and 

quantified as previously described (Section 2.2.6). 

Table 4.4- MGP staining reagents 

 

 

 

 

 

 

 

 

Reagent F4/80 

Wash Buffer TBS Tween 

Serum Block Goat 

Primary Antibody Rabbit Anti MouseF480 
 (4ug/ml) 

Isotype Mouse IgG1 
(4ug/ml) 

Secondary Antibody Goat Anti Rabbit 
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4.6 Elastin Staining  

 

Tissue sections were processed using a Ver Hoeff’s stain (Abcam, ab150667) to identify 

elastin fibre density and structure within the aortic vessel wall using the following 

protocol (Table 4.5). A working elastin solution was prepared as shown in Table 4.6. 

 

Table 4.5- Ver Hoeff’s Staining Protocol 

Step Reason 

3 x Xylene Washes (5 minutes) Wax Clearing 

2x100% IMS (3 minutes) Rehydration 

1x90%IMS (3 minutes) 

dH2O (5 minutes) 

Ver Hoeff’s Working Elastin Stain (15 
minutes) 

Identify Collagen 

Running Tap Water Remove Excess Stain 

Differentiation Solution (20 dips) Differentiation of Stain 

Running Tap Water Clears Excess Solution  

Sodium Thiosulphate (1 minute) Removes Excess Iodine 

Running Tap Water Clears Excess Solution  

1x90% IMS (3 minutes) Clear Excess Stain & Dehydrate 

2x100%IMS (3 minutes) 

3xXylene Washes (5 minutes) 

DPX and Coverslip Preservation of Staining 

 

Table 4.6 - Working Elastin Solution 

Reagent Volume 

Haematoxylin (5%) 30ml 

Ferric Chloride (10%) 12ml 

Lugols Iodine Solution 12ml 
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4.7 Collagen Staining 

 

Tissue sections collected from mCIA experiments were processed to wax blocks and 

mounted on superfrost+ slides, as previously described (2.2.3.2).  The following protocol 

(Table 4.7) details the methodology in which Van Geisson (Abcam, ab150667) staining 

was used to determine collagen density and structure within the aortic vessel wall. 

Table 4.7- Van Geison Staining Protocol 

Step Reason 

3 x Xylene Washes (5 minutes) Wax Clearing 

2x100% IMS (3 minutes) Rehydration 

1x90%IMS (3 minutes) 

dH2O (5 minutes) 

Van Geisson Stain (5 minutes) Identify Collagen 

Running Tap Water Remove Excess Stain 

1x90% IMS (3 minutes) Clear Excess Stain & Dehydrate 

2x100%IMS (3 minutes) 

3xXylene Washes (5 minutes) 

DPX and Coverslip Preservation of Staining 

 

4.7.1 Structural Stain Analysis  

 

Images of elastin and collagen staining were acquired using an Olympus U-TV1 

Microscope at x10 magnification. These were then analysed using Photoshop. Areas of 

positive staining were identified using the colour pick tool. This provides the total 

number of positively stained pixels in the image. This was calculated as a pixel 

percentage of the entire vessel. The area of the vessel wall that did not contain elastin 

and collagen was similarly determined. All staining analysis was carried out blind.  

 

4.8 Statistics 

 

Statistics used in this chapter are the same as those described previously in section 

2.2.7.3. All RT-qPCR data were analysed in two ways. Firstly the impact of arthritis 

severity on factor expression was determined. Secondly, factor expression was 

compared with time with arthritis by correlation. Comparison of Non-Immunized, Mild 

and Severe arthritis groups was carried out using a one way ANOVA with a Bon-Ferronni 

post hoc test. P<0.05 was considered significant. 
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4.3 Results  

4.3.1 Arthritis Severity and Time with Disease Contribute to Changes in the Interplay 

between Osteoblasts and Osteoclasts in the Aorta and PVAT. 

 

Impact of Arthritis Severity 

Following the onset of both mild and severe arthritis, there were no changes in the 

expression of osteoblast transcription factors RUNX2 (Figure 4.2A) (1.10 ± 0.08 (N=12) 

vs. 1.30 ± 0.19 (N=9) vs. 1.23 ± 0.32 (N=11)), OSX (Figure 4.2B) (0.76 ± 0.13 (N=8) vs. 0.90 

± 0.19 (N=8) vs. 0.46 ± 0.09 (N=5)) and ATF4 (Figure 4.2C) (1.44 ± 0.31 (N=12) vs. 1.68 ± 

0.29 (N=9) vs. 1.89 ± 0.47 (N=11)).   

Expression of osteoclastogenesis markers; OPG (Figure 4.4A), RANK (Figure 4.4B) and 

RANKL (Figure 4.4C) were also calculated following the onset of both mild and severe 

arthritis. No significant change was seen in OPG expression (1.28 ± 0.25 (N=12) vs. 2.49 

± 0.97 (N=9) vs. 1.64 ± 0.37 (N=11)). However, RANK expression (1.10 ± 0.14 (N=12) vs. 

2.28 ± 0.49 (N=9) vs. 0.99 ± 0.15 (N=11)) was significantly (p=0.0059) increased in mild 

arthritis in comparison to both non-immunized control aorta and severely arthritic 

aorta. No significant changes in RANKL expression were seen (2.19 ± 0.57 (N=12) vs. 1.63 

± 0.41 (N=9) vs. 3.31 ± 0.79 (N=11)). 

No significant changes were identified in the expression profiles of the osteoclast 

markers TRAP (Figure 4.6A) (1.61 ± 0.17 (N=12) vs. 1.52 ± 0.17 (N=9) vs. 1.80 ± 

0.17(N=11)), Cathepsin K (Figure 4.6B) (1.28 ± 1.20 (N=12) vs. 0.92 ± 0.13 (N=9) vs. 1.25 

± 0.15 (N=11)) and Calcitonin Receptor (Figure 4.6C) (2.55 ± 1.24 (N=12) vs. 2.30 ± 0.75 

(N=9) vs. 1.40 ± 0.46 (N=11)) between non-immunized control, mild and severe arthritis 

respectively. 

Impact of Time with Arthritis 

Expression of transcription factors were also correlated against time with arthritis (days) 

in order to determine whether this is a factor in progression of vascular calcification. 

RUNX2 (Pearson’s R=0.29) and OSX (Pearson’s R=0.06) expression did not change, but 

ATF4 (Pearon’s R=0.44) expression significantly (p=0.008) increased (Figures 4.3A, B and 

C respectively).  

Expression of osteoclastogenesis markers, OPG, RANK and RANKL showed no correlation 

with time with arthritis (Figures 4.5A, B and C respectively). 

Similarly, osteoclast markers, TRAP, Cathepsin K and Calcitonin Receptor were not 

changed over time with arthritis (Figure 4.7A, B and C respectively). 
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Figure 4.2 - Osteoblast Transcription Factors. Expression of osteoblast transcription 

factors RUNX2 (A), OSX (B) and ATF4 (C) were determined in non-immunized, mild and 

severely arthritic aorta and PVAT. 
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Figure 4.3 – Osteoblast Transcription Factors Over Time. The expression of RUNX2 (A), 

OSX (B) and ATF4 (C) were also determined over time with arthritis. **=p<0.01  
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Figure 4.4 - Osteoclastogenesis Markers. Expression of osteoclastogenesis markers OPG 

(A), RANK (B) and RANKL (C) were determined in non-immunized, mild and severely 

arthritic aorta and PVAT. *=p<0.05,**=p<0.01. 
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Figure 4.5- Osteoclastogenesis Markers Over Time. The expression of OPG (A), RANK 

(B) and RANKL (C) were also determined over time with arthritis.   
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Figure 4.6 - Osteoclast Markers. Expression of osteoclast markers TRAP (A), Cathepsin 

K (B) and Calcitonin Receptor (C) were determined in non-immunized, mild and severely 

arthritic aorta and PVAT.  
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Figure 4.7 – Osteoclast Markers Over Time. The expression of TRAP (A), Cathepsin K (B) 

and Calcitonin Receptor (C) were also determined over time with arthritis.  
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4.3.2 Mechanisms for Initiating Mineralization over Time with Arthritis 

 

Impact of Arthritis Severity 

There was no change in MGP (Figure 4.8A) (1.09 ± 0.10 (N=12) vs. 1.31 ± 0.17 (N=9) vs. 

1.15 ± 0.10 (N=11)) or OPN expression (Figure 4.8B) (3.25 ± 1.32 (N=12) vs. 11.40 ± 6.53 

(N=9) vs. 26.62 ± 12.43 (N=11)) between non-immunized control, mild and severe 

arthritis respectively. 

No significant changes were identified in the expression profiles of the apoptosis 

markers Fas (Figure 4.11A), Caspase 3 (Figure 4.11B) and p53 (Figure 4.11C); Fas (1.17 ± 

0.12 (N=12) vs. 1.03 ± 0.15 (N=9) vs. 1.51 ± 0.20 (N=11)), Caspase 3 (1.01 ± 0.09(N=12) 

vs. 1.09 ± 0.14 (N=9) vs. 0.85 ± 0.08 (N=11)) and p53 (1.25 ± 0.25 (N=12) vs. 1.09 ± 0.16 

(N=9) vs. 1.32 ± 0.32 (N=11)) between non-immunized control, mild and severe arthritis 

respectively. 

Impact of Time with Arthritis 

MGP showed no significant correlation with time with arthritis (Figure 4.9A). However 

Figure 4.9B illustrates a significant (p=0.031) correlation (Pearson’s R=0.37) between 

OPN expression and time with arthritis. Moreover, when compared across all mice OPN 

expression was significantly (P=0.01) higher than MGP expression (Figure 4.10).  

When apoptosis markers were analysed in relation to time with arthritis, only Caspase 

3 changed significantly (p=0.035), decreasing over time with arthritis (Pearsons R=-0.36) 

(Figure 4.12B). 
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Figure 4.8 - Mineralization Inhibitors. Expression of mineralization inhibitors; MGP (A) 

and OPN (B) were determined in non-immunized, mild and severely arthritic aorta and 

PVAT. 
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Figure 4.9 – Mineralization Inhibitors Over Time. The expression of MGP (A) and OPN 

(B) were also determined over time with arthritis. *=p<0.05.

 

Figure 4.10 - Comparison of Mineralization Inhibitors. Overall expression of OPN and 

MGP in PVAT intact aorta were compared. *=p<0.05. 
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Figure 4.11 - Apoptosis Markers. Expression of apoptosis markers FAS (A), Caspase 3 (B) 

and p53 (C) were determined in non-immunized, mild and severely arthritic aorta and 

PVAT.  
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4.12 Apoptosis Markers Over Time. The expression of FAS (A), Caspase 3 (B) and p53 

(C) were also determined over time with arthritis. *=p<0.05 

  

0 5 10 15 20
0

1

2

3

Days with Arthritis

R
Q

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

*

Days with Arthritis

C
a
s
p

a
s
e
 3

 E
x
p

re
s
s
io

n

0 5 10 15 20
0

2

4

6

Days with Arthritis

p
5
3
 E

x
p

re
s
s
io

n

A) 

C) 

B) 



113 
 

 

 

4.3.3 Mineralization Markers Remain Constant in the Aorta Following Onset of Arthritic 

Disease  

 

Impact of Arthritis Severity 

There was no significant difference in the expression of OCN, a broad marker of 

calcification, between non-immunized, mild and severely arthritic tissues (Figure 4.13) 

(2.74± 0.99 (N=4) vs. 0.98± 0.26 (N=2) vs. 2.31± 0.65 (N=4)). 

Levels of the second mineralisation marker ALP were also determined, but only in non-

immunized (N=3) and severe arthritis tissues (N=3), due to experimental constraints 

(Figure 4.15). Again, no change with disease severity was observed.  

Impact of Time with Arthritis 

No significant correlation with time of disease presence was observed for OCN 

(Pearson’s R=-0.46) (Figure 4.14).  
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Figure 4.13 - Osteocalcin. Expression of the calcification marker OCN was determined in 

non-immunized, mild and severely arthritic aorta and PVAT. 

