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A B S T R A C T

The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized,
and transitioning towards distributed energy systems, facilitated by advances in power system management and
information and communication technologies. This paper elaborates on these generations of energy systems by
critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as
‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as
well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy
concepts holds merit when applied within a centralized grid paradigm, but very little research applies these
approaches within the emerging energy landscape typified by a high penetration of distributed energy resources,
prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields,
this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We
argue that a new generation of holonic energy systems is required to orchestrate the interplay between these
dense, diverse and distributed energy components. The paper therefore contributes a description of holonic
energy systems and the implicit research required towards sustainability and resilience in the imminent energy
landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence,
and balances global and local system objectives, through adaptive control topologies and demand responsive
energy management. Future research avenues are identified to support this transition regarding interoper-
ability, secure distributed control and a system of systems approach.

1. Introduction

With varied and mounting challenges facing the urban environment
and its energy supply, urban energy systems have undergone increas-
ingly rapid change from centralized systems to the distributed energy
systems currently deployed and reported in research. This is due in
part to the growth of smart grids (SGs) [1–6], distributed energy
resources (DERs) [7–10], and their accompanying management struc-
tures [11–14], multi-energy systems (MESs) [15–21], and demand
side management (DSM) [22–25]. The growing interest in these areas
embodies an underlying shift in the energy landscape towards sustain-
ability [26,27] and resilience [28–30] through distributed resources
and intelligence, and management schemes integrated across energy
systems and scales. However, research to date typically considers
emerging energy system concepts within the current paradigm of an
energy landscape dominated by centralized generation [31,32]. This
paper therefore investigates whether this approach is sufficient to meet
the needs of the next generation of energy systems in a landscape with

a high penetration and diversity of distributed energy resources, and
active consumers. Specifically, we observe that the current distributed
solutions generally operate in isolation from others or under the
assumption of sparse DER penetration [12,33]. We propose that this
will become invalid in the near future as DER, MES and DSM
penetration continue to accelerate. Therefore, continuing with this
perspective will hinder the effective exploitation of renewables and
other urban energy system (UES) entities, and increase barriers to
entering the distributed generation landscape, as well as perpetuating
several challenges. This leads to the recommendation of a new
generation of energy systems which fully embraces their system of
systems nature alongside valuable ICT concepts in a scalable, inter-
operable and secure framework. We propose that a holonic systems
approach is a viable method for meeting these needs. This is introduced
and discussed as an evolution of the emerging energy landscape.

After formally describing the paper's scope and our review meth-
odology, we start by presenting classifications and descriptions of the
generations of energy systems observed in the literature to date, in
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order to contextualize the high level trends described. Within the latest
generation of increasingly varied and sophisticated urban energy
systems, we present a taxonomy and discussion of emerging energy
system concepts. This is followed by a critical comparison of recent
energy management research, components and structures through a
thematic review, as well focusing on the observed trends of distributed
intelligence and semantic interoperability. This enables a clear under-
standing of the historic, current and emerging energy landscape and
how the research conducted to date has paved the way for a new
generation of energy systems. Next, we describe the requirements of a
new generation of energy management systems, and how holonic
systems meet these needs. Finally, the paper elaborates on early
evidence of this approach's efficacy and lays out a number of key areas
where research is required in order to transition to these future energy
management systems.

2. Methodology and overview

We undertook a broad critical review of the academic literature,
international standards, legislation, and key economic and political
events surrounding energy systems and their management. The body of
literature was then broken down into chronological and thematic
groupings. Next, the current trajectory of energy management research
was considered against the forecasted growth in DERs. Following the
observation of new challenges and opportunities arising imminently
from a mismatch in these projections, key concepts were identified to
address these from related fields and novel management paradigms.
The rest of this section details the scope of the review and initial
observations of the subject domain.

It was apparent that as an emerging field, urban energy system
(UES) management encompasses many other fields, mandating a well-
considered scope. We therefore disregarded papers which only focused
on national or building level energy management, or which only
considered the design phase of energy systems. We also placed an
emphasis on recent publications due to the accelerating change in
technologies, and focused on electrical systems. Based on this, a trend
of increasing popularity in the field was observed since circa 2002, as
depicted in Fig. 1. The sources were filtered to those deemed most
relevant and influential, to a final bibliography of circa 150 references.

Our analysis led to the observation of 3 distinct stages of the ‘state
of the art’ in energy system research and implementation. These stages
were: initial electrification, centralized systems and distributed sys-
tems. Fig. 2 illustrates this evolution of energy systems as well our
proposed next generation of holonic energy systems, which we argue
towards through this paper and elaborate in Sections 6 and 7. Before
this, the history and state of the art of energy systems are discussed to
aid recognition of the concepts and high level trends in the field.

3. A brief history of energy systems

Before the discussion of the emerging energy landscape and the
required future generation of energy system, this section contextualizes
the high level trends observed. This manifests as a discussion of the
varying technologies, management structures, and policies throughout
the evolution of energy systems to date, and the forces which have
caused this evolution.

3.1. Early and centralized energy systems

Following the discovery of electromagnetism and the creation of the
first generators by Michael Faraday, electrification began using renew-
able sources, with the first public electricity supply occurring in 1881
with a water wheel as the energy source [34]. After a contested shift
from direct current power stations to alternating current stations, the
era of centralized power stations began circa 1890 with the completion
of the first high-voltage AC coal power station in London [35]. Regional
and national electric grids were rapidly developed from the start of the
20th century and were generally based on inexpensive fossil fuels.
Global electrification then escalated gradually from 1900, accelerating
after WW2 to reach 83% by 2010 [36]. Whilst microgeneration,
renewable generation and cogeneration were prevalent in early elec-
trical systems, the growing economies of scale offered by non-renew-
able national grids meant attractive electricity prices and they became
the status quo in the middle of the 20th Century.

Until near the end of the Century, all national grids were public
assets and hence coordinated by the state in a regulated market
environment. After US encouragement to restructure the energy sector
through the Public Utility Regulatory Policies Act (PURPA) of 1978
[37] and the UK's privatization of a number of other sectors, amongst
other influences, the UK began the global trend of deregulating and
privatizing energy markets in 1990 [38]. This caused the landscape to
shift towards a more dynamic, multi-stakeholder market, although the
underlying technological systems themselves remained similar until
pressure towards decarbonization intensified. Despite concerns exist-
ing about the limited nature of fossil fuels, they were given little
recognition in favor of inexpensive and reliable fossil fuels. Further,
renewable generation technology was immature and non-hydro exam-
ples were economically unattractive to utility suppliers.
Hydroelectricity however has a much more prominent place in history
due to its reliability, controllability, its ability to dispatch directly to the
grid and its ability to store energy, with the Hoover Dam being
constructed in 1935 and hydroelectricity supplying 30% of the US's
electricity demand in 1950 [40]. This is compared to negligible
amounts of all other renewables until the end of the 20th century, as
shown in Fig. 3.

The end of fossil-hydro systems was brought about by increasing
fuel prices and increased social and political pressure towards envir-
onmental sustainability. This primarily meant a need to reduce green-
house gas (GHG) emissions, local atmospheric pollutants and the
consumption of natural resources, whilst meeting the needs of a
growing and increasingly electrified population.

3.2. The conventional grid architecture

Centralized electricity systems consist of a small number of large
power plants which generate higher voltage power, a high voltage

Fig. 1. Popularity of UES research over time as number of relevant Scopus articles per
year.
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transmission network, transformers which produce lower voltage
power for a distribution network or subtransmission, and local
transformers which produce low voltage power, as shown in Fig. 4.
This centralized nature is evidenced by the situation in the United
States in 2005, when there were 615 coal plants [41], 103 nuclear
plants and 2900 natural gas plants. These 3618 plants supplied ~90%
of the electricity demand of 110 million households and 5 million
commercial buildings, indicating that distributed generation was a
negligible part of the industry at that time.

In this system architecture, power flows in one direction only,
consumers aren’t aware of the state of the network or of others’
consumption, and producers view consumers as passive entities, and
others’ assets as black boxes. The lack of predictability and load control
results in the need to overproduce energy and store it as reserve
capacity in case of load spikes [42]. This has increasingly wasted energy
and has contributed to this approach being recognized as inefficient,
alongside losses over long transmission distances and the waste of
thermal energy produced during electricity generation. Whilst these
concerns resembled ‘mounting environmental pressures’ at the turn of
the century, sustainability was only considered to be a long term
objective in energy systems of this generation, on the 5–15 year
horizon [39], rather than the critical challenge it is today.

3.3. Political, legislative, and regulatory support for renewables

Key events and policies have been a core part of the growing
pressure towards environmental sustainability, and contributed to the
end of the fossil fuel era. For example, Agenda 21 [43], the enforcement
of the United Nations Framework Convention on Climate Change in
1994 [44], the Kyoto Protocol in 2005 [45], the enforcement of the
Paris Agreement in 2016 [46], and Directive 2009/28/EC [47]. These
officially recognized the problem of climate change at an international
level and put steps in place to mitigate humanity's contribution to it
whilst adapting to its effects, and currently have near ubiquitous
support from UN recognized states. These commitments to GHG
emission reductions have placed an emphasis on decarbonizing the
electricity sector and have been partly responsible for the pro-RES
policies and incentives which have mobilized the recent shifts in the
energy landscape [48]. Examples of such policies include the Energy
Policy Act of 2005 [49] and the American Recovery and Reinvestment
Act of 2009 [50] in the US, the Renewable Energy Law of 2005 [51] and
the Golden Sun program [52] in China, and the Renewable Energy
Directive [47] and Emissions Trading Scheme in the EU [53].

The roles of regulators and legislators are central in supporting
renewable energy adoption. In the US, Miller and Cox reviewed
regulatory issues related to variable RES [54] at varying levels of
penetration, after identifying that issues are typically due to 4 main
mandates. These are: facilitating new variable RES connections,
ensuring adequate grid infrastructure, and ensuring both short and
long term security of supply. They also highlight the key aspects of RES
which regulators consider: grid operation, network deployment, levels
of reserves, and allocation of integration costs. Coley and Hess
conducted an insightful review into green energy laws in the US and
their general opposition by Republicans [55]. For a more detailed
summary of US renewable energy regulations, the reader is directed to
the recent technical report by Chernyakhovskiy et al. [56].