 

 

 
 

 

Figure 4.14- Osteocalcin Over Time. The expression of OCN was also determined over 

time with arthritis. 
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Figure 4.15 - Alkaline Phosphatase. Activity of ALP was determined in non-immunized 

and severely arthritic PVAT-intact aortic homogenates.  
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4.3.4 TRAP Positive cell Number Does Not Change in the Aorta or PVAT Following Induction 

of Arthritis  

 

When the number of TRAP positive cells was counted in both the aorta (Figure 4.16A) 

and PVAT (Figure 4.16B), no significant differences between non-immunized, mild and 

severely arthritic tissues were identified (0.5±0.3 (N=4) vs. 1±0.6 (N=4) vs. 0.75±0.3 

(N=4) and (6.3±1.5 (N=4) vs. 3.3±1.5 (N=4) vs. 4.5±1.7 (N=4)) respectively. 
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Figure 4.16- TRAP Protein Profile. TRAP expression was determined in the aorta (A) and 

PVAT (B) of non-immunized, mild and severe arthritic mice. Representative images (x40 

magnification) of aorta and PVAT of non-immunized (C) mild (D) and severely arthritic 

(E) mice are shown. Scale Bars represent 0.25µm. Red staining represents TRAP positive 

cells. 
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4.3.5 MGP Protein was not Altered Following Onset of Arthritis 

 

When MGP protein levels were determined in the aorta (Figure 4.17A) and surrounding 

PVAT (Figure 4.17B), no significant changes between non-immunized, mild and severely 

arthritic tissues were evident: (15.1±6.1 (N=3) vs. 13.9±2.6 (N=12) vs. 16.0±6.2 (N=5)) 

and (25.7±6.2 (N=3) vs. 20.3±4.9 (N=12) vs. 16.2±4.7 (N=5)) respectively.  
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   Severe Arthritis    Isotype 

 
Figure 4.17- MGP Protein Profile. MGP protein levels were determined in the aorta (A) 

and PVAT (B) of non-immunized, mild and severe arthritic mice. Representative images 

(x20 magnification) of non-immunized (C), mild (D), severely (E) arthritic mice and 

Isotype (F) are shown. Scale Bars represent 0.2µm. Brown staining represents MGP 

positive cells. 
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4.3.6 OPN Protein was Significantly Increased in the PVAT of Severely Arthritic Mice. 

 

When OPN protein levels were determined in the aorta no significant differences 

between non-immunized, mild and severely arthritic tissues were identified (Figure 

4.18A) (7.5±1.9 (N=4) vs. 8.6±1.6 (N=4) vs. 10.4±1.9 (N=4)). In the PVAT (Figure 4.18B) 

OPN protein levels were significantly (p=0.027) increased in severe disease in 

comparison to non-immunized controls (9.0±2.1 (N=4) vs. 11.7±3.8 (N=4) vs. 28.2±6.3 

(N=4)).   
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Figure 4.18 - OPN Protein Profile. OPN protein levels determined in the aorta (A) and 

PVAT (B) of non-immunized, mild and severe arthritic mice. Representative images (x20 

magnification) of tissues taken from non-immunized (C) and mild (D), severely (E) 

arthritic mice and isotype (F) are shown. Scale Bars represent 0.2µm. *=p<0.05. Brown 

staining represents OPN positive cells. 
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4.3.7 Changes in Structural Components of Aortic Vessel Wall Following Arthritis Onset. 

 

Collagen and Elastin was only investigated in tissues from non-immunized and severely 

arthritic mice. 

There was no change in the percentage of collagen (42.19± 16.34% (N=3) vs. 53.29± 

4.37% (N=9)) within the aortic vessel wall compared to non-immunised controls (Figure 

4.19A). No correlation was seen between collagen content and either arthritis severity 

or time with disease (Figure 4.19B).  

Elastin content in the aortic vessel wall significantly (p=0.03) increased in the arthritic 

mice (Figure 4.20A) (32.53± 9.49% (N=3) for control vs. 53.29± 3.63 (N=9) for arthritis). 

A significant positive correlation between elastin content and time with arthritis 

(p=0.02, Pearson’s R=0.64) was observed (Figure 4.20B).  
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           Non Immunized              Severe Arthritis 

 
Figure 4.19 - Collagen Content in the Aortic Vessel Wall- The percentage of collagen in 

the aorta was determined in non-immunized and severely arthritic tissues (A). This was 

also correlated with worsening arthritis score (B) and time with arthritis (C). 

Representative images (x40 magnification) show collagen staining in non-immunized (D) 

and severe arthritic aortae (E). Scale bars represent 0.2µm. Heavy pink staining 

represents positive collagen filaments. 
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          Non Immunized              Severe Arthritis 

     

Figure 4.20 - Elastin Content in the Aortic Vessel Wall- The percentage of elastin in the 

aorta was determined in non-immunized and severely arthritic samples (A). This was 

also correlated with worsening arthritis score (B) and time with arthritis (C). 

Representative images (x40 magnification) show elastin staining in non-immunized (D) 

and severe arthritic aortae (E). Scale bars represent 0.2µm. *=p<0.05. **=p<0.01. Black 

staining represents Elastin filaments. 

Non Immunized Severe Arthritis
0

20

40

60
*

%
 E

la
s
ti

n

in

A
o

rt
ic

 V
e
s
s
e
l 

W
a
ll

0 2 4 6 8 10
0

20

40

60

80 **

Total Score

%
 E

la
s
t
in

in

A
o

r
t
ic

 V
e
s
s
e
l 

W
a
ll

0 2 4 6
0

20

40

60

80

*

Days with Arthritis

%
 E

la
s
ti

n

in

A
o

rt
ic

 V
e
s
s
e
l 

W
a
ll

A) 

B) C) 

D) E)   



125 
 

4.3.8 Interesting Observations 

 

During a particular experiment, two mice did not reach the severity limit of the protocol 

and were followed to day 40 with arthritis, at which time they had a total paw score of 

7 and 8 respectively. These data were not included in the analysis described above. 

However, some interesting observations were made when RT-qPCR was carried out on 

tissues from these animals and the data displayed against that from mice with arthritis 

for up to 20 days (N=35). Although statistics were not carried out on these data, it is 

clear that expression of all osteoblast transcription factors; RUNX2, OSX and ATF4 

(Figure 4.21A, B and C) were increased with extended time. Similarly, osteoclastogenesis 

factors; OPG, RANK and RANKL (Figure 4.21D, E and F) were also increased in the day 40 

mice. Changes in the osteoclast markers, TRAP, Cathepsin K and Calcitonin Receptor 

(Figure 4.21 G, H and I) whilst evident, were not as obvious. All apoptosis marker 

expression was decreased in the older mice (Figure 4.22A, B, C), whereas, mineralization 

inhibitors MGP and OPN (Figure 4.22D, E) and the mineral marker OCN (Figure 4.22F) 

were increased. 
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Figure 4.21- Osteoblast and Osteoclast Factors. Expression of markers of: Osteoblast 

transcription; RUNX2 (A), OSX (B) and ATF4 (C), Osteoclastogenesis; OPG (D), RANK (E) 

and RANKL (F) and Osteoclasts; TRAP (G), Cathepsin K (H) and Calcitonin Receptor (I) in 

tissues from older day 40 mice displayed against that from mice with arthritis for up to 

20 days. No statistical tests were carried out. 
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Figure 4.22- Apoptosis and Mineralization Factors. Expression of markers of: Apoptosis; 

FAS (A), p53 (B) and Caspase 3 (C), Mineralization inhibition; OPN (D), and MGP (E) and 

Osteocalcin (F), in tissues from older day 40 mice displayed against that from mice with 

arthritis for up to 20 days. No statistical tests were carried out. 

  

0-20 days 40 days 
0.0

0.5

1.0

1.5

Days with Arthritis

F
A

S
 
E

x
p

r
e
s
s
i
o

n

0-20 days 40 days 
0.0

0.5

1.0

1.5

2.0

Days with Arthritis

p
5
3
 E

x
p

r
e
s
s
io

n

0-20 days 40 days
0.0

0.5

1.0

1.5

Days with Arthritis

C
a
s
p

a
s
e
 
3
 
E

x
p

r
e
s
s
i
o

n

0-20 days 40 days 
0

10

20

30

40

Days with Arthritis

M
G

P
 E

x
p

r
e
s
s
io

n

0-20 days 40 days 
0

50

100

150

600

750

900

Days with Arthritis

O
P

N
 E

x
p

r
e
s
s
io

n

0-20 days 40 days 
0

2

4

6

8

Days with Arthritis

O
C

N
 E

x
p

r
e
s
s
io

n

A) B) C) 

D) E) 

F) 



128 
 

4.4 Discussion 

 

A potential role for vascular calcification in the contractile dysfunction observed in mCIA 

was investigated for the first time in these experiments. The expression profiles of 

osteoblast transcription factors were determined to establish whether VSMCs had 

gained an osteogenic-like phenotype. While no significant changes were observed 

between control and diseased tissues, the very fact that they were present is 

noteworthy. Indeed, this suggests that while they do not seem to be driving calcification 

in this relatively acute model of inflammatory arthritis, they certainly have the potential 

to do so. The relationship of these transcription factors and the interplay between them 

during physiological bone formation has been well characterised (Komori, 2006). 

However, although they have been identified as important in the vascular calcification 

process, their relationship in this context is ill defined. Unlike RUNX2 and OSX, ATF4 was 

significantly increased over time with arthritis. One possible explanation relates to ATF4 

being a multipurpose transcription factor. For example, ATF4 has been implicated in 

endoplasmic reticulum stress-mediated apoptosis, a process indicative of vascular 

calcification (Duan et al, 2013). Moreover, the knock down of ATF4 has been shown to 

reduce endoplasmic reticulum stress mediated apoptosis, blocking vascular calcification 

via negative regulation of the osteoblast phenotypic switch of VSMCs (Duan et al, 2003). 

This may explain why levels of ATF4 were significantly increased unlike both RUNX2 and 

OSX expression.  In order to determine whether ATF4 is playing a role outside of the 

osteoblast, further investigations, in particular more localised immunostaining, are 

warranted.  

Interestingly, when OPG levels were low in control and severe arthritis, although not 

statistically significant, RANKL levels were increased.  That the opposite trend was 

observed in mild disease supports these changes as being pathophysiologically relevant. 

Importantly this shows a balanced relationship between the two proteins, and one that 

can change in response to the local environment (Geusens, 2012). When this 

relationship becomes unbalanced, in favour of RANKL, we would expect osteoclast 

activity to be favoured (Boyce and Xing, 2008). 

Static expression of osteoclast markers; TRAP, Cathepsin K and Calcitonin Receptor 

coupled with increased RANK expression suggests that there is another cell within the 

vasculature, other than the osteoclast capable of producing RANK. To this end, 

macrophages have been described to express RANK (Kido et al, 2005), and previous data 

described in this thesis (Chapter 2) shows an expression profile for F4/80 positive 

macrophages that matches that for RANK described here. While macrophages can 

differentiate into osteoclasts under the right environmental conditions (Udagawa et al, 

1990), it is important to note that RANK is involved in a number of other homeostatic 

functions, such as, remodelling, repair and immune function. Recently, a study has 

shown that macrophages within aneurysmal arteries differentiate in to osteoclasts 

(Takei et al, 2016). These macrophages were shown to express a number of osteoclast 

markers, including TRAP. The study goes on to demonstrate that these markers were 

not expressed on macrophages within non-diseased aortic tissue. During this study 
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osteoclastogensis was initiated by the activation of NF-κβ (Takei et al, 2016). We 

therefore suggest the expression profile of RANK in the aorta and PVAT was indicative 

of the presence of macrophages with the capability to differentiate into osteoclasts 

within this region. 

Although no difference in the number of TRAP positive cells was observed in the aortic 

vessel wall and surrounding PVAT between control and arthritic mice, for the first time 

TRAP+ cells were identified in these tissues. While TRAP can be expressed on activated 

macrophages as well as on osteoclasts (Janckila et al, 2007; Takei et al, 2016), the 

pattern of TRAP staining does not fit with that observed for macrophages, or any other 

inflammatory marker studied in similar tissues in this thesis (Chapter 2). Previous studies 

by Takei et al, suggest that TRAP is only expressed on macrophages that within diseased 

tissue, however, TRAP+ cells have not previously been examined in the aorta following 

inflammatory arthritis. Therefore to determine if the TRAP+ staining seen in figure 4.16 

is truly representative of osteoclasts or of macrophages, dual colour staining would be 

required.  

When looking at the impact of calcification inhibitors during arthritis the results were 

surprising. There was no change in MGP gene expression or protein levels, following 

arthritis onset or during time with arthritis. Previous studies have demonstrated that 

MGP is expressed in normal vessels, albeit at low levels (Canfield et al, 2000). The results 

presented in Figure 4.8 support this observation for our model, and also show that MGP 

gene expression was much lower than OPN gene expression in all groups with a 20 fold 

less expression level in comparison to OPN. 

OPN gene expression increased in relation to time and OPN protein levels increased in 

the PVAT of severely arthritic mice. A similar trend of increased OPN protein was seen 

in the aortic wall. Increased OPN has been shown previously in the apolipoprotein-/- 

mouse model of atherosclerosis (Liou et al, 2005).  However, OPN regulation is complex, 

it can be cleaved proteolytically by MMP-9 (Lindsey et al, 2015) and unlike most 

inhibitors does not necessarily decrease to allow calcification to occur. Indeed, OPN may 

also be involved in other cellular processes.  For example, full length OPN is implicated 

in cell attachment and migration (Scatena et al, 2007), while processed OPN is known to 

be pro-inflammatory (Sharif et al, 2009), pro-angiogenic (Hamada et al, 2004) and pro-

osteogenic (Egusa et al, 2009). This suggests the importance of differentiating between 

the types of OPN present within the aortic vessel wall and PVAT. Moreover, it would be 

beneficial to co-stain for MMPs and OPN in mCIA given that OPN has previously been 

associated with increased MMP-9 (Lai et al, 2006). That increased MMP-9 was seen in 

the PVAT of mCIA animals (Chapters 2 and 3) emphasises this point. 