From a Chinese perspective, concise reviews of renewable energy
policies and regulations are offered by Lo [57] and Zhao et al. [58].
Zhao et al. discuss the “Renewable Energy Law” mentioned previously,
and outline the main tenets of the Chinese regulatory framework circa
2011: financial subsidies, tax-based incentives, feed-in tariff policies,
and technological support policies. They conclude that such incentives
are strongly correlated with renewable energy developments. More
recently in 2014, Lo critically reviewed relevant Chinese policies across
6 sectors, and also highlighted feed-in tariffs and direct subsidies as
Zhao et al. did. Lo concludes with recommendations, such as that the
government should increase RES funding further and better support
small businesses by promoting energy service companies. Since then,
one key policy is ‘Document 625’ in March 2016, which aimed to
guarantee that all RES energy would be purchased by grid companies
[59]. This continues China's attempt to become a world leader in
renewables, with the goal of 15% contribution from renewables by
2020, and investing the most in renewables in 2015 [60]. For more
information, the reader is directed to the forward-looking report by
Qiang et al., which analyzed 35 policies using a system dynamics model
and recommended carbon mitigation policies for China's 13th Five
Year Plan [61], which runs until 2020.

The EU has set the ambitious target of 20% contribution from
renewables by 2020 [47], has recently proposed a directive for 27%
contribution by 2030 [62], and has significantly used policies and
regulation to pursue the target. Böhringer et al. reviewed EU climate
policies [63], concluding that the complexity of the current approach is
“doomed to generate substantial excess cost”. They highlight the role of
the 2005 EU emissions trading scheme as the key regulatory instru-
ment following the Kyoto protocol and also since the 2009 Climate and
Energy Package. The European Parliamentary Research Service pub-
lished a report on EU promotion of RES [64], and briefly discussed
existing EU policies and legislation, including the 2014 Blue Energy
Action Plan (for ocean energy) and the 2016 strategy for heating and
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cooling. However, member states are broadly free to decide their own
strategies for promoting RES towards the legally binding 2020 target,
within the boundaries of other EU legislation. Haas et al. conducted a
comprehensive EU-wide review of RES policies, and concluded that
financial incentives for adopting specific technologies have historically
been more effective than alternative approaches [65]. IqtiyaniIlham
et al. recently reviewed the role of policies in European smart grids
[66], and highlighted the importance of the Smart Grid Task Force as
part of the Third Energy Package of 2009, and its mandate to set
standards for smart meters, PEV charging, and high levels of smart grid
services.

It is also pertinent to note the increasingly interconnected nature of
grids. For example in Europe, a ‘single energy market’ has been
pursued since 1996 through Directive 96/92/EC, which was super-
seded by Directive 2003/54/EC and finally by Directive 2009/72/EC
[67]. Based on these directives, energy regulator and transmission
system operators were mandated to cooperate internationally accord-
ing to Regulation (EC) No 713/2009 and 714/2009. This enforced
cross-border network and market integration, which promotes a
system of systems behavior in modern grids and improves the ability
for large RES owners to sell the energy generated by large RES units.
The US, EU, and PRC have been focused on in this paper as the largest
global energy consumers, and because a comprehensive and global
analysis of legislations and regulations covering renewable energy is
outside the scope of this paper. For further literature the reader is
directed to the REN21 Global Status Report of 2016 [60] and the 2016
World Energy Outlook from IEA [68], which was based on over 3000
policies and measures.

3.4. The rise of renewables

Despite concerns over sustainability, inertia in the industry kept
non-renewable systems as the status quo until circa 2005, after which
the global reliance on renewable energy sources (RESs) accelerated;
doubling between 2004 and 2014 [48]. Reference [69] presents a
common view prior to this boom; that renewable energy sources were
useful where the national grid was not possible but that they held
untapped potential. The state of the art in research is however another
issue; with interest in renewables accelerating circa 2000, as shown in
Fig. 5.

It is important to note that whilst coal and oil reliance has been
reducing, the contribution of gas to the generation mix has been
increasing globally alongside renewables. This is due to its low
emissions, and arguably, its simplicity to integrate with existing
markets and business models. Whilst this may assist in meeting short
and medium-term emissions targets, natural gas is a finite resource
alongside other fossil fuels, with recent estimates predicting global
depletion circa 2064 [71]. Given this, it is important to recognize the
importance of renewable energy sources for long term sustainability,
whilst also considering their implicit carbon impact, such as in the
transportation of biomass or the production of PV panels.

Global RES policies initially caused change without disrupting the

centralized paradigm, through large plants which each contributed
significantly to the national grid. Large wind farms [72] and solar farms
[73] as well as geothermal and biofuel plants, dominated the non-
hydro renewable generation domain and have gradually supplemented
conventional energy sources [48]. This started the shift towards
sustainable electricity generation shown in Fig. 6, but only exchanged
conventional generation units with more sustainable alternatives with-
out changing the nature of the underlying systems.

The management and underlying architecture of energy systems
has remained centralized as shown in Fig. 7, until recently [75], with
little microgeneration [74] or energy storage occurring, and consumers
only acting as passive agents. Arguably, this was due to a lack of
technology and incentives, which caused barriers for prosumers and
small scale renewables entering the energy landscape. Regardless, the
energy production share from renewable sources has increased con-
siderably in the past 10–15 years [48].

The energy sector is now typified by large non-renewable plants,
growing reliance on large renewable plants and emerging integration of
distributed generation. However, the research community has moved
beyond this to validate a wide variety of DER integration arrangements
within centralized systems as a means to further integrate RESs and
meet sustainability objectives. This has emerged through trends
towards distributed generation, polygeneration, active consumers,
energy storage, plug-in vehicles and virtual energy management.

The end of this generation of a gradual shift to renewables without
dramatic system or paradigm reform has been brought about in the
research community during the popularization of the smart grid

Fig. 5. Academic interest in renewable energy as number of Scopus results per year.

Fig. 6. Electricity production percentage per fuel source over time in three regions: US
[40], EU [54], China [54] (from the left).
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concept [77]. Whilst inherently related to intelligent management, the
smart grid concept is now specifically associated with the integration of
modern technologies such as microgrids, distributed energy resources
and virtual power plants [4]. This has somewhat coincided with the
‘smart city’ and ‘smart planet’ revolution which has manifested
throughout national policies and has contributed to investment in
DER technologies and management systems [78,79]. Further, recent
state-backed financial incentives to invest in microgeneration technol-
ogy have contributed to its accelerating uptake within the energy sector
[80–82].

Energy systems have evolved from immature distributed systems,
through centralized fossil fuel systems and increasingly renewable
centralized systems, to the present trend of distributed renewable
systems. Within research, and increasingly within industry, this new
generation of energy systems is evident, and further enables the
integration of renewables and other sustainability concepts. This
emerging generation is introduced and discussed in the following
section.

4. Distributed energy systems

This section introduces the concepts, components, policies and
management structures which typify the emerging energy landscape,
and the forces which have caused renewable centralized systems to
evolve into distributed system. Further, this section identifies and
critically appraises relevant research within each of these themes and
begins an argument towards the requirement for a new generation of
energy system.

4.1. Context and challenges

Energy systems are becoming increasingly distributed, due to an
increasing push towards resilience and sustainability, as well as
advances in DER research that enable new entrants to the electricity
market [7,10,28,83]. A driving force behind DER penetration has been
governmental policies and economic incentives, alongside social pres-
sure on companies and individuals to be perceived as ‘green’ and
progressive. DERs embody green and prosperous qualities as they
include renewable energy sources, enable energy market engagement,
incur less transmission losses than centralized power plants and offer
the potential for intelligent management and cooperation schemes with
relevant parties [84]. Also, the ability to utilize waste heat through
polygeneration enables significant increases in efficiency. Further, DER
integration has been assisted by its resonance with the smart city trend,
due to its reliance on intelligent management and the ability to tackle
large challenges at the city level [78,79]; hence we refer to recent
developments primarily having occurred in urban energy systems.

The integration of DERs into the energy landscape has caused many
challenges and a breadth of research has emerged, with themes being: i)
the intermittent and unreliable nature of wind and solar power, ii) the
changing role of passive consumers to active prosumers, iii) the
integration of plug-in electric vehicles (PEVs) as a large load and storage
asset, iv) ensuring quality of service (such as through ancillary services)
and market stability in an increasingly complex techno-economic system,
iv) the resilience of electricity supply in the face of growing populations
and potential system malfunctions, and v) the integration of polygenera-
tion units and optimization across energy carriers.

Since the push towards renewables intensified following the 2002
Earth Summit [85], the 2005 UN enforcement of the Kyoto Protocol
[45] and ultimately Directive 2009/72/EC [67], the smart grid trend
accelerated dramatically circa 2009 as shown in Fig. 8, and served to
coagulate and invigorate DER research. This has resulted in a rich
research landscape regarding a wide variety of distributed resources
and structures including distributed generation units, energy storage
systems, active loads, microgrids, virtual power plants, energy hubs
(EHs) and plug-in vehicles, as well as a growing penetration of ICT and

data-driven management, as shown in Fig. 9. As this landscape
gradually becomes the status quo, it will cause a vast change in the
underlying paradigm of centralized generation towards a system
diverse in DERs, actors, management structures, data sources and
software entities.

Following the growing global interest in DERs across disciplines and
perspectives, a new urban energy vocabulary has emerged. However, a
common understanding of this was not observed in the literature. Fig. 10
therefore presents a Universal Modeling Language (UML) class diagram
which summarizes the authors’ understanding of this landscape, based
on the circa 500 sources considered during this review. UML is an ISO
standardized language widely used within software engineering and
business modeling applications, and a class diagram describes the
relationships between types of object within a domain in a standardized
manner [86]. The relationships used are inheritance and aggregation,
implying the ‘kind of’ and ‘part of’ relationships respectively, as indicated
in the figure's key. Broadly speaking, Fig. 10 can be seen to display
individual components at the bottom such as generating units, then
higher level concepts and aggregated terms towards the middle such as
‘energy hub’, and specific types of UES at the top such as microgrids.
Each of the main DERs and management structures included will be
discussed further throughout this section, but taxonomical aspects are
discussed in the following paragraph.

Apart from ‘urban energy system’, the concepts presented which are
less common are ‘energy hub’ and ‘multi-energy system’. The term
‘energy hub’ is used to refer to multi-energy generation, conversion and
storage systems and occasionally to systems which include a distribu-
tion network [87–89]. However, this paper assumes the view that an
energy hub is a separate entity to the distribution network [90,91], as it
can then be considered a DER node in the urban energy network. A
‘multi-energy system’ at the urban level is considered here as a system
where energy management is integrated in some manner between
carriers (such as hot water, steam, gas, cooled refrigerant, electricity
and hydrogen) and includes distribution and demand elements [21]. It
is also pertinent to note that storage units, including PEVs, are
represented both as types of electricity demand and distributed
generation, as they can act in either mode. Further, Fig. 10 only
represents the main novel node and system types in urban energy
networks and so doesn’t include the important concept of big data,
which is expected to have a large effect on the management of energy
systems as ICT penetration and intelligent sensing increases within the
management of these networks [92]. Further, demand side manage-
ment and smart metering are very active research fields in smart grids,
but are only represented here as ‘active loads’, as dynamic pricing
schemes and knowledge flows are socio-economic concepts not easily
reflected alongside technological concepts. Finally, the concept of a
‘smart grid’ (SG) can be considered as a descriptor of an electrical grid
rather than prescriptive of what elements the grid can contain, and is
used in research as an umbrella term for all the concepts depicted.