Pro-inflammatory OPN is found to be enriched at sites of calcification (Breyne et al, 

2010), going some way to explaining both increased inflammatory cells and increased 

OPN in the aorta and PVAT during mCIA. However, this creates a dilemma in which it is 

difficult to gauge if increased OPN is acting beneficially to reduce calcification or 

adversely in driving inflammation. Despite mechanisms being unclear, normal blood 

vessels lack OPN expression and it only appears under pathological conditions (Speer et 
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al, 2002) thus confirming the importance of the observations made in the aorta and 

PVAT of mCIA animals.  

Whether initiation of vascular calcification is triggered by the presence of extracellular, 

matrix vesicles has been a long-standing question for debate. Recent evidence suggests 

that vesicles produced from VSMCs and macrophages are mediators in calcification of 

the vasculature leading to diseases such as atherosclerosis (Krohn et al, 2016). However, 

the underlying mechanisms explaining how these vesicles drive calcification remain 

elusive. They are produced from the budding of cells such as VSMC, chondrocytes and 

osteoblasts (Proudfoot et al, 2000), and are thought to be remnants of apoptotic cells. 

This study shows no change in apoptosis markers; FAS and p53, either with severity or 

over time, suggesting no increase in the number of apoptotic cells. Moreover, Caspase 

3 was significantly down regulated as previously observed in a breast cancer model 

where it provided a cell survival mechanism (Devarajan et al, 1987). This may be 

important when considering why we see increased total cell number (previously 

described in Chapters 2 and 3). The lack of change in apoptosis markers suggests that 

apoptopic/matrix vesicles are not being produced in order to initiate vascular 

calcification in mCIA at this time point. The data here does not conclude a role for 

apoptosis in vascular calcification. In mCIA it is more likely that vascular dysfunction is 

driven by inflammatory changes at the level of the blood vessel.  

Changes to arterial elasticity, compliance and pulse wave velocity are associated with 

increased CVD risk and are often due to modifications of collagen and elastin fibres 

(Chow et al, 2013). In mCIA little change to collagen is observed with arthritis onset, 

increased severity or over time. This suggests that pulse wave velocity has not yet been 

altered within the aorta. If it was increased it would be expected that collagen would be 

recruited to the region in order to support the extra tension (Cecelja and Chowienczyk, 

2012). While some clinical studies show that calcification is associated with decreased 

or disrupted collagen production (Rodriguez et al, 2014), it would not seem to be the 

case here. It is possible that although the overall amount of collagen in the aortic vessel 

wall was broadly unchanged, the highly organised collagen fibres may be dysregulated. 

Further in depth analysis would be required to determine normal organised structure 

and whether this has been altered within the arthritic animals.  

Perhaps a more important observation is, the significantly increased percentage of 

elastin within the aortic vessel wall with onset, increasing severity and time with 

arthritis. From the literature it is very common for the percentage of elastin to decrease 

for example, with age (Tsamis et al, 2012) and in aortic aneurysm (Iribarren-Marin et al, 

2011). Therefore, this increase in elastin is interesting and is more indicative of a fibrosis-

like phenotype (Cantor et al, 2002). Vascular fibrosis involves proliferation of VSMCs, 

accumulation of ECM and is a highly inflammatory process. Whether fibrosis is the cause 

of the vascular dysfunction in this model, or whether it goes hand in hand with 

calcification, is still a question for debate. However, it certainly serves as an alternative 

explanation for the increased total cell counts observed in chapters (2 and 3), but 

requires far more in depth investigations for confirmation.  
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The data shown in Figure 4.21 and 4.22 show would seem to indicate that time with 

arthritis is very important in terms of triggering vascular calcification. While it is not 

supported by statistical analysis and scrutiny, the data does serve as a basis for the 

direction of future studies. What we are seeing in this model so far is highly likely to 

reflect the very earliest pathological changes associated with increased vascular 

inflammation. The early window on disease provided by mCIA is paramount since in 

human RA this stage is often missed due to a long diagnosis time.  That the 2 mice 

described in these data sets only reached scores of 7 and 8, 40 days post arthritis onset 

provided an unusual opportunity to determine the role of time with arthritis as opposed 

to severity. These animals were thought to more similarly mirror human disease as they 

had a steady, slow progressing disease.  

In these mice the osteoblast transcription factors appear vastly increased, suggesting a 

likely osteogenic switch in smooth muscle cell phenotype (Steitz et al, 2001). The biggest 

of the increases was seen in ATF4 gene expression and is in line with the data described 

earlier where ATF4 was expressed at higher levels than RUNX2 and OSX. This may 

support ATF4 potentially playing more than one role in the initiation of vascular 

calcification. The increase in all osteoblast transcription factors within the aorta has not 

previously been described during mCIA. In terms of future studies it would be exciting 

to determine the impact of long term inflammatory arthritis on the downstream 

mediators of osteoblast transcription.  

The osteoclastogenesis markers were also increased in the 40 day animals. RANKL was 

elevated to a similar extent as RUNX2 suggesting that osteogenic VSMC switching may 

be occurring, and the altered cells are now capable of expressing RANKL. However, this 

increase in gene expression could also be related to an increase in macrophages as 

earlier discussed. In order to determine whether this was the case further analysis of 

macrophage numbers within the aorta and PVAT of animals with longer term mCIA is 

required. That OPG is also increased, suggests a potential counteracting mechanism 

being initiated within the aorta. To definitively establish whether the RANK/RANKL/OPG 

pathway is driving osteoclastogenesis, further analysis of the TRAP positive osteoclasts 

is also warranted.  

If these data in Figure 4.21 and 4.22 represents an increase in osteoblast-like cells, then 

a complementary increase in mineral markers would be expected. To the contrary, both 

mineralization inhibitors, OPN and MGP are increased. Again, there is much debate as 

to whether these inhibitors increase or decrease prior to calcification. Further studies 

using an adapted protocol that allows long term arthritis to be investigated more 

thoroughly will allow the confirmation of this process.  

That the described markers are apparently increased in longer term compared to short 

term arthritis would suggest that although vascular calcification is not driving the 

contractile dysfunction seen in mCIA in the short term, the changes to the vessel are 

indicative that calcification will occur later in the time course of the disease.  
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4.5 Conclusion 

 

Early arthritis data confirms that vascular calcification is not the underlying cause of 

vascular dysfunction seen in the mCIA model. The presence of both osteoclast and 

osteoblast-like cells has been confirmed in the thoracic aorta and surrounding PVAT, 

however, they are not initiating calcification at this point in the mCIA model. Apoptosis 

cannot be confirmed as an initiator of vascular calcification. However, the changes to 

the vessel are indicative that calcification can occur and that this may take some time, 

as shown by the longer term animals. Excitingly, the results gained from looking at 

elastin percentage suggest a fibrosis-like phenotype, associated with high inflammatory 

state within the aorta and surrounding PVAT. This change in vessel elasticity is likely to 

impact on vessel constriction and thus may be the underlying cause of contractile 

dysfunction seen in this mCIA model. Further experiments with a longer-term mCIA 

model will throw light on these questions. 
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Chapter 5 - Contractile Dysfunction in a 

Long Term mCIA Model: Role of Medial 

Calcification and/or Structural Changes 
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5.1 Introduction 

 

As RA develops into the chronic disease stages, large joints become affected and 

patients suffer with pain swelling and stiffness. One of the striking observations with RA 

is its ability to regress and relapse over time. This means patients have periods of high 

inflammation along with periods of remission. While the changes in the joints are 

characteristic of RA, it is also important to consider the systemic impact of the 

inflammatory burden over time. Some RA patients can suffer symptoms of the disease 

for over half of their lifetime, and it is not surprising that they develop inflammation-

associated co-morbidities in the long term. Because ethical issues prevent detailed 

human studies regarding pathological mechanisms, the current gold standard animal 

model, mCIA, is often used as a surrogate. While this provides a great opportunity to 

investigate the very first changes occurring around disease onset, the timeline for 

studying disease activity is conversely limited. The “norm” in this model is for mice to 

become arthritic inside approximately 5 days and for severe arthritis to develop within 

10 days. Home Office project licence restraints prevent further use of the mice once the 

arthritis severity limit maximum has been reached. As such adaptations must be made 

to the mCIA protocol to allow us to investigate long term disease and the effects of 

sustained systemic inflammation.  

RA differs to other autoimmune diseases, including diabetes mellitus and systemic lupus 

erythematosus, which are associated with peaks of disease activity early in life. As a 

chronic inflammatory disease RA has a clear link with the aging population and age acts 

as a major risk factor for both its onset and development (Larbi et al, 2008). Whether 

the onset of RA is triggered by an aging immune system, and time is an important factor 

in RA pathology, remains open to question. An interesting possibility is that a difference 

exists between the chronological and biological ages of RA patients. Indeed, it has been 

demonstrated that RA patients have difficulty in regenerating their immune systems, 

more specifically T-cell populations, suggesting they have an older biological age than 

anticipated by their age in years (Jendro et al, 1995). The impact of immune system aging 

in this patient population could go some way to explaining the increased risk of co-

morbidity, specifically CVD (Crowson et al, 2010). Indeed, that accelerated immune 

aging has been demonstrated in coronary artery disease patients who do not have an 

inflammatory disease would seem to support this hypothesis (Liuzzo et al, 1999). In fact, 

RA is now considered as an independent risk factor for CVD. 

A key co-morbidity associated with RA, vascular calcification, is also linked with an aging 

population, in fact it has been suggested that the majority of individuals aged over 60 

exhibit progressively enlarging calcium deposits in their major arteries (Allison et al, 

2004). Such pathology is often associated with decreased aortic elasticity, impairing 

vascular function and ultimately leading to increased morbidity and mortality (Wayhs et 

al, 2002). In studies that examine the calcium content of the thoracic aorta in different 

age groups, both intimal and medial calcium concentrations are significantly increased 

over time (Elliot and McGarth, 1994). The study also demonstrated that calcium was 

most markedly increased in the medial layers encompassing the elastin rich region of 
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the vessel wall.  Such changes to the vasculature are now considered common and the 

concept of an aged vascular phenotype is widely accepted (Matsumoto et al, 2007). 

However, little data exists as to how RA and vascular calcification are connected over 

time. The previous chapter demonstrated the importance of time with arthritis in the 

expression of calcification mediators within the thoracic aorta and PVAT. This coupled 

with the knowledge of RA progression and vascular calcification in the aging population 

justifies looking at mCIA over a longer time period in aging mice. An aim of this chapter 

is to use the mCIA model to further investigate this question.  

In large arteries such as the aorta, elasticity and compliance are essential for vessel 

function.  Stiffening of the aorta and other large elastic arteries is a hallmark of vascular 

aging. When stiffening occurs there is dysregulation of haemodynamics within the vessel 

and this often is the underlying cause of hypertension (Wallace et al, 2007). Pulse wave 

velocity can be measured in humans and is representative of vessel elasticity. It has been 

shown that this measurement is highly predicative of CVD. Importantly, arterial stiffness 

has been shown to occur independently of atherosclerosis and is a useful prognostic tool 

in CV pathology (Cecelja and Chowienczyk, 2016).  

The changes seen during aging to structural proteins such as collagen and elastin are 

well established (Panwar et al, 2015). Aging drives an increase in collagen content, 

increased collagen cross linking and associated elastin fragmentation leading to a 

decrease in total elastin content (Jani and Rajkumar, 2006). Other associated structural 

changes in the aortic vessel wall during aging include altered endothelial function, 

dysregulation of wall thickness and stiffening of the vessel (Toda, 2012). Therefore, if 

these changes are seen in the general population it is likely that long periods of systemic 

inflammation will enhance them and may explain the increased CV risk in the RA patient 

cohort. 

This chapter shows the experimental approach used to determine whether vascular 

calcification and/or structural changes occurred over time with arthritis. This chapter 

details methodology, results and discussion under the following objectives: 

Hypothesis: Long term arthritis is associated with vascular calcification and structural 

changes to the aorta 

 

 To investigate if long term arthritis drives medial calcification  

 To establish a role for Osteoblast/ Osteoclast like cells in the vasculature of long 

term mCIA mice 

 To determine if apoptosis occurring more readily in long term disease 

 To understand differences due to age not disease status 

 To determine if changes in density and structure of ECM components such as 

Collagen and Elastin are worse effected during long term mCIA 
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5.2 Methods 

 

Methods described in the previous chapters (2 and 4) may still apply here. Rt-qPCR 

(4.2.9), TRAP staining (4.4), MGP Immunohistochemsitry (4.5), Elastin (4.6) and Collagen 

(4.7) staining have been previously described in detail.  

Long Term Arthritis Type II Collagen Solution 

The type II chick collagen (Sigma, C9301) solution was prepared by dissolving 10mg in 

5mls of 10mM acetic acid (the latter made by adding 50µl of 1M acetic acid stock to 

4950µl of dH2O). Collagen was dissolved by stirring overnight at 4oC.  