Within research, the emergence of this energy landscape acceler-
ated alongside the smart grid trend circa 2008 and continues to the
present day. This is arguably because the smart grid ‘buzzword’ has

Fig. 8. Academic interest in smart grids as number of relevant Scopus results over time.
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unified and invigorated several previously active but separate concepts
such as microgrids and distributed generation. However, we argue that
current smart grid research is still rooted in the paradigm of centralized
distribution, with the aim of using these emerging technologies in an
ad-hoc and isolated manner whilst primarily relying on the grid.
Section 5 argues that this approach will become restrictive as DER
penetration increases, but the remainder of Section 4 introduces and
discusses recent research within the field, starting with each of the
novel atomic elements of the emerging energy landscape in Section 4.2,
followed by the key themes and management structures in Section 4.3.

4.2. Key technological components of distributed energy systems

4.2.1. Distributed generation
A core reason for the shifting energy landscape is distributed

generation (DG). This refers to the production of useful energy near
or at the location of its use, with power outputs significantly smaller
than those typical of central plants. This includes generating plants

which power districts as well as the more specific concept of micro-
generation, which extrapolates the shift to even more local and small
scale generation. Due to this proximity, distributed generators are
connected to the distribution network without the need for transmis-
sion across large distances. Many distributed generation schemes use
renewable energy, with solar and wind energy representing key growth
markets, but a variety of distributed generators are available, as shown
in Table 1. It is important to note that RESs can be centralized or
distributed, with offshore wind farms vs micro wind turbines being
clear examples of the difference. Renewable DERs mainly offer the
benefits of reducing emissions and resource consumption, but various
policies promote them by also offering financial incentives [42].
However, weather dependent DERs present a significant challenge of
uncertainty to utility companies when they are connected to the grid,
and DERs are testing the aging infrastructure's limits by using the grid
in a bidirectional manner [93]. These challenges have therefore been
reflected in the literature's main research goals, such as aiming to
ensure reliability in interfacing with the grid whilst ensuring quality of

Fig. 9. The energy landscape emerging through smart grid and urban energy system concepts.

Fig. 10. Taxonomy of emerging technical urban energy and smart grid concepts.
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service to consumers and maximizing use of renewables. DG research is
at the core of the DER field and so is contained within all of the smart
management structures observed, apart from some DSM strategies. We
will now discuss research towards overcoming DG challenges in terms
of mitigating uncertainty, ensuring resilience by optimizing DER
topologies, and using advanced control structures.

Wind and solar plants are very common RES DG choices, as they
are less limited in potential location than small hydro and geothermal,
do not emit GHGs after installation, don’t require biomass fuel to be
delivered, and are economically competitive. However, these sources of
energy are subject to stochastic weather variations, so research has
focused on their reliable integration. This has used energy storage
solutions [94] alongside the DG units or within a microgrid [95–97] or
virtual power plant [13] to present a single, aggregated connection to
the grid. For example, [95] utilized multi-time-domain optimization of
a microgrid containing PVs, wind turbines and batteries to reduce
weather-based variation and effectively reduced CO2 emissions by 70%
in real-world testing. Also promoting distributed generation but by
maximizing their aggregated profit, Peik-Herfeh [98] used a point
estimate method within a price based unit commitment approach in a
day-ahead bidding market. Reference [99] presented a mixed-integer
linear programming (MILP) model of a set of connected DG sources
and maximized the network's profit, concluding that the MILP method
would be scalable to larger systems, although we argue that a
centralized intelligence approach to solving this would not be scalable.

Separate to the optimization of generation and system setpoints,
Pilo et al. [100] and Li et al. [30] optimized the topology of connected
distributed generators to achieve reduced costs and resilience respec-
tively. Pilo et al. utilized mixed integer non-linear programming within
an ‘active distribution system’ to minimize system operation costs via
day-ahead scheduling and intraday optimizations, including topologi-
cal network reconfigurations. Specifically regarding fault impact miti-
gation, Li et al. used a tree-structure algorithm to ‘island’ groups of
DGs so as to minimize outage time.

The potential of islanding and aggregating DERs has been con-
sidered as the focus of microgrids and virtual power plants (VPPs)
respectively. Within such structures, operational decisions at each time
horizon can either be based on centralized intelligence, where all
system knowledge is available and utilized at a single point, or
distributed intelligence, where the knowledge is split across agents.
An example of the former is [94], where a wind-PV-battery hybrid
power system was managed through a supervisory controller with 5
potential modes of operation based on rules regarding the system's
sensitive variables and numerical models of each component. A similar
simple system approach was adopted in [96] and again in [97] but with
a flywheel energy storage device and a gas microturbine within the
microgrid, similar to [101,102]. Reference [103] utilized a neural
network to coordinate a multi-level storage solution, but again
assumed complete system knowledge and supervisory control. With
only a few components, this assumption of complete system knowledge
at one point is feasible, but complexity increases vastly as more DERs
are included in the system's model and then again if consumers are
considered as active entities; Section 5.1 discusses how distributed
intelligence has been used to tackle this.

4.2.2. Polygeneration
Polygeneration refers to the production of more than one useful

form of energy at a generation unit, such as the production of heat and

electricity at a combined heat and power (CHP) plant. CHP plants use
the waste heat produced in the electricity generation process to
contribute to the heat required by a district heating network, thereby
improving the efficiency of the overall energy system. Polygeneration is
an umbrella term encompassing CHP units as well as combined
cooling, heat and power (CCHP) plants and occasionally also the
production of hydrogen as an energy carrier as shown in Fig. 11.
Polygeneration itself is not a new concept, with cogeneration at steam
‘Power Houses’ occurring since the dawn of power stations [104], but
recent advances in CHP technologies have led to a revival of this field of
research and in the uptake of this distributed energy resource. Beyond
just using waste heat, polygeneration couples the management of the
local heat and electricity networks, and the national grid [19]; thereby
creating a multi-energy system. Further, the use of heat and/or
electricity storage allows flexibility to meet peak demand through
overproduction at off-peak times [105] and the storage of energy to
sell to the national grid at times of highest price, if dynamic pricing
occurs [106].

The main challenges of adopting CHP technologies are the asso-
ciated capital and operational costs [107]. Also, integrating many
micro-CHP plants greatly increases complexity due to the many energy
vectors and decision variables [108]. As an example of UES research
which integrates polygeneration, Lee and Kim [19] proposes a linear
programming optimization of the trading of energy between the
electricity and district heating systems via a CHP unit. Also focusing
on CHPs but with more validation and in-depth analysis, Facci et al.
[18] optimized the control of a trigeneration plant to minimize
operational costs using dynamic programming based on graph theory
and a black box model of the plant. These examples show that
integrating CHP and RES is feasible, and is supported by the use of
energy storage in a wide variety of DER arrangements. It is interesting
that whilst considering users as active entities and attempting to
optimize a system of systems, Kyriakarakos et al. [24] adopted a
MAS approach to manage a test site's electricity, hydrogen and
desalination subsystems, including demand side management. This
improves on [18,19] by facilitating a more holistic solution, in that the
wider system was considered, and is more applicable to the future
generation of energy systems which requires such demand-responsive
management.

4.2.3. Energy storage
Energy storage is the controllable and reversible conversion of

useful energy to another form of energy, or the direct collection and
persistence of useful energy. The main viable forms of this in
distributed energy systems are indicated in [109] as pumped hydro-
electric, battery storage and superconducting magnetic energy storage
systems, with these and others being shown in Table 2.

As with polygeneration, energy storage is not itself a novel concept,
with energy commonly being stored in hydroelectric systems by
pumping water to a higher point and then allowing it to fall and drive
a generator, as well as energy storage occurring in hot and cold water
tanks. However, several forms of urban energy storage have been
investigated recently within the DER context [109]. Of these, batteries
are one of the most heavily researched technologies to store electrical
energy within UESs and are increasingly used to mitigate fluctuations
in output power from weather-dependent renewables, maximize re-

Table 1
Examples of distributed generation.

Wind microturbine Solar photovoltaic panel
Geothermal generator Gas microturbine
Micro hydroelectric plant Hydrogen fuel cell
Biomass/biogas generator Diesel generator

heat

cooling

electricity

hydrogen

Combustible fuel Engine/
Turbine

Heat recovery
unit

Condensor

Generator

Electrolyzer Hydrogen
storage

Electricity load

Heating load

Cooling load

Fig. 11. Components and energy flows in an example polygeneration plant.
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newable contribution to the local generation mix and to facilitate
voltage and frequency regulation [110]. This is in part due to their
dramatically decreasing costs in recent years, which is also partially
responsible for the recent growth of electric vehicles.

Energy storage is a common occurrence in microgrids, with almost
all examples encountered in the literature of microgrids utilizing at
least one form of energy storage. As well as using storage to improve
the overall system's performance, it is important utilize operational
strategies which balance these global objectives with local ESS objec-
tives such as maximizing asset lifespan. For example, Abbey et al. [103]
utilized a two-tier ESS to coordinate between short term and medium
term energy storage, as the authors argue this offers an ideal response
time and large total storage capacity to the overall system whilst
improving the battery's life span. Long term energy storage can be
possible through the production and storage of hydrogen via electro-
lysis, as was utilized in [111] in a rural stand-alone system. However,
this is unlikely to be suitable in an urban environment as any excess
energy produced is likely to be required nearby within a short or
medium time frame. Another novel consideration is the use of thermal
storage as a means to balance energy production between a district
heating network (DHN) and a local electricity grid, for example [105]
utilizes the DHN itself to store thermal energy and hence coordinate
the optimal timing of electricity sales to the grid from a CHP unit. As
batteries become more prevalent, as well as DHNs, it will be increas-
ingly complex to balance the local goal of maximizing asset lifespan
alongside the global goals of efficiency, reliability and profitability. This
highlights the importance of works such as [103,105] which utilize a
system of systems approach in managing complexity.