Type II collagen Immunization Emulsion 

The immunization emulsion to initiate mCIA was made by combining equal volumes of 

the type II collagen and CFA solutions as described in Chapter 2.  

5.2.1 Induction of Long Term mCIA  

The induction protocol for mCIA has been previously described in Chapter 2. To induce 

“long term” arthritis the only difference was the use of the new modified immunization 

emulsion (described above) and disease activity was monitored up to day 40 following 

arthritis onset.  All non-immunized controls were age matched. 

Following 40 days with arthritis mice were killed as previously described (Chapter 2) and 

samples were collected for RT-qpCR, histology, immumohistochemistry and myography 

as in Chapter 2. 

5.2.2 Time Matched mCIA studies 

 

Long term mCIA was also induced in 8 further mice. This experiment was time matched 

to the short term protocol used in the previous chapters of this thesis (Chapter 2, 3 and 

4). This experiment was used to determine the impact of changing the collagen emulsion 

on structural read outs from the thoracic aorta. 

5.2.3. Statistics 

 

Statistics used in this chapter are the same as those described previously in section 

2.2.7.3. All RT-qPCR data were analysed for the impact of arthritis severity on factor 

expression. Comparison of Non-Immunized and long term arthritis was compared using 

Student’s t-test. P<0.05 was considered significant. 
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5.3 Results 

 

100% of DBA/1 mice developed arthritis 34 days into the protocol (Figure 5.1). This is 

compared with 100% incidence in the “short term” protocol by day 31 (Figure 2.5). 

Weight decreased at the point of arthritis onset but did not differ significantly over time 

(Figure 5.2 A). Both paw diameter and paw score showed trends of increase over time 

with arthritis (Figure 5.2 B, C respectively). However, peaks in both measurements were 

between days 30 and 40. 
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Figure 5.1 – Arthritis Incidence in Long Term mCIA. Graph represents percentage of 

animals with arthritis at each day following booster immunization on day 21.  Data 

represent one experiment where 8 DBA/1 mice were used.   
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Figure 5.2 - Long Term Arthritis Induction.  The graphs represent weight (A), paw 

diameter (B) and total paw score (C) from a long term arthritis experiment with 8 DBA/1 

mice.  
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5.3.2 Long Term Arthritis is not associated with Changes in Osteoblast and Osteoclast 

Activity in the Vasculature 

 

The expression of osteoblast transcription factors RUNX2 (Figure 5.3A), OSX (Figure 5.3B) and 

ATF4 (Figure 5.3C) were analysed in PVAT-intact aortic sections from non-immunised and long 

term arthritic mice. There was an observable but not significant increase for all transcription 

factors following arthritis; RUNX2 (2.55 ± 0.62 (N=4) vs. 5.17 ± 1.33 (N=8)), OSX (2.66 ± 1.78 

(N=4) vs. 5.33 ± 1.30 (N=8)), ATF4 (0.99 ± 0.34 vs. 2.76 ± 1.38 (N=8). 

The expression of osteoclastogenesis markers OPG (Figure 5.4A), RANK (Figure 5.4B) and 

RANKL (Figure 5.4C) were also analysed in these tissues. No significant change was seen 

in OPG expression (0.63 ± 0.23 (N=4) vs. 0.86 ± 0.23 (N=8) respectively). The picture was 

similar for RANK (1.09 ± 0.27 (N=4) vs. 1.22 ± 0.19 (N=8)) and RANKL (3.79 ± 1.93 (N=4) 

vs. 6.73 ± 1.81 (N=8)) expression. 

Compared to non-immunised controls, no distinct changes in the osteoclast markers 

TRAP (Figure 5.5A), Cathepsin K (Figure 5.5B) and Calcitonin Receptor (Figure 5.5C) were 

observed in long term arthritis.  TRAP (1.06 ± 0.12 (N=4) vs. 1.80 ± 0.31 (N=8)), Cathepsin 

K (1.19 ± 0.32 (N=4) vs. 1.46 ± 0.28 (N=8)) and Calcitonin Receptor (7.36 ± 3.71 (N=4) vs. 

13.55 ± 3.99 (N=8)).  

 

  



140 
 

Non Immunzied Long Term Arthritis
0

2

4

6

8
RUNX2

R
Q

 

Non Immunized Long Term Arthritis
0

2

4

6

8
OSX

R
Q

 

Non Immunzied Long Term Arthritis 
0

1

2

3

4

5
ATF4

R
Q

 

 

 

Figure 5.3 - Osteoblast Transcription Factors. Expression of osteoblast transcription 

factors RUNX2 (A), OSX (B) and ATF4 (C) were determined in non-immunized and long 

term arthritic PVAT-intact aorta.  
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Figure 5.4 – Osteoclastogenesis Factors. Expression of osteoclastogenesis factors OPG 

(A), RANK (B) and RANKL (C) were determined in non-immunized and long term arthritic 

PVAT-intact aorta. 
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Figure 5.5 – Osteoclast Markers. Expression of Osteoclast markers TRAP (A), Cathepsin 

K (B) and Calcitonin Receptor (C) were determined in non-immunized and long term 

arthritic PVAT-intact aorta.  
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5.3.3. Mechanisms for Initiating Mineralization are not Altered During Long Term 

Arthritis 

 

The expression of mineralization inhibitors MGP (Figure 5.6A) and OPN (Figure 5.6B) 
were also investigated. MGP remained constant during long term arthritis (1.79 ± 0.40 
(N=4) vs. 1.82 ± 0.28 (N=8)). Similarly, OPN also remained constant (2.80 ± 1.14 (N=4) 
vs. 7.31 ± 1.84 (N=8)). 
 
Expression of apoptosis markers; FAS (Figure 5.7A), p53 (Figure 5.7B) and Caspase 3 
(Figure 5.7C) were determined. No significant differences were observed; FAS ((1.12 
± 0.12 (N=4) vs. 0.96 ± 0.24 (N=8)), p53 (0.32 ± 0.23 (N=4) vs. 0.17 ± 0.11 (N=8)) and 
Caspase 3(0.80 ± 0.26 (N=4) vs. 1.32 ± 0.43 (N=8)). 
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Figure 5.6 - Mineralization Inhibitors. Expression of mineralization inhibitors; MGP (A) 

and OPN (B) were determined in non-immunized and long term arthritic PVAT-intact 

aorta. 
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Figure 5.7 - Apoptosis Markers. Expression of osteoclast markers FAS (A), p53 (B) and 

Caspase 3 (C) were determined in non-immunized, long term arthritic PVAT-intact aorta.  
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5.3.4 Age Associated Changes to the Vasculature   

 

When a comparison was made between parameters of the non-immunized controls 

discussed in Chapter 4 (approx. 12 weeks old) and those described in this long term 

chapter (approx. 18 weeks old) (ie. purely investigating the effect of ageing on normal 

mice) some interesting observations were uncovered (Figure 5.8). While expression of 

the majority of markers analysed remained unchanged, some increased with age. 

Expression of the osteoclast markers TRAP (3.71 ± 0.21 (N=11) vs. 5.24 ± 0.17 (N=4)) and 

Calcitonin Receptor (13.44 ± 0.43 (N=11) vs. 17.70 ± 0.98 (N=4)) and apoptosis marker 

Caspase 3 (8.11 ± 0.22 (N=11) vs. 9.67 ± 0.57 (N =4)) were significantly (p=0.0011, 0.0005 

and 0.0077 respectively) increased in the older mice. 
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Figure 5.8– Short and Long Term Non-Immunized Comparison. Changes in expression 

of factors TRAP (A), Calcitonin Receptor (B) and Caspase 3 (C) were determined in short 

and long term non-immunized control thoracic aorta and PVAT. **=p<0.01, 

***=p<0.001  
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5.3.5 TRAP Positive cell Number Does Not Change Following Long Term Arthritis in the 

Aorta or PVAT 

 

When the number of TRAP positive cells was counted in both the aorta (3.20 ± 1.28 (N=5) 

vs. 1.71 ± 0.29 (N=7), Figure 5.9A) and PVAT (6.80 ± 1.46 (N=5) vs. 5.28 ± 1.67 (N=7), 

Figure 5.9B) there were no significant differences between long term non immunized 

and arthritic mice. A further comparison between the short term model described in the 

previous chapter and the long term controls discussed here (Figure 5.9C) revealed that 

the number of TRAP positive cells was significantly (p=0.014) up regulated with age (0.50 

± 0.29 (N=4) vs. 3.75 ± 1.49 (N=4)). 
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Figure 5.9- TRAP Protein Expression Profile. TRAP expression was determined in the 

aorta (A) and PVAT (B) of non-immunized and long term arthritic mice. TRAP positive 

cells were compared for non-immunized controls from short and long term studies (C). 

Representative images (x40 magnification) represent aorta and PVAT of non-immunized 

(D) and arthritic (E) mice. Scale Bars represent 0.25µm. *=p<0.05. TRAP positive cells are 

red.     
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5.3.6 MGP Expression was not Altered Following Long Term Arthritis 

 

When the percentage of MGP protein expression was determined in the aorta 

(0.56±0.44 (N=4) vs. 16.21±6.24 (N=7)) and surrounding PVAT (16.10±7.32 (N=4) vs. 

9.66±1.58 (N=7)) there was no significant difference following onset of long term 

arthritis (Figure 5.10).  
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Figure 5.10- MGP Expression Profile. MGP expression was determined in the aorta (A) 

and PVAT (B) of non-immunized and long term arthritic mice. Representative images 

(x10 magnification) represent aorta and PVAT of non-immunized (C) long term arthritic 

mice (D) and isotype (E). Scale Bars represent 0.2µm. 
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5.3.7 Collagen is decreased in the Aortic Vessel Wall Following Long Term Arthritis 

 

Following long term arthritis there was a significant (p=0.0018) decrease in the aortic 

content of collagen in comparison to controls (45.50± 3.74% (N=8) vs 72.11± 4.84% 

(N=4)) (Figure 5.11).  

Elastin content in the aortic vessel wall did not change following long term arthritis 

(42.78 ± 4.25% (N=8) vs 49.44± 8.88% (N=4)) (Figure 5.12). However, it was also noted 

that the filaments of elastin in the long term arthritis aortas had numerous straightened 

repeats in comparison to the control aorta.  
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Figure 5.11- Collagen Content in the Aortic Vessel Wall. The percentage of collagen in 

the aorta was determined in non-immunized and long term arthritis aortae (A). 

Representative images (x10 magnification) show collagen staining in non-immunized (B) 

and severe arthritic aortae (C). Scale bars represent 0.2µm. **p=<0.01 
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Figure 5.12- Elastin Content in the Aortic Vessel Wall. The percentage of elastin in the 

aorta was determined in non-immunized and long term arthritis aortae (A). 

Representative images (X10, X40 magnification) show elastin staining in non-immunized 

(c) and severe arthritic aortae (D). Scale bars represent 0.2µm. Images are magnified for 

areas shown in red. 
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5.3.8 There is No Difference in the Constriction Response to 5HT between Control and Long 

Term Arthritis Animals. 

 

Vascular constriction responses to 5HT were measured in PVAT-intact and -denuded 

tissues from non-immunized control and long term arthritic mice. In non-immunised 

controls, a significantly (P=0.0029) higher maximal constriction response (Figure 5.13A) 

was observed in the presence of PVAT compared to PVAT-denuded tissues. The PVAT 

similarly (P=0.0001) altered the constriction responses in tissues from long term arthritic 

animals (Figure 5.13 B).  

Maximal constriction responses remained comparable between intact (Figure 5.13C, 

5.94 ± 0.44 mN (N=6) vs. 6.63 ± 0.34 mN (N=6)) and PVAT-denuded (Figure 5.13D 4.00 ± 

0.24 (N=6) vs. 4.16 ± 0.21 mN (N=6)) tissues from non-immunized and long term arthritic 

aorta respectively.  

There were no differences between half maximal constriction values in any of the 

comparisons. 
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Figure 5.13- Comparison of Constriction Response Curves in Isolated Aortic Rings from 

Non Immunized and Long Term Arthritic Mice. Constriction responses to 5-HT were 

determined for PVAT-intact and -denuded tissues from both non-immunized controls 

(A) and long term arthritic mice (B). The PVAT-intact (C) and -denuded (D) constriction 

responses for non-immunized controls and arthritic rings were also compared. 

**=p<0.01, ***=p<0.001  

  

B) A) 

C) D) 



154 
 

5.3.9 Long Term Arthritis Protocol Reduces Constriction Response Early in the Time Course 

 

Vascular constriction response to 5-HT was measured in PVAT-intact and -denuded 

tissues from non-immunized control and time matched arthritic animals (animals 

induced with the long term protocol for a short time period). PVAT had no impact on 

the maximal constriction response of non-immunized controls (Figure 5.14A). In time 

matched arthritic animals, a significantly (P=0.0095) higher maximal response (Figure 

5.14B) was observed in the presence of PVAT compared to PVAT-denuded tissues.  