4.2.4. Plug-in electric vehicles
Plug-in electric vehicles (PEVs) are vehicles which demand, store

and utilize energy from electrical systems, which includes battery
electric vehicles and plug-in hybrid vehicles, and they can also return
energy to the grid. They have become closely linked with the smart grid
concept due to their growth within the same time period and domain.
The recent boom in PEVs has led to unique challenges and opportu-
nities within urban energy systems not seen before, as they represent a
significant total quantity of load and potential storage within the
system. Further, they exhibit stochastic demand profiles if not mana-
ged intelligently, which can cause large demand spikes at already peak
times.

Several authors have reviewed these opportunities, challenges and
the research within the field [112–115]. For example, Hota et al. [112]
identifies that most relevant research falls into the categories of:
scheduling the charging of PEVs, facilitating RES integration by
providing storage through PEVs, optimizing PEV-electricity market
interactions, and managing large PEV charging stations through smart
charging. Scheduling the charging intelligently reduces the peak loads
caused by many PEVs charging simultaneously and shifts this load to
off-peak times such as in [116]. However, optimal charging needs to
consider the potential for PEVs to act as a temporary storage device for
the grid by subsequently acting in vehicle to grid (V2G) mode as in
considered in [117], which minimizes both operating cost and load
variation in a scenario of high DG penetration based on bidirectional
energy transfer between the vehicles and grid.

The ability of vehicles to sell energy back to the grid raises the level
of complexity in the system and forces one to consider the socio-
economic aspects of PEV owners trading electricity. This problem has

been addressed in part by [118], which recognizes that consumers may
or may not be flexible in deciding their charging time, and subsequently
implements a model predictive control approach to optimize charging
operations under this uncertainty. This is highly beneficial, as it is
important to recognize consumers not only as bidirectional nodes, but
as intelligent and yet often stochastic entities. Interaction within the
electricity market raises the notion of a virtual power plant [113], in
that aggregating the flexibility of these vehicles enables their collective
impact, and hence market position, to be greatly increased.

4.2.5. Active loads and smart metering
Smart metering refers to the digital monitoring of consumption

data and its regular transmission to the energy provider, and typically
enables bidirectional communication. Active loads extend this to a
situation where the energy provider can control the consumption to
some extent. These are grouped here as they both involve a revolu-
tionary view of consumers as active entities through demand side
management schemes, and are closely linked to the smart grid trend
[119]. Arguably, this DER is unique as it is exists on the demand side
and is fundamentally linked to information exchange and behavior
science. Reference [119] presents a thorough survey of demand
response in a smart grid environment and identifies the main benefits
of integrating demand response as improved reliability of electricity
systems and reduced peak load. More recently, Good et al. [120]
presented a review of the barriers and enablers of demand response in
smart grids, including market-based, behavioral, and technological
barriers, as well as their enabler counterparts. It is interesting that they
briefly praised semantics and ontologies as a technological enabler of
interoperability, but stated that greater emphasis should be placed on
such research, agreeing with a core argument of this paper.

By enabling communication between consumers and other energy
system stakeholders, more intelligent and coordinated management
schemes can be implemented. Reference [23] extends the field of
demand side management to include demand response, intelligent
energy systems and smart loads, and categorizes DSM schemes into the
groups of energy efficiency, time of use, demand response and spinning
reserve. Within demand response, interventions can involve ‘time
based rate’ programs or ‘incentive based programs’ [121], where
incentive based programs can be mandatory, voluntary or market
clearing.

As well as these socio-technical reviews, Rahimi and Ipakchi [122]
approaches demand response from an economics and ICT perspective,
by indicating how demand response enables renewable integration and
both market efficiency and reliability. In order to manage the complex-
ity of demand response, participating consumers can be managed by a
demand response provider; an intermediate entity between consumers
and utility providers; as was modelled and scheduled by Parvania and
Fotuhi-Firuzabad [123] with positive effects for grid operators. This
complexity can also be managed with a multi-agent system (MAS)
approach such as in [24], which managed load shedding in an
autonomous microgrid.

4.3. Smart management of distributed energy resources

Towards the integration of each of the DERs discussed in the
previous section, various management structures, concepts and themes
have emerged within this inherently cross-domain field, although they
are generally linked by the concept of developing a ‘smart grid’. Whilst
this term has almost exclusively been used to describe electrical
systems, the emerging energy landscape will involve multiple energy
carriers linked at polygeneration and energy conversion units. Given
this, the umbrella term of ‘smart grid’ is now introduced before each of
the DER management concepts and their relevant research fields are
discussed.

Table 2
Examples of energy storage technologies.

Hydrogen tank Battery
Capacitor/supercapacitor Superconducting magnetic energy storage
Thermal storage tank Flywheel energy storage
Hydroelectric pumped-storage Compressed air energy storage
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4.3.1. Smart grid
The term ‘smart grid’ refers to the application of greater intelligence

to electricity systems, in line with the ‘smart city’ and ‘smarter plant’
concepts currently popularized in research and industry [78,79].
Specifically, ‘smart grid’ has been defined normatively as “the integra-
tion of power, communications, and information technologies for an
improved electric power infrastructure serving loads while providing
for an ongoing evolution of end-use applications” [124]. As an umbrella
term, the concept of a smart grid has become linked to a variety of
intelligent sensing, automation and ICT based approaches to power
system management towards meeting the various challenges faced by
this industry.

Primarily, smart grid research tends to consider the management of
electricity systems within the current generation of increasing DER and
RES penetration, active consumers and an increasing focus on resi-
lience. Strasser et al. [125] expands on this to list the main require-
ments in smart grids: self-diagnostics, optimization capabilities, topo-
logical adaptability, adaptive protection, distributed management,
islanding modes, ancillary service provision, demand side manage-
ment, improved forecasting, self-healing capabilities and preventative
maintenance. It is interesting that these authors, as well as those of
other reviews [77] agree with the present authors by identifying
distributed intelligence and MAS as an important paradigm, and even
mention holonic systems briefly. The above list of requirements is
echoed in various forms across many reviews of the field, although
other mentioned requirements include consumer focus [4,126], bidir-
ectional data and energy flow [4], market efficiency and integration
[127] and higher quality of service [127].

Communication networks and standards play a fundamental en-
abling role in smart grids, as discussed in the review by Nafi et al.
[128], who concluded that further machine to machine communication
and ‘software defined networking’ research is advised. Communication
technologies also play a key role in the cyber-physical vision of smart
grids proposed by Yu et al. [129], who also emphasised the necessity of
distributed intelligence and unified semantics in smart grids. As smart
grids consist of a collection of related electricity management research
areas, the main DER management structures and themes are now
discussed in turn, as well as those related to multi-energy systems.

4.3.2. Microgrids
Microgrids are independently controlled distribution networks

capable of operating in island mode [130], as shown in a simplified
manner in Fig. 12. This enables them to present a single, more stable
interaction with the grid, and offers resilience if the grid fails. By
collecting DG, ESSs and loads within a single network and implement-
ing an intelligent management scheme, the intermittent nature of any
wind and solar DG can be mitigated and a single, more consistent load
can be presented to the grid, as well as minimizing transmission losses
associated with the centralized paradigm [131]. Whilst microgrid
research, as with smart grids, generally considers only electrical
systems, several authors have extended this to consider multi-energy

microgrids [7,130,132]. The convergence of the smart grid and
microgrid concepts was reviewed very recently by Yoldaş et al. [133],
who distinguish between AC microgrids, DC microgrids and Hybrid
AC-DC microgrids, and also discuss the role of energy storage,
advanced forecasting, and communication systems in some depth.

In general, microgrids aim to fully utilize whatever RESs they
contain by storing any excess power they generate within a local
storage device, and typically supplement their generation with a local
dispatchable power source and/or the national grid. Research on this
topic is broadly varied in goal and approach, but examples commonly
focus on economic optimization in the day ahead and intra-day
markets, or on ensuring system stability through real-time operational
decisions [134]. Also, most examples use some form of hierarchical
control, whereby a system level supervisory controller instructs com-
ponent level controllers [9,94,135]. It is interesting that the control of
microgrids has been attempted through the MAS approach in a
plethora of research examples such as [131,136–138], to facilitate
the intended microgrid characteristics of a distributed architecture,
adaptability and resilience.

Microgrid operation changes distinctly between microgrids trading
energy with the grid, and those either in island mode or not connected
to the grid [31]. When in ‘island mode’, a microgrid can be modelled as
a closed system such as in [139], where a microgrid's PV, WT, fuel cell,
load, and storage are controlled centrally and optimized as a MILP
problem in real time. The efficacy of islanding has also been shown on a
real system in Hachinohe [95] and on a microgrid around a hospital
[140]. However, when operating in grid connected mode, a microgrid
management strategy must handle added complexity, such as in [32],
which proposes an agent based framework that optimizes a typical
microgrid at hourly timesteps with a 24 h horizon. This work offers the
advantage of addressing the uncertainty of environmental parameters,
and the added complexity of being connected to the external grid, as
well as the advantages offered through MASs such as improved
resilience in the face of limited information access. Another relevant
work was conducted by Chen et al. [141], who consider a CHP's heating
income but primarily optimize an electrical microgrid. It is an
advantage that Chen et al. implement a multi-objective optimization
which considers environmental impact directly via fuzzy logic and a
genetic algorithm.

4.3.3. Virtual power plants
Virtual power plants are virtual entities which act between the grid

and a collection of DERs to improve their operational characteristics
through aggregation, and consist of dispatchable generators, stochastic
generators, active loads and energy storage systems [13] as shown in
Fig. 13. This definition has also been extended to explicitly include
PEVs [14].

Whereas microgrids consist of a number of proximal and physically
connected DERs and loads, virtual power plants facilitate DER

national grid

low voltage grid

diesel generator

Fig. 12. Example microgrid configuration (simplified).

virtual

power

plant

medium
voltage grid

low
voltage grid

x50

Fig. 13. Example VPP configuration to stabilize RES profiles.
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integration and reliability by virtually aggregating them as an entity
within the energy market through an agent interfacing with the
centralized grid [142]. Further, Morales et al. [13] states that their
collective management can be reduced to an economic optimization
which considers the grid as an actor able to buy and sell an infinite
amount of electricity in the day ahead market, and which manages
stochastic generating units in real time to ensure service delivery to
consumers. The former of these management tasks is elaborated in
[98], which accounts for the uncertainty in the day ahead bidding
market through a probabilistic price-based unit commitment method
within an 18 bus system.

The assumption that virtual power plants exist only to meet
economic objectives is challenged by Binding et al. [14], which
indicates that two types of VPP exist: technical power plants and
commercial power plants, with the former existing to meet load
balancing or other technical objectives. The VPP concept has also been
applied to micro-CHP clusters [143–145], thereby overlapping with the
MES field and offering benefits across systems and stakeholders. As
urban energy systems are likely to become more linked across energy
carriers, including polygeneration and multi-energy concepts alongside
virtualization would be highly beneficial.