Maximal constriction response was significantly (P=0.049 and P=0.018) higher in non-

immunized aortic rings compared to time matched arthritis aortic rings for both PVAT-

intact (5.413 ± 0.37 (N=5) vs. 4.334 ± 0.28 mN (N=5)) (Figure 5.14C) and PVAT-denuded 

aortic rings (4.349 ± 0.36 (N=4) vs. 3.123 ± 0.22 mN (N=5)) (Figure 5.14 D). 

There were no differences between half maximal constriction response values in any of 

the comparisons. 
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Figure 5.14- Comparison of Constriction Response Curves in Aortic Rings from Non-

Immunized and Time Matched Arthritis Mice. Constriction responses to 5-HT were 

determined for PVAT-intact and -denuded tissues from mice that were non-immunized 

controls (A) and time matched arthritis mice (B). The PVAT-intact (C) and denuded (D) 

constriction responses for non-immunized controls and arthritic rings were also 

compared *=p<0.05, **=p<0.01. 
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5.3.10 Collagen and Elastin are not Impacted in Time Matched Arthritis. 

 

The percentage of collagen in the aortic vessel wall remained constant (33.60 ± 0.50% 

(N=3) vs. 44.98 ± 8.11% (N=5)) (Figure 5.15). Elastin percentage also remained constant 

(63.60 ± 9.35% (N=3) vs. 50.16 ± 7.35% (N-5)) (Figure 5.16).  

 

Non Immunized Time Matched Arthritis
0

20

40

60
%

 C
o

ll
a
g

e
n

in

A
o

rt
ic

 V
e
s
s
e
l 

W
a
ll

 

 

 

Figure 5.15- Collagen Content in the Aortic Vessel Wall. The percentage of collagen in 

the aorta was determined in non-immunized and time matched arthritis aortae (A). 

Representative images (X10 Magnification) show collagen staining in non-immunized (c) 

and time matched arthritic aortae (D). Scale bars represent 0.2µm. 
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Figure 5.16- Elastin Content in the Aortic Vessel Wall. The percentage of elastin in the 

aorta was determined in non-immunized and time matched arthritis aortae (A). 

Representative images (X10 Magnification) show elastin staining in non-immunized (c) 

and time matched arthritic aortae (D). Scale bars represent 0.2µm. 
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5.4 Discussion 

 

The adapted mCIA protocol has not previously been studied. As such, the onset and 

severity of disease constitute important initial findings. As incidence reached 100% the 

adapted model is suggested as a potential refinement to the current gold standard 

model. However, total paw score in this model only reached a maximum of 8, whereas 

in that described previously in this thesis the arthritis severity was reaching 10. The 

adapted protocol therefore represents a model of inflammatory arthritis with more 

similarities to human RA given the extended time course. If this was to be used as a 

refinement protocol, then further work is required to determine collagen antibody titres 

and histological arthritis index to provide mechanistic understanding. 

Long term disease shows trends of increased gene expression of osteoblast transcription 

factors, osteoclastogenesis proteins and osteoclast markers. Importantly, protein levels 

themselves have not been measured in this system. Although gene expression is 

indicative of protein production, protein levels may or may not be impacted due to the 

changes observed in gene expression. In order to conclude these changes have altered 

protein expression, levels of these proteins would need to be determined by 

immunohistochemistry, western blot or flow cytometry. Despite reports of increased 

aortic common osteoblast transcription factors in the literature in vascular calcification, 

it is for the first time that increases in these factors have been associated with 

inflammatory arthritis. However, it is still unclear as to the cause and effect relationship 

between expression profiles of such bone-related transcription factors and calcification. 

For example, in models of chronic kidney disease it has been shown that vascular 

calcification is caused by both osteoblast-like differentiation of VSMCs (Demer and 

Tintut, 2008) and increased calcium and phosphate levels (Moe and Chen, 2008). 

Nevertheless, the increase seen in this study, however slight, is indicative of a 

progressively calcifying phenotype.  

A number of calcification mediators have been investigated in both early and late stage 

vascular disease. Specifically, the expression of RUNX2 and RANKL was found to be 

increased in aortic explants from patients with aortic stenosis and correlated with 

stenosis severity in later, advanced disease (Nagy et al, 2013). This suggests that the 

osteoblast and osteoclastogenesis factors may not become prominent until later in the 

disease process. Interestingly the same study demonstrated a relationship between 

TRAP expression and vascular disease. In plasma samples and explanted aortic valves, 

TRAP levels correlated with aortic stenosis and expression was increased in calcified 

regions of the aortic valve (Nagy et al, 2013). Following a multivariable analysis, TRAP 

expression was associated with stenosis severity in early disease stages, suggesting that 

it could be an early indicator of calcification in our model of arthritis. 

Mechanisms of vascular calcification in inflammatory arthritis are currently elusive. 

Chronic kidney disease (CKD) is routinely used as a pathological reference point to 

determine mechanisms that may be implicit for the development of vascular 

calcification and its associated morbidity and mortality (Paloian et al, 2016). CKD has 
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provided the insight that calcification can occur due to changes in the relationship 

between pro and anti-calcific factors. This is coupled with a number of knock out models, 

including MGP (Luo et al, 1997), OPG (Bucay et al, 1998), β-glucosidase (Spicer et al, 

1989) and carbonic anhydrase (Thornell et al, 1997) that demonstrate an increased 

susceptibility to calcification. However, this extensive list only serves to suggest the 

diversity and variety of possible mechanisms that are likely to be involved in vascular 

calcification. When we look at the findings of this chapter in relation to these models, it 

is surprising that MGP gene expression did not change in long term arthritis. Conversely, 

when the MGP protein levels were determined, although not significant, there was a 

clear increase during long term arthritis. Such an increase in MGP has previously been 

related to vascular calcification in CKD (Jono et al, 2006). Given that MGP acts as an 

inhibitor of vascular mineralization (Schurgers et al, 2008), this may well represent a 

protective mechanism in our model.  What we do not know is why there is more protein 

in the face of steady state gene expression, and indeed whether the increased protein 

is active.  While this observation supports the presence of mechanisms that could drive 

arterial stiffening and deposition of calcium in our model, further detailed 

investigations, beyond the scope of the current study, are required. 

The increase in OPN gene expression that we see in long term arthritis, although not 

significant, suggests it is also an important mediator in this model. Like MGP, OPN 

inhibits calcification but it also works to promote dissolution of calcification by physically 

blocking hydroxyapatite crystal growth (Steiz et al, 2002). The increase in this inhibitor 

suggests it as a further protective mechanism within the vessel wall. Indeed, it is likely 

that both MGP and OPN work in unison in inhibiting calcification. This is highlighted by 

the OPN-/-MGP-/- mouse having accelerated and enhanced vascular calcification when 

compared to the OPN+/+MGP-/- mouse (Speer et al, 2002). That an increased presence of 

OPN is associated with the up regulation of osteoclast formation and function (Lund et 

al, 2009), markers of which are elevated in these data described above, identifies it as a 

potential target for further in depth studies in the CVD related to arthritis.   

Interestingly, changes in expression profiles of TRAP, Calcitonin Receptor and Caspase 3 

were altered over time in the non-immunized controls. This was unexpected but does 

imply the importance of simply aging on the mouse vasculature. Increased TRAP and 

Calcitonin Receptor gene expression and TRAP protein levels suggest an increase in 

osteoclasts in aged animals. In normal physiology bone mass is reduced over time due 

to an excess of resorption that is not balanced by new bone formation (Chung et al, 

2014).  Moreover, it is likely that such age-associated changes are due to the generation 

of osteoclasts (Chung et al, 2014). The novel findings from the present studies suggest 

that this is not only the case in bone but also more systemically in the vasculature. Such 

a process would contribute to, and in part explain, the aged vascular phenotype and 

increased prevalence of vascular calcification seen in the aging population.  

Calcification is a pathological process and alters the arrangement and structure of the 

aortic vessel wall. Importantly, extracellular matrix components, specifically collagen 

and elastin, can become dysregulated and dysfunctional. For example, while elastin is 

one of the most stable proteins, it can be degraded by a number of enzymes known as 
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elastases. These are aggressive enzymes and are most abundant during aging and 

following disease onset. As a consequence, elastin fragmentation is a pathological 

hallmark of these processes (Baud et al, 2013). It has been suggested that such 

degradation of elastin filaments initiates the production of factors such as OPN and 

Alkaline Phosphatase (Persey and D’Haese, 2009). This is a potential explanation for the 

dysregulation of elastin filaments seen in long term mCIA (Figure 6.13). The normal 

wave-like appearance of elastin filaments is lost following long term arthritis and large 

repeats of straightened filaments are noted. This theory would also explain the trend of 

increase in OPN production and sheds some light as to why this inhibitor is up regulated 

opposed to MGP. Elastin filaments themselves are capable of driving calcification, due 

to them containing a number of calcium binding sites (Urry, 1971). In fact, elastin 

filaments have been shown in vitro to calcify in the absence of cells (Price et al, 2006). 

The literature also confirms that in fact the presence of calcified elastin fibres can drive 

osteoblast-like behaviour of VSMCs (Simionescu et al, 2005), suggesting a causative 

relationship between elastin deregulation and vascular calcification. The differentiation 

of VSMCs then produces increased levels of matrix metalloproteinase 2, a well-

recognised collagenase enzyme that degrades collagen within the aorta. Further work 

would be required to determine whether MMP-2 was the driving force behind 

decreased collagen content of the aortic vessel wall in the mCIA model. For example, 

zymography could be used to determine the levels of pro and active MMP-2 in aortic 

samples following collagen degradation.  

  

When constriction response curves were analysed for the long term arthritis model, 

major differences were observed compared to the short term model discussed in the 

previous chapters. Significantly it would appear that PVAT plays a protective role in long 

term disease (Figure 6.14) that is not evident in short term mCIA. This role is similar to 

that described previously in the arthritic DR3-/- studies (Chapter 3). The ability of PVAT 

to potentiate vasoconstriction has been described previously in metabolic syndrome 

where the PVAT is unable to reduce the vascular constriction response (Chang et al, 

2012). However, it is still a question for debate in this model whether the vasorelaxation 

impact of PVAT is dampened, or whether inflammation drives a positive vasoconstrictive 

phenotype within the PVAT. The production of adipokines, such as angiotensin II and 

leptin, by PVAT are also associated with vasoconstriction. These findings not only 

highlight that the role of PVAT is not as simple as first anticipated, but also how disease 

can cause changes in PVAT function in relation to aortic vessel constriction.  

 

Despite the altered role of PVAT described above, there was no difference between non 

immunized and long term disease constriction responses in fat-denuded tissues. This 

was surprising for two reasons: Firstly, vascular dysfunction is a prominent characteristic 

of short term “acute” disease. Secondly, long term disease is associated with changes in 

both collagen and elastin.  It is possible that the inflammation associated with long term 

arthritis is diminished and although changes to collagen and elastin, vascular 

dysfunction in the long term mCIA model may never exist. Conversely in the short term 
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model, inflammation and changes to structural proteins lead to vascular dysfunction. 

Only additional experiments would allow us to investigate this further and there are no 

other reports in the literature that would give us any clues. Further studies would 

include the characterisation of the inflammatory makeup of the aortic vessel wall during 

long term mCIA. 

It is evident that a big issue with the gold standard mCIA model is that it does not truly 

represent the recurring and remising RA disease seen in humans. The latter is 

characterised by flares and remissions that would be accompanied by reflective bouts 

of systemic inflammation. As such the human vasculature would consistently be 

subjected to periods of exposure to circulating inflammatory cells and mediators. 

Conversely, in the long term mCIA model there is no induction of inflammation after day 

21, meaning that the majority of mice in this cohort have gone 50 days without repeated 

inflammatory stimuli. To explore this issue further, the long term protocol was induced 

in a further group of mice but was time matched to the arthritis described in the 

previous chapters. This allowed us to determine the importance of time with arthritis as 

well as severity of disease. From figure 6.15 we can see that mCIA onset decreased the 

vascular constriction response in both PVAT-intact and -denuded blood vessels during 

the early disease time point but not during long term disease. Here we can see the 

importance of time in our model and it suggests that use of the mCIA model is 

problematic when looking at long term disease in relation to cardiovascular outcomes. 

However, it also emphasises how essential this model is when investigating the earliest, 

and probably most important, changes in vascular function following the onset of 

inflammatory arthritis.  

5.5 Conclusion 

 

The findings in this chapter have highlighted that vascular calcification is not driving 

vascular dysfunction seen in mCIA, regardless of the time with arthritis and has 

emphasised the importance of inflammation in this model. Vascular dysfunction seems 

reliant on the initial burst of systemic inflammation seen in the gold standard mCIA 

model and although osteoblast and osteoclasts are present in the vasculature they were 

not significantly up regulated in long term arthritis. Changes to collagen and elastin are 

likely to be associated with high levels of inflammation within the aortic vessel wall and 

thus are potentially contributing to irreversible long term vessel damage. However, 

more work is required to fully understand the activation of inflammatory pathways in 

the vessel wall and that contribute to the changes seen within the aorta and surrounding 

PVAT. Thus moving forward in this thesis the role of inflammasome complexes will be 

determined in relation to mCIA and contractile dysfunction. Activation of the 

infllammasome is associated with early inflammatory cells, such as macrophages, and 

thus is a potential driver for the early changes seen during mCIA. 
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Chapter 6 – The Role of AIM2 

Inflammasome Activation in Vascular 

Dysfunction during Inflammatory Arthritis 
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6.1 Introduction 

 

Inflammasomes are integral to the innate immune response, reacting to the presence 

of pathogens, dead cells and irritants. They function to activate the immune response 

and have key inflammatory roles including pyroptosis, a distinct type of programmed 

cell death (Mariathasan et al, 2004). Ultimately, protein oligomerization drives the 

activation of caspase-1, which in turn enhances cytokine maturation, specifically of 

Interleukin-1β (IL-1β) and Interleukin-18 (IL-18) (Martinon et al, 2002). In recent years 

inflammasomes have been widely studied and a number of different protein families are 

now known to be involved in their activation. The two main types are Nod-Like 

Receptors (NLRs) and Absent In Melanoma 2 (AIM2)-like receptors (Sharma et al, 2016). 

The work described in this chapter focuses on the role of the AIM2 inflammasome in 

both inflammatory arthritis and vascular function. AIM2 binds directly to double-

stranded DNA via its hematopoietic interferon-inducible nuclear (HIN) protein domain 

and in turn this action displaces the pyrin (PYD) protein domain preventing auto-

inhibition (Jin et al, 2012). The displacement of PYD allows recruitment of adaptor 

protein apoptosis-associated speck-like protein containing CARD (ASC) (Hornung et al, 

2009). A PYD-PYD interaction between AIM2 and ASC then drives nucleation of ASC and 

allows transformation of ASC into its prion form (Jin et al, 2013). Prion-like filaments of 

pro-caspase-1 then begin to form from the ASC filaments, activating caspase-1 (Lu et al, 

2014).  

Inappropriate sensing of host nucleic acids plays a significant role in the pathology 

associated with auto immune disease (Baccala et al, 2007). In inflammatory arthritis 

knocking out AIM2 has been shown to attenuate disease, both in terms of clinical and 

histological scores (Baum et al, 2015). Moreover, it is proposed that AIM2 is involved in 

the recognition of endogenous DNA in arthritis and as such is an important pattern 

recognition receptor in the disease (Jakobs et al, 2015). However, in this study AIM2 

deficiency did not seem to impact systemically, for example, it had no effect on anti-

citrillunated protein antibodies. This suggests that tissue destruction in inflammatory 

arthritis is governed locally and is not just a secondary outcome of increased systemic 

pro-inflammatory cytokines (Jakobs et al, 2015). The Authors suggest that ablation of 

AIM2 did not ameliorate all aspects of disease because of its lack of expression on non-

myeloid cells, which would include the vasculature. 

In contrast, a further study demonstrated that AIM2 was not only present in healthy 

vascular cells, but also found within pathologic macrovascular tissue (Hakimi et al, 2014). 

That both pro-inflammatory cytokines TNF-α and IFN-ϒ and double stranded DNA were 

found co-localised with AIM2, and identified as potential triggers for its expression, 

indicate a potential role for this protein in CVD. The present study will be the first to 

investigate this action of AIM2 in mCIA.  
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The study of Hakimi and colleagues was the first of its kind to examine the role of AIM2 

in vascular function. A further study has also indicated that AIM2 plays a role in 

macrophage DNA sensing (Burckstummer et al, 2009). Other studies show that by 

knocking out AIM2 using short interfering RNAs that both inflammasome and 

pyroptosome activation are reduced (Fernandes-Alnemri et al, 2007). Given the number 

of macrophages is increased in the aorta during mCIA suggests AIM2 could be involved 

in the increased inflammatory state within the vessel wall.  

Recent studies have been carried out using the now commercially available novel 

inhibitor of the inflammasome complexes, cytokine release inhibitory drug 3 (CRID3) 

(Coll et al, 2015; Ozaki et al, 2015). This drug has been shown to effectively block the 

inflammasome in autoimmune diseases such as, encephalomyelitis, an animal model of 

multiple sclerosis. In this model IL-1β production was reduced following dosing of CRID3 

at 10mg/kg on day 0 and every other day post induction (Coll et al, 2015). The successful 

use of this treatment in inflammatory conditions and the implication of AIM2 in CVD 

suggest it as a potential therapeutic for our model. 

The experiments in this chapter were used to determine the relationship between 

inflammatory arthritis and AIM2 expression within the vasculature. The expression of 

AIM2 and its downstream inflammasome mediators will be assessed in both the thoracic 

aorta and the surrounding PVAT. Protein levels of AIM2 and Caspase-1 were also 

determined via immunohistochemistry. Finally, the therapeutic potential of AIM2 

inhibition, using CRID3 was investigated.  This chapter details methodology, results and 

discussion under the following objectives and hypothesis: 

Hypothesis: AIM2 inflammasome activation drives the vascular dysfunction associated 

with mCIA. 

 

 To determine the presence of AIM2 and its downstream inflammasome 

mediators; Caspase-1, IL-1 and IL-18, in the healthy and diseased mCIA 

vasculature. 

 To investigate the therapeutic potential of AIM2 inhibition in terms of both 

arthritis severity and the associated vascular dysfunction. 
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6.2 Methods 

New methods relevant to the work discussed in this chapter are described below, 
previous methods detailed in Chapter 2 and 3 also apply here, specifically mCIA 
induction, Immunohistochemistry and RT-qPCR. 

 

6.2.1 Inflammasome qPCR primer sequences 

 

Table 6.1- Primer Sequences for Inflammsome Mediators 

Name Forward Sequence Reverse Sequence 

AIM2 ACAAAGTGCGAGGAAGGAGA TCACTCCACACTTTTCATGTCA 

Caspase-1 ACGCCATGGCTGACAAGATCCTG GGTCCCGTGCCTTGTCCATAGC 

IL1 CAACCAACAAGTGATATTCTCCAT GGGTGTGCCGTCTTTCATTA 

IL18 GCCATGTCAGAAGACTTGCGT GTACAGTGAAGTCGGCCAAAGTT 
 

6.2.2. PVAT Isolation 

 

In the same way as previously described (section 4.2.2) for thoracic aorta and PVAT 

samples, the PVAT was isolated from non-immunized and arthritic mice and stored for 

later qPCR analysis. 

6.2.3 Immunohistochemistry Antibodies  

 

Table 6.2- Inflammasome Antibody Suppliers 

Antibody Supplier 

AIM2 Abcam (ab93015) 

Caspase-1 Abcam (ab1872) 

6.2.4 CRID3 Preparation 

 

5mg of CRID3 was dissolved in 1ml of dH2O. CRID3 was required at 10mg/kg. 400µl of 

CRID3 was dissolved in 600µl of PBS. 100µl was given to each mouse.  

 

6.2.5 AIM2 and Caspase 1 Immunohistochemistry 

Immunohistochemsitry was carried out in order to determine the presence and location 

of AIM2 and Caspase-1 within the thoracic aorta and surrounding PVAT. General 

Immunohistochemistry protocols were used as described previously in Section 2.2.6. 

Specific Antibodies (Table 6.1), concentrations and reagents are described below in 

Table 6.2. 
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Table 6.3 – Inflammasome Specific Antibody Reagents and Concentrations 

 

6.2.6 CRID3 mCIA Therapy  

As previously described in Chapter 2, mCIA was induced following the standard protocol. 

Briefly, DBA/1 mice were immunized using the intra-dermal route with a total of 100 µl 

of immunization emulsion (Section 2.2.1.1). Immunizations of 50 µl were administered 

at multiple adjacent sites right laterally at the base of the tail. This was termed day 0. 

Following intradermal injections each treatment group mouse was given 100µl of 

10mg/kg CRID3 (see section 6.2.1.2) via intraperitoneal (I.P.) injection. Control mice 

were given 100µl I.P. of PBS while non-immunized animals received no I.P. injection.  

For the following 20 days health status was monitored. At day 20 animals were given 

Temgesic in their drinking water, which was subsequently changed on a daily basis. On 

day 21 all immunized mice were given an identical booster intradermal injection as 

administered on day 0. Mice in treatment and control groups also received CRID3 or PBS 

via I.P. injection on day 21 and every other day until experimental end point. 

Concurrently, from day 21 mice were weighed daily, hind paws were measured and paw 

scores manually scored.  

6.2.7. Statistics 

 

Statistics used in this chapter are the same as those described in Section 2.2.7.3. RT-

qPCR data are compared by Student's t-test. Immunohistochemistry is analysed by one-

way ANOVA with a Bon-Ferroni post-test. RMAX and EC50 of vascular constriction 

response curves are almost analysed using Student's t-test. Significance is determined 

as p<0.05.  

  

Reagent AIM2 Caspase-1 

Wash Buffer TBS Tween TBS Tween 

Serum Block Goat Goat 

Primary Antibody Rabbit Anti Mouse AIM2 
(5ug/ml) 

Rabbit Anti Mouse 
Caspase-1  

(0.39ug/ml) 

Isotype Rabbit IgG 
(5ug/ml) 

Rabbit IgG  
(0.39ug/ml) 

Secondary Antibody Goat Anti Rabbit IgG 
(1µg/ml) 

Goat Anti Rabbit IgG 
(1µg/ml) 
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6.3 Results 

6.3.1 Onset of mCIA is associated with Changes in AIM2 Inflammasome Mediators within 

PVAT-Intact Aorta 

 

Gene expression of AIM2 (Figure 6.1A) within the PVAT-intact aorta and PVAT showed a 

fivefold increase, approaching significance (p=0.07) following arthritis onset (1.98 ± 0.97 

(N=2) vs. 9.67 ± 2.11 (N=3)). Caspase-1 (Figure 6.1B) gene expression also increased 

threefold, however, not significantly (3.37 ± 2.37 (N=2) vs. 8.64 ± 1.73 (N=3)). IL-1 (Figure 

6.1C) gene expression was significantly (p=0.017) increased following onset of mild 

arthritis (1.43 ± 0.43 (N=2) vs. 4.76 ± 0.48 (N=3)). IL-18 (Figure 6.1D) gene expression 

remained constant (1.06 ± 0.09 (N=2) vs. 1.22 ± 0.49 (N=3)).  
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Figure 6.1- Inflammasome Mediators during mCIA. Expression of AIM2 (A), Caspase-1 

(B), IL-1 (C) and IL-18 (D) were determined in non-immunized and mildly arthritic PVAT-

intact aorta. *=p<0.05.  
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6.3.2 PVAT Expression of AIM2 Inflammasome Mediators.   

 

In PVAT alone, gene expression of AIM2 (Figure 6.2A) was significantly (p=0.04) 

decreased during mCIA (1.09 ± 0.13 (N=2) vs. 0.37 ± 0.17 (N=2)). Caspase-1 (Figure 6.2B) 

remained constant during (0.86 ± 0.14 (N=2) vs. 0.61 ± 0.10 (N=2)), IL-1 (Figure 6.2C) 

expression significantly (p=0.01) increased (1.04 ± 0.04 (N=2) vs. 4.05 ± 0.30 (N=2)) and 

IL-18 (Figure 6.2D) remained constant (0.79 ± 0.21 (N=2) vs. 0.61 ± 0.15 (N=2)).  
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Figure 6.2- Inflammsome Markers in the PVAT alone during mCIA. Expression of AIM2 

(A), Caspase-1 (B), IL-1 (C) and IL-18 (D) were determined in non-immunized and mildly 

arthritic PVAT samples. *=p<0.05.  
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6.3.3 The Shift in Expression Profiles during mCIA 

 

The expression profiles of inflammasome mediators changes between both healthy and 

diseased animals and tissue location (Table 6.3). Gene expression for each mediator was 

determined for the aorta alone by deducting PVAT only RQ values from PVAT-intact 

aortic values. Values for aorta and PVAT alone were then determined as percentages of 

the total expression value shown in the PVAT-intact aortic samples. These values provide 

an estimation of gene expression within the aorta in order to allow comparisons to be 

made. 

Firstly, AIM2 gene expression is equal from both the aorta and the PVAT in healthy 

animals (50 vs. 50%). However, in disease, firstly the expression increases fivefold and 

secondly the majority of the AIM2 gene expression comes directly from the aorta, with 

very little coming from the PVAT (90 vs. 10%). In healthy animals the expression profile 

of Caspase-1 differs to that of AIM2, with a higher percentage of gene expression being 

present in the aorta when compared to the PVAT (74 vs. 26%). In disease expression of 

caspase-1 doubles and the majority of expression, similarly to AIM2 is from the aorta 

(93 vs. 7%). The opposite trend is seen for IL-1 expression with the PVAT providing the 

majority of the expression in healthy animals (27 vs. 73%). In disease there is a threefold 

increase in expression however the majority of expression remains within the PVAT (15 

vs. 85%). In healthy animals IL-18 gene expression profile is similar to that of IL-1 with 

the majority coming from the PVAT (25 vs. 75%). Although expression remains constant 

during the onset of mCIA the expression profiles shift, with equal IL-18 expression from 

both the aorta and PVAT (50 vs. 50%).  