4.3.4. Multi-energy systems
Multi-energy systems (MESs), in this context, are systems where

multiple energy carriers are coordinated in an integrated manner at the
urban scale through linking components, and have gained recent
academic interest [15–20]. The links between these energy systems
are often polygeneration plants, so the recent interest is likely due to
the growing interest in CHP and polygeneration technology, alongside
more systemic thinking. Fairly recently, Mancarella [21] performed a
review of this trend and identified the potential energy carriers of
electricity, heat, cooling, fuels and transport, and identified the
concepts of energy hubs, microgrids and VPPs as potential multi-
energy systems. The current authors would contest that whilst these
can constitute MESs, the heating and cooling components of micro-
grids and VPPs are unlikely to be related to those structures’ key
attributes due to heat networks not typically being connected to a
national network, so would argue that reserving ‘microgrid’ and ‘VPP’
for the electrical parts of UESs would simplify the terminology. In this
way, Fig. 14 shows a MES consisting of a DHN and a microgrid.
Further, it is important to note that whilst energy hubs are inherently
multi-energy systems, they typically represent a node within an urban
energy system, with multiple input and output energy vectors, such
that the urban energy system itself is a multi-energy system by its

primary meaning.
A typical example of MES research is [19], which models a MES

containing a microgrid and a DHN joined by a CHP unit, and
economically optimizes the energy exchange between these systems
and the national grid. A more complex situation is that at the
University of Genoa Polygeneration Grid [16], which consists of
electricity, heating and cooling systems, and contains 11 DERs includ-
ing RESs, PEVs and energy storage, which are all managed in a
coordinated manner to optimize the whole system's performance and
grid interaction. Unfortunately, the work only optimizes the opera-
tional cost of the system without including sustainability objectives, but
it is encouraging that a system with a high penetration of ‘sustainable’
technologies was able to reduce operational costs by 20%. This example
used centralized optimization of the system which is a drawback
towards real world applicability but demonstrates the potential benefits
of MESs when managed intelligently.

4.3.5. Energy hubs
Energy hubs are considered here as an urban energy network node

with multiple input and output energy carriers; they are hence a multi-
energy system but are considered here as a node at the urban energy
system level. In this manner energy hubs are similar to polygeneration
units, but differ in that they utilize multiple input energy vectors and
typically consist of a more elaborate and complex internal arrangement
of components, as shown in Fig. 15. Energy hubs represent a means to
closely integrate systems of different energy carriers through multiple
energy generating, converting and storing components. As energy hubs
are often owned and operated by a single organization and are
geographically dense (typically within a single building), they represent
ideal locations to manage the integration of the various energy carrier
networks. The benefits of this close integration are identified in [147]
as increased reliability, load flexibility and efficiency gains through
synergistic effects.

Several efforts towards the optimal management of energy hubs
were observed in the literature [90,91,147] including works by Geidl
and Andersson. The most recent of these progresses their generic
model to consider interactions between energy hubs and subsequently
optimizes the key management decisions of energy hubs: how much of
each input should be consumed, which components should utilize these
inputs to generate usable energy and how this generation process
should be controlled. However, Giedl and Andersson only optimize
based on financial concerns, whereas [148] develops the approach to
include the ‘social cost’ of CO2 emissions in monetary terms and also
considers maintenance costs. Whilst the energy hub concept is fairly
new, it represents an interesting avenue for managing the complexity of
multi-energy systems at the district level, although in order to progress
it further it must be compared and considered alongside other
emerging UES concepts.

4.3.6. Demand side management
Demand side management (DSM) refers to a systemic interaction

with consumers and active loads to directly or indirectly affect demand
profiles. Whilst active loads and demand management have been
discussed previously as atomic DER concepts, these can be utilized

district heating/cooling network
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polygen
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Fig. 14. Example MES configuration.
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within socio-technical energy systems to produce a fundamentally
novel form of UES, in which social implications of optimizations are
accounted for and demand is considered as an active entity. However,
the success of integrating consumers into the management of smart
grids varies significantly depending on the perception of smart grids
and the demand management scheme, as shown by Ponce et al. [149],
who used signal detection theory to gauge the perceptions of users in
real smart grid scenarios. Ellabban and Abu-Rub also explored the role
of consumers in smart grids in a recent review [150], identifying smart
consumers as one of the 3 core pillars of smart grids. They also
considered consumer engagement with the grid through the lenses of
various behavior models, such as the theory of planned behavior and
the theory of technology acceptance.

As an example, Mohsenian-Rad et al. [151] considered automated
load scheduling at the smart meter level, by using dynamic pricing to
incentivize consumers whilst optimizing locally and globally, and
successfully stabilized the demand profile and reduced overall system
costs. These authors used a distributed algorithm, the importance of
which is echoed in the DSM field in [22], where day-ahead load shifting
is optimized through an evolutionary algorithm, but the authors
conclude that a distributed platform is fundamental to implement such
a scheme. One key intended outcome of DSM is load shifting to reduce
the total generation capacity required in a system, as shown in Fig. 16.
Whilst pursuing such objectives, it is critical that a consumer-focused
approach is adopted to improve acceptance by consumers and compe-
titive market-driven environments.

5. Towards ICT-driven intelligent energy management

Alongside the emerging energy system components and manage-
ment structures described in the previous section, the increasing
prevalence of ICT within energy management is a clear trend. This
section therefore introduces and discusses recent developments within
two key technologies identified within this trend; the use of distributed
intelligence and agency in energy systems and an increasing emphasis
on interoperability amongst ICT components. Further, this section
highlights the applicability and extensibility of these technologies
towards the future generation of energy systems.

5.1. Agency in energy systems

5.1.1. Introduction to distributed intelligence and multi-agent
systems

A significant trend within the digitalization of energy management
is the use of agency and distributed intelligence [152]. By utilizing a
virtual network of intelligent and autonomous controllers (modelled as
software agents) which reflects the actual network of components and
abstract entities, as shown in Fig. 17, the management intelligence is
modularized and hence more adaptable, resilient and scalable than in
centralized approaches [153]. In a multi-agent system approach,
complete knowledge of the system is not required at any individual
node, but each system component acts autonomously towards a set of

predefined goals to optimize the overall system's performance [135].
Software agents can interact and communicate with their environment
and with other agents via predefined interfaces. The behaviors of
agents are conditioned by their individual goals, which can be in
cooperation or in competition with the goals of other agents. The
behavior of the overall system then emerges as a result of the behaviors
of its agents. By designing the agents, their interactions and their goals
carefully, this emergent nature can be leveraged to optimize the
performance of the overall system.

As each agent autonomously acts with the knowledge available to it,
the failure or introduction of components or communication pathways
does not cause total system failure, leading to the approach's powerful
resilience through adaptability [29,32,33,154–158]. Further, as intelli-
gence and computing power is provided at each agent, the approach is
more scalable than centralized control as the computing power
available will increase alongside the complexity of the system.
However, we argue that scalability requires intelligent and dynamic
topologies of agents, as complexity is likely to increase exponentially as
DER penetration accelerates alongside the integration of energy carrier
systems and the growth of big data.

5.1.2. Research towards agent-oriented energy management
The application of multi-agent systems and agent oriented pro-

gramming to the intelligent management of urban energy networks has
been the subject of significant research in the past decade and has been
identified as very promising [152,159]. The benefits of a MAS approach
to smart grid management were reviewed very recently by Coelho et al.
[152], who concluded that this decentralization of infrastructure
empowers society and reduces costs, whilst also opening new avenues
for optimization of energy systems. The majority of MAS-UES litera-
ture adopts a methodology of developing device (and possibly super-
visory) agents and simulating their efficacy for the authors’ intended
purpose in coordinating electricity supply in an example network
[8,131,137,138,160,161]. This arguably began with the seminal efforts
of Kok and colleagues in developing the PowerMatcher concept
[134,161]; a market based electricity supply and demand matching
system which aims to promote sustainability in urban energy systems.
Many other authors have also utilized MASs for real time pricing and
market based UES electricity coordination [33,131,138,155,162],
although these typically exhibit a more simple hierarchical structure
than the PowerMatcher solution and are only validated through
simulation or in a lab environment.

The PowerMatcher concept has been developed and validated
through the past decade [77,134,163], showing successfully that a
market-based MAS can coordinate supply and demand matching, as
well as considering electricity storage. However, the original
PowerMatcher concept has been supplemented by several notable
works. For example, several papers have specifically applied MASs to
microgrids [33,131,162] and Van Dam et al. managed a collection of
micro-CHP units in a VPP through agent based control [144]; a
capability which was then incorporated into the PowerMatcher reper-
toire [164].

Whilst PowerMatcher and much other literature in this field adopt a
market-based approach, several notable works utilize MASs in a
different strategy. For example [8,165] place greater stress on the
importance of forecasting load and demand as they believe this enables
more accurate set point scheduling in advance. Several examples are
also evident of MAS approaches to demand-side management (DSM)
without consideration of a bidding market [8,24,166]. Further, whilst
the focus of PowerMatcher is arguably the prosperity of electricity
networks, several authors consider primarily the system's resilience
[32,156,167]. Of these, an interesting work presented by Lagorse et al.
[167] utilizes a virtual ‘token’ to decide which device agent is
responsible for ensuring the bus voltage. ‘Token’ usage is also observed
in a very recent and mature example on the use of hierarchical MAS
management [165], and so may warrant further research. In line withFig. 16. Reduction in required generation capacity through DSM.
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the trend of multi-energy systems, there have been extensions of the
PowerMatcher approach for integrated heat and electricity systems
[154], and an application of the PowerMatcher concept to a DHN
[168]. A very recent and relevant work focusses on generalizing an
established model of electricity networks [169] to be applicable to other
energy carriers through an agent-based approach.

These examples demonstrate that urban energy management is
becoming distributed across components and domains, which in-
creases systemic complexity and heterogeneity and hence causes
significant interoperability problems [124]. It is critical that the
involved entities share an understanding of the domain in terms of
common vocabularies and data models [170,171] in order to be able to
communicate and interoperate effectively. This has been recognized
within MAS approaches [156] and has manifested in examples which
comply with the standards of the Foundation for Intelligent Physical
Agents (FIPA) [131,137]. This is an especially interesting observation
given the reliance of the FIPA standards on ontologies; a modeling
approach we advocate for in the following section.

5.2. Semantic interoperability across heterogeneous energy systems
and datasets

Given the emerging energy landscape's multi-disciplinary nature,
along with the domain's trend towards big data and increasing
complexity, interoperability between virtual artefacts is becoming a
critical challenge in realizing increasingly distributed and intelligent
energy systems. This section will introduce this challenge and discuss
recent approaches and developments in the field.