 

Table 6.4- Comparison of Gene Expression Profiles between non-immunized and mildly 

arthritic animals. 

 PVAT-Intact Aorta (RQ) PVAT Alone  (RQ) 

Non 
Immunized 

Mild Arthritis Non 
Immunized 

Mild Arthritis 

AIM2 1.97 9.67 1.09 0.37 

Caspase-1 3.37 8.64 0.86 0.61 

IL-1 1.43 4.76 1.04 4.05 

IL-18 1.06 1.22 0.79 0.61 

 Expression from Aorta % Expression from PVAT % 

Non 
Immunized 

Mild Arthritis Non 
Immunized 

Mild Arthritis 

AIM2 45% 96% 55% 4% 

Caspase-1 74% 93% 26% 7% 

IL-1 27% 15% 73% 85% 

IL-18 25% 50% 75% 50% 
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6.3.4 AIM2 Protein Remains Constant in Arthritis. 

 

Immunohistochemistry identified AIM2 in the aorta and PVAT of non-immunized, mild 

and severely arthritic animals (Figure 6.3). There was no change in the aorta (A) (7.13 ± 

0.87 (N=4) vs. 10.26 ± 4.01 (N=4) vs. 5.74 ± 1.41% (N=4) or PVAT (B) (10.42 ± 1.84 vs. 

15.10 ± 3.20 vs. 13.81 ± 5.21%). 
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Figure 6.3 – AIM2 Protein Identification. AIM2 protein was identified in the aortic vessel 

wall (A) and surrounding PVAT (B). Representative images (x20 magnification) in non-

immunized controls (C), mild arthritis (D) severe arthritis (E) and isotype (F) thoracic 

aorta and PVAT samples. Scale bars represent 0.2µm.   
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6.3.5 Caspase-1 Protein Remains Constant in Arthritis. 

 

Caspase 1 protein remained constant in the aorta (7.57 ± 3.1 (N=4) vs. 9.43 ± 3.0 (N=4) vs. 

4.56 ± 2.1% (N=3)) and in the PVAT (22.61 ± 11.6 vs. 23.58 ± 4.7 vs. 37.07 ± 4.2%) 

between non-immunized, mild and severely arthritic animals. 
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Figure 6.4 – Caspase-1 Protein Identification. Caspase-1 protein was identified in the 

aortic vessel wall (A) and surrounding PVAT (B). Representative images (x20 

magnification) in non-immunized controls (C), Mild arthritis (D) severe arthritis (E) and 

isotype (F) thoracic aorta and PVAT samples. Scale bars represent 0.2µm. 
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6.3.6 CRID3 Treatment Does Not Reduce mCIA Onset. 

 

Onset of mCIA was similar in both PBS and CRID3 treated groups, with 100% incidence 

of arthritis being reached by day 26 in both groups (Figure 6.5A). Animals from both 

groups lost weight during the course of mCIA (Figure 6.5B) and had comparable total 

paw scores throughout the experimental time course (Figure 6.5C). The CRID3 

treatment group showed significantly (P=0.03) increased paw diameter over the time 

course with arthritis in comparison to the PBS treated group (Figure 6.5Dz).  
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Figure 6.5- Arthritis Induction in PBS and CRID3 Treated DBA/1 Mice. mCIA was 

induced in 100% of PBS (N=8) and CRID3 (N=8) treated mice (A). Weight (B), Total Paw 

Score (C) and Paw Diameter (D) were measured over a 32-day time course. *=p<0.05. 
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6.3.7 CRID3 Reduces Vascular Dysfunction during mCIA.  

 

The vascular constriction response was analysed in PVAT intact and PVAT denuded 

vessels from non-immunized, PBS and CRID3 treated animals, (Figure 6.6). In non-

immunized control animals (Figure 6.6 (A)) the presence of PVAT significantly (p=0.02) 

decreased the maximal constriction response in comparison to the PVAT denuded 

constriction response (4.96 ± 0.45 (N=4) vs. 6.59 ± 0.26 mN (N=4)). However, the 

presence of PVAT did not alter the half maximal constriction response in this group (-

6.82 ± 0.27 vs. -7.13 ± 0.12mN). PVAT had no impact on maximal constriction (Figure 6.6 

(B)) (3.54 ± 0.21 (N=4) vs. 3.21 ± 0.22mN (N=4)) or half maximal constriction responses 

(-6.28 ± 0.13 vs. -6.77 ± 0.18) in PBS treated animals. However, in CRID3 treated animals 

(Figure 6.6 (C)) PVAT significantly (p=0.004) reduced the maximal constriction response 

(3.81 ± 0.17 (N=4) vs. 4.88 ± 0.16mN (N=4)) and (p=0.001) the half maximal constriction 

response (-6.29 ± 0.10 vs. -7.10 ± 0.10mN), dextrally shifting the concentration response 

curve. 

When the PVAT-denuded constriction responses were compared for non-immunized, 

PBS treated and CRID3 treated animals, interesting observations were made (Figure 6.7 

(A)). While the maximal constriction response was significantly (P<0.001) reduced in 

both the PBS and CRID3 treated groups compared to non-immunized controls, the CRID3 

treatment group was significantly (p<0.01) higher than the PBS treated group. Half 

maximal constriction responses are comparable between the three groups.   

When PVAT intact constriction responses were compared between the three groups 

(Figure 6.7 (B)), there was little change in either half maximal constriction or maximal 

constriction responses.  
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Figure 6.6- The Impact of PVAT on Constriction Response Curves. Constriction 

responses to 5HT were determined in PVAT intact and PVAT denuded aortic rings for 

non-immunized (A), PBS treated (B) and CRID3 treated (C) animals. *=p<0.05, 

**=p<0.01. 
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Figure 6.7- The Impact of Treatment on Constriction Response Curves. Constriction 

responses to 5HT were determined in PVAT denuded (A) and PVAT intact (B) aortic rings 

for non-immunized, PBS treated and CRID3 treated animals. **=p<0.01, ***=p<0.001. 
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6.4 Discussion 

 

Inflammasome mediators, AIM2, Caspase-1 and IL-1 were all increased in the aorta and 

PVAT of mildly arthritic mice. As a pilot study, used to determine the presence of AIM2 

in the aorta and PVAT, the N numbers here were low, drastically decreasing the power 

of the statistical comparisons. Nevertheless, this is the first report showing AIM2 to be 

increased in the aorta during inflammatory arthritis. Previous studies have shown AIM2 

is present in VSMCs during atherosclerosis and that AIM2 activation is inducible by 

inflammatory factors (Hakimi et al, 2013). As such there is great potential for AIM2 to 

be activated and subsequently contribute to the vascular dysfunction seen in the mCIA 

model  

These RT-qPCR data show that when comparing healthy and diseased tissues, gene 

expression of AIM2 and its downstream mediators is different in the two situations. 

Caspase-1, IL-1 and IL-18 are shifted between the aorta itself and the surrounding PVAT. 

Both AIM2 and Caspase-1 gene expression increase following onset of mCIA, the 

location of gene expression also changes. In healthy animals 45% of AIM2 and 74% of 

Caspase-1 expression arises from the aorta. Following disease onset the aorta produces 

over 90% of both AIM2 and Caspase-1 expression. This suggests that the trigger for AIM2 

inflammasome activation is mainly focussed within the aortic vessel wall itself. Of course 

the aorta and PVAT are in close proximity and work in unison to maintain vascular 

function. It is suggested that activation occurs primarily in the aorta due to its exposure 

to circulating factors capable of AIM2 activation. The importance of interplay between 

the aorta and PVAT has previously been discussed, these results add to the findings that 

both aorta and PVAT play a role in vascular constriction response and changes to either 

region may lead to dysfunction. 

The increased gene expression of AIM2 and Caspase-1 in mild disease shows a similar 

trend to that of macrophage infiltration into the aortic vessel wall during mCIA described 

in Chapter 2. Many studies have now shown that AIM2 is a double stranded DNA sensor 

present in macrophages (Burckstummer et al, 2009; Fernandes-Alnemri et al, 2009; 

Hornung et al, 2009). Data in this thesis shows that both macrophages and AIM2 are up 

regulated specifically in the aortic region of mCIA mice. As these mice have vascular 

dysfunction it is likely that AIM2 activation in macrophages is the mechanism driving the 

dysfunction. Given that AIM2 is an IFN inducible factor (Choubey et al, 2008) and IFN-ϒ 

is associated with inflammatory arthritis, it is possible that this cytokine is involved in 

the increased AIM2 gene expression. It is also known that increased IFN-ϒ production 

alone can result in the development of systemic auto-immunity, suggesting its 

importance in driving inflammatory diseases such as RA. Therefore, there is significant 

potential for IFN-ϒ to trigger activation of AIM2 within macrophages in the aorta and 

drive vascular dysfunction.  Further studies are required to prove this. 

The use of diarysulfonylurea-containing compounds, known as cytokine release 

inhibitory drugs (CRID), inhibits the post translational processing of IL-1β (Baldwin et al, 

2015). More specifically CP-456,773 (CRID3) blocks the AIM2 inflammasome pathway in 



180 
 

vitro (Coll and O’Neil, 2013). Interestingly CRID3 was shown to inhibit the production of 

IL-1β by stimulated bone marrow derived macrophages and the processing of pro-

caspase-1 and pro-IL-1 into their active forms. However, in the present study CRID3 

failed to prevent the inflammatory progression of mCIA, which goes against what we 

expected given the previous literature on this compound. The question remains as to 

why inhibiting the AIM2 inflammasome did not impact on arthritis in our model. 

In previous studies CRID3 was found to have no impact on the ability of macrophages to 

produce TNF-α (Perregaux et al, 2001; Laliberte et al, 2003). This cytokine is considered 

to be pivotal in RA pathology, correlating with the number of bone erosions and extent 

of inflammation (Husby et al, 1988), and is a significant therapeutic target in human 

disease (Fox et al, 2000). It is therefore logical to conclude that if CRID3 is not capable 

of reducing TNF-α production; it may not be a surprise that arthritis onset and 

progression was not altered in the treatment group. 

As described above, CRID3 has also been shown to reduce IL-1β production in a model 

of arthritis (Coll et al, 2015). As with TNF-α, IL-1β is a pivotal cytokine in both the onset 

and progression of inflammatory arthritis (Finnegan and Doodes, 2008). Indeed IL-1 

blockade has been used as a potential therapeutic strategy in human disease. For 

example a recombinant form of the IL-1 receptor was somewhat effective in systemic 

onset juvenile idiopathic arthritis, although it required administration by daily injection 

(Correll and Binstadt, 2013). This would suggest that inhibition of IL-1 in this way has 

very short term effects (Burger et al, 2006). This could potentially explain why blocking 

IL-1 activation by CRID3 every other day does not impact on arthritis onset in our model. 

Surprisingly, although there was no overall impact on arthritis onset in the CRID3 treated 

group, increased paw swelling over time was observed. Explanations for this rather 

spurious affect can only be postulated. It is possible that CRID3 inhibition of Caspase-1 

activation prevents the macrophage from carrying out pryoptosis. Lack of macrophage 

driven cell death and thus accumulation of macrophages is likely to occur in the diseased 

joints as there is no clearing mechanism.  The accumulation of dead or dying cells 

therefore will drive a further inflammatory response, attracting more inflammatory cells 

to the region.   

For the first time this chapter describes the impact of blocking the downstream 

mediators of the AIM2 inflammasome prevented decreased vascular constriction 

response in comparison to PBS treated controls. However, this is not the first time in 

which the inflammasome has been suggested as the potential candidate driving both 

vascular injury and atherosclerosis. Previous studies show downstream mediators of 

AIM2 are present at the site of vascular injury and are involved in the early inflammatory 

response following injury (Usui, 2012). Atherosclerosis has also previously been 

associated with inflammasome activation. Many studies have shown that IL-1β is a pro-

atherogenic cytokine and have suggested that the infammasome accelerates 

atherosclerosis (Kirii et al, 2003; Tedgui and Mallat, 2006). In terms of inflammatory 

arthritis this is the first time the inflammasome has been related to vascular dysfunction 

and inhibition of AIM2 improves vascular function. This is an exciting prospect for RA 
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patients who are twice as likely as the general population to suffer a CV event. Further 

work would be required to optimise dosing regime and optimal drug concentration.  

 

6.5 Conclusion 

 

CRID3 treatment shows potential to work as a successful therapeutic in the treatment 

of vascular dysfunction. Further work is required in order to determine firstly an 

appropriate dose and secondly the specific underlying mechanisms by which CRID3 

works to alter vascular constriction responses. A question for the future would be 

whether blocking Caspase-1 and IL-1 maturation with CRID3 (or similar) could be used 

in combination with IL-6 or TNF inhibitors currently used to treat inflammatory arthritis. 

It would be expected that this poly-therapy could successfully treat inflammatory 

arthritis, whilst protecting the vascular system from dysfunction.  
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Prior to the work carried out in this thesis, it was known that mCIA was characterised by 

aortic contractile dysfunction (Reynolds et al, 2012). It was suggested that this 

dysfunction was associated with increased MMP-9 levels, however, the source of the 

latter and the inflammatory state of the vessel was unknown. This thesis has further 

characterised the aortic vessel wall and closely associated PVAT with regard to 

contractile function and inflammatory, structural and calcification mediators. As such 

inflammatory cells were found to be increased within both the aorta and surrounding 

PVAT, suggesting a global impact of systemic inflammation associated with 

inflammatory arthritis. In particular F4/80+ macrophages were identified as the 

increased cellular population, the first time such an observation has been associated 

with the mCIA vasculature. Numerous studies have identified a role for macrophages in 

the progression of vascular disease (Frantz et al, 2014; Shirai et al, 2015), key features 

being the versatility and plasticity of these immune cells. At present we can only 

speculate as to the roles of macrophages in arthritis-associated vascular dysfunction. 

Further functional studies could be carried out to determine the specific types of 

macrophages increased in the aorta and the roles they play. For example, it is known 

that there are many types of macrophages, including both pro and anti-inflammatory 

and classified as M1 or M2 macrophages respectively. M1 macrophages inhibit cell 

proliferation and cause tissue damage whilst M2 macrophages promote cell 

proliferation and tissue repair (Mills, 2012). It is key in future studies to investigate the 

impact of the specific macrophage subset that is increasing in number since their 

potential role is highly variable dependent on their type. This for example could include 

examining M1 macrophage driven nitric oxide production or M2 macrophage mediated 

ornithine production (Mills, 2012).  

The importance of increased macrophage numbers within the mCIA vasculature is 

emphasised by it being one of the earliest changes in this tissue. Therefore, it is a 

potential key identifying factor that could be used in the RA patient cohort to determine 

early indicators of vascular dysfunction. While this is obviously very difficult, in order for 

it to be beneficial, techniques and/or probes would need to be developed to identify 

macrophages in situ in the wall of the aorta, or indeed other vascular beds. A potential 

methodology would be to radiolabel a compound/antibody that has high specificity for 

F4/80, so that when injected into the patient, together with novel imaging technology, 

macrophages could be identified. Recent real time imaging platforms have been 

identified in order to measure macrophage phagocytosis (Kapellos et al, 2016). This 

technique combines pH-dependent dye particle labelling, along with the acquisition of 

images in real time and operator independent image analysis. In order for this to be 

successful it would be imperative for it to be applied as close to RA diagnosis as possible, 

thus providing the patient with the earliest opportunity to begin preventative measures 

to reduce the risk of CV outcomes.  

Macrophage expression was also associated with increased DR3 expression and 

increased MMP-9 within the PVAT specifically. Macrophages and DR3 have previously 

been linked in vascular disease (McLaren et al, 2010). This study suggests the association 

between the two is not unique to atherosclerosis, but is important in inflammation in 

general. Data in this thesis has shown for the first time that DR3 ablation reduces both 
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onset and severity of mCIA. As such this supports data shown in the AIA model of 

arthritis (Bull et al, 2008) and together these studies highlight a critical role for DR3 in 

the pathogenesis of joint damage during inflammatory arthritis.  

Initially the findings from DR3-/- studies suggested that DR3 ablation was protective 

against arthritic disease. However, when vascular function was determined in these 

animals, constriction responses were further dysfunctional. This suggested that DR3 was 

protective in maintaining a normal level of vascular constriction. Whether RA-associated 

CVD is coupled to decreased expression of DR3 within the human vasculature is 

unknown.  To throw light on this question it would be possible to determine DR3 levels 

in RA patient blood samples by either ELISA or flow cytometry and correlate these two 

measures of vascular function. While DR3 has previously been associated with 

inflammatory disease protection in the ulcerative colitis cohort (Gomez-Garcia et al, 

2007), the studies presented here are the first to target its role in the vascular 

constriction response. In doing so they have provided a conundrum in that DR3 ablation 

is beneficial in mCIA prevention, and would likely impact human RA similarly, however 

co-morbidities were exacerbated. Further studies would be required to determine 

whether the benefit to the joint was substantial enough to outweigh the potential CVD 

risks. One way in which this could be investigated would be to specifically target DR3 

ablation to the joint. This would demonstrate if local inhibition of the target pathway 

had a different impact on total pathology in comparison to systemic inhibition. 

It was hypothesised in this thesis that the onset of vascular calcification was responsible 

for the contractile dysfunction seen in mCIA. However, studies in animals with short 

term mCIA showed that calcification was not initiated, as measured by a number of 

primary calcification markers. Nevertheless, the studies did suggest the presence of 

osteoblast transcription markers, osteoclastogenesis markers and TRAP positive cells. 

Importantly these cells have not previously been identified within the aorta during mCIA 

and their presence alone highlights that calcification has the potential to occur in this 

tissue. That fact that calcification was not demonstrated is most likely due to the very 

early window in disease through which our snapshot on this process was taken. As 

emphasised throughout this thesis, RA is a long term condition that tends to get worse 

with time, transitioning from simple flu-like symptoms to a severely debilitating disease 

of the joints. However, the early time point provided by the mCIA model represents a 

time when changes are beginning in the aortic vessel, potentially allowing therapeutics 

to be developed for early intervention and slowing progression of vascular changes in 

arthritic patients. If time had permitted I would have determined the protein levels of 

all potential calcification markers and mediators. This is important as gene expression 

may change independently of protein levels.  Although gene expression profiles will give 

some idea of the effect disease has on message production, it does not determine 

whether the protein has been made or activated. For enzymes such as TRAP, enzymatic 

analysis assays could be carried out in order to determine activity. To determine activity 

of such proteins as osteoblast transcription factors, the differentiation of VSMC could 

be investigated. 
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Calcification studies provided the basis for examining the impact of longer term arthritis 

on this process within the thoracic aorta. Although little statistical significance was seen 

in the expression of key mineralization mediators, important data came to light 

suggesting the impact of aging on calcification. Most interestingly expression of 

osteoclast mediators; TRAP and Calcitonin Receptor were significantly increased in aged 

control animals. In humans, arteries calcify with age and this process is often accelerated 

by vascular pathologies, such as atherosclerosis (Kieffer et al, 2000). Data presented 

here suggests that the aging mouse is indeed beginning to show signs of calcification. 

The long term mCIA model provided a reduced insult to the animals and further 

lenghtier modifications to the gold standard mCIA model are like to throw more light on 

this process. Currently due to severity limits in the mCIA protocol this cannot be carried 

out. However, these described data allow conclusions to be drawn, in particular that 

calcification in short or long term arthritis does not drive the observed contractile 

dysfunction. Rather, the latter would seem to be driven by increases in inflammatory 

pathways and/or a consequence of early changes in structural proteins such as collagen 

and elastin. It would be interesting to induce arthritis in aged mice and determine 

whether the aged vascular phenotype per se is a risk factor for CVD. In reality the long 

term model requires detailed characterisation given the change in arthritis induction 

protocol, particularly with regard to antibody production, inflammatory mediators, and 

impact at both the joint and systemically. It is imperative to determine whether 

dysfunction was not seen in this model due to lower systemic impact before it can be 

used as a successful refinement to the current mCIA protocol.  

Changes to the structural proteins collagen and elastin are apparent in the thoracic aorta 

during mCIA. Both suffer some sort of dysregulation, however, the structure of the 

elastin filaments themselves appear to be the most impacted. The usual arrangement 

of elastin involves a number of repeated wave-like filaments. However, during mCIA the 

elastin filaments themselves appear to be straightened. With progressing arthritis 

severity, the number of straightened repeated filament regions appears to be increased. 

However, in order to characterise these straightened regions a computer algorithm 

would be required that could specifically identify straight lines amongst wavy lines. This 

would provide a measure for elastin dysfunction within the thoracic vessel wall. If a 

numerical value could be given to the dysfunction it could be correlated with arthritis 

severity to analyse this dysfunction and throw light on important correlations.  

The inflammasome complexes have been linked previously with many inflammatory 

conditions. However, their role in the progression of arthritis and its prevention has not 

been investigated in detail. While the AIM2 inflammasome has been associated with 

both RA (Jakobs et al, 2015) and CVD (Garg, 2011) independently, the underlying 

mechanisms contecting the two remain elusive. Our studies show interesting 

observations with regard to the AIM2 pathway during mCIA, and suggest that in some 

way this inflammasome plays a role in the progression of inflammatory arthritis. 

However, when AIM2 was inhibited, an effect on either arthritis progression or severity 

was absent, in fact animals in the AIM2 treatment group showed an increase in paw 

swelling in comparison to non-treated animals. This was an unexpected finding and 

there are a number of potential reasons that may explain this observation. For example, 
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it could be that swelling is protective, in terms of the inflammatory response and in the 

clearing of pathogens. Moreover, there could be an association between AIM2 and 

macrophage cell death, which if prevented could escalate the inflammatory response.  

A “hyper” activated state could recruit further inflammatory cells to the region where 

they are not necessarily required. Further in depth studies would be required to 

determine the cause of this swelling. This would require assessing joints for arthritis 

index as shown in the earlier chapters of this thesis (Chapter 3), in which the actual 

severity of arthritis is determined in terms of bone and cartilage destruction, 

inflammatory infiltrate and synovial hyperplasia.  F4/80 staining could also be carried 

out in order to determine whether macrophage numbers are increased within the joint. 

Lastly, ex vivo studies could look at the impact of AIM2 inhibition on macrophage 

migration and whether the latter in increased or prevented.  

Excitingly, blocking AIM2 improved vascular constriction response in comparison to non-

treated animals. This confirmed the involvement of the AIM2 inflammasome within the 

vascular constriction response, identifying it as a potential target in the treatment of RA 

associated CVD. That the constriction response was not restored to the level of non-

immunized controls suggests that the dose of CRID3 may not be optimal. In order to 

confirm if this is the case, RT-qPCR and complimentary immunohistochemistry is 

required to determine levels of AIM2 and its downstream mediators in the thoracic 

aortas of treated and non-treated animals. This will give us a much better idea of the 

correct CRID3 dose to use. The impact of AIM2 blockade on the structural proteins has 

not currently been investigated. Given the changes observed in relation to collagen and 

elastin within the aortic vessel wall, it is imperative to investigate the effect of treatment 

on these parameters.  

A potential outcome from this thesis could involve a combination therapy. If 

optimization of CRID3 treatment is successful, it could be used in conjunction with a 

current RA treatment. This combination would impact on both the progression of RA 

and the associated CV risk. It is possible that inhibition of the AIM2 inflammasome right 

from the point of RA diagnosis could prevent the earliest changes to the aortic vessel 

wall and ameliorate CVD in the RA cohort. Secondly AIM2 blockade could be used in 

conjunction with a drug that inhibits DR3. The latter has proven beneficial in a number 

of mouse models of inflammatory arthritis (Bull et al, 2008; Wang et al, 2014; Collins et 

al, In Press) and targeted inhibition might prove to be very useful in the human 

population. It is likely that selective blockade of DR3 in the joint would be more 

successful in treating RA since systemic DR3 ablation may have a negative impact on the 

vasculature.   

This thesis has highlighted a number of novel data points, however, it does have a 

number of strengths and weaknesses that should be considered. This thesis has 

characterised the inflammatory cell content of the aortic vessel wall for the first time 

during arthritis and has shown important early changes that might precede CVD. 

However, not all early immune cells were investigated, for example both B and T cells 

could be vital within the progression of vascular disease. The impact of ablating DR3 was 

shown in mCIA was also characterised for the first time and a role for DR3 in arthritis 
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progression identified. Although a large number of calcification mediators were 

investigated, there are a number of important factors that have not been evaluated, 

including proteins such as bone morphogenic protein 2. It also must be considered that 

these RT-qPCR data are representative of the aorta and PVAT.  Although this gives an 

idea of the tissue as a whole, it would be useful to investigate specifically the changing 

expression levels in the aorta alone. Moreover, RT-qPCR data does not highlight the end 

point change in protein levels. Although these data are indicative of what might happen 

downstream to proteins, their location and activity remains unknown. Blocking AIM2 

produced exciting results in terms of vascular function, however, follow up experiments 

to determine protein levels and to optimise dosing would be required in the future. 

7.1 Conclusion 
 

The work completed in this thesis has allowed the following 5 major conclusions to be 

drawn. Firstly, inflammatory arthritis drives an increase in systemic inflammation as 

represented by increased inflammatory cells, namely, macrophages within the wall of 

the thoracic aorta and in the surrounding PVAT. DR3 has been shown to be involved in 

both arthritis induction and within the arthritic constriction response, where it works to 

maintain a healthy constriction potential. Vascular calcification was not responsible for 

the dysfunction seen in the arthritic constriction response in either short or long term 

mCIA. However, the contractile phenotype seen in the mCIA model was associated with 

changes in structural proteins of the ECM, specifically, elastin filaments. Lastly, the AIM2 

infammasome was implicated in the arthritic vascular constriction response. Blockade 

of this inflammatory pathway using a novel inhibitor CRID3 worked to successfully 

restore some vascular constriction potential and following optimization poses as a 

potential therapeutic intervention to help treat CV disease in the RA cohort. 
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