5.2.1. Introduction to semantics in energy management
The challenge of interoperability in energy management is becom-

ing increasingly important [124,170,172,173], and is discussed here as
a problem of semantic heterogeneity between the vocabularies and data
representations used by the numerous software and hardware artefacts
penetrating the domain. This is to say that the conceptualizations held
of the domain by people and software across disciplines and companies
are often incompatible and require ad-hoc mappings and/or align-
ments in order for them to communicate and interoperate effectively.
In line with this concern, the IEEE standards committee recently
published a smart grid interoperability guide, and referred to this as
interoperability of protocols, data formats and meaning [124]. This
challenge will become increasingly pertinent as the volume of data and

number of software artefacts involved in energy management increases
alongside DER penetration, big data growth and the requirement for
intelligent management [171,174–178]. Alongside the requirement for
a secure framework, and the benefits of a service oriented architecture
[124], the use of a common vocabulary and data model mitigates the
effort required for software artefacts to communicate effectively with
others in the energy management system [124,179], as shown in
Fig. 18. These common models must standardize the concept descrip-
tions and data representations within the shared domain of the
software artefacts. Models which perform these knowledge modeling
functions are hereby referred to as semantic models, from the models
which underpin the semantic web [174].

One common type of semantic model, taken from semantic web
technologies, is that of a domain ontology; a machine-interpretable
description of the concepts in a domain, the relationships between
these concepts and domain data and the restrictions on how these
concepts can manifest [180]. This domain ontology can then be
instantiated with the specific objects, relationships and data present
in an instance of the domain, such as an individual energy system, to
create a comprehensive knowledge base. Further, each domain ontol-
ogy can re-use parts of other ontologies which map upper domains or
related domains, to further facilitate interoperability and reduce
development time.

Within related fields, the benefits of common data models are being
widely recognized. For example, within the building construction and
lifecycle management domain, open ‘building information modeling’
(openBIM) has recently boomed through the use of buildingSMART's
common data model for representing building level information [181].

Fig. 17. Example MAS control architecture for a microgrid.

Fig. 18. Demonstration of reduced number of software mappings through a common
model.
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This significantly improves data utilization across handovers between
the design, construction and management stages of a building's
lifecycle. In the smart city field, the British Standards Institute has
recently published a standard towards developing smart city data
models for interoperability [182] and the Open Geospatial
Consortium has released CityGML; an internationally standardized
model for describing spatial and semantic information in the urban
environment [183]. Finally, an understanding of the benefits of a
shared ontology within multi-agent systems is commonplace and forms
a central aspect of the international MAS modeling standards of FIPA
[184]. Given the recent trend towards agent-oriented energy manage-
ment systems, the development and use of shared domain ontologies is
a natural progression.

Within interoperability in urban energy management, the most
important recent development is arguably the IEEE 2030 standard
[124], which provides guidelines for smart grid interoperability and
delivers a ‘knowledge base’ of term definitions and domain descriptions
through a ‘Smart Grid Interoperability Reference Model’. This provides
essential groundwork towards interoperability in energy systems, by
facilitating a common human understanding and aiding the develop-
ment of interoperable systems. Critically, the guide highlights the
importance of common models in facilitating data exchange and the
integration of legacy systems, and in enabling system security and
performance. Further, the important role of ontological models is
highlighted in ensuring a shared meaning of data, hence making the
data more useful, as well as providing inference and rule-based
functionality. Given this precedent and the ongoing transition of urban
power systems to multi-energy systems, it is critical that energy system
interoperability is addressed through research, including a focus on
semantic modeling.

Despite several promising steps, these only serve to lay a foundation
for semantic interoperability in energy management systems, which
has been referred to as “embryonic” as of 2013 [173]. Beyond these
steps, research towards a highly expressive and flexible urban energy
model is necessary, as well as much research into the effective use of
such a model to fully leverage its potential benefits and mitigate
challenges. To this end, some examples are evident in the literature,
which are discussed in the following section.

5.2.2. Towards semantic interoperability in energy systems
Whilst semantic models and their applications in the distributed

energy management domain are scarce and the field is generally
immature, several relevant examples were observed in the literature
and are presented in Table 3.

From an analysis of these sources, a variety of intended applications
within the urban energy domain were observed, which manifested as a
variety of modeling approaches and resulting models. This section
discusses the relevance of an existing and standardized semantic model
before comparing research examples of the application of semantic
models within the domain.

Before considering research examples, a critical development to

discuss is that of the ‘Common Information Model’, which was
internationally standardized (and mapped to a semantic web format)
by the IEC [185]. This represents a seminal step towards establishing
interoperability in the domain and is recognized as such in IEEE 2030
[124]. However, this model has some limitations and contradictions,
again recognized in IEEE 2030, and fundamental parts of the
specifications have now been withdrawn. Further, the model is over a
decade old and is hence rooted in modeling centralized energy systems.
This has led to efforts to adapt it to distributed concepts such as
microgrids [186], but we argue that the interoperability described in
IEEE 2030 requires a radically revised model. Finally, the CIM was
designed in UML, so only represents relatively simple relationships and
expressions. We argue that the greater expressivity, inference capabil-
ities and rule applicability of ontology languages such as the web
ontology language (OWL) are required for energy management in the
emerging semantic web to fully leverage the potential benefit of data.
The benefits of such an OWL model and the challenges of utilizing the
CIM directly in this environment are acknowledged in [187].

Most of the recent examples of semantic applications in the domain
were designed to facilitate the planning or analysis of urban energy
systems through simulation [188,189] or information representation
and exchange [190–192]. This is as opposed to the few examples where
the semantic model was intended to facilitate intelligent management
within a MAS [193–195] or as part of a complex event processing
system [171]. Unfortunately the two MAS applications of semantic
models [194,195] ([193] does not present a UES case study) are both
over a decade old and appear to be little more than class structures.
This leads to the conclusion that very little implementation of semantic
technologies has been conducted within energy management systems
rather than urban energy planning and so signifies a key requirement
for future research as discussed in Section 7.

As there is likely to be significant overlap between the models used in
energy system design and planning and energy system management, the
models developed for the former were compared in terms of their
domain coverage and the apparent modeling decisions taken. The
seminal work of van Dam [193] modelled urban energy systems as
socio-technical systems and hence represented dual social and technical
urban energy networks with links between them in order to represent
concepts such as ownership and contractual obligation. This work was
later compared to the SynCity ontology developed by Keirstead et al.
[192], by Keirstead and van Dam [196], who conclude that similar design
choices were evident, that both ontologies modelled the technical aspects
successfully, and that a common upper ontology would facilitate
integration considerably. Whilst it is clear that some similarities exist
between the smart grid information model (SGIM) presented by Zhou
et al. [171] and the above two semantic resources, the SGIM ontology is
designed to manage real-time sensor data in an event-based system and
so contains a smart grid events model. This semantic management of
sensor data to contextualize and enrich sensed knowledge is highly
valuable and has been developed and standardized separately to the
energy management domain by W3C [197].

Table 3
Semantic resources in the urban energy domain and their intended applications.

Resource name Date Author Reference Application

CityGML Energy ADE 2015 OGC [157] Exchange of city energy data
Energy efficient district information model (eeDIM) 2013 RESILIENT [155] Instantiating an energy system simulation tool
SEMANCO Energy Model 2013 SEMANCO [158] Urban energy planning decision support
Agent. GUI 2012 Derksen et al. [156] Simulation of hybrid multi-energy networks
Smart Grid Information model (SGIM) 2012 Zhou et al. [138] Dynamic DSM application and further SG potential
STS 2009 Van Dam et al. [160] Agent-based modeling of socio-technical systems
SynCity 2009 Keirstead et al. [159] Integrated modeling, planning and designing of urban energy systems
Common Information RDF-S Model 2006 IEC [152] Integration of energy management system applications
COMMAS 2004 McArthur et al. [161] MAS for transformer condition monitoring
PEDA 2003 Hossack et al. [162] MAS which provides protection engineering diagnostic assistance
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Following a thorough analysis, it was clear that the CityGML Energy
ADE and the SEMANCO Energy Model were intended to facilitate the
representation, exchange and analysis of a broad range of city level
data, primarily as a collection of components and performance metrics.
In contrast, the eeDIM ontology contained more concepts specifically
related to management within an electrical system or MES in an urban
energy network, and reused van Dam's STS ontology to capture the
duality between the social and technical network present. This in-
dicates the eeDIM approach is more suitable for in-vivo management,
whereas the Energy ADE and SEMANCO Energy Model are more
suited for system planning and analysis. The eeDIM socio-technical
consideration is largely missing from the other works, although a full
comparison between these models is beyond the scope of this article. A
sample of the eeDIM ontology and its reuse of van Dam's STS ontology
is presented in Fig. 19.

5.3. Towards a new norm in energy management

This section has presented the state of the art of energy systems
within research in terms of the distributed energy resources, manage-
ment structures, and ICT concepts which are increasingly populating
the energy landscape to create a diverse smart grid of interconnected
systems, agents and domains. Given this ongoing acceleration in DER
penetration, many structures such as microgrids, VPPs, energy hubs
and demand side management schemes will soon coexist within cities.
As the density of DERs and DER management structures increases, the
potential benefit from coordination across these structures as well as
the challenges associated with their integration with the grid increase
dramatically. Within research to date, most authors make an implicit
assumption that the intervention they are considering is acting in
isolation from similar surrounding structures, as is the case in a
landscape sparsely populated by DERs. However, this increasing
potential for coordination within a densely populated DER landscape
will require a new breed of energy system, and some authors have
begun to consider interactions between management structures
[12,33]. This will require a new generation of energy system, which
is markedly different due to i) seamless multi-carrier energy and
information exchange with neighboring DER management structures,
ii) dynamic and holonic reconfiguration of DER management topolo-
gies, iii) greater reliance on distributed intelligence and automation as
the status quo rather than a novelty and iv) dense penetration of DERs
and active consumers being the status quo. This argument is elaborated
fully in the next section as well as a recommendation of how this next
generation could manifest.

6. Next generation holonic energy systems

Much research has been conducted from a smart grid perspective

about how to facilitate the integration of DERs, MESs and DSM within
a centralized paradigm towards sustainability, resilience and prosper-
ity. This has laid significant foundations for their integration, and their
penetration in the energy landscape is now accelerating. Given this, we
argue that a tipping point is imminent whereby the prevailing land-
scape becomes typified by a high penetration of these concepts, in
contrast to the currently prevailing assumption in research of sparse or
isolated penetration. This changing landscape presents both challenges
and opportunities and requires a new breed of energy system whereby
the value of a system of systems approach is truly utilized, diversity is
leveraged towards resilience and valuable ICT concepts are embraced
in a secure framework. This section therefore extrapolates current
trends beyond the emerging energy concepts presented, to the need for
a new generation of energy system. This generation will be capable of
intelligent interoperation across energy carriers and scales amongst
dense DERs, and will rely heavily on ICT and data-driven operations.
Following this, the section introduces the concept of a holonic energy
system as an avenue of meeting this need and discusses the challenge of
security within this ICT-driven paradigm.

6.1. The tipping point in DER penetration

As distributed energy systems continue to advance and become
more affordable, their penetration within the energy landscape is likely
to continue accelerating in line with current trends, examples of which
are evident in Fig. 20 and [200], which shows the ongoing exponential
growth of photovoltaics and electric vehicles respectively. This accel-
erating complexity is compounded due to the transition of consumers
to active agents. The number of people able to play an active role in the
energy landscape is increasing rapidly through smart metering, con-
sumer empowerment and DSM. These trends will lead to a high density
of dynamic entities, especially in urban environments, and will result in
a situation where the occurrence of proximal UES entities is more likely
than not, such that an environment with many nearby active UES

Fig. 19. Part of the eeDIM ontology, showing its reuse of the STS ontology.

Fig. 20. Historic global PV capacity growth (MWp) [199].
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entities will be commonplace. The emergence of this high penetration
of UES concepts will present significant challenges in terms of
management complexity, computational scalability, ICT security, data
interoperability and system reliability. However, it will present equally
significant opportunities through flexibility, modularity, redundancy,
coordination, aggregation, new market opportunities, systemic man-
agement schemes and big data, as well as sustainability benefits from
increasing RES reliance. Therefore, continuing to integrate these
technologies in the isolated manner currently observed in research
will limit their potential benefits and fail to meet numerous challenges,
whereas utilizing a system of systems approach which meets these
challenges will deliver significantly improved characteristics. For
example, aggregating and coordinating adjacent microgrids, multi-
energy systems, controllable loads, plug-in vehicles and virtual power
plants, and dynamically reconfiguring the management topology of
these structures could offer powerful new avenues to maximize the use
and reliability of distributed renewables and minimize total and peak
reliance on the grid.

We argue that the current paradigm of ‘centralized generation with
sparsely connected local generation’ will fail to fully use local genera-
tion potential as the penetration of local energy solutions increases.
Further, the scalability of conventional supervisory optimization is
inadequate, and we argue that even the observed MAS approaches are
not suitable at the scale of penetration and dynamism deemed likely.
For this reason we argue that a new paradigm must emerge where
interaction between DERs and UESs is commonplace in parallel to
their interactions with the grid, management intelligence is highly
scalable and system frameworks are able to react to weather, technical
and behavioral changes. The next generation of energy system must
manage these aspects dynamically and intelligently to optimize the
performance of the overall energy system by balancing local and global
objectives. Further, given the stochastic nature of many of these local
energy solutions due to their reliance on RESs and human behavior,
dynamic management of the network must be based to a greater extent
on probabilistic simulations and shorter time-scale reactive manage-
ment [25]. Therefore, as the energy landscape increases in complexity,
we argue that a system of systems approach is required to successfully
orchestrate the interplay between diverse energy components.
Boardman and Sauser identified the characteristics that enable a
differentiation between a system of systems and a plain system:
autonomy, belonging, connectivity, diversity and emergence [198]. A
UES is a system of systems according to that definition. Based on these
requirements, the following section will now argue that a holonic
system approach, as a manifestation of system of systems theory, is
able to meet the needs of the next generation of energy systems.

6.2. Introduction to holonic energy systems

The holonic system approach is based on the concept of a dynamic
hierarchy of holons, where each holon represents an autonomous and
self-contained system, but can contain or be contained within other
holons, as shown in Fig. 21, and the topology of this hierarchy adapts for
the benefit of the super-system, or holarchy. Further, each sub-holon can
change which super-holon it is a part of or become a part of multiple
super holons. In this way the holonic approach is a hybrid between the
distributed approach where autonomous subsystems adapt within a
static framework and the centralized approach where subsystem beha-
vior is prescribed by a supervisory controller. The concept aims to
balance the objectives of individual systems and the overall system of
systems, and originates from the Greek words of “holos” and “on”,
meaning “whole” and “part” respectively [201]. Further, as each holon
can be composed of sub-holons, these sub-holons interact through
cooperation and competition to produce the emergent behavior which
characterizes their super-holon; in this way the approach is again similar
to multi-agent systems. This can be reflected by adopting a holonic
system approach within a multi-agent system, to produce a holonic

multi-agent system (HMAS) [202]. This approach differs from the
conventional MAS approach, as the framework of cooperation, competi-
tion, supervision and part-whole relationships are dynamic and flexible,
to balance the needs of the holons and sub-holons.

The holonic system approach lends itself well to the management of
energy systems [202,203] as they are typically conceptualized in a
hierarchical manner whereby components form a network, such as a
microgrid, which in turn forms part of a larger network, and so on.
However, the holonic approach also exploits the potential autonomy in
each system and the flexibility of aggregation arrangement afforded by
virtualization. Through the HMAS approach, the energy system can be
managed by representing individual components as atomic holon-
agents and grouping them dynamically into a hierarchy of supervision.
This allows flexibility and scalability in an environment where the mix
of online and active components varies rapidly and significantly, yet
cooperation is mandatory, such as a landscape of high DER penetra-
tion. This is shown in Fig. 22, where generation and load agents are
added between timesteps 1 and 2, and a load agent goes offline,
resulting in a generation agent changing its super-holon to balance the
computation load at each supervisor agent and a new load supervisor
emerging to accommodate the additional load agents. Such a manage-
ment paradigm relies on distributed intelligence, whereby micropro-
cessors at each component receive supervisory commands from their
super-holon(s), sensory data from their own electronics and interac-
tions from neighbor holons, then perform automated analytics, and
subsequently act towards predefined goals through direct electronic
actuators and virtual interactions with neighbor holons.

Whilst holonic energy system research is embryonic, there are some
examples of implementations which provide early evidence towards
their potential. For example [202] utilized a holonic multi-agent system
(HMAS) to control reactive power and provide state estimation in a
grid with high rooftop PV penetration. This showed that a 3 level
holarchy of ‘substation’, ‘feeder’ and ‘neighborhood’ holons is suitable
in the described situation, where each holon is represented by an agent
within the cyber-physical system. Also recently, Dou and Liu [165]
utilized a hybrid hierarchical MAS approach to successfully control an
energy system with high DER penetration. As early as 2009, [204]
recognized that holonic models were suitable for handling the increas-
ing volumes of data within power systems and used a HMAS to
facilitate the effective collection and communication of this data.
Further, the holonic system approach has been applied through
distributed control to substation automation and fault protection
[201]: although this manages energy at a single node in the higher
level network, it demonstrates the potential of the holonic systems
approach when implemented through distributed control. A different
approach to the described, geographic, grouping of holons into super-
holons is adopted in [205]. In this example, holons are classified as
either resource holons, energy holons or service holons; thereby
abstracting the aspects of the system in a different way, although we
argue that this is a less intuitive representation of the system and
doesn’t lend itself as well to agent-based control.

Whilst this section has primarily considered electrical systems, the
holonic approach could equally be applied to multi-energy systems or

Top level holon

Holon

Interaction

Fig. 21. Recursive architecture of holonic systems.
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other energy carrying systems; for example, a holonic approach of
grouping components into supply, demand, storage and distribution
has been applied to a district heating network in [203].

6.3. The security imperative

The requirement of the next generation of urban energy systems to
dynamically manage the distribution network across energy carriers
and scales in terms of network topology, generation and storage
optimization, and dynamic pricing, raises key cyber security concerns
[124,206]. Further, Smart grid cyber security has emerged as an
important topic in recent years. Three main aspects of smart grid
security are discussed here: i) secure authentication, ii) secure com-
munication and iii) information security management. Secure authen-
tication deals with various interfaces (e.g. Home-to-Grid (H2G),
Building-to-Grid (B2G), Industrial-to-Grid (I2G), Transmission and
Distribution (T &D) and Business and Policy (B & P)) and is based on
many existing standards and ongoing efforts on cyber security and
privacy technologies in cognate domains. Efforts such as ISO
27002:2013 [207], Federal Information Processing Standard (FIPS)
201 [208], Advanced Encryption Standard (AES) [209] and Triple Data
Encryption Algorithm (3DES) [210] offer some of the least cost options
for strong security and high performance, but should be applied
following appropriate risk assessments, and in appropriate scenarios
depending on the communication resource being protected. Arguably,
AES encryption with Elliptic Curve Cryptography using TLSv1.2 offers
a more secure solution than 3DES, or the use of CBC in SSLv3 or
TLSv1.0, which are susceptible to meet-in-the-middle attacks and
BEAST attacks respectively.

Diverse communication requirements in smart grids will require
the implementation of different standards. For example IEEE 802.11i
and 802.16e should be implemented for wireless links, and firewalls
and virtual private network (VPN) technologies such as IPSec should be
used on both wired and wireless networks, as well as higher layer
security mechanism such as Secure Shell (SSH) and SSL/TLS [206].
Information security management, on the other hand, is dealt with in
ISO/IEC 27002 [211], which provides best practice recommendations
for initiating, implementing or maintaining information security
management systems (ISMS) and is aimed at the preservation of
confidentiality, integrity and availability. However, these standards
need to evolve as elaborated in the following section.

7. Future research directions

Research is required to support the transition to the future energy
generation illustrated in Fig. 23 and described in Table 4, from the
present trend of distributed energy systems to the envisioned next
generation of holonic energy systems. This section therefore extends
the previous description of the required energy system generation by
describing the key research themes necessary for it to emerge.
Specifically, three strategic research avenues are identified and dis-
cussed below: i) semantic interoperability of energy systems, ii) secure
and reliable multi-agent energy services and iii) energy system of
systems optimization.

7.1. Semantic interoperability and control of energy systems

The potential for semantic models to facilitate the interoperability

Fig. 22. Example of scalable adaptability through holonic multi-agent systems.

Fig. 23. Evolution of energy systems through 4 generations.
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of virtual artifacts and data-driven management systems was discussed
previously, and represents a critical enabling step towards holonic
energy systems. The diversity and prevalence of interoperating com-
ponents is increasing and is leveraged as an opportunity in holonic
systems, but the ability to share and fully utilize data between these
components is critical for their intelligent management. The ICT
penetration which is ongoing and essential for holonic energy systems
therefore mandates the integration of heterogeneous data models,
towards which semantic modeling has shown much promise.
Specifically, the optimal coordination of distributed energy resources
is a complex problem that requires intelligent control software. The
components of such intelligent energy management software need to
be able to retrieve and exchange data from a wide range of resources
such as sensors, smart meters, actuators, building management
systems (BMS), and energy managements systems (EMS). However,
it is unlikely that stakeholders in a district would use the same data
model or communication protocols. In fact, as it becomes common-
place for energy systems to spread across energy carriers, spatio-
temporal scales and both supply and consumer-side software, commu-
nication between relevant entities will be a critical barrier towards their
effective interoperation. Therefore, it is essential that further research
into semantic modeling and the application of semantic models is
conducted to mitigate the barriers to data-driven approaches in an
energy landscape of high DER penetration and interaction. More
specifically, there is a need to i) represent the autonomous nature of
local energy systems and their adaptive hierarchical groupings, ii)
develop semantic representations of these systems and their compo-
nents to facilitate interoperability between an increasingly heteroge-
neous and interdisciplinary field, and iii) develop optimization strate-
gies to leverage this systemic knowledge alongside sensory data for the
dynamic organization of holons.

As mentioned earlier regarding ontologies developed for UESs, it is
apparent that variations in scope, perspective or goal can cause
incompatibilities between ontologies, and that the modeling of the
emerging energy landscape is immature. As the UES field is consis-
tently expanding and requires the input of experts from a broad range
of fields, using multiple existing ontologies is likely and even recom-
mended [212]. It is understandable then that many of the works
considered have reflected on the interoperability of multiple ontologies,
such as Catterson et al. [213] who discuss that whilst mapping
ontologies is typically a manual and laborious process, an upper
ontology would reduce the effort considerably. Many authors concur
with this sentiment, such as Zhou et al. [171] who advocate for a
framework for concept integration, Keirstead et al. [159] who desire a
shared ontology for the domain, and van Dam and Keirstead [179] who
reiterate towards a shared ontology and state that it would be beneficial
even if not universally accepted. Key avenues for further research may
be to develop semantic models of emerging UES concepts, develop and
test approaches for managing the interactions of multiple ontologies,
pursue a common upper ontology, and promote standards in this
space.

Examples of ontology driven energy management applications are
sparse and the field is immature, likely due to the complexity of
ontologies and the effort required for their development. As well as the
modeling research advocated, we therefore argue that further research
is required on the application of existing ontologies within the field.
Beyond enabling interoperability, ontological modeling enables the
inference of knowledge without it being explicitly stated through the
use of an inference engine, and the application of logical rules, which
facilitates further inference, policy checking and enforcement.
Leveraging these features in energy management systems was not
observed in the literature, but represents a significant avenue for future
research, alongside the validation of the approach's overall perfor-
mance through deployment, such as within a service-oriented archi-
tecture. Finally, normative guidance on the best practice for developing
and deploying these systems would be highly beneficial.

7.2. Secure and reliable multi-agent energy services

As elaborated earlier, the growth of smart grids is faced with
emerging requirements for the smart integration of distributed energy
resources. In this context, physical and cyber security challenges have
become critical factors for the reliability and quality of supply (QoS) of
energy related services [206]. Conversely, a gradual transition is
occurring to demand responsive energy management enabled by smart
metering infrastructures with a bidirectional flow of energy, and
dynamic pricing schemes. Security problems are consistently high-
lighted as weak points in this new energy landscape [172,214]. There is
a requirement for secure authentication of users, agents and transac-
tions at each interface between energy devices. The number of
processes is also exacerbated by the increasingly distributed nature of
grids, and their underpinning communication requirements. It is
therefore essential to carry out research along three avenues. Firstly,
research must identify and quantify the risk of a breach of privacy and
security to the systemic reliability and quality of service (QoS) caused
by insecure authentication occurring in a heterogeneous environment,
where legacy standards and applications need to remain in operation
alongside advanced standards. Secondly, research must identify and
quantify loss of data, breach of privacy and vulnerability due to the
heterogeneous communication infrastructure (wireless, wired, PLC),
and the impact on grid reliability and QoS. Finally, research must
develop guidelines for information security management and inform
related legislation and standardization.

Alongside this, energy software services which address various
stakeholders' (including prosumers) needs are required. These include
forecasting and simulation services, as well as responsive day-ahead
and intra-day management services necessary to effectively integrate
distributed energy resources, including renewables, in urban energy
systems. This implies that as local renewable solution penetration
increases, so too does the importance of being able to predict behaviors
and adapt to changing weather and technological environments. We
argue that as local RES density increases, this importance extends

Table 4
Description of the generations of energy system.

Generation Description Reasons For Emergence

2 – Centralized
systems

Electricity is produced at large power stations and transmitted at high
voltage to distant loads, with increasing renewable contribution in recent
years

Economies of scale enabled the production of low cost energy from
abundant natural resources. National grids also aided state regulation and
improved quality of service

3 – Distributed
systems

DERs begin to penetrate the energy landscape, causing integration
challenges and opportunities, which are gradually overcome. DERs are
sparsely populated so generally exist within isolated systems

Pressure towards sustainability & resilience, alongside advancing
technologies, increased the attractiveness of DG, PEVs, MESs and DSM.
Various international events and policies spurred investments and research
towards their integration in the centralized grid

4 – Holonic systems DERs densely penetrate the energy landscape to form a system of systems.
ICT is used to dynamically reconfigure and interoperate proximal entities

Increasingly dense DER penetration alongside ICT advances and continuing
pressures will mandate DER interoperation towards further sustainability,
resilience and prosperity in energy systems
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beyond the unit level to intelligence at the system level, where the
impact of uncertainty at each node can be mitigated through the
emergent behavior of adjacent DERs. However, given the assumption
that DERs and consumers are active agents able to perform optimiza-
tion and change their own operating parameters, a modeling approach
which captures this adaptable system nature is necessary. To this end
the multi-agent system approach is widely adopted, has been validated
within the research field and has been increasingly tested in real-world
applications. However, as the density of DERs and hence number of
agents increases, the complexity of the resultant system will increase by
orders of magnitude if the landscape is considered simply as a ‘bag’ or a
fixed hierarchy of agents. Several authors have addressed this concern
through hierarchical MAS solutions consisting of local manager agents,
but these hierarchies are rigid, whereas the evolving landscape requires
adaptable hierarchies which change with predicted generation and
demand profiles and as DERs come online and go offline or fail. Instead
therefore, we advocate for research into dynamically structuring
groupings of agents into holons, within a holonic MAS (HMAS), to
allow resources to interact with whichever nearby resources and loads
present the ideal local and global benefits. Therefore, we recommend
for research to further explore the application of MASs to an urban
environment with a high penetration of DERs by optimizing the
dynamic grouping and management of DERs within holons.

7.3. System of systems optimization of energy infrastructures

Following the ability to model and control the emergent behavior of
complex distributed energy systems through a MAS approach, optimal
management of the systems should be realized by systematically
considering the decision space of management topologies, schemes
and operating parameters. Energy system optimization is far from
novel, but most approaches consider the system as a static entity, and
only consider a single system rather than the emerging system of
systems landscape. We therefore advocate the previously described
system of systems approach of holonic energy management. Inspired
by examples of recursive organization in nature, the holonic architec-
ture is based upon the concept of a holon; a logic control entity that
takes collaborative context-based decisions. Multiple holons (meta-
holon) can form scalable architectures through an aggregation me-
chanism. For example, a Distribution Network Operator can be a
holon; an aggregated cluster of DERs and loads in the grid which can
make autonomous decisions as well as cooperate with other holons to
make mutually beneficial decisions.

Examples of clustering objectives include local energy balancing,
islanding, and blackout prevention; similar to those of microgrids, but
within a paradigm more suitable to a changing environment of high
DER penetration. A holonic framework has, therefore, the potential to
meet the requirements of flexibility, scalability, resilience, openness
and practicality. Furthermore, holonic architectures combine the
advantages of distributed control (such as scalability, privacy and
adaptability) and centralized control (such as feasibility, optimality
and responsibility) whilst mitigating their specific drawbacks. The
benefits of a holonic architecture are particularly evident when the
grid needs to be healed after a disruption in service. Due to the organic
nature of the holonic architecture, the grid can restore, re-organize and
heal itself via alternative topologies without affecting the system as a
whole. We therefore thoroughly advocate a new body of research with a
view of ensuring the optimality and resilience of energy management
systems through self-healing capabilities that i) promote autonomy,
belonging, connectivity, diversity and emergence, ii) balance the
importance of global and local objectives, iii) dynamically reconfigure
to optimize the overall energy system's performance across energy
carriers and scales, and iv) enable demand responsive energy manage-
ment with bidirectional flow of energy, information and dynamic
pricing schemes.

8. Conclusion

This paper has reviewed the evolution of energy systems from initial
electrification to the emerging distributed systems, and has discussed
concepts and trends within recent research. The paper then used an in-
depth analysis of the domain to envision the next generation of energy
systems, a paradigm which may meet the needs of this future
generation, and the research required to facilitate it. Specifically, whilst
the research conducted to date has produced important advances
towards a decarbonized, resilient and adaptable grid, the body of work
observed through this review generally considers each of the compo-
nents of a future energy system in isolation. From this we can observe
that each of the UES concepts such as microgrids and VPPs hold merit
when applied within a centralized grid paradigm, but very little
research considers the operation of these systems within the emerging
energy landscape typified by a high penetration of large RESs, DERs,
prosumers, seamless communication and big data. Therefore, the work
conducted to date has laid significant groundwork towards future
energy systems by developing and validating a range of UES solutions.
However, research is now required towards the next generation of UES
where diverse and distributed energy systems are dynamically inter-
operated through ICT penetration.

The authors argue that a system of systems approach is required to
successfully orchestrate the interplay between diverse energy compo-
nents in a way that promotes systemic autonomy, belonging, connec-
tivity, diversity and emergence. This argument is crystallized through
the concept of a holonic systems approach, which balances the
importance of global and local objectives. We propose that the
hierarchy of holons within such a system, their properties, interactions
and goals, should be dynamically reconfigured to optimize the overall
system's performance across energy carriers and scales. Specifically, we
advocate the use of holonic multi-agent systems, as these exhibit the
benefits observed in existing MAS based management systems whilst
allowing further scalability and adaptability through dynamic restruc-
turing of agents within a hybrid hierarchical-distributed management
architecture.

To support the transition from the present trend of ad-hoc
distributed energy systems to the envisioned next generation of holonic
multi-agent energy systems, strategic research avenues were identified
and discussed. These were: semantic interoperability of energy sys-
tems, secure and reliable multi-agent energy services, and system of
systems optimization of energy infrastructures.
